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ABSTRACT

Superflow of liquid helium II under a gravitational

potential has been investigated by means of wire-filled tube
1 2

superleaks and three sizes of Millipore filter in the tem¬

perature region 1.2°K to the \-point. The superleaks, which
-4 -7

ranged in size from 1 .2 x 10 cm to 4 x 10 cm, were

attached to relatively large reservoirs made partly of glass

and partly of thin copper being thus designed to minimise

thermal effects. Critical velocity v , channel size d, and
d. log V

pressure dependence — — = n were measured. The magnitude

-1 -5
of v , 7 cm sec for d = 8.5 x 10 cm rose to a maximum

c

-1 -6
value of about 14 cm sec for d = 3 x 10 cm then fell again,

but over the whole range of d its magnitude was smaller than

that predicted by Peynman's^ equation vq = ^ In ^ .

Values of n together with certain of those obtained in

4 5 6
previous investigations ' ' when related to d suggested that

there are two regimes of critical flow, the transition between

_5
them occurring when d "^10 cm. In order to test this hypo¬

thesis pressure gradients were measured by placing manometer

tubes at intermediate points along two of the wire-filled

tubes, one of size & - 8 x 10 cm and the other of size

d = 4 x 10 ^ cm. In the larger tube an almost uniform pressure

gradient extended throughout the channels but in the smaller



one the evidence pointed to the existence of a discontinuous

pressure drop proba.bly in the narrowest channel section.

_3
The flow regime n = 0.3 in channels of size 10 cm > d >

-4 7
10 cm can be understood in terms of the Gorter-Mellink

mutual friction hypothesis. An attempt has been-ma.de to expla.in

the transition to the regime n = 0. The basis of this argument

Q
stems from a theory already proposed by Vinen . It is argued

-5
that the rapid decay of vortex lines when d = 10 cm prevents

their propagation into the channels, suppresses the growth of

vortex line within the channel and hence also the appearance of

the mutual friction force. It is therefore tentatively suggested

that some other dissipative mechanism gives rise to the value

-5
n = 0 when d < 10 cm.

Evidence obtained from gas flow tests, photomicrographs and

in the case of the Millipore filters from electron micrographs

indicates that each type of superleak contains not a uniform

set of channels but a. whole range of sizes. The effect of this

spread on the magnitude of vq was examined and it was concluded
that the values of v^ would not be significantly lower than
would have been observed using uniform channels. This spread

of sizes also prevented the observation of well defined depres¬

sions of the onset temperature. However, by measuring the mean

flow velocity v at temperatures between 1.2°K and the A-point



indirect evidence was obtained in support of the onset effect.

Measurements of vq using the filters showed that even in
one size of filter the percentage open area varied from sample

to sample, but the critical velocities were in fair agreement

with those measured using the wire-filled tubes. The index n

-4
was generally independent of temperature but in the 1 .2 x 10

cm size of filter its magnitude was lower than that for compar¬

able sizes of wire-filled tube and n wa.s found to increase with

increasing temperature. A simple explanation of the index

-6
n = 0.3 in the 10 cm size of filter previously observed by

Q
Seki is offered.
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CHAPTER 1

INTRODUCTION

4
1 .1 Some of the properties of liquid He

3 4
The stable isotopes of helium, He and He , hold unique

positions in the family of liquids. They are the only sub¬

stances which exist as liquids in the temperature region close

to the absolute zero. Under their respective vapour pressures

they remain liquid down to the lowest temperatures so far

attained and considerable pressure is required to solidify them.

At 2.18°K, the lambda temperature, the specific heat of

4
liquid He has a maximum and a discontinuity. This behaviour

of the specific heat curve is reminiscent of order-disorder

phenomena in general such as phase transitions in (B-brass and

magnetic disordering in ferromagnetics, but there is at present

no completely satisfactory theory of this A.-point. Above the

4
A.-point the liquid phase of He is known as He I and below it

3
as He II. He II, unlike He I and He , exhibits strange proper¬

ties and in consequence is termed a superfluid.

The work reported in this thesis is connected with the flow

property of He II in narrow channels. Before describing the

purpose and design of the present experiments it is helpful first

to outline briefly the properties and theories of the superfluid

state.
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The viscosity 7 of He II gave the first indication of the

non-classical nature of the liquid. Keesom and MacWood (1938)

who used the rotating disc method to measure 7 found it to decrease

with decreasing temperature below the A.-point. The magnitude of 7

was comparable with that of He I. In their investigation of the

flow of He II through narrow capillaries, Allen and Misener (1939)

found that the viscosity was orders of magnitude smaller.

A further property of the superfluid wa.s revealed when Allen

and Jones (1938) discovered the fountain-effect. The essential

feature of this phenomenon is that in He II a small temperature

gradient results in a corresponding pressure gradient. The obser¬

vation by Keesom and Keesorrv (193&) of an enormous internal heat

conduction in He II suggested that the liquid was a thermal super¬

conductor. Allen, Peierls and Uddin (1937) showed that the heat

conductivity in He II could not be characterised by a large value

of the classical thermal conductivity coefficient.

Taken together, the problems of viscosity, the fountain effect

and the thermal conductivity suggest that the usual differential

equations of macroscopic physics are inapplicable to a description

of liquid helium below the A-point.

1 .2 The two fluid model of London, Tisza and Landau

This model, constructed to explain the non-classical behaviour

exemplified by the phenomena described in the previous subsection,
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remains, even at the present time, the basis of all theories des¬

criptive of the superfluid state of He II. The main assumption

is that the liquid consists of two interpenetrating fluids one

with density^ called the superfluid and the other with density
called the normal fluid. The total density of the liquid is

the sum of the densities of the two components. At the absolute

zero He II is entirely superfluid and at the \-point entirely

normal fluid. The temperature dependence of/°n/^ha.s been
o

measured experimentally by Andronikashvili (1946). The super-

fluid corresponds to a single quantum state and as such does not

contribute to the entropy of the liquid. The existence of the

normal fluid is attributed to thermal excitations. On the basis

of the two fluid model Tisza (1938) was able to predict the

phenomenon of second sound. This is a temperature wave within

the liquid in which total density and pressure remain constant.

In terms of the two fluid model the viscosity paradox is

resolved. The rotating disc experiment measures the viscosity

of the normal fluid. By way of contrast in narrow channels the

normal fluid is immobilised and the flow property of the super-

fluid is observed. In this latter case the concept of a visco¬

sity has little meaning. The fountain effect is also explained

because the raising of the temperature inside a reservoir, con¬

nected to a He II bath by a capillary, increases the thermal
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excita.tion of the liquid and sof^/p. The superfluid flows into
the reservoir until thermal equilibrium is re-established. The

heat conduction is thought of rather as an internal convection

process in which the normal and the superfluid flow in opposite

directions.

1.3 Theories of liquid helium

Support for the two-fluid model stems from two important

theories. The first was that of London (1938) based on Bose-

Einstein statistics. London sought to explain the properties of

liquid helium by considering Lto to be an ideal Bose-Einstein gas.

At a temperature Tq such a gas of non-interacting particles
should undergo a kind of condensation. The theoretical transition

temperature is given by

Tc = (h2/2xmk) .(n/2.6)v 2/^ (l)
and with the constants relevant to helium, equation (1) gives a

value for Tq of approximately 3°K. The arguments in favour of
this theory are that helium particles, with an even number of

nucleons should obey Bose-Einstein statistics and also that since

the atoms in the liquid are widely spaced the approximation to a

gas should hold. It is an obvious next step to identify the

excited particles with the normal fluid and the 'condensed' par- ,

tides with superfluid. The fraction of molecules that have not
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condensed at temperature T is given by

h ~ n o
_ / _ /_ \ 3/2

N " V

It follows that

/°n/f = (T/Ta)3/2 (2)
Unfavourable comparison of this equation with the measurements of

Andromfckashvili led London (195^) to introduce into the energy

spectrum of the ga.s an energy gap A . The quantity f* /P then

becomes

<VP- -5' 0)
A A

irK. . C-i UU jm-iW-W dmtt-—
Equation (3) has the virtue that/it reproduces the measured depen¬

dence of ^ /^.on temperature but this is probably to a degree for¬
tuitous .

The second important theory was that of Landau 19^7).

He considered the liquid at 0°K as a single quantum state, and

imagined the liquid at higher temperatures to be in a. weakly

excited state. This state he rega.rded as the net result of a

number of individual excitations, thought of as qua.si-particles

occupying the volume of the liquid and having definite energy [£]

and momentum [p] characteristics. Like other liquids helium

ought to support compression waves. Landau considered those

waves in which the wavelength is large compared with the atomic

spacing. These are the so called acoustic quanta (phonons) whose
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energy is a linear function of momentum:

fc = cp (^)
XULOt-lySlS of the. cb*-ftx_ O W Spacj fiC Lexct <3UaA

c being the acoustic velocity. For higher values of p evperi-
\j oci fy of" Si-cowi So \xhjA. sU«Wi -t-feusof t"e wv|^-co-Hi. ckg^p oe_ of rke

men-tad data on entropy and specific heat showed that the fe_ - £
CALJIA.<M/VUC Q"iiAC,fiav\S Cxia. be. <f- "fte. Jixc-ifod-ioM. ■S.joac.'f-TtMrvv Kns f4-* foowof l~«<| (.

relation was similar to that of figure 1. In thermal equilibrium
\j £/tu.4-S ,

the excitations are distributed around the energy r»iaa±ms»-£ = 0,

C = A. Near the point p = p0, £(p) can be expanded in a power

series of terms in (p - p0). Since (3—) = 0 there is nov ' vdpp=p0
linear term and to an approximation £ is given by

£ = A + (p - Po)2/2p (5)

where p and A are constants. The elementary excitations in this

second region are called rotons and p is the roton effective mass.

Above 1.2°K the normal fluid fraction is determined mainly

by the roton contribution andy°n//° can be calculated from the
Landau theory if it is assumed that the rotons form an ideal gas.

The free energy F of a gas with N particles in a volume V is

given by "

F = - NkT in /e"f//kT d^/2nfp (6)
where d*c = dp dp dp and, 1=0 say. To find the number of

p x y z "

particles in the roton gas we note that (iF/^N) = 0, whereupon

differentiating (6) gives

Nr=V0 (7)
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and thus for unit mass,

1
N = Je-^cir (8)r p

2
Since d? = 4tcp dp, becomes

N = ^-=r j exp - VkT } j p2 exp{ "^gnkT^ ^ dp ^T f{2iA)3 I ; 2pkT
An approximate solution is obtained by putting p = pc in (9) in

the term before the exponential. Thus, examining the integral

only, it is found that >

Jp2 exp ( -(p - p0)2/2pkT j dp

exp { -f2/2pkT ) d? = p2 J 2TxpkT (10)
+ cC

2
Po

Substitution in (9) gives the number of particles in the roton

gas

N = 2(^)gP° exp (-VkT) (11)r (2tlY'pt?
Consider now the distribution function for a gas which moves as

a whole. It is obtained by replacing the particle energy £ by

£ - p.v where p is the particle momentum. Thus the total momentum

for the gas P is

P = J p n ,(£ - p.v) -d^p (12)
and for rotons n(e ) is the Boltzmann distribution function. For

small v the integrand can be expanded in powers of p v, whence

P = - f p(p.v) dt (13)j P
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In the Boltzmann distribution

Wo R_ f 14")
■bl ~ ^kT

Averaging the integrand in equation (13) over directions of p we

have

E-ff/p2n(£)%^3SPNr (,5)
so that yQ is given by

2

t n = 3kT f Wr-N (16)

so that from (1$), (l6) becomes

J 4

(A}r = VpP° i 3 e*P (-6/kT) (17)
. / n r 3(2tc) (kT)2 h9

If the theory were valid for high roton densities then at the A-

point

(/nWon - (18)
Substituting the condition (18) in (17) gives the variation of

f*r/f* temperature as

f-T" )_2 exp4(?r A K A

This equation is not altogether dissimilar from that obtained by

London but the important point is that on both theories the mag¬

nitude of /> /yd is strongly dependent on the size of the energy

ga.p. Kuper (1958) ha.s predicted that A will be reduced in the

neighbourhood of a solid wall. One consequence of this prediction
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is that in sufficiently small channels the onset temperature for

superflow will be lower than the A.-temperature.

Feynman (1955) has ma.de the Landau theory more rigorous by

showing from first principles why it is that there are no statis¬

tically important internal excitations other than those supposed

by Landau, namely.the phonons and rotons. He then goes on to

consider the wave function which represents the state of the

fluid when it is in motion. He gives plausibility arguments for

assuming that

^flow " [6XP i(Is (£i)]® (20)
i

where s(R) is a function varying slowly over distances of a few
o

A units, and <5 is the ground state wave function' of the system.

This equation represents the helium flowing with velocity

v = ft m"1 \7 s (21 )
—s

Equation (21) implies that the motion is irrotational. In a

simply connected region this means that the superfluid will not
oJL U-j

rotate. Since - 0 the circulation about any closed curve
LS

which can be shrunk to a point is zero. However in the case of

a region enclosing a hole the circulation does not vanish and

must have values in multiples of 2Ttfi/m. Thus Feynman shows that

the liquid can support vortex-type excitations and that for these

jC Vg . dl = 2-rch m 1 (22)
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Although states represented by these lines are not numerous in

comparison to the density of roton and phonon states it will be

seen (in chapter 2) that they play an important role in deter¬

mining the flow properties of the liquid.
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CHAPTER 2

THE SUPERFLOW OF LIQUID HELIUM II

2.1 The thermohydrodynamic equations

The equations of motion which describe superflow, based on the

two fluid model, a.re

Dv

/°s - E? = /°s S Srad T 'f grad P + Fsn^Vs " Vn} + W (25)
and

Dv

~dF = " fs S grad T grad P + + 5 grad dlV V

P (v - v ) (24)
sn s n

where D/Dt is an operator defined a.s

D/Dt = V)4 + v grad.

In wide capillaries both equations are necessary to specify

the flow of He II but in narrow channels where the normal fluid is

immobilised by viscous forces equation (2j) should provide an

adequate description of superflow.

Gorter and Mellink (19^9) proposed the existence of a. mutual

friction force, P , between the normal and the superfluid. This
sn

was suggested to account for dissipative effects other than those

due to normal fluid viscosity. The magnitude of the relative

velocity |v - v | determines the size of this force, which is given
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by
2

p = A /> /> lv - v ( (v - v ) v > v
sn s/n s n s n c

=0 v < vc (25)
where A is constant but depends on temperature and channel size.

The velocity at which friction forces, indicated by the terms P
sn

and F (v ), first appear is called the critical velocity, v .
s s c

There is conflicting evidence on the question of whether it is the

quantity I v | or [v - v ( which becomes critical. Kidder and
s s n

Pairbank (1960) found that at supercritical velocities friction

occurred between the superfluid and the walls. Vinen (1957) found

that it was. the relative velocity of the two fluids which deter¬

mined the onset of dissipative effects. Evidence obtained by

Kra^mers et al (i960) also supports this view. The nature of the

mutual friction force was not understood when it was first proposed,

but the work of Hall, Vinen, Peynman and Critchlow has led to the

belief that it arises from the interaction of phonons and rotons

with vortex lines. The theory of mutual friction is more fully

discussed in 2.2.

A second friction term P (v ) was introduced into the thermo-
s s

hydrodynamic equations by Atkins (1959)- The experiments of Hung

et al (1955) suggested the presence, apart from a. mutual force, of

a minute force proportional to the superfluid velocity. This was

not inconsistent with the earlier observation of Allen and Misener
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(1939) who found that, at temperatures above 1.J°K and at low

pressures, the mean velocity of superflow was proportional to the

hydrostatic pressure. Recent work by Bhagat and Mendelssohn (i960)

on gravitational flow in capillaries of size ranging down to 88|_l

indicated the existence of a large linear force but no mutual force.

These authors found the mean flow velocity v to be a linear function

of pressure gradient;

v = vc + k(fu ) grad p

where k is a function of initial level difference. Their inter¬

pretation of this regime of flow was based on the concept of an

eddy viscosity^^ associated with the superfluid. The pressure
dependent part of v they wrote as

VP = % ((P ^~+ zr lgrad p (26)1 'n ' /s

2
where a. is the radius. These authors replaced F (v ) by ^ V v

s s s s

and in doing so ascribed an eddy viscosity to the superfluid.

This complex phenomenon has been discussed by Staas (1961) in terms

of normal fluid turbulence but this argument appears to be inappli¬

cable since at 1 .3°K, fn/f ^ -^// and. ^s' w^^clrl means that
the flow is almost entirely that of the superfluid component. Allen

and Watmough (19^5) have shown that if thermal effects are not

minimised a. regime resembling laminar flow of a classical liquid

can be observed.



ANNULAR SUPERLEAK

Figure 2.
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The flow propertjfc>of He II in channels smaller than 10 cm

i£tnot well understood and there have been relatively few attempts

to mahe quantitative measurements. The reason for this is partly

due to the lack of techniques for making such small channels and

also to the difficulty of estimating their size. The Rollin film

has however been extensively investigated, and it is often con¬

sidered in the context of channel flow.

When an empty beaker is filled by means of film transfer it

is found that the rate of filling is almost independent of level

difference (Atkins 1948). Similar behaviour in channel flow gave

rise to the concept of critical velocity and also to the belief

d. log v
that the pressure dependence, ^ qQg p = n' fell 1° zero in small
channels. A recent investigation (Seki 19&2) showed no consistent

trend in the relation between n and channel size d, and no evidence

of a critical velocity. A regime suggestive of a mutual friction

force was observed in a filter of pore size 10 ^ cm. The flow of

He II through Vycor glass and jewellers rouge wa.s also found to

depend on pressure head. Work reported in this thesis together

with that of van Alphen et a.1 (19&5) suggests that pressure depen¬

dence in very narrow channels arises from small temperature

differences caused by the mechano-caloric effect.

2.2 Mutual Friction

Quantised vortex lines were first proposed by Onsager (194-9)
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to account for the onset of dissipa.tive processes in Rollin film

transfer. This vortex line concept was later developed to account

for the observation (Osborne 1951) that He II rotates as if it

were a solid body. According to Landau's system of non-linear

hydrodynamica.1 equations curl v =0. If the superfluid is
s

restricted by this condition then in a simply connected region it

should be impossible to bring it into rotation. This difficulty

was overcome by assuming that within the superfluid there are

regions of vorticity. In this case the liquid itself forms a.

multiply-connected region and rotation becomes possible without

violation of the restriction.

Hall and Vinen (195^) have measured the attenuation of second

sound, propagating it both radially across and also along the axis

of a rotating vessel. The a.ttenua.tion coefficient was much higher

in the first case as would be expected if the liquid contained an

array of vortex lines parallel to the axis of rotation.

Vinen (1957a) ha.s investigated thermally induced flow in wide

capillaries (d~ 6 mm). The flow was studied by propagating and

receiving second sound in a direction at right angles to the heat

current. The results indicated that above a. certain heat current

the superfluid became turbulent. The onset of this dissipative

mechanism depended on the initial state of the liquid. For example

if a heat current had been switched on previously the build-up of

turbulence was made more rapid. When the heat current was switched
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off, measurements of the attenuation coefficient ga.ve information

concerning the decay of turbulence. The rate of decay depended on

the dimensions of the channel. Ha.ving thus established strong

experimental evidence to connect dissipative effects with the on¬

set of turbulence in the superfluid Vinen (1957b) developed

theoretical arguments to explain the mutual friction force in terms

of turbulence, thought of as a tangled mass of quantised vortex

lines.

Critchlow (i960) has also investigated thermally induced flow

in capillaries of smaller diameter using resistance thermometers

to measure the propagation velocity of turbulent fronts. A

striking result of these experiments was the observation that tur¬

bulence invariably propagates from the ends of the channel and not

from the channel walls.

Qualitatively it is easy to visualise the mutual friction force

as arising from the collisions of rotons and phonons with vortex

lines in the superfluid. In order to understand how equation (25)

arises it is necessary to follow through the Vinen theory.

Let L be the total length of vortex line per unit volume at

any instant. Then
1.

1 = L"2

is a measure of the average distance between adjacent vortex lines.

Also let M* be the velocity due to an isolated rectilinear vortex
s

line at a perpendicular distance 1 from it. This velocity is
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related to the root mean square turbulent velocity measured relative

to the bulk motion of the superfluid. Since the circulation, . dr,

round a vortex line is ft/m, At and 1 are related by the equation
s

2it la = h/m, or lit = ft/m (27)
s s

Assuming that turbulence is isotropic, that vortex lines move on

average with velocity v and that the force on unit length of line
s

is

= B ^s^n h (v j (28)2 p "Vri n s v '

then the friction force must be of the form

P = G.(v - v ) (29)
sn s n

It follows that G is given by

2 2 2
Replacing L by At m /ft , from equation (27) we obtain,

s

g,|!B/-|S%2 (31)3 ft s [

Vinen shows thai it is plausible to put At equal to afv - v {and
s ' s n

so finally obtains an expression for Fgn of the form
„ 2n „ pspn m 2, (2 , , , «p = "7" B ^TT— r- oc iv- - v I . (v v J (32)sn 3 p ft . s n s n

Equation (32) has the required form to explain the type of force

proposed by Gorter and Mellink and it also relates F to the pre-
sn

sence of vortex lines in the superfluid.
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18

2.3 Theories of critical velocity in channels

The mechanism of critical velocity ha.s been explained by

Landau (1941)• Consider the superfluid at 0°K flowing through a

slit with velocity v. The only way in which the liquid can be

slowed down is by the creation of elementary excitations having

energy <f and momentum p relative to a reference frame moving with

the liquid. The energy £ ' of such an excitation with respect to

fixed walls is given by

£ ' = £ + Py.vy (33)
If the kinetic energy is to be reduced £' must be negative so

£ + Py.vy< 0 (34)
and thus

(35)

No excitations can be created and the flow will be frictionless if

the velocity v is less than a. critical value defined by

v <•/-£/. . (36)c x ' p 'minimum

The magnitude of the critical velocity is thus determined by the

excitation spectrum of the liquid. The low values of observed

critical velocity (^ 10 cm/sec) rule out roton creation which

requires a. velocity of 60 m sec \ The ratio £/p for phonons is

also too high.
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Ginsburg (1949) suggested that there must be other forms of

excitation having ratios £/p lower than those of rotons arid phonons,

Feynman (1955) has developed this suggestion by considering the

possibility that vortices are formed at the exit of a. capillary.

He first pictures the situation for a classical fluid as indicated

in figure 3. He next considers superflow by examining the circu¬

lation between the effusing jet and the stationary liquid outside

it (figure 4). He shows that the number of lines per cm is

^ = v/£h ft rrf). (37)
Now the kinetic energy per onP per sec of the liquid is

dm yj0 v^/2 (38)
utt'cA p # CS. W j .

and the energy required to produce the lines is

(v^/2-rtftm 1 ) j) 0Ttft^ m ^ In d/a (39)

Equating these quantities, the velocity v0 at which there is just

sufficient energy to produce lines is given by

v0 = 7 In - (40)md a

where a is the vortex core diameter. If this quantity is assumed
O

to be about 4 A, the size of predicted critical velocities is still

3 -5
too high, since, taking m/ft = 6 x 10 , d = 10 cm and In d/a. = 6,

vQ is a.bout 100 cm/sec. Feynman goes on to point out that non-

uniformity of channel size can lead to lower values of critical
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velocity.

Atkins (1959) ha.s also treated, the problem of critical

velocity by considering the possibility that the vorticity in a

capillary is initiated in the form of closed vortex rings. The

ring is regarded as a particular form of elementary excitation so

that the Landau condition can be applied. In this case the critical

velocity is given by the smallest ratio £-/l of such a ring, wherec

is the energy and I the impulse required to create it. From clas¬

sical hydrodynamics the expressions for £ and I are

£ = |/k2r In - 7A) (4l )
a. o

and

I = x/kr2 . (^2)

When k = h/m, the expression for the critical velocity is given by

"ft , 8r ■
,v — In — . (43)c mR a.

This expression, like that of Feynman, has the correct form for

explaining critical velocities but it does not contain a tempera¬

ture dependence. Experiments such as that of Staas (1961) indicate

that v^ does depend on temperature. Another difficulty is that the

creation of a vortex ring whose diameter approaches the tube size

(e.g. 1 mm) requires an enormous co-operative effect.

Another problem which Kuper (1965) discusses in this context,

is that the critical rate associated with film transfer rises below
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1°K. Theories which predict the creation of an unique form of low

energy excitation would a.ppea.r to be inconsistent with such a trend,

van Alphen (19^5)» investigating critical velocities in superleaks

has found v^ to be constant down to 0.5°K. This suggests that film
phenomena must be treated separately from those associated with

narrow channels. For example it is possible that surface excitations

(ripplons) are important in the case of film flow.

2.4 Experimental measurements of critical velocity

The gravitational flow of helium II in narrow channels was

first comprehensively investigated by Allen and Misener (1939)- In
i -5

a channel of width d estimated to be 1.2 x 10 cm they observed

a. type of flow where the velocity did not depend on the driving

pressure. Daunt and Mendelssohn (1938) found evidence of a. critical

transfer rate associated with the Rollin film. This non-classical

behaviour gave rise to the concept of critical velocity. There

have been many subsequent investigations of critical phenomena.

Swim and Rorschach (1955) have investigated gravitational flow

through radial superleaks, similar to the one shown in figure %.

They found that the flow could be understood by assuming a. friction

force F proportional to (v - v )n. For d = 4.3 u they found
sn s n

n = 5 but when d = 2.5 M-,n rose to around 5-7. I-n both cases n was

A wire-filled tube superleak. A technique for producing these is
described in Chapter 5-
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practically independent of temperature.

Hungj Hunt and Winkel (1952) investigated thermally induced

flow in slits of similar geometry and were also able to interpret

their observations in terms of a friction force with n = 5, in the

range 5 P > d > 1 P. The critical velocity which they observed
-1

was around 20 cm sec , but their measurements of slit size were

made at room temperature. Winkel, Delsing and Poll (1955)» using

the overshoot procedure, obtained values of vq of about 10 cm/sec
in superlealcs of comparable size.

Winkel, Delsing and Gorter (1955) in a similar experiment

using a somewhat shorter slit found evidence to favour a mutual

friction force (n = 3) when d was greater than 1 p. They found

that when d = 0.43 p n increased to a value of 5. These authors

were also able to deduce that the friction occurred throughout the

entire slit and not only at the narrowest section or on the walls

or indeed at the outlet.

Seki (1962) has carried out an extensive investigation of flow

via the Rollin film, Vycor glass, jewellers rouge and Millipore

filters^. There was no evidence to favour the idea, of a critical

velocity. Whereas the temperature dependence of mean velocity had

previously been found to be roughly that of ftJS Seki found a. sig-s

nificantly different dependence in the case of flow through Millipore

These are described in Chapter 3.6
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filters and jewellers rouge.

Another investigation of critical phenomena in capillaries

(Bhagat and Mendelssohn ;1961) indicated the existence of a critical

velocity but this depended on the initial level difference in the

reservoir. In capillaries of comparable size Atkins (1951) had

previously found that the mutual friction force was all-important.

The experimental results obtained in investigations using a.

wide variety of channel geometries and techniques have not so far

allowed the construction of a comprehensive theory of the processes

underlying critical phenomena. The critical velocities are

generally found to increase with decreasing channel size but

wherea.s Allen and Misener (1939) observed pressure independent

flow Seki (1962) does not. The mutual friction hypothesis while

accounting for values of n = 3 does not explain why values of 4 and

5 are observed. There is at present no understanding of the

mechanism which causes the disappearance of the mutual friction

force.
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CHAPTER 3

THE CHANNELS

3.1 Techniques previously employed

.The flow of liquid helium II in narrow channels has been in¬

vestigated by a number of authors using a variety of channel tech¬

niques. Bowers and Mendelssohn (1952) and Kapitza. (19^0 have

used radial superleaks made by pressing together optically polished

flat discs. Wansink et al (1955) produced a superleak by embedding

a gold wire into glass; the differential contraction was sufficient

to permit superflow through the resulting gap. Seki (1962) has

studied flow through Vycor porous glass which has interconnecting
o

pores of mean diameter about 40 A. He has also investigated super-

flow using a leak; made by pressing jewellers rouge powder into a.

tube. The channels formed in this^ay were estimated to be of the

same order as the particle size of the rouge. Seki has also inves¬

tigated flow through Millipore filters. A detailed account of the

pore structure of these filters is given in 3-6 since three sizes

of filter have been investigated by the present author. Flow

through the helium film, which can be considered as a special case

of channel flow, has been extensively investigated, (see for

instance Atkins (1952)). Allen and Misener (1939)* Manchester

and Brown (1957) and Chopra (1957) have all investigated channel

flow by means of wire-filled tubes. These tubes devised by Allen
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and. Misener ha.ve a. number of advantages over those already mentioned.

Despite the fact that wire-filled tubes do not provide a single

uniform channel nevertheless they allow quantitative measurements

of channel size to be made. An estimate of the effect of the dis¬

tribution of channel sizes on measured critical velocity is reported

in this thesis. The non-uniformity of width is not a property

associated only with wire-filled tubes but is common to all channels

-4
where the width is less than 10 cm.

5.2 The wire-filled tubes

The wire-filled tubes constitute the bulk of the flow channels

used in the present investigation. The essence of the method is

to fill a tube with a known number of wires and draw the tube (and

contents) until the wires are deformed into regular hexagons. Con¬

tinued drawing then reduces the gap (which forms the channel)

between adjacent hexagons. The detailed procedure is outlined

below. To produce the tubes a length of wire was wound by means

of a. rotating former powered by a small electric motor. The wire

was caused to move over a system of teflon pulleys and through a

pad of tissue which removed all grease. The number of turns and

hence the number of wires was recorded on a, counter clipped on to

the former. The former was so constructed that after winding the

wire the removal of a single nut caused the former to 'collapse',

whereupon the wires (which were being kept in a stale of continuous



steel draw piece

Fin-ire 6.
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tension) came off as a parallel bundle. This bundle was carefully

introduced into a highly polished copper-nickel tube internally

tapered a.t the mouth to facilitate entry of the wires. The length

of the tube was chosen so that when the wires were inside, the

bundle was at least 10 cm from one end. At this end a steel

drawing piece, shown in figure 6, was hard soldered on to the tube.

Before a. tube could be drawn it was first placed in the collet of

a lathe and the soldered joint coned down and polished. The tube

wa.s then inserted into the first die plate and the winch started.

After each draw the length of the wires within the tube was

measured - thus permitting calculation of the wire perimeter after

drawing. The total channel perimeter was the sum of the lengths

of all the hexagonal sides.

Each wire-filled tube consisted of approximately six thousand

copper"^" wires, electrolytically pure, 50 microns in diameter (0.002
\ *

inch) inside a copper-nickel tube of 5 mm internal diameter and of

6.6 mm outer diameter. This gave an initial wire perimeter of

about 90 cm and thus an initial channel path 45 cm wide after

deformation but before significant elongation had taken place.

The path width diminishes on continued drawing by an amount propor¬

tional to the wire elongation. The gap or channel width between the

J

"'manufactured by Fredrick Smith, London.

""manufactured by Johnson Mafchey.
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wires also diminishes with continued drawing but careful control

of die size was found to give fairly predictable and reproducible

channels. The elastic properties of the two materials copper and

copper-nickel, i.e., the elastic limit and Poisson's ratio,were

favourable for the leaving of open channels after the draw process,

while the integrated expansion coefficient caused the channels to

increase in size as the temperature dropped. The drawing process

was extremely lengthy, often taking several days, and the smallest

channel that could be obtained wa.s governed mainly by the amount

of drawing the tubes could tolerate before they broke. At the out¬

set of this research we examined the possibility of using steel

wires, but found that they did not deform so readily as copper and

also that after deformation there remained a number of relatively

large triangular gaps at the corners of the hexagons. The length

of the wire bundle before drawing was always about 16 cm and since

the length after drawing was not much more than 20 cmfno more than

two superleaks 10 cm long could be produced at one time. The

length of superleak used in helium II flow measurements was about

10 cm except in one or two experiments where other lengths were

more appropriate.

3.7 The channel perimeter in the wire-filled tubes

The channel path formed by each tube could be determined in

two ways. Suppose a.^ to be the area of an individual wire initially
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and o. to be the area, after drawing and also that during the draw

process its length changes from a. value 1 to a value 1^.
If we denote the perimeter before and after drawing by p^ and

P2 then,
p = k a1 and P2 = k a2

where k is a constant.

Since a^l^ = a- we finally obtain

Pi lp
r- r • C15'P2 x1

The length of the wire bundle was measured after passage of the

tube through each die plate by means of a. feeler inserted from each

end of the tube. Figure (8) shows how the length of a. typical wire

bundle changed during the draw process. Equation (45) gives the

channel perimeter after drawing. There is, however, some error in

applying equation (45) because the initial perimeter is calculated

for circular wires whereas finally the wires are hexagonal. The

error introduced arises in equation (44) where it is a.ssumed that

the constant k is the same for both wire cross-sections. One can

see this problem in another way: one does not know the value of 1

for which the deformation is just complete. If we did, (45) would

give p2 exactly. To avoid these difficulties the following method
has been used.
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When the tube had been drawn through the final die a short

length 3 mm) was sawn off. The wires were extracted by drilling

a. small hole through the wires and scraping out the remainder. The

internal diameter of the tube was measured with a microscope and

the tube area (A) calculated. The area of a regular hexagon of

side a is 3J3 a. /2 so that the area. (A') of n close packed wires is

A' = 3n J 3 a2/2 .

But A' is also the area, of the tube. This allowed us to calculate

the length of a. side a and hence the total channel path q, given by,

q = 3a n. (^6)

3.^ The channel structure of wire-filled tubes

In order to choose suitable wire for the production of very

small channels we examined the cross-section of a. tube formed by
■s

steel wires drawn inside a copper-nickel tube. After a considerable

number of draws we found that triangular gaps still remained.

These would have affected the flow of helium II by allowing the

flow of normal fluid and since their fractional area wa.s relatively

large and impossible to calculate we were obliged to choose another
S

material . We therefore drew down a. tube containing copper wires.

A section of this tube was sawn off but the tube then had the

appearance of a section through a. copper rod, no channels being

"'"Steel had the further disadvantage that the force required to
squeeze the wires finally caused the copper-nickel tube to fracture.
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visible. In order to examine the channel structure, the tube was

set into a. bra.ss block and machined flat after which this surface

was polished with several grades of emery powder and finally with

rouge. The unit was dipped for a few seconds into concentrated

acid then taken out, thoroughly wa.shed and dried. The acid

attacked the copper at interfaces of the wires thus bringing out

the hexagonal pattern. Figure (11) shows a. photomicrograph

obtained in this way using the copper wire. Figure (9N shows the

unwanted triangular pores obtained using steel wire - in this

case the surface was not polished. Figure (10) shows the result

of drawing copper wires in a copper tube. Both wires and tube in

this latter case probably have the same Poisson's ratio, thus no

hexagonal deformation occurs and therefore no superleaks are

formed.

3.5 The cross-section for flow through wire-filled tubes

Two methods have been employed to determine the open cross-

section available for flow. The less accurate of the two depends

on measuring the quantity of helium ga.s which pa.ssed down the

tubes under a given pressure and this method is described here.

The other method is discussed in 4.1.

The gas flow technique was used mainly to estimate the channel

size of a given tube before it was prepared for a helium run. In

order to obtain a. reasonable estimate we made the measurements at
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the temperature of liquid air. This wa.s necessary beca.use of the

inerea.se in open cross-section which occurred a.s the tubes were

cooled. For the purpose of measuring at these 'temperatures the

cryostat shown schematically in figure (13) was constructed. The

wire-filled tubes were sealed into the cryosta.t by means of two

indium seals. Before any measurements were made the entire system
_2

was pumped down to 10 mm Hg and left pumping for several hours

until all traces of water vapour were removed. A narrow spiral

tube which formed part of the inlet to the high pressure side (not

shown in the diagram) ensured that the gas was cooled to the tem¬

perature of liquid air and also served to remove any traces of

water vapour from the helium gas. The volume of gas emerging from

the wire-filled tube at the low pressure side was measured by

timing the motion of a. soap film as it traversed the graduated

marks of the flow tube. This tube wa.s made from a. burette by

removing its tap. On the high pressure side of the cryostat there

were cylinders, one containing hydrogen and the other helium,

thus enabling measurements to be made with either gas. The pres¬

sure wa.s adjusted so that the bubble moved at a conveniently

measurable rate; this also determined the minimum inlet pressure.

Whenever the seals were remade there was no significant change in

the flow rate and it wa.s concluded that the seals were impervious

to both hydrogen and helium. The open cross-section S was deter-
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mined from the Poiseuille formula derived for flow of a compres¬

sible gas between parallel plates. The volume/sec, Q, is given

by
,3 , 2 2,d q(pQ - p,)

Q = 2 2_ (47)
24 ^ 1 p

where d is the channel width, q its total length through any

cross-section of tube, p^ is the inlet pressure, p^ the pressure
at the outlet, the viscosity of the gas at liquid air tempera.-

ture and 1 the tube length.

Measurement of Q and a knowledge of q and the other constants

permits d to be calculated. In order to establish the applica¬

bility of equation (47) to the flow through the tubes, Q wa.s

measured over a. range of pressure differences. In the wider

channels Q was proportional to the square of the inlet pressure.

In the narrower tube Q, was proportional to the pressure difference

-5
and in sizes where d ^ 10 cm there was an intermediate pressure

dependence. Prom the point of view of He II measurements, the

most interesting region of channel diameters is where the flow of

gas cannot be described by either the Poiseuille or Knudsen for¬

mulae. We concluded that since there is no quantitative theory

for flow when the channel size and mean free path are comparable,

it would be better to rely entirely on a. second method. This latter

has the added advantage that the measurements are made a,t helium



temperatures. In 4.2 we shall discuss the question of channel

uniformity and its effect on the channel diameter derived from the

Poiseuille formula.

Apart from providing an indication of channel size and open

eross-sectiona.1 area the gas flow cryostat also enabled us to

flush the wire-filled tubes with helium gas thus removing air

which could have led to the formation of a solid air substrate and

hence to irreproducible results when the flow of He II was investi¬

gated. We point out in this context that the flow rate of the

Rollin film is affected by deposits of solid air (Atkins 1948).

3.6 Millipore Filters

A second type of superleak, the Millipore filter, wa.s also

used in the present investigation. The filters manufactured by

the Millipore Filter Corporation of Bedford, Mass., are described

as highly porous cellulose ester structures containing numerous

uniform and submicroscopic channels whose pore size can be con¬

trolled by the manufacturing process. The filters, 150 micron

thick, are manufactured in various sizes ranging from 5 micron to

10 milli-micron. The pores are reported by Seki (1962) to be cone

shaped, all the wide ends being situated on one side and the

narrow ends on the other. After some calculation Seki determined

the value of r, the radius at the narrow end of the conical channel

in terms of r0, a mean radius, obtaining finally,
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r2 = 0.825 r? .

Since the highest flow velocity occurs at the point where the

channel ha.s its minimum cross-sectional area. Seki used the reduced

radius in order to calculate the total area, available for flow, S0.

Electron micrographs which we ,ha.ve made of samples supplied

to us, shown in figure (14), have been interpreted as showing that

the filters are probably sponge-like. In calculating the open

area, the author has assumed that the channels are right circular

cylinders with diameters as quoted by the Millipore Filter Cor¬

poration. S0 was obtained by multiplying the total exposed area

by a factor a (the percentage pore volume), which was obtained

from data, sheets provided by the Millipore Corporation. It must

be pointed out that when the reduced radius is used the mean values

quoted by the Corporation ought for consistency to be similarly

reduced. In this case the smallest pore size provided by the fil-

-6
ters instead of being taken as 10 cm should be taken as 6.8 x

-7
10 ' cm, and similarly for the other sizes. The measurement of

pore size and pore size distribution were made by the Company

using the Skaa, Ruska. high pressure mercury intrusion method by

filtration tests with particles of known size. The porosity of

the filters is so great that the exposed area, through which flow

occurred had to be restricted to a circle of diameter*' 0.1 mm.

Details of the mercury intrusion method are given in a paper by
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Honold and Skatt- (195^)- The pressure required to force mercury,

a non wetting liquid, into the pores against the force of surface

tension is measured. The filters are submerged in mercury and

the total volume of mercury in the system appears to change by

the amount which enters the pores. The following equation was

used to find the mean pore size,

pr = -2 0" cosO

where p is the applied pressure, r the mean radius, f the surface

tension of mercury and © its angle of contact with respect to the

filter. Honold and Skau, (195^0 showed that a 0.5 micron filter

had pores ranging in size from 0.8 to 0.1 micron. The distribution

of channel sizes can therefore be taJken to range over an order of

magnitude.

3.7 The mounting arrangement for the wire-filled tubes

The form of apparatus used for measuring the flow of He II

through the wire-filled tubes is shown in figure (15). Each tube

was attached to a reservoir by means of indium seals, since there

was a. danger that solder and soldering flux would cause blocka.ge

of the channels. In order to test the indium seals a single wire-

filled tube was cut in half, one length being attached to a reser¬

voir by means of a. soldered seal and the other by means of an

indium seal. The flow of He II from the two reservoirs was the

same to within 2%. This result not only showed that the seals
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were equally good but also that the variation of channel diameter

averaged over macroscopic lengths was small. The indium seals

were all tested for flow of helium I. Further, whenever the seals

were remade no detectable change in the flow rate of He II at a

given temperature could be detected. We were thus satisfied that

the seals were impervious to He II.

The lower half of the reservoir was made of copper and the

walls were about ten thousandths of an inch thick, this being the
*

thinnest section to which they could easily be machined. The

glass reservoirs were attached to the copper tubes by means of a

nilo-k soft soldered seal. The latter were made before the wire-

filled tubes were sealed in place. The virtue of a viewing capil¬

lary lies in the fact that surface tension causes the liquid level

in it to rise above the meniscus of the bath and this makes for

easier observation. The gla.ss reservoirs were themselves made with

two or, in some cases, three sections of different diameter so as to

be able to cope with the wide range of volume flow rates encountered

over the temperature range between the A,-point and 1 ,2°K, and as

will be seen in 4.1 to give conveniently mea.sura.ble periods of

inertial oscillation of reservoir level.

After assembling and cleaning the reservoir system a. wire-

filled tube was placed in its holder, a ring of indium wire being
_ „

The purpose of the copper wall is to minimise the mechano-caloric
effect - this will be discussed in 5^2.
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inserted between the sealing groove and the lower plate. The plate

was then tightened by three screws thereby squeezing the indium

outwards between the plates and also a,round the tube itself.

3.8 The mounting arrangement used for the Millipore filters

Figure (16) shows an apparatus which was used in our early

experiments with the filters. The apparatus was machined from a.

perspex rod and the Millipore filters were held in place by con¬

tact pressure. Nylon screws were used in order to minimise

slackening due to differential contraction. Because of the possi¬

bility of thermal effects arising due to the poor thermal contact

of perspex we redesigned these reservoirs incorporating in the

lower half a. thin copper wall. This together with contact via the

vapour phase minimises temperature differences between reservoir

and bath caused by the flow process. Figure (17) shows the type

of reservoir used for the latter part of the Millipore investi¬

gation.
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CHAPTER A

4.1 The Theory of the Experiment

It will be convenient in this section to refer to the sche¬

matic diagram of figure 18(a). When the reservoir is raised

above the bath the gravitational potential causes liquid to flow

from reservoir to bath. Flow via the wire-filled tubes is

entirely superfluid, since viscous forces prevent normal fluid

motion. The level in the reservoir falls at a rate x and

approaching the bath level with finite velocity oscillates about

it with measurable amplitude. Isothermal oscillations of this

type were first observed by Allen and Misener (1939) and treated

theoretically by Robinson (1951). Since they provide a basis for

determining superfluid critical velocity and mean channel width

they will be discussed in some detail.

The period t of oscillation, with the notation of figure 18(a),

is given by

* = 2ti J £ AL/>/So g/>s) (48)
where g is the acceleration due to gravity. Upon rearrangement

equation (48) yields

S o = 0 where 0 = 4n:2AL/r2g . (49)

Now at some temperature T, since only the superfluid is flowing,

the mean velocity v and the mean superfluid velocity v are relateds
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by

/sVS=Av " (50).
The continuity equation gives

Ax = SoV (51 )

so that from (49), (50) and (51), one finds that v , the superfluid
s

velocity, becomes

Vs = ///°s • Ai/So = Ax/0 (52)
The mean channel diameter d was obtained from the relation

d = So/q (55)

Measurement of A, L, x and f for each of a series of wire-filled

tubes enabled us to relate the magnitude of critical velocity to

channel width. The experimental results are shown and discussed

in 6.1. It is noteworthy that equation (52) permits calculation

of v^ without a knowledge of eitherP or bhe microscopic peri¬
meter of the channels.

4.2 The geometry of channels provided by the wire-filled tubes

It is necessary and will be profitable to give consideration

to the geometry of channels formed by the wire-filled tube tech¬

nique. The channel shape may have a pronounced effect not only

on the absolute magnitude of critical velocity but also on the

pressure dependence of flow and on such phenomena as onset depres-
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sions. Examination of figure (7) reveals that the cross-section

a.va.ila.ble for superflow depends on the method of measurement.

When the gas flow technique was employed the cross-sectiona.1 area

of a given tube was found to be S , say, whereas using the oscil-
P

la.tion method a different value, Swas found. In every case

was significantly greater than SD. In this section we shall

examine ways in which the channel geometry of the wire-filled

tubes can give rise to values of S0 smaller than S and consequently
P

to values of d(SD) less than d(S ). Modification of the simple
P

Poiseuille formula to take account of mean free pa.th effects would

reduce the divergence of S0 and S for small sizes of channel but
P

would be a negligible correction in the wider sizes.

We start by considering the effect of variations in channel

width through a cross-section of tube and to simplify ca.lcula.tion,

assume all sections through a single tube to be identical.

1(a) The effect on Poiseuille flow

Let 1 be the total channel circumference and the channel width

d, a random variable, with probability f(d). Then the circumference

of channel of width d to d + dd is just lf(d)dd/2 and this piece

of channel may be considered parallel sided to a good approxi¬

mation provided that the variation in d is slow,as would be the

case if all the channels were wedge shaped. In this la.tter case

the distribution function f(d) would be that shown below, d^ being
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the largest size of channel,

f(d)

If f(d) = 1/d then,

I • 1f(d) dd = 1/2 (54)

So, in other words, f(d) is correctly normalised. Another choice

for the distribution function would be

f(d) = 5(d - d1 )2/d^
which corresponds to rather more small channels,

of gas per second flowing v is given by

<*>

v = 1/2 j v (d) . d.f(d)dd+

Now the volume

(55)

If. the channels are treated as parallel sided over each length then

v (d) o£ dc
P

"^suffix p denotes Poiseuille
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and

v = v (d ) .d . l/2
P P P

by definition of dp. It follows that

and thus that

d v (d ) = / d.v (d) . f(d)dd (56)
P P P J P

dP = \ dP f (d) dd

If we tahe f(d) as

f(d) = -jr , 0 C' d < d
1

= 0, otherwise (57)

equation (56) yields

dp = d0/5 J 4 (58)
Thus we see that the magnitude of the channel width as measured by

Poiseuille flow will for the distribution function of (57) be

about O.63 d/,d being the diameter of the widest channel or the

maximum channel width.

1(b) The effect on inertia! oscillations

. Consider d as before to be a random variable. With the

notation of figure 18(a) conservation of mass flow gives
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Ax = I d^ f(d) vm(d)dd . (59)

Conserva.tion of energy leads to

06

constant = -gA p g x^ + k LI d f(d) v^(d)dd (60)

which upon differentiation yields

oo

0 = Ayo g xx + (^s/2)Ll ^ df(d)vm(d)vm(d)dsl (6l)
O

Now assume that

(v (d)/x) = 0
at m

since otherwise the motion is not,in general, simple harmonic.

Then

v (d) = k(d)x, v (d) = k(d)x
m m

leading to

v (d) = (x/x)v (d)
m m

We can rewrite equation (6l) as

0 = Ayog xx + (y>s/2)Ll J df(d) v^d) | dd
O

which gives

x = - ^2Ayg35/Liy»s| .x (62)
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2 2
where <E = x / f df(d)v (d)ddm

Substituting from the continuity equation we find

(Jo df (d)vm(d)dd)^ L*~
O = L74A" WO UXVU = J. ^ R

J" df(d) 7(d)dji 4A

Prom the simple theory of Robinson (1951), which relates to a

uniform channel, the mean channel width d is defined by
m

S0 = L/2 . d
m

we find

x = ■ fgSx7 /a7s} • x

Comparison of this equation with (62) shows that

(J df(d)v (d)dd)2
d = R = 7m / df(d)v(d)dd

o m

which is the general relation assuming the motion remains simple

harmonic. If we choose the distribution function of equation (57)

then d is given by
m

(l/d / 1 d v (d)dd)2
t - —H—2

1/d f d v^(d)dd1 J m

In order to compare d and d we must assume a trial function for
m p

v (d). Suppose that v is related to d thus:
m m

\
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v oC d.n (64)
m

then

3m= a,2-2

= f(2n+2)/(n+2)^] .d = d^/2 for n = 0
= (4/9)d for n = 1

= (3/8)d.^ for n = 2
= (8/25)d for n = etc.

Another possibility is that v (d) oc l/d in other words n = -1.
m

To consider this case we must assume a lower cut-off for d = £, ,

and the distribution function must be that shown in figure 19(a).

We now find that d = d /in d,/£ and that if d,/i ^ 10 then
m 1 1 1 1

d = d^/2.3. Similarly for n = -2,m

2
7 2t r, , / -.2d _

m

— [In d^ ] . d]

so that if d // * 10, d d,/l0. In the general case v (d) os -rr n,1 ^ m 1 m d

n > 2 one finds that

d. * (2n~2l . ^ . dm / „s2 ,2(n-2) d1

and this gives for n = 5 and ^/d^ ~ 10

dm = d /25m 1

The maximum value of d namely ci</2 is less than that of d which
l.tv P
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is d /(3 J 4. Thus the theory outlined a.bove for flow through "wedge
shape" channels leads to values of d < d and is consistent with

m p

the results shown in figure 10. In conclusion, it is assumed that

if the wire-filled tubes form a. channel system with a random dis¬

tribution of sizes but with a maximum size d^, dependent on the
number of draws, then theory suggests that the two methods of

measuring d will lead to differing values. Before going on in

Chapter 6 to assess the effect of such a. distribution of channel

sizes on the magnitude of observed critical velocities we first

consider a second type of geometrical variation.

2(a) Variation in channel width in the direction of flow

Reference will be made to the notations of figure 18(b) and

19(a). First we calculate the period of inertial oscillation in

a. tapered channel noting that

v(d) = k/d .

Let the maximum channel size be £
^ and the minimum size be €

then

tanG = (£q - . (65)
Consider the flow through a. strip dy of width d (see figure 20(a)).

The area of the strip dy is o- d and thus the volume/sec v is

v = <rd k/d = a*k = Ax.

The kinetic energy of the element may be written as



V

Figure 20 (a).

'igure 20 (b)
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i[<rdj> s dyjl'li2
Thus the total kinetic energy T in the channel is

f1 f f
£.

but since y = — cot 9, we get

1 2 4 2
T =-•£ «"_/>sk cot 9 In —•

-i 3~fs(l:)2 cot e,;sln i^)*2
The potential energy V of the liquid above the bath is given by

2
A/>g x /2 .

Thus by energy conservation for frictionless or superflow

Aygx2/2 + cot 9.In ^/i^J . x2
= constant.

Partial differentiation with respect to time gives

0 =. A/>g xx + co_t ® In xx .

Thus the oscillations are still simple harmonic but their period

is now given by

T = 2nJ £ [A cot 9 in 2g<)]
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Since we ha.ve introduced no approximations in this already simple

model, the theory should go over into the simple form, equation

(48), when £ • = I

From (65) we find

(In £/£2) cot 9 = (2L In (6?)

so putting

U - £, - £2

equation (67) becomes,

U+ £2
■ 2L In

= [2L ln(l +f)\ /u

= 2L/£2, Lim u -h 0.

Comparison of equations (66) and (48) shows that

^oscill = f = 2^ln 11^2"'

Thus S0, the effective open cross-section in a tapered channel, is

expressed in terms of £
^ and £^ only and we notice that for ^ » £-2

this depends strongly on £ .

2(b) Poiseuille flow in a. uniformly tapering channel

Consider a. channel of unit width a.s shown in figure (21 ). For

the velocity profile we write



7

I-''igure
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and hence that

and thus,

y dp + 2dx ^ = 0

du = - [y dy/2"?jg

,d2 2n 1 dp
u = - (-F " y ) • "JT5 • T7 •k~5~ y ' ' 47 ' dx

Integrating, we find that the volume flowing/sec to be given by

d/2
v = J 2udy

or

7?~^ d/2 2 ^
:'tj dp/dx r (— - y )dy

J

7 ^ b
v = 7- dp/dx . d /l2 . (69)2

Now d = £ - x/l(f1 - £ ) since this equation (70) satisfies

d = t for x = 0

d = for x = 1 .

We note that for an ideal gas PV = constant. Thus, from equation

(69) we find, multiplying by P, that
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and so

U)

1

Si * £2
J

dd/d (x) = say.

(£1-12)'
Since dd = 0 - dx, by differentia.tion of (70), u> becomes

o> - {l/2(C, -£2)J.{.«2-
We note that for a. uniform channel of width d,

d3 = 24 71 - Pf) •

Thus

5 c 2 r 2 /
'

p £ 1 2^1 + ^2

and that for >;> £

5p-7<4^'-
This value (from Poiseuille flow) depends on more strongly than

oni
^ and thus one would expect that 5^^ would be small, being

influenced strongly by the constricting diameter.
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Having now obtained two values of d, namely d and d
P OSC1J—L

both being expressed in terms of £^ and £we compare these and
find

~3/~3 _ £1 ^ 2 (ln
p oscill - +£ 2 (/^ _ £^3

If we tahe ^ 1> 10:1 say, then

-I |.(ln^-)5
doscill ^1^1 2

2

(In ^ 1/10 . (71)

It follows that a constricted channel would lead to a. value

of d from oscillations about twice that obtained from Poiseuille

flow. In fact this is contrary to the results of figure (7) and

we conclude that the channels are moderately uniform in the

direction of flow.

4.5 Onset depressions in wire-filled tubes

We consider now how onset depressions might affect the tempera.-

ture dependence of mean flow velocity. It is clear at the outset

that since each tube most probably contains a. distribution of

channel sizes that no clearly defined onset temperature will be
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seen. The few large sizes of channel will contribute to the flow

for all temperatures T < T. .A

The total length of channel with separation d to d + dd is

(c.f. equation (57))

4-f(d)dd

Thus the area of this channel is

1
d f(d)dd (72)

The mean velocity at a temperature T is

v = v {P/p)rs s ' T,d
(75)

and we shall assume that v depends upon d as
s

v = k/d
s

being independent of temperature, so that

vdjT = Vd VJ/>)s ' T,d * (74)

Assume a distribution function f(d) of the form

f(d)
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At a. temperature T, only tubes with a. separation larger than d^,
will permit flow to take place. In order to calculate d^, we use
a. theoretical result of Ginsburg and Pitaevskii (1958) which

relates the onset depression T. to the radius of the channel d,
A

which is

- TQ(d) = p2/d2 (75)
• i/t

j Cav«-
where [3 = 2 x 10 for a parallel-sided channel.

It follows from equation (75) that d^ is given by

dT- = .p. • (76)

The total flow at temperature T will therefore depend on how many

channels are contributing and this will be

d

^ = J vd T . 1/2 df(d)dd (77)

which becomes

Qr = f f (///)Tjd • f(d)dd- (78)\
If the superfluid fraction for a channel with onset temperature Tq
is taken to vary as

yV>= 1 - (TA0f (79)
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where cr = 5.6 (Andronika.shvili), we can evaluate equation (78) if

we neglect second order terms, which will give a sufficiently-

good approximation. The equation becomes

S - 2^7 7a . ) / ° 1 " T'/(Tx - 4f ■ dd (80)1 mm J i d

f 6.i
ki r,7i kl(T/V r-0

2^dl dmin^ ^ 2^d1 ' dmin^ w , , B2P ^rCr (i --H)'
T.d

A

= A - B , say.

The first term A is given by

kl
A = — (d - cL), if d . # 0 .2d, 1 AT mm

Substituting from equa.tion (76) for d^ one finds

A - — - — 2 r~

2 2dl (T, - T)*A

kl
2

kl
2

kl
2

b - 0 -T/V4}
I1 - afj\ ° + T/2Ti)

- f - f/2 (T/TX)J , where f = p/d1 /T^ .

(81)

In order to evaluate B we see tha.t the absolute magnitude of



V- T
for T > 0

TA

TA " T I „2,,2L
is | | = P /d C 1

thus,

b = S f1 S T dd
2d1 TA (1 - p2/d2TA)°"

can be rewritten as,

■B*i (| r
1 X J d

<tp

— (- )
2d, V

1 o 2
(1 +4-) dr£d2T

A.

Ik ,T n°
2d T

1 A.
<ai " "V + % (3, "

-f (§H 0 -£>+^<i -£)di' <i2T\ ' *V"H A

lk ,T r < ^d1 " 'V <rp2 ^d1 " ^
2 V I d1

_<l£
d?r, ^
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iil (T }2 T ;
A

<r (d - d )
f o~P }

hence

Qrp
kl , .

2d1 ^ 1 drp)
m «*- p d

1 - (- ) (1 - erf -r)
x V

But from equation (76)

JT. { 1 " T. }
thus

i _ 1
d1 = dA

1
T

X

"2

f fl
T

T,

It follows that to a rough approximation

T
1 - (| ) (1

X
<r f(l - | )h}. (82)

X

For small values of f this reduces to the usual equa.tion

kl , ,T f v

S? ~~ 2 T *
A

When f cannot be neglected then at low temperatures where

(1 "I )"2* 1
X X

the flow velocity increases linearly, approaching a value given

by
kl

^ = — (1 - f) .
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These ideas do not explain the fact that the flow rate through

Millipore filters increases almost linearly with temperature over

the range 1 .4 <" T <C T . (see for example Seki, 1962).A.

We refer again to equation (77) and suppose that the filters

contain a high proportion of very small channels. Suppose

f(d) =

v(d) = k/d

and for simplicity that (P^f*)^ ij> = 1 ^ ^ ^
= 0 d < .

Thus we see that a. suitable choice of v(d) and (j>Q/^)^ rp can give
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rise to a linear variation of Q consistent with the results a.lrea.dy

obtained by Seki. It is possible that the mercury intrusion

method which has been used to measure, the mean pore size of the

filters does not show the presence of pores much smaller than

-6
10 cm. Such small pores could lead to the observed behaviour

of via the onset mechanism. Allen and Watmough (19^5) reported

that flow through wire-filled tubes showed no evidence of onset

depressions. In the light of this present analysis it would appear

that their conclusions might be wrong since their measurements of

mean velocity .a.s a function of tempera.ture showed a significant

change of temperature dependence similar to that predicted by

equation (82). The effect of onset depressions is to give an

effective value of a <C 5.8. Supposing the above arguments to be

correct we infer the validity of our previous discussions where we

introduced the concept of a distribution function.
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CHAPTER 5

THE EXPERIMENTS

5.1 Introduction

In order to investigate the relationship between superfluid

critical velocity and channel width,a number of wire-filled tubes

similar to those used by Allen and Misener (1939) and Brown and

Mendelssohn (19^7) were made as described in Chapter 5- Reservoirs

made partly of glass and partly of copper were attached to these

tubes by means of nilo-k and indium seals. In helium below the

A-point gravita.tiona.lly induced flow via. the channels formed by

the tubes took place. The flow rates from the reservoirs were

measured at stabilized temperatures between 1,2°K and a few milli-

degrees of the lambda, temperature.

-5
In channels smaller than 10 cm the only quantitative measure¬

ments of critical velocity so far reported are those through

Millipore filters (Seki 1962) and those of the saturated and

unsaturated film. The main obstacles to quantitative measurement

of critical velocity are avoidance of the mechano-caloric effect

and the production of small channels of well defined size. Thermal

effects can affect both the magnitude and pressure dependence of

flow. We can see how this arises. Consider flow occurring from a

reservoir via a superleak. Since the superfluid carries no entropy

there will be a tendency for the entropy per unit volume to increase.
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On the other hand the heat Q, will flow out of the system via the

walls and some will cause evaporation. The degree of contact will

govern the temperature rise in the reservoir.

Assume the heat flow- Q is given by

Q = c AT

At equilibrium the entropy per unit volume of the liquid is con¬

stant, due to the heat flowing away as fast as the entropy is

increased. Therefore the entropy per unit volume produced by the

flow is

ds
_ s_ dv

dt _ v dt J

i.e., the fractional change in entropy per unit volume is due to

the fractional change in volume. The heat flow is

r] cr

Q = TV^r = CATdt

and so,

Therefore we find

. m TVs dvoAT- • 3t
dv

- - STdt

c dt

and the difference in temperature gives rise to a fountain pressure

4p = - SAT (S is entropy/unit volume)

_ §£t dv
c dt
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Suppose the thermal contact is so poor that the fountain pressure

becomes equal to the hydrostatic pressure. Then,

2
S T dv

/ gx = "V" dt

where x is the level difference between bath and reservoir. But

dv
.

— is given by,

— = Ax since v = A(X + l)dt

where 1 is the reservoir length below the bath. It follows that

in these circumstances the flow becomes a "thermal relaxation" .

process and the equation of motion is

2
s T a •gx = —— Ax .

In other words the pressure is proportional to the velocity. Allen

and Misener (1939) observed precisely this pressure dependence

with one of their tubes at low pressures. Clearly it is desirable

to avoid such thermal effects; also, as we show in Chapter 6, the

mechano-caloric effect can cause the damping of inertial oscil¬

lations which are used to measure v and d.
c

There has so far- been no completely satisfactory theory of

flow in narrow channels. The reason proba.bly lies partly in the

curious behaviour of liquid helium but also in the difficulty of

deciding whether in particular experiments thermal contact was

achieved. Also as we have seen in Chapter 4 the distribution of



time sec.
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channel sizes (or width in the case of annular superleaks) is a

factor influencing the measured value of d. Neglect of this con¬

sideration causes some error in relating critical velocity to

channel size. Despite the fact that wire-filled tubes do not

provide a single length of 'uniform channel nevertheless their

area available for flow can be measured at helium temperatures

and also they do provide a means of varying d over a wide range of

channel sizes.

In the present work care was taken to ensure thermal contact

so that at low temperatures the flow was almost isothermal. This

was achieved by means of vapour contact between bath and reservoir

and also by means of a copper cylinder built into the reservoir.

5.2 Experimental

Each experiment was performed by moving the reservoir with

respect to the bath and measuring as a. function of time the liquid

level in a narrow side arm connected to the reservoir. The reser¬

voir level approached the bath with a finite velocity and oscillated

about it, owing to the inertia of the liquid in the channels pro¬

vided by the long wire-filled tubes. Tube lengths of /V10 cm were

necessary in order to obtain oscillations of conveniently measurable

amplitude. The amplitude was of the order of 1 mm and periods of

up to 20 seconds were observed. The oscillations, see figure (22),

persisted for up to several minutes in the narrower sizes of channel
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at the lowest temperatures but were more heavily damped at higher

temperatures and a.lso a.t all temperatures in the larger sizes of

channel which exhibited pressure dependent flow. The damping

introduces a correction term which tends to ma.ke S0 larger and

smaller but since the ma.gnitude of the correction was generally

less than 2this effect was neglected. The damping of oscil¬

lations is more fully discussed in Chapter 6. The velocity in the

widest channel might have been as much as 5% lower than the value

calculated from equation (52) of 4.1, but other factors such as

uncertainty in the value of q in equation (46), p. 29, probably

give rise to a greater error.

The measurement of flow rates was achieved by means of a

cathetometer having an internal scale of length 12 mm. The

-2
divisions of this scale were 1.2 x 10 cm apart. As the liquid

level passed successive divisions the times were recorded. This

same procedure was followed when flow through Millipore filters

was investigated, but because of the filter thickness (150 micron)

there wa.s insufficient inertia within the pore to provide mea.sura.ble

oscillations. Thus in order to calculate the flow velocity through

the pores use was made of figures for open area, and channel

diameter supplied by the Millipore Filter Corporation. The open

cross-section of the filters was so large that the exposed area of

each filter had to be restricted to the smallest hole that could

be precision-bored. «
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The procedure followed in taking the measurements was to

pump down to a. temperature just above the lambda point and there

to check for flow of helium I. Flow measurements were then made

in temperature steps separated by twenty or thirty millidegrees

down to 1,2°K where the oscillations were examined. In those

cases where damping was heavy many independent observations of

the period were made thus enabling an accurate mean value of ^ to

be calculated.

In the later stages of this research when it had become

apparent that flow through the larger channels was pressure depen¬

dent and in the smaller channels pressure independent, it became

desirable to examine the transition to see if it resulted from a

spurious thermal effect or whether it was a fundamental change

connected with the condition of the flowing superfluid. The

obvious check was to measure the pressure gradients within two

superleaks, one where the flow was independent of pressure and the

other where the flow depended strongly on it. Figure (2j5) shows

the apparatus used for this investigation. The stand pipe was con¬

nected to the wire-filled tubes at an intermediate point and cane

was taken to make the volume at the point of junction large com¬

pared to that of the channel. This lowered the velocity at the

point and avoided pressures due to the Bernoulli effect. After a

transient behaviour the manometer monitored the pressure at the
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point where it was joined to the channels. A discussion of the

results obtained using this arrangement is given in Chapter 6.

In the present series of experiments a small filling hole

at the top of each reservoir designed to allow thermal contact

by means of the vapour phase also permitted film transport. The

quantity of liquid transported by the film is approximately

-5 36 x 10 cm /sec/cm so that for a hole of radius r "1 mm the

quantity q transported is given by

-1 _5
q = x.10 .6.10

-5 3 -1
-*2.10 cm sec

Each reservoir also had a viewing capillary whose constricting

_5
hole was about 1 mm so the total film transport was about 4 x 10

3 -1
cm sec . Since volume flow rates via the channels provided by

the wire-filled tubes were about two orders of magnitude greater

than those due to the film, the correction was neglected in the

calculations.of critical velocity.

5.3 Thermal contact between the liquid in the reservoir and
that in the bath

If the heat generated by the flow is Q then the thermal con¬

tact c is defined by the equation

Q = cAT

where T +AT is the temperature in the reservoir and T that in the
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bath. Perfect contact corresponds to zero temperature difference

for a finite heat flow. In the present experiments contact was

achieved via the reservoir walls and via the vapour phase. We

first evaluate the magnitude of c for copper walls.

Consider a reservoir where the only thermal contact with the

bath is by means of a copper wall and in which heat is being

generated by the flow. We refer to the accompanying figure:

T + AT

AQ^
^— /\ T2 —^

wall

AV -♦AT

By continuity and referring to a single wall

A = a/JT1 = j A T2
-l

where a is the Kapitza boundary resistance and where k and 1 are

the thermal conductivity and thickness of the wall respectively.

We notice that the total temperature drop AT is given by

AT = 2AT^ + AT2
and thus since A Sc = ocATj = j AT2

AT1
ATI

_k_
la
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we find by substitution that

AT
. ft + , , |k + ,

2' AT2

Finally we obtain

A T = AQ^ ^ 2/a + l/k J .

So that the constant defining the degree of contact is,

effectively,

C = r2/a + l/k] _1 .

According to measurements of Kapitza (19^1 )> cc for polished copper

is equal to T^/10 and according to Fairbank and Wilks (1955) equal

to T2/45.
7 -2 -1

For copper we take k = 10 erg cm deg K and 1 = 0.025 cm.

Thus

l/k = 2.5 x 10-W = 2.5 x 10-«f

At 1 .2°K, using Kapitza's form for a"'",
a = T^/10 = 0.17 x 107 = 1.7 x 106 erg units

hence 2/a = 1.2 x 10 ^ » l/k

Thus r

c = § = 0.85 x 10 .
copper 2

-gjrne-e-^fehe-eonductivity of copper is unimportant, the oontaot via

"^a cubic contact relation is generally accepted.
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the glass will contribute, andr-^tak-ing the total area.-of--glass and
2

oopper A - 20 om—the effective contact wi-1-1--be

6
e—... rv—V-f-—x—10
wall

^-4Jqnco PQgpq Mh-pyp n riTimn glass papillary M,tR .JSftrf eto

mea.3ui-e flow-the copper wall then -provided the major part of—the--

Gyaftta.et a.r ear.

The contact via the vapour phase can be obtained, from an

equation derived in connection with the damping of oscillations

in Chapter 6, namely

4
c = AE (±-) (iE)
vapour RT 8"?1 3 T svp

4,2 2
( a. s X_ _p^811 r2 T3+n

where a and 1 are the dimensions of the constriction at the vapour

access point, X is the latent heat of vaporisation, R the gas con¬

stant and p the vapour pressure at tempera.ture T. Taking

R = 8.107 erg deg 1 mole ^
7 -1

X = 83.10 erg mole

p = 0.625 mm Hg

T = 1,2°K

(~Tt)svP = 5 mm Hg deg K_1
n = 0.68
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-2
a = 5.TO cm

1 = 10 ^ cm

-6

Vj = 5.10 poise
We find

4 2 -2
a

_ 25 x 10
8*1 ~ 4

so that

252.10"2.102(6.25 x 10"2.15.6.981)2
vapour 4.2

^.107 6Lf\ 5e-c 1 |C-
We thus see that the contact is comparable and is of course

additive since both processes occur at the sane time. The total

7
contact is about 5-10 .

We are now able to estimate the extent of thermal effects

since as we have already shown that A T is given by

At =a
c dt

dv
where — is the volume flow rate, and S is the entropy per unit

Q. U

volume.

At 1 .2°K, S a/ 7 x 104 erg cm"5
dv . -2 3 -1
-rr < 10 cm secdt

7 _i
c /v- 5 x 10 erg deg K
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Thus

A T = 7,10 ,1 <v fl.jf x 10~5 °K
*f. 10'

The fountain pressure h is given by

h = S/g . A T

4
~ x^L.f x 10~5

10^

-4
^ 14,10 cm

-2
One cathetometer division is 1.2 x 10 cm, thus the fountain

effect should not have exceeded one tenth of one ca.thetometer

division at 1. 2°K. At higher temperatures the thermal contact

improves and the flow rates fall but the entropy per unit volume

increases exponentially so the net effect is that at higher tem¬

peratures the fountain pressure may have become somewhat larger

but it is unlikely that it exceeded 2 or 3 ca.thetometer divisions.

The total pressure tc can be written as

it =y,gh +/s T + (jTj-r)A T .

We have so far neglected to calculate the effect of the term (^)AT.I

Now (|^) = 5.10_1.981.15.6
/v 5.105

so that for At =%.t x 10 °K, this term gives rise to an excess
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pressure,

p rJ %.1. 10"5 , 5.105
«-1 ^ -2

-v 10 dynes cm

Thus the excess vapour pressure above the reservoir leads to a.

negligible correction.

5.4 The helium cryostat

The essential features of the helium cryostat are shown in

figure (24). The dewars, made of Monax glass, were completely

silvered except for narrow strips left clear for the purpose of

observation. The monax gla.ss has the valuable property of being

practically impervious to helium gas. The reservoirs (from which

flow took place) were mounted inside a copper radiation shield

polished on the outside and blackened on the inside. The shield

has windows of Chance 0N22 heat absorbing glass. It wa.s supported

by a terylene thread and constrained to move parallel to the

viewing slits by two fixed copper-nickel tubes. The thread was

connected internally to a. winch situated at the cryostai top which

served to raise or lower the entire system rela/tive to the liquid

helium level. To minimize effects due to heat entering the cryo¬

stat from outside, the reservoirs were illuminated by light from

a twelve volt lamp from which heat radiation had been removed by

means of a water tank and a Chance (0N22) glass window. The

efficacy of this procedure was proved by the fact that varying the



Figure 25
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light intensity of the lamp had no effect on the flow rates and

produced no observable fountain effect.

The main bath of- the cryostat was connected to a. large rota.ry

pump used to lower the vapour pressure. The adopted procedure of
-2

filling was (1 ) to evaculate the helium dewa.r to 10 mm Hg over¬

night; (2) to precool the cryostat to liquid nitrogen temperature

and then to let in helium gas from the return line thus allowing

the dewa.r to cool so as to obtain an inexpensive helium transfer;

(3) the cryostat was uncoupled from the pumping line and from its

support, then carried to the liquefier where the transfer took

place; (4) the transfer completed, the cryostat was replaced,

recoupled and the pump started. The pump, working flat out,

enabled temperatures as low as 1.l6°K to be reached.

Steady vapour pressures and hence constant temperatures were

maintained either by a manually adjusted needle valve and oil mano¬

meter or automatically by means of a device suggested to us by J.

C. Fineman. This consisted of a very thin high quality rubber

tube sealed into the pumping line and surrounded by a closed space

which was connected through a valve to the pumping line at a. point

nearer the pump. Temperature control was obtained in the following

way: the needle valve was set to give approximate stability but

the temperature drift was arranged to be in the direction of

decreasing temperature. Throughout this procedure the valve con-
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necting the pumping line and the rubber sleeve on the external

side was open. When it was closed any increase in the pumping

rate lowered the pressure thus causing the rubber tube to shrink.

The shrinkage reduced the volume pumping rate and any further

decrease in temperature was prevented. The device, once started,

operated satisfactorily for several minutes, before it lost con¬

trol and drift began. The measurements of vapour pressure and

hence of temperature were made using a McLeod gauge. The '1958

scale' was used for temperature conversion. Figure (26) shows

schematically the gas-handling system.
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CHAPTER 6

EXPERIMENTAL RESULTS AND DISCUSSION

6.1 Critical velocity and pressure dependence of flow in wire-
filled tubes

Using the experimental method described in Chapter 5 "the

mean superfluid critical velocity v^ ha.s been measured. Values
of v at 1 .2°K and at zero pressure head, seen in figure (2^),
show that increases with decreasing channel width d up to a

maximum value of about 14 cm sec ^ for d = 3 x 10 ^ cm and then

falls again for still smaller values of d. In channels of width

-5
d < 10 cm, v^ is not only fairly insensitive to d but also over
the whole range of d its magnitude is smaller than predicted by

the simple Feynman theory. According to Feynman's equation,

■fi d —6
v = — In — , the critical velocity when d = 3 x 10 cm should

c md a.

be about 250 cm sec ^ if the vortex core size a. is taken to be
O

3 A, and the maximum in the v - d curve should occur when d
c

-7
10 cm. Atkins theory of critical velocity also predicts values

of vc about two orders of magnitude la.rger than those observed in
very narrow channels.

Figure (29) shows values of v obtained by Allen and Misener
c

(1939) who used a similar form of superleak. Winkel, Delsing and

^Details of tube length, reservoir area, channel perimeter and
period of oscillation are given in table 1 of the appendix.
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Poll (1955) studied thermally induced flow with slit type super-

leaks obtaining values of v which are in good agreement with

the present measurements. Hammel and Schuch (1957) investiga.ted
-4

flow through a channel of width d = 10 cm and found vto be

-1 -5
about 4 cm sec . Thus for d > 10 cm there is generally good

agreement between the present measurements and those previously

-6
reported. The value of vq when d = 3 x 10 cm is about a

factor three lower than values inferred from film transfer rates;

the significance of this observation is not understood but may be

connected with the fact that the film has one free surface.

It is relevant to enquire how the spread of sizes in each

wire-filled tube will affect the value of v . The oscillation
c

method will give some averaged value v which will depend on the

distribution function f(d). To examine this question we begin by

considering equation (63) of 4.1(b) which gives,
oO

o = i (£ df(d) v(d) dd)2
P n°° P

/ df(d) v (d) dd
O

The volume of liquid flowing via the channels is

d*
Q = \ J v(d) f(d) d dd

It follows that v is given by

"^The values shown in figure 29 are taken from figure 9* P-34;
Winkel, Delsing and Poll (1955).
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ci

( f 1 d v(d) f(d) dd)( f df(d) v2(d) dd)
vnd = 2 2 <83>

( / df(d) v(d) dd)

Now let us suppose that in an ideal channel varies as k/d i.e.

v (d) = ^7 where k = ft/m (84)
c d

We can put vc(d) into "(83) and evaluate the integral to find the
effect of a spread of channel sizes on the measured velocity v^.

Suppose the distribution function of sizes has the simple form

f(d) = l/(d1 -t ) € < d < d1
= 0 d > d

Equation (83) becomes

/df(d) v2(d) dd
Vmd ydf(d) v(d) dd

d

lb
2 di

k f 1 ^ (85)
d1 " £ „£

dd

d - L (
P dd

ln d /£k 1
= f" • f (86)d1 ' (1 - i /d^

Numerical eva.lua.tion of (86) shows that the measured critical

velocity is always higher than v , except when r0 = £ when they are

the same. Since the form vc = — is a special case it is necessary
to see what happens when vq varies as in Feynman's equation,



77

v = ^ In — where k = — . (87)
c d a m

We now put this function into equation (85). The critical velocity

will be zero when r = a so the limits of integration are taken as

a and .

For v , we findmd

vmd " a/fl
where

2 „d1 /h r i /, <^2
a = —^ / — (In —) dd2/ \ J d a

m (d^ -a; a

and

d^
P = 77 V f (ln d/a) dd •^ m(d - a) J

i ci

After some reduction we finally obtain

d 5(ln d/a)2
v . - [-g- in -!.]md md a * ln(d^/a - 1) + a/d

hf' di
= — In — , say. (88)

md^ a

Evaluation of f' shows that a spread of sizes does not lead to

values of v
^ ( v except when d < ea and in this case d is compar¬

able with the vortex core size and Feynman's theory is inapplicable.

It therefore seems that a mechanism other than the creation of
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vortex lines at the channel exit is required to explain the magni¬

tude of observed critical velocities.

_ d. lope v
The pressure dependence of flow, n = ^ ^ ^ , where v is the

mean velocity and p the pressure, was also mea.sured. Values of n

were found by differentiating graphically curves of level difference

versus time. It wa.s found that n depended on channel size and as

previously reported by Swim and Rorschach, n did not vary signifi¬

cantly with temperature. The index of pressure dependence shown

in figure (27) is related to the right hand ordinate scale. In

-5
channels where d > 10 cm the pressure dependence did not main¬

tain its value much below a, level difference of 1 mm of liquid

helium. In these channels the flow velocity at zero level dif¬

ference was plotted as critical velocity.

Values of n seen in figure (27) suggest that there are two

regimes of critical flow. In order to test this hypothesis an

experiment already described in Chapter 5 was devised. The

essence of the method was to attach a glass manometer pipe at a

point part way along a wire-filled tube where a v-shaped slit

allowed liquid access. The height of the liquid level in this

tube was observed during the flow process together with the levels

of reservoir and bath and thus it was possible to measure the

pressure gradient within the superleak itself.

The experiments showed that in a. channel where d = 8 x 10 cm
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there was an almost uniform pressure gradient along the tube, but

when d = 4 x 10 ^ cm the manometer indicated that the liquid was

■¥r

flowing under zero pressure gradient . It was inferred that the

pressure drop occurred in this case in the narrowest section of

the channels. Such subcritica.1 frictionless transfer is simila.r

to that observed by Daunt and Mendelssohn (1946) in the case of

film flow from a double beaker. This behaviour, taken together

_5
with the insensitivity of v to d when d <" 10 era and the

c

decrease of n to zero, strongly support the hypothesis - that there

are two flow regimes.

Although the pressure index n shows considerable scatter in

going from n = 0.3 when d = 8.5 x 10 cm to a. value n = 0 when

-5d < 10 cm these measurements compare favourably with comparable

data, from previous investigations. Exceptions are the values

n = 0.3 and. n = 0.5 found by Seki (1962). The value n = 0.3 has

been examined by Allen and Watmough (1965) and is discussed in

section 6.2. Recently, van Alphen et al (1965) have found that

when thermal effects a.re minimised values of n = 0 are also found
0

for flow through Vycor glass d = 60 A and jewellers rouge d ^ 10

cm. These authors reduced thermal effects by attaching a. copper

bellows to their reservoir system. It would thus appear that

thermal effects can be very important. The analysis given in

Typical results are shown in figure (37) to (4l).
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Chapter 5 shows that in the limiting case when thermal contact is

extremely poor, values of n = 1 are to be expected. Only with

large reservoirs and low flow rates is it possible to achieve

sufficiently good thermal contact to completely avoid thermal

effects. Measurements of level difference plotted against time

for a number of different superlealcs.are shown in figures (28) to

(36). The fact that pressure independent flow is observed over

a. wide range of d suggests that the spread of channel sizes in a

given tube is unlikely to be greater than a. factor ten.-

The hydrodynamic equation (2j5) which describes isothermal

gravitational superflow reduces to

P s 2A— gra.d p = A/> /» |v - v I . (v - v )
f /sin 1 s n' v s n

In a channel of width d = 8 x 10 cm it was found that the flow

could be described by this equation but that the constant A was

2
less than unity. When the quantity j v - v | was replaced bys in

I (v - v )- v I then A wa.s found to have a. value of 21 at 1 ,2°K.
s n c1

This value compared favourably with the value of 25 at 1 .J>°K found

by Vinen (1957). With this tube, values of vq at temperatures
above 1.2°K could not be measured because the oscillatory motion

was too heavily damped. For this reason the temperature dependence

of A was not determined.

The transition from the regime governed by the mutual friction
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force to one where v does not depend on p is fairly rapid. The

_5
transition suggests that when d 10 cm the flow is no longer

turbulent. It is therefore relevant to enquire how turbulence

can be suppressed and hence how values of n <f O.J might arise.

First we recall the evidence obtained by Critchlow (1960) which

showed that turbulence propa.ga.tes from the ends of a. channel but

not from the walls. If vortex lines are unable to enter the

channels it is not unreasonable to assume that the turbulent

regime will be unable to develop.

According to Vinen (1957) the image force on a vortex line

causes it to move downstream parallel to the wall. The Magnus

force on this line then causes it to move towards the wall with

velocity vq given by,

v = - fj± JL (89)
c 2 /> 2mx K

It is suggested that a.t the wall vortex lines are annihilated in

a single quantum process. The time/T (d) taken by a line to reach

the wall when initially a.t distance d/2 from it is found by inte¬

grating equation (89) and is

1 (d) =J>m d2/2 B/? fi (90)
— 2 "5

With the following values J> /'/» ~ 10~ , B = 1 and m/h = 6 x 10

this decay time is O.J sec when d = lOp but decreases to JO micro-

_5
seconds when d = 0.1 p. We therefore see that in 10 cm channels
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the decay rate for vortex lines is 10 times faster than for

d = 10 cm. If the build up of turbulence requires a length of

line to enter the channels from the reservoir, then the above

argument suggests that in sufficiently small channels this

mechanism will be suppressed by the rapid decay of incoming lines.

It has been pointed out by Feynman (1955) and Vinen (1961)

that the mechanism of critical velocity can be associated with the

build up of turbulence. The experiments of Vinen (1957) and

Critchlow (1960) are consistent with this hypothesis. In those

small channels where turbulent flow is not observed then some

other mechanism of critical velocity must operate. Kuper (1958)

proposed the existence of low energy rotons. When created suf¬

ficiently close to a wall these might have the required low ratio

of C/p to explain the values of vq which have been observed.

/
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6.2 Flow results obtained using Millipore filters

As a. cheek on the critical velocities measured by the wire-

filled tube method it was decided to investigate the flow through

Millipore filters. Three sizes, 10 ^ cm, 5 x 10 ^ cm and 1 .2 x

10 ^ cm were used. Preliminary mea.surements with the 10 ^ cm

size using a reservoir machined from perspex indicated that up

to level differences of 1 cm or so the velocity was proportional

to the cube root of the pressure and above 1 cm head the velocity

became independent of pressure. This behaviour which has already

been reported by Seki (1962) was, in the present investigation,

a.t first believed to be connected with thermal effects due to the

low thermal conductivity of perspex. When the measurements were

repeated using a reservoir made partly of glass and partly of

copper, v was independent of p except a.t very small level dif¬

ferences. Calculations have shown that the effect of poor thermal

contact should give rise to a. dependence v p and not v oc p^ ,

so the above explanation would appear to be ruled out.

Another mechanism giving rise to cubic dependence wa.s sought.

The complex variation of index n with channel size can probably

be understood in terms of flow partly governed by the filter

mounting and partly by the filter itself. We now refer to the

accompanying schematic diagram.
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Suppose that the velocity through the filter is v and the exposed

area, of the filter is aA. If the velocity in the constricting

hole is v* then by continuity

yo Av' = Aa

so that v ' = avZ^//0

If the flow through the constricting hole of length 1 is governed

by the mutual friction force, then the pressure pQ below which the
flow is cubic is given by

where v = v^ is the critical velocity in the filter. At velocity
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v the flow does not increase because of the-restriction n = 0.
c

Whether or not a. cubic regime is observed will depend on 1, a,

A, vq and temperature.
Values of obtained in the present investigation can be

seen in figure (46). The scatter is very large in the smallest

size of filter and this can be attributed to variations in a

from sample to sample. Critical velocities measured by the wire-

filled tube method are also included in figure (46) together with

values of v, at 1 cm head of helium, as measured by Seki (1962).

There is fair agreement as to order of magnitude between values

obtained by the two methods.

The flow in the 1 . 2|~l filter was pressure-dependent and the

velocity at zero level difference was about 5 cm sec 1, this being

d. lope v
taken as the critical velocity, while the index -t—t——— wa.s 0.2d log p

at 1,2°K but increased with increasing temperature reaching a

value 0.4 at 1.8°K. The reason for this behaviour could also be

connected in some way with the geometry of the filter. The depen¬

dence of v on T seen in figure (42) can be expressed as

v aC (l - (T/T )J with c-= 7. In smaller channels (43), (44)
and (45) a. different dependence is observed. The flow through

the 5 x 10 b cm filter, figure (44), can best be fitted to a

curve with 0* = 1.5.
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6.3 The inertia.l oscilla.tions (wire-filled tubes)

Atkins (1950) ha.s measured the film thickness at 1 ,2°K as a

function of height by means of inertial oscillations. At this

tempera.ture the oscilla.tory motion was only lightly damped.

Allen (1963) ha.s shown, however, that at higher temperatures

such oscillations become increasingly damped and has suggested

that the exponential increase he observed might be due to the

interaction of vortex lines in the film with rotons of the normal

fluid. The oscillations in the present experiments were also only

_5
lightly damped at 1,2°K in the channels for which d <C 10 cm but

were more heavily damped at higher temperatures in these channels

and at all temperatures in the wider channels. There were, how¬

ever, no measurable level differences at the commencement of the

oscillations as'would be expected if they were adiabatic such as

those observed by Manchester and Brown (1957)* (see figs. 47 to 50).

Also the frequency of oscillation that we observed was independent

of temperature up to 1,6°K which was the highest temperature at

which oscillations could be observed. We have seen in Chapter 5

that thermal contact is not perfect, (indeed it probably could

not be so), so the angular frequency of observed oscillations (co)

is always smaller that in the ideal case (co0) and co is related to

o)0 by the expression

u>2 = a>o - 1^. 2 (92)
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where T is the decay constant.

We shall now attempt to explain the damping by reference to

the mechano-caloric effect.

First however we require the solution of an equation of the

form

Ax + Bx + Cx = 0.

Assume a solution of the form

x = e
j (o3 + JO)' )t

which is valid provided that the oscillations do occur.

The substitution yields

Taking the real part, we obtain

A(cd2 - ox'2) + Bcd' - C = 0

and then the imaginary part which gives

-2j oxjo'A + BJCJO = 0 .

Thus we find ox' = B/2A and

(93)

Therefore

2 C B2 2 . , 2
"

A " ~2 -% "
4A

(94)



where T = Tr~ • (95)
SD

During an oscillation, superfluid flows into and out of the reser¬

voir. This causes a, heat flow into and out of the reservoir.

Assume the heat flow to be given by

Q = CAT + VC • (96)
p dt

where C is the specific heat and C the total thermal contact via.
P

the walls and the vapour phase. The problem can be simplified by

ignoring the second term in equation (96). (it ha.s magnitude of

order VC^ cjdAT being comparable with that of the first term since
VCp coAT ~ 40.106.10~5 ~ 400 erg sec"1 and CAT ~ 5 x 107.10"5^ 500
erg sec 1.) At equilibrium the entropy per unit volume of the

liquid is constant, due to heat flowing away a.s fast as the entropy

is increased. The entropy flowing down the channels is zero since

v^ = 0 and therefore the entropy per unit volume generated at a.
rate ds/dt is,

ds £ dV
dt v dt

i.e. the fractional change in entropy per unit volume is due to

the fractional change in volume. The heat flow Q is

Q = TV = CAT

CiT *041 " "

V dt

= -TfjidV
dt
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or

This difference in tempera.ture gives rise to a fountain pressure

A\p, where,

A pT = -S*AT
s!lT cfv

C dt '

and a vapour pressure difference of

only to our own experimental arrangement - see Chapter 5-) The

total force on the fluid in the channels is, approximately,

and the mass being accelerated is where the subscript "0"

refers to flow in the channel.

The equation of motion becomes

but Apv b< Ap^, and can be ignored without much error. (We refer

■S£2T dV

, S$2T dVv . . /
* ~ at' "Vs *°,s

where xq g indicates that only superfluid flows within the channel.
From continuity of mass flow we obtain

Ax = P /P A x
s ' o OS
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OS

Thus the volume acceleration in the reservoir volume V is given by

c £

V = //A A xsv o c

It follows that,

/sgx + f - -!o/s

- •1o/'s '-/'>'/>z"o>
1 />V

o

2
-A>S T

This can be expressed in terms of V, V and V by putting V = A(x + l'

where 1 is the depth of liquid in the reservoir below the bath

level, as seen in the adjoining figure.

s

We then obtain

✓ T
✓ / X

*
y

X ^ t ^

s
/

'
X 1 '

1

< J T

1

V

Substituting,

1o V Pa sfi^T ' V— V V +/sS A =>PsSl '

vAg
A -^sSl = Y
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we finally obtain for the equation of motion,

1o?h " £s t#2T _Ay + ^ — Y + Y = 0 .

ofsS f ° /s

Now by comparison with equation (93) we see at once that

03 = (C/A)2

1 A
= Uao >s

which is the relation obtained by Robinson (1951) for the case

of strictly isothermal oscillations. The decay constant "tT is

given by

^ 2A
_ Pf 1o?A (.//S^TA?

°.B = 2UfsA0J/ C/>og;

21 P2C
n »

AJsS?T

We can see at once that the time t is made longer by increasing

the channel length and improving the thermal contact. Also

increasing the temperature increases the entropy per unit volume

and thus the dajnping. We find 03 is given by

■2-o -

This result clearly shows that as C-^ ® , J —> 0.

03 =03
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The dependence of C on temperature

Next we examine the temperature dependence of C in order to

see how far this theory can account for the temperature' dependence

of the damping.

(a) due to thermal contact via the reservoir walls

P> 7
c -io -1° A'

7 3
— 2,10 t j ice - ,

'] Kapitza (19^1)> with A = 20 cm^; oscc ^ io~[ \
(b) due to evaporation from the reservoir

dm
where A is the latent heat and — the mass evaporating per second.dt

It follows that

q_M dV
RT dt *

The volume flow causes a pressure drop/4 P across the constricting

hole at the top of the reservoir, so

A.P aA
. Q " RT

_ (——) (—) 4 t-

rt ^87ij St svp
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4'^ ^'AT
where we have put

7 = 70 ^
-6

np being about 0.68 for helium gas and ^ = 5 x 10 poise.
Also X, the latent heat, can be written as

A ^ 20T + 60 .

Furthermore the saturated vapour pressure p is given approxi¬

mately by

5/2 -3/T
p ~ AT e , where A is a constant, (see for example

van Dijk and Durieux, 1955).

Thus in this case the temperature dependence of C is

C ~ T2.T5.(e"3/'T)2/Tn+'

The temperature dependence of ^

For contact via the copper

t d T^/S^T =

- A/kT
since Sec T/A, e , where A is the roton energy gap.

For contact via the vapour

t - (T3 (e"3/r)2 e2^)A3
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e<2^k " 6>k
We thus see that t decreases exponentially with increasing tem¬

perature. " This does not give exactly the dependence observed by

Allen (1963) but the damping would be a very rapidly increasing

function of temperature. Figure 51 shows the logarithmic

decrement of oscillations plotted as a function of inverse tem¬

perature; the data was derived from figures 47 and 48. The plot

suggests that the damping is indeed an exponential function of

temperature. We must now calculate the magnitude of this effect,

in other words, show that t is of order of 60 sec.

Taking, values from table 1

1 -v 10 cm
o

-4 2
A -v 1 .9 x 10 cm

o

S = 5 x 10 cal gm ^ deg K ^
Y

C -v 5 x 10 erg units (from section 5.3)

A ^ 14.8 x 10~2 cm2
T ~ 1.2°K

4 -3 -1
S a- 5 x 10 erg cm deg K

_r
d = 4.5 x 10 cm

Thus



19.9.63-
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V/s 2.10~4.5 X 104
■ - - I .. ■ /%/ ■ ■ '

ccp°
10.5.10

-7, -8
a/ 10 /5-2 x 10

S^C v 5.104.5.107 v 5 1012
4A --7

So that

4.10

8.10"24.5.1012

~ 4.10"11

Thus cd = (jo .

o

We now calculate f:

20W 8
AS 21 x 10

o

3
= 2.10 seconds .

We see that 7" is approximately 30 minutes, a factor of 30 too

large. Nevertheless the theory predicts a temperature dependence

acting in the right direction to account for the increased damping.

It is possible that our estimate of C is out by a factor two or

even three but it is unlikely that the contact is so poor as to

account for decay times of order one minute. It would seem that
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something as drastic as vortex line-roton interactions even at

subcritical velocities will be required if we are to explain

satisfactorily the damping which at temperatures above about 1.6°K

prevents the occurrence of oscillatory motion. It appears that a

more detailed experimental investigation is required. For example

it would be interesting to vary the area of contact between reser¬

voir and bath (for a particular wire-filled tube) and then to com¬

pare the damping. Similar experiments varying the diameter of

the constricting hole would show whether viscous effects in the

vapour phase affect the damping. Clearly there is much scope for

an investigation which would distinguish between damping due to

vortex lines and that due to thermal effects.



vel.cm.sec.'te
m

p.°k

30.6.64.
<W'

D'̂"
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6.4 Onset depressions and the velocity-temperature relation

Measurements of mean velocity, v, and in those cases where

n = 0, of v , have been made in the temperature region 1.2°K to
c

the A-point. These results are shown in figures (52) to (62).

Whereas several of these curves fitted the relation v of £1 -

(T/T^) J , with If = 7* the 4 x 10 ^ cm wire-filled tube, figure
-6

(52), fitted better to a value <f = 3, and "the 5 x 10 cm Milli-

pore, figure (57)* a value <f = 1.5.

Evidence such as that found by Bowers, Brewer and Mendelssohn

(1951)> Champeney (1957)* Seki (1962) strongly favours the exis¬

tence of onset depressions. The onset effect means that only at

a temperature T <* T does superflow set in. The magnitude of
O A

the depression, IT, - T i* is governed by the channel or film
A o1

size.

Assuming that the wire-filled tubes each contain a spread of

sizes then it is reasonable to suppose that in the largest channels

flow will occur even when T = T.* but the other small channels will
A

begin to contribute at temperatures T (*() appropriate to their

size. In Chapter 4.3 it was shown how suitable choice of f(zi),

v(A) and [fJ^)^ ip could lead to a dependence v on T different
from that in wide channels. Comparison of figures (52) and (57)

with figure (62) d = 1.33 x 10 ^ cm, or with figure (59) d = 2.9 x

-510 cm, suggests that the predicted effect has been observed.
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It must be pointed out that Long and Meyer"^ (1951 ) investi¬

gated onset phenomena in the unsaturated film. In one method where

a superleak was initially connected at one end to a high vacuum and

at the other to a chamber containing helium gas at pressure p, they

observed the onset effect. In a second method where the first

chamber also contained helium gas at a small but finite pressure

no effect was observed. The discrepancy between these two methods

appears never to have been resolved. Near the X-point the foun¬

tain pressure is approximately 6 cm He per millidegree temperature

difference. It is also noteworthy that even at temperature

T,> T there is a finite volume flow rate; this is seen in
A. O

figure (3) of the paper by Long and Meyer (1951)• Recent work by

Edwards et al (19^5) on flow of helium II through saran charcoal

revealed no evidence of onset depressions greater than 10 milli-

degrees but this result can be explained the charcoal contains

a few large pores. While it is possible to interpret the present

data as supporting the onset effect it might be that the present

observations in fact show similarity to the second method of Long

and Meyer, and that the v - T dependence changes for some other

reason.

"^For details of their experiment see Long, E. and Meyer, L. (1951 )
Phys. Rev. 85, 1030.
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Allen and Misener, (1939)*# (high pressures)*
Present author,

Seki , (1962), (high pressures)* n *= o,

Hung, Hunt and Winkel, (1952) and Winkel, Seising and

Gorter, (1955)-

Swim and Rorschach, (1955)*

Champeney, (1957)

Qeki, (1962)* n, - 0.33

Arrows indicate measxirements of ns1 "by Allen and Misener

(1239)*, and Hammel and Keller, (1965)*

Figure 68*
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6.5 A regime resembling laminar flow of a. classical liquid

Since this investigation has covered only certain a.spects of
-4

flow in channels where d < 10 cm it is only possible to make a

few very speculative comments on flow in the range of sizes
-4

d > 10 cm. In section 1, chapter 5,it was seen how a regime

resembling laminar flow"^ of a classical fluid could arise due to

poor thermal contact between reservoir and bath. When flow takes

place under conditions of bad contact then the velocity v and

hydrostatic pressure p are related by the equation

p - S v = 0 (97)

S^TA
where B =

A^Try
in which refers to the channel area, A^ the contact area and
the other constants are as previously defined.

Examination of figure (68) shows that if the points corres¬

ponding to values of n = 1, 0.5 and 0.3 (for d = 10~^ cm) are

ignored then there appears to be a fairly simple relation between

n and d. This relation could be interpreted as implying that in

-4
channels where d > 10 cm the mutual friction force is important

-5in determining the relation between v and p but when d <" 10 cm

then n = 0 and v is independent of p.

^Allen and Misener (1939) observed that for p < 40 dynes cm-^ at
temperature T£ 1.75°K there was a regime where v«C p.
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This approach may be an over simplification of the complex

phenomena, of superflow in narrow channels but measurements by van

Alphen (1.965) on flow through Vycor glass and jewellers rouge offer

some support to the belief that thermal effects may give rise to

values of n ) 0.3. The experiments of Atkins (1951) with a

1
capillary of diameter 81. 5d showed that v was proportional to p .

Recent experiments by Bhagat and Mendelssohn (1961) have shown

that for d = 89p,v and p are related by

v = vq - K grad p .

They also found that K was a constant but depended on initial level

difference. Recently Hammel and Keller (19^5) have a.lso observed

a similar regime (n = 1 ) when d = 0.31M• > 2.29M- and 3.3M- but state

that the v - p curves jumped about both from run to run and even
s

during a single run. These latter authors do not as yet propose

any explanation of their results and it is not clear whether their

observations are related to those of Bhagat and Mendelssohn.

In attempting to explain the regime n = 1 Bha.ga.t and

Mendelssohn have discussed their results in terms of a superfluid

eddy viscosity^ ^. The term f in the thermohydrodynamic equation
2

they replace by ^ V v and the eddy viscosity is imagined as/ s s

arising from the interaction of vortices in the superfluid. If

we suppose that for some reason the thermal contact in these experi¬

ments is less good than the authors supposed we must enquire how
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the initial height dependence can come about. Referring now to

the adjoining figure the area of contact A

is given by

A, - *d(lo - hl)
1 [
io L

i-fo -h/ip

where J is a constant determined by

the reservoir diameter.

In the case of thermally controlled flow we can write

v (1 - h1/lQ) . p

^ s

\ /

(98)

Bhagat and Mendelssohn (19^1), to describe their results, defined

an effective viscosity 7eff>

7eff " Is + %

and for the pressure dependent part of v (which they called v )

wrote

a r /Pn\2 1 //s\2 1 -i .v — ~ "o" (t- — + (V J=-1 grad pP 8 ^ ^

At low temperatures

(f)2« c^)2
and 7. ao so we can write v as,s ^ £n p
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v ^ ~ (pr-)2 ~ Srad P (99)p 7s

i.e. v , p, by dropping the temperature dependent part. We
p 7 s

see by comparing equation (98) and (99) that if the effect they

observed was of thermal origin then 7 should depend on initial

level difference as

h -1 h

^ s* (1 " 1 5 ^ 1 + T" • ' (100)
o o

The quantity \ should increase with h.. Bhagat and Mendelssohns 1

did observe"^ to increase with h. but as (h. )5 where (B 0.7s 1
% 1

and varied with temperature. Since we have no knowledge of the

precise experimental procedure and also since the concept of an

eddy viscosity gives a fairly satisfactory qualitative explanation

of the regime n = 1 we can do no more than point out that thermal

effects can probably cause a flow resembling classical laminar

flow.

The complexity of flow in narrow channels is further

emphasize'd by the recent observation of Hammel and Keller (19^5)
1 75

of a friction force whose magnitude is proportional to (v ~ vc) "
This force corresponds neither to mutual friction nor to thermal

effects. Richards and Anderson (19&5) have investigated flow

through a pin-hole of size 15n» observed slightly pressure dependent

flow, a critical velocity of 27 cm sec and flow rates which
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depended on the vortex line density in the neighbourhood of the

orifice. It is clear that there are a great many unsolved

questions relating to superflow of liquid He II in narrow channels.
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6.6 Summary

To fa.cilita.te the measurements described in this thesis the

reservoirs were designed so that the magnitude of temperature

differences between reservoir and bath were reduced to the point

where the hydrostatic head equalled the total driving pressure.

The efficacy of this procedure has recently been verified experi¬

mentally by Keller and Hammel (1965) - The la.tter authors have

also investigated flow from closed reservoirs where there is no

thermal contact via the vapour phase, and measured the tempera¬

ture differences which arise during the flow process. One

interesting feature of their work was that when the flow caused

a temperature difference of 32p degree no critical velocity was

observed but instead the flow velocity fell asymptotically to

zero. This observation is not inconsistent with the discussion

given in Chapter 5.1.

Evidence to support the transition to a. flow regime where

the flow velocity is independent of pressure has been recently

obtained in an investigation by van Alphen et al (1965)* who

used both Vycor gla.ss and jewellers rouge type superleaks.

There is much scope for further investigations of superfluid

flow at temperatures in the range 1 °K ^ T < T, and also for T< 1°K.

It should be possible to use the dielectric property of He II to

measure flow rates, and in the case of low temperature invest!-
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gations, T < 1°K, this would be an important advantage since it

dispenses with the need for visual observations which in turn

means that the flow vessel can be completely protected from

incident radiation. This suggested method could also be adapted

to investigate the oscillatory motion subsequent upon superflow.



Tab

Number
Date of wires

in w-f-t

11.12.62 6000 (1) 47.7 3.9 (s) 8.46, 14.6 10.4

23. 1.63 6000 (2) 43.7 - 84.6 , 14.6 12.8

30. 1 .63 6000 (2) 43.7 23.0 (1) 84.6 , 14.6 12.8

13. 2.63 6000 (3) 43.6 9•64 (s) ^
2.36 (1) 84.0 , 14.8 7.8

15. 3.63 6000 (4) 41.9 13.06 (s) 83.2 , 14.0 4.4

10. 9.63 6502 (5) 43.1 17.53 (s) 84.0 , 14.8 9.9

24. 9.63 6502 (6) 45.0 10.7 (s) 84.0 , 14.8 11 .05

8.10.63 6700 (7) 44.6 10.31 (s) 84.0 , 14.8 10.6

Half

perimeter
Area of

„ . Period.of reservoir Tof wires .n, ,. , . Length ofoscillaxion + side arm
after _ 0 w-f-t cmc S0C 2 2

drawing A x 10 cm

q/2 cm

10.10.63 6600 (8) 47.0 (!) 84.0 , i4.8 9.6
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DSS —

ial
v-f-t

2
im

o"5 8.45 X
0.725^(1)

(1.25)* 7.0 0.3

0.1

o"4 1 .91 X 10~5 0.22** (1)
(1.27) 10.3 0.1

I"4
3-4

1 .15
1 .08

X

X

10-5
10"5 2.96 (S)(1.25) 10.5

11.1
0.1

r4 3.49 X 10-6 1.25 (S)(1.22) 14.35 0.0

)-4 4.45 X 10-6 0.24 (1)(1.17) 12.6 0.0

-4
) 1 .33 X 10-5 0.48 (1)(1.165) 8.07 0.14

-4
1 .33 X ID"5 0.54 (s)(l)

(1.17) 9.24 0.15

-3
-5

2.88
2.96

—V"

X

X

10

10-5 1.67 (1)(1.17) 12.4
12.05

0.07

Channel
width d cm

2S
o/s

Plow rate at
zero pressure

x div. sec
-1

Mean

superfluid
critical

velocity

ve cm/sec
* A/V>sSQ

Dependence of
velocity

on driving
pressure

d log v
d log p

(continued on next page.....)
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Half . „ „ Mean ^ „

, Area of Open cross- . , Dependence of
.T , perimeter „ . , „ . ,. n Channel Flow rate at superfluid nNumber „ . Period of reservoir T ,, „ sectional .... , ... velocity

_ , „ of wires . m j.. . . Length of „ „ , width d cm zero pressure critical , . .Date of wires oscillation + side arm „ , area, of w-f-t / , - on driving
_ , after - o o w-f-t cm 2S f // q - . -1 velocity &m w-f-t . . x sec . ..2 2 , 2 o s x div. sec , pressuredrawing AxlOcm S /// em v cm/sec

„ /o o s c d log v0/2 cm • / ~

X V//sSo g p

17.10.63 6000 (9) 42.9 10.98 (s) 84.0 14.8 9.8 4.84 X 10-4 1.13 X 10~5 0.466 (l)
(1.165) 9.72 0.05

26.11.63 6600 (10) 44.2 9.78 (s) 83.98 , 14.78 9-2 5.74 X 10"4 1.3 X 10"5 0.652 (l)
(1.19)

11.4 0.06

28.11.63 6600 (11) 43.8 10.60 (s) 83.98 14.78 9.6 5.1 X 10~4 il .16 X 10-5 0.655 (1)
(1.18) 12.9 0.0

5.12.63 6600 (12) 43.0 17.31 (s:) 83.98 , 14.78 9-4 1 .87 X TO"4 4.35 X 10-6 1.44 (s)
(1 .195) 13.65 0.0

12.12.63 6600 (13) 42.4 11.0 (s;) 15.01 4.04 9.75 1 .31 X IO~4 3.1 X 10-6 1.0 (1)
(1.16) 13.75 0.0

17.12.63 6600 (14) 40.7 15.12 (s]) 15.01 4.04 9.2 6.55 X
-5

10 1 .61 X 10"6 0.439 (1)
(1.18) 12.07 0.0

9. 1.64 6600 (15) 40.7 12.44 (s) 13.50 2.525 9.2 6.04 X 10™5 1 .48 X io"6 0.486 (1)
(1.17)' 13.05 0.0

16. 1.64 6600 (16) 47.0
2.14 (s;
6.0 (n)

) 1.63(6),
) 35.6

13.9
82 9-6

1 .38
1 .49

X

X

10

io-3
2.94
3.16

X

X

TO"5
10"5

0.356 (1)
(1.19)

11.1

10.25 0.02(4)

28. 1.64 6600 (17) 38.4 14.2 (s) 2.52(5), 0.8l(8) 9.4 1.54 x 10~5 4.01 x 10~7 ^ °*°

(footnotes over page.....)



Footnotes to Table 1

(s), (m) and (l) refer to small medium and

large reservoir diameters respectively.

_2
1 division equals 4.6 x 10 cm, elsewhere

-2
1.2x10 cm.

(1.25) refers to temperature at which x was

measured.
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T°K (TA\)~2
+ i ■]

exp A/k(- - -)
\

,T \ ~2 & r 1 1 \

T ^ eXpk T " T
A A

2.18 1 .00 1 .00 1.00 0.0

2.10 1 .02 o .86 0.875 0.125

2.00 1 .04 0.70 0.726 0.274

1 .90 1 .07 0.565 0.605 0.395

1 .80 1 .10 0.433 0.475 0.525

1 .70 1 .13 0.326 0.368 0.632

1 .60 1 .17 0.239 0.344 0.656

1 .50 1 .2 O.168 0.202 0.798

1 .40 1 .25 0.111 0.139 0.861

1 .30 1 .3 0.068 0.088 0.912

1 .20 ■ 1.35 0.040 0.054 0.946

Calculation of/> /P from equation (1Q) of 1.3

^ ^/k taien as 8.6°K [ 3 neoc^tiDix.
^ 1 vt_^ c^o^hx. Va.fVi<t II oji_ ( (1 S3 ) bw poloi^i'OM. ~t« !< 2.°IC , T~ie^ *Xvf d *f/>^ laA ? kC P ft t A «. 'lilt— L L I I I -

1 -,x , ^ * K=^/ed-5iA. pKmec f-W CavCh~i bicffrtv dfjoUo-^ ^ "Wf> CoL.bocx.t 2°% O^t- 1,2.° Jc s90 / . -/• , ,

wv cJc^KtiA. L 1 m X.-1 -o ' ee7 /■? 'J Table 2 '



T°K TAX (T/t^)3/2 /T v3/2 A+,1 1 \^ expk T. T
A A

J* / Ps /

2.18 1 .000 1 .000 i .000 0.000

*2.10 0.964 0.945 0.814 0.186

2.00 0.918 0.875 0.612 0.388

1 .90 0.872 0.813 0.460 0.540

1 .80 0.826 0.759 0.328 0.672

1 .70 0.780 0.693 0.226 0.774

1 .60 0.734 0.630 0.150 0.850

1 .50 0.689 0.575 0.096 0.904

1 .40 0.643 0.513 0.057 0.943

1 .30 0.596 0.456 0.031 0.969

1 .20 0.550 0.408 0.016(6) 0.983

Calculation off //'from equation (3) of 1.3
s

+ A/k taken as 8.6°K £

Table 3



o

T K t/tA. (T/T^)5*6 'JS

2.18 1 .000 1 .000 0.000

2.10 0.964 0.814 0.186

2.00 0.918 0.650 0.570

1 .90 0.872 0.456 0.544

1 .80 0.826 0.546 0.654

1 .70 0.78 0.252 0.748

1 .60 0.754 0.178 0.822

1 .50 0.689 0.125 0.877

1 .40 0.645 0.087 0.915

1.50 0.596 0.056 0.944

1 .20 0.550 0.055 0.965

y /f calculated from equation (1) of 1,1s

Table 4
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Pore size Dimensional

(Diameter in p) variation (p)

Pore volume
of total

filter volume)a

Total
#

cross-sectional
area of the pores

of the

filter area)(3

•21 .002 75 62

.05 .003 76 63

•12 .008 77 64

.22 .02 77.5 64

.30 .02 78.5 65

.45 .03 80.5 66

.65 .03 82 68

.80 .05 83 68

1.2 • 3 83 68

3.0 .9 85 70

5.0 1.2 86 71

Data provided by Millipore Filter Corporation

Assuming the pores to be conical and that p = 0.825a

Seki (1962)

Table 5



Superleak d cm jr

Millipore filter 1 .2 X
1

o 7

Millipore filter 5 X io"6 1.5

Wire-filled tube 1 .3 X ID"5 7

Wire-filled tube 1 .2 X ID"5 7

Wire-filled tube 4.4 X o
1 cr\

7

Wire-filled tube 4 X 10"7 3

The functional dependence of v on T can be expressed
CT»

as v = k/(l - (T/T^) ) where k is a constant.
Values of f are given in the table.

Table 5
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Pig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 3

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Legend of figures

Exeita.tion spectrum of liquid helium II.

Schematic diagram of an annular superleak formed
by pressing together two optically flat discs.

Classical flow from an orifice.

Feynman's model of superflow from an orifice.

Appa.ra.tus for wire-winding.

Steel drawing piece for attaching the wire-filled
tubes to the winch.

Channel width d as a. function of final die size.
+ d from gas flow at nitrogen temperature,
o d from gas flow a.t room temperature,
x d from period of inertial oscillations.

The length of a. wire bundle at various stages
during the draw process.

Shows a. photomicrograph of steel wires initially
of diameter 0.006", drawn inside a. copper-
nickel tube.

Shows copper wires initially 0.006" diameter, in
a copper tube. Even though this tube was drawn
down by an amount compa.ra.ble with the other
tubes large gaps remained. One possible expla¬
nation is that when the Poisson's ratio of tube
and wires is the same the wires do not relax
after passage of the tube through each die
plate and consequently hexagonal deformation
does not occur.
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12

13

14

15

16

17

18

19

20

21

22

23
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Shows a. photomicrograph of copper wires in a.
copper-nickel tube. These were used in the
investigation. The channel structure wa.s
brought out by etching with nitric acid.
The channels appear large because of the
etching process.

Similar to figure 11 but in this ca.se the sample
wa.s diamond polished and the etching agent was
ferric chloride.

A schematic diagram of the gas flow cryostat used
both for estimating channel size and also for
flushing out the tubes with helium gas.

An electron micrograph of a longitudinal section
through a 4.5 x 10 cm size of Millipore
filter.

Mount for wire-filled tubes.

Perspex apparatus for Millipore filters.

Copper-gla.ss apparatus for Millipore filters.

Schematic diagram of reservoir and flow channels.

Possible forms of f (cL).

(a) Plow in a. tapered channel.
(b) Another possibility for f(:d).

Poiseuille flow in a tapered channel.

Inertial oscillations.

Apparatus designed to investigate pressure

gradients within a superleak.
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Fig. 24 Schematic diagram of helium cryosta.t.

Fig. 25 Open view of radiation shield.

Fig. 26 Gas handling system.

Fig. 27 Critical velocity and pressure index for channels
of mean width ranging from 8.5 x 10"5 to
4 x 10-7 cm.

Fig. (28-36) Typical plots of level difference vs. time.

Fig. (37-41) Measurement showing how the level difference at
an intermediate point along superleaks of size
4.5 x 10-6 cm ancj 8.5 x 10_5 cm varied with
time.

Fig. (42-45) Measurements of mean flow velocity at temperatures'
between 1 ,2°K and the A.-point for d = 1 .2 x
10"^ cm, 5 x 10-6 cm an£ 10"6 cm.

Fig. 46 The relation between vc and d for the filters.
Also shows comparison between values of vc
obtained from wire-filled tubes together with
Seki's measurements on Millipore.

Fig. (47-50) Oscillatory motion of reservoir level for
d = 4.45 x 10-6 cm and d = 1.15 x 10-5 cm.

Fig. 51 Damping of oscillations plotted as log-|Q^"vs. l/T.

Fig. 52 Velocity-temperature curve for wire-filled tube
of size d = 4 x 10"7 cm.

Fig. (53-62) The v-T dependence of other superleaks. The
reproducibility from run to run is exemplified
in figure 55. Also at 1,2°K twelve level vs.
time plots were made. These showed a standard
deviation from the mean of 0.25^ and a maximum
deviation of 1.33
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Pig. (6^-66) The function vf/fs is plotted against temperature.
For constant vs this would be a straight line
parallel to the temperature axis.

Fig. 67 // from tables 2, 3 and 4.

Fig. 68 The pressure index together with comparable data
from Hung, Hunt and Winkel (1952), Winkel,
Delsing and Gorter (1955)* Wansink, Taconis,
Staas and Reuss (1955)* Allen and Misener (1939)*
Swim and Rorschach (1955).
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