

University of St Andrews

Full metadata for this thesis is available in

St Andrews Research Repository
at:

http://research-repository.st-andrews.ac.uk/

This thesis is protected by original copyright

http://research-repository.st-andrews.ac.uk/

A Development Aid for Microprogrammable Microprocessors

Abstract

The aim of the project is to provide a development tool which
enables programmes and microprogrammes, written previously, to be
evaluated on the hardware of micreprogrammable bit slice
microprocessors. The system is based on a PDP11 minicomputer with a
broad, programmable interface controlled by a Motorola MC6800
microprocessor. Simulation of the bit slice microprocessor's main
memory, microprogramme memory, clock etc. is provided by the interface
or by the PDP11 through the interface. It is attempted to reproduce
normal operating conditions of the bit slice devices as closely as
possible.

The electrical interface consists of two 64 bit ports, one for
outputs and the other for inputs. The outputs are tri-state, i.e. low
potential, high potential, or high impedance (virtually disconnected),
and enabled in blocks of eight bits. Latches (registers) are used for
inputs in order that transient outputs from the microprogrammable
devices may be stored. Again these are clocked in blocks of eight
bits. It is quite permissible to connect the outputs and inputs
together, however, care must be taken never to connect together enabled
outputs of differing logic level. A bidirectional data bus is formed
in this manner, the read/write line controlling which outputs are
enabled.

Mechanically the interface is built on three boards and plugged
into a mother board. From these come flying leads carrying data and
control lines to a block with two edge connectors, which are also
supplied with +5V. The microprogrammable microprocessor, sequencer
units etc. would be assembled on two cards and plugged into the edge
connectors.

In normal operation, all control of the interface would be
implemented either by hard wiring on the bit slice processor cards or by
software generated on the PDP11. Four sets of information are required
to define the software, viz. details of the connections to the
interface, dumps of the main and microprogramme memories, and details of
what monitoring facilities are required. Using this data software both
for the PDP11 and for the MC6800 is written, the latter being loaded
into the M6800's memory from the PDP 11.

The design, construction, and testing of the interface is
described. Software for the system depends on the bit slice devices
chosen; the approach to software design is discussed with illustrations
from two very different devices. An example of the use of common
routines developed for communication between the PDP11 and the interface
is given.

David Salmon,
University of St. Andrews.

A Development Aid for

Microprogrammable Microprocesso rs

David Salmon, B. Sc.(Physics),
Dept. of Computational Science,
University of St. Andrews.

DECLARATION

J hereby declare that this thesis has been composed by myself;
that the work of which it is a record has been done by myself; and that

it has not been accepted in any previous application for any higher

degree. This research concerning A Development Aid for

Microprogrammable Microprocessors was undertaken on 1st October 1976,

the date of my admission under ordinance 51 for the degree of master of
science M. Sc.

David Salmon

Contents

Chapter 1 Introduction 5
1.1 Bit Slice Microprocessors 5

Figure 1: Bit Slice Computer Diagram 7

1.2 Simulation 8

1.3 Interface Requirements 10
Table 1: Bit Slice Processor/Host. System Lines 11

Figure 2: Totempole TTL Output Stage 12

Figure 3: Typical Development System Configuration 13
1.4 Summary 14

Chapter 2 Existing Material 16
2.1 PDP11 Hardware 16

2.2 PDP11 Software 16

2.3 M6800 17

Chapter 3 New Hardware 18

3.1 Mother Board 18

3.2 2K Memory Board 20
3.3 Parallel Interface 22

3.4 Exchange 23

3.5 V24 Interface 23

3.6 Constructional Method 24

Chapter 4 Software Concepts 25
4.1 M6800 Assembler 26

4.2 Communications Routines 26

4.3 Other Modules 26

4.4 Summary 26

Chapter 5 System Testing 28
5.1 Communications Hardware 28

5.2 Communication's Software 28

5.3 Memory 29

3

5.A Parallel Interface

5.5 Total System Test

5.6 Summary

30

31

31

Chapter 6 Future Work 32

6.1 Memory Allocation 32

6.2 Coroutines and Pipes 3A

6.3 Summary 34

Chapter 7 Conclusions 35

Appendix 1 Circuit Diagrams

l(i) Notation 37

1(ii) MEK 6800 D1 39

l(iii) Mother Board 40

l(iv) R.A.M. Board 41

1(v) Parallel Interface 42

1(vi) Exchange 43

1(vii) V24 Interface 44

Appendix 2 Connections

2(i) MEK 6800 Dl 45

2(ii) Mother Board 46

2(iii) Exchange etc. 48

Appendix 3 Timing Diagram 49

Appendix 4 Memory.test.c Programme Listing 50

References 51

Acknowledgements 52

4

CHAPTER 1

Introduction

The advent of the bit slice microprogrammable microprocessor

has given a new impetus to the design of compact, yet powerful

computers. It is now a practical proposition for two or three people
to design and build a viable machine. If bit slice microprocessors are

being investigated, it is likely that several designs will be

considered, either based on different structures or on different

components. Much is common to all resulting designs of computer, so a

versatile development tool has been created for use with ail prototype

systems. This development aid both provides common facilities such as

memory, and incorporates diagnostic aids that would not form part of a

final, self-contained computer.

1.1 Bit Slice Microprocessors

Electronic logic circuits may be classified into two broad

categories depending on the dominant method of indicating logic levels -

voltage or current. These are, of course, related, but some circuits

require the passage of a continuous current (within certain voltage

limits) in one direction or the other through the input terminals to

establish a logic value, while others draw current "only during

transients or due to imperfections. MOS technology is voltage

operated. The circuits are not designed to pass large currents so

power dissipation is low and thus the elements of the circuits can be

small and simple. In every circuit there is a certain amount of stray

capacitance and this, coupled with the low currents, means that there is
dV

a significant time taken to change from one logic level to another (— =>
I dt
-). Bipolar technology is current operated and the currents used to
C
charge stray capacitances are insignificant compared with the signalling
currents. The elements of the circuit, have to be larger than MOS in

order to handle the current and power, so it is not possible to fit so

many into a given area of integrated circuit. In general it can be

said that the speed of operation times the power dissipated for a given

5

operation is similar in all technologies, and all advanced integrated

circuits dissipate the same amount of power.

Most microprocessors, including the Motorola MC6800, are

miniature versions of a conventional computer's central processor.

They have a predetermined word length, predetermined instruction set and

a predetermined size and format of address space. Due to the

complexity of their logic they require to use MOS technology thus a few

microseconds are required for the simplest functions on eight hit

operands.

With bit slice devices the logic of the processor is divided
into its elements (arithmetic and logic unit plus various controllers)
which are in turn sliced into units, across the word, of a few bits.
These slices are implemented using bipolar integrated circuits. Bit

slice integrated circuits may be wired together in order to manufacture

a computer of any reasonable word size and architecture. The computer

is microprogrammed, hence the instruction set may be tailored to suit

almost any language or application.

The essential elements of a bit slice processor based computer

are the calculating unit, microprogramme memory, main memory and various

control units including the generator for the microprogramme address.

Figure 1 illustrates how a typical system might be configured. The

blocks represent:

i Four by four bit arithmetic and logic units, with a carry look-ahead
unit to increase the speed of arithmetic operations.

ii Two by four by four array of 512 by 8 bit read only memories for use

as a microprogramme store.

iii Three by four bit sequencer elements.

iv Main memory.

Neglecting certain gates and buffers that are not shown, and the main

memory array, it is seen that it is possible to build a 16 bit computer

from well under 50 integrated circuits.

6

F i g U r 8

1.2 Simulation

It would be possible to design a system, burn in the read only

memories and assemble the whole computer prior to proving any part of

the hardware or software, however, even with the best designer, the

probability of it working would be vanishingly small. A practical

approach is to progress through various levels of simulation before

committing the microprogramme to read only memory and assembling the

complete computer. Not only should it be possible to modify the

simulated system with ease, but also monitoring facilities should be

available in order to debug and prove the system.

A first step in simulation is a purely "soft" approach.

Computer programmes are written to simulate the logical functions of the

various elements of the system, and then used to try microprogrammes and

programmes. With a well structured programme it should be easy to

prove the concept of a system, unlimited monitoring functions may be

incorporated and modifications to the computer system are made by simple
edits to a programme or its data.

There exist two main fallacies in hoping that this "soft"
simulation totally mirrors a computer made of bit slice integrated

circuits. The computer programme might perfectly represent the

programmer's understanding of the printer's impression of the technical
author's conception of what happens in an integrated circuit, but it is

by no means unknown for small, yet significant, details to become

corrupted along the line. Printers, for example, have the unfortunate
habit of omitting inverting signs above variables. Thus the simulation

programme could easily contain errors even if it is correct in the sense

that it performs as the programmer intended. Moreover practical

details, such as the finite, albeit measured in nanoseconds, delay

generated by integrated circuits, are likely to be overlooked. A

typical computer may have four seperate clock signals to ensure proper

synchronisation, and to allow for propagation delays in components. To

involve this level of detail in a "soft" simulation, it would make the

programme too unwieldy and slow in running.

It is contended that the implementation of a further level of
simulation before contemplating the construction of a complete system is

8

highly advisable. This level should be closer to the hardware and

incorporate the bit slice devices as far as possible to avoid any

discrepancy between the devices and their description. Good monitoring

systems and reasonable ease of modification should be retained.

One such technique involves the construction of a whole system,

probably using standard modules for main memory and similar items, but

substituting erasable read only memories (EPROMs) for programmable read

only memories in the microcode memory. There are various types of

FPROM, but in a common design the memory is programmed using voltages
far higher than present under normal (reading) conditions, after which
the power may be switched off and the integrated circuit behaves like a

read only memory. These EPROMs may be erased by prolonged exposure to

high intensity ultraviolet light or X-rays. The simulation of a

programmable read only memory, however, is not quite perfect. The
access time, the delay between a request for the value at a memory

location and the value appearing on the output pins, is an order of

magnitude slower with EPROMs than with PROMs. The clocks, instead of
running wi I h a period of about lOOnS, will be slowed down to, say,

600nS. Monitoring and debugging facilities are not all that easily
included without the addition of extensive supplementary circuitry.

This would detract from the intrinsic desirability of a system where one

merely substitutes erasable memories for permanently programmed ones and
reduces the clock frequency.

In the totally "hard" approach a tremendous amount of work is
involved in the construction of. hardware which is neither as adaptable

as It might be, nor does it simulate perfectly the microcomputer in
view. II one is confident about the design of the computer, and wishes

to use the machine in practical problems it is ideal; however for early

investigations of different structures and microprogrammes it is not

pe rfect .

Another technique, the one adopted by the author, involves

dividing the simulation into two areas, one part performed by the actual

9

integrated circuits under consideration, and the remainder by some host

computer system. The host computer provides a wide, parallel I/O port

into which the processor and sequencer integrated circuits may be

plugged directly. The I/O port may be programmed to appear as any

elements of the microsystem. Obvious candidates for simulation on the

host computer are main and microprogramme memories. Assuming a

conventional architecture, the I/O port would represent the

microprogramme address bus, microprogramme data bus, main memory address

bus, bidirectional data bus plus various control lines.

Any number of monitoring and debugging facilities could be

included, as in the "soft" simulation. Timing is totally different
from that of a real system - the response of the port is at least two

orders of magnitude slower even than an EPROM - however provision Is
made for running the system under test for a burst of, say, lOOnS and

then leaving it dormant until the port is ready for the next cycle.

While the port is designed principally as a device Into which a

more or less complete central processor is plugged , the hardware Is

suitable for many other uses. The most relevant is the examination of

single integrated circuits which are used in the microcomputer assembly.
A sequence of signals may be applied to the inputs and the outputs

tabulated. Once a design is settled upon, it may be desired to build a

complete system. At this stage devices such as memory and I/O
interfaces can be tested through the port.

1«3 Interface Requirements

Table 1, due to Roger Haynes, defines the number and function
of the lines required between the host computer system and the bit slice
devices. Present length refers to a system of his design. Tills
author feels that additional control lines, such as handshaking, or

memory ready, protocols and interrupt inputs, might be required.

10

Field Direction Present Length Estimated Maximum

Microcode Address -> 12 bits 12 bits

Microcode Word <- 28 bits <40(probably <32)
Main Memory Address -> 16 bits 16 bits

Main Memory Word <-> 16 bits ?

Control: clock <- - 1 bit

read/write -> part of microcode word

Totals: Microprocessor -> Host System 28 bits 28 bits

Microprocessor <- Host System 29 bits <41 bits
bidirectional <-> 16 bits ?

Table 1: Bit Slice Microprocessor / Host System Requirements

It was seen that something of the order of 100 lines were

required. The main computer's word width, and hence the width of

standard parallel interfaces, is considerably less than this, so some

form of multiplexing and latching was required. The bit slice

microprocessors are designed to operate in a T.T.L. (Transistor

Transistor Logic) environment, so it seemed that the ideal integrated

circuits to form the elements of the port should be from the industry
standard 74 series T.T.L. range.

The output circuit of a normal TTL gate is, essentially, two

transistors, one connected between the 0 volt supply and the output

terminal, and the other from the output terminal to the positive supply

(figure 2). Under normal operating conditions either one or the other
transistor is free to conduct electricity while the other is off, thus
the output is either clamped well down to 0V or actively pulled up to

the positive supply. This is known as a totempole output. In one

variation of a TTL gate, the tri-state, there is a further input beyond
the logic inputs, termed the output enable. In the active state a

tri-state gate acts like a totempole output gate, however if the output

is disabled both transistors in the output stage are turned off and the

output is free to float to any reasonable voltage. This high impedance
state does not depend on the input logic levels.

11

0 ut p

o v

Figure 2 : 'j'otempole TTL Output Stage.

Above it was stated that it was desired to have the bit slice

devices under evaluation enabled for a brief period and then lie

quiescent until the host has serviced them again, in order to give some

impression of true operational timing. Outputs from the port are

tri-state and only enabled briefly when signalled that valid new data

are present. The effect of input signals to the port is frozen in

latches (clocked) a short time after the outputs are enabled.

It was decided that a versatile and practical system would be

to have 64 input and 64 output lines from the port, each bank of 64

being divided into 8 groups of 8 lines. Each group, or byte, could be
enabled or clocked separately. A typical system might have one output

byte from the port enabled permanently to transmit status information

(clock, reset etc.). The clock would have an active period greater

than that required, so it would trigger a monostable (a circuit that

produces a standard length of output pulse for any length of input

pulse) to form the actual clock presented to the bit slice

microprocessor. The same signal, or its derivative, would clock/enable
the other bytes. A bidirectional data bus could be formed by

connecting together, say, the sixteen lines from two input and two

output bytes. The microprogrammable devices' read/write line would be
used to determine whether the output bytes should be enabled in any

particular cycle. This configuration is illustrated in figure 3.

One view of the port has now been considered - the main host

computer's is yet to be dealt with. There are two means of on-line

communication with a computer - through standard interface devices

supplied by t lie manufacturer or through a purpose built interface that

taps the computer's buses directly. This latter option was ruled out

on two grounds, viz interference with other users through any

un-intentional influence upon the operation of the existing hardware or

12

SjiU Ufiallf- Tir&st"

—

Ovt Bifit
—JasiLi-

T.

POP li

H & 800

5 y 111«

D a t« 8 ui

». r.

A
v;

a
a.
c

oo

Ci»ck

TVi^e*-
ico «S

ft guts a kbi

•<kr°

0 a t* 8f»

* 6»tf

/

t>*tl

>" J

/

r / / / ✓

flJJrtlS// !* \<\ fi r<)
\

* f

1

- 1

XH 'true (5 ii t /
C /, / / / /

Ad ctr t iS

modifications to the operating system software, and the time, expense

and difficulty involved. Standard interface devices fall broadly into

two categories - seriai and parallel. The latter would have many

advantages such as transfer speed and convenience, however modifications

would have to he made to the operating system to allow for the new

interface, which would itself have to be purchased. Serial interfaces

were already present on the host computer, and they had considerable

advantages. They are driven by tested software and easily accessible
from high level languages, they have electrical connections that are

very tolerant and they can be made to operate at reasonably fast rates,

but do not monopolise the host computer. If the I/O port has no

intelligence, one could hope for something betwen 10 and 50 microcode

cycles per second. This may sound unimpressive, but it is comparable
with the rate of "soft" simulations. Further, as already noted, the

designed operating timing is simulated.

In order to attach the latches of the port to the standard

serial interface a fairly large amount of random logic would be

required, so it was decided rather to build a system based on a

microprocessor, allowing some intelligence to be incorporated in the
serial to parallel conversion. Provision is made for some buffering

which allows a cache memory for part of the microprogramme store.

Checksum facilities are available to aid in the detection of

transmission errors. It is assumed that in the majority of microcode

cycles that the only reference will be to another, nearby,

microprogramme word, so greater independence, and, hopefully, speed will
result if a block of microprogramme is stored in the interface. In

general a more versatile system has been created which, due to its

"stand alone" functions, should reduce the load on the communications

channel.

The decision to use a microprocessor based interface introduced
a new phase into the project - software development for the interface's

microprocessor. This involved both the introduction of a

cross-assembler into the main computer and its use.

K4 Summary

The design objectives of the system were to provide an

14

interface between a host computer and the elements of a bit slice

microprocessor with a view to analysing the operation of the latter.
The interface was required to be such that there was minimal

interference with the host system and the appearance of the interface to

the microprocessor under evaluation resembled as closely as possible the

remaining parts of a self-contained microcomputer. Realisation is

through industry standard integrated circuits for connection to the bit

slice devices and communication with the host is by serial signals

through an existing multiplexer also used for computer terminals.

Routing and control within the interface is performed by a

microprocessor.

15

CHAPTER 2

Existing Material

Of the two main items of hardware in the microprogramme

development system there was no choice in one. The only computer

available to act as host was a PDP11/40 running under the Unix operating

system. A range of suitable microprocessors on which to base the
interface was on the market, however the author had experience of the

Motorola M6800, and the offer of the loan of its development kit was

made, so it was the obvious choice.

2.1 FDP 11 Hardware

For the purposes of this exercise the only important part of

the PDP11 hardware is its asynchronous communications interface. The

model available was a DJ11-AA 16 line asynchronous serial line

multiplexer with V24 electrical interface^Its principal use was

for communication with computer users through terminals.

Lines from a DJli are divided into four groups of four lines.

Each group may be preset to any popular baud rate (75 to 9600 baud) and
format of data bits, parity and stop bits. The V24 electrical
interface is the standard C.C.I.T.T. voltage switching levels to

represent marks and spaces (equivalent to the American RS232).

2.2 PDP 11 Software

The software used on the PDP11 is written in a language called

which shows much influence from R.C.P.L. but has unusual

constructions, especially for iteration. Emphasis is placed on pointer

manipulation. C is designed with systems programming in mind, hence it
has all the bit manipulating facilities etc. that one would expect to

find in an assembly language, however it retains the ease of use of a

high level language once its notational peculiarities are mastered.

16

C3)
The interface with the operating system, UNIXV , is exceptionally good;
there is no difficulty, for example, in opening or creating files from a

C programme or calling systems routines to alter the characteristics of

serial I/O lines.

2.3 M6800

(A)
The Motorola M6800 system^ is a series of supposedly

compatible integrated circuits that are used to form a microcomputer.

The principal device is the MC6800 microprocessor which is an 8 bit CPU

with an address space of 64K. Read only memories,t random access

(read/write) memories, parallel and serial interfaces are also
available. All input/output is performed by reference to memory

locations.

Motorola produces a development kit for the M6800, the

MEK6800D1, which includes an MC6800, some RAM, peripheral interface
circuits and a ROM, the MCM6830L7^^, preprogrammed with various utility

programmes. The package of utilities, termed Mikbug by Motorola, is

intended to communicate with an operator through a teletype allowing him
to load programmes into RAM, list the contents of registers, examine and

modify memory locations etc. A circuit diagram for the kit as modified

by the author is shown in appendix l(ii). The only significant

modifications are the addition of a line to the edge connector that is

used to enable the ROM, and changes to the serial communications

circuitry to allow the use of the much higher baud rates preferred for
communications between machines. The system clock has been slowed down
to give a period of 600nS for » thus relaxing the speed constraints on

the memory.

Communication with the development kit is through an

asynchronous line. For off-line work and the development of on-line

communication with the PDP 11 a scrap teletype was purchased. The

printer required its code converted to ASCII and the electronic keyboard
was completely rebuilt. While the printer is restricted to 110 baud

operation, the keyboard may either use an internal clock for 110 baud or

an external clock for virtually any other rate.

17

CHAPTER 3

New Hardware

The new hardware in the system may be divided into two parts -

permanent features of the system and development aids. The former

category includes the parallel interface to the microprogrammable

devices, a module of additional memory and a mother board into which

everything including the M6800 kit is connected. An exchange unit (for

routing serial signals) and a V24 interface unit (for conversion of the

microprocessor signal levels to those of the PDP 11) were built for test

purposes, but simplified versions could be used in the final unit.

Circuits for all parts of the system are illustrated in

appendix 1, with a brief explanation of the notation in the first part.

Details of the connections are available in appendix 2. A "worst case"

timing diagram, drawn specifically for the R.A.M. circuit is reproduced
in appendix 3.

3.1[Mother Board

All circuits are connected to the mother board, which comprises

of a number of edge connectors for added circuit boards plus some buffer
circuits to amplify signals. Apart from the microprocessor board,

which is a slightly modified MEK6800D1, it was decided to adopt a bus
structure with all edge connectors identical, allowing full

interchangeability of new circuit boards.

For simplicity in the design of custom circuits the
bidirectional data bus from the MC6800 is split into two - an output bus

from the microprocessor and an input bus to the microprocessor. The

data and address outputs are maintained on the mother board buses for

longer than Is guaranteed by the microprocessor, so circuits have longer
to respond to them.

18

Appendix l(iii) shows the circuit of the mother board. It is

seen that the circuit comprises of three blocks plus some controlling

gates. The bottom two blocks are used to split the microprocessor's
bidirectional data bus into two unidirectional buses while the upper one

is buffering the address bus.

In order to reduce the speed constraints on peripheral
interfaces and memory it was decided to store the last Valid Memory
Address from the microprocessor on the address bus of the mother board

until such time as a new Valid Memory Addesss was issued. This allows

the maximum possible time for bus devices to respond to their addresses.
The latches (or registers) used have the advantage that in addition to

the normal output (Q), a complementary output (Q) is available. The
eleven most significant of these form part of the mother board address

bus to simplify decoding. By performing an ANT) function of various bus

lines blocks of 32 bytes may be uniquely identified. It was envisaged
that each board plugged into the mother board would generate a select

signal (to identify when it was being addressed) by gating these lines

with V.M.A. . Considering the timing diagram, it is seen that the

remainder of the address lines are set up prior to the start of the

select signal (marked CE) and held to the end of it, a requirement

frequently found in integrated circuit specifications.

A reduction in the number of pins of the MC6800 integrated

circuit is achieved by making the data bus bidirectional. Width of the

mother board bus is not so critical, while timing considerations can be
of importance, so it was decided to split the data bus into two, one

output from the microprocessor and another eight bit bus input to the

microprocessor. The output bus is latched (stored) so valid data are

held beyond any select signals used by the devices on the mother board
bus.

Output from the microprocessor is available when the R/W line
is low. The microprocessor data bus is enabled by 07 on the

microprocessor board, so valid output is transmitted by the data bus

during W A 07 A VMA, which signal is used to enable a latch driving the

output data bus.

19

Input to the microprocessor from the mother board devices comes

through a Lri-state buffer. This must be removed from the high

impedance state to transmit data from the mother board input bus

whenever the microprocessor is reading (R/W is high) and a device on the
mother board is selected. One line of the mother board bus (selected)

is held low by any circuit that is addressed, failing which it floats

high. Together these signals are used to enable the buffer.

3.2 Memory Board

At the time of construction the most economical manner of

buying Random Access Memory was in integrated circuits of IK by 1 bit.
It seemed reasonable, therefore, to build two independent blocks of

memory, each 1K by 8 bits, that could be switched to start at any IK

boundary in address space. Switches are also incorporated to inhibit

writing to each block, providing a Read Only Memory simulator. A

flexible system is thus created where, say, a programme may be loaded

into one block, after which it is set to write protect, while the other

block is used for data storage.

No restriction exists on when one may change the address

allocation of a block of memory, save when addressing the block in

question. It is quite possible to write to a block of memory at one

address, write protect it, and then change its base address. Typically
this would be done if it were desired to load a replacement for the

Mikbug using the Mikbug itself. Once loaded the address of the memory

would he set to **^00 and the Mikbug R.O.M. disabled; any

interrupt would take its vector address from the R.A.M. and the

processor would proceed accordingly.

The memory integrated circuits chosen were Signetics 2102-1.
It is Important to stress the manufacturer as specifications for

nominally equivalent memory circuits vary considerably from one

manufacturer to another. This integrated circuit is a static (i.e.
data are stored in bistable elements and valid as long as power is

applied, without any need to refresh the contents) random access memory

with a cycle time for read or write of 500nS. Inputs to each circuit

are :

1 10 address lines.

20

2 A read/write line - logic level 0 for write.

3 Datum in.

4 Efilp Enable (EE) - a logic 0 applied to this input indicates that the

integrated cicuit has been selected to be active.
In order to write to the integrated circuit these lines must be set up

in a specific order with closely defined minimum times between them.

The sequence of operations is:
1 Set up the address lines.
2 Apply a EE signal.
3 Apply a write signal.
4 Set up Lhe required input datum.
5 Remove the write signal.

6 Remove the EE signal and, if desired, the address.
7 Finally the input datum may change.

The read cycle follows a similar pattern.

The circuit of the R.A.M. (appendix l(iv)) is extremely simple

with Lhe exception of the R/W circuitry. An enable signal is generated

by gating switched selections of the top six bits of the address bus and

their complements with V.M.A. plus another signal that is normally a

logic level one. Here is found the only asymmetry in the circuit: in

one half of the 2K memory the signal is permanently wired to the

positive supply, while the other half derives its eighth input from the

enable output of the first IK. Thus both banks of memory are precluded
from responding to the same address, even if the switches are set

accordingly. This signal is used for the CE of the R.A.M. circuits

and, through a diode, as a signal to enable the input buffers on the
mother board on microprocessor read cycles.

Appendix 3 shows a timing diagram for the R.A.M. circuit.

This illustrates the worst case situation where all the components

conspire to take as long or short as possible to function, whichever is
less convenient. The original design of the R.A.M. circuit was based
on a timing diagram found in the Motorola M6800 Applications Manual,

however this was modified since their timings were not truely worst case

- t hey were slowest case rather. Further the specification for the
MC6800 has changed since the advance information used for the

Applications Manual. All the signals are related to the two anti-phase

system clocks 0^ and 0lines appear more or less as they might
be seen on an oscilloscope with low (logic 0), high (logic 1) or

floating values. Sloping lines indicate that the transition can occur

at any point along their length.

On comparing the signals available on the R.A.M. board with the

specifications of the R.A.M. it is seen the R/R line requires
considerable modification from the mother board signal. The onset of

the write signal is delayed by a monostable of period 80nS and truncated
such that it returns to its normal high state by the end of 02* ^
switch is provided that removes the possibility of writing to memory by

holding the R/(? line high.

It should be noted that although the outputs of the 2012 R.A.M.

integrated circuits are enabled whenever the chips are selected, signals
are not transferred from the mother board bus to the microprocessor bus

except during microprocessor read cycles.

3.3 Parallel Interface

A block diagram for the parallel I/O interface is shown in

appendix l(v). Selection of the block of 16 addresses is performed in

a manner similar to the IK memory allowing the interface to be located

on any boundary of 16. Output from the select gate is used to select

an integrated circuit which operates as a one of sixteen decoder on the
four least significant bits of the address bus. The decoder provides

sixteen lines responding to unique contiguous addresses swltchable
within the address space.

Latches are in turn connected to the sixteen lines from the

decoder. Input (to the microprocessor) latches are clocked by the

micreprogrammable devices and their tri-state outputs are enabled onto

the mother board bus when selected by the M6800. Output latches have
data clocked from the mother board bus when selected - their outputs

are, however, enabled by the external devices.

The latches used are termed transparent latches. In other
words the outputs (Q) follow their data inputs (D) whenever the enable

22

Is high, retaining the value at the negative transition of enable

signal. In retrospect it has been realised that it might have been
better to use edge triggered flip-flops on the output of the M6800. On

positive transitions of the clock the Q output is set to the logic state

of the D input. Under most circumstances these will have the same

effect in the interface, however, when using transparent latches,

spurious transitions could occur during M6800 write to interface cycles.
The microprocessor data bus is not set up until l^gr) (about 150nS) after
the latch is enabled.

Only two 8 bit inputs and two 8 bit outputs have been
constructed.

3.4 Exchange

All serial signals are routed through the exchange. The

exchange consists of six columns of four, three position switches. At

the foot of each column, except one which is linked to the printer, is a

socket for connection of serial communication devices. In effect the

exchange is four horizontal lines which may, at each node, be switched
to either the transmit or receive line of the connector below, or may be

left open circuit. Any number of transmitters and receivers may be
connected to any horizontal line, but characters will, of course, become

corrupted if more than one line attempts to transmit s !.mul taneously
(however no damage will be done).

Appendix 1(vi) contains the circuit diagram for the exchange.

Signals are buffered on entry to and exit from the exchange. Stop

signals are represented by a logic level one, hence in the idle state

the cathodes of the diodes are floating to a high potential, but when a

start level is applied current is sunk through the diodes from any NAND

gate switched into the circuit. Thus all the inputs are no longer

floating to a logic level one and the output changes accordingly.

3.5 V24 Interface

Communication with the PDP11 is through the TTL interface box.

This unit includes a converter for different signal levels and

protection devices for the PDP11 in case of failure in any component on

23

the microprocessor side.

The circuit for the interface is extremely simple (appendix
l(vii)). It consists merely of two level convertion integrated

circuits, one capacitor (to limit the slew rate on the V24 level output)
and protection components based on a Post Office design^).

3.6 Constructional Method

There are four main units in the system, viz the V24 interface,

exchange, mother board and microprogrammable microprocessor connector.

The V24 interface and exchange are built in separate boxes, however the

mother hoard is merely bolted onto a sheet of aluminium and left open

for easy access. The electronics for the mother board is built on a

standard sheet of Veroboard, the parallel conductors forming the buses
and accepting the edge connectors directly. From the parallel
interface card come ribbon cables terminated with an edge connector

mounted on a piece of aluminium. Into this edge connector is plugged

the inicroprogrammable microprocessor.

Connections between components on the memory and interface
boards are performed in a novel manner - the Verowire system. This is

a rapid technique that is a cross between wire wrap and soldering.

Components are mounted on a board whLch is printed with a regular array

of copper pads and their leads are bent at an angle to the board.

Wire, enameled with self fluxing varnish, is then wrapped round one lead

and guided along special wiring combs to its destination where, again it
is wrapped. Finally the joints are soldered, the varnish boiling off

at soldering iron temperatures. Ttiis is the fastest wiring method
known to the author, and he found no difficulty in its use. The wires

look somewhat vulnerable to damage, and their close proximity could lead
to cross-talk, however no evidence was found for either.

24

CHAPTER 4

Software Concepts

The aim of the microprogramme development system is to provide

a tool with at least two facilities. First the operation of the
elements of bit slice microprocessor may be investigated. Thereafter,
once a system has been designed and microprogrammes written, they are

tested in conjunction with each other with the aid of the unit. The
hardware remains the same, however its function is tailored to suit the

application by software.

Completely different situations exist in the two cases. In
the former stage a completely passive specimen is under the microscope

and the response to various isolated stimuli Is examined, whereas in the
latter case the observer is allowing a live animal to run round Its

world by itself. He is no longer directly controlling the stimuli - he

merely initialises the microprocessor's world and tells it when he is

ready for it to take a step. Roles have been swapped - formerly the
units attached to the port were sub-peripheral in status, but in the

latter use of the system they have taken over processor status and the
M6800 and PDPll function more as peripherals.

The two roles require contrasting types of programme for the
M6800 and the PDPll. In the initial bit slice device evaluation stage

the M6800 system has little to do except convert serial signals from the

PDPll into parallel lines to the port and vice versa. During

microprogramme development, however, with bit slice devices forming a

complete processor, the M6800 system becomes a storage manager and the
PDPll a bulk store and I/O processor for operator communication.

Software for the microprogramme development system may be
divided into three sections, vix, that associated with the

micreprogrammable microprocessor itself, programming the interface and

programming the PDPll. Of these, the first is outwith the scope of
this project, the second has been facilitated by the procurement of an

25

assembler, and an extensive range of communication routines has been

developed to form a kernel for all programmes on the PDP11.

4.1 M6800 Assembler

It was intended to write a cross assembler to run on the PDPli

for M6800 code, however shortly after work was commenced, the author was

given a copy of the source for an assembler written in C. This was

compiled, its method of use established, one bug corrected and it is now

available on the PDP11. A reference manual and a system
(9)

description ' are available.

4.2 Communication Routines

Communications between the M680Q and the PDP11 are of

fundamental importance to the project. Use is made of the MIKBUG^
routines on the M6800, and these are complemented by mirror routines

written in C for the PDP11. For example, the C routine read_registers
communicates with the MI KB IIG routine PRINT to determine the value of the

M6800 registers. These values may be altered in the PDPil and then
transferred to the M6800 using restore_registers which, in turn,

communicates with LOAD in MIKBiJG. A detailed description of each C

routine is given elsewhere^^ .

4.3 Other Modules

Two other modules exist to simplify the writing of programmes

on the PDP11 for use with the M6800. One is used to declare various

standard variables used in the communication routines, such as the

PDPll's representation of the MC6800 registers, and the other sets up

parity and other options (stty parameters in Unix terminology) for the
line to the M6800.

4.4 Summary

It is seen that in the early stages of work the human operator

investigates the bit slice devices through the PDF 11 and M6800, while in

26

the later stages the bit slice devices happily work by themselves,

asking for information from the PDP11 store via the M6800; the human

operator passively watching what happens. The key to operation of the
units is software, which is based on the PDP11 where cross assembler and

communication programmes are available.

27

CHAPTER 5

System Testing

Before considering using a tool for development purposes the
tool itself must be thoroughly tested. There is no point in utilising
a debugging aid if half of the trouble is caused by the aid itself.
Each part of the system has been subjected to various tests; these are

described in a certain amount of detail as they illustrate the use of
the system, as well as their nominal function.

5.1 Communications Hardware

The first stage in testing the system, once operation of the
M6800 development kit in conjunction with the teletype and exchange was

established, was to check the communications hardware (serial

input/output of the M6800, exchange, V24 interface and cabling) at

various baud rates. Trivial programmes were written for the FDP11 to

establish that signals may be sent from the M6800 to a terminal of the

PDP11 and vice versa. Data rates tried were 110 baud, 300 baud, 4.8k

baud and 9.6k baud, all with success.

5.2 Cosamunications Software

Mirror routines for the I/O routines of the MIKBUG were

developed and tested by monitoring both sides of the communication on

the teletype. A typical example is the operation to load the copy of
the MC6800 registers stored in the PDP1. i into the MC6800 (restore

registers). Trial values would be set up on the PDP11 and the mirror

routine would load them into the MC6800, all signals being monitored by
the teletype. As a further check, these values could be read back

either via the PDP11 or manually by switching the keyboard to

communicate directly with the M680Q.

The reliability of the communication software and hardware was

28

proved through extensive use during memory and interface testing.

5.3 Memory

It may be argued that one of the most critical aspects of a

computing system is the reliability of its memory. Accordingly, the 2K
RAM board was repeatedly tested via programmes running on the MC680Q
with operator communication through the PDP11. Some proof of the

validity of the test was given by the fact that three types of error

were detected. First, due to a misprint in the MEK6800D1 guide, there
was a conflict between the addresses to which the IK memory blocks were

switched and other devices on the bus and this, understandably, caused

problems. Errors were intentionally induced by removing a single

memory integrated circuit, and by switching a bank to read only, both of
which were detected.

After manual testing of random locations of the new memory the

design of an automatic test was considered. Various types of test may

be used, varying from checking that 00 and FI'hexacjecimal n,a^ written
into each location to extremely long tests where, for each possible
value in each location, any modification of any other location has no

effect on the stored data. A compromise was settled upon where it was

repeatedly tested that any value may be stored at any location. Each

cycle of this short test lasted about 15 seconds.

A complete listing of the memory testing programme is given in

appendix 4, not only for its intrinsic interest, but also as it is

illustrative of the general approach adopted. The listing commences

with some declarations and initialisations, largely standardised. 6800
code from the file given as a parameter in the programme call is first
loaded down to the M6800 system, then the registers are initialised,
read back and displayed. Once the 6800 is ready, it is instructed to

Go and the PDP11 waits for an opportunity to read the MC6800 registers -

either caused by an error condition or by the test being completed. In
the former case the error is noted and the user has the option at every

third error of giving up, carrying on or moving to the next byte.

Completion is indicated by the contents of the index register being
outside the range of the memory being tested, in which case the total

29

number of errors detected is indicated. Finally all signals are passed

through the PDP11 to the user for manual intervention, if desired.

As a simple check on the practical use of the IK RAM, it was

switched to the address of the scratch RAM used by the MIKBUG (AOOOj^)
and the RAM supplied in the kit removed. The system functioned

correctly.

5.4 Parallel Interface Test

The simplest way to test a parallel I/O interface is to put

signals out on one channel, loop them back to another, and read the

result. A board was constructed to plug into the micreprogrammable

microprocessor connector with random one to one connections between the

input and output lines and was used to test the interface.

It was during the testing of the parallel interface that
trouble was first experienced with the serial communications. A large

table, generated on the M6800 was to be printed through the PDP11,
however many of the characters were lost on the way. Investigation

showed that if a burst of more than about 64 characters was transmitted

by the M6800 at high baud rate, most of the characters were lost, but
the last 64 remained intact.

The DJ11 multiplexer has an internal first in, first out buffer

(FIFO) with a capacity of 64 characters. It was considered that this
could be overflowing due to slow response from the operating system

software. Attempts to monitor the operation of the multiplexer driver

by printing messages on the control console proved futile since all
other processes are halted during system error message printing.

A trivial driver for the multiplexer was written that

transmitted all characters received on the microprocessor's line to a

V.D.U. operating at the same baud rate as the microprocessor. This

proved that there was no difficulty in the PDP1I hardware coping with

transferring data from one line to the other at high data rates or with
the M6800 hardware. The PDP11 ran quite normally (with the exception
of terminals connected to the multiplexer) while the microprocessor was

continuously transmitting at 4.8k baud.

30

If the hardware was not causing the problems, they must be

connected with the software. Further investigation was carried out

into the operating system's serial communications software, and this

revealed that if the internal software buffers are filled to

overflowing, their contents is thrown away. As an experiment, the

appropriate buffers were quadrupled in size to check that this was the

difficulty. In practice this modification was sufficient for the

present applications.

5.5 Total System Test

1

The elements of the system had been tested separately, but they

had to be tested together in case of any unpredicted interaction. Both

new boards were plugged into the mother board and the tests repeated.

Except for some noise, cured by the introduction of a small capacitor,

no trouble was experienced.

5.6 Summary

One cannot prove conclusively that a piece of hardware will
work in every situation - that requires total acceptance that the
devices satisfy their specification and ignoring all uncalculated
factors such as coupling between adjacent circuits - but one can, by

showing that it cannot be faulted, satisfy oneself that it may be
assumed to work. While it has not been possible to use the system to

drive a microprogrammable microprocessor system, the elements of the

development, system have all been tried either explicitly (e.g. the RAM

board) or Implicitly (e.g. the mother board).

31

CHAPTER 6

^Future Work

In order to bring the development system into full and

convenient operation further work must be completed. This may be

divided into two areas, viz original work and tidying up. The latter
involves extension of the parallel interface to its full complement of 2

by 64 bits, and replacing the separate exchange, power supplies etc.

with a single "black box" which provides all these services.

6.1
_ Memory Allocation

Table 1 describes a system capable of addressing 151552 x 8
bits of memory - about 1% of that can be buffered in the RAM of the
M6800 system. Optimum advantage of the buffering will depend on the

design of the bit slice microprocessor. A balance must be found

between the access speed advantage of finding the required datum in the
M6800 memory and the overhead involved in transferring large quantities
of data from the PDP11 to the M6800 which may be overwritten in the next

cycle, never having been utilised.

Many accesses are made to the microcode memory for each access

to the main memory, thus it seems worthwhile to use the buffer space

largely for microcode. The allocation will depend on the bit slice

devices used and the way in which the microprogramme is written.

AM2900 series devices are microprogrammed in a fairly
conventional manner - logically consecutive micro-instructions tend to

be arranged consecutively in memory. A solid block of microcode

memory, or several solid blocks including much used code and a block

that can be overwritten, is therefore the choice for Advanced Micro
devices. 256 microcode words (IK bytes - as much space as could be

spared) would be too for large a single block (taking a second to load
from the PliP 11), while t lie overhead involved in loading a few words

32

would be excessive.

Another popular bit slice system, the Intel 3000 series, has a

completely different microcode sequencer. There is no automatic

increinenter for the microcode address, so there is no reason for

consecutive micro-instructions to be arranged consecutively in memory.

The microcode memory may be considered to be laid out in rows and

columns. Row 0 can be accessed from any instruction, columns 3 and 11

from successful conditional jumps, columns 2 and 10 from unsuccessful

jumps and certain other jumps require a destination in columns 12 to 15.
In addition it is possible to jump to another address in the same row or

column. Thus it would appear that certain areas of microcode memory

will be used far more than others. A reasonable use of the buffer

might be to store permanently row 0 and columns 2,3,10,11 and, space

permitting, columns 12 to 15. If the required microcode was not in the

buffer, the appropriate column would be loaded from the PDP1 1 into a

scratch area of RAM.

The programme space of the main memory is likely to be accessed

sequentially in units of a few bytes at a time. The minimum area to be

buffered should be capable of holding the longest instruction possible,

while it would be an advantage to buffer several instructions.

Data storage will depend very much on the architecture adopted
for the bit slice microcomputer. If, say, the first n locations of

memory are regarded as registers with fast access times or that may be
addressed with short instructions, they should be held permanently in

the M6800 system. Other data would have to be held basically in the
PDP1 1 with possible buffering in the M6800. How valuable this would be
is open to debate - data storage is read/write memory, unlike the

programme and inic roprogramme stores, so all data must be copied back

into the PDPl1 again after being operated upon by the bit slice

microprocessor. WItti stack based designs, many of the memory accesses

will be to sequential locations, so it may be worth keeping the top few

locations of the stack in the M6800.

Programme storage for the M6800 will consume a considerable

quantity of space, more space being required to handle the complex

33

buffering for devices like the Intel sequencer. In addition to the

arrays of data buffered for the bit slice microprocessor and their

labels to indicate what they represent, various accounting variables
would be stored. These would measure microcode and main memory

accesses Lo enable estimates of performance in real systems to be

calculated .

6.2_Coroutines and Pipes

At present the process running on the PDP11 must know whence
the next input is coming - the M6800 or the control terminal. It would
be more satisfactory if normal communication with the M6800 could be

non-destructively interrupted by the operator at the control terminal to

enquire of the current status of the simulated bit slice microcomputer.

Within the Unix operating system there are specified two

facilities termed coroutines and pipes. The former enables logically

parallel operations to be executed logically simultaneously. Pipes

allow inter process communication, and may be joined with "tees". If
these facilities were made available and used on the PDP11, parallel

processes could be established, one communicating with the M6800, and

the other with the operator.

6.3 Summary

Half of the work requiring to be completed on the project is

connected with the elimination of all the switches and bits and pieces

of electronics. The hardware development phase is completed and the
controls on the development system box can be reduced to an on/off
switch and a reset button. The other half of the work involves

implementing a development system for use with a particular design of

bit slice microcomputer. Expansion of the parallel interface is

required to the appropriate number of bits, and a considerable quantity

of software must be written both for the M6800 and the PDP11, making use

of the existing communications routines.

34

CHAPTER 7

Conclusions

The original aim of the project was to provide and demonstrate

a programmable interface between a microprogrammable microprocessor and

a PDP11, along wi th all the required software. To this end all the

fundamental building blocks have been proven, however since no

microprogrammable device was available only a sample 16 bits of the

interface was constructed and the device dependent software is not

written.

It has been seen how the existing M6800 kit has been expanded

to accept the additional memory and interface. Minor changes have been

made to facilitate the use of higher baud rates. The system has been

constructed without any modifications or additions to UNIX or the PDP11,
save possible enlargement of the UNIX software buffers and alteration of

the strap settings on the DJ11 multiplexer.

New hardware has been constructed, both as permanent features
of the system and as development aids. The memory size of 2K bytes

should be sufficient, with the use of the PUP11 as a backing store, for
the present purposes, however further modules could be constructed to

the same circuit and switched to other free areas in store if required.
Provision for 64 input and 64 output bits in the parallel interface has

been made, although only 2 x 8 bits have been assembled in each
direction. The system is now at a stage where the exchange and

teletype may be dispensed with and the system converted into a

self-contained peripheral of the PDP11.

Software has been written with the aim of maintaining a

dialogue between a programme running on the PDP11 and one on the M6800

through the Mikbug routines and parallel procedures written in C. At

one stage it was hoped to programme the PDP1 1 to generate the M6800

programmes automatically, however time did not permit this.

3 5

The ultimate test of the system would be to use it to drive a

microprogrammable microprocessor, however the complementary project
failed to provide a suitable device. The testing routines have proved
that no fault can be found with the elements of the system, whereas a

positive demonstration of the system would prove more satisfying.

It is difficult to see how the system could be improved within

the original specification. Increasing the memory size in the M6800
could improve real time operation of the interface, however this is not
a prime consideration. The purpose of the interface is to provide a

development system capable of demonstrating the functional capabilities
of a microprogrammable microprocessor configuration with a minimum of
dedicated hardware requiring to be constructed and the ability to

incorporate debugging facilities. In order to measure the rate of

operation of the microprograramable device a count of its cycles would be
kept, possibly with a weighting attached to simulate the operation of
slow memories, and this would be divided by the clock rate in a

practical system.

The intended use of the system is to simplify the. simulation of

computers based on bit slice microprocessors. No simulation can

perfectly represent the object in view, however it can prove most
valuable in its ease of use, adaptability, proven facilities and

economy. There is no reason, however, why this system should not be

put to other uses as intelligent parallel/serial converter interfaced to
the PDP11. One such example would be the development of an interface
for a high quality printer requiring parallel signals. The interface
could be programmed to translate signals intended for a teletype into

suitable codes.

36

APPENDIX 1(1)

Notation

The notation used in these appendices is reasonably standard,
however below are listed the symbols and functions for the various

simple components. Special components are represented by boxes and
marked with their type numbers.

Connections

All single wires are shown as thin lines, with joins indicated

by dots 1 , and crossed wires without connection by bridges——^ .
Buses of several lines are illustrated by a pair of parallel lines with
arrows to illustrate the sense of the signals (or if they are

bidirectional) except on the processor board where, for the sake of

space, the buses are represented by a single broad line.

Gates

Inverter, Y = K

NAND, Y = K A S £ ==o
Latches

All latches used in the project are transparent with positive

enables. Their function may be represented by the table:
Enable (G) D input Q output

0 X Q0
1 0 0

1 1 1

where X means that the signal is irrelevant and Q is the value of the Q

output prior to the 1 to 0 transition of the enable input.

37

The latches used in the parallel interface (type 74S373) have

an output enable control that disables the tri-state outputs when a high
level (1) signal is applied.

Monostables

The period of the monostables is determined by an external

resistor and an optional capacitor.

Inputs Output

0

Clear A B

0 XX

1 0 f
1 I 1
T o i

A Q

8 5
Clear

38

P 1

A 0 AO

A 1 V

Ai U

A 3 J"*

A A 3J

A 5" T

A l> ?
A 7 37

Enable L

A 8 36

A f £.

A '0 P

A 1 1 35"

A

^rooi d
K
«

1

AH 34

A 13 N

A 14 M

A I? 33

DO 31

D1 R

DA ji

D6 L

D i J-7

03 H

OS 30

D 7 J

JSC I s

g / H ?

NMI f

BA e

F

VMA
(0

R/iv 6

A« Jet i

IRQ 0

7

*1 J

Modified Motorola Kit

ME K 6800 D I

<-5 v

(ground

St^iai Out

Sc r/at J*fut

R««o/er Control

Lo*/ / H/cjh
fKmta 5mitct

ApPfcno/i* I iii) MEK 6?00 PI

A f> P e w d »x I iU — Mother Board
t

Append'* I C'l") Mother Bo°>rJ

o

£

ercrffir

address bos

1 OoiC^ output bus

0 011 O Input bl/S

XCP
S i cf net". 5

(? /*

XI 0 i - I

1 K x 1

R fl-H. cF

C i r cv ' ti>

S ft c ct t <J

Appendix I (iy) ~ 1014 bit ftanolo"! Access Memory

9

/I ppend iX I («>/ J R. Q. M. Board

>rtrr/

L o# 0 * Oqv A JJr tSS B v3

6 «•*« ^

D «c o e/ « ir

*5? ' ' *r*

Dent* I „ -

9 i "*«. i

..' f »• <•«

! ,• '

"iff

- \ *• f j

C ■ - pv ~ pv» J

0 «< t a ' p . '' •

%l j/s

8 i »« €i

"\
V

s - c

r r ^

». «' *

0

t\ i C r t p r ■

^ppc^tVi* I (v) P« r a It t t I * t" tr f H c

3 1 tv-> ParctUeC Inter face

A.pp e " * '* 1 lvi} ' E ycuh3-

D c.

a* 3

b 0 *»> A
-oo

% "!/^ r) v

i j w

rhz

~^ry
~^r

0 p « r-<xt Po4 E r*~, >5

£ 1 V c .> »* h i,'

»... V

Receivers (1 -?f)

*

60 0 C »»■} n tx •D i v :„,„r,r \
P.n 1 1 *4 ?£ yT

h ao J& ^) 21 - «? I <

■]f ' •-

J r~t*n<,tnit^£r~ (- cCC

11 OR

Y- -VA-
o - .3

I* — l Cp**tttr>*-

°"i I p 7

•IV

I

A

rj>7

*

-W-

Cf Jv

' -anvf

-w-

V ia(

- I I V-

• I . f '

CI. C,

r~ ;

-A "T r- «* -i 3 "i r »•

£) i * e r> H>. «. '
C

P,'„ J

0* X
I

•1

f) 1 ^ .. 0*« •» « 4 *»"

X

Pe a r

AppehcJ iX I evil) V Inter face

Appendix 2(1)

Evaluation Kit MEK 6800 D1 Connections

Connector PI

The pin assignments are as described in the kit's guide"*,
except as follows:

Pin L Mikbug ROM enable (pin 11 of IC) - connect to A15 for normal
operation, or to ground to disable the ROM.

Pins N,12 Keyway .

Connector P2 Connector P3

Pin Function Pin Function

1 Gnd 1 Ground

2 CA1 3 PAO
4 PA2 4 110 Baud Select
5 PA4
6 PA6 6 300 Baud Select
7 PBO
8 PB2 8 110/300 baud select common

9 PB4
10 PB6
11 CB1 11 Reader Control (CB2)
12 Gnd 12 Low / R7gTt data rate input
13 CTS 13 Serial Input (PA7)
14 DCD 14 Reset Input (Normally open

circuit)
15 RX data 15 Serial Output (PAO)
16 RX clock 16 Reset input (Normally

ground)
17 TX clock
18 RTS
19 V

_cc
20 Reset
21 TX data
22 keyway
23 CB2
24 PB7
25 PB5
26 PB3
27 PB1
28 PA7

29 PA5
30 PA3
31 PA1
32 CA2

45

Pin

1

2
3
4
5
6

7
8
9

10

11
12

13
14
15
16
17
18

19
20

21
22
23
24
25
26

27
28

29
30
31
32
33

34
35
36
37
38
39
40
41
42
43
44
45

Ub

Appendix 2(ii)

Mother Board Edge Connectors

Colour Function

cc

Black
Brown

Red

Orange
Yellow

Green
Blue
Violet

Grey
White

Address Bus (Low Order)

Black
Brown
Red

Orange
Yellow
Green
Blue
Violet

D,

Data Input to Microprocessor from Memory

Black
Brown
Red

Orange
Yellow
Green

Blue
Violet

Data Output from Microprocessor to Memory

D-

C-reen
Blue
Violet

Grey
White

Inverted Low Order Address Bus

White

Grey
Violet
Blue
Green
Yellow

Orange
Red
Brown

Black

Hilt
Bus Available
Three-state Control
Clock
Clock 02
Valid Memory Address
Reset

T7R7Q7
Helectei
V.M.A.A 02
Read/Write

46

46 Black a^q, ^7 AID
48 Brown A,,, 49 ATT
50 Red ^12'
52 Orange Aj^, 53 High Order Address Buses
54 Keyway
55 Yellow Aw, 56 ATA
57 Green A,,-, 58 AT5
59
60 Ground

47

Appendix 2(iii)

Connections to Exchange etc.

DIN Connectors (Plugs, 5pin, 180°)

Pin 1 Receive TTL level serial data.
2 Earth
3 -12V (colour code clear)
4 Transmit TTL level serial data.
5 +5V (colour code yellow)

Chire Connector

Pin 1 Earth (Green/Yellow)
2 +12V
3 +12V (Brown)

Keyway
4 +5V (Brown)
5 -12V (Blue)
6 Current loop to Teletype printer. (Blue)
7 Earth (Green/Yellow)

Miniature D-type Connector

Pin 2 Transmit
3 Receive

7 Ground

48

t

Beloiv (Art b'sttol the, er'iticmL tih^inoj fibres vstol to derive the

tin'Hj cI i a cj rams opposite . TH « vci Lues isn dtr Lmtcl etr t tnktn
as worst - where no v^atue Vs quoted m references
Lt K«s keen necessary to impose ** safe L'm'it9 g.g. 0*s p»*-

the minima*! p*-op a ^o)b 10*1 cltLtoy throuyh a cj at e

)

CAD (if),tt. Aololress , R/w, VMfl)

t-H (t® e*ef of- Aelc/rus, R/^t VMA) 5 0

Minini/n T^fic «(.
110 300 «5

tDSR (°«tw ^"P t» I)

Latches i

100

10(Dotor imput hotel beyond (f,^)

fDDV(D"fM ^Pl't JeL"^ from

tjy (D& t of output hoieJ beyond fitt) 11

t p^H ("ormaL TTL (.oio to bi^l, prop oltLay)

t* ppL (format TTL hiyh to to*) prop. cleLog)

tpQ (Prop ayafion outlay, D iipat to ^output)

tg q (Propagator dtLoy, thafcte (To Q output)

tpHi (Tnititt TTL Liyh to tea prop

75"

I 6i

II

7

n S

i»S

n S

U£ n S

* s

11

/J~ n s

30 n S

30 a S

JJL » 3

Memory -

(Metres 1 fiint from ooljren)

t q r 1 (Output hoLJ tiMft from c*; o

(■ *o(drtii to write setup tTi'-»«) j 50

t *r.tfc frd f tf qnel addresses) JfQ

t pw (Dcta setup to ft & T) J JO

tpH C Do,^a hoid ti**e fro— R/^?) 10 Q

£00 r» S

n 5

n S

n S

« 5

r» S

SojrceS- T>»e ~7 ft- Data Book und S upptt men1 y Tit<ars Xn*t^UM€p\ts Ltd t

Signtt'Ct 0<r,fl' bipoiar RAMS, Siynetics Corporation.
M 6 & 0 0 dm t of ^ om reference .

_A ppertol i x 3 ~|~ i" m i »-> oy Diagram

APPENDIX 4

Memory.test.c Listing

^include "declaration"
Cdefine microprocessor_line "/dev/ttym"

char c;
int go, errors_detected;
errors_detected = 0;
go = 1;

^include "stty.options"

source = copen(argv[l], 'r');
prepare_load(wa);
while(!ceof(source))cputc(cgetc(source), wa);
pc = 0;
sp = 0120102;

/*
i.e. A042 in hexadecimal - the usual start address for the stack in the Mikbug.

*/
restore_registers(wa);
read_registers(ra);
printf("Registers contain: A = %x, B = %x, PC = %x, X = %x.\n", a, b, pc, x);
wait(ra);
cputc('G', wa);
while(go)
{

read_registers(ra);
if(x == 0134000)
{

printf("\n%d errors detected.\n", errors_detected);
go = 0;
continue; };

printf("Error detected: Address %x, %x instead of %x.\n", x, b, a);
errors_detected =+ 1;
if(errors_detected % 3 == 0)
{ ~

printf("\hNumber of errors detected = %d.\nType t to terminate, c to continue
or n to continue with the next byte.", errors_detected);

{
switch(getchar())
{

case 'n': a = 0;
x =+ 1;
set(x, 0);
printf("\nNext byte\n");
break;

case 't': go = 0;
printf("\nTerminating\n");
break;

default:
case 'c': a = b; >;

getchar(); >;
else a = b;

pc =+ 1;
restore_registers(wa);
wait(ra)
cputc('G', wa); >;

for(;; c = cgetc(ra))putchar(c); >;

^include "procedures"

References

1. P.D.P. 11 Peripherals Handbook, Digital Equipment Corporation.

2. C, Reference Manual, Ritchie D. M., Bell Telephone Laboratories
Internal Publication.

3. The UNIX Time-Sharing System, Ritchie D. M. and Thompson K.,
C.A.C.M. Vol 17/7 p365.

4. M6800 Systems Reference & Data Sheets, Motorola Semiconductor
Products Inc. or M6800 Microcomputer System Design Data for more up
to date information.

5. User's and Assembly guide for the Motorola Microcomputer Distributor
Kit MEK 6800 Dl, Motorola Semiconductor Products Inc.

6. Engineering Note 100 - MCM6830L7 Mikbug/Minibug ROM, Motorola
Semiconductor Products Inc.

7. Technical Guide No. 2, Post Office Datel Services - General
requirements for Data Terminal Equipment, Post Office
Telecommunications Services.

8. The Unix Motorola M6800 Assembler Reference Manual, Jon Rowson,
Computer Systems Laboratory, Queen Mary College. (Available in NROFF
text processor format under /usr/david/m6800/ds.refmanual.n)

9. MAS - Motorola M6800 Assembler. (Available in NROFF format under
/usr/david/m6800/ds.mas.1)

10. Unix Motorola M6800 Communication Routines, David Salmon, University
of St. Andrews. (Available in NROFF format.)

51

Acknowledgements

Throught this project the University of St. Andrews Department
of Physics have been most co-operative lending equipment, workshop space

and giving advice. Particular mention should be made of Mr. F. C.

Evans and Mr. M. Robertson.

Great appreciation is recorded of the help and encouragement

given by the members of the Department of Computational Science and the

Computer Laboratory. Mr. M. Weatherill, the Author's supervisor,

deserves recognition by name.

The project was financed with the help of a grant from the
Science Research Council.

This was typed using a Fortronic F100 word processor, the use

of which is acknowledged.

52

