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ABSTRACT

As is well known, the microscopic and macroscopic properties of a

system of molecules may he linked by mean's of the CttnoniCctl partition
function of statistical mechanics. In principle, a knowledge of the
intermolecular forces is sufficient for us to predict the thermodynamic

properties but, in practice, the partition function can be evaluated

exactly only for some particularly simple systems. For more realistic

systems we must resort to approximation methods. Even for monatomic

molecules, interacting through a spherically symmetric pair potential,
the application of approximation methods can be daunting and consequently

little work has been done which takes account of the general polyatomic
nature of molecules. In this thesis we attempt to rectify this omission
in three different ways. In particular, we shall be concerned with
the problem of melting in systems of polyatomic molecules.

The first method is an extension of a theory of melting due to

Lennard-Jones and Devonshire and is an attempt at a microscopic treatment

of a system where the barriers to molecular re-orientation are of a

particularly simple nature. Similar models have been considered by Pople
and Karasz and also by Amzel and Becka and our model reduces to these
authors' models under appropriate conditions. Secondly we have extended
a theory of melting due to Tsuzuki to cover systems of diatomic molecules.

This method is semiphenomenological in that a mean field, in which each
molecule is situated, is assumed. The results of these two methods are

in reasonable agreement with experiment but only after freely adjusting
a single parameter in each case. In an attempt to avoid this arbitrariness,
the final method is a completely microscopic theory of systems of diatomic
and monatomic molecules interacting , through a realistic potential. This
method takes advantage of the fact that the Helmholtz free energy can be
evaluated exactly for some particularly simple systems and uses these
calculations to estimate the free energy of the original system by means

of a variational' principle. No freely adjustable parameters arise in
this theory and, when this is taken into account, the results for monatomic
molecules are extremely good but for diatomic molecules the agreement
with experiment is poor, this being due to inaccurate determination of the
intermolecular parameters. Finally, we have derived a complementary
variational principle and made some suggestions for future work in this
field.
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CHAPTER 1

INTRODUCTION.

1.1 Preliminaries.

In this thesis we shall "be using equilibrium statistical mechanics

to predict the thermodynamic properties of certain compounds and in

particular we shall be investigating the effect (if any ) of the angle-

dependent forces on the melting transition. Thus our problem involves the

evaluation of one of the many partition functions and in the case of a class¬

ical system described by the canonical ensemble the problem is narrowed
to the evaluation of the configuration integral. Unfortunately the
evaluation of the canonical partition function is extremely complex in
all but the most simple cases. ^j/\fe drop the word 'canonical® from now
on since this is the only ensemble with which we will deal.J By 'simple'
we mean that the intermolecular potential is almost trivial (e.g. hard

cores) and hence not realistic but this does not imply that the mathem¬
atical evaluation of the partition function is easy. Indeed, Onsager's

original solution of the two dimensional Ising model involves some highly
abstruse and esoteric mathematics. If we wish to deal with more realistic

potentials or even if we wish to deal with the Ising model in three
dimensions we must, given the present state of mathematics, resort to

approximation methods. Thus, this thesis involves several different
methods of approximating the partition function (configuration integral).

While a given approximation! may be valid far from a phase transition,

great care is needed im the neighbourhood of the transition since the

large changes that occur in the physical properties of the system may

mean that the approximation becomes invalid. Consequently our theoretical

knowledge of phase transitions is limited —- in fact, the definition of
the term 'phase transition' is not even unique. In this thesis we take

the term 'phase transition® to mean that one or more derivatives of the

Gibbs free energy is only piecewise continuous. If the derivative in

question is the first then the transition is called first order. Higher
order transitions are defined similarly but they will not concern us.

First order transitions fall into two categories; those which have
a critical temperature, of which an example is condensation, and those
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which do not, an example of which is melting. We will only he concerned
with the problem of melting. We make no attempt to review the many

theories of melting (see ref. l) except to say that nearly all of them
fail to take into account, the general polyatomic nature of molecules.
^ ■ /Which
One of the few exceptions is the Pople-Karasz model about/we snail have
more to say later. In this thesis we attempt to rectify this defect

„ but before discussing these objectives in more detail we define and
examine a few general methods of statistical mechanics which we shall be

using in later chapters. ,

1.2 General Methods.

We review briefly what is meant by the term 'thermodynamic limit',
a

the methods for determining a phase transition, and the method of distri¬
bution functions.

The partition function of a system of N molecules in a volume V and
at absolute temperature T is denoted by Z(N,V,T) and the link with thermo¬

dynamics is provided by the equation

F — - kT it
where F is xhe Helmholtz free energy. We shall always assume that in
the limit , hr = v/W finite, the free energy per molecule exists.
That is,

4 (.^> V F c w 1 v ,T ^
v ^

The proof oil'this s l.atomont, known as the thermodynamic limit, was originally

given by van Hove" using certain assumptions about the form of the inter-
molecular potential, Tnese conditions have been considerably relaxed in.

3
recent years and Ruelle has given some very general proofs for the
existence of the thermodynamic limit. Within the last few years attempts
have been made to circumvent the thermodynamic limit completely by dealing
with an infinite system from the beginning but as yet this method, although

promising much, is in its infancy and is of little practical use. A good
* «

introduction to the C algebra approach, as this latter method is called,
is afforded by Hugenholtz^ in his article on the Quantum Mechanics of

Infinitely Large Systems. It is only in the thermodynamic limit that an

exact evaluation of the partition function can give rise to phase transitions,



the detection of which we now discuss,

In principle we can detect phase transitions by just looking for
discontinuities in the derivatives of the Gi'bbs free energy but in practice

the introduction of an approximation method to evaluate the partition

function nearly always smooths out these irregularities and produces a

continuous curve, The diagram below illustrates what happens in a

typical case.

? t

-> V

The solid line represents an isotherm calculated using the exact evaluation
of the partition function and the dotted line is the result of using an

approximation. Now m practice we do not know where the solid horizontal

line, IB, occurs and so the question arises — how do we detect a phase
transition when the partition function has to be evaluated using an

approximation? To obtain two possible anwers to this question we use

the general conditions for two phases to be in equilibrium,

viz.

Tl -

\\ =. 1' 1
du - Ccj>. /*C "VA4-)

P and yU. are the pressure and chemical po tential respectively . Using
these conditions it is not difficult to show ( see ref. 5) that, if the

phases at A and B are to be in equilibrium then the line AB must be drawn
such that the areas X and Y are equal. This method is known as the

Maxwell, equal area rule, [*n.b. There is no question of an exact evaluation
of the partition function resulting in this loop behaviour for it may be



shown (ref. 2 and appendix 9 of ref. 6) that for an exact calculation

in the proof of the Maxwell, rule in that the proof involves applying

equilibrium thermodynamics to the non-equilibrium states defined by

popular method even although it is also quite difficult to construct the
line AB in practice.

The other method of detecting a phase transition is to evaluate the

partition function by two different approximation methods. Hopefully
we will then find that one of these methods leads to the lowest Gibbs

free energy at high temperatures and that at low temperatures the other
method results in the lowest Gibbs energy. At some intermediate temp¬

erature, called the transition temperature, both methods will produce
the same Gibbs energy. The transition temperature defined here is not
of course the experimental transition temperature but if we choose the

approximation methods carefully we may obtain a good estimate of the

experimental properties. Except for the Pople-Karasz model we shall
use the second method throughout.

Finally in this section we discuss briefly the method of distribution
functions in the canonical ensemble. A more complete discussion is

given by Hill . The importance of distribution functions and in part¬

icular j the second generic distribution function, lies in the
fact the equation of state and average energy can be expressed in terms
of them through the equations

There is, however, a defect

This defect can be repaired for a van der Waals

gas. In spite of this shortcoming, the Maxwell rule is an extremely

I
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In these equations all the symbols have their usual interpretation.

cA C-i i £*-) Af"v ^!^'v is "the probability that one molecule of the
system will be found in dr, at r., and another in dr„ at r., g(r) is

—-1 —1 —2 —2 BV '
the familiar radial distribution function. It should be emphasised

that these equations apply only to a system of molecules interacting

through an angle-independent two "body potential. Unfortunately it is
not possible to calculate [or g(r)] exactly and so we must again
resort to approximation either by making a judicious guess or else

attempting to solve one of the many integral equations for g(r). The

integral equations arise as follows. The starting point, is the

Ornstein-Zernike definition of the direct correlation function c(r).

\\{r) ~ ClO "V £. i C ( \ C.- v:'\) WCA) ckH1
8 9

where h(r) = g(r) - 1, It can be shown 9 that the cluster expansion
for c(r) is

c 0*°) - O O t

4- A:
A

2s r~r
t 6

V ^ E3 - M 4-
- <;

where the diagrams have the following meaning

r AA
At

= A. - -fA

[ t-v 2. t Vi C^S.
t i. v

C5 indicates a subscript in f"
ij

and o indicates a subscript and an integr¬

ation:. If the first two terms of this expansion are retained but the

third and subsequent terms are truncated then thp hypernetted. chain

equation (HNC) results from one particular truncation and the Percus—
Yevick (PY) equation results from a slightly different truncation. For
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example, the truncated third terms are

h kj C.

?v

— X

^ a n

-v- ^

4-

\- 3>

The effect of dropping some diagrams from the complete expansion is that
one can now sum the remaining diagrams to obtain the approximations

\\ m e ~ ~ ^0^ /
U.O) / \zT \

cO) c\l^ (, \ - e"
\- ^

If the expressions 1.4 are substituted in equation 1.2 the HNC. and PY

integral equations result, It may then be possible, as we shall see in
section 8.7, to solve these integral equations for some particular inter-
molecular potentials. By comparing the expressions 1.3 it can be seen

that more diagrams are dropped in the PY case. Nevertheless, the PY

approximation is found to be superior when repulsive forces are dominant
since the diagrams omitted tend to cancel each other out in this case.

10
Both these equations have been generalised by Wertheim

We shall also be using extensively The free volume or cell theory
but since in chapter 3 we generalise this theory to include angle-

dependent potentials we shall not discuss it here.

1„3 Objectives.

We pointed out in section 1.1 that although there are many theories
of melting very few of them take into account the general polyatomic
nature of molecules. In this thesis we discuss three models of melting
which take into account atomicity. The first of these is a generalisation

11 12
of a model, due to Pople and Karasz ' who, in their turn, generalised

13—15the well, known Lennard-Jones and Devonshire (LJD) theory of melting.
The model is rather crude but it does succeed in qualitatively accounting
for some of the experimental properties of molecules for which the LJD

theory gives useless results. Unfortunately, before the computations
for this model could be completed Amzel and Becka^ published an account

of a similar extension and so we have not proceeded with the computation.

Instead, we have shown how their extension may be derived from our more



general extension and, in addition, displayed some theoretical results
which would have aided these authors in their calculation.

17The second model is an extension of the Tsuzuki model of melting
and is a more realistic approach in that a realistic mean angular potential,
in which each molecule is situated, is chosen. The mean field is selected
more or less by intelligent guess-work, and the theory should be applicable
to diatomic molecules. Although we have actualised atomicity with this

approach the results are not altogether satisfactory and it is concluded
that this is a consequence of the crudeness of the original model of

melting.
The third model uses a variational principle due to Mansoori and

18
Canfield and is a completely microscopic approach to the problem in
that the starting point is the partition function of a system of N diatomic
molecules interacting through an angle-dependent two-body potential. We

how
also show/the theory reduces to one for monatomic molecules, this being

19the subject of another paper by Mansoori and Canfield in which they
mate an error which invalidates all their results. (See appendix 8)

Prior to the discussion of this model we derive a theory of liquids
20 21

similar to Barker's ' tunnel model, the purpose of this being to compare

exact and variational methods. In the i'inal chapter we compare and

contrast the results obtained from the three models and make some suggestions
for future work.

It should be noted that the variational principles used fall into
what we shall call the Rayleigh-Schrodinger category rather than the
Hamilton category. An example of tjie former type is the familiar bound

(ji>, vvdp)/^ where cj> is any trial function, which is used
for a variational principle in quantum, mechanics by varying some parameter(s)
in ^while. an example of the second type is Hamilton's principle of least
action whereby one postulates that the exact equations of motion follow

cfrom the variational principle a>j L_c*A — C) <■ One final point to be noted
■iv

is that all the calculations for the solid state have been carried out

on the assumption that the molecules .form, a face centred cubic lattice.

There is no difficulty at all in obtaining theoretical expressions lor

other lattices but the computational work is vastly increased, hence the
reason for sticking solely to one type ol lattice.
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CHAPTER 2

EXTENSION OF THE POPLE-KABASZ MODEL.

2.1 Introduction,

In this chapter we describe a general method for extending the
Pople-Karasz (PK) theory of phase transitions. In section 2 we review

as much of PK theory as is necessary for an understanding of the remaining
sections. We describe the general extension in section 3 and in section

4 show how it reduces to the Amzel-Becka extension under certain conditions.

In sections 5 and 6 we derive analytically' some of the properties of the
Amzel-Becka extension and in the last section we quote some of Amzel and

Becka's numerical results.

2.2 Review of the PK Theory.

J.E. Lennard-Jones and A.F. Devonshire (LJD) produced in the late
13-15nineteen thirties a series of papers describing the phenomenon of

fusion by means of a model consisting of two equivalent interpenetrating
lattices. They postulate that at low temperatures most of the molecules

occupy the sites of one of these lattices (the oC-lattice) and that as the

temperature is raised some of the molecules move to occupy sites of the
other lattice (the e>-lattice)-. An interaction energy between different
lattice sites is introduced and the total energy of interaction between
the lattices when NQ molecules occupyoL-sites and the remaining N(l-Q)
molecules occupy p>-sites is found. (0$_Q^i). By an approximate
evaluation of the partition function and hence of the thermodynamic functions,
LJD are able to predict a phase transition, which they assume to be the

melting transition.
11,12J.A. Pople and F.E. Karasz ' have extended this idea by allowing

a molecule on a lattice site to have one of two possible orientations.

Thus, m general, some of the molecules occupy sites of the <X-lattice and
the first orientation ( ), some the eC-lattice and the second orientation

( ) • ^and ^are defined similarly. The interactions between these
groups of molecules are introduced in the following manner. Around each

p^-site there//az'^iearest neighbour p>-sites. If all the molecules occupy

ck-sites then the energy required to move one molecule to a neighbouring
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p>-site is z¥. This is the LJT) interaction. Thus if we have a config¬
uration with NQ molecules on p^-sites and W(l-Q). on p-sites the total
energy is given by N ¥ where JM^p is the number of neighbouring pairs
of molecules on different lattices. Consequently we have

w - znwq. (. v- a)
In addition, if there are z' nearest neighbouroA-sites to each <-site

(and. similarly for S-sites) and all the molecules occupy ^-sites then
the energy required to move one of these molecules to the second orientation

(o^) is z«¥' . This is the PK interaction. A coupling between the two
types of interaction is introduced by assuming W to be independent of
orientation. This means that if one molecule is on an d2-site while
the rest are on 2\-sites, the p,-sites surrounding the misorientated
molecule are favoured oince they do not experience the ¥' term. ^(<><*2.
the number of relative misorientations on neighbouring ol-sites and Np ^
is defined similarly. Thus the total interaction energy is given by

N^p'W f " T:tie Par'ti"t:i-on function is given by

i. — ^ W + N]p p.iVv;') / Xc i
where the summation is over all orientations and arrangements of molecules
on and jS-sites. f is the partition function of one molecule when all
the molecules occupy o^-sites. In addition to the order parameter Q of

LJJD, the parameter S is introduced as follows: there are NQS molecules
in ((, , NQ(l-S) in <L-l, JM(l-Q)S in and N( 1—Q) (1-S) in . Q = S = 1

corresponds to positional and orientational order while Q = S =

corresponds to complete disorder. Intermediate cases may exist where
there is a certain amount of order oi one or both types.

The summation part of Z can be written as a summation,, over partition
functions for given Q and S

of = 2 PI C Q.. ^ ^
Q, s.

where
t _ ^

Jt (,Q, ^ +- v ' ) I ^"1
■r-

2. is the sum over configurations in which there are 1MQS molecules

mAi,..., N(l-Q)( 1-S) in . The expression 2.2 is evaluated using the
Bragg-¥illiams approximation which replaces (Q,S) by its average value.
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Then

JL -
hJ11

z L tJ U,I 1 ) 9 lK)OoQl\ \
H SJ(k ( V- s)V, J (IN U-<OSl \ \jo(v-cO0-&X1 !j *t N<xl I KN t»-q)3U

^-^?rN>W(a. ^vj't\}c, (i- s) 0 — XQ, -V- 'XGi2")] / Wi ^ X
It is more convenient to maximise W *X. where

NTlJUv& tr -XaX^Qk - *X (( V - Gil JU. O-Q) — f - ^v-s^J^O-O
t\Ai aU-Q,) - 1'itte-T wv v • fe.T"

(Stirling's theorem has "been usea to evaluate terms like In Nl) The

conditions tor 2.4 to have a stationary value are

JU QV* = az-r
and

JU -S_ - xw ^ v + ) c.xs-0
I— \tT V

Z* <o

where U = z'W'/zW. Q = S = -g- is always a solution of 2.5 and 2.6 hut it

may not be tne orilly one. Pople and Karasz solve 2.5 and 2.6 numerically

for various values of zW/kT with IT as an additional parameter characterising
the substance. For large values of zW/kT (i.e. low temperatures)?
Q = S = minimizes and the maximizing values are different from
these. For small values of zW/kT, Q = S = -g- are the only solutions and

they maximize N)~vJLv3t.< The behaviour of the maximizing values of Q and
S is shewn in Fig.2.1.
1.0

.9

Q

• 7

• 5
0 2 4 6 8 10 12 14 16 18 20

Fig. 2.1. Values of Q and S which maximise 2.4 plotted against
zW/kT for two values of *21.

sW/kT
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By using the maximizing values of Q and S the thermodynamic functions can

he derived from tne partition function in ihe normal way. In order to

derive the pressure, the volume dependence of W and W' must he Known. It

is assumed that

VJ =- \N o [Vo /v) ^
W1 - Wo CVo /V ) ^

where W and W' are constants. V = tf is determined hy adjusting
o o o o

the ratio W /?- until the correal melting temperature for argon is obtained.

and cr are the parameters in the Lennard-Jones (12:6) potential] .
Phase transitions are predicted, hy drawing pressure-volume curves and

using the Maxwell equal area construction on regions of instability.
For further details references 11 and 12 should he consulted. Two types

of transition are predicted: 1) loss of orientational order; solid-solid

transition, and 2) loss of positional order; melting transition. The
thermodynamic properties at these transitions can he predicted hy using
the derived thermodynamic functions. The agreement with experiment is

good qualitatively hut is often awry quantitatively and for this reason

we will consider how the theory may he extended to improve the quantitative

results.

2.3 A General Extension.

A number of possible improvements to the PK theory immediately spring
to mind. For example, ¥ could he made dependent on orientation; the

Bragg-Williams approximation could be improved upon hy using, say, the

quasi-chemical approximation. However, the most obvious generalisation
is to increase the number of possible orientations from two to some indef¬
inite number D and it is this latter extension that is the subject of this

chapter. In this section we discuss the most general extension of this

type and in the next section show how it reduces to the Amzel-Becka

extension.

We have two interpenetrating lattices, tA* and {?. , as in LJD theory
and each molecule can he in one of D orientations. Thus we have , tAzi

defined by an obvious extension of the c(, , Az 5

p, ( of PK theory. The order parameter is introduced as before and,
in addition, we have D order parameters ,S^,...,such that in any
configuration of the N molecules we have NQS^ in ANQS^ in ,...,NQS
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inoCp ; N(l-Q)S in P( ,,N(l-Q)S in ^. Obviously the satisfy the
condition P>

Z St ^ \
C-i

We now introduce the interactions W^ (i,j = 1,...,D ; i j= j) defined such
that if the all the molecules are in A\_ then the energy required to move

one molecule to ^ is z'W!^. As in PK theory we take W to be independent
of orientation. If N, , . is the number of misorientations between

neighbouring ^ and o(-- sites then the partition function may be written
as Z = fV where

jl= + A <"we;pPw'hl/wr] -l'g
(The factor -g is introduced to avoid double counting. J The summation
is over all configurations of N molecules on the two lattices and in D

orientations. Using the Bragg-Williams approximation we find

ji~\ sjj n
J c.TT f \ frfuu-c^s.y.

C-\ c-' u-
r

(,i-GO v-Nib' {^\~xak X- \vl i —'
<-Xi

so that, using Stirling's theorem., we have to maximize

Kf'JUJt - -XC4.S~Q. - X (.l-sh1*— 0"GX> — .2. Si J—Si
- ^ au- a) - 1 (i-ia 1- ID
with the subsidiary condition 2.7« The conditions for a stationary point
of 2.10 are ^

, a _ elf i 21 sus. -uj-.l Cxq-O a-li-

xvx L 1 0 J
ft

JUSj = U-0-^ 0-^a+^VZ.^i ■I- \z

where 'IT. . = z'W! ,/zW and of course Zly.-Ml • t/is an undetermined
ij J

Lagrangian multiplier. These equations reduce to the PK equations 2.5

and 2.6 when D = 2.

Q = Jr is always a solution of 2.11 but as in PK theory we hope that
other values of Q will maximize 2.10 at low temperatures. If we insist

that the completely disordered orientational state, viz. S. = l/D for all I,
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must also be a possible solution then we find that thelfb^. must satisfy
the following conditions .

.... =X»y = ... X IS
fcjtz ^ ' V

In formulating this extension we have not singled out any particular

orientation and thus it seems reasonable to insist complete disorder be
a solution of eqn. 2.12. In addition, the PK theory does admit the

completely disordered solution and a large portion of their papers is

devoted to an interpretation of thermodynamic data in terms of this solution.

When D is given specific values eqn. 2.13 simplifies to give fairly

straightforward conditions on their... For example, if D = 3 we find

V12=W13 -*3' and if D * 4 V12 " V34! V13 -V24' ^14 = V23 but
the solution of eqns. 2.11 and 2.12 even for D = 4 is complicated by the
fact that although the number of different IT . is not as large as would
first appear it is still greater than one. Thus, for practical reasons,
we discuss in the next section this model but with all theYT*. . equal to^-f .

ij

Although we will not carry out any computations with unequal IT. . the
x J

general extension just discussed is useful for two reasons. Firstly, it

provides a basis for treating molecules which have different barriers
to re-orientation in different directions. For example, the molecule

re-orientates more easily about the X-axis (see diagram) than about the
Y-axis.

\ * -•
/

:€ -> X

Secondly,we have derived a number of other extensions but this is the only
one that is valid in the sense that it reduces to the PK theory for D = 2

and also admits the complete disorder solution at a finite temperature.

2.4 Reduction to the Amzel-Becka Extension.
> ■

In this section we will show that the previous model reduces to an
1 6

extension due to Amzel and Becka (AB) when all the are put equal to
If and in the next two sections we shall derive some of the properties
of the AB extension analytically.

Putting U\^ ' = "V and eliminating^, we find that eqns. 2.11 and 2.12
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become

\ir SiSd *"•■ u ~\

„USL ^ 3^ IX 0-^OL + ^)C5X-S^ 2-'S" n
H Wr * (j-= 2,--^)

These equations have the solution S^ = l/'D for all i at a finite tempera¬
ture. In fact, S^ = l/D is a solution at all temperatures but as in
the PK theory we hope that at low temperatures it is not the solution

which maximizes . If we regard 2.15 as an equation in S. with
J

everything else fixed then there two possible values for S.. This may
J

be seen by writing 2.15 as

- ASj — E 1
^ere ^ V Z.Clx)
an!and

^ z ASr-i-Si
The roots of 2.16 are then given by the intersection of In S. with AS ,-B

J J
as shown in Fig.2.2.

s.
J

Fig. 2.2. The roots of 2.16.

It should be noted that the gradient of the line y = AS,-B is always
J

positive since the factors making up A are always positive and that S .=S
J -L

y=As ,-B
J
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is one of the roots. If the other root of 2.16 is S1 then at any given

temperature we will have n (say) of the equal to and the remaining

(D-n) of the S. equal to S*. n, of course, is an integer in the range
i _o_

^1,dJ. The condition 2_ \ "becomes
-v- ^ t>— 3' n | X n

The summation in 2.14 can now be evaluated and we get

JU — = gr r I - •»* g. f >-Q- 1-^0 CN-n-i+^iilUQ.-''i-a xfer L v tfe-K) J x

JUT lliizill - ^ -ir ( \ - 1CJ + d.Cj^) 1 \°l
L J ^ (^>- V\)

Equations 2.18 and 2.19 give the values of S and Q which give stationary

points of Id 'JLtJZ... Unfortunately, these equations are transcendental
and must be solved numerically.

It should be noticed that if S -g- then n = 1. The solutions of
2.18 and 2.19 would be considerably simplified if n were equal to unity

always. If we do assume that n = 1 always then the model reduces to that
discussed extensively by Amzel and Becka"^. Certainly it can be argued
on physical grounds that n = 1 at all temperatures should be the case.

If, at low temperatures, all the molecules are ins(j, i.e. S =1, n=l,S'=0,
then as the temperature is raised all the other orientations are equally

accessible by virtue of the fact that there is only one ¥' and consequently

the remaining (D-l) orientations should be equally populated at all temp¬
eratures, i.e. they should have the same numerical value for S_^.
While this is a reasonably satisfactory argument it would be preferable
if the condition n=l at all temperatures dropped out by rigorous mathem¬
atical argument. i.e. it should be a direct consequence of the maximiz¬
ation of However, all attempts to prove n=l have failed. A
numerical search has indicated that with n=l larger values of hJ 'JU\SL
exist than with n=2 or 3 which seems to imply that n=l does indeed maximize

Ki 1 .

On the assumption n=l at all temperatures 2.18 and 2.19 become

j„„ T , _ v(>^0 Ibs^-z)
i-Q avT L c.w-5 -

ClQ-0 IbO
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JL~^ - - .u (\-w vxa0() o.-x IV-^i UV V- V \ /

The numerical solution of these equations and the resulting thermoydynamic

properties have "been considered by Amzei and Becka. In the next two

sections we derive analytically two results which might have aided Amzel
and Becka in the solution of 2.20 and 2.21.

Fig. 2.3• Graphical solution of 2.20.

and correspond to different values of the coefficient of (2Q-l),
viz. \_ \~ ^ ^ '—^""3 '^^'e Srahient o;f straight line is
inversely proportional to the temperature. Hence, in general, there are

y=C1(2Q-l)

2.5 The Maximum Melting Temperature.

We now derive an expression for the maximum possihle/temperLture
which is of value in calculating curves similar to Fig. 2.1. Graphically
we depict the solution of 2.20 "by the intersection of a straight line
with ^Aa as in Fig 2.3\-Gt D

y

y_ln _£L.^-in V-Q
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three solutions but above a certain temperature these three solutions

merge into one. viz. Q=ig-. When Q=gr is the only solution we must have

complete positional disorder, i.e. melting must have occurred, and so

we wish to calculate the temperature at which Q=jr becomes the only solution.
For there to be only one solution the gradient of the line must be less

than or equal to the gradient of the curve at Q=-g-. Thus

r , 0Cbs> 14-^-01 < L 0-1-2
I -1 ^

If we assume that the solid-solid transition (to be identified with loss
of orientational order) has already taken place then S =l/D and so

v o-Jll < l, x nV«" L b J
Hence the maximum melting temperature is

r .

__ v lb —iV~l U
w^y- U \<- L- Ci -J

Of course, melting may have taken place at a lower temperature but if it
has not then it must take place at T^ax« Since Q=-g- above this temper¬
ature we can duplicate the equivalent part of Fig. 2.1 for Q from zW/kT=0
to zW/kTm . Between these two points the graph will be just the straightmax

line Q=-g-.
If S7 l/D then T™ax is larger and the straight line Q=j=r continues

further to the right. Figs. 2.6 and 2.7 indicate that putting S^=l/D
in 2.22 is a correct assumption for small values of IT. For larger values
of IT melting takes place before loss of orientational order and Chandra-

sekhar, £

crystals,

22
sekhar, Shashidhar and Tara have used this fact to describe liquid

2.6 The Maximum Solid-Solid Transition Temperature.

The calculation of the maximum solid-solid transition temperature
is slightly more complicated. The graphical solution of 2.21 is shown
in Fig. 2.4. Since l/D is always a solution of 2.21, the straight line
must always pass through S =l/D as shown. In general, there are three
solutions as before, however, as the temperature increases the straight
line swings round until it eventually takes up the position where it is

tangential to the curve at the point S . Above this temperature

only one solution will exist and the transition must have taken place.

Solving 2.21 is equivalent to finding the roots of y(x) where
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^ X • Q v — )C) VA,^ X' 2. S~
°vv ~ - ^ v (, i- ici4 2_at ) ^ x-zgx fc>— I

x0 — >X^ ct> o — cx \ [ ^Sj ,

It is apparent from Fig. 2.4 that the function y(x) must always have one

root, for one special case two, and in other cases three. Graphically
one of the situations depicted in Fig. 2.5 occurs

y / X 1
\ i
\ i

\i
l >

//// /

//
/ /
x /'/l/D -g-i

1
i
1

\ x° 1

Fig. 2.5. The possible forms of y(x).
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Fig. 2.7. Maximising values of Q and s^ for D=6 and v=0.70.
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For a given D we need to find the value of a.^ which gives two roots and
thus will correspond to the change from three roots to one root. From

Fig. 2.5 it is obvious that the value of a^ which will give two roots
must satisfy the following equations.

V C£x)K-jc° ~ ° and ^
The values of x at the turning points are given by )C — 4^ —

and it is the larger value that we require. Substituting this value of
x into the equation y(x°) = 0 and replacing aQ by In (D-l) - a^/h we
obtain the following equation for a^

M \ +- ^ =0 1 77^ "s \ / ca ^ -3
For eacn JJ? this equation gives the change over from one root to three
roots. a^ is, by definition, negative and from 2.27 a^^-4 since we are
only interested in real solutions. If we define i(aj) i° "be ike function
on the left hand side of equation 2.27 then we have to find the roots of

f(a^) between -fO and -4 for various values of D. In fact, the largest
value of jj we are ever interested in is 40 since this corresponds to
a very low temperature and so it is sufficient to seek roots between -40
and —4. For the values of D for which f(a ) has been evaluated it turns

out that there is only one root between -40 and ~4 and so there is no

ambiguity. ^Since lim f(a^) = - <o there is probably only one root
between —cto and -4-J For a given D let this root of f(a.-, ) be -h^. Then

^ It v
We assume now that the change occurs at a low enough temperature for Q
to be approximately unity. i.e. positional order is still almost complete.
In this case we have

I i VJ bu
t>-\

Thus the maximum solid—solid transition temperature is given by

^Vaj b.2L
****■" ~ fe. b -o, Ctv-\)

Table 2.1 gives numerical estimates of b^ for various values of D. The
value for D=2 is exact.
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D bD
2 4.00

6 4.60
8 4.86

14 5-40

20 5-77

Table 2.1 Values of b^.

By a similar argument to that given for the graph of Q against zW/kT,
the graph of against zW/kT is the straight line S^=l/D from the origin
to the value of zW/kT given by 2.28. It should be noted that if Q=-g"5
then the value of zW/kT to which the straight line S^=l/D may be drawn
is double that with Q=l. Thus we can always draw the line along to the

value given by 2.28. From Figs. 2.6 and 2.7 it can. be seen that putting

Q=1 is a particularly good approximation for small values of'z/h

2.7 Results,

In this section we display some of the results obtained by Amzel

and Becka since in later chapters we will be comparing other theories

with this one. These authors also consider the determination of lJ~ and

D for particular substances.
■X"

Fig 2.8 displays values of T , the reduced melting temperature, and
T , the reduced solid-solid transition temperature, as a function of V

r~

for D=2 and 6. T The reduced temperature is defined by T =kT/2_ where 2.
is the energy parameter in the Lennard-Jones (12:6) potentialfj In
Figs. 2.9-2.11 we have eliminated "^by plotting the thermodynamic quantities

against each other as shown. As we shall see in chapter 10 this makes

comparison with other models in this thesis easier. The first point to

notice about these graphs is that the results for D=2 and D=6 are not

very different and, in fact, there is even less difference between, say,

D=6 and D=20. Thus it is not possible to obtain quantitative agreement

with experiment for CCl^ (say). Secondly, one would hope that errors
for molecules with the same value of D would be the same but this is not

so. For example, CCl^ and CF^ both have D=6 (see ref. 16) but while
the agreement with the experimental values for CF^ is quite good that
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for CCl^ is poor.

2.8 Summary.

We have extended the PK theory to cover a general number of orient¬
ations and shown how this extension reduces to that of Amzel and Becka.

Expressions for the maximum melting and solid-solid transition temperatures

have been derived. From the results it is apparent that the theory gives
a reasonable qualitative, description of phase transitions in systems of

polyatomic molecules but the quantitative agreement with experiment is

poor.
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GHAPTEK 3

GENERAL FREE-VOLUME THEORY FOR SYSTEMS WITH ANGLE-DEPENDENT POTENTIALS.

3.1 Introduction.
23In this chapter we extend Kirkwood's general free-volume theory

to systems which have an angle-dependent pair potential. This serves

two purposes. Firstly, by equating the angular part of the potential
to zero the chapter is a review of the free-volume theory used in the

discussion of the Tsuzuki model. Secondly, and more importantly, angle-

dependent free-volume theory provides a basis for choosing the solid
when

state reference system/we apply the variational principle to systems with
angle-potentials. We base our extension on Hill's' description.

3.2 General Theory.

We consider a system of N molecules such that the potential energy

of interaction is given by
N

^ ^ O, ^ ^ ^ ^ ^ '
c^ th

r. is the position vector of the centre of mass of the i molecule and
—l

<JRg stands for the angles necessary to fix its orientation with respect

to some fixed set of axes. The partition function is given by

2 - Aw gi ^
where A is the result of integrating over the momenta and Q is xhe config¬
uration integral given by

d — ^ ^ cW - - cAd fj 3.J
v J

If the volume V is divided into an imaginary lattice of N cells As ,...,
each of volume v=V/N then the configuration integral when molecule 1 is
assigned to cell , molecule 2 to cell , etc is

5 "J --- cUIM-
St¬

and thus
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Defining to be the configuration integral, when molecules

are in cell l,...,m^ in cell N

a—-'-4-1 S-j.
A |

^ A j Ai kj. Afo A M
WV. v **•*. VA w

where, say, are integrated over Ak ; £ w u j /-w^w^
are integrated over A ^, etc, we have

N

\ N •
~

M, ! V'AZ i I ^
VA>; - ■) ^,4 - C?

( *
We denote by Q the integral corresponding to single occupancy of every

W

cell,

Hence

where

i.e. QCI) = Q,u 0

Q. - KJ ! Q Ll> cr w

(_ W\ 4 U\ ^> )
K7~• N

_ > <Srrie—w 3- 3
^ ^ - QU> TT m, !-O

N

( 2. - N)^ s — j
In the crystalline state we assume that multiple occupancy is excluded
and so CT=1. This point is discussed more fully by Hill . With the

assumption of single occupancy (taking molecule 1 in cell 1, etc.) the

probability that molecule 1 is in the volume element dr^ at _r^ and with
orientation in the angle element d(R-vatJi», etc is

PUu—cV,—i.cj
qU)

By using 3-9 it is easily shown that

Fl,> - Ell,-TSl° 3> io
where

Fto =-WtJL G0) vi(
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& \ !\1 0<L
^ IT cKs v - - cA vX jvj ^

st0 - - k
& h, or

PJLvn ^ £A/fi -- ?>' I T>

F^"^,E^"^ and are the configuration free energy, energy and entropy

respectively of a system restrained to single occupancy of cells. We

1>' \ K

define E and v^ "by
E.^ - & e

SCM ■•=. 3, i£
E is the average potential energy of a specified molecule with all other
molecules in the system. v^ is known as the free volume. If we assume
that P can "be written as the product of N single molecule probability
functions p(_r, *-)£.) ^

r IT JW) T/U
where the centre of cell A<- is chosen for the origin of _r , then it is
easily shown that

PUw ---.JT-w)

Sc° v=: — N) fc. \ \ p -21) Tw. vb ( £, S'C) d-*r ^
£> oi

N-

h> vJl
JLOt ^ I- l*

) V i °i

Fig. 3.1. Definition of the vectors r,r' and
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In deriving 3.17 and 3.18 we have used the condition

^ 5 - \ 1'XO
k JL

Equations 3.17 and 3.18 together with 3.10 give us an expression for

/NkT. To find p(_r?y7.) we regard F^"^/NkT as a functional in p and
determine p (with the subsidiary condition 3.20) such that F^"^ is stationary.
We find

1-2,1
&' Jl

where is an undetermined Lagrangian multiplier. We define
-

- WT iU^Ct,X) t-<*
. N toL- ^ XX

From 3.20 it follows that

^/VT = ft
/b <JL

Thus 3.21 becomes

ft'A
where

\,\j , *0.11 ^) XL1 *) t C. -1 >C.1)^ ^1 ^ ^ s S"

3.24 is an integral equation for 4A1, Jl). By substituting

bll,^ •— —— li'Xt,

&01 "
in 3.18 we obtain E. It is easily shown that

w - cc - <&)/
4 j) •€- ctaf " XXtSL ~

To solve equation 3.24 we try an iterative solution. As an initial

guess we try
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where and SC61) are delta functions defined such that

h

5 ^W StDchf = Sy(.o) ^ gt <^o)
^ OL

\^See appendix 1 for details on the representation of cQ^Tj - Prom 3.24
we find

ir £oC —1&') — &o 1~> * 2-^

EibCX.Jl) ~ Bo [f, o} c)l| o)
Bo - E: Co,C3}o; o)

— E © (v f—1 j

Eo BE , v£j) - ' ~ \S > ° ^ ^^

where

Prom 3.19

.-2.
Also

V, - ff -<KU,^AT\o J J *&- cUrJl^ V3>0
A Jh

Eq(:?, 6t) is the field a central molecule at position _r in its cell and at
orientation is in when all the other molecules are at the centres of

their cells and at the zero of orientation. In the application of this

theory we shall see that the zero of orientation corresponds to the equil¬
ibrium orientation. vl^C£)Jl) is the same field measured relative to
the field with the central molecule also at its cell centre and zero

orientation.

The iterative technique could be continued hut the resulting equations
would he too complex to oe of use to us. In any case, it is debatable
whetner the error m carrying out only one iteration is greater than: the

error m neglecting multiple occupancy.
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CHAPTER A

EXTENSION OF THE TSUZUKI MODEL TO INCLUDE ROTATIONAL MOTION.

4.1 Introduction,

We saw in chapter 2 how the effect of the orientation of molecules
could he taken into account in a crude manner by postulating that a molecule

could take up one of a finite number of orientations, and then, by assuming
a certain interaction with the neighbouring molecules, the thermodynamic
functions could be evaluated. In this chapter, we will attempt to deal
with the problem far more realistically by assuming that each molecule
is subjected to an angular potential. Our starting point is a theory of

melting due T. Tsuzuki and this theory is briefly reviewed in section
2. The remainder of the chapter is taken up with an extension of the

theory to include the effects of rotation.

4.2 Review of the Tsuzuki Model,

This model utilises the fact that the molecular arrangement in a

solid just below the melting point is not vastly different from the arran¬

gement in the liquid just above the melting point. From the definition
of the radial distribution function, g(r), the average number of molecules
at a distance between r and r+dr from a specified molecule is Pg(r)4Cr dr
where is the density. In a solid the molecules are effectively confined
to the lattice points and hence

where z. and N. are the distance to and the number of i ' nearest neigh-
xi

bours respectively. In a liquid the function is assumed to be smeared
out such that

SJ;
yz-x l-k) £ r 4 Q \ +

O ' <-x^
)

where 6, is called the irregularity. If the interaction between two
molecules is given by the Lennard-Jones (12:6) potential

uw= L%y°\ 5
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then the total potential energy of N molecules in a volume V occupying
24

the sites of a face centred, cubic lattice is given by

^ = xl at j UU
This can be written as

-L - khSi? L.-S-

where the reduced variables are defined as

EH^) = t c,ts| ^
e* - F/Mi. \J*~ V/W5 T* - Wr/1

- S/N> is F* - p/N^
\J _ f\J v /s/X where r is the nearest neighbour distance; T is the absolute

temperature; S the entropy; and F the Helmholtz free energy. The equil-
ibrium values of E and V are determined by the condition of minimum

energy ,c*
■=, o

ck^
* *

which leads to the values V = 0.916 and E = -8.603. In the case of
o o

the irregular lattice the equilibrium position of a molecule is not

confined to a single point and thus
, , . F rjM

T = (o ' 0 r '
2.V-A

rF-&)
5

x. e

- t'OLsj A-!;[ (\-A) F
lo&v"- L J

For any thermodynamically realizable state the Gibbs free energy at

constant pressure and temperature is a minimum; however, for condensed

systems the pressure is usually small in comparison to the energy and so

xt is permissible to use the Helmholtz free energy instead. The free

energy for a system of cells is given by (see chapter 3)

where v^ is the free volume. In this case Tsuzuki estxmates that the
free volume is given by

\J^ -V ^Cyv~ °"^)5
where b and b'- are constants and hence
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F*(y"ifc.j = E*lv^ ~ T* X- \\4- ?L.%
K U'^Vo* -l)3

j *where c=b'/b and is assumed to "be unity. The transition temperature T
mi

is determined by the following relations

F£(.\Jot,o} 4 ^ Tv < T,*
P* i.\jl, a) - Fi(V*,&) T* = T
F4(Vo\o) > F*(y*,k) ^ lv > Ti

*
AMinimization at each temperature of F* with respect to V and CS leads

•)f "X-
to the conclusion that at the transition temperature (T =0.82) V jumps

*
. m

from Vq to the value 1.05 and IS jumps from 0 to V&0.12 with a corresponding
entropy change. Thus the model indicates a first order transition which

compares reasonably well with that of argon (see Table 4«l)

'

1

* * *

T S V %
m m

Theory 0.82 1.55 14.7

Expt. .694 1.69 14.4

Table 4«1» Comparison of theoretical and experimental

results for argon using the Tsuzuki model.

4.3 Criticism of the Tsuzuki Model.

Although this model is a more realistic approach to the problem of
13-15

melting than that of Lennard-Jones and Devonshire it has many short¬

comings, not the least of these being the assumption that c=l. As we

shall see in section 6.2 the predicted transition properties
25

are strongly dependent on the value of c. In a later paper Tsuzuki

introduces a quantum correction for the zero point energy of the molecules
and also treats c as an adjustable parameter, thus obtaining quantitative

agreement with experiment for the rare gases. This latter procedure is

certainly not to be recommended, at least not without investigating further
the nature of c. In the next chapter, on assignment of parameters, we

discuss whether it possible to obtain a more specific value for c.

In addition, the form of the radial distribution function for the

irregular lattice is not very realistic. Fig. 4«1 illustrates what g(r)



-33-

2
looks like for liquid argon and it is apparent that r g(r) is not the

rectangular-shaped function assumed "by Tsuzuki.

Pig. 4.1. An experimental radial distribution function for

liquid argon. [Taken from T.L. Hill, Statistical

Mechanics, (McGraw-Hill,New York, 195^) >p. 186.]
In fact, a triangular-shaped function would probably be more appropriate.

•X-

The calculation of E with a triangular-shaped function is no more difficult
than Tsuzuki's calculation and we find that

where

- 0-M"v
Fvvc- -2. 4- o- +

2 is the base of the triangle. However, it is by no means clear how
one calculates v_^ in this instance and so we have not proceeded further
in this calculation. In any case we wish to investigate the effect of
molecular rotation on Tsuzuki's model.



-34-

4.4 Inclusion of Rotational Motion.

Many diatomic molecules are such that in the solid state they assume

some definite equilibrium orientation .and execute vibrational-rotational
motion about this equilibrium position which we take to be at*S =0. (see
refs. 1 and 26) By symmetry there is another equilibrium position at v-7iT_

27
This situation is envisaged by Pauling and is described by him with a

potential of the form "

or

there being free rotation with respect to the azimuthal angle

4.9 is the angular potential to which a molecule is subjected, this pot¬
ential being due to all the other molecules in the lattice. That is, V
is the mean field due to all the other molecules. Pauling carries out

some calculations with 4.9 on the assumption that is a constant.

However, it seems probable that as the intermolecular distance Increases
the molecules are able to rotate more freely since the molecular inter¬

actions decrease. Thus it is plausible that should not be treated
as a constant but as some decreasing function of r. Consequently, our

system consists of N molecules in a volume V interacting with each other

through a Lennard-Jones (12:6) potential, and, in addition, each molecule
is in an angular potential QT where HP — ^ 0 and where

f(r) is a decreasing function of r, the nearest neighbour distance.
We make the additional assumption that the rotational partition function
can be evaluated independent of the transnational partition function.

This, of course, is only an approximation since 1J{&) is also a function
of r but if v\)0 is small the approximation should be quite good. In the
chapter on results we indicate when it breaks down.

28
Using the results of Mayer we find that the rotational partition

function, J, of a single molecule is given-by
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~ ^ \ i ^/Wt"cJ£ k io
o

where J£ree is +'he partition function of a freely rotating diatomic mol¬
ecule. By making the substitution 5c2" — CcA2"©

U-T ^
we find

~x - T -%WfeT ( ferV'f ^-J - -T{v^ V<Mli \o *.*■ dx
and hence by applying the usual thermodynamic formulae we find that the

energy and entropy are

E - e nultr- WfeI La*- - v a. rCfcW»T■
^ \ C^x

o

C r J_ k ) I _ \WrJ
2. / ' >(.**/try I*- ~~

dvx

+ kJ~K=)
o

-C
'U ( L- is

•e cix
o

In deriving the entropy we have neglected the symmetry number since it
contributes only a constant term. The expressions above involve the

integral \ ~e_x cAx which grows extremely rapidly as a is increased and
O —

hence it is useful to have an asymptotic- expansion valid for large a.

The derivation of an asymptotic expansion is considered in appendix 2.
With the asymptotic expansion in place of the integral, 4*12 and 4«13
become

i . i (' ViT\ + fL f ^r\<s + is ( fecN* ..

E. ^ -v. z±jd-± <±\f L—+̂ feT
l + im + U fu C^-
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s - v ^ \ i - i - y
4- f^r\^ .

U l^J _\1 ~T~

4- k 1 + ^ ^ ^ *%( ^ --_ k-cr
* + \0f)+ <iw+ -■

This system of rotating molecules is now added on to the Tsuzuki

model. In the case of the regular lattice we find that

t* (y* ) ■= h otsj ijk _ +■ \T* hf -
v —-

T ) ^ L /(,

dx-x r
o

dE*

where X> - ^ — \)o /«2.
* *

The equilibrium values E and V are determined by the solution of -r=\,=0.
o o ^ dV*

These values are now temperature dependent. The free energy is given by

F * ~ * - -T * U ■ n
where , . .

/%-v'ylz <xV/T*
S* - Si -V ^ \ I - ^ +^ I r Uv'/y)"2 >

i

For the irregular lattice the ^ -dependent Tsuzuki functions are

used, in 4«l6 and 4.17 and f(r) is replaced by

r(A

ih ) w** ^
Kt-&)

At low temperatures we expect that a molecule will oscillate about

its position of angular equilibrium whilst at high temperatures the mol¬

ecule will execute hindered rotation. Thus we wish to know what sort of
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motion is being executed at a given temperature. As we shall see in

chapter 6 the change over from one sort of motion to the other is related

to the breakdown of the applicability of the model. Let the maximum

angle that the molecule reaches from *9" =0 bed. If "the molecule

is vibrating while if ©<,> Kjz. the molecule is rotating. In addition, if
there is one orientation of the molecule irr which its total energy

for this degree of freedom, is potential energy. That is, when all
the energy for this degree of freedom is potential energy. Thus if we

equate the energy for the Q degree of freedom to the potential energy we

find

f & fer Ko
then not all the energy can be converted into potential

energy and hence the molecule is rotating.

4.5 The Function f(r).
To proceed further we must define the function f(r). Since f(r)

is a decreasing function of r two obvious candidates are

; y>o 1.11
and r

^ (xfctb
We will use the first of these for two reasons. Firstly, an inverse

power law can be justified to a certain extent while the exponential form
is completely arbitrary. The justification of the inverse power law is
considered in section 5«2 where we also consider what the value of is.

Secondly, the exponential form when inserted in eqn. 4.19 gives rise to

incomplete gamma functions and thus to an increase in the time involved
for numerical computation — a time which is already fairly lengthy.

Using 4.21 evaluation of 4-19 gives

v*-*1* [ L _ 1
2MH" L 0- M*""1 0+fcK' _

and this expression is substituted in place of f(r) in theA-dependent
functions.

*

The calculation now proceeds as before, F being minimised with
* * *

respect to & and V . Strictly, F and not E should be minimised in the
case of the regular lattice as well as for the irregular lattice but numerical
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calculation shows that T S (due to rotation only) is less than 1% of E

and can thus he neglected. We must also consider the question of how

values for £, cr, ^ , c andV are chosen and this is the subject of chapter 5«
In chapter 6 we present and discuss the results arising from this theory.
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CHAPTER 5

DETERMINATION OP THE PARAMETERS.

5.1 The Lennard-Jones Parameters ^ and .

These parameters are determined either from experimentally observed
29 30coefficients of viscosity or second virial coefficients. ' Neither

of these coefficients is sufficient to define the intermolecular potential

uniquely and so these methods may not give exactly the same results.
When we are considering transport properties the former method should be
used if at all possible since viscosity is itself a transport process.

Otherwise, we use the second method which is easier to apply.
For convenience we reproduce Hirschfelder, Curtiss and Bird's

description of the second method. It is well known that for a spherically

symmetric potential ,<^(r), the second virial coefficient, B(t), is given by
_ oG v

B (jt) — Xtvn} { ^ ^ (j._
2y~~rV C cu- e cb(v) -7 o ^ -v ^
Vvcr 3 ' ' civ

For the Lennard-Jones (12:6) potential this becomes

6* Q-t*) = - U ( L _ JL 1 " r* V r— +*)
"I * \ I ^ U +L

J '
o

where the reduced variables are defined by r*=r/cr and B (T ) = B(T)/§7tNcr .
32This integral has been evaluated exactly by Lennard-Jones and gives

B*(.T*) - f T^-t!Si+0/A ^ ^

where

U 4 1 \ k '
The first 40 coefficients b^) are tabulated in reference 31 and we have

evaluated further coefficients up to j=113 and tabulated them in appendix 3.

£_ and O" are found as follows. From the experimental values of the second
virial coefficient at two temperatures, k^ is defined byB LB lt"\3
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2./k is then determined by trial and error solution of the equation

-Tr = wTt/& s-u
&\t\) J •fV. c=-i,2

0~ follows from the equation

— jc Kicr^ — BCrO C— IpvX
B* trl)

Slightly different values of 2_ and cr may be obtained from different
choices of temperatures since the Lennard-Jones potential is empirical
and does not describe the intermolecular interaction exactly. For small

values of T the series expansion:. 5.2 converges extremely slowly and thus
*/ *\

an asymptotic expansion for B (T ) would appear to be a useful aid. Indeed,
we have derived such an expansion and increased its useful range by using
the method of converging factors, but we shall not display these results
here since, for the reasons discussed below, the results are inappropriate

■X"
in this context. For such small values of T , quantum effects should
be taken into account and in this case 5*1 is n° longer the correct expre¬

ssion. Certainly the coefficients tabulated in appendix 3 together with
the first two quantum corrections tabulated by Michels^ are sufficient
at the lowest temperatures at which B is measured experimentally.

5-2 £
In this section we discuss what values of V are appropriate.

Without knowing the angular two body intermolecular potential, we can

hope to give only a plausibility argument for the r-dependence of the
mean angular field. We analyse another system with a double minimum

angular potential and draw conclusions from the results for this system.
Consider a system of two rotating dipoles separated by a distance d.

(see Fig. 5-l)

-> x—axis

Fig. 5*1

For convenience the first dipole is situated at the origin while the
second is situated at a distance d along the x-axis. In general, the

potential energy V of two interacting dipoles of dipole moments^A^and^/U ^



-41-

separated by a distance _r is

V - - + G t
S y 5

In this case we take 1^1 { - ty^x\ —^ and | ]?| = d and find
v _ ~ ^ ^ Ge3> C43! ■+- 4>0 — ^ ^cs(,9( +84) GdsO^I"
+- ^ Cos C 8 i - 9 Oc©^> Q4^ i + 4>O ■£ (0 0 *9 G& C 4> t~" ^ i-j
~ ^ 0. ® v +9Cos (0 i -9 i.) ^ tT- 7

(Sn,^) i=l, 2 are the angular positions of the arrowheads or dipoles.
The potential when both dipoles are confined to the same plane is obtained

by putting Q ^Qz^ic(2. whence

^ ~ *" f5c 1 £os^4>1+<£*-) +J3, ^ ^
Each dipole consists of a particle of mass m and charge e at a distance

a^ from the centre and a similar particle of charge -e at the other end.
For such a system the kinetic energy is easily found and so the Scjarod-

inger equation for the system is

:Kf I ^ 4- __i 4- 1
XL \ >04" Su48 ( Swv9i. ^44 / y,cy

4- V <4 — el<4 C ^ ^ )
where V is given by 5*7• We have been unable to solve this equation -
the first major difficulty being that we are unable to decouple the

equation - however, the analogous equation in two dimensions can be solved.
The two dimensional equation is

4H> + vye + (E_v)+ sr-/°
where V is given by ^.8. This equation is decoupled by using the subst¬
itutions and (4 i - <44 - a 4 and assuming that

Ki%)^ U)
The result is the following pair of ordinary differential equations for
X and N.

+ & K Cosl't 4- (. t-Ve. — ° S" '<

dl^ 4 2k 4- 8- AJ — O S ' I*
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. i-T f=
where CK- ^ k and. k is a constant to he determined.
These two equations are easily put into the canonical form of Mathieu's

equation^ whose periodic solutions of order n are the Mathieu functions

ce^ and s®n« We then find that the lowest energy eigenvalue is given by
tz: ~ — s: + c, jZ,

Thus we see that the leading term of the energy of such a system is

proportional to l/d which suggests that we might tryy=6. The argument
given here is similar to that justifying the l/r^ term in the Lennard-
Jones potential. However, in the case of an angular mean field it is
not clear whether the angular variation arises principally from the

repulsive or the attractive part of the intermolecular potential and so

a case for )(=12 may also be advanced. In fact, the mean angular field
may not be able to be cast into the simple form we are using. In chapter

8, when we approach the problem on the more fundamental level of the two

body intermolecular potential, we shall see that the mean field is really
much more complex than that assumed here.

5*3 c

17 3The free volume is estimated by Tsuzuki to be b(r-<r)j in the solid

phase and b (r&)^ + b(r-e)^ in the liquid phase and thus a discussion
about c (=b /b) is really a discussion about b and b . b(r-cr)^ is the

* ^
volume in which the centre of the molecule can move whilst b (rA)J is the
volume each point of which gives an equilibrium position of the molecule.
Now of course this latter volume is only non-zero because the radial

distribution function satisfies eqn 4.2. For the case of a more realistic

radial distribution function there is only one equilibrium position.

However, in the present case an equilibrium position can occur anywhere
within a radius of r(±/2 of the central position, the factor -g- arising
because adjacent molecules may also move. Hence the volume in which the

equilibrium position may occur is -k ^ /C ' i.e. — -L U- 7l
o 3> (S i

The free volume v_^ in the solid phase is given by (see chapter 3)
y _ 0 _^0)/Wrv4 - ) oW

where 4(r) is the potential of a molecule in its cell. We estimate the
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value of v_p when the intermolecular potential is of the hard-core variety
and then obtain a numerical estimate for the Lennard-Jones (12:6) potential.
The former can be put in the form constant x (r-cr)^ while the latter can

only be calculated numerically; however, a comparison of these two values
will give us an estimate for b.

Fig. 5-2 is a diagram of a central molecule with two of its twelve

nearest neighbours.

The molecules have a hard-core diameter er and we suppose initially that
the molecules at E and M are fixed. The molecule centred on A is free

to move within a restricted volume and the volume that its centre is free

to move in is what we wish to calculate. If the centre moves along AE
then it can move only as far as B since in this position the hard cores

touch at D. Thus, as a first approximation, the centre is able to move

within a sphere of radius AB=(r-C") . However, if the molecule moves out
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along AK its centre can cover the further distance HJ as shown. If it

moves out in directions intermediate to AE and AK thai the corresponding
extra distance is smaller. Thus we should also take account of the volume

of the cap BJLH. The volume of the cap can be calculated in terms of
r and or; however, although the calculation is simple enough, the final

expression is extremely complex. Consequently, we approximate the volume
of the cap by the volume of the cone BJLG which is easily calculated and
is given by

Now, if the molecules surrounding the central one are also free to move

then the distances that the central one can move will be halved and thus

we find that

1 _ /1 y^"1 )
V4. — ~ ^ tc r-cr^ ( -j- ^ v ) 5"- /if

— \) J

be shown that

where o-"ioSUk

If the more realistic Lennard-Jones (12:6) potential is used then it can

i /ccr3- V* Gv /(?
„o- '^SUk

pt = ^ [ i. Lis) -

c.v^)0-brl<-1
Lis) - JU*) +- X XGjX) -V xlb/l)
XAS) - Cv + a^j - I

*

The function G has been tabulated in reference 35 • For T =0.7 and

V =0.9899 eqn.^5«l6 gives v „=0.002lc"^ and for T =0.80 gives 0.0025ff^.
* 3

The same value of V substituted in 5*15 gives 0.0014cr . Comparing
these answers we see that the value of b predicted by 5-15 is too small

by about 65$. Now, using 5*15 and the value of b , we find that the
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predicted value of c is 0.63 and thus, when the fact that 5«15 under¬

estimates v_p is taken into account, the value of c comes out to be 0.41.

5.4 ^
From the definition ofV it is apparent that to determine 44 the

barrier to rotation, Kj/0 , must be determined. Barriers to rotation can

be determined experimentally in a number of ways~^ ^ but they may not
37lead to the same answers. For example, Waugh and Fedin establish the

approximate formula

V (kcal/mole)^ 0.037 T (°K) 5.17-L O

for an angular potential of the form (l-cos28) . Tc is the solid-solid
transition temperature. ^There is a factor of 10^ omitted in their
paper which we have corrected in 5 -17 .1 If we use the value of T ( = 288.7°K)

38 ^for sodium cyanide quoted by Sato eqn. 5-17 gives V =10.7 kcal/mole.
However, Sato using the same potential, quotes a value of 1.8 kcal/mole
which is markedly different from the previous value.

In addition to lack of consistency there is another difficulty in

using experimentally determined values of i^c, . In the low and high temp¬
erature phases ^ is given respectively by

tu = s~'

4H ^ v-*" f L_ _ _L
The whole essence of the model is that vjj is a function of the intermolecular
distance and consequently is a function of temperature. If we use exper¬

imental values of the barriers to rotation then we are forced to use a

constant value unless we identify the experimental value with either tjF
or and calculate the other value accordingly. However, if we do
this we then have the problem of deciding to which ^ the experimental
value is assigned. Alternatively, we may identify the experimental value
with vb0 and proceed from there.

In view of these difficulties we have plotted values of the entropy

and volume change against transition temperature for various values of V
and compared these plots with the experimental values for particular

substances. These results are displayed in the next chapter.
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CHAPTEE 6

NUMERICAL RESULTS FOR THE ROTATIONAL EXTENSION OF THE TSUZUKI MODEL.

6.1 The Method of Computatiion.

In this section we describe the method used to minimise the reduced

free energy. As a preliminary, values of the integral \ cXjc were
o

o*

calculated by means of Simpson's rule and stored/\disc. These values
40

agreed extremely well with those calculated and tabulated by Karpov

^It is much quicker to write a program to recalculate these integrals
than io punch several thousand cards containing Karpov's values.1 Each
time the main program was run the values of the integral were read in
from disc as data thus avoiding the need to evaluate integrals during the
main program. This initial step in the main program was followed by the

-X" -K-

setting of parameters and then the calculation of E and V . E was
* * ° 0 °

found by calculating E for a few values of V and comparing these to

find the minimum value. This rough estimate of V was improved upon

by recalculating E in the neighbourhood of the estimate until the desired

accuracy was reached, A similar procedure was adopted with the ^-dependent
functions. A check was built into the program to decide whether the
exact or asymptotic were to be used for particular values of the variables.
The calculation was carried for various values of T ,V,c and Y •

6.2 Discussion of Results.

The results are displayed in Figs. 6.1-6.7- The letters labelling
the graphs indicate the following values of the parameters.

a. Y=12 c=l
b. ^ =6 c=l
c. Y =5 c=l
d. Y =6 c=0,8
e. c has the functional form given by eqn. 5-15

i.e. 0.63

Although the value c=0.41 is proposed in section 5•3 we have not carried
out the calculation for this value since a look at the trends of Figs.

6.6-6.8 shows that for this value of c the agreement with experiment
will be poor in that although agreement with observed values for some

diatomic molecules may be reasonable for others it will be bad. Y i-s



Fig. 6.1. Plot of & against V for various values of c.
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Fig. 6.3. The reduced entropy of melting as a function off.

Fig. 6.4. The $ volume change on melting as a function of 2->.
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varied in order to see what effect this parameter lias on the predicted

properties.

Figs. 6.1-6.4 all display five general features which have to be

explained.
\ * A * ^I) For fixed ^ and c the values of^,Tm?^m and all increase

with increasing')) .

* *

II) For fixed V and c the values ofA?T ?AS andAV% all decrease' m' m

with decreasingY.
III) For fixed c the value off" at which the graphs dip steeply

decreases with decreasing V
s ofA.l

,m7 m

with decreasing c»

V) For fixed ^ the value of IT at which the graphs dip steeply
decreases with decreasing c.

An additional feature not shown is that the angle of oscillation, , is

90° above and below the transition for allV less than the break-off

value for each graph. i.e. the molecules execute hindered rotation.
For V larger than the break-off value the angle of oscillation is less
than 90 in the low temperature phase and is 90° in the high temperature

phase. The discussion that follows immediately is concerned with values
of \T less than the break--of£ value and so^=90°. The angular potentials
in the low and high temperature phases are then given by

&

IV) For fixed Y and V" the values ofA?T sAS^ and decrease

^ i

* \fr,s tMf
G^

For constant ^ increases as increases. i.e. as V increases.
Consequently, although the molecule is still rotating, the motion becomes
more hindered as V increases. That is, as V" increases there is an

increasing tendency for the molecule to continue pointing in one direction
and hence a higher temperature and larger volume change are needed to

*

overcome the restriction to the motion. Thus, as increases, T and
* m

increase. Since AS^ is dependent largely on the volume change it
also increases as V increases. At the transition temperature
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Now for smallA,^ is given by

= ^-4lt V*u+o^ --■ 1 u
d,nd so if V$ increases then A must increase with increasing Vin order

to satisfy eqn. 6.3.
For a given value ofV, 4-'u decreases as y is decreased since V*^/l

and so the rotational motion becomes less hindered. Consequently the
* *

values of A ,T ,AV% and-AS decrease for constant yasv is decreased,'mm J
For values of A1" less than the break-off. value and for a low enough

temperature the angle of oscillation is less than 90°. As the temperature
is raised the angle of oscillation steadly increases until it becomes 90°.
At the temperature at which it becomes 90° no first order transition

takes place and it is not until the temperature is raised to the transition
■X"

temperature, T^, that a first order transition occurs. However, for
values of V' larger than the break-off value a first order transition does

take place when the angle of oscillation becomes 90° and at a still higher

temperature a second transition occurs. As V is increased even further

these two transitions eventually occur at the same temperature. Thus it

appears that for IT larger than some critical value the theory predicts

two transitions, the lower of which is a solid-solid transition. However,
we have discounted results for if larger than the break-off value for two
reasons.

1) Beyond the break-off value of V" the results are unsatisfactory
in the sense xhat although the general trend of the graphs is upwards
there are local fluctuations which in some cases are large. See, for

example, Fig. 6.5 which is a schematic graph of fs, against V.
A

-5 u"

Fig. 6.5. Schematic graph of k> against
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11) At temperatures intermediate to the two transition temperatures
and also high enough for cA. to be 90° without a transition taking place,

the results indicate that no transition has taken place. This conflicts

with the fact that a transition has already taken place at a lower temp¬

erature .

For these two reasons we regard the break-off value of V as the limit of

validity of the model. As pointed in section 4-4 we expect the model

to be valid only for small V (^o) since we have assumed that the partition

function is separable.

As V is decreased the strength of the angular potential decreases
*
/since ¥ < 1 and thus the break-off value of V" should increase. However,

o

exactly the opposite happens, and the break-off value decreases. We
have been unable to explain this effect which is completely contrary

to that expected.

The graphs b,d and e give the results for various values of the

parameter c. Decreasing c corresponds to weakening the intermolecular

potential and thus we find that melting occurs at a lower temperature

with correspondingly smaller values of h, /$[% and . However, there
is an objection to varying c. Since varying c really means that we are

varying the intermolecular potential we should really vary the lattice

potential energy as well. Theoretically, when we define the intermolecular

potential, c is automatically fixed, and we have no right to vary it indep¬
endently. All we can say is that decreasing c decreases the transition

temperature which is what we expect but we may not attach any meaning
to the quantitative results obtained. Similarly, it is doubtful whether

any meaning can be attached to the fact that the value of V at which the
break-off occurs decreases with decreasing c.

In Figs. 6.6-6.8 we have eliminated the parameter V" oy plotting
* *

values of T ,£51% and for the same V against each other. Comparing
these graphs with the experimental points also plotted we can see that

for large values of ^ and c the results are unsatisfactory. For "^=6 and
c<.0.8 the results are in the right range but the quantitative agreement
with any particular substance is poor. In particular, the agreement

is not good
with diatomic substances/although in the case of CO this is probably in
part due to the asymmetry of the molecule. We have not compared the
theoretical results with the experimental values for ionic crystals such
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Fig. 6.6. Comparison of theoretical and experimental results:

entropy change against temperature. The ^-5 and
^f=6 lines are almost identical in Figs. 6.6-6.8 and
have been drawn as one.
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16. CF4
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as HI and HC1 since these crystals do not contain individual molecules.

Presumably a theory involving interpenetrating lattices is more appropriate
for such compounds. The D and H molecules should really be treated

25
quantum mechanically. Tsuzuki has introduced a quantum correction
and gets fairly good agreement with experiment but, as he has introduced
another parameter and has also treated c as an adjustable parameter, the

agreement is probably fortuitous.

6.3 Conclusion.

The rotational extension of the Tsuzuki model gives results which

are of the same order of magnitude as those of experiment but the exact

quantitative agreement is poor. The question arises as to whether the

poor nature of the agreement is due to the Tsuzuki model itself or to
the rotational extension. The circled points are the results the Tsuzuki

model gives on its own for various values of c and it can be seen that
the agreement of these results with experiment is poor. If these points
were all shifted leftwards and the rotational extension added on as before

then the agreement with experiment would be good. Thus, we conclude
that the main defect of this particular method of dealing with phase tran¬

sitions in systems of polyatomic molecules is the basic model or the Tsuzuki
model. As pointed out in section 4*3, the form chosen for the radial
distribution function is not very realistic and this presumably is the

principal source of error in the model. However, we have not proceeded
with any improvements in this direction mainly because the simple estima¬

tion of does not carry over to a more realistic radial distribution
function. Since the model is unrealistic anyway, in the sense that we

assume the partition function is separable, we think it more worthwhile
to try a completely different approach and for this reason we have attempted
to treat the problem from a completely microscopic point of view in

chapters 8 and 9«



-55-

CHAFTER 7

COMPARISON OF EXACT AND VARIATIONAL METHODS.

7•1 Introduction.
20 21

In this chapter we derive a theory of liquids similar to Barker's '
tunnel model. Some exact results of this theory are also derived by

means of a variational principle and a comparison of the two sets of
results is made.

Im recent years there has been an increasing interest in the application
of variational principles to statistical mechanics.^" J-*- >41 particular,
Mansoori and Canfield"^' have used a variational principle to predict

the properties of a system of N molecules with a Lennard-Jones (12:6)
potential. From the derivation of their variational principle it may be
seen that, in theory, the results can be made as accurate as one likes,

however, on closer examination the disadvantage of the method is disclosed.
To apply the method certain properties of the reference system have to

be calculated analytically and thus the accuracy of the results is limited

by one's ability to choose a reference system which resembles the real

system sufficiently well and, at the same time is simple enough for the

analytic properties to be calculated. As we will be extending Mansoori

and Canfield's ideas to cover systems of diatomic molecules it is important
to obtain some idea of what sort of accuracy the variational method is

capable. It must be stressed that we are only considering the accuracy

for one particular system and not in general but the results should be
a guide as to whether the method can be of practical use or not.

7•2 Alternative Approach to the Tunnel Model.
20 21

Barker ' has a described a theory of liquids in which he attempts

to include the communal entropy lacking in the simple cell theory^ As
is well known, simple cell theory restricts the motion of the molecules
too much for it to be a proper theory of liquids and, in fact, reproduces
the properties of solids far better than those of liquids. More compl¬

icated cell theories have attempted to circumvent the communal entropy

problem but all have the serious defect: that only relatively simple

generalisations can be handled computationally. For example, although
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multiple occupancy cell theory may be carried through on paper fairly

easily it is difficult xo obtain numerical results when more than two

molecules are allowed to occupy a cell. Barker's approach is to divide

the volume into lines of molecules and to assume that the interactions

between lines of molecules are independent of the interactions between

molecules on the same line. The theory is similar to cell theory in

that the motion of the molecules is restricted, however, the degree of
restriction is much less than that of cell theory. Unfortunately,
Barker's method of division does not lead to any easy way of summing over

all interactions. We describe an alternative, division which allows the

complete interaction between lines to be calculated.

The Helmholtz free energy of a system of N molecules in a volume V
is given by

F ~ - WT ] 7 i
where

' v
We assume that only two-body angle-independent forces are present. That

(a= i d|e,l)
<~>sj ~(

fc - r: F - ~ P- -

For large V (ultimately in the thermodynamic limit) the thermodynamic

properties of the system should be independent of the shape of the volume

and thus we are free to take for V a cube of side l. We divide this

cube into K planes of dimension l x l, each plane containing M molecules.

The planes are equally spaced with spacing \=l/k. ^More exactly, a=l/(k-i)
but we take K to be so large that the difference is negligible^ We
assume that in calculating the mutual potential energy of the molecules
in one plane we can neglect displacements from the plane, and that in

calculating the potential energy of interaction of a given molecule with
the molecules in other planes we can use the 'smearing' approximation,

regarding the neighbours as smeared over planes parallel to the central
one.



Thus

QlM.v)A - X \
M \ i )K

where

rAxM J - JL N pV ( o

U'- V- = Ui-fjl U-mt+'i

L-£ - X cii-sp^ _ p,[v(?)-v(o)]|(Aj >If
is called the free length. V(z) is the potential energy Of interaction

of a given molecule at a distance z from its own plane with all molecules

except those in irs own plane and is calculated as follows. The distance
"fcll \of the i nearest neighbour plane is i/\ . We assume that the molecules

2 r
are smeared out over this plane with density =M/L . £«. is assumed to
remain constant as the plane is made infinite."]

Fig. 7.1. Elemental interaction of a molecule at z
• ,, •th , ,with the i nearest plane.
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The potential energy of interaction of the molecule at z with an elemental

area of the plane (see Fig. 7.1) is 2 ic ^gRu^(R^+a'V/2J cffi where a^=(iA-z).
Hence, it is easily seen that

vu) =. ikCs % [J f
where b.=(iX+z). For u(r) we take the Lennard-Jones (12:6) potential.

We then find

VU) '= es 2 £ ,^rr-[ i ~*/A)A ~ ~- J
~ M+JMA)- -7-s-

o

where

(s,a) is the generalised Riemann zeta function

W —G

Thus

p f/2
L-4 = IX \ ■arp | B PC\) - C.QU)t cAJ 7-t

e,- c =

X"WT ~ S" A'° t*T

KO - 5o.s,) +3 ( 4, -i) -vi* -
= + 5 4°, -5) - - 130,)
Ho) — Q (-O) •=. o

^ (n) is the familiar Riemann zeta function.
The factor

J I fVu cAL
A M1 1 -L A.. -L ^ p Ay, - -

i

O Jo -J& -4> ^ °v" * "
is evaluated in a similar manner by dividing each plane into S lines

(distance M apart) each with T molecules. The interaction between lines
is then calculated using the same approximations as before. Evaluation
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of the properties of the one dimensional system (line) has been considered
20

by Barker. Thus we finally find that the free energy of the whole

system is given by

£ +c$i»)-s$cu)
-4^ v E5 C/|) —bj ( s-) -V- Fx /fex 7 7

where ^

y 50 e

b = <= - hEi&Zf (a = r/ L
ft ga/41 u~

ae^,) - 5CS-, Is) + $O,-f) -2.50)
sCi) = -5OW +50<,-^ ~

Etc) ■- S(o) - O

F^ is defined by Barker^ If 4=l/t then ^=l/£and ^^=l//*H. The best
values of Ay-x and .A. for a given temperature and volume are those which
minimise the free energy subject to the restriction V=Nlf.A . If /\-
and y^- qj'-t then A andy- can be eliminated from the theory and the
dimensionless variables t and q iised in their place. B and G are then

given by

p — Q ^ f \[o. \ ^ a ^ ^ j> f \j0 Vt^ ^ RT W| ^ ~ fRW/

In addition, we have , ,

4
= i V Vis

cr -(.<£. v Vo'
It is possible to derive expressions for the pressure and entropy from

7.7 and proceed with the calculation as a theory of liquids in its own

right. However, since the theory resembles Barker's theory so closely
we see little point in doing this. Instead we demonstrate how the

accuracy of a variational principle may be assessed.
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7.3 Exact Results.

We denote by the free energy per molecule due to L„.
S II

p. t/X. — iL-v x ~f ^
where I is defined such that L^=Xl. By applying the usual thermodynamic
formulae to Fg the pressure and entropy due to L^, are found to be

t'f-U - iCfX%) ~ ^ Cf)B % Cti
t i(»U 111;)
= t.tU + -dx - a §? v c ^ -7 /o

where I*j- 4 and -t c. — - '° B 3d
Eqns. 7.8,7.9,7.10 are the exact thermodynamic equations for a system
that has a free length given exactly by L„.

7.4 Application of a Variational Principle.

Defining '--KS) in an obvious manner we have

V- £ - ^ C cA^l
is the potential restraining a molecule to its own plane. Following

18
Dlansoori and Canfield ' ws

such that for this system

18
Mansoori and Canfield ' we consider another system, the reference system,

- XXSo ^ ^
[ah quantities associated with the reference system have a 0 attached
to themJ
Then /j^

I4 __ f XX X ~ ptv if)
- ^ *. x

/LI is the probability distribution function that a

molecule .in the reference system is at distance !> from its plane and thus

L^/L° is the expectation value of exp^- ~ 4" over His distr¬
ibution function. That is

q! = L~ f (4> ~
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The free energies F and F° are related by the equation

Following the method o4- Zwanzig ^ we assume that (F -F°) can he written
» s s

as a power series in ^

o ^ W
Fs - Fs° - -- *

W—I
2 ~ C-P)W

(The convergence of Zwanzig's series is considered in section 10.2.)
Hence

•Fff ( FT \ - Fx V ^ ' /°
¥e now have exactly the same form of equations as Zwanzig and hence his

results and those of Mansoori and Canfield can he used. The only differ¬
ence is that our meaning of \ )>0 is different from theirs. Thus

Fs < Ff 4- K, "7 II
where see that if the reference system

« c.
is varied in such a manner that <4} •-=> then 7«H tends to equality.
Thus if A) is chosen such that it is characterised hy one or more arbitrary

parameters and is also similar to ^ then hy varying the parameter(s) the
right hand side of 7.11 may he brought to a relative minimum. Provided

^ is reasonably well chosen?7•11 is assumed to become an equality at the
minimum and thus the properties of the real system may be obtained.
We will investigate the accuracy of this assumption.

A suitable reference system may be chosen as follows. When ^ ^
we have ^

$&%)= ^ P 2 TRFf 5O«-0L-S)c
and thus is given by

Kl)-- W-rS-C.l" 1.2
where the coefficients can be calculated exactly but we do not display

them here as they are of no direct interest to us. This power series
in ^ suggests that we take

fib r VTA I2
where A is the variational, parameter. With this choice of the inequa¬

lity 7.11 becomes
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g ^4®. ft ^<2-
%

—A/k

•Cr

! 1 f'r o\45^itec,^-Bprt^~ ^

40M

7-rS,

1

-In appendix 4 we show that the.right hand side of 7.13 has probably only

one minimum for Ay 0 and so no ambiguity arises on minimising 7.13. The
minimising process must be effected using numerical methods. The integral
was evaluated using Weddle's rule and the minimising procedure was that
of Powellf^

With the minimising value of A the variational pressure and entropy
are given by

+
4 X

(1)1-7
tL, J4.

llr

4-
7,

A-1 -ft/k

K ^4 (M/'I) -

1 /s TV Wr/s
- V/v0

7-5 Results„

We have evaluated the exact and the variational thermodynamic equations
* *

for various values of T and V . Fig. 7*2 shows the values of a which
minimise the right hand side of 7.13. From these values it can be seen

that at all except large volumes, the variational expressions can be
—A/4

simplified firstly by neglecting terms involving factors of e and,

secondly, by putting erf (a/a/2) =1. Mansoori and Ganfield's"^ treatment
of the solid state is consistent with this conclusion. The exact and

variational results are compared in Figs. 7.3-7.5 by plotting the percentage
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Fig. 7«2. Minimising values of A as a function
-X- -X-

of T and V .
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Pig. 7-5* 7° error in the entropy as a
* *

function of T and V .

error in the thermodynamic quantities for various values of T and V .

The overall results are as follows.
\ *

1) For given V the variational method increases in accuracy as
*

T is reduced.

\ *
1.1) For given T the variational method increases in accuracy as

V is reduced.

Writing out 7.12 more fully we have

^ - T^l £ (uo5tiO -sro5(fe)V+i )5>i +-
+ (yu-5.o5<JO -U-?sr^Cs)V)v ? .

For small ^ only the first term in this series is important and thus
4,1*^ uv \tT~ ^ is a good approximation. Since the probability that
a molecule is at distance ^ from its plane is proportional to
we see that as 4^*}) increased the terms in the exact equations
involving are dominated by the values near • Thus,
as i-s increased the approximation kTA^^ becomes better since the
region near becomes more important, and hence the variational results

*

show an increase in accuracy. •K1) i* increased by decreasing V or
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* *4T , the former producing a larger effect since it appears as 1/V
r * *
LOf course we are only considering the values of V and T which normally
occur in theories of solids and liquids and not abnormally large values
for which the method is useless anyway.I

These results are what we expect since at high temperatures and

large volumes the concept of moTecules "being bound tightly to a plane

becomes inappropriate. We expect that the relatively large thermal

motion and the relatively weak potential (due to large intermolecular

spacing) will result in a freedom of movement that does not exist at
* *

low temperatures and small volumes. At such values of T and V ,<4
must be chosen such that it resembles 4H\) more closely: for instance,
we could take

where A and B are variational parameters. Unfortunately, when
is improved upon in a manner similar to that above it usually becomes

impossible to evaluate analytically the properties of the reference system.
To overcome this difficulty a completely different reference system must
be chosen. Thus, for a given problem we might use simple cell theory
at low temperatures to define a suitable reference system, and at higher

temperatures some form of tunnel model to define a completely different
reference system. An attempt can then be made to match the two solutions
at intermediate temperatures.

In conclusion, we may say that provided the reference system is chosen
with care the variational method can give extremely good results.
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CHAPTER 8

APPLICATION OF A VARIATIONAL PRINCIPLE TO A SYSTEM WITH AN ANGLE-

DEPENDENT POTENTIAL.

8.1 Introduction.

The two treatments of melting we have discussed so far are both

rudimentary in that neither involves the evaluation (or at any the approx¬

imate evaluation) of the partition function for a realistic angular two-

body potential. In this chapter and the next we attempt to rectify this
defect. Of course, the exact evaluation of the partition function is
not possible and so we resort to an approximation method which in this

18
case is a variational principle due to Mansoori and Canfield. For

simplicity we confine our attention to monatomic and diatomic molecules.
In the next section we outline Mansoori and Canfield's derivation

of the variational principle and indicate how it may be applied to a

system of diatomic molecules while in section 3 we consider the choice
of intermolecular potential. The remainder of this chapter is taken up

with the application of the variational principle to this potential. In
the next chapter we discuss the determination of the parameters contained
in the potential and display the results of the theory.

8.2 The Variational Principle.

We consider a system of N molecules occupying a volume V. fAt this
stage we are not specifying the type of molecule but dealing with a

completely general system."] The partition function is given by
Z = & Q./N !

where R is due to integration over momenta and Q is the configuration
integral ~

Q. " ^ cA. £ e ^
U is the potential energy of the system. Q is the integral of e ^ over

all the relevant co-ordinates, denoted by ^c ^. We now consider another
system., the reference system, of N molecules in V such that the potential
energy of this system is U°.
Then _ f> r> t a °-

0.° = I £ <4
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Now
. D

i.e.

§» - ^ <£^rc] ?.|
and so, since e -P° /q° is the probability distribution function of the N

molecules in the reference system, Z/Z° is the expectation value of

eXpf-^(U-n°)( over the reference system.

(!.(. u. - )\>o 8 • a
42

The Helmholtz free energy is F=-kTlnZ and so using Zwanzig's infinite
18

series for the free energy (but see section 10.2) Mansoori and Canfield
are able to show that

F < F ° 4- 7c ( S • 3,
where

7x , = <: u>0 - <te>0 ^ 4
F° is the free energy of the reference system and ^04")*ois just its average

potential energy. Inequalities like 8.3 have been derived and used by

many other authors, (see ref. 4i) The inequality 8.3 is analogous to

7.11 and the comments made there apply equally well here. That is, 8.3
may be treated as a variational principle if U° contains some spare

parameter(s).
We now specify the original system taking the N molecules to be

diatomic with U given by the sum of two-body potentials.
—

(A ~ ^ A *^J >U} jJ ^
^ ,4 -

th
where r. .= lr.-r.|, r. being the position of the centre of mass of the i

ij -i "J -i ii
molecule. to . J denotes the angles specifying the orientation

th th
of molecule i with respect to the line joining the i and j molecules,

(see Fig. 8.1) We also assume that

ii, 'j i )

molecule j
I

molecule i

Fig. 8.1 Definition of w'H and w!"'
i .1
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Q is then given by

Q S "5 cAv^cAcoj^CAoj'* d<^(lN
v JL ~ ~'v '

. \;- 1 ■ . -. - - t 2,^ ^ ' I N l <z <T~du,i cau-^ ._ , — ®

where — <?>Ws9i ^ckfc^ and. the limits of integration are the
normal ones for spherical polar co-ordinates. oAs"fcancls for these limits.
The reference system potential is defined similarly. Thus

A/

^ U - Z ^ u { I CJ -Lj U3 'A v l A / <- J i
1 iO-i

-1 s~ P rr r . .-.■ \ rPu
'pi- I" "JJ"" d-'~
t-j y-' v jl • aL F«i

NJ\J-

-pi -isV S«U...^ v 0l Q

e cAjf .y ch'f^ cA <---x ^ ~ duj ^\ ^ C
where

v 01

. dui^ - . . _ .. (XoJ^J _ . . cAuj^1 - -, ot<*V %
In principle, we now determine u and proceed with the theory.

However, although the angles defined in Fig.8.1 are most suitable for

expressing the interaction between two molecules they are not suitable
/ p)for evaluating ^ ^ . This is because each molecule has 2(N-l) angles

associated with it. Consequently we re-define the angles so that only



-70-

two angles are necessary to define the orientation of a molecule.

However, the cost of doing this is that the potential becomes a function
of the vector _r„ instead of the scalar (_r_. The angles are defined
in Fig. 8.2.

~>Z

Fig. 8.2. The angles

We now find

~ ^ f tV C-1 i tip ).
V JL

cUf ^ rA vJZ v ^ ^ &

As we shall see in the next section u depends on ^2=—2~—l but not spec¬

ifically on _r^ and _r separately and so

— j OZ \ j ^ ^ ^ Q t_ (cJi^^ oW d v (A J<L~Ae> ■=, v
\J$l

%'°t

Strictly, this last step is only valid for a fluid but we will assume it
is true also for a crystal, This is probably a good approximation just
below the melting point which is the temperature region in which we are

interested.
i is the Probability of

finding two molecules in the reference system separated by a vector in the

range v_ to r+d_r with orientations in the ranges to R i -VtA-O^v and to
<R,vcXJlX' We shall call -,0(2)

vtr
bhe generic second translational-rotational

distribution function for the reference system,

principle is given by 8.3 together with 8.4 and

Hence, the variational

1.9.
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8.3 An lntermolecular Potential for Diatomic Molecules.
i "I — ■■■ ii i i | '?■ " u

In this section plausibility arguments are proposed for the form of the
interaction u (r. .,W1J between two homonuclear diatomic molecules.

44 1J 1 Jde Boer has calculated the interaction, V. ,, between two hydrogen molecules
in x

and finds that / \ /n\ ,0\
V. . = E + E + E^ ' 8.10
xnt r a a

(1)where the repulsive part E is given by

£^ ^ ^ [ c *+*) L ft** *» v 9 0 ~^ + h~l— [ I -
- (a+u) ^ +•
■V x 6 Ccs ( 4 i^ 'O ^J Ccs llt CtaO- a {*" J

£ 4i - 4 [aa+k)(Css* 9-t 4- Cos'5 S-a ) ^
5

-4- j» ) iA+fe) t 8-( •+- ll ^ 0 {^6 i *

(l)
The attractive part is mads up of two portions: Ev is due to quadrupole

(2) amoments and Ev is the van der Waals dispersive term. There is an error m
a (2)

de Boer's quoted expression for Ev which we have corrected below. The
(2) aderivation of E is considered in appendix b«

sx - \ i - S, -v 9a ,}" IS &&& CtsC r
I. rS /

•is*

.'-V V _

•*t» 2. i S ws«. ^ t S' 4-i «- ( CoS-i^a / " i 5 ' ^ 2
^ ^ °S ct'SL 5 *

44. """

5

( £)$. } 1* ~

« X ^£©9^ $ | 8-^ (J •«*. $ t 5»?u«w ©-^'Cs.vS E — 4"x J

- Z 6*^., Cos S a 1 *1 V* I ^ * S
The various constants in 8,11-13 are defined by de Boer. "L® is the quad¬

rupole moment and should not be confused with the angle 0t of Fig. 8.2
The angles 9(, <1^, 4^ are defined in Fig. 8.3. Ultimately we will change
to angles as defined in Fig. 8.2.
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A

0
I V

M-
« /

/

X1

00! =r
* /

Fig. 8.3. The angles
¥e now examine the relative importance of the various terms in eqn.

>.10 for V.
int For convenience we re-define such that is

Thereplaced by Ctt-©iT) • with respect to interchange
fact that V. is symmetrical/ofi and 0* suggests that when V. is a

in ~d inD p.

minimum? where is some unknown angle. Thus putting 0i —St —

we have

1 2-tu+zt)C«19-11 + f | -t C V- J fesfk L
4-7. (S^&Q^cjG-O^)

- e^s-yy v r g- C©s*B-G-
^ L

• y 4- & G i f ^ y
10

__ ^ (4)\_ c, — l- loG>d9 -ISUf't)

E
UN
Cv — G- 0 -

%yG 2X^9-)^
<y •=• 4> t -y>

Doing this, of course, precludes the possibility of the minimum occurring
when the molecules are as illustrated below

/
ft £

/
but in any case this is unlikely because of the close approach and hence

strong repulsion of A and B. The simplified functions E^^, E^"^ and E^^
P Si Si

above have been evaluated by computer for various values of 0- and (£>
The values of the constants were taken from de Boer and r chosen to be a
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typical nearest neighbour distance for the solid state. The magnitude
of the quadrupole term, E^1"^, is at least a factor of ten smaller than
either the repulsive or the dispersive terms. In addition, variation
of angles causes the repulsive term to vary by a factor of ten and the

dispersive term tovary by a factor of -jt. Thus we assume that the quad¬
rupole term and the angular variation of the dispersive term may be

neglected.

is parametrised through A and n but we will take n=12 for a

reason that will shortly become apparent. In addition, we cut off 8.11
—in—-2

after the term in r in order to make the calculations manageable.
Thus

^ - 1^=2" lt V i u (QJ. ^ f M
which is of the form VA O, 8
If cr is some constant then

\j uv\ — ^ — 'V j ^ (^"y) ^ \
^-Cb^a-t) - x] "§ <P

"here
g , u, = /o-1 u, = AhMY6^ ' /G ft

Thus the interaction between two hydrogen molecules can be written in the
form 8.15. We postulate that the interaction between any two homonuclear

molecules of the same type can be written in this form with £ ,cr, Ptand "L> z
characterising the substance. The determination of the parameters is
deferred until the next chapter. Introducing the angles instead of
does not alter 8.15 and so u(r^ ,to^ ) is given by 8.15 with
replaced by r. 9-^,9-^. If =0 and=1 the potential reduces to the

1y x 2 1
Lennard-Jones (12:6) potential which is known to be suitable for describing

many properties of the rare gases (monatomic molecules). In addition,
the parameters £ and & for a (12:6) potential are known for many substances-
hence the reason for taking n=12. Thus we shall be able to reduce the

general theory for diatomic molecules to one for monatomic molecules

simply by putting\?~=0 and 12 =1.
now ^ 1 ^We must/derive the interaction in terms of UCL and . Suppose the

orientation of (r..-r. ) is given by .. That is, the position of
molecule j (see Pig. 8.2) with respect to molecule i is given by (r. .,f. .,11. .)

!«]
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in spherical polar co-ordinates,, We need the relationship between the

co-ordinates (^iJ'$iJ) and ® i?$„-)• The two co-ordinate systems are
related by a rotation. I? Oxyz is the original system and Ox'y'z' the
new system then

z' = l^x + m^y + n^z
where (l^,m^,n^) are the direction cosines of Oz' with respect to Oxyz.
In this case

Thus

Cos 31 t Swv© I -f '

-t-C«C&*> ®l
i i

and a similar expression exists for cos£).'»
Consequently

V \2-S_ ~V; C.l-j ) ^4 1-1 (1 ^ ) +~
+- ^ Cos ®v f- >c\ SC~ ®J CasU ;r€j ) t
p CeB 1 ^ Cz£,(S)j ^ ^ H & " I C

8.16 is the expression used in evaluating 8.9.
We must now choose two reference systems, one representing the solid

state and the other the liquid state. The transition properties are then

predicted by solving the equations 1.1.

8.4 The Solid State Reference System.

As we have already pointed out in chapter 3? the cell theory (or free-
volume theory) provides an adequate description of solids. Since we

wish to apply the variational principle we require the reference system

to be not too different from the real system and consequently we take for
the reference system a system of cells as described in chapter 3. Thus
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the configuration free energy for the reference system is given by
o

where

NWr

v?

s-n

cbfckR- % IS
b c

b"(jr,yY= eho/o) E°(o,o)= B° % h
\jie have simplified the notation of chapter 3. The ° in the above and

subsequent equations means that we are referring to reference system

properties.^ To calculate v° we need which is the total potential
energy of interaction between a central molecule at position _r in its cell
and at orientationiJZ and all the other molecules at the centres of their

cells and in their equilibrium orientations.

To obtain an expression for we calculate and then

simplify this latter expression calling it di1". To calculate v^)we use the
'smearing' approximation regarding the c nearest neighbours as smeared
over the surface of a sphere of radius a. (see ref. 6)

X /I

Fig. 8.4. The smearing approximation.

The positions of P and Q are (r,$',<|?) and (a,^,^) respectively. The
number of 'smeared' nearest neighbours in an elemental area around Q is

C /ttc . We have to write down the interaction of the molecule
at P with the 'smeared' one at Q and integrate over all^-andcf? . Unfort¬
unately we are unable to carry through this process analytically and so

we must make a simplification. Even if we could evaluate the integral

analytically this would lead to problems in calculating

and also to a vast increase in computing time. We will discuss these
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points further in section 10.3. Consequently we pick a particular '
andcj>Jand say that the interaction remains the same for all other ^'andCjb'.
In fact this is the angular equivalent of the smearing approximation.

Now it turns out that the magnitude of the interaction when 9'=0 is the

same as that whenQ'=lt and so we will assume that this is the interaction

for all^' and<£>'. If ©'=0 then

and

v Cv--^U9n> GS© V2-1
where <& ,£) is the orientation of the molecule at P. Hence

ECx.J^ - \ uXf-,<E)Ew»c»8cfcf> «
D-o 4>-c»

u(E,t3L) is 8.15 with cos^Q in place of cos 9^, cos*qQ. in place of
cos1© and E in place of r. Co s9^ is tha same as cos 9pQ with the

C- W, P
minimising values® . ,<£> . replacing© ,<F. The evaluation of E(r,Jt)mxn7-^ mxn 7— —

is considered in appendix 6. For a face centred cubic lattice (for
2

which c=12) we find to order r

tUi •= k&l ( 1 + *>)(\ + s G)
V I UW1 U, (j^Vl % <2^© (1+ I^ X* ) +-

+ !t(Vu*©}0 +^ £)] ^
E C°|C>^ — U % i (£) — i%) ~E

4- 7-2-1
is given by

G C G J?. V- tC ©-V- v=Co, o ) 1
and so using 8.23 and 8.24 if is easy to show that for the real system

2
can he put in the form (correct to order r )

v^Or.Jl^V^A G -CGosf©
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This expression is identically zero if r=0 whatever the value of © .

However, if we assume that the central molecule is at r=0 and has orient¬
ation then "by summing directly the angular potential over the
twelve nearest neighbours (unsmeared) we find that is not zero

but is proportional to cos 2®. ^Extremely brief details of this calcul¬
ation are given in appendix 7.J Consequently, we postulate that 4>u,jz) as
we have calculated it, should really have the additional term

BkT
The reasons for taking this particular functional form are: a) it is not
too complicated and hence we can actually do some calculations using it,
and b) the occurrence of the cos in as calculated and in 4>(o.i J<L)
obtained by direct summing, the fact that we are dealing with diatomic
molecules and hence should use a double minimum angular potential, and

27the fact that this is precisely the situation envisaged by Pauling all
combine to suggest that (l-cos 2©) may be a suitable form.

Using this expression for^l^JL) for the real system we define the
reference system to be such that it is described exactly by free-volume

theory and has an exact given by

<,b° i't, JL) - WT<<5 A v ^ <2.^ % 7-7
A,B and C are the variational parameters. We can now see one major

advantage of the variational method. viz. Although we have had to make

several approximations to arrive at 8.27 we can define the reference

system such that it is described by 8.27 exactly. Of course, the better
the resemblance of the reference system to the real system the better the
results are likely to be. It should be noted that in this case we do
not need to know u° explicitly.

o('2)
In the next section we derive an expression for £ ^ X. ) .

® • 5 Evaluation of t S , '7*- < Jl7)
Corner and Lennard-Jones^ have derived an expression for ^ (R,X.(, <52.^)

for a cell system subjected to an angle-independent potential. In this

instance, of course, reduces to , the familiar generic distr¬
ibution function which is proportional to the radial distribution function.
Their derivation is easily extended to cover the case of a cell system

subjected to an angle-dependent potential; however, both the original
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derivation and its extension to angle-potentials require that be
a scalar function of jr. The potential of eqn. 8.27 satisfies this
criterion. We find

Nc
O

c- I
&

HSrV-^c

J" Po©J©)
where

? ^ ~ r ^ r77T/7^ " ^I ^ 1 ^ Cv / W^eas.
o ^ Jo
*th.

I\h is the number of i nearest neighbours at distance zn. (z^=a)
®us

^ ^

tW-
^ylA'V b\. (<\

f — '/
S cAl?

l V*-— it/^

where ,

•'/2-r ZKn fU

"7 b°l

^ = ^ |^FL%'^^^©cA-tci(S)^ ^'"2°'a ->o

and
.2.

fc%,- r\sl v-K ( - ctr 7 ■ l
The exponential terms are negligible when ^ and ^'are greater than g-,

for otherwise it would not be possible to say that the molecule is in the

neighbourhood of a lattice site. (i.e. a cell centre.) However z^/a^. 1
which implies that, for the integral involving t,' to be non-zero, I/*l
is less than -g- in which case -jr. Thus the upper limits in both cases
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may be replaced by -g- since both are greater than ^.
Define I& ,Jl) by _

t(j o\- ) ^ 5- 'UV<||2XU,Ji) - / UI 3 ' %-12.
O )

th6n

* xx(x-t< »oi(rv»^
go

e£?(A. s-si,
where

A = -/ ^ v, \ (

'X®, ■+" CcsXCSL) I— -t
KJ 'X-* 1 - '
v ituVs-r i, 4, a/^H

'^4 444^)4*̂*
c 9 1

q o *\ o A U&r ^ tbf-tn

= A - C e^xCjDj 4 - ', '1

- I \r'rd&s^&^.&G&2&
-J (A,B,CA - ^ -ecoixe)^

The expression 8.35 for f\ ^ is derived explicitly in appendix 8.

8.6 The Variational Principle Applied to the Solid State.

From eqns. 8.3 and 8.4 we have

v < F° ^<ia>0-<U°>0
where is given by 8.9 and 4w> is the average energy of the
reference system. F° is given by eqns. 8.17 and 8.l8.
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i . e
C ■=.p° Nj b° — KJ Wt X- v|
v.-

A JL

From eqn. 8.19 we see that each molecule is in a potential E(r,E£_) where

E K© =1 ^ (S,© -E E°
Hence

^°>o= *

where is the average of over the cell and is

given by

Vtii Ji)\— \ (Xc f, Ji) <*v*oU2_ %

<u°>0 - ^ e° f N <v^Ch J2)X ? 2.S

Thus

£_ <_JUv°A- <u_>"""

\ KiE v ^T"Err ^ KjE^V

It is easy to show that

\)^ ^ ^ '2-tl
= ?LS/^ TU\ B>,C_)

Xv°r. jiV)>^ = | %-v s.- B ^ XT % UB
where Ei —^_See appendix 8 for details concerning the neglect

——f 1of quantities involving e 4 or less. On using eqns. 8.9>8.16,8.34 and

8.35 we find. ofe Kj.- n ~^ ^

1
t=° 5),=o

,2.*" pft g*

\ \ t>4xr-^)^+-
5,-° ®r=o

Ii^ t G»s(\^~ V 4- (X\~\Si~(S^
t&s C X "" z.) -V- *§> ©sQD?_ ^ z ^ — 0.

z. •
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BOi-s X®,v

(X(i4i C ^rf ^

P. ^iv^^vvvQccA^. cX^c^vjeA- (S)( d£ id@z M3^ % • 44
"where C© — ~HL t — C\./J 2- CWvcX ^> ■ -- t t "V" Ov./.4
After integrating over f ,pt, and f^2_ and making obvious changes of
variables we find

__EL < JL f- - i JLp*A—! 4. "feTA -

NV-T "- 3-2. ?_ 3-
*L /^. r.1 rl p! - ,

\ /
I— . O / 1 ^

t* r^( ?'J, J , 3, Ca^C^+2'*)
-vv

^ QJl-V^ )

\\

li + 2i+T ^© ^CHC-XC^tft+C-XCM*-)
— -V C - C»uc - yi ?

© i-i cU , Ciu^ Ub-
- T-Cl^b^)' 0'

where a* = a/cr ,T* = kT/k , z* = z±/a, £ = 4*2/©, £* = pC* = (z*-Jj)a*,
fl = (vA)**- C is the number density N/v, The right hand side of
8.45 is minimised: with respect to the variational parameters A,B and C.
With these minimising values the compressibility
and entropy C>——are given by

Dy. - , , jr ^ <£■**■ x- ^ r' r1 r' 9 1
~ 1 '

Xjrr ■© *'X JU
- ,_Zi v ~J_

3 ^ul+J<mcm-c.~
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s ox I
^ c — "XC UV v>X) " t )

aJ'ka \ c) — 'xc. y^/Ax)
JL JLv i. __ \^-*- X iU Xrcs V ^ U~]
K)k> T b P* A

The computing problems involved in evaluating these expressions are

discussed in section 9.2.

8.7 The Variational Principle Applied to the Liquid State.

We have seen how the variational principle may be applied to the solid

state by choosing a reference system resembling the solid state. Similarly
with a judicious choice of reference system the variational principle may

be applied to the liquid state. We expect that in the liquid state the

angle dependence of the intermolecular potential will be less important
since the intermolecular spacing is, on average, greater, and hence we take
for the reference system., a system of hard spheres such that

L° : ^ %u*( ob * r.< qK
The variational principle is

F < f° + - < Ur >o
but in this case is obviously zero. We have

- n jfe r r r fr r rrc- - * ca? ^ ^ ^j@i=o •

where g°(r) is the familiar radial distribution function for an angle-

independent potential and in this case is the radial distribution function
for a system of hard spheres. Carrying out the integration over angles
and defining c=d/cr we find

AOo = <?x ?
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18
Following Mansoori and Canfleld we introduce G(s), the Laplace transform
of the hard sphere radial distribution function g°(x),

(kis) - {X sr I

Wertheim^ and Thiele^ have calculated G(s) taking the Percus-Yevick

integral equation as their starting point. Even although the Percus-

Yevick equation is an approximate equation, it is sufficiently accurate
for the case of hard spheres. (see section 1.2 and ref. 48)
G(s) is given by

p I c \ ^ C? . <~ Q

L.(3) — vOvXvt)l S ^

sCb) ^ +Gi,+~ l^iCs~ C ^

Define U, (s) such that1
n c**

yk(jt) 'ci_ ^ ^ ^
Where

r i 40

Xu*(jx) — \_ CxO ^ Qcc^ ^ QcO llvJ ^ ^
Thus the integral in 8.5O becomes

nO6 „00

Hence

^ ^ U1 Cs ) K Cx) gW-S
— \ Ua(s)GcO) ds

J G

4U.Y =■ 4 SSO G JO

Using Laplace transform tables we see that

. \ <Sl° _ ~*> L 4- 9 • <^f
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The configuration integral for the reference system is
o

G? = u*r &
where Q is due to integration over translational motion. The term (4tt)
comes from integration over the angles . and must be included for

consistency. Thus
-es. --.W +- EL
N\*x~ Wte-T

lA-0
where F is the translational free energy. Using Mansoori,Canfield and
Provine's"^'^ results we have (after correcting misprints)

11 =JUly-i)'12 -*- + _ a v JUf %■<*&

By letting i^~> 0 we see that 8.60 includes the communal entropy term for
an ideal gas. That is, C5" of eqn. 3.8 is equal to e„ However, in the
solid state we take cr=l and so we expect that just above the melting temp¬

erature cr is also unity. Originally, it was suggested by Hirschfelder,
50Stevenson and Eyring that cr changes from 1 to e at the melting point

51 52but this hypothesis was examined and rejected by Rice and Pople .

5 3 54The results of Barker also support the view that er=l below and just
above the melting point. Consequently the term -19/4 should be -I5/4.
Thus the variational principle becomes

+-7^- v t-~'~ -ifU>T ^ V U J l-M^ k v

..DO

V kit \ Ui is) (t is) oU. % G 1
r Jo

c is the variational parameter. The compressibility and entropy are

given by

^ ^ -U- ^
where

r sc \ +-11 v-xvui
H(s)= * 1 l U %-bU1

\\-OD +-SCS)
The numerical evaluation of these expressions is discussed in the next

chapter.
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GHAFTER 9

DETERMINATION OF PARAMETERS AND RESULTS.

9.1 Determination of Parameters.

In chapter 8 we saw how a variational principle could he applied

to a system of molecules interacting through the potential

v t-v-/s - a] °l I
CMAjdL -V ^ —where £ - ) ~ - v ((>A

In this section w

may he written as

3 & "i. CJ"

In this section we discuss how 2. .cr, "i2 andV may he determined. V. .2 1 mt

Vvwl M
y\2 1

For homonuclear molecules is given hy

between the two nuclei of the molecule,

given hy

44
= 2d where 2d is the distance

55It can be shown that d is

B l-

B can he obtained
e

being the reduced mass and c the velocity of light.
55from hand spectra and thus an experimental value for d obtained. To

he more exact, we should average l/r over all quantum states but the
omission of this correction introduces only a small error. Thus, we

will take the value of B as measured in the ground state.
e

55-57
gives the values of 2d and for various molecules.

Table 9*1

substance 2d(X) Q2=2d2(X2)
H2 0.742 0.275

n2 1.094 O.598

°2 1.207 0.728

F2 1.435 1.030

ci2 1.988 1.976

Br„
i <1

2.284 2.608

Values

Table 9-1

of 2d and Q2
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The constant K is the coefficient of the term l/r^. According to
de Boer's calculation K—-j- AfejJ2 where ^E is the ionization potential
andthe atomic polarizability. In fact, this expression was originally

88 69 60obtained by London ' using the Unsold closure approximation. Mason

and Monchick B have discussed two other formulae for K, the dispersive
constant. They are the Slater-Kirkwood (SK)^2'^ formula

I PES z'-IW
k V V c<

and the Kirkwood-Muller (KM)^4'^ formula

K = z A?. °t U
N is the number of electrons in the outer subshell of the molecule and

the atomic diamagnetic susceptibility. The other constants have their
usual meaning. Extensions and refinements of these formulae have been

discussed by Salem^ but these will not concern us here. A comparison
of results from all three of these formulae with the accurate result

obtained from brute force summing of the pertubation expansion for the

dispersion energy shows that the London formula gives results which are

too low, the KM formula gives results which are much too high (due probably
to neglect of correlation^), and the SK formula gives results which are

/T ry

remarkably accurate. Where possible we have calculated K by all three
formulae for the purposes of comparison but in view of the preceeding
remarks we have chosen to use the SK formula in further calculations.

Table 9.2 shows the results. ^ was calculated using the Clausius-Mosotti
formula and observed values of the dielectric constant.

substance N '^xlO29 /.xlO24 — 11
AExlO

59
LondonxlO SKxlO59 KMxlO59

*2
°2
P2
C12
Br2

2

6

8

10

10

10

—0.6606

-1.992

0.749

1.621

1-530

1.036

2.034

8.299

2.499

2.485
2.003

2.852

2.115

2.051

1.082
'

4.897

3.517

2.296

6.563

105.9

I.153

6.360

6.734

4.195

II.54

95.11

1.215

7.031

-6.722

-9.361

33.58

190.8

Table 9.2. Comparison of methods for calculating K. N is the number of
electrons in the outer subshell of the molecule, ^ and/, the atomic diamag¬
netic and polarizability respectively. The experimental values are all from

"bh.The Handbook of Chemistry and Physics (46 edition, The Chemical Rubber

Co.,1965). All quantities are in cgs units.
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There remains the constant A. Unfortunately, since the repulsive

potential is to a certain extent arbitrary no theoretical calculations
for A exist. That is, there is no reason to prefer a repulsive term

n , , , -ar
of the form constant/r to the form constant e except that the former
is easier to handle mathematically. Consequently A must be determined

from some bulk property such as the second virial coefficient.
Let G- be some constant which, for the moment, will remain unspecified.

Then 9.2 can be written in the form 9*1 where £ and V are as defined
£ ^

there and V = Kcr/4A. Now it is possible to evaluate the second virial1
coefficient exactly for the potential defined in eqn 9.1 (see appendix 9)
but the resulting expression is an extremely complex double infinite
series. Instead, we follow ae Boer ^ and use an approximate expression
for the effective spherical potential, V to calculate the second
virial coefficient. The second virial coefficient for a spherical potential

is given by

6= 8-S"
O '

and for an angle-dependent potential by

8> -c> _ _ "XtxNi P
(b KT'2-

The expression 9*5 can be used for an angle-dependent potential if V(r)
is replaced by the effective field defined by

It is easy to show that

where

V4 =. <M> +■^ P ._ °ih

For V given by 9*1 if turns out that by far the major contribution to

Vgff is i-ue to <V> and hence

For eqn. 9.1 we find

=. <Y«,
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v fin - yjk - ^ v c--^ ^
In principle we should now insert eqn. 9-9 into eqn. 9.5 an<i calculate B

but this may be avoided in the following manner. For many substances

the parameters of the Lennard-Jones (12:6) potential have been fitted

using second virial coefficient data. Thus an experimental potential is

given by

= J w«r 0,10
^ T and CT are the known Lennard-Jones parameters. Since the CT of eqn.Liu

9.1 is completely arbitrary we identify it with the Lennard-Jones cr .

The values of B predicted by V „„ and V must be similar and so V „„
611 6X]3 ©I I

should match V as closely as possible. By 'match' we mean that V
exp J * * eff

should look like and lie close to V . There are a number of possible
exp

ways of interpreting this loose statement mathematically but perhaps the
most obvious one is that the function, defined below, should be a

minimum with respect to A for some value of p.
C r'h \l/p^ = ) ) °l"u
L CK J

(a.bl is the interval in which V „„ and V are matched. If, forL ' eff exp

convenience, we take p=2 and b-^>oo we find that ^ is a minimum when A is

given by

jA - e iz S b- — k-( _L ^—. ( Lb \ ^ t- ^3 I ^V"^ —h - z-uj c / iA cr) 17 V^cr/ 2.S cr2- v.**-/
_%% Q*. , -x-z. % f /? A 4- Lib

Of course, we cannot take a=0 since V and V cannot be matched (ineff exp
the sense of eqn. 9«ll) near the origin, one being dominated by l/r

12
and the other by l/r . There remains the choice of a. We have chosen
a to be such that the zero of occurs at the same position as the

zero of V . No real justification for such a choice can be made except
exp °

to say that the effective diameter of the molecule, o', should be the same

whatever the exact form of the potential since similar bulk properties

should be predicted. For the molecules in which we are interested we
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find a/cr± 0.95« Using the values of and K already found together
with the values of A predicted via eqn. 9-12 and the Lennard-Jones 6" we

are able to draw up the following table of parameters.

substance LJ parameters Rotational parameters
vv

H2(Qu)D2(Qu) 37.00 2.928 19.33 1.715 0.03208

H2(C1) 29.2 2.87 21.27 1.758 0.03339

D2(CI) 31.1 2.87 21.29 1.756 0.03339

"2 95.475 3.704 22.74 1.962 0.04359

°2 117-75 3.52 27.88 2.300 0.05876

-2 112. 3.653 11.85 2.700 0.07719

C1? 357. 4.1115 12.53 3.434 0.11669

257. 4.400 8.381 3.438 0.10207

Br2 520. 4.268 68.67 4.1531 0.14317

Table 9»3» Values of the Parameters.
k is Boltzmann's constant. The values of the Lennard-Jones

parameters have been taken from ref. 31. In the case of

and we have taken the same values of and K for each of

them but the Lennard-Jones parameters are calculated either

assuming a quantum correction to the virial coefficient (Qu)
or without this correction (CI) and hence give rise to diff¬
erent parameters. Two sets of parameters are available for

Cl^. For further details see appendix 11.

9.2 Computing Methods.

The computing for the solid state was done separately from that for
the liquid but in both cases the general layout of the program was as

indicated below.
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Very little need "be said about the main program and the thermodynamic

subprograms. In the main program values of temperature, density, etc.
were set and then the minimisation subprogram called. On return from
the minimisation routine the thermodynamic subprogram was called and the

pressure, entx-opy and other thermodynamic functions calculated. The

thermodynamic subprogram used the free energy subprogram, but this latter

computation will be discussed below. On return to the main program the
results were printed out and the variables reset prior to the whole process

being repeated.

For the minimisation routine a very general subroutine, obtained
from the Harwell subroutine library was used. The method is that of
Powell^ for finding the minimum of a function of several variables with¬
out calculating derivatives. The reason for not using this method in
the calculation for the Tsuzuki model is that we had come across neither

the method nor the subroutine at that time. The minimisation routine

calls the free energy subprogram whenever a value of the free energy is

required.
need

The only things thai/ elucidation in the free energy subprogram are,

firstly, the value of i at which the summations ox expressions 8.45 and

8.46 are terminated, and secondly, the methods used xo calculate the
various integrals. The potential becomes negative when r><r and it is

easy to show that when r)c ,n(,.>l. Thus the potential becomes negative
* 1

when d ..> 1.

iKlf > I 8*3i.e,

For the largest possible density, namely close packed density P 2, we
* 1 /2

find, using 9«13 and the fact that z^ = i ' , that i^ 3. Thus, for all
values of the density in which we are interested the terms of the summa¬

tion in 8.45 are negative (or zero) when i=3,4j5>«»*» Consequently the
summation may be terminated at any value of i greater than 2 without

disturbing the direction of the inequality. However, it is known^ that
the number of molecules does not increase rapidly enough as the shell

size increases to maintain the validity of the smearing approximation.

Using the data of ref. 68 we can cal.ciila.te shell surface densities. (Table9.3)
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shell no. i N.
1

*

z.
1

*

47CCL

1 12 1 12

2 6 J 2 3

3 24 4 3 8

4 12 2 3

5 24 4 5 4
6: 8 4 6

M;
kif

Table 9-4 Values of the shell surface densities.
-X-

From Table 9-4 if can be seen that even for i=2 the surface density d^
is already quite small but from our preceeding remarks it is not possible
to terminate the sum after only one term. The density does not fall
below the i=2 value until i=6 and thus if we include the i=2 term (as we

must) then it seems sensible to include all terms up to i=5 since the

smearing approximation will be at least as valid for all these shells as

it is for i = 2. Consequently we terminate the series in eqns. 8.45 an(i

8.46 after five terms.

To minimise the right hand side of expression 8.45 f°r given T* and
the minimising subprogram typically needs to evaluate 8.45 one hundred
times. Consequently, a typical calculation requires the triple integral
in 8.45 to be evaluated 500 times and thus, a highly efficient method of

calculating the triple integral is essential. After much experimentation
we found that a combination of the 32 point and the 24 point (twice)

69Gaussian quadrature formulae was sufficient to evaluate the integral
to five figure accuracy in a time of about one second. In addition,
if B and C are zero then the integrals over and /A^ in 8.45 can

evaluated exactly, giving 4> and this serves as a check on the numerical
integration. The integrals J and J were also evaluated using a 24 pointJj

Gaussian quadrature formula. With regard to the integrals in 8.6l and
8.62 it is possible to derive analytically (see appendix 10) expressions
for them but the accuracy is not sufficient for the values of £ encountered.
Thus numerical techniques must be resorted to again. The infinite ranges

and the form of the integrands are ideally suited to the application of
69

a Gaussian-Laguerre quadrature formula and a 15 point version was used.
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9.3 Results,

In Table 9.5 the results for monatomic molecules are displayed.
*

T
m

*

AS
in

Theory 0.75 1.40 17.9

Argon o. 70 1.69 14.4

Xenon 0.74 1.731 15.1

Feon 0.70 1.64 15.1

Krypton 0.71 1.69 15.1

Table 9 • -5- Comparison of theoretical and experimental

results for monatomic: molecules. For

monatomic molecules V x =l,Vt=0 and 2. and cr

are just the L-J (12:6) parameters.

(See appendix 11 for the source of experimental

data.)

In Fig. 9.1 the theoretical equation of state for the solid is compared

with machine calculated values.

5

NkT

db -X-
T =0.903

'j ^
1.2

Fig. Equation of state for different isotherms. The

points shown by 4> and & are machine calculated

values for the solid phase and are taken from ref. 19.

The points <fi are calculated at T =0.903 and • at

T =0.72.
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Finally the results for some diatomic molecules are given in Table 9.6,

Theory Experiment
*

T
m

as
m

av$
*

T
m

as
m

H2(CI) >1.1 —.— 0.48 1.04 12.2

D2(C1) >1.1 — 0.60 1.27 13.0

h2(q) 0.81 1.95 27.0 0.38 1.04 12.2

d2(q) 0.81 1.95 27.0 0.50 1.27 13.0

•b 0.44 2.07 31.5 0.66 1.37 7.5 •

V 0.54 2.21 34.8 o.46 o.98

u, 0.29 2.31 37.4 0.48 1.13

cl2
Br2

<0.2

0.57

for both sets of

parameters
2.41 39.8

o.48
o.67
0.51

4.47

4.77

Table 9.6. Comparison of theoretical and experimental results for
Mr

some diatomic molecules. T is the reduced melting
m

temperature kT/s.T T where ZTT is tbe L-J (12:6) parameter.liJ JjJ

(see Table 9.2)

It should be pointed out that these results are the zero-pressure

melting properties. in principle, the theory can be used to calculate
the phase diagram, of each substance by solving 1.1 for different pressures;

however, the amount of computing required is too great for us to contemplate
this at present.

From Table 9.4 it is seen that the results for monatomic molecules

are good although a glance at Fig. 9«1 indicates that the good agreement

must, in part, be due to cancellation of errors in the solid and liquid
calculations. For diatomic molecules the theoretical results are, at

best, poor. In the case of H^CCl) and D2(Cl) the melting temperature is
greater then 1.1 and in the case of Cl^ if is less than 0.2. For the
other molecules the predicted volume change is much too large.

There are two possible sources of error, namely, the determination
of parameters and the theory itself. Of the three parameters that have
to be determined (see eqn. 9.2) the one which raises the most doubt is A.
We have used a property of the gas, the second virial coefficient, to
determine a potential which is to be used in the solid state. Now in

principle this should not matter but since in a gas the attractive forces

dominate, (by virtue of the large average mtermolecular spacing) the
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second virial coefficient is not a good method of determining a repulsive

parameter. The same objection holds for monatomic molecules but in this
case the equivalent parameter, IL,T, also appears in the attractive partliJ

and so the use of second virial coefficients is quite justified. This
is also reflected in the good results for monatomic molecules. Thus to

obtain better results we certainly need an improved determination of A; a

method which uses the results of a measurement on the solid state will

probably be best. In fact the whole question of the determination of
intermolecular forces needs to be reconsidered: if, for example, we take

*

A=33.0 for 0^. then the vaiueof T^ predicted isin agreement with experiment,
but the entropy and volume changes predicted are still much too large.
The view that an accurate determination of the forces is xhe most difficult

part of the problem is held by Hoover and Eoss^ who state "a rigorous
theoretical free energy calculation for a real material proceeds in two

steps, both difficult. First, the crystal structure must, be given and
the forces with which the atoms or molecules interact must be determined.

Second, the macroscopic consequences of the forces have to be calculated

using statistical mechanics.... The first step seems to be the harder
one. For even the simplest of real materials reliable quantum calcula¬
tions of interparticle forces in condensed phases have not been carried
out. "

Secondly, there is the possibility of error in the theory itself.

Certainly it is the source of some error since it is. a variational calcul¬
ation but drawing on the results of Table 9*5; we expect that the error

inherent in the theory is small compared with the error due to the inaccu¬
rate determination of the intermolecular force. There is also evidence

that the errors in the free energy tend to cancel each other. Hoover
70 13

and Ross claim that the errors in the Mansoori-Canfield treatment of

the liquid state and in the cell model of solids are both about 0.3NkT.
In view of these remarks we conclude that the basic theory is itself

sound but that a careful investigation of intermolecular forces and an

accurate determination of parameters is required before the full potential
of the method is realised.



CHAPTER 10

CONCLUDING REMARKS.

10.1 Comparison of Results.

In this section we compare The results of sections 2.7*6.2 and 9.3.
With this in mind we have plotted the results displayed in Pigs. 2.9*

2.10*2.11*6.6,6.7*6.8 and Tables 9«§ and 9*6 on Figs. 10.1-10.3.

0(7

AS

Pig. 10.1,

T

.5 .6 .7 .8 .9 1.0 1.1
m

Comparison of theoretical and experimental results

for different models: entropy change against melting

temperature. (see Fig. 10.2 for the key to numbers.)
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2.0

1.9
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1.5

1.4

1.3

1.2

1.1

1.0

® M

D=6

Pig. 10.2.

0 10 20 30 40

Comparison of theoretical and experimental results

for different models: entropy change against volume

change. The circled points are the results of the

variational method,

'2

The other points are experimental
*

values. For BrQ the experimental results are Tm=0.51
s*=4«77•

m

m

1. Xe 2. A 3. Kr 4- Ne 5. CO ). CBr4 7- N2 8. D2(Q) 9. D2(Cl)
10. CH4 11. CC14 12. F2 13. H2(Q) 14. H2(Cl) 15- 02 16. CF4 17. Br2
M monatomic variational result,

d.^=6, c=0.8; e.^=6,csfr0.63.
a«Y=12, c=l; b.^6, c=l; 0.^=5? c=l;
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Fig. 10.3c Comparison of theoretical and experimental

results for different models: volume change

against melting temperature.

From these diagrams it appears that the Pople-Karasz (PK) method
and its extension gives the "best results, and that the Tsuzuki (T) method
and its extension is "better than the variational method. However, it

should "be noted that the PK and T methods both contain adjustable parameters

in the case of PK, the ratio W /2. is adjusted to give the correct melting

temperature for argon (see section 2.2), whilst in the T model, c is not
determined adequately. (see sections 4.3 and 5*3) On the other hand,
the variational method contains no parameters which are freely adjusted
to give agreement with experiment. The parameters which appear in the
mtermolecular potential are all determined from independent experimental
measurements and in the case where the determination is theoretically

sound, for monatomic molecules as already explained, the agreement with

experiment is quite good. As we have previously pointed out, the poor

agreement for diatomic molecules is almos/certainly due to our inability
to determine adequate intermolecular forces.
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By comparing Figs. 2.8 and. 6.2 we see that the PK model predicts that
* *

falls with increasing V" whilst the extended T model predicts that
rises with increasing V . Although the parameter V has different, meanings
in each model, in both cases it is an indication of the strength of the
barrier to rotation or re-orientation and so these results are in conflict.

The experimental results indicate that polyatomic molecules melt at lower

reduced temperatures than the rare gases and so the PK results are to be

preferred. Since we have had to make several approximations to arrive
at 8.27, a potential which is more complicated than that used in the T

model, we see that the true potential is markedly dilferent from the T

potential, , and presumably this is the source

of the conflict. Certainly on the basis of the simple potential above,
*

T^ should increase with increasing tr. With the exception of (and D^)
the variational method is in agreement with experiment on this point.

Finally, the PK model predicts a solid-solid transition whilst the
other two models do not. (More accurately, the variational method does

not; however, that predicted by the T model occurs at the point associated
with the breakdown of applicability of the model due to the partition
function being non-separable into translational and rotational, parts.)
The variational method was applied to the solid-.li.quid transition and so

it is hardly surprising that we do not predict a solid-solid transition.

By considering a second solid state reference system it may be possible

to predict a solid-solid transition. Alternatively, the use of the Maxwell

equal area rule on isotherms for the solid state theory as at present may

indicate that a solid-solid transition takes place but we have not invest¬

igated this possibility because of lack or computational time.
In conclusion, we may say that although the variational method obtains

the worst results, it is potentially the best method in that it contains
no freely adjustable parameters and, in addition, it is also a theoretically
sound attempt at a microscopic approach to the problem. However, the

determination or the intermolecular potential must be improved.

10.2 Upper and Lower Bounds for the Free Energy.

In this section we discuss the validity of the upper bound, which
we have been using as the basis of a variational principle, and, in addition,
derive a lower bound which may be used as the basis of a complementary
variational principle. However, before embarking on this we shall examine
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more closely the idea of complementary variational principles.
Two variational formulations of the same problem are said to be comp¬

lementary if one involves minimising some functional and the other involves

maximising a related functional. The general theory, as well as numerous
71 72

examples, is discussed by Eobinson and Arthurs and extensive references
are given by These authors. As an example of complementary variational

principles we quote the Tempie-Kato^^ bounds on the time-independent

Schrodinger equation. If we have a system with Hamiltonian H whose lowest

energy eigenvalue is then these authors have shown that satisfies
the inequalities

1 < :T\ io-i
where

v\ — ^ V\ ^ ckc ! ^ cku
<£> being any trial wavefunction. One thing immediately obvious from 10.1
is that it is much more difficult to obtain a lower bound as this involves

J„. However, it is not obvious that in many cases the lower bound
73

provides a better estimate than the upper bound. For example, Temple
has shown, by using complementary variational techniques, that the lowest

eigenvalue,X\, of the eigenvalue problem

<9^ with y=y'=0 at x = +1
m the domain l_1»1J

satisfies c, .^ ^ ^ ^ 3.
Now, in fact, the exact value of \ is K2 =9.8696 which illustrates that
the lower bound provides the better estimate. A general survey of the

field indicates that the following hypothesis may be true: if a lower bound
is more difficult to calculate than an upper bound then the former is the
more accurate. The converse should also be true. With these remarks

in mind we will discuss the possibility of obtaining bounds on the Helmholtz
free energy.

Consider a classical system of N particles interacting through a

potential Uq(_r^, _r , . . ., r^) . Then the configurational Helmholtz free
energy is given by

where ^ =l/kT and d.£c^ stands for all the co-ordinates over which the
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integration is performed. Ruelle^ has shown that if the system is to

exhibit thermodynamic behaviour in the thermodynamic limit (for the definition
of the term 'thermodynamic behaviour' see Ruelle^ p.l) then

I) the interaction between distant particles must be negligible

II) the potential must be stable.

\ An interaction is said to be stable if there exists B >/ 0 such that
1 °U (rn , . . . ,r.T) > -NB for all H^O. The stability criterion is also

o —1 —N o J
sufficient xo ensure the convergence of the grand partition function.
The former condition can also be made more definite by introducing the
notion of temperedness. All pair potentials,<#>( t), which are such that

<^(r)<0 for r for some Rq satisfy the temperedness condition.
The probability distribution function for the N molecules is

- aUo
P -a-
» O r-

bJ) QjO

Suppose now that this system is perturbed by a potential U-^r , . .. «^)
such that U, (rn , . . . ,r.T) >y -NB, . The free energy of the complete system1 1 —I\l i.

is given by

=Q- = £■ U"

Thus the perturbation free energy, F^, is given by
.Jli_ ~ \o- 2.
fohnr ivjfe'T ^

Assuming that can be written as power series in p.

^ f. PP"' ^i <• e *

Zwanzig^2, using Thiele's^ theory of semi-invariants, was able to derive
expressions for the w^ in terms of <(u^^ (k, 1 integers). If 10,3 is
valid then the upper bound

p ^ Fo + 2 ^ \ ^ ^
can be derived. However, the series 10.3 exists only if

l) the series ~ ' converges. (Cl)
[_In the thermodynamic limit we must consider the free energy per particle,
i.e. F /N.]
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ll) <^>o exists and is finite. (C2)
Condition C2 implies that =r"^U^e tends to zero as r tends to zero
and infinity. Temperedness ensures that 3o as r-^°o and provided

U_ and U are suitably chosen,3°>b as r^>o. Near r=0 the choice U = hard1 o o

core and U-. = soft core is suitable but the reverse choice is not. If U
• 3is a pair potential, (r), then we require r (£>(r)--^0 as r ~i> .

To obtain conditions under which CI holds is much more difficult

but CI is not a necessary condition for the existence of the bound 10.4
as the following argument shows.

< 1 < - ptA' +P<U,>Xj
X.

p <u,>° <4- <w-l>0+ p<u>>.r-
•%p U8f. W-t- <u>x)X ( Co § 9 < \)

The last step follows from Taylor's theorem in its truncated form. Thus

Substituting this result in 10,2 we have
IF v, ^ CAFX / N

(4 XT x

i.e. F= 4 Fc V Ov>o

To use 10.4 as a variational principle we consider Uq to be a trial or
reference system. If the real system is described by a potential U then
we have

F 4 Fo + <U-u.o>0 \o sr
exchange

If we now f the roles of the trial and real system we find

Fo +- <u- t F fe
where the average in 10.6 is over the system described by U. However,
we are normally interested in the properties of the system described by U

and so if we could evaluate the average in 10.6 we would not require to
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do so as this would imply that we could evaluate the properties of the

system under consideration without resorting to the use of variational
methods. Thus the variational principle 10.6 is useless for any genuine

calculation. It should he noticed that it could not he applied to the

systems described in 8.7 as C2 does not hold.

Nevertheless, a usahle lower hound can he derived from 10.2 hy

noticing that the stability condition implies

Thus

i.e,

i.e.

-B- > - X-

_JEL s .in JX. lo-7
N)\-£.\ NWT WT

F0 - Nfei < F \0- c5
10.8 can be used as a variational principle, being a lower bound
of the perturbing potential. 10.5 an-h 10.8 are, therefore, complementary
variational principles. The variational principle ,10.8 is easier to

apply than 10,5 and so, according to our hypothesis, the latter should
give a better estimate of F.

10. 3 Suggestions fox* Further Work.

We conclude this thesis with some suggestions for further work. In

passing we have noted improvements that could be made in the FK and Tsuzuki
models (e.g. using a triangular shaped distribution function- see section
4. .3) but their crudeness probably does not justify too great an effort.

Howe-vex-, the variational method has a great deal of potential and it is
in this direction that most effort should be aimed.

The whole subject of intermolecular potentials for polyatomic molecules

requires careful investigation and, in addition, the determination of

parameters must be impi-oved either by relating them to some measurable

property of the solid state or else by some ab initio calculation. If
this can be achieved, the theory described in chapter 8 could well be
improved upon by choosing better reference systems. For example, in
section 8.4 we used an angular equivalent of the smearing approximation in
order to evaluate E(x?,il). If this approximation could be avoided it
would lead to a better reference system but it would also almost cei-tainly
mean that the sevenfold integration of eqn. 8.44 would have to be evaluated
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completely numerically. However, this is likely to lead to a substantial
if not vast increase in computing time and so an improvement in computing

techniques will probably be necessary. Q[n fact, if this sevenfold inte¬
gration had to be evaluated numerically, then to apply the variational

principle at just one temperature and density would take at best 14 hours

and at worst 225 hours of continuous computing on an IBM .360/44 computer.
Thus an improvement in computers themselves rather than computing techniques
is probably required.] An investigation of the possibility of predicting
solid-solid transitions by means of the variational principle is also

worthwhile.

Finally some improvements in the general methods may be possible.

As pointed out by Rowlinson^ three body forces are not negligible in the

solid and liquid states and these may have to be taken into account before

agreement with experiment is obtained. It would also be well worth the

effort if the bounds 10.5 an& 10»8 could be improved upon. This may be

achieved by considering high and low temperature expansions of eqn. 10.2,
that is, by considering under what conditions the free energy may be

expanded as an ascending or descending series in (5.
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APPENDIX 1

REPRESENTATION OP £(Jl)

The S function, $0*), in one dimension is defined such that it satisfies
the following equations.

r<*~
j §0^^ — 1 At V I
-<x

. CK

J Six^O^dOC =: £U') (\Y\
where f(x) is an arbitrary function. may be represented as

= l— S k '» ° - x - 2 /\ \ 3

In accordance with f-V! \ and ftl 2. SC<3l) satisfies

5 St^OdJ*. ~ 1

J ^COO Ojlc)
CA^Wc,

where g(-5L) is an arbitrary function of the angles© andsE. . However,

^vv\©<A.©cA3>_ and so =SC©)5(,3i) where S(pO is given by AI'3> and

%(!(£>) by
O < © < 2

s(,©V^ ^
l-^o I O ,

This curious representation of St®) arises because of the occurrence of
Sin© in d«5t. .



-105-

APPENDIX 2

ASYMPTOTIC EXPANSIONS FOR THE ROTATIONAL PARTITION FUNCTION, ENERGY AND

ENTROPY.

The Integra] J -a. <Ax is known as Dawson's integral and an asymp¬
totic expansion for large a has been quoted by Dingle?'' This expansion
can immediately be substituted in the equations for J,E and S but the
resultant expressions are not so useful for computations as k'iH and k IS
since they involve something of the form- constant/divergent series.
On the other hand, the expressions U* >U and involve the ratio of

divergent series of a very similar nature and thus it is to be hoped that
when these series are truncated the error involved in this process will be
of the same magnitude for both. Of course, the two forms of equation
for each of J,E andS are equivalent but perhaps the most direct way of

deriving A 14 and is the following.
We take as our starting point the equation /piO which involves the

integral

XM H (Ay. vV»/|RT^ o

Using the fact that the integrand is an even function about E/x and the
substitution Ce&'A.'B- we fj_n(j

T~ ( X.V~ [ - ^^ —

Substituting
—X—~~ — \ 4- + — (a k +- XL -\- - * - ■>
G&s S4 U 1 a i

into I (A) and replacing u by v we get

Jc
For large oC. the upper limit can be taken to be infinite and hence

X X) 4s S -7- + 4- "42 ~r "n? + 4r 4"'• 4

and therefore

\J

^ ( ok L (X2 \b X3 6^ xX

Differentiation of this asymptotic expansion is valid and hence we arrive
at '"AH and. t-i .
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APPENDIX 3

VALUES OF THE COEFFICIENTS

The first 40 coefficients are taken from Hirschfelder, Curtiss and
it

Bird. The number in brackets after the entry gives the power of ten

by which the entry is to be multiplied.

J bU) 3 ,(J) 3 b<J)
0 +0.173300092 1) 30 -0.6407 38 297(-13) 60 -0.186045570(-33)
1 -0.256369335 1) 31 -0.157421932(-13) 61 -0 .-331312864!-34)
2 -0.866500460 0) 32 -0.38i084270(-l4) 62 -0.585 389288(-35)
3 -0.427282225 0) 33 -0.9O935O173(-15) 63 -0.102634041(-35)
4 -0.216625115 0) 34 -0.213977798(-15) 64 -O.178578577(-36)
5 -0.106820556 0) 35 -o.496703876(-16) 65 -0.308395557(-37)
6 -0.505458602 -1) 36 -0.113781845(-16) 66 -0.528659192(-38)
7 -0.228901192 -1) 37 -0.257301557(-17) 67 -0.899661395(-39)
8 -0.992865111 -2) 38 -0.5745 74040(-18) 68 -0.152006923(-39)
9 -0.413293819 -2) 39 -0.126740983(-18) 69 -0.255019108(-40)
10 -0.165477518 -2) 40 -0.276237519(-19) 70 -0.424864071(-41)
11 -0.638726811 -3) 41 -0.595064372(-20) 71 -0.702970177(-42)
12 -0.238187337 ~3> 42 -0.126729176(-20) 72 -0.115524464!-42)
13 -0.859824554 -4) 43 -0.266889336(-2l) 73 -0.188582182(-43)
14 -0.301005975 -4) 44 -0.555947 229(-22) 74 -0.305812631(-44)
15 -0.102360066 -4) 45 -o.11457 3705(-22) 75 -O.492692188(-45)
16 -0.338631722 -5) 46 -0.233658980(-23) 76 -o.788674679(-46)
17 -0.109133894 -5) 47 -o.471649387(-24) 77 -0.125446234(-46)
18 -0.343058281 -6) 48 -0.942507412!-25) 78 -0.198284843(-47)
19 -0.105304634 -6) 49 -0.186494018(-25) 79 -0.311477990(-48)
20 -0.315974732 -7) 50 -0.365462058(-26) 80 -O.486299852(-49)
21 -0.927683684 -8) 51 -O.7094086.l6 (-27) 81 -O.75466118O(-50)
22 -0.266731917 -8) 52 -0.136428144!-27) 82 -0.116413244(-50)
23 -0.751680455 -9) 53 -0.2599792l0(-28) 83 -O.178519615(-51)
24 -0.207780298 -9) 54 -0.490988777(-29) 84 -0.272l65214(-52)
25 -0.563760342 -10) 55 -0.9191l84l9(-30) 85 -0.412545 329(-5 3)
26 -0.150241138 -10) 56 -0.170570776(-30) 86 -0.621772787(-54)
27 -0.393507931 -11) 57 -0.313859360(-31) 87 -0.93l838554(-55)
28 -0.101353149 -11) 58 -0.572696800(-32) 88 -0.138875583(-55)
29 -0.256846309 -12) 59 -0.103641460!-32) 89 -0.205832571(-56)
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90 -0.3034H074(-57)
91 -0.444839623(-58)
92 -O.648716941(-59)
93 -O.941046888(-60)
94 -0.135798673(-60)
95 -0.19495 37 23(-6.1)
96 -0.27844684l(-62)
97 -0.395685713(-63)

j b(j)
98 -0.559471352(-64)
99 -0.787129896(-65)
100 -0-. 11019890 3 ( -65)
101. -0.153529297(-66)
102 -0.212867226(-67)
103 -0.293731093C-68)
104 -0.403398496(-69)
1.05 -0.5514l8260(-70)

j bU)
106 -0.750255962(-7l)
107 -o.101610131(-71)
108 -0.136988584c-72)
109 -O.183851483(-73)
110 -o.245642582c-74)
111 -0.326746698c-75)
112 -0.432719800(-76)
113 -0.570567479c-77)
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APPENDIX 4

LIMITING VALUES FOR THE EXPRESSION 7.13.

In chapter 7 we derived, the inequality ~~l for the free energy F .
s

where
_ — KV/k )

*/x)l

In this appendix we derive values of3(A) and &tX{A) /&A at zero and infinity,
Since ,r^

H (J-x)=
—

it is easy to show (by expanding «. and integrating term by term ) that

— i— A_ for small A.
13.

HsncG

•M/
c C A

We also require the values of the integrals and ^ Q CT><Af
Using the series expansion of for UK i we have

PC^ ~ X ^3(0 V X. tx-f- C.--7 3C8)%k4- • • • • .
and ' 11!

- x. vo_u3(iz.yii+. ^ '°'>uri^oo v ....*2.v U!
Now ^ (_t>) ^ ^ C&) - ■ • • - I and. hence

phi ^ (n-Tr1* 4- I I-PVT11 - a
a.^ ^ (.V-^V"0 v (. I + "if - ^

P and Q are now easily integrable and we find

$ ' P CV 5=^ I - STCc sr ^ Ca.CV>cVf n S"ST• *=1 I
Thus putting these results together we find

LKv 3-Cv\> — xS S"S- °\ i c - I - 5" t & &] ■ i
l\~» o l-

We also have the obvious result that
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Now

U** 3- (A) — co A A i
OO

<AA _ J— -JL^-JEE.. 2JeEL. kr<^vsH^)]iV^VfAW XA M\.w{.(jA(».) JU^-(JW(5.)'4

J_^L_ - -T7^-^ \t«**>- &Pcx>W*sui^ju^QAI-X) )] ' 1 3
+<-X - i- - * <£-*"■ JAT^1

\ ^ J Li J^{*lK(-x)
On evaluating limiting values for this expression we find

Uw cK3- __.
_ e_ o ^3e> i B» Au- 5,

A -> Cr> ct A

The values of B and C are such that equation (\L'l gives a positive value
while l\U gives a negative value. Hence the expressions ALV - l\U 2>
indicate that'S'(A) has at least one minimum in ^0, ocQ . Numerical
minimisation ofN^A) and. subsequent evaluation of ~3Ka) in the neighbour¬
hood. of the numerically found minimum indicate that it is probably the

only minimum,
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APPEND1X 5

DERIVATION OP E^2\
a

(2) Uu. '11
Since the expressions for Ev ' quoted by de Boer and Buckingham

.slightly a
are both/incorrect we derive the correct expression here. The inter¬
action between two hydrogen molecules has also been calculated by Massey

and Buckingham but using a different approximation method and consequ¬

ently their result is different from that of refs.kk and"!# (corrected).
Since the calculations of refs. M< and TS are more recent than that of ref

'11 we shall follow the former. Our starting point is Buckingham's
(n n )

equation 46 for the dispersion energy,
gp ' between two molecules

in states n^ and ri_ respectively.
^*.*0 _ ^ -r y- 1*0

+ higher order terms.
*• i th th

cki . is the polarizability tensor of the i molecule in the n.A 1

state. In our case both molecules are of the same type and in their

ground states. Thus ^ ~ lA** := being essentially the average

of the denominator in the second order perturbation expression for the

dispersion energy. Hence

^•dU'sp — —- £*!? \ T "fo ^ \ , A 5H - X

= v^Vjs.O = (-5. e* R(5~ R1W)
For a diatomic molecule (axial symmetric molecule described by

— ^ V -0. — ^>0^

fi.c< are the direction cosines of the axis, X the average polarizability
and the isotropy factor. The line joining the centres defines the
z-axis as shown below.

molecule 1 / o \ molecule 2K ^
^ t:

Then O

Tk.X=. -i/R^ a/R.:
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Also

*§, *.>.*3- Cc£, j JL^ — ^>w>9 Si« c5p ^ JZ. ~ CcS

°^XX — ^ Ij C_^ C^'^'"1' ^-'S2"<^> ~
5 -0

^ +- LB.C&s1"^"—0
eC)u^~ ^>k. )j Svvs^B fit5c|>S^ cjj

!>Zy%^& CeA*& <2c£i <£>
— ~2>* ft" S>wB

with similar expressions foretc. define the orientation of

molecule 1. The summation in eqn. gives

T^x V*. ^»Kx^xx +" T^x T^ A K^z r Tkx
V 1 KX l (< Z(^x V Iv,^ t" TVfc c^t
*" V T^Tl^xv^-V
On substituting for each of these components we find

u^r = - inU^B-,+\0«?et.-\)~
-1 y^CdSK+C^Si- i."5^ 8 * E.Cos(.<ti—<fcD - ie>s9i CCSS 1) 1 ^
Changing to the angles defined in fig.*§-3 does not change this expression

(2)
and hence Ev is given by u

cl Cll Sp
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APPENDIX 6

EVALUATION OF E(r5JA).

A ( ur£,<3V)« 8- (AS CA<£>
lT«—^ * — f\

We have ^rr zxr

"here
ai^.A) = l.t-1 (.%)«•-V. 1%)^ *+ teg t>«. (.>)"' t

\u iu^ X?- v-uf a-^ V^
PQ

R and cos ^ ax-e given by

\<5 rr (_P2 + <*?" - Xtw CcS'9 )
Cifi *0) Cc5i<£> A> Wv<2) CcS fii +"

-v (h)

E (.r, 6\) splits up into the sum of three integrals of the type
r- K ^ hfc

•~T~ \ \ % cl.& ?AcJ} L _ ,« t _ , ,-A- V\ —
J J o \1 V\— Cn; \2_y \ Lj

8-TTO C>

plus two integrals of the type
r~< 4 HA ^

Tl = I I Go! S^S y-A* ASuj c= f

1^ is easily evaluated and we find
a-rc f \ - LX v. - ^

(\A-X) CvV L icx-X' *" (OV\ntX ^ J
J. splits up into a sum of integrals all of which are easily evaluated
and gives

_ C [ f" \ I ~"1
rr? =■ it a? + lAAFyX

1_ f_i L_ "1 ? i Zn. (/■+«? )Co»<i>r
<iL.O o?*3, L 0-^V,w RAA-fV^° J \ V \Lceor L

^ °^~ ^^ ^ ^ r - ( / ^~XX +"/ L (cvt^V(a-pyu y.viy^

4 i_ i i r i . \
{cK~ rY\\ ' %UDo? c5, i (X-'^V0 lex-V P^0.
ZH a. cxxr xx© V L r -L v 1 ~i

(lU(\y 1~{c\ysr)xk (ov-^r)^ J
"

\ I
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If we expand Jp in powers of r we find
cr_ = UncS^Of, , , H,rrG^©ri J. 2 <51
p -r~5&—If "5 + Lv + -s1- «.\J

The expression for J_ is similar with(rt) . , cf . replacing G+) dT .Q mm' •=- mm r ° ^/
By expanding I in powers of r and assembling all these expressions to

give S(£,0i) we finally arrive at eqn. 8.23.
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APPENDIX 7

EVALUATION OF v|/(0,Jl) .

In this appendix we indicate how tc calculate the angular interaction
of a molecule at the centre of its cell with its twelve nearest neighbours.
From eq,. 8.15 "the angular interaction between two molecules is proportional

2 2
to cos Q + cos 0Q and hence to find the total angular interaction all we

2 2
have to do is sum (cos + cos 9 ) over the twelve nearest neighbours.

However, we must define the orientations of the molecules in terms of
some fixed set of axes and thus the problem really involves summing the

angular part of 8.16 over the nearest neighbours. The direction cosines
of the lines joining the central molecule to each of the nearest neighbours
are easily found by considering the geometry of the lattice and then,
after averaging over all orientations fox" each of the neighbours, the
summation is easily evaluated and gives an interaction proportional to
cos © and hence to cos 2(E).
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APPENDIX 8

EVALUATION OP A j. .

In this appendix we evaluate A;explicitly» Since Manscori and
tCj

Ganfield have made an error in the evaluation of their corresponding

AI we consider the calculation in some detail.
Prom ? we have

Ai = v

If we assume that f is large it is trivial to show that

Oj = 7<h|:L ;r as-I
If < f|2» then

-v I j T> \ — C'% -&>0~-4-\xx U, JO - ^ 5 41 4L

u\
— B Q i — Cxs~> DuSO — £~

^ -it
where we have neglected a term, involving «_ The assumption that
f is large is justified since if this were not the case it would "be

impossible to speak of a molecule being confined to a cell. In any

case, drawing on our calculations of chapter 7 we see from Fig.7'3, that
the corresponding f, (A), in that case is large and thus we assume f to
be large in this case. Eventual calculation bears out this assumption

completely. Thus
- 1 .

XH.JJX <! Vf , u\ < Mi a
i ro \ cAW
V . >

and consequently
OCi

Ai< \
o

with the conditions (yu^-X /^) and l|L <
Define the Heaviside function, H(x), by

mxiJ 1 ' x>"°
Co ; )c < o
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then

C/\yV\
</

o

< ^ [ - H M*" - \
r°° -7

A; is seen to be the sum of four terms the first of which is a straight¬
forward integral. Because of the occurrence of the Heaviside functions,(
when the integrands of the other three terms are non-zero they are each
of the form <T^ ^where P-2"?/A However, we have already neglected terms

i. 5

involving e 14 * and so for consistency the three terms involving Heaviside
functions are neglected. Thus

A. C cA -

- k {X \ C-V

where 2f = f-, + f9« Consequently to he consistent with our previous
work /Yi, is zero unless

i.e. ^ + p A8'i
-ix M ^

By putting in the constants we arrive at eqn.?-3S..
Mansoori and Canfield state that the condition corresponding to A8.3

is z.-a<R< z.+a. This error is due to inconsistency in the neglect of
—vL~P

terms involving e " where pd} and the subsequent result is that the
limits in their integral corresponding to eqn. 8.44 are such that the

integral diverges when i=l.
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APPENDIX 9

THE CLASSICAL SECOND VIEIAL COEFFICIENT FOE AN ANGLE-DEPENDENT POTENTIAL.

The classical second virial coefficient for an angle dependent
•j i

potential is given by

E> CtV- - C
o c> -Jo e>

where <«_ ^ ancj 5 , t 8 ^ and v|i are the three angles necessary to

specify the mutual orientation of two molecules. Ifc^-^o as r -=>> °o

we have

BCtV^ Afcf Vf'W1'-8,^8tA8,dL8.^<t>cU,lJo O -it Jo GVW»»

In this case

v B 5.1) — 1
which is independent of <fo . Thus B1t)~ W^CT1") where W—"^r^- ^ and
s*^ ^ e c s: ii>- $
• -"bp -p C b ~ b + 'p tU" /** V' '* ~ '"'Dl \ 8-Xcp, rJJ-' >-
Let &=- \U 'rjh-K A~ «*-. Then expanding exp^ YA \ as a series

we have ,_£?
b ^ Z_<Wm

where > .
^ „ _

k. ccs: t-%- «e)n t-vwi <*1-
T

Expanding exp^^ as a series we have
£*3

tsfe, - Z_> a..i
a — o

where . _ .

r 0°° C S C 1 ( U ^^ V'g ( ~ ^ Y ^ Y E 4- Y2!i^" \ .
- io Ao Ao V T* ^ T* ><>; I ^lo *l3L A

*

V L. ~ T' E'O oi-n. b> ?_
By substituting '-yo J-it and using the definition ol the factorial function
and then integrating overyLt and yUt we find

— (, w4. - ^-51. Y v^eY TVx v Aj V.J_\t^a_ ^ bw
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where te 1 u -

w - •j kCWtW+^+„_lva,
D^^.-, satisfies the recurrence relations

^wVt.jCTx ~ t vL^U^-V- ^4. ^ * C"^)^v*VJL
f -> \<o( (w^ +<^w-rsH~n • K _^wV+tiL- Cr^>v^) Lt^) r i "f 7~ v-1 i ^wWJLV.-W0U^vC*,1L"v*Vv"~l^'J '

Finally
no <?o

wft.
W-O JL-O
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APPENDIX 10

APPROXIMATE EVALUATION OF THE INTEGRALS IN 8.6l AND 8.62.

The integral in 8.61 is obviously a combination of the integrals

I5'I6'Ill»I12'I13 and I14 "here
P00 ^ 1 c

.J. ( S cAS. _ [ S CAS
K ' L(3> +SCsW> CS-c\.+^ + ^S)JIS

£x.^0>-iVi <HO-*0 r-= <H*
cA - VZ^ C 4 - \z \ V- L ^

It is easy to show that I is given by

- '■ - f00 -eTscAs"X* - —1—— c
— ^ - ( v^-Xvf^ J ' ' ^t) A i- fn-o1"' Vns1

where ^ ~1

By expanding the denominator as a binomial series and integrating term

by term we obtain the following asymptotic series for I

T -v C^ -9 1 +- I. « - (w- 0 i u-'t4
w (TTao I * 1 io(, u

Similarly, it is easy to show that the integral in 8.62 is a combination
of integrals like

„oO
C oS~ c^-$>

° w J 0 -fifs i- S C>Y\'
and an asymptotic expansion for is

:;x ^">L: S 1 i 3> (w- Z) v _ (tb- [G\*L + kv£)
0-v^y* ( Ovxo (_ V
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APPENDIX 11

EXPERIMENTAL DATA.

In this appendix we list some experimental data for a few simple

molecules. T is the melting temperature,AS the change in entropy on

melting, Tffl and.&S thqfreduced melting temperature and reduced entropy
change, andAV^ the change in volume on melting. The source of the

thermodynamic data is indicated by the letter (a) or (b).

JN ate

A

T °K
m

83.85.

AS (eu\
m

3.35

Vk°K
120.9

cr 2.
3.403

*

T
m.

.694

*

m

11.69 14.4

Source

(a)
Xe 161 ..31. 3.4© 2119.0 4.032 .737 11.71 15.1 (a)
Me 24.57 3-26 35 -25 2.765 .697 1!., 64 15. l (a)
Kr 115.95 3. 36 1164.5 3.599 .705 1.69 15 ..l (a)

H2(QU) 13.95 2.06 37.00 2.928 .377' 11.04 12..2 (a)

H2(CI) 13.95 2.06 29.2 2.87 .478 1.04 12.2 (a)

D?(QU) 18.65 2.52 37.00 2.928 .504 1.27' 13.0 (a)

D2(C!) 18.65 2.52 31.1' 2.87 .600 1.27 13.0 (a)

E2 63.23 2.73 95.48 3.704 .662 1.37 7.5 (a)
0
2 54.32 1.95 117.75 3.52 .461 .98 (1)

CO 68.1 2.93 100.2 3.763 . 680 1.47 (a)
NO 109.4 5.03 131. 3.17 .835 2.53 —_ (a)

F2 53.54 2.25 1312. 3.653 .478 1.113 (6)
CI

2 172.16 8.89 357.
257.

4.115
4.400>

.482

.670
4«4/ (b)

Br2 265.9 9.48 520.. 4.268 .5131 4.77 — (b)

*2 386.8 9.67 550. 4.982 .707 4.87 (b>
HC1 158.94 2,99 360. 3.305 • 442 1.50 (b)
HI 222.36 3.08 324. 4.123 . 686 1.55 (b)

CH4 90.68 2.48 .593 1,25 8.7 (a)(b)

CF4 89.47 1.87 .450 .94 3.56 (b)

CC14 250 .3 2.4 .522 1.21 5.22 (a)lb)

CBr4 363.3 2.70 S77 1.36 (b)O J II

(a) A.Eucken,Z.angew.Chem. 163(1942)
(b) American Institute of Physics Handbook, (McGraw-Hill, New York, 1957)
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With the exception of the tetrahedral molecules the LJ parameters

have all been taken from Hirschfelder et. al^' In the case of and

the values ofS. and<r depend on whether a quantum correction is taken into
account or omitted. Where more than one value has been quoted by ref.^l
we have averaged them in all cases except Cl^ where the two values lie so
far apart that it seems better to quote them both. For the tetrahedrall

molecules we have used the approximate relationship Tm = 0.73T
quoted by Pople and Karaszl' is the boiling temperature.
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