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ABSTRACT

As 1s well known, the microscopic and macroscopic properties of a
system of molecules may be linked by meaus of the canonical partition
tunction of statistical mechanics. In primcrple, a knowledge of the
intermolecular forces is sufficient for us to predict the thermodynamic
properties but, in practice, the partition function can be evaluated
exactly only for some particularly simple systems. For more realistic
systems we must resort to approximation methods. Even for monatomic
molecules, interacting through a spherically symmetric pair potential,
the application of approximation methods can be daunting and consequently
little work has been done which takes account of the general polyatomic
nature of molecules. In this thesis we attempt to rectify this omission
in three different ways. In particular, we shall be concerned with
the problem of melting in systems of polyatomic molecules.

The first method is an extension of a theory of melting due to
Lennard-Jones and Devonshire and is an attempt at a microscopic treatment
of a system where the barriers to molecular re-orientation are of a
particularly simple nature. Similar models have been considered by Pople
and Karasz and also by Amzel and Becka and our model reduces to these
authors' models under appropriate conditions. Secondly we have extended
a theory of melting due to Tsuzuki to cover systems of diatomic molecules.
This method is semiphenomenological in that a mean field, in which each
molecule is situated, is assumed. The results of these two methods are
in reasonable agreement with experiment but only after freely adjusting
a single parameter in each case. In an attempt to avoid this arbitrariness,
the final method is a completely microscopic theory of systems of diatomic
and monatomic molecules interacting through a realistic potential. This
method takes advantage of thé fact that the Helmholtz free energy can be
evaluated exactly for some particularly simple systems and uses these
calculations to estimate the free energy of the original system by means
of a variational' principle. No freely adjustable parameters arise in
this theory and, when this is taken into account, the results for monatomic
molecules are extremely good but for diatomic molecules the agreement
with experiment is poor, this being due to inaccurate determination of the
intermolecular parameters. Finally, we have derived a complementary
variational principle and made some suggestions for future work in this

field.



CHAPTER 1

INTRODUCTION.

1.1 Preliminaries,

In this thesis we shall be using equilibrium statistical mechanics
to predict the thermodynamic properties of certain compounds and in
particular we shall be investigating the effect (if any ) of the angle-
dependent forces on the melting transition. Thus our problem involves the
evaluation of one of the many partition functions and in the case of a class-
ical system described by the canonical ensemble the problem is narrowed
to the evaluation of the configuration integral. Unfortunately the
evaluation of the canonical partition function is extremely complex in
all but the most simple cases. Eye drop the word 'canonical' from now
on since this is the only ensemble with which we will dealfl By ‘'simple!
we mean that the intermolecular potential is almost triviaf (e.g. hard
cores) and hence not realistic but this does not imply that the mathem-—
atical evaluation of the partition function is easy. Indeed, Onsager's
original solution of the two dimensional Ising model involves some highly
abstruse and esoteric mathematics. If we wish to deal with more realistic
potentials or even if we wish to deal with the Ising model'in three
dimensions we must, given the present state of mathematics, resort to
approximation methods. Thus, this thesis involves several different
methods of approximating the partition function (configuration integral).

While a given approximation may be valid far from a phase transition,
great care is needed im the neighbourhood of the transition since the
large changes that occur in the physical properties of the system may
mean that the approximation becomes invalid. Consequently our theoretical
knowledge of phase transitions is limited -- in fact, the definition of
the term 'phase transition' is not even unique. In this thesis we take
the term 'phase transition! to mean that one or more derivatives of the
Gibbs free energy is only piecewise continuous. If the derivative in
question is the first then the transition is called first order. Higher
order transitions are defined similarly but they will not concern us.

First order transitions fall into two categories: those which have

a critical temperature, of which an example is condensation, and those
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which do not, an example of which is melting. We will only be concerned
with the problem of melting. We make no attempt to review the many
theories of melting (see ref. 1) except to say that nearly all of them
fail to take into account the general polyatomic nature of leecules.

One of the tew exceptions is the Pople-Karasz model about/%%lggall have
more 1o say later. In this thesis we attempi to rebtify this defect

but before discussing these objectives in more detail we define and

examine a few general methods of statistical mechanics which we shall be

using in later chapters. i

1.2 General Methods.

We review briefly what is meant by the term 'thermodynamic limit',

the methods for determining a phase transition, and thé method of distri-
bution functions.

The partition function of a system of N molecules in a volume V and
at absolute temperature T is denoted by Z(N,V,T) and the link with thermo-
dynamics is provided by the equation

| F=-RkRTWL=Z
where F is the Helmholtz free energy. Welshall always assume that in

the limit N,V=re® , Vv = V/N finite, the free energy per molecule exists.

That is,
-{3‘("‘-";‘1‘32‘- honn _L.F'(N)V)T) exists
N =3 o9 N : T
Vo e
The proof of" this atateoment, known as the thermodynamic limit, was originally

given by van Hovez using certain assumpiions about the form of the inter-
molecular potential. Tnese conditions have been considerably relaxed in
recent years and Ruelle3 has given some very general proofs for the
existence of the thermodynamic limit. Within the last few years attempts
have been made to circumvent the thermodynamic limit completely by dealing
with an infinite system from the beginning but as yet this method, although
promising much, is in its infancy and is of 1little practical use. A good
introduction to the C* algebra approach, as this latter method is called,
is afforded by Hugenhol'tz4 in his article on the Quantum Mechanics of
Infinitely Large Systems. It is only in the thermodynamic limit that an

exact evaluation of the partition function can give rise to phase transitions,
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the detection of which we now discuss.

In principle we can detect phase transitions by just looking for
discontinuities in the derivatives of the Gibbs free energy but in practice
the introduction of an approximation method to evaluate the partition
function nearly always smooths out these irregularities and produces a
continuous curve. The diagram below illustrates what happens in a

typical case.

B oA

The solid line represents an isotherm calculated using the exact evaluation
of the partition function and the dotted line is the result of using an
approximation. Now 1in practice we do not know where the solid horizontal
line, AB, occurs and so the question arises —— how do we detect a phase
transition when the partition function has to be evaluated using an
approxim=tion? To obtain two possible anwers to this question we use
the general coaditiong for iwo phases to be in equilibrium.
viz,

Te= Ty

P = 'P@_ I

o= Gy Cor pempmg)

P and:fmare the pressure and chemical potential respectively. Using

these conditions it is not difficult to show ( see ref. 5) that if the
phases at A and B are to be in equilibrium then the line AB must be drawn
such that the areas X and Y are equal. This method is known as the

Maxwell equal area rule. En.b. There is no question of an exact evaluation

of the partition function resulting in this loop behaviour for it may be
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shown (ref. 2 and appendix 9 of ref. 6) that for an exact calculation
(QPIQV)T £ O for all values of V.] There is, however, a defect
in the proof of the Maxwell rule in that the proof involves applying
equilibrium thermodynamics to the non-equilibrium states detined by
(3®/3V)+vo. This defect can be repaired for a van der Waals
gas. In spite of this shortcoming, the Maxwell rule is an extremely
popular method even alihough it is also quite difficult to construct the
line AB in practice.

The other method of detecting a phase transition is to evaluate the
partition function by two different approximation methods. Hopefully
we will then find that one of these methods leads to the lowest Gibbs
free energy at high temperatures and that at low temperatures the other
method results in the lowest Gibbs energy. At some intermediate temp-
erature, called the transition temperature, both methods will produce
the same Gibbs energy. The transition temperature defined here is not
of course the experimental transition temperature but if we choose the
approximation methods carefully we may obtain a good estimate of the
experimental properties. Except for the Pople-Karasz model we shall
use the second method throughout.

Finally in this section we discuss briefly the method of distribution
functions in the canonical ensemble. A more complete discussion is
given by Hillé. The importance of distribution functions and in part-
icular QQJL!n,fl),the second generic distribution function, lies in the
fact the equation of state and average energy can be expressed in terms

of them through the equations
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In these equaticns all the symbols have their usual interpretatvion.
(_U“ (£iL2) Iy o\_\g.}‘ is the probability that one molecule of the
system will be found in g;l at x, and ancther in EEE at‘gz. g(r) is
the familiar radial distribution function. It should be emphasised
that these equations apply only to a system of molecules interacting
through an angle-independent two body potential. Unfortunately it is
not possible to calculate Q}l) [or g(rl] exactly and so we must again
resort to approximation either by making a judicious guess or else
attempting to solve one of the many integral equations for g(r). The
integral equations arise as feollows. The starting point is the
rnstein—ZernikeT definition of the direct correlation function c(r).
W) = ¢ +e | a(le-v) W) du! P9t
where h(r) = g(r) - 1. t can be shOWn899 that the cluster expansion

for c(r) is

L .

+_§ILLD+AZ+M+& + o

where the diagrams have the following meaning

— WV \
T = ‘QW- = Q""'F{ - h:rl =
2 ¢
A = g Lz Q-zs Qs\ d‘—rs
i 2 v

© indicates a subscript in fij and @ indicates a subscript and an integr-
ation. If the first two terms of this expansion are retained but the
third and subsequent terms are truncated then the hypernetted chain
equation (HNC) results from one particular truncation and the Percus-—

Yevick (PY) equation results trom a slightly different truncation. For
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example, the truncated third terms are

HNnC ‘{Kl]:]: +AZ +M
Py 9;_[1114—&21]

The effect of dropping some diagrams from the complete expansion is that

-3

one can now sum the remaining diagrams to obtain the approximations

HNC e & W) — e 6(*3 — u) /[ kT \
. h
Py cw = gy (1- M0/
If the expressions 1.4 are substituted in equation 1.2 the HNC and PY
integral equations result. It may then be possible, as we shall see in
section 8.7, to solve these integral equations for some particular inter-
molecular potentials. By comparing the expressions 1.3 it can be seen
that more diagrams are dropped in the PY case. Nevertheless, the PY
approximation is found to be superior when repulsive forces are dominant
since th® diagrams omitted tend to cancel each other out in this case.
Both these equations have been generalised by Wertheimlo.
We shall also be using extensively the free volume or cell theory
but since in chapter 3 we generalise this theory to include angle-

dependent potentials we shall not discuss it here.

1.3 Objectives,

We pointed out in section 1.1 that although there are many theories
of melting very few of them take into account the general polyatomic
nature of molecules. In this thesis we discuss three models of melting
which take into account atomicity. The first ot these is a generalisation

of a model due to Pople and Karaszll’l2

who, in their turn, generalised
the well known Lennard-Jones and Devonshirel> 12 (LIJD) theory of melting.
The model is rather crude but it does succeed in qualitatively accounting
for some of the experimental properties of molecules for which the LJD
theory gives useless results. Unfortunately, before the computations
for this model could be completed Amzel and Beckal6 published an account
of a similar extension and so we have not proceeded with the computation.

Instead, we have shown how their extension may be derived from our more
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general extension and, in addition, displayed some theoretical results
which would have aided these authors in their calculation.

The second model is an extension of the TsuzukilT model of melting
and is a more realistic approach in that a realistic mean angular potential,
in which each molecule is situated, is chosen. The mean field is selected
more or less by intelligent guess-work, and the theory should be applicable
to diatomic molecules, Although we have actualised atomicity with this
approach the results are not altogether satisfactory and it is concluded
that this is a consequence of the crudeness of the original model of
melting.

The third model uses a variational principle due to Mansoori and
Cani’ielcll8 and is a completely microscopic approach to the problem in
that the starting point is the partition function of a system of N diatomic
molecules interacting through an angle-dependent two-body potential. We
also show}%ﬁg theory reduces to one for monatomic molecules, this being
the subject of another paper by Mansoori and Canfieldl9 in which they
make an error which invalidates all their results. (See appendix 8)

Prior to the discussion of this model we derive a theory of liquids
similar to Barker'szu’21 tunnel model, the purpose of this being to compare
exact and variational methods. In the tinal chapter we compare and
contrast the results obtained from the three models and make some suggestions
for future work.

It should be noted that the variational principles used fall into
what we shall call the Rayleigh-Schrddinger category rather than the
Hamilton category. An example of the former type is the familiar bound
EL (¢, W)/ (4, P), where ¢ is any trial function, which is used
Tor a variational principle in gquantum mechanics by varying some parameter(s)
in ¢bwhile-an example of the second type is Hamilton's principle of least
action whereby one postulates that the exact equations of motion follow
from the wvariational principle SS L.o\k O. One final point to be noted
is that all the calculations for the solid state have been carried out
on the assumption that the molecules form a face centred cubic lattice.
There is no difficulty at all in obtaining theoretical expressions i1or
other lattices but the computational work is wvastly increased, hence the

reason for sticking solely to one type or lattice.
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CHAPTER 2

EXTENSION OF THE POPLE-KARASZ MODEL.

2.1 Introduction.

In this chapter we describe a general method for extending the
Pople-Karasz (PK) theory of phase transitions. In section 2 we review
as much of PK theory as i1s necessary for an understanding of the remaining
sevtions, We describe the general extension in section 3 and in section
4 show how it reduces to the Amzel-Becka extension under certain conditioms.
In sections 5 and 6 we derive analytically some of the properties of the
Amzel-Becka extension and in the last section we quote some of Amzel and

Becka's numerical results.

2.2 Review of the PK Theory.
J.E. Lennard-Jones and A.F. Devonshire (LJD) produced in the late

nineteen thirties a series of papersl3_l5 describing the phenomenon of
fusion by means of a model consisting of two equivalent interpenetrating
lattices. They postulate that at low temperatures most of the molecules
occupy the sites of one of these lattices (the ol-lattice) and that as the
temperature is raised some of the molecules move to occupy sites of the
other lattice bﬂuaﬁ—&attice}. An interaction energy between ditferent
lattice sites is introduced and the total energy of interaction between
the lattices when NQ molecules occupy d-sites and the remaining N(1-Q)
molecules occupy p—sites is found. (04Q<€1). By an approximate
evaluation of the partition functvion and hence of the thermodynamic functions,
LJD are able to predict a phase transition, which they assume to be the
melting transition.

J.A. Pople and F.E. Karaszll’12 have extended this idea by allowing
a molecule on a lattice site to have one of two possible orientations.
Thus, 1n general, some ot the molecules occupy sites of the d-lattice and
the first orientation (& ), some the L-lattice and the second orientation
(:&1). ﬁ“and Flare defined similarly. The interactions between these
groups of molecules are introduced in the following manner. Around each
A—site there/gxﬁearest neighbour R-sites. 1f all the molecules occupy

A-sites then the energy required to move one molecule to a neighbouring
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B-site is zW. This is the LJD interaction. Thus if we have a config-
uration with N@Q molecules on A—-sites and N(l-Q) on B-sites the total
energy 1s given by NKﬁW'where Neg is the number of neighbouring pairs

of molecules on different lattices. Consequently we have

Neg W = 2 NWR ((-@&)
In addition, if there are z' nearest neighbour d —sites to each K —site
(and similarly for @-sites) and all the molecules occupy A-S1tes then
the energy required to move one of these molecules to the second orientation
(dl) is z'W', ''his is the PK interaction. A coupling between the two
types of interaction 1s introduced by assuming W to be independent of
orientation. This means that if one molecule is on an &,~site while
the rest are on «,-sites, the R-sites surrounding the misorientated
molecule are favoured o~ince they do not experience the W' term., N?hﬂz is
the number of relative misorientations on neighbouring d —sites and N61§;
is detined similarly. Thus the total interaction energy is given by

! i S— : . .
N‘ngq. (Nd”h.{. NIS.B:_)W - The partition function is given by

£ = L Z ‘Q"‘PE”‘ (NA{sW + Ny W'+ Nﬁ.&-xwf)/h_‘j L
where the summation 1s over all orientations and arrangements ot molecules
on A- and f-sites. f 1is the partition function of one molecule when all
the molecules occupy d—sites., In addition to the order parameter Q of
LJD, the parameter S is introduced as follows: there are NQS molecules
in 4., NQ(1-8) in A2, N(1-Q)S in P and N(1-Q)(1-S) in B,. Q@ =8=1
corresponds to positional and orientational order while Q = S = %
corresponds to cvomplete disorder. Intermediate cases may exist where
there is a certain amount of order or one or both types.

The summation part of Z can be written as a summatiothL, over partition

functions tor given @ and S

JU = _Zdl(cq‘s) 23
where

R@ ) =T Voo (NgW e N W Ng, W) /T

&)
SZ 18 the sum over configurations in which there are NQ@S molecules
1N Aqgesey N(1-Q)(1-S) in By The expression 2.2 is evaluated using the

Bragg-Williams approximation which replaces\ﬂ,(Q,S) by 1ts average value.
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Then

J = j % Lval! ig o= 3){
L nvall [N Ll Q)1 NasTt [NaGi-2)1 ) (Ev G- sT T (@) (1<)

L ey %—. K_zNWQ\(\_.@\) r3'w/ng (-3) (- 2@ + Q_QZ)]/\zTE 23

5 . -t
It is more convenient to maximise N ~L“JL where

N = —2@ e —2 () (L -@) —Sdns ¢- (=9 L (1-2)

QU~ Q) - 2¥ Wis(1=9) (1= 2a+ rQ) %l

(Stirling's theorem has been usea to evaluate terms like 1n N!) The

conditions for 2.4 to have a ssationary value are

& _ 2w ( L . - .
W Zo = 2L -2 [La-) PRy
and
A 2 = W g (1= 2@ 4207) (RS—Y) el
- e T

where U = z’w'/zw. Q =S =% 1s always a solution of 2.5 and 2.6 but it
may not be the onlly one. Pople and Karasz solve 2.5 and 2.6 numerically
for various values of zW/kT with U as an additional parameter characterising
the substance. For large values of zW/KT (i.e. low temperatures),

Q =S =% minimizes N'Jm X  and the maximizing values are ditferent fram
these, For small values of zW/kT, @ = S = £ are the only sclutions and
they maximize N & 2. The behaviour of the maximizing values of @ and

S is shown in Fig.2.1.
1.0 =

P T2 4 6 B8 1o 12 14 16 18 2 /KT

Fig. 2.1. Values of Q and S which maximise 2.4 plotted against
zZW/kT for two values of 2.
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By using the maximizing wvalues of Q and S the thermodynamic functions can
be derived from tne partition function in ithe normal way. In order to
derive the pressure, the volume dependence of W and W' must be known. It

is assumed that

W = Wgo (VOZU)L‘
w! = wo (\/o/\})"

Wwhere HO and Hé are constants. VO = NUB. Ho is determined by adjusting
the ratio WO/E.untiL the correct melting temperature for argon 1s obtained.
Ei and ¢ are the parameters in the Lennard-Jones (12:6) potentiai].

Phase transitions are predicted by drawing pressure-volume curves and
using the Maxwell equal area construction on regions of instability.

For further details references 11 and 12 should be consulted. Two types
of transition are predicted: 1) loss of orientational orders solid-solid
transition, and 2) loss of positional orders melting transition. The
thermodynamic properties at these transitions can be predicted by using

the derived thermodynamic functions. The agreement with experiment is
good qualitatively but is often awry quantitatively and for this reason

we will consider how the theory may be extended to improve the guantitative

resulte.

2.3 A General Extension.,

A number of possible improvements to the PK theory immediately spring
to mind., For exémple, W could be made dependent on orientation; the
Bragg-Williams approximation could be improved upon by using, say, the
quasi-chemical approximation. However, the most obvious generalisation
is to increase the number of possible orientations from two to some indef-
inite number D and it is this lattef extension that is the subject of this
chapter. In Lhis section we discuss the most general extension of this
type and in the next section show how it reduces to the Amzel-Becka
extension.

We have two interpenetrating lattices, A and &, as in LJD theory
and each molecule can be in one of D orientations. Thus we have &, , A2,
...,&b 3 By Et""’ﬁb defined by an obvious extension of the «,, <5 3
B, Ba of PK theory. The order parameter is introduced as before and,

in addition, we have D order parameters sl’SZ""’S such that in any

D
configuration of the N molecules we have NQS1 in Ay, NQ52 iniKl,...,NQSD
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indp 3 N(l-Q)Sl in.B*,...,N(l—Q)SD in g » Obviously the Si satisfy the
condition B

S < =\ A~"T

=1

We now introduce the interactions H' (1y3 % Ly eoayD ;:i%=j) defined such
that if the all the molecules are in & then the energy requ1red to move
one molecule todﬁ is Z'Wij. As in PK theory we take W to be independent
of orientation. If N&-ij is the number of misorientations between

neighbouring ¢, and 4i~sites then the partition function may be written
as 72 = deZ where

= 2 e - E(vaisw + L L (N, vy Ng. F»J)W‘A g/\u] 2-8

L J
(The factor & is introduced to avoid double counting.) The summation
is over all configurations of N molecules on the two lattices and in D

orientations. Using the Bragg-Williams approximation we find

3 Z INglt gE v (=) g’(
Lvall Y_NU ~gWNi ﬁ vasdl ]Lt(_NU-mSJ!

q%svm]/mi 2:9

L#d

so that, using Stirling's theorem, we have to max1mlze
9 £ & ’

NI = 2@ 8Q ~ 2% (wcﬂmmu-m ‘Z B b S

»

JL =

7‘-“*"\?% X%NWQ. (@) &Nz (- 26 426%) 5

= ;&Z._‘f___:‘ Q- @) - & (1-2a +2a9), 2— "J SiSy 2 1o

LJ-I'
N

with the subsidiary condition 2.7. The conditions for a stationary point
of 2.10 are

@ - W, S ws vl (ras)
L"k [ y T8

—® T AT Q=
N 5
L _2W (- sar) 2% vy A\2

N

where?)ij = z’Wij/zH and of course Lks=1ﬁ; . olis an undetermined
Lagrangian multiplier. These equations reduce to the PK equations 2.5
and 2.6 when D = 2.

Q = 5 is always a solution of 2.11 but as in PK theory we hope that
other values of Q will maximize 2.10 at low temperatures. If we insist

that the completely disordered orientational state, viz. Si = 1/D for all ki
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must also be a possible solution then we find that thelrij must satisfy
the following conditions o
D (o |
e w5 P, e =D vy = o 213
Sv, = 2vn= ---=2¥%i=o= 2 Ve
o= o=\ S =
LE2 £
In formulating this extension we have not singled out any particular
orientation and thus it seems reasonable to insist complete disorder be
a solution of egn. 2.12. In addition, the PK theory does admit the
completely disordered solution and a large portion of their papers is
devoted to an interpretation of thermodynamic data in terms of this solution.
When D is given specific values egn. 2.13 simplifies to give fairly
straightforward conditions on the}fij. For example, if D = 3 we find
= = i = :‘2}_ 2 — > -)f = rl
Uyp =Wy = U,y and if D = 4 V7, =5,5 W,y =05 V) =V, but
the solution of egns. 2.11 and 2.12 even for D = 4 is complicated by the
fact that although the number of different'vaj is not as large as would
first appear it is still greater than one. Thus, for practical reasons,
we discuss in the next section this model but with all the\fij equal to .
Although we will not carry out any computations with unequallfaj the
general extension just discussed is useful for two reasons. Firstly, it
provides a basis for treating molecules which have different barriers
to re-orientation in different directions. For example, the 02H4 molecule

re-orientates more easily about the X—axis (see diagram) than about the

Y-axis., Aéf

Secondly,we have derived a number of other extensions but this is the only
one that is wvalid in the sense that it reduces to the PK theory for D = ?

and also admits the complete disorder solution at a finite temperature.

2.4 Reduction to the Amzel-Becka Extension.

Y

In this section we will show that the previous model reduces to an
extension due to Amzel and Beckal6(AB) when all thelrij are put egqual to
U and in the next two sections we shall derive some of the properties
of the AB extension analytically.

Puttingljij'=)2 and eliminating A , we find that egns. 2.11 and 2.12
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become b
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S5 (x5 o (\i‘:— 2,-—)13)
These equations have the solution Si = 1/D for all i at a finite tempera-
ture.- In fact, Si = 1/D is a solution at all temperatures but as in
the PK theory we hope that at low temperatures it is not the solution
which maximizes N'mdJ2 . If we regard 2.15 as an equation in S. with
everything else fixed then there two possible values for Sj' This may

be seen by writing 2.15 as

Ay =AS; — B 216
where n = ET-?—{'J 3 (_ (=2.G. & 2 Q%)
and = = AS, — S

The roots of 2,16 are then given by the intersection of 1n Sj with ASj—B

as shown in Fig.2.2.

A

y=ln s.
[ s

/

Fig. 2.2. The roots of 2.16.

It should be noted that the gradient of the line y = ASj—B is always

positive since the factors making up A are always positive and that szsl
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is one of the roots. If the other root of 2.16 is S' then at any given

temperature we will have n (say) of the Si equal to Sl and the remaining

(D-n) of the S equal to S' n, of course, is an integer in the range
[l,D]. The condltlon ?:‘%‘- \ becomes
U wg 4 (b=l = 217

The summation in 2.14 can now be evaluated and we get

Q- EW - Sy (=80 - V(=S ) (bon-itnsi) |(Ae-0)
S T TR TR

Jaal B0 lb—w‘i] = %v(\~?\g+7\czl) (BS=) %\

\=~wSh T) Wi

Equations 2.18 and 2.19 give the values of Sl and @ which give stationary
points of N‘kLnJZJ Unfortunately, these equations are transcendental
and must be solved numerically.

It should be noticed that if Sl) % then n = 1. The solutions of
2,18 and 2.19 would be considerably simplified if n were equal to unity
always. If we do assume that n = 1 always then the model reduces to that
discussed extensively by Amzel and Beckalé. Certainly it can be argued
on physical grounds that n = 1 at all temperatures should be the case.
If, at low temperatures, all the molecules are ind,, i.e. Sl=1, fi=158 =0
then as the temperature is raised all the other orientations are equally
accessible by virtue of the fact that there is only one W' and consequently
the remaining (D-l) orientations should be equally populated at all temp-
eratures. i.e. they should have the same numerical value for Si'
While this is a reasonably satisfactory argument it would be preferable
if the condition n=1 at all temperatures dropped out by rigorous mathem-
atical argument. i.e. it should be a direct consequence of the maximiz-
ation ot N'WMI . However, all attempts to prove n=1 have failed. A
numerical search has indicated that with n=1 larger values of hfﬂJhadz
exist than with n=2 or 3 which seems to imply that n=1 does indeed maximigze
NI JL -

On the assumption n=1 at all temperatures 2.18 and 2.19 become

[ ¥ \-@o(bswb—z)] _ -
Jml_&__zw{{ ( e (La-0) A0
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The numerical solution of these equations and the resulting thermoydynamic

Properties have been considered by Amzel and Becka. In the next two

sections we derive analytically two results which might have aided Amzel

and Becka in the solution of 2.20 and 2.21.

2.5 The Maximum Melting Temperature.

elflng
We now derive an expression for the maximum possible/temperature

which is of value in calculating curves similar to Fig. 2.1. Graphically
we depict the solution of 2.20 by the intersection of a straight line

Wi't—h-l'v\?z—_(i as in Fig 2.3

yt\

y=C,(2q~1)

Fig. 2.3. Graphical solution of 2.20.

Cl and C correspond to different values of the coefficient of (2Q-1),

. V=6 ) WS D -2
viz. Y_" to=1

inversely proportional to the temperature, Hence, in general, there are

The gradient of the straight line is
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three solutions but above a certain temperature these three solutions
merge into one. viz. Q=5. When Q=3 is the only solution we must have
complete positional disorder, i.e. melting must have occurred, and so
we wish to calculate the temperature at which Q=5 becomes the only solution.
For there to be only one solution the gradient of the line must be less
than or equal to the gradient of the curve at Q=2. Thus

%‘%[\_ L(I=S DD (+D=-2) < L VA2

) h
If we assume that the solid-solid transition (to be identified with loss

of orientational order) has already taken place then Sl=l/D and so
B g BEOERT e g s
7T o) b

Hence the maximum melting temperature is

" }MJ[l"}ﬂbhﬁj 9 1,
weE T L D
Of course, melting may have taken place at a lower temperature but if it

has not then it must take place at Tiax' Since Q=%—above this temper-
ature we can duplicate the equivalent part of Fig. 2.1 for Q from zW/szo
to zW/kTﬁaX. Between these two points the graph will be just the straight
line Q=%.

If Sl +# 1/D then Tﬁax is larger and the straight line Q=3 continues
further to the right. Figs. 2.6 and 2.7 indicate that putting Sl=1/D
in 2.22 is a correct assumption forsmall values of V. For larger values
of UV melting takes place before loss of orientational order and Chandra-—
sekhar, Shashidhar and Tar322 have used this fact to describe liquid

crystals.

2.6 The Maximum Solid-Solid Transition Temperature.

The calculation of the maximum solid-solid transition temperature
is slightly more complicaled. The graphical solution of 2.21 is shown
. P1E, i Since 1/D is always a solution of 2.21, the straight line
must always pass through Slzl/D as shown. In general, there are three
solutions as before, however, as the temperature increases the straight
line swings round until it eventually takes up the position where it is
tangential to the curve at the point Sl=A . Above this temperature
only one solution will exist and the transition must have taken place.

Solving 2.21 is equivalent to finding the roots of y(x) where
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3\):.) = JM)( sl (i-—}c) +A Qg 1S
o = *%{’_ V(204 2a%) E_-l A-26
QAo = «LWL\D"“()*—O&‘ /D -

N

|

!

! —_— s

5,4 1 e
Fig. 2.4. Graphical solution of 2.21.

I+ is apparent from Fig. 2.4 that the function y(x) must always have one

y‘$

root, for one special case two, and in other cases three. Graphically
one of the silualions depicted in Fig. 2.5 occurs
| //
P 4
L
F 4
7
| e S .
1/D =1 \\\fi,,/// T
I
I
!

Fig. 2.5. The possible forms of y(x).
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Fig. 2.6. Maximising values of Q and s, for D=6 and V =0.30.
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Fig. 2.7. Maximising values of Q and s, for D=6 and v =0,70.
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For a given D we need to find the value of a., which gives two roots and

1
thus will correspond to the change from three roots to one root. From

Fig. 2.5 it is obvious that the value of a, which will give two roots

1
must satisfy the following equations.
O\é — ! o —
O\X))L.___xt; = 0O and 3()( ) ==
The values of X at the turning points are given by X = -E;_,J (4 Lfa,

and it is the larger value that we require. Substitutlng this value of
X into the equation y(x°) = O and replacing a_ by In (D-1) - al/D we

obtain the following equation for a,

4,\,\3\1*1;* - i G e el e (d-D- % =0 227
=Ji+ L

For each D, this equation gives the change over from one root to three

roots. a, is, by definition, negative and from 2.27 alég—4 since we are

only interisted in real éolutions. If we define f(al) to be the function
on the left hand side of equation 2.27 then we have to find the roots of
f(al) between = and -4 for various values of D. In fact, the largest
value of [all we are ever interested in is 40 since this corresponds to
a very low temperature and so it is sufficient to seek roots between -40
and —4. For the values of D for which f(al) has been evaluated it turns
out that there is only one root vetween -40 and -4 and so there is no
ambiguity. {:Slnce llm f(a ) = -« there is probably only one root
between —-¢o and -4 ] For a given D let this root of f(a ) be -Db Then

D*
= W oy = 2Q%) =
by = 2o (126 +26%) B
We assume now that the change occurs at a low enough temperature for Q

to be approximately unity. i.e. positional order is still almost complete.

In this case we have

i RY)
by = T =
Thus the maximum solid-solid transition temperature is given by
.T.S . &N b
W T By (=D
Table 2.1 gives numerical estimates of b_ for various values of D. The

D
value for D=2 is exact.
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D b,
4.00
4.60
4.86
14 5.40
20 5.77

Table 2,1 Values of bD'

By a similar argument to that given for the graph of Q against zW/KT,

the graph of S. against zW/KT is the straight line Sl=1/D from the origin

to the value o% ZW/XT given by 2.28. I+ should be noted that if Q=3%,
then the value of zW/kT to which the straight line Slzl/D may be drawn

is double that with Q=1. Thus we can always draw the line along to the
value given by 2.28. From Figs. 2.6 and 2.7 it can be seen that putting

Q=1 is a particularly good approximation for small values of V.

2.7 Results.,

In this section we display some of the results obtained by Amzel
and Becka since in later chapters we will be comparing other theories
with this one, These authors alsco consider the determination of W and
D for particular substances.

Fig 2.8 displays values of T;, the reduced melting temperature, and

*
T the reduced solid-solid transition temperature, as a function of U

’
fgr D=2 and 6, [The reduced temperature is defined by Tisz/i_where Z
is the energy parameter in the Lennard-Jones (12:6) potential€1 In
Figs. 2.9-2.11 we have eliminated V by plotting the thermodynamic quantities
against each other as shown. As we shall see in chapter 10 this makes
comparison with other models in this thesis easier. The first point to
notice about these graphs is that the results for D=2 and D=6 are not
very different and, in fact, thére is even less difference between, say,
D=6 and D=20. Thus it is not possible to obtain quantitative agreement
with experiment for CCl4 (say). Secondly, one would hope that errors
for molecules with the same value of D would be the same but this is not
S0 . Foy example, CCl4 and CF4 both have D=6 (see ref. 16) but while

the agreement with the experimental wvalues for CF, is quite good that

4
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for D=2,6. ﬂg%}is the reduced entropy of melting.
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V% is the volume change on melting.
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Fig., 2.11. Comparison of theoretical and experimental results.



for CC1, is poor.

4
2.8 Summary .

We have extended the PK theory to cover a general number of orient—
ations and shown how this extension reduces to that of Amzel and Becka.
Expressions for the maximum melting and solid-solid transition temperatures
have been derived. From the results it is apparent that the theory gives
a reasonable qualitative description of phase transitions in systems of
prolyatomic molecules but the quantitative agreement with experiment is

poor.
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CHAPTER 3

GENERAL FREE-VOLUME THEORY FOR SYSTEMS WITH ANGLE-DEPENDENT POTENTIALS.

3.1 Introduction.

In this chapter we extend Kirkwood'sg3 general free-volume theory
to systems which have an angle-dependent pair potential. This serves
two purposes. Firstly, by equating the angular part of the potential
to zero the chapter is a review of the free-volume theory used in the
discussion of the Tsuzuki model. Secondly, and more importantly, angle-
dependent free-volume theory provides a basis for choosing the solid
state reference system/ﬁgegpply the variational principle to systems with

angle-potentials. We base our extension on Hill'é description.

3.2 General Theory.

We consider a system of N molecules such that the potential energy

of interaction is given by

—

—— ‘-- -
u — li %‘:‘ W —x | ‘_J J &L]JL ) 3 ,
T th
r, is the position vector of the centre of mass of the i molecule and
JU: stands for the angles necessary to fix its orientation with respect

to some fixed set of axes. The partition function is given by
%:/\NQ %'2
N
where A\ is the result of integrating over the momenta and Q is the config-

uration integral given by
GQ': S 2 ;_.S‘S .15i-“8 di?‘akl(jﬁf\—---CMEBJC*Jll ---Ci\R~N ‘3-3>

If the volume V is divided into an imaginary lattice of N cells A; ,..., 8y
each of volume v=V/N then the configuration integral when molecule 1 is

assigned to celJJAl‘, molecule 2 to cell Alz’ etc is

P

bl‘
and thus
N

Q=2 P SS Sof“_\---o\&u s

L,.=
n=l 1‘
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. (M- ) . . .
Defining (Q to be the configuration integral when m, molecules

are in cell 1,...,mN in cell N

I <L f §f ST o

D, A, A A,
L..-"'v""-' SN

where, 53y, I seeesl inte Vi i g ws
s S8Yy I, ,2 are integrated over A, Twmat >fmewm,
are integrated over A:L’ etc. we have
N
N ! Ly - )

(Q - M, wy !"'WHJI (Q 6

WMyy=pyWmy=0

\Zpe=t)

We denote by Q(l) the integral corresponding to single occupancy of every
cell.

pne B =g

Hence

Q= nvia®” e &Y
where

4 (W --wp)

@
Vo) E
o = Q™ TT g

”--,w\,.,_o L

(‘;Z\Ms-— N)
|
In the crystalline state we assume that multiple occupancy is excluded

ce

and so o' =1. This point is discussed more fully by Hill6. With the
assumption of single occupancy (taking molecule 1 in cell 1, etc.) the
probability that molecule 1 is in the volume element dzl at I and with
orientation in the angle element dJl‘atJI‘, etc is

PUEL, o) o3 Ry, oy ) by bRy =

. o ] '

where

EY o o rde @ 2

35
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F(l),E(l) and S(l) are the configuration free energy, energy and entropy

respectively of a system restrained to single occupancy of cells. We
define E and Ve by o
(SR T

g = M E 2L

s = MRV 38

E is the average potential energy of a specified molecule with all other
molecules in the system. Ve is known as the free volume. If we assume

that P can be written as the product of N single molecule probability

functions p(x, L) N

P, -, Ttw) = JU plrs, &e) 206

==
where the centre of cell A.is chosen for the origin of Ty then 1t is

easily shown that

s = — Nk S \ p'k-fnﬁl):‘uv‘?(‘-‘-‘-‘i\}d{fokdz 317

Lo UL

e

pue BN i _ _ : ;
= %S.Sk\M\Mf.&)p(»&‘,&m')ﬁkt,t'; IN B EWSWIRERE
NA

.

_+.tf,gyl,gﬁll) lg‘lc1

I

cell 1

FPig. 3.l1l. Definition of the vectors r,r' and.ﬁlj.

319
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In deriving 3.17 and 3.18 we have used the condition

(§ v awam = 320
N SL

Equations 3.17 and 3.18 together with 3.10 give us an expression for

.
F(l)/NkT. To find p(zr,dL) we regard F(‘)/NkT as a functional in p and

determine p (with the subsidiary condition 3.20) such that F(l) is stationary.
We find

,lM?(\:‘JL\-i.-EL‘_.gSPKN JL‘)I_U‘ o (52 ! )C}_NJOLJU - *‘E‘E_ 320
6(

where W is an undetermined Lagrangian multiplier. We define 4ﬂiﬁﬁb by

GE,R) = — RT Lap e, R) +o

P LTOEE L 522

From 3.20 it follows that

Q—-°</\rr gg v \R)/m-wck& 223

Thus 2,21 becomes

o‘\/\lT ( <
L) = & ggl A NI ) L G U T

where

Wi, eL i, RY) = Ble, o, R, - & y2s

3.24 is an integral equation for tb\f}dl). By substituting

DL, ) (=T
pLL L) = =% 326

§§;‘{-¢Lf,&)/kfdﬁm

in 3.18 we obtain E. It is easily shown that

i = S‘; Q:_Mv.:,d?_)/wro\i“k& 29
fa

To solve equation 3.24 we try an iterative solution. As an initial

guess we try

Po(¥, &) = SC2) 3 (R)
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where S(¥) and $(3) are delta functions defined such that

§seYow =| (s(@ak =1
b %

§ 201803 = ¢ (o) { 4as@) 4R = 90)
A Iz _
g:See appendix 1 for details on the representation of SQPS]- From 3.24

we find

We ) = Bol £, 8) - Eo 2-28

MR Ee(L. D) = Ty, 0, X, 0)
E: = g (oo;0,0)
= E.(9,0)
From 3.19 " .
Eor, ) = C‘;:—: w (Y %\_\ y I, O) %"2?
Also

\&‘ = V déj*‘?\ Ly, JZ)//hfr

A J2

Eo(g,dl) is the field a ceniral molecule at position r in its cell and at

Av AR 230

orientation X is in when all the other molecules are at the centres of
their cells and at the zero of orientation. In the application of this
theory we shall see that the zero of orientation corresponds to the equil-
ibrium orientation. \b‘Lﬁ,JZ) is the same field measured relative to
the field with the central molecule also at its cell cenire and zero
orientation.

T'he iterative technigue could be continued but the resulting equations
would be too complex to ve ol use to us. In any case, it is debatable
whether the error in carrying out only one iteration 1s greater than the

error in neglecting multiple occupancy.
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CHAPTER 4

EXTENSION OF THE TSUZUKI MODEL TO INCLUDE ROTATIONAL MOTION.

4.1 Introduction.

We saw in chapter 2 how the effect of the orientation of molecules
could be taken into account in a crude manner by postulating that a molecule
could take up one of a finite number of orientations, and then, by assuming
a certain interaction with the neighbouring molecules, the thermodynamic
functions could be evaluated. In this chapter, we will attempt to deal
with the problem far more realistically by assuming that each molecule
1s subjected to an angular potential. Our starting point is a theory of

Lif

melting due T. Tsuzuki ' and this theory is briefly reviewed in section
2. The remainder of the chapter is taken up with an extension of the

theory to include the effects of rotation.

4.2 Review of the Tsuzuki Model.

This model utilises the fact that the molecular arrangement in a
solid just below the melting point is not vastly different from the arran-
gement in the liquid just above the melting point. From the definition
of the radial distribution function, g(r), the average number of molecules
at a distance between r and r+dr from a specified molecule is(&g(r)4IT2dr
where @ is the density. In a solid the molecules are effectively confined
to the lattice points and hence

C ke e2 gLy = NS Ce-20) L)

where Zs and Ni are the distance to and the number of ith nearest neigh-
bours respectively. In a liguid the S function is assumed to be smeared

out such that

SN

== 2. -8) s v g2 (\+R)
gz‘nfz(s(\p) - Z2.A L“l
O © ot case.

!

where N is called the irregularity. If the interaction between two

molecules is given by the Lennard-Jones (12:6) potential

() = L%%(%}‘Z- %)gg L3
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then the total potential energy of N molecules in a volume V occupying

24

the sites of a face centred cubic lattice is given by

5 ’ b
® = Lk Nii(%}“— \v*ﬁl(%)} L -l
This can be written as

E%(v¥) = & oggi \-Jl;k — 13?_}; Les

where the reduced variables are defined as

E* = E/Ng VR=V/Net T e

S¥ = g/Nk ¥= F/Ns

= N\"S/Jl where r is the nearest neighbour distance; T is the absolute
temperature; S the entropys and F the Helmholtz free energy. The equil-
ibrium values of E* and V* are determined by the condition of minimum
energy AE* N -

AV¥
which leads to the values V: = 0.916 and E: = -8.603. In the case of
the irregular lattice the equilibrium position of a molecule is not
confined to a single point and thus

= - et S v (e

“(1-8)

E‘*(\J“,A\ = G O{OSEDJL&\}*L‘{ (\- Ay N (v EA)T “1

L o82 l (- ») == (% b)‘-glg Vet

(Ob V*’l.
For any thermodynamically realizable state the Gibbs free energy at

constant pressure and temperature is a minimum; however, for condensed
systems the pressure is usually small in comparison to the energy and so
1t is permissible to use the Helmholtz free energy instead. The free
energy for a system of cells is given by (see chapter 3)

E¥ = g% _ t*dmVy
where Ve is the free volume, In this case Tsuzuki estimates that the
free volume is given by

\J{_ s b’k\rlx)g‘ + blr- ‘3"33 L7

where b and b' are constants and hence
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where c=b'/b and 1s assumed to be unity. The transition temperature Tm

is determined by the following relations

FE(uE,0) 4 FF(Va) R TH LT
Fe (V5,0) = FE(V%D) 4or T* = T
SO Y RN R TS T

Minimization,at each temperature,of F* with respect to V* and D leads

to the oonc;u51on that at the transition temperature (T =0.82) V* Jumps
from V to the value 1.05 and A jumps from O to VA 0.12 with a corresponding
entropy change. Thus the model indicates a first order transition which

compares reasonably well with that of argon (see Table 4.1)

* * *
Tm Sm V%

Theory | 0.82 1.55 L4e
Expt. 694 | 1.69 | 14.4

Table 4.1. Comparison of theoretical and experimental

results for argon using the Tsuzuki model.

4.3 Criticism of the Tsuzuki Model.

Although this model is a more realistic approach to the problem of

melting than that of Lennard-Jones and Devonshirel3-1j

it has many short-
comings, not the least of these being the assumption that c=1. As we
shall see in section 6.2 the predicted transition properties St
are strongly dependent on the value of c. In a later paper Tsuzuki25
introduces a quantum correction for the zero point energy of the molecules
and also treats c as an adjustable parameter, thus obtaining quantitative
agreement with experiment for the rare gases. This latter procedure is
certainly not to be recommended, at least not without investigating further
the nature of c. In the next chapter, on assignment of parameters, we
discuss whether it possible to obtain a more specific value for c.

In addition, the form of the radial distribution function for the

irregular lattice is not very realistic. Fig. 4.1 illustrates what g(r)
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looks like for liquid argon and it is apparent that rzg(r) is not the
rectangular-shaped function assumed by Tsuzuki.

~N

g(r)

I
_/l 1 » I

B

Fig. 4.1. An experimental radial distribution function for
liquid argon. |(Taken from T.L. Hill, Statistical
Mechanics, (McGraw-Hill,New York,1956),p.186.]
In fact, a triangular-shaped function would probably be more appropriate.
The calculation of E* with a triangular-shaped function is no more difficmlt
than Tsuzuki's calculation and we find that

E‘K k\;\k;bw — b OS 5 Fiet'h) &z \:l\(—A) & IAN >—k—
A2 TS il d FT'GHQL ) v

LREL [ R _Fs(y) LA m)

where

Guln) = (=ay™ —(v+a)
Fu(s)= -2 4+ -y + (e a)™

2 A is the base of the triangle. However, it is by no means clear how
one calculates Ve in this instance and so we have not proceeded further
in this calculation. In any case we wish to investigate the effect of

molecular rotation on Tsuzuki's model.
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4.4 Inclusion of Rotational Motion.

Many diatomic molecules are such that in the solid state they assume
some definite equilibrium orientation and execute vibratlional-rotational
motion about this equilibrium position which we take to be at9=0. (see
refs. 1 and 26) By symmé'try there is another equilibrium positionat YEE__

This situation is envisaged by ‘Pauling27 and is described by him with a

i

potential of the form '
o (D) = Lo [ 1-Cnn®) L
there being free rotation with respect to the azimuthal angle*qbo
2-\1‘&) -

G

AT

o v b

Fig. 4.2.

. The potential w(®) = Yo \- Cos21D)-

4.9 is the angular potential tn which a molecule is subjected, this pot-

ential being due to all the other molecules in the lattice.

is the mean field
some calculations
However, it seems
the molecules are

actions decrease.

That is, V
due to all the other molecules. Pauling carries out
with 4.9 on the assumption that +ois a constant.
probable that as the intermolecular distance increases
able to rotate more freely since the molecular inter-

Thus it is plausible that b, should not be treated

as a constant but as some decreasing function of r. Consequently, our
system consists of N molecules in a volume V interacting with each other
through a Lennard-Jones (12:6) potential and, in addition, each molecule
is in an angular potential A" where OJ “—-*-@o-ﬁ—("‘)(\-&&l@\ and where
f(r) is a decreasing function of T, the nearest neighbour distance.
We make the additional assumption that the rotational partition function
can be evaluated independent of the translational partition function.
This, of course, is only an approximation sinceQJ(§)is also a function
of r but if\bo is small the épproximation should be quite good. In the
chapter on results we indicate when it breaks down.

Using the results of Mayer28 we find that the rotational partition

function, J, of a single molecule is given-by
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where Jfree is the partition function of a freely rotating diatomic mol-

ecule. By making the substitutian s el 1‘“ Cas® O E‘b QJQ%(\")E

we find

_ - i L'l\l)/\tr)'lz
F= Wy, & b/ T (\z_t) ago \ka&x Lol

and hence by applying the usual thermodynamic formulae we find that the

energy and entropy are
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In deriving the entropy we have neglected the symmetry number since it
contributes only a constant term. The expressions above involve the
integral Sjalackbc which grows extremely rapidly as a is increased and
hence it is useful to have an asymptotic expansion valid for large a.
The derivation of an asymptotic expansion is considered in appendix 2.

With the asymptotic expansion in place of the integral,4.12 and 4.13

become
2 T < 3
B By, (S +R LBV ¢ B U
T T R0 E (T

kL,
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This system of rotating molecules is now added on to the Tsuzuki

model, In the case of the regular lattice we find that

*(uk \ — : A 2 BB 3 ¥ >l -
erv )= 6 DE‘SE\,-H“' =R %
(j\_v: ,,\_-,,..)lfa ‘-Q‘l.“'){/_\‘*
7wy
So <> dx
where != \t)h%bf) , V= Ve/2
* *

Lo l6

*
The equilibrium values Eo and Vo are determined by the solution of -g‘%*=0.
These values are now temperature dependent. The free energy is given by

FE = g¥__x¥g¥ Lz 2
where . . (‘2‘2; ),!2 {:1.‘21”/'1"“
N == 1 = 5 +
% S Q‘(\_QQ_ +- -2\ [ \ i le:’;.\.‘r)lfz :S
gb @ * A%

. (_2_-,;5/1-1*3'!2 _
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For the irregular lattice the A -dependent Tsuzuki functions are
used in 4.16 and 4.17 and f(r) is replaced by

v ea)

\ _
¥ () e ~ 149
Tob 2 (¢) L
~(1-n)
At low temperatures we expect that a molecule will oscillate about

its position of angular equilibrium whilst at high temperatures the mol-

ecule will execute hindered rotation. Thus we wish to know what sort of



=37=

motion is being executed ai agiven temperature. As we shall see in
chapter 6 the change over from one sort of motion to the other is related
to the breakdown of the applicability of the model. Let the maximum
angle that the molecule reaches from ¥ =0 bed. If d4%x(2. the molecule
is vibrating while if «> &f the molecule is rotating. In addition, if
X&4ﬁﬁl there is one orientation of the molecule in which its total energy
for this degree of freedom is potential energy. That is, when‘a==¢~ all
the energy for this degree of freedom is potential energy. Thus if we
equate the energy for the ° degree of freedom to the potential energy we
find

£= 4 G (1= B 45T L 20
If (% =t %\"E))Q\ then not all the energy can be converted into potential

energy and hence the molecule is rotating.

4.5 The Function f(r).

To proceed further we must define the function f(r). Since f(r)

is a decreasing function of r two obvious candidates are

R = (?;.”_‘Lgy—_ WETUE syse el

b = anpl- ()]= £V 5 ys0

We will use the first of these for two reasons. Firstly, an inverse

and

power law can be justified to a certain extent while the exponential form
is completely arbitrary. The justification of the inverse power law is
considered in section 5.2 where we also consider what the value of 7 is.
Secondly, the exponential form when inserted in eqn. 4.19 gives rise to
incomplete gamma functions and thus to an increase in the time involved
for numerical computation —— a time which is already fairly lengthy.

Using 4.21 evaluation of 4.19 gives
e —¥is \ _ |
. SR x—1 R, T
ASCE NS A )Y (V+n)t

and this expression is substituted in place of f(r) in the A-dependent

functions.
A
The calculation now proceeds as before, F being minimised with
* * *
respect to A and V . Strictly, F and not E should be minimised in the

case of the regular lattice as well as for the irregular lattice but numerical
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* * *
calculation shows that T S (due to rotation only) is less than 1% of E
and can thus be neglected. We must also consider the question of how
values fori,c',“ sc and ¥V are chosen and this is the subject of chapter 5.

In chapter 6 we present and discuss the results arising from this theory.
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CHAPTER

DETERMINATION OF THE PARAMETERS.

5.1 The Lennard-Jones Parameters £ and ¢,

These parameters are determined either from experimentally observed
coefficients of viscosity or second virial coefficients?9’30 Neither
of these coefficients is sufficient to define the intermolecular potential
uniquely and so these methods may not give exactly the same results.
When we are considering transport properties the former method should be
used if at all possible since viscosity is itself a transport process.
Otherwise, we use the second method which is easier to apply.
For convenience we reproduce Hirschfelder, Curtiss and Bird‘sBl
description of the second method. It is well known that for a spherically

symmetric potential & (r), the second virial coefficient, , 1s given by
tri tt‘l,cé)h d virial fficient, B(T), i i b

B (t) = %en S“;w o (1m o SO/ )

i ~ () /T
- Z\\;r‘rr\‘} S e TR cﬁ% < - . AN m9,0 A8 TP

=

For the Lennard-Jones (12:6) potential this becomes

K A (i_. _ L )
= ¥y . 7,\14 ] K \ :}\ i v Z'..Fg vz o+ S o
T e W 5 . N . _
(&) K ) T clv ] T\,:‘.‘ .{\N"-'h\ ) S

<

* *
where the reduced variables are defined by r*=zr/¢ and B (T ) = B(T)/%ﬁﬂﬁj.

This integral has been evaluated exactly by Lennard—Jone832 and gives
x)
skt N WY ek UG [ -
B = 2 b T ) 53
it

where

— i

3 KY)
The first 40 coefficients b(J) are tabulated in reference 31 and we have
evaluated further coefficients up to Jj=113 and tabulated them in appendix 3.
5§ and < are found as follows. From the experimental values of the second

virial coefficient at two temperatures, kB is defined by E@_E_E gﬁ?ﬁl i
& T\) \“? ¢
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z/k is then determined by trial and error solution of the equation

% |
kq;?ﬂ gX(T2) ; .Tﬁf = Wi /2 S L
E*CT|) \me¥' I W)

L

o follows from the equation

?-éyc Ne? = B(T) iz vl S

Slightly different values of Z and o may be obtained from different
choices of temperatures since the Lennard-Jones potential is empirical

and does not describe the intermolecular interaction exactly. For small
values of T* the series expansiom 5.2 converges extremely slowly and thus
an asymptotic expansion for B*(T*) would appear to be a useful aid. Indeed,
we have derived such an expansion and increased its useful range by using
the method of converging factors, but we shall not display these results
here since, for the reasons discussed below, the results are inappropriate
in this context. For such small values of T*, quantum effects should

be taken into account and in this case 5.1 is no longer the correct expre—
Ssion. Certainly the coefficients tabulated in appendix 3 together with

33

the first two quantum corrections tabulated by Michels are sufficient

at the lowest temperatures at which B is measured experimentally.

5«2 ¥
In this section we discuss what values of X are appropriate.
Without knowing the angular two body intermolecular potential, we can
hope to give only a plausibility argument for the r-dependence of the
mean angular field. We analyse another system with a double minimum
angular potential and draw conclusions from the results for this system.
Consider a system of two rotating dipoles separated by a distance d.

(see Fig. 5.1)

1f d /\______),x—axis
/ °\

Fig. 5.1

For convenience the first dipole is situated at the origin while the
second is situated at a distance d along the x-axis. In general, the

potential energy V of two interacting dipoles of dipole momentsﬁﬁtan%A§1
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separated by a distance r is

Voo 3B (Ret) | ey g

rs V3
In this case we take vé.l:-VAzl:/u. and (r| = 4 and find

VE =8 -2 0 (90 +80) Cen (it ba ) — & Con(90482) Con (b )

%—% Ces (9=9 2 ) os (b + ) 4'7’; &9(91“92-)C®3(d’t_ o)
- 5 Qs (D 49:) — & Ges(8(-9)) g S7

G}i’¢3) i=1,2 are the angular positions of the arrowheads or dipoles.

The potential when both dipoles are confined to the same plane is obtained

by putting © (= 9. =X[2 whence

Ve =25 0l aba) ¥4 Gnld - 92y 5

Each dipole consists of a particle of mass m and charge e at a distance
ao from the centre and a similar particle of charge -e at the other end.
For such a system the kinetic energy is easily found and so the Schrod—
inger equation for the system is
SRV, 2% e L N9
QT \ ¥O¢ . 2D Y2 SwPe b7
LV = = (T = 2wmad)

where V is given by 5.7. We have been unable to solve this equation -

Sy

the first major difficulty being that we are unable to decouple the
equation - however, the analggous equation in two dimensions can be solved.

The two dimensional equation is

b 2% e ol S (o
> & Y oSes T (‘_ V) /

where V is given by 5.8. This equation is decoupled by using the subst-

itutions (Cb +tde )= A€ and (dJ,'-c[_)-;_)': 2\[ and assuming that
b)) = x(INlY

The result is the following pair of ordinary differential equations for
X and N.

i + o X G2y + (b-k )%= O al

- % % N2y + N =O g lle
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where A= REO® g = Z‘;\l and k is a constant to be determined.

These two equations are easily put into the canonical form of Mathieu's
equation34 whose periodic solutions of order n are the Mathieu functions
ce and e, . We then find that the lowest energy eigenvalue is given by

Eo= - ZHL ¢ A8 T8 . g3

h ®2d® 286 Lok

Thus we see that the leading term of the energy of such a system is
proportional to 1/d6 which suggests that we might try'¥=6. The argument
given here is similar to that justifying the l/r term in the Lennard-
Jones potential. However, in the case of an angular mean field it is
not clear whether the angular variation arises principally from the
repulsive or the attractive part of the intermolecular potential and so
a case for ¥=12 may also be advanced. In fact, the mean angular field
may not be able to be cast into the simple form we are using. In chapter
8, when we approach the problem on the more fundamental level of the two
body intermolecular potential, we shall see that the mean field is really

much more complex than that assumed here.

5.3 &

The free volume is estimated by TsuzukilT to be b(r—c-)3 in the solid
phase and b'(rﬁ)3 v b(r—c)3 in the liquid phase and thus a discussion
about ¢ (=b'/b) is really a discussion about b and bl. b(r—of)3 is the
volume in which the centre of the molecule can move whilst bl(r£93 is the
volume each point of which gives an equilibrium position of the molecule.
Now of course this latter volume is only non-zero because the radial
distribution function satisfies eqn 4.2. For the case of a more realistic
radial distribution function there is only one equilibrium position.
However, in the present case an equilibrium position can occur anywhere
within a radius of rﬁ/Q of the cengml position, the factor & arising
because adjacent molecules may also move. Hence the volume in which the
equilibrium position may occur is -‘c; %{C (‘\A}E’ i.e. hl = —lg %K‘

The free volume Ve in the solid phase is given by (see chapter 3)

V:Q _ g éqaav)/\zrow

Where\b(r) is the potential of a molecule in its cell. We estimate the
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value of Ve when the intermolecular potential is of the hard-core variety
and then obtain a numerical estimate for the Lennard-Jones (12:6) potential.
The former can be put in the form constant x (r~c)3 while the latter can
only be calculated numericallys; however, a comparison of these two values

will give us an estimate for b.

Fig. 5.2 is a diagram of a central molecule with two of its twelve

nearest neighbours.

E

AB=1
K Ac-DE-BD- /2.
M

Fig. 5.2

The molecules have a hard-core diameter ¢ and we suppose initially that
the molecules at E and M are fixed. The molecule centred on A is free
to move within a restricted volume and the volume that its centre is free
to move in is what we wish to calculate. If the centre moves along AE
then it can move only as far as B since in this position the hard cores
touch at D. Thus, as a first approximation, the centre is able to move

within a sphere of radius AB=(r-0). However, if the molecule moves out
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along AK its centre can cover the further distance HJ as shown. If it
moves out in directions intermediate to AE and AK then the corresponding
extra distance is smaller. Thus we should also take account of the volume
of the cap BJLH. The volume of the cap can be calculated in terms of

r and 03 however, although the calculation ié simple enough, the final
expression is extremely complex. Consequently, we approximate the volume
of the cap by the volume of the cone BJLG which is easily calculated and

is given by

2
Vesiee = 4% Uf) EE“Fg < 4,

Now, if the molecules surrounding the central one are also free to move

then the distances that the central one can move will be halved and thus

m/ \f#zﬁb
J2 - e o IS
Q()ﬂbv*”z_—\) )

If the more reallstlo Lennard-Jones (12:6) potential is used then it can

be shownBS’ that

we find that

\/%: ke (v=c)® [ +

4
5 3
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where O 30SLY
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5 9 |
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L(y) = Lly) + _l_ Jlylz) + e 2 & (y/z)
JlY = L\-{—\?_b +‘LE>-)_% + 2y 3 gk )U t})

The function G has been tabulated in reference 35. For T =0.7 and
V*=O.9899 eqn.,5.16*gives vf=0.002163 and for T*=O.80 §ives 0.002563.
The same value of V substituted in 5.15 gives 0.0014o . Comparing
these answers we see that the value of b predicted by 5.15 is too small

1
by about 65%. Now, using 5.15 and the value of b , we find that the

L
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predicted value of ¢ is 0.63 and thus, when the fact that 5.15 under-

estimates Ve is taken into account, the value of c comes out to be 0.41.

5.4 ¥

From the definition of WY it is apparent that to determine V the
barrier to rotation,ﬁk,, must be determined. Barriers to rotation can
be determined experimentally in a number of Ways36_39 but they may not
lead to the same answers. For example, Waugh and FedinST establish the

approximate formula
v, (keal/mole) £ 0.037 TC(OK) 5.17

for an angular potential of the form %Vl(l-OOSEB). T, is the solid-solid
transition temperature. [There is a factor of 103 omitted in their

paper which we have corrected in 5-I?J If we use the value of Tc(=288.T°K)
38 =10.7 kcal/mole.

for sodium cyanide gquoted by Sato eqn. 5.17 gives V

However, Sato using the same potential, quotes a valui of 1.8 kcal/mole
which is markedly different from the previous value.

In additiﬁn to lack of consistency there is another difficulty in
using experimentally determined values of‘¢g. In the low and high temp-

erature phasesQ) is given respectively by

G, = o YRTO SOI¥

b, = b VFTOE S S S (9
i 28 (§—1) (L=-ay™ Clea)™

The whole essence of the model is that \J is a function of the intermolecular

distance and consequently is a function of temperature. If we use exper-
imental values of the barriersto rotation then we are forced to use a
constant value unless we identify the experimental value with either \bh
or lk* and calculate the other value accordingly. However, if we do
this we then have the problem of deciding to which q)the experimental
value is assigned. Alternatively, we may identify the experimental value
with 4&,and proceed from there.

In view of these difficulties we have plotted values of the entropy
and volume change against transition temperature for various values of Y
and compared these plots with the experimental values for particular

substances. These results are displayed in the next chapter.



—46—

CHAPTER 6

NUMERICAL RESULTS FOR THE ROTATIONAL EXTENSION OF THE TSUZUKI MODEL.

6.1 The Method of Computation.

In this section we describe the method used to minimise the reduced
free energy. As a preliminary, values of the integral g:l*;okx were
(=21

calculated by means of Simpson's rule and storedadisc. These values
agreed extremely well with those calculated and tabulated by Karpov40.
EIt is much quicker to write a program to recalculate these integrals
than to punch several thousand cards containing Karpov's values{] Each
time the main program was run the values of the integral were read in
from disc as data thus avoiding the need to evaluate integrals during the
main program. This initial step in the main program was followed by the

* * *
setting of parameters and then the calculation of E0 and Vo. E was

found by calculating E* for a few values of V* and comparing theze to

find the minimum vilue. This rough estimate of V: was improved upon

by recalculating E in the neighbourhood of the estimate until the desired
accuracy was reached, A similar procedure was adopted with the A-dependent
functions. A check was built into the program to decide whether the

exact or asymptotic were to be used for particular wvalues of the variables.

*
The calculation was carried for various values of T ,V,c and Y.

6.2 Discussion of Results.

The results are displayed in Figs. 6.1-6.7. The letters labelling
the graphs indicate the following values of the parameters.

as Y=12 o=l

b. X = c=1

c. Y=5 c=1

de Y =6 c=0.8

e. ){:6 ¢ has the functional form given by egn. 5.15

i.e. c£0.63
Although the wvalue c=0.41 is proposed in section 5.3 we have not carried
out the calculation for this value since a look at the trends of Pigs.
6.6-6.8 shows that for this value of c the agreement with experiment
will be poor in that although agreement with observed values for some

diatomic molecules may be reasonable for others it will be bad. Y is
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Fig. 6.1. Plot of A against ¥ for various values of oc.
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Pig. 6.2 The reduced melting temperature as a function of v.
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Fig. 6.3, The reduced entropy of melting as a function of V.
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Fig. 6.4. The % volume change on melting as a function of .
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varied in order to see what effeci this parameter has on the predicted
pProperties.
Figs. 6.1-6.4 all display five general features which have to be
explained.
1) For fixed ¥ and c the values of A ,T;,AS; and AV% all increase
with increasing) .
11) For fixed ¥ and c¢ the values of A ,‘I‘I:,AS; and AV% all decrease
with decreasing’y .
111) For fixed ¢ the value of V at which the graphs dip steeply
decreases With deoreasing‘x. N N
1V) For fixed X and V the values on,Tm,QSm and AV% decrease
with decreasing c.
V) For fixed,m the value of W at which the graphs dip steeply
decreases with decreasing c.
An additional feature not shown is that the angle of oscillation, A , is
900 above and below the transition for all ¥ less than the break-off
value for each graph. i.e. the molecules execute hindered rotation.
For V' larger than the break-off wvalue the angle of oscillation is less
than 90O in the low temperature phase and is 900 in the high temperature
phase. The discussion that follows immediately is concerned with values
of U less than the break-off value and 5004=900. The angular potentials

in the low and high temperature phases are then given by

— Vo
SRS

I

2% o L ] s
W = \Fis 9\&(}3_\)[((-—"‘3\6-( (ra)¥

For constant } ,ibL increases as Qk'increases. i.e. as 'V increases.
Consequently, although the molecule is still rotating, the motion becomes
more hindered as )V increases. That is, as V increases there is an
increasing tendency for the molecule to continue pointing in one direction
and hence a higher temperature and larger volume change are needed to
overcome the restriction to the motion. Thus, as ¥V increases, T; and
AV% increase. Since éS; is dependent largely on the volume change it

also increases as ) increases. At the transition temperature
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Q>L = Qﬁt 63
Now for smalld,< is given by
\-‘)&2‘—%;%;,%\1“16\5(5‘“)&&"'2 6 L
and so if V% increases then A must increase with increasing Win order
to satisfy eqn. 6.3.

For a given value of);,tbL decreases as Y is decreased since V3<il
and so the rotational motion becomes less hindered. Consequently the
values onS,T;,AV% andlxsz decrease for constant v-asy is decreased.

For values of ¥ less than the break—off value and for a low enough
temperature the angle of oscillation is less than 900. As the temperature
is raised the angle of oscillation steadly increases until it becomes 900.
At the temperature at which it becomes 900 no first order transition
takes place and it is not until the temperature is raised to the transition
temperature, T:, that a first order transition occurs. However, for
values of ¥V larger than the break—off value a first order transition does
take place when the angle of oscillation becomes 90O and at a still higher
temperature a second transition occurs. As W is increased even further
these two transitions eventually occur at the same temperature. Thus it
appears that for W larger than some critical value the theory predicts
two transitions, the lower of which is a solid-solid transition. However,
we have discounted results for ¥ larger than the break—off value for two
Teasons.

1) Beyond the break-off value of ¥ the results are unsatisfactory
in the sense that although the general trend of the graphs 1s upwards
there are local fluctuations which in some cases are large. See, for
example, Fig. 6.5 which is a schematic graph of [\ against V.,

A
(AN -

AT

% T g
4

Fig. 6.5. Schematic graph of A against V.
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11) At temperatures intermediate to the two transition temperatures
and also high enough for A to be 900 without a transition taking place,
the results indicate that no transition has taken place. This conflicts
with the fact that a transition has already taken place at a lower temp—
erature.

For these two reasons we regard the break-off value of U as the limit of
validity of the model. As pointed in section 4.4 we expect the model

to be valid only for smalll?(*b) gince we have assumed that the partition
function is separable.

AS*E is decreased the strength of the angular potential decreases
since VO< 1 and thus the break—off wvalue of V' should increase. However,
exactly the opposite happens, and the break-off value decreases. We
have been unable to explain this effect which is completely contrary
to that expected.

The graphs b,d and e give the resurts for various wvalues of the
parameter c. Decreasing c¢ corresponds to weakening the intermolecular
potential and thus we find that melting occurs at a lower temperature
with correspondingly smaller values of b, /% and{hS; . However, there
is an objection to varying c. Since varying c really means that we are
varying the intermolecular potential we should really vary the lattice
potential energy as well, Theoretically, when we define the intermolecular
potential)c is automatically fixed and we have no right to vary it indep-
endently. All we can say is that decreasing c decreases the transition
temperature which is what we expect but we may not attach any meaning
to the guantitative resulus obtained. Similarly, it is doubtful whether
any meaning can be attached to the fact that the value of V at which the
break-off occurs decreases with decreasing c.

In Figs. 6.6-6.8 we have eliminated the parameter V by plotting
values of T;,éw% and Q5; for the same V against each other. Comparing
these graphs with the experimental points also plotted we can see that
for large values of‘"aamd ¢ the results are unsatisfactory. For ¥=6 and
¢ £0.8 the results are in the Tight range but the quantitative agreement
with any particular substance is poor. In particular, the agreement
with diatomic subﬁtances;;iégghéﬁxgh the case of CO this is probably in
part due to the asymmetry of the molecule, We have not compared the

theoretical results with the experimental wvalues for ionic crystals such
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Comparison of theoretical and éxperimental results:
entropy changc against temperature. The Y -5 and
¥=6 lines are almost identical in Figs. 6.6-6.8 and
have been drawn as one. l

Key to experimental points:

1. Xe 5. CO 9. D2(Cl) 13. HZ(Q)
2. A 6. CBr4 10, CH4 14. H2(Cl)
3. Kr T. N, 11 0014 15. 0,
4. Ne 8. D, Q) 12.F, 16. CF,
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as HI and HC1l since these crystals do not contain individual molecules.
Presumably a theory involving interpenetrating lattices is more appropriate
for such compounds. The D2 ang;{2 molecules should really be treated
quantum mechanically. Tsuzuki has introduced a quantum correction

and gets fairly good agreement with experiment but, as he has introduced
another parameter and has also treated ¢ as an adjustable parameter, the

agreement is probably fortuitous.

6.3 Conclusion.

The rotational extension of the Tsuzuki model gives results which
are of the same order of magnitude as those of experiment but the exact
quantitative agreement is poor. The question arises as to whether the
poor nature of the agreement is due to the Tsuzuki model itself or to
the rotational extension. The circled points are the results the Tsuzuki
model gives on its own for various values of ¢ and it can be seen that
the agreement of these results with experiment is poor. If these points
were all shifted leftwards and the rotational extension added on as before
then the agreement with experiment would be good. Thus, we conclude
that the main defect of this particular method of dealing with phase tran-
sitions in systems of polyatomic molecules is the basic model or the Tsuzuki
model. As pointed out in section 4.3, the form chosen for the radial
distribution function is not very realistic and this presumably is the
principal source of error in the model. However, we have not proceeded
with any improvements in this direction mainly because the simple estima-
tion of Ve does not carry over to a more realistic radial distribution
function. Since the model is unrealistic anyway, in the sense that we
assume the partition function is separable, we think it more worthwhile
to'try a completely different approach and for this reason we have attempted
to treat the problem from a completely microscopic point of view in

chapters 8 and 9.
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CHAPTER 7

COMPARISON OF EXACT AND VARTATIONAL METHODS.

T.1 Introduction.

In this chapter we derive a theory of liquids similar to Barker'520’21

tunnel model. Some exact results of this theory are also derived by
means of a variational principle and a comparison of the two sets of
results is made.
In recent years there has been an increasing interest in the application

18,19,41

of variational principles to statistical mechanics.

18,19

In particular,
Mansoori and Canfield have used a variational principle to predict

the properties of a system of N molecules with a Lennard-Jones (12:6)
potential. From the derivation of their variational principle it may be
seen that, in theory, the results can be made as accurate as one likes,
however, on closer examination the disadvantage ot the method is disclosed.
To apply the method certain properties of the reference system have to

be calculated analytically and thus the accuracy of the results 1s limited
by one's ability to choose a reference system which resembles the real
system sufficiently well and, at the same time is simple enough for the
analytic properties to be calculated. As we will be extending Mansocori
and Canfield's ideas to cover systems of diatomic molecules it is important
to obtain some idea of what sort of accuracy the variational method is
capable, It must be stressed that we are only considering the accuracy
tor one particular system and not in general but the results should be

a guide as to whether the method can be of practical use or not.

7.2 Alternative Approach to the Tunnel Model.
20,21

Barker has a described a theory of liquids in which he attempts
to include the communal entropy lacking in the simple cell theory? As
is well known, simple cell theory restricts the motion of the molecules
too much for 1t to be a proper theory of liquids and, in fact, reproduces
the properties of solids far better than those of liquids. More compl-
icated cell theories have attempted to circumvent the communal entropy
problem but all have the serious defect that only relatively simple

generalisations can be handled computationally. For example, although
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multiple occupancy cell theory may be carried through on paper tairly
easily it is difficult to obtain numerical results when more than two
molecules are allowed to occupy a cell. Barker's approach is to divide
the volume into lines of molecules and to assume that the interactions
between lines of molecules are independent of the interactions between
molecules on the same line, The theory is similar to cell theory in
that the motion of the molecules is restricted, however, the degree of
restriction is much less than that of cell theory. Unfortunately,
Barker's method of division does not lead to any easy way of summing over
all interactions. We describe an alternative division which allows the
complete interaction between lines to be calculated.

The Helmholtz free energy of a system of N molecules in a volume V

is given by
F =-%T AMECQ(N, V) (27 wa T /2 \%Nh‘ ] ¥ 1
where

Q k“}:V) e Sﬁ _S "ég,g &?qEUhd!%; - - O§E§DJ 12

We assume that only two-body angle-independent forces are present. That
is N

LK = 2. \*Q\Eidl)

Loy =t

?_.5 = B; - E\;‘
For large V (ultimately in the thermodynamic 1limit) the thermodynamic
properties of the system should be independent of the shape of the volume
and thus we are free to take for V a cube of side L. We divide this
cube into K planes of dimension L x L, each plane containing M molecules.
The planes are equally spaced with spacing A=L/K. ‘LMore exactly, A =L/(XK-1)
but we take K to be so large that the difference is negligibleﬂ We
assume that in calculating the mutual potential energy of the molecules
in one plane we can neglect displacements from the plane, and that in
calculating the potential energy of interaction of a given molecule with
the molecules in other planes we can use the 'smearing' approximation,
regarding the neighbours as smeared over planes parallel to the central

one.
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where i ™ A A
W= 2 ulvg) ry o= -5l VLT
L)J;f

Ale
]__{_ =3 f MP% - [EY_\«’(E)=\;(0)]§OKZ- 7 &
Nz
Lf is called the free length. V(z) is the potential energy of interaction
of a given molecule at a distance z from its own plane with all molecules
except those in its own plane and 1s calculated as follows. The distance
of the ith nearest neighbour plane is N We assume that the molecules
are smeared out over this plane with density ¢ =M/L2. [Esis assumed +to

remain constant as the plane is made infinite.]

FPige Tals Blemental interaction of a molecule at z

with the ith nearest plane.
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The potential energy of interaction of the molecule at z with an elemental
area of the plane (see Fig. 7.1l) is 2I:esRu((R2+a2)1/?]dR where ai=(ik-z).

Hence, it is easily seen that

V) = 2me, 2 08wl ) ] pul R o) AR
where bi=(ik+z). For u(r) we take the Lennard-Jones (12:6) potential.

wlt) = LS % ()= o (e.;)bj
We then find

V(@) = Brgg 2 % IOC‘;‘E L 3 Qe ~2/A) + (1o, =/A) = '1/\‘
- S5 (mam) + 2N - B s

34

5’(3 a) is the generalised Riemann zeta function

7(s,2) = 3 (ovwy®

Thus
i2
e :1)\5 &«EEBPC‘) CR(E )Eokg 7:6
where %.: ?\K“ng,_cft (:0_-_—_- chzeg@-la
A RT & AT RT

P(E) = S(E) + 5 (4 -8) —2/5% — 274
Qlg)= 7o,y + 5 (o, -%) - 2/5° ~ 23(w0)

POy = Q (o)

i; (n) is the familiar Riemann zeta function.

The factor

' . kol
L (e
%,M! D‘& o CAQTS Ax, —--AY,,

is evaluated in a similar manner by dividing each plane into S lines
(distance M apart) each with T molecules. The interaction between lines

is then calculated using the same approximations as before. Evaluation
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of the properties of the one dimensional system (line) has been congidered
by Barker?o Thus we finally find that the free energy of the whole

system is given by

E :._%h(‘%ﬁxk‘:) ~ Aol T e) —BT(L)

NET (P

—Aeaby £ EZUN=DL(S)+ R kT 77

where "IZ |
Ly =2 S S IBR(3)- S(R)3AY
b — gi’ii‘_ eﬂ.q_ G E“: o Q.Brcs_,e_{u_j_a 6& _ T{ ;.

1/»‘5 Ty Gl pt =T
0% =305 ) +3(s,-%) =25(s)
s(g) = G, g + (i, -5) = 25
R@)= S(» =C
F,_ is defined by Barkers’ TIf L=L/T then efl/.cand {;1///&. The best

2
values of A, and L for a given temperature and volume are those which

minimise the free energy subject to the restriction V=NAuA\ . If A\=tX
and Ve qsﬁi then A andf» can be eliminated from the theory and the

dimensionless variables t and q used in their place. B and C are then
-C-LE ARE \Lc,)z C = La S (\}o )Ll
,t"*" '\1‘{‘- \)’ I_ﬁr’& 12
i 2
\JJ s Ne

given by

In addition, we have é - _l— (}_}___ i3
P Lqg Vo

It is possible to derive expressions for the pressure and entropy from
7.7 and proceed with the calculation as a theory of liguids in its own
right. However, since the theory resembles Barker's theory so closely
we see little point in doing this. Instead we demonstrate how the

accuracy of a variational principle may be assessed.
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7.3 Exact Results,

We denote by FS the free energy per molecule due to L

phe= e B BP0 e San T -8

where I is defined such that szkI. By applying the usual thermodynamic

fl

formulae to Fs the pressure and entropy due to L, are found to be

£
(¥, =5 ()0 -2 () e % (%)
PP e (%) 7

=X — . . B Is ¢ Le . 1O

T
where Lg= %% and Jdi¢ = =~ %%:I .

Egns. 7.8,7.9,7.10 are the exact thermodynamic equations for a system
t <] : i .
hat has a free length given exactly by Lf

T.4 Application of a Variational Principle.

Defining q;@g) in an obvious manner we have

U d
Lg= 5Ky SPED iy
(]
‘k(fﬁ) is the potential restraining a molecule to its own plane. Following

Mansoori and Canff_'ieldl8 we consider another system, the reference system,

such that for this system
o =z o

[All gquantities associated with the reference system have a ° attached
to themJ
Then ,ﬂz ol .
Le N~ BYE) — gl () e ]
TR - <L el
o o
L3 L3 S

INS BD) /L:é is the probability distribution function that a

~

molecule in the reference system is at distance g from its plane and thus

o . ; > ; ' . y
Lf/Lf is the expectation value of exﬁz— F{*&jﬂ-t¥°(2i32 over this distr-
ibution function. That is

_L_'-i;- - <@qcf> [“ ¢ (b- <l-‘°)1>o

L3
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The free energies Fs and Fg are related by the equation

. i i o
Following the method of Zwanzig42 we assume that (FS—FZ) can be written

as a power series in[g. o W
g w [ _e\na—|
Fe- &8 = 2 w CF)
=

(The convergence of Zwanzig's series isg considered in section 10.2.)

sep (2% Co) = Conpl-p (4001,

We now have exactly the same form of equations as Zwanzig and hence his
results and those of Mansoori and Canfield can be used. The only differ-
ence is that our meaning of (: >o is different from theirs. Thus
Fe £ & + TX -

where [JU, = <¢L’%)_..q,~(b\ >u We see that if the reference system
is wvaried in such a manner that \bs-a 4> then 7.11 tends to equality.
Thus if #Pis chosen such that it is characterised by one or more arbitrary
parameters and is also similar tO\b then by varying the parameter(s) the
right hand side of 7.1l may be brought to a relative minimum. Provided
‘P“is reasonably well chosen,?.ll is assumed to become an equality at the
minimum and thus the properties 6f the real system may be obtained.
We will investigate the accuracy of this assumption.

A suitable reference system may be chosen as follows. When \g\ <\

we have

355 = hor 2 SR s )

l i
(5=1) !
and thus gbC%) is given by

\l‘J (%) < \a't_ \f\'—:—( % Tl

where the coefficients Cn can be calculated exactly but we do not display
them here as they are of no direct interest to us. This power series
in i} suggests that we take
$o(2) = &T
where A is the variational parameter. With this choice of Lf’the inegqua~-

lity 7.11 becomes
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B ¢t <] [Fap(8)]- 511 B S ]

et Qr%(;fﬁ(l)
) Jalet ' 3
Yo Jlee® mmre) ety 7

In appendix 4 we show that the right hand side of 7.13 has probably only

one minimum for A) O and so no ambiguity arises on minimising 7.13. The
minimising process must be effected using numerical methods. The integral
was evaluated using Weddle's rule and the minimising procedure was that
of Powell43

With the minimising value of A the variational pressure and entropy
are given by

(59, = £ (D))
‘%Z Vo 3 < ¥

L (et /e) Vo I 5™
Qv\%(Jﬁ'{"l) ﬂ/ (\V)&. K\’)\QC&AL%)“ BP(%)}% 0,{‘@ ~Ttl,

(B, =+l + 0T et (B)]

Y HH!L( 7 S T"L.:I \'t"("{i
A F’ “‘3‘4((““1) V¥ = V/Veo

7.5 Results.,

We have evaluated the exact and the variational thermodynamic equations
for various values of T* and V*. Fig. 7.2 shows the values of A which
minimise the right hand side of T7.13. From these values it can be seen
that at all except large volumes, the variational expressions can be

-A/4

simplified firstly by neglecting terms involving factors of e and,

19

secondly, by putting erf(fA/2)=1. Mansoori and Canfield's ’ treatment
of the solid state is consistent with this conclusion. The exact and

variational results are compared in Figs. 7.3-7.5 by plotting the percentage
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error in the thermodynamic quantities for various values of T* and V*.
The overall results are as follows.
1) For given V* the variational method increases in accuracy as
T* is reduced.
11) For given T* the variational method increases in accuracy as
V* is reduced.

Writing out 7.12 more fully we have
(5 _ ¥ 2 -
= - T*‘\;*‘“z( (050 —SOg(e) VFH)EE +

4 ULLSOE;(.M) —~l‘7§;(<5)\)*‘2 ) %L‘ + i

For small g only the first term in this series is important and thus

AR GIRUN hT'p'i is a good approximation. Since the probability that

a molecule is at distance Z from its plane is proportional to p&h(i)
we see that as QiS) is increased the terms in the exact equations
involving QT[W“'L%) are dominated by the values near ‘g:(:) . Thus,

as $(%) 1is increased the approximation kTAgz becomes better since the
region near EZKD becomes more important, and hence the variational results

*
show an increase in accuracy. 4JQ%) is increased by decreasing V or
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T*, the former producing a larger effect since it appears as l/V*4.
[Of course we are only considering the values of V* and T* which normally
occur in theories of solids and liquids and not abnormally large values
for which the method is useless anyway:}

These results are what we expect since at high temperatures and
large volumes the concept of molecules being bound tightly to a plane
becomes inappropriate. We expect that the relatively large thermal
motion and the relatively weak potential (due to large intermolecular
spacing) will result in a freedom of movement that does not exist at
low temperatures and small volumes. At such values of T* and V*, k\’htg)
must be chosen such that it resembles (%) more closely: for instance,
we could take

be(3) = v (Aas?e BES)

where A and B are variational parameters. Unfortunately, when npc(E)
is improved upon in a manner similar to that above it usually becomes
impossible to evaluate analytically the properties of the reference system.
To overcome this difficulty a completely different reference system must
be chosen. Thus, for a given problem we might use simple cell theory
at low temperatures to define a suitable reference system, and at higher
temperatures some form of tunnel model to define a completely different
reference system. An attempt can then be made to match the two solutions
at intermediate temperatures.

In conclusion, we may say that provided the reference system is chosen

with care the variational method can give extremely good results.
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CHAPTER 8

APPLICATION OF A VARIATIONAL PRINCIPLE TO A SYSTEM WITH AN ANGLE-
DEPENDENT POTENTIAL.

8.1 Introduction.

The two treatments of melting we have discussed so far are both
rudimentary in that neither involves the evaluation (or at any the approx-—
imate evaluation) of the partition function for a realistic angular two-
body potential. In this chapter and the next we attempt to rectify this
defect. Of course, the exact evaluation of the partition function is
not possible and so we resort to an approximation method which in this
case is a variational principle due to Mansoori and Canfield].'8 For
simplicity we confine our attention to monatomic and diatomic molecules.

In the next section we outline Mansoori and Canfield's derivation
of the variational principle and indicate how it may be applied to a
system of diatomic molecules while in section 3 we consider the choice
of intermolecular potential. The remainder of this chapter is taken up
with the application of the variational principle to this potential. In
the next chapter we discuss the determination of the parameters contained

in the potential and display the results of the theory.

8.2 The Variational Principle.

We consider a system of N molecules occupying a volume V. [At this
stage we are not specifying the type of molecule but dealing with a

completely general system@] The partition function is given by

Z = R Q/N !

where R is due to integration over momenta and Q is the configuration

@‘:kgefPud%qg

U is the potential energy of the system. Q is the integral of e#FU over

integral

all the relevant co-ordinates, denoted by Ectg. We now consider another
system, the reference system, of N molecules in V such that the potential

energy of this system is %

Then Qe — gﬁ“ﬁwﬁdgo_g
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2= [ o eel-e(amw)lage} B

(¢
and so, since e_gU /Qo is the probability distribution function of the N
molecules in the reference system, Z/Z0 is the expectation value of

exp[rﬁ(U—UOX] over the reference system.

e Z = Complweul)y, B2

The Helmholtz free energy is F=-kTlnZ and so using Zwanzig's42 infinite

series for the free energy (but see section 10.2) Mansoori and Canfield18
are able to show that
F<£E®4 K, g3
where )
Mg ze LU= LUy b

F° is the free energy of the reference system and LU Pgis just its average
potential energy. Inequalities like 8.3 have been derived and used by
many other authors. (see ref. 41) The inequality 8.3 is analegous to
T.11 and the comments made there apply equally well here. That is, 8.3
may be treated as a variational principle if UO containg some spare
parameter(s).

We now specify the original system taking the N molecules to be

diatomic with U given by the sum of two-body potentials.

(/k~ Z ( T‘¢ 9% L'UJ ) g L
=t
c#d th
where rijzlz.fzjl, x being the position of the centre of mass of the i
molecule. 0313 denotes the angles specifying the orientation
of molecule i with respect to the line joining the 1Jch and Jth molecules.

(see Fig. 8.1) We also assume that
. \J & € $J
U"(J\(.\)';V\ (Aj ) (\IJK) L\J )

\J’Cg\q,“d

molecu]e J

molecule i

A,
bl

f
/ s ..
Fig. 8.1 Definition oftﬁiJ andtcgJ.
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Q is then given by

g 3 . 3 _ 3 . (JL - - .
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where dw ¥ = S J.‘%LQLJO@(J
normal ones for spherical polar co-ordinates., Jlstands for these limits.

The reference system potentlal is defined similarly. Thus

Lo = b 3 Zulrg wd ey,

and the limits of integration are the

lJ"'t
{"F\-‘
=i 5 -—W“
= Sg Su(? L«J :«.) )Q v OIVQ;\J
,J J Q{.)
t?‘n

.::NU\J"‘\g S SU\U‘:, . \a)uedﬁ oy, dw‘::”‘“i
XR®

<k’k> SK SuUﬂz,*«J\“ JQ)(ﬂu)(-—n-—z,w Ce )
\

<
e O A, Ohes : 2 A ;)" A
where
QGkL: i :z‘wtlziw'&i-as = N(N‘[)g S\S g EMQ Oy - Oy
edu\;‘::g - GKM'lN olb\)jg’ o o d;o.:s& s "OL"‘).-\) . olo.:;N 'R

In principle, we now determine u and proceed with the theory.
However, although the angles defined in Fig.8.1 are most suitable for

expressing the interaction between two molecules they are not suitable

for evaluating g‘°(22 This is because each molecule has 2(N-1) angles

associated with it. Consequently we re-define the angles so that only
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two angles are necessary to define the orientation of a molecule.

However, the cost of doing this is
of the vector r..
=202 Lij

in Fig. 8.2.
X

instead of the scalar (r.

M

that the potential becomes a function

i

The angles SZ; are defined

Fig. 8.2.

5358

Y

The anglesdli.

We now find

L (0 ut
JL
A

As we shall see in the next

and r2

SSSiut-,w )

ifically on r

"4 W, =

separately and so

o 2)

e,g¢~

Strictly, this

is true also for a crystal.

z\
il‘z.;ﬁl-\,uflc\)efi:;

section u depends on T

«—l..p'z‘,Jll;QR )

I, AT AJL ¥ ¥

1 : —
Iy 57 2 l but not spec

(‘t_‘J?l‘,leﬁ)dEfde‘clle_ %9

labT step is only valid for a fluid but we will assume it

This is probably a good approximation just

below the melting point which is the temperature region in which we are

interested.

SN (£, Ry, 22 )M d R AR, is the probability of

finding two molecules in the reference system separated by a vector in the

range r to r+dr with orientations in the ranges Jzkﬁo JZ +d¢R\ and JZL to

0(2)

SA dJL,.  We shall call

distribution function for

the reference system.

the generic second translational-rotational

Hence, the variational

principle is given by 8.3 together with 8.4 and 8.9.
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8.3 An Intermolecular Potential for Diatomic Molecules.

In this section plausibility arguments are proposed for the form of the

interaction u(rla, iJ J) between two homonuclear diatomic molecules.

de Boer44 has calcu‘ated the interaction, vint’ between two hydrogen molecules
and finds that

V., = E(l) + 1), 5@ 8.10
int a a
where the repulsive part E( )15 given by S
1 " > i
=) = BB % [ x W ;[(m;.)é&,w v Gt 8a)-2]14 M [

A“' i \:"t‘.?
. - ; Vool & paha
o (nit) (D 4 Cesta) = (Wr2) (nwri) Gos* &8, +
1_,, j___ L)\g e ﬁ%u'.‘gmi}g C{,“ ‘“ ? ¢ ) - '.va”’e‘ ‘3} (_h"’ Ll- -{;"(:3“\9- 2 ‘i%’ “3 T

FNT2) Qb [ - G (whh)(CR O  Ceg2 8, ) +
L ot

: i -.5 i E ) - o
Nw%){,uw)uu:*s‘d;_wg,_l"l_‘ = ef;ﬁ:é;zﬂl R

The attractive part is made up of two portions: E(l)is due to guadrupole
moments and E(z)ls the van der Waals dispersive term. There is an error in
de Boer's quoted expression for E( ) which we have corrected below. The

derivation of E( )1s considered in appendix bH.

E—:h: = gb “E ;*“}hsz’rb a Cs? B )~ 15 Qg &, Ges” Vo +

J‘P
éighamjx%%wﬁwﬁLWE”Wﬁ)‘“H iﬁwiuﬁﬁzj < g1l
L - =¥
e TR} o > } (s:é;i £l : " F - k. = & 5 = f 5 I Nty -
Eg = ™ “i,i;' w:g . 1 = ( | %{ Cost EJ’; g 3:,: (ogt &y | &
w PN s P 5 . & F e
2 Cus®, Ces B 21] 'l,yh. i B3

The various constants in 8,11-13 are defined by de Boer. tfg is the guad-
rupole moment and should not be confused with the angle ﬁ;uof Fig. 8.2

The angles%ﬁ,%g,Qw,dﬁaare defined in Fig. 8.3. Ultimately we will change
to angles as defined in Fig, 8.2,
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We now examine the relative importance of the various terms in eqn.
A\

8.10 for Vipge For convenience we re-define 9 such that 9, is -

replaced by'(rt“9aﬁ- with respect to interchange Tan

fact that V. $nt is symmetrical/oﬁ Duandigzsuggests that when vint is a
mlnlmun,g %z O where & is some unknown angle. Thus putting 9 t =92 =9

Wwe have

EYW = H&E\*.“%ﬁzxu+zyﬂ§8 QJ+-&QE£¥§]:

C (AR L) (2 B~ (k) (nbl) G S 47 (swescoc,q:,—ws)
-C2B) ) & "_EEZ"E;LE}Q;‘E() 12 (W) Cos® B Fon(uri)(nre) .

0]+ oi(ee) ]

BL = %‘%iz |~ 10Ce 8 —15 (oD +2 (St D Canp—k e 8)8
2 = ~ ﬁw E\ (1= 3¢28)Y -

LAt (0B oo 262 8Y21
$ = d%“c"l

Doing this, of course, precludes the possibility of the minimum occurring

when the molecules are as 1llustrated below

/"‘E’\
but in any case this is unlikely because of the close approach and hence

(1), 5(1) g g(2)

above have been evaluated by computer for various values of Eland,¢>

strong repulsion of A and B. The simplified functions E

The values of the constants were taken from de Boer and r chosen to be a
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typical nearest neighbour distance for the solid state. The magnitude
of the quadrupole term, Egl), is at least a factor of ter smaller than
either the repulsive or the dispersive terms. In addition, variation
of angles causes the repulsive term to vary by a factor of ten and the
dispersive term tovary by a factor of %, Thus we assume that the quad-
rupole term and the angular variation of the dispersive term may be
neglected.

Eil) is parametrised through A and n but we will take n=12 for a
reason that will shortly become apparent. In addition, we cut off 8.11
after the term in v ° ° in order to maeke the calculations manageable.

Thus

Vo = 58 3AEX® Sk ‘ZAC“[\L. (G289 +629:)-2] 314

which is of the form AM FUSOE, 84, Dy, 02y 402).

If ¢ is some constant then
; ) & g g L ; : iy
Yda & ua%(fz_é)w—m» : (3;:)‘33 b 2% B, (% | 1u(
Cst01 ket Sy ) =0 SIS
where > 2 - 3&?—“-1?‘65
C A/Um Uz::Ql/ﬁ A Ty = =

Thus the interaction between two hydrogen molecules can be written in the
form 8.15. We postulate that the interaction between any two homonuclear
molecules of the same type can be written in this form with § ,o 2(and L.,
characterising the substance. The determination of the parameters is
deferred until the next chapter. Introducing the angles deinstead of 9;
does not alter 8. 15 and so u(? u%j,hij) is given by 8.15 with r,sﬁ,sé

2 s
replaced by r, 9 J 9;3 If ZE-O and 2. =1 the potential reduces to the

Lennard—Jonelel216) potential which is inown to be suitable for describing
many properties of the rare gases (monatomic molecules). In addition,
the parameters £ and & for a (12:6) potential are known for many substances-—
hence the reason for taking n=12. Thus we shall be able to reduce the
general theory for diatomic molecules to one for monatomic molecules
simply by puf+ipg};2 =0 anle =4

We mus@/dellve the 1nueract10n in terms of 51 and X, Suppose the

orientation of (Ej—gi) is given byg That is, the position of

ij’ﬁij.
. - . ? o .
molecule j (see Fig. 8.2) with respect to molecule i is given by (rij’gij’qij)
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in spherical polar co-ordinates. We need the relationship between the
co-ordinates 6}13,¢i3) and (@ i,@i:). The two co-ordinate systems are
related by a rotation. If Oxyz is the original system and Ox'y'z' the

new system then

z' = 1.x + My + n @

3 3 3

where (13,m3,n are the direction cosines of 0z' with respect to Oxyz.

3)
In this case

Wy 25, Cog-téﬁ
Thus

Sw\@L Jm“ﬁ "('C-zﬁk_-,,, Cff: ®C

and a similar expression exists for cosf}J

Loy

Consequently

u(zaw‘lnﬂs)*:“‘i%(%d \1__7; Q:L\,)(Dg t

+ 25 », ( )”‘Y_ j(smgt Sen @ Cos(t(\d—i \1—
Gon 5y G @0 §° 15 ST S @ Cosluj-F 5 ) ¢
. Cesie;\ Cm@jiz> - D‘] 8- 16

8.16 is the expression used in evaluating 8.9.
We must now choose two reference systems, one representing the solid
state and the other the liquid state. The transition properties are then

predicted by solving the equations 1.1.

8.4 The Solid State Reference System.

As we have already pointed out in chapter 3, the cell theory (or free-
volume theory) provides an adequate description of solids. Since we
wish to apply the variational principle we require the reference system
to be not too different from the real system and consequently we take for

the reference system a system of cells as described in chapter 3. Thus
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the configuration free energy for the reference system is given by
o S 5 _
o LY, 1)/ eT
Vi = S;c“" Ve pai 318
A

Ve, )= EL R - E%00)  ES(09=E° %M

{He have simplified the notation of chapter 3. The © in the above and

where

subsequent equations means that we are referring to reference system

° we need WO v ¥ ) which is the total potential
£ X,

energy of interaction between a céntral molecule at position r in its cell

propertiesa To calculate v

and at orienﬁationdz and all the other molecules at the centres of their
cells and in their equilibrium orientations.

To obtain an expression for ¢°(i}d2) we calculate Ep(E;JZ) and then
simplify this latter expression calling it\PC} To calculate *)we use the
'smearing' approximation regarding the c nearest neighbours as smeared

over the surface of a sphere of radius a. (see ref. 6)

Fig. 8.4. The smearing approximation.

The positions of P and Q are (r,?',qg) and (a,9,f) respectively. The
number of 'smeared' nearest neighbours in an elemental area around Q@ is
C 2uDeOab (L. We have to write down the interaction of the molecule
att P with the 'smeared' one at Q and integrate over allf}and(b . Unfort-
unately we are unable to carry through this process analytically and so
we must make a simplification. BEven 1f we could evaluate the integral
analytically this would lead to problems in calculating eﬁg? (E:ﬂ‘l&?_)

and also to a vast increase in computing time. We will discuss these
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|
points further in section 10.3. Consequently we pick a particular 2
a.ndcl?; and say that the interaction remains the same for all other Qland.qf".
In fact this is the angular equivalent of the smearing approximation.
Now it turns out that the magnitude of the interaction when 9’=O is the
same as that when 0':TC and so we will assume that this is the interaction
for al}.f)l and c[?' : I ‘B'zO then
¢ - E 2 Co 8) 2
% = (W24 ot — 2aavles %20

and ) e

Ces® e = % SO Cosh Sun@ (F t 8 SuSind SO ST

¢ (v=als®) 0@ % 2|
|4

where (© , §) is the orientation of the molecule at P. Hence

TC 2
W ;
Elx,2) = ;fg? W, )LD dddp g2
9= =0
u(R,OL) is 8.15 with cos(alle in place of cos@l, cos@gQ
00592 and R in place of r. Cos® EQ is tha same as cos ggQ with the
min’fé-min replacing @ ,_ff The evaluation of E(g‘_,(ﬁ)

is considered in appendix 6. For a face centred cubic lattice (for

in place of
minimising values@

which c=12) we find to order 2

ey = wes (F)7 (122 ) case e () (s )

ek (DL Y s @ (I 2 x3) +
b (@) B) (e B)] eas
El0) = Ls¢ C%)\?‘—Lt%g-vz & = 4

b otkke v (Z)[ 28 -2 % 2L,

d‘_,(\f,JL) is given by
L, )= e(NJID)- &E@0) Y28
and so using 8.23 and 8.24 it is easy to show that for the real system

L.\) can be put in the form (correct to order 1‘2)

\p(\r,gzy:wzw( 2 _CCeaL® fgli %26
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This expression 1s identically zero if r=0 whatever the value 01?@9 .
However, if we assume that the central molecule is at r=0 and has orient-
ation «:),EE) then by summing directly the angular potential over the
twelve nearest neighbours (unsmeared) we find that \bUD,JZ)is not zero
but 1s proportional to cos 2®. [Extremely brief details of this calcul-
ation are given in appendix T;l Consequently, we postulate that'k(t,JZ) as
we have calculated it, should really have the additional term
BT (- (s 2 ®)
The reasons for taking this particular functional form are: a) it is not
too complicated and hence we can actually do some calculations using it,
and b) the occurrence of the cos 2@ in L.R) as calculated and in $(0,J0)
obtained by direct summing, the fact that we are dealing with diatomic
molecules and hence should use a double minimum angular potential, and
the fact that this is precisely the situation envisaged by Pauling27 all
combine to suggest that (l-cos 2®) may be a suitable form.

Using this expression for\pL%Jﬂ for the real system we define the
reference system to be such that it is described exactly by free-—volume
theory and has an exact g¥°(£“§) given by

wie, R wTs A S %%(\-c@?&@)#me%e@l\@g %27
A,B and C are the variational parameters. We can now see one major
advantage of the variational method. viz. Although we have had to make
several approximations to arrive at 8.27 we can define the reference
system such that 1t is described by 8.27 exactly. Of course, the better
the resemblance of the reference system to the real system the better the
results are likely to be. It should be noted that in this case we do
not need to know u° explicitly.

In the next section we derive an eXxpression for(liiz)(g,Jll,dlz).

8.5 Bvaluation of CZ&?(_R'GI.,JIL\

Corner and Lennard—Jonee45 have derived an expression forezie) (E,&,&.ﬁ

for a cell system subjected to an angle-independent potential. In this

instance, of course,(iiﬁg) reduces to e?(E)’ the familiar generic distr-

ibution function which is proportional to the radial distribution function.

Their derivation is easily extended to cover the case of a cell system

subjected to an angle-dependent potential; however, both the original
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derivation and its extension to angle-potentials require thatsko(I,JZ)'be
a scalar function of r. The potential of eqn. 8.27 satisfies this

criterion. We find

he RS (8,02, %) = KB Z_ iz, jda

Ut 2 | Yt
S P(.\PUJZZ-) Q}?l P(\r\,&l)d__g:
-2 { ly-¢|
where
— o, R) kT
— Qs ;
P (‘F) LR) - a{z 2 L IC CJ(\( Q/\ZT % 7—\8
o Svlg\;ﬂ@«z‘*’ e A ®E
Ni is the number of ith nearest neighbours at distance z (z1=a)
Thus

@Cc;\(@ &“&?) = \[ meR% Z S‘%U\

/IAJr?-. {G\ =4

peeFies
| —FELR) —E(2,)
&, 23"\ T g g 2o

P -
-l \ = R(er|

where

Iz 2' A T |
%:1&, & & FEMetq B d@AE T X

(& ()

EE,®)=ps? + B (1-s2®) —CT Cs2® %3

The exponential terms are negligible when.g,and‘irare greater than %,
for otherwise it would not be possible to say that the molecule is in the
neighbourhood of a lattice site. (i.e. a cell centre.) However zi/a} 1
which implies that, for the integral involving;gfto be non-zero, l}k—ﬁi(/DJ

is less than % in which case‘}AB . Thus the upper limits in both cases
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may be replaced by %—since both are greater than %.

Define I{ ,JL) by

1[2
o~ F(3.a2)
T ' © \k\ € 1z
Tl,q) = é\ g FWRIE gy
O 3 C)*\agwuaﬁaqL
then
e (8= f 2 l SI(/**‘g 2)T(p-%, ’Jdg 3
3
l.E. _()_C)#
oD (Ry =2 % 3L
|
where

N NL-.Q..B(( )\®l+. = ®) T %
Ai = Vo lbtha RT* 2 4, 4. 5

Lgﬁa(é“ E\lfﬁi (_z_g__&)ii { 835

L -5 Zﬁ<?+

) ‘) O'HAW LD SR

s

Cl

{j= A-Clm2® (=02

I~
45 S B Y37

T (AR = go (A — C Ce28)3

The expression 8.35 for »\i is derived explicitly in appendix 8.

8.6 The Variational Principle Applied to the Solid State.

From eqns. 8.3 and 8.4 we have
E 4 B 4 duW72e—< W%

where <iUQ%, is given by 8.9 and zﬁaﬁ) is the average energy of the

reference system. F° is given by eqns. 8.17 and 8.18.
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i.e. FO: %EOHN*{T&AVQ

\/; :5\‘;@ \\)C’LV}()?,)/\JCQF&Q

From egn. 8.19 we see that each molecule is in a potential E(r,X) where

EMN) = $ R + E®

Hence s o )
e Luy, = NE®+N oo, €38
where <‘\>QQ¢;&—§>A is the average of ;\)b(\”;\]?_) over the cell and is

given hy

L0, = §§:\)OU,&) (6 R) R %R

E oot v 2 LAYy, $Lo

N&T
It is easy to show that
Vg = 'Zmo\‘g% € Ll
g =t T (A BC) % L2
Zpn Ry, = hemop BT W3

where J—%:BI /B@- Y_See appendix 8 for details concerning the neglect
- 1.

of quantities involving e at or lessl On using egns. 8.9,8.16,8. 34 and

8.35 we find

W — 25 S
< >° QAR 0 T* 2— i
H ,""C)

2T fc r - Br=dy 250 ==
S &) g ey CR)™-2d(F) glr REV, @)“1
® =0 W= {,zo

L[ (SnS $m®, s (-8 ) + (S s B + (3035
Qc:%(vl—‘@l) + (s § Cn:S@;_\Z]‘-‘ 4 il o
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s, ® (_zf:,(l\@)a_ _
. Q%((b - . ,_,,5124(? 1. iz (?: K) g
{1{4: ng“\”: {4,
RRNE SO Sm® AR AL B, &A@, A T, Pl

where D(‘ = ?-E_a/J'Z_ anch %L = EL‘FG\/.!Z_

After integrating overg o] 5 §l and fi’; and making obvious changes of

variables we find

E < g_ﬁj—.ﬂﬂ\lﬁi—».—% _';.?3_.5-
o St T2 > TS

_ ALV, Q%&(/"tz‘*/“tz
LJ‘ ) *? u* < jﬁs gﬂ*L-—‘LC}.\E)(MC yROPy
- (Arc—2ead) (Avc—2.C 2) y*
. Q’?‘PE 2(A+ ) =2 C (M Ee?) % g
,J 2(AC) = AT (b))

daok//\\d/u?_ ¢ Ls

Whef'ea -a/c',T —kT/f_,z =z/a,e J—‘I/a, & 603 p{ = (2. ‘J:z)aa
E,l (z + 'L)a . e is the number density N/V The right hand side of
8.45 is minimised with respect to the variational parameters A B and C.
With these minimising values the compressibility _% =% - KF/N\ET)

and entropy S’,—Jb FIBF are given by
g S H‘Q“f?&ﬁ Sg‘g%xb*ﬂ B
N &T e J*l T% 'E." ; +E
_ Y . 2 235 Qz%(m +)r¥)
‘:_31{_ %f‘")s 3 O\%%L%“\‘Ei) ELMC-IQ}AZ\)LMC. ',1\(‘_/./\ 2)
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(AT =2 M) (A C=2 ) Y
. M AAL) — RC (ME ) 2

A2 A+ Q) — RC (e pre?)

%o{/&‘d/y\t g Lo

S 1. .@ I 2 2% + AR L
o = .QAAS;.._.B.E_—%—_Q*—%\-QAAZ?CJ\— I % LT

The computing problems involved in evaluating these expressions are

discussed in section 9.2.

8.7 The Variational Principle Applied to the Liquid State.

We have seen how the variational principle may be applied to the solid
state by choosing a reference system resembling the solid state. Similarly
with a judicious choice of reference system the variational principle may
be applied to the liquid state. We expect that in the liquid state the
angle dependence of the intermolecular potential will be less important
since the intermolecular spacing is, on average, greater, and hence we take
for the reference system,a system of hard spheres such that

= g > 1 Ted % L
o5 ‘) v< ook

The variational principle is
E £ g0+ LUy, - <UD

but in this case éﬁi‘>=ls obv1ously zero. We have

Luy = @rzg gmy gg -

N=e ®zo
W, TG0 ) €2 Sm S S @, S0 @ i d Rty ABUS A AT, €LY

where g°(r) is the familiar radial distribution function for an angle-
independent potential and in this case is the radial distribution function
for a system of hard spheres. Carrying out the integration over angles
and defining c=d/¢& we find

T . e v 2V
L D = P N ﬁt&g‘i@\cﬁ““ ()Lc_()B E}L(\u‘ :l% () )E Ay ¥ 5o
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Following Mansoori and Canfield18 we introduce G(s), the Laplace transform

of the hard sphere radial distribution function g°(x),

Ob -
&LS):Q dg%c(x))td\x %-=i

46 41

Wertheim and Thiele have calculated G(s) taking the Percus-Yevick
integral equation as their starting point. Even although the Percus-—
Yevick equation is an approximate equation, it is sufficiently accurate
for the case of hard spheres. (see section 1.2 and ref. 48)

G(s) is given by
sL ()

(=) = \2q L)+ S(9)e® |
L) = 2y L+ L )s r(\+v2y)] ¥ s32

BSA

=08 = U-bﬂl%g ¥ GVL(\-'OSE 4+ {%»fs — 12y ( H—’Z;L) € -S4

= Lrea® = greie®  ¥'SS

Define Ul(s) such that

xuXQo = gc, U (S) As g SE

where
__L__ _ B _ :12;?)§_ o

X ()= | GO T R T e 857

Thus the integral in 8.50 becomes
000 .
St g % I (s) oy 0 kS
Jo
oS

=) U)E©as

T O
Hence s -
4N T—LSN&L(E@ W ()& () kS ¥ ST
Using Laplace transform tables we see that

W)L SO 2ogh AW 3T g g9
‘ c® ol e® &Y e =2\
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The configuration integral for the reference system is
WA
@0 = LL[‘C) G}_o
A
where QO is due to integration over translational motion. The term (4R)N

comes from integration over the anglesﬁl N and must be included for

consistency. Thus —_—
N\ﬂ_ NeT
where F° is the translational free energy. Using Mansoori,Canfield and
18,49

Provine's results we have (after correcting misprints)

=iy 2o+ 3 - B udee §6O
NRT - Ll-v)* H
By letting q;?ll we see that 8.60 includes the communal entropy term for
an ideal gas. That is, & of eqn. 3.8 is equal to e. However, in the
solid state we take ¢"=1 and so we expect that just above the melting temp-
erature ¢ is also unity. Originally, it was suggested by Hirschfelder,
Stevenson and Eyring50 that o changes from 1 to e at the melting point

51 52

but this hypothesis was examined and rejected by Rice and Pople” .

The results of Barker’ -’24

above the melting point. Consequently the term ~19/4 should be ~l5/4.

also support the view that o=1 below and just

Thus the variational principle becomes

B g g\l 4 3 2 05 i dee Al

* lt—{‘r{L §Dul (s) Gc(s)oks %G|

¢ is the variational parameter. The compressibility and entropy are

given by

Voo \ay+ -3 y® L% > f . "
S 6. i XY ?\f‘l__gui(ﬁ)H(s)o{g 62
=
N k

(-n )3

bt e Rk bl e k3

where

_ skesTsQen) £ (e2)?]
H’(S)"—- KL(B) {*—S(S) Qs,‘\s'z

The numerical evaluation of these expressions is discussed in the next

Kbl

chapter.



-85-

CHAPTER 9

DETERMINATION OF PARAMETERS AND RESULTS.

9.1 Determination of Parameters.

In chapter 8 we saw how a variational principle could be applied

to a system of molecules interacting through the potential

Vo= 42 (5)n (R0 + e (5" (oo
4 6&-3925“‘ 3:1 -1

—_— 2
where E:A/U\ ) o= Q&/cf c;\MoL"v\-—-»--ﬁ:‘;q——

In this section we discuss how?Z ,05,V _ andV. may be determined. v

2 1 int

may be written as

Nigag = L7 K + iLRQE’\-U«(Cﬂﬂz‘QtJ\'&% 7_)"‘1_1 e

AR o

# o, = 20° where 24 is the aistance

For homonuclear molecules Q2 is given by
between the two nuclei of the meolecule. It can be shown55 that 4 is

given by \

B, =

J~being the reduced mass and c the velocity of light. Be can be obtalined
55

,;c’-c, NI
from band spectra and thus an experimental value for d obtained. To
be more exact, we should average l/r2 over all quantum states but the
omission of this correction introduces only a small error. Thus, we
will take the value of B as measured in the ground state. Table 9.1

I
gives the values of 24 and Q2 el A for various molecules.

substance 24(]) Q2:2d2(32)
H2 0.742 0..275
N2 1.094 0.598
O2 1.207 0.728
F, 1.435 1.030
012 1.988 1.976
| Br, | 2.284 2.608
Table 9.1

Values of 24 and QE
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The constant K is the coefficient of the term 1/r6. According to
de Boer's calculation K:%E_‘é;{z where AE is the ionization potential
and  the atomic polarizability. In fact, this expression was originally

58,59

obtained by London using the Unséld6o closure approximation. Mason
and Monchick6l have discussed two other formulae for K, the dispersive

constant. They are the Slater-Kirkwood (SK)62’63

= 3 i * ﬁi :
K &/QWER = O3

64,

formula

and the Kirkwood-Muller (KM) 93 Sommuts

K= 3mga AR UL
N is the number of electrons in the outer subshell of the molecule and X
the atomic diamagnetic susceptibility. The other constants have their
usual meaning. Extensions and refinements of these formulae have been
digcussed by Salem66 but these will not concern us here. A comparison
of results from all three of these formulae with the accurate result
obtained from brute force summing of the pertubation expansion for the
dispersion energy shows that the London formula gives results which are
too low, the KM formula gives results which are much too high (due probably
to neglect of correlation66), and the SK formula gives results which are
remarkably accurate?T Where possible we have calculated K by all three
formulae for the purposes of comparison but in view of the preceeding
remarks we have chosen to use the SK formula in further calculations.
Table 9.2 shows the results. Z was calculated using the Clausius-Mosotti

formula and observed values of the dielectric constant.

substance | N | %x10%7| xx10%4 |aEx10M! | Londonx10°? | skx107? | kux10°?
H, 2 |-0.6606| 0.749| 2.499 1.052 1.153 | 1.215
N, 6 |-1.992 | 1.621] 2.485 4.897 6.360 | 7.031
0, 8 | ——ee 1.530]| 2.003 3.517 S Vi
Ey 10 | - 1.036]| 2.852 2.296 4.195 | ———eo
1, |10 |-6.722 | 2.034| 2.115 §.563 11.54 | 33.58
Br, |10 |-9.361 | 8.299| 2.051 105.9 95.11 | 190.8

Table 9,2. Comparison of methods for calculating K. N is the number of
electrons in the outer subshell of the molecule, X and A the atomic diamag-
netic and polarizability respectively. The experimental values are all from
The Handbook of Chemistry and Physics (46th edition, The Chemical Rubber

Co.,1965). All quantities are in cgs units.
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There remains the constant A. Unfortunately. since the repulsive
potential is to a certain extent arbitrary no theoretical calculations
for A exist. That is, there is no reason to prefer a repulsive term
of the form constant/r" to the form constant e - except that the former
is easier to handle mathematically. Consequently A must be determined
from some bulk property such as the second virial coefficient.

Let & be some constant which, for the moment, will remain unspecified.
Then 9.2 can be written in the form 9.1 where & andfvé are as defined
there andlfl 2 KU§/4A. Now it is possible to evaluate the second virial_
coefficient exactly for the potential defined in egn 9.1 (see appendix 9)
but the resulting expression is an extremely complex double infinite

44

series. Instead, we follow de Boer and use an approximate expression
for the effective spherical potential, Vefﬁ? to calculate the second
virial coefficient. The second virial coefficient for a spherical potential

is given by
oo
__ " vL‘-\ o
R wlrci\)g (_Qﬁ )__\) & d q g
L]
and for an angle-dependent potential by

_ _ N “Ce 0,

E - .ib 2 SS\SS(@: R\JU‘.%“%Z, th;(b?.) —-*t) ?Zgwg\%ﬁzwﬂ(dﬁw‘ﬁa °l€>
(Rl (v

The expression 9.5 can be used for an angle-dependent potential if V(r)

defined by

is replaced by the effective field vefﬁ

€§VL%% = fewt ggg ﬁgv(‘\ghgh(&)\id@a‘gw% o9, d8 (ki A7

It is easy to show that

Vgp = <>+ LAt ] g
where<%> T gggg %Qm&ﬂ%g@za};@&z Ao AL,

For V given by 9.1 it turns out that by far the major contribution to
V .. is due to <iV> and hence

eff
\}{@c a N
For egn. 9.1 we find

PRATEEMET RSO LS
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Lk _ ¥ % ARz
VQ,M_:. ":Ffz T‘-bJr --—-.__.\"r\u"Z

In principle we should now insert eqn. 9.9 into egn. 9.5 and calculate B
but this may be aveoided in the following manner. For many substances
the parameters of the Lennard-Jones (12:6) potential have been fitted

using second virial coefficient data. Thus an experimental potential is

ee] (2 (s T

and ¢” are the known Lennard-Jones parameters. Since the & of eqn.

given by

2Ly
9.1 is completely arbitrary we identify it with the Lennard-Jones ¢ .

G g "
The values of B predicted by Veff and vexp must be similar and so veff

should match Vexp as closely as possible, By 'match' we mean that veff
should look like and lie close to Vexp° There are a number of possible
ways of interpreting this loose statement mathematically but perhaps the
most obvious one is that the functiorﬁ}, defined below, should be a

minimum with respect to A for some value of p.

b p
= S \V.e&#c“ Vﬂ/pel‘)&‘ﬂ“ J -1l

{a.b] is the interval in which V_,. and V yp ore matched. If, for
convenience, we take p=2 and b-0 we find that3} is a minimum when A is
given by
= e ity & L ) C 4, 3B Q- (f’:)z_
B 23 o zg,—o-G 2S5 @™ o
_ g% Qe g_)tf L 2z C—’& g/ L0 Gz (%)2
& o & “ ELQ 25' o
A% QF (cr)l.( g o 2
X7 eh

Of course, we cannot take a=0 since Veff

the sense of eqn. 9.11) near the origin, one being dominated by l/r

and V cannot be matched (in
exp

14

and the other by 1/r12. There remains the choice of a. We have chosen

a to be such that the zero of V occurs at the same position as the

eff
zero of Vexp‘ No real justification for such a choice can be made except
to say that the effective diameter of the molecule, ", should be the same

whatever the exact form of the potential since similar bulk properties

should be predicted. For the molecules in which we are interested we
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find aﬁrg 0.95, Using the values of Q2 and K already found together
with the values of A predicted via eqn. 9.12 and the Lennard-Jones & we

are able to draw up the following table of parameters.

substance LJ parameters Rotational parameters
Zorfr(9W) oK) sfety) Y, Vs
H,(Qu)D,(Qu)| 37.00 | 2.928 19.33 [ 1.715 [ 0.03208
H2(Cl) 29,2 2.87 21.27 | 1.758 | 0.03339
D2(Cl) 31.1 2.87 21.29 | 1,756 | 0.03339
N, 95.475 | 3.704 22.74 | 1.962 | 0.04359
0, 11715 3.52 27.88 | 2.300 | 0.05876
F, 11.25% 3.653 | 11.85 | 2.700'| 0.07719
c1, 357 4.115 12.53 | 3.434 | 0.11669
257 . 4,400 8.381 | 3.438 | 0.10207
Br, 520, 4.268 68.67 | 4.151 | 0.14317

Table 9.3. Values of the Parameters.

k is Boltzmann's constant. The values of the Lennard-Jones
parameters have been taken from ref. 31. In the case of I-I2
and. D2 we have taken the same values of Q2 and K for each of
them but the Lennard-Jones parameters are calculated either

assuming a quantum correction to the virial coefficient (Qu)
or without this correction (Cl) and hence give rise to diff-
erent parameters. Two sets of parameters are available for

012. For further details see appendix 11.

9.2 Computing Methods.

The computing for the solid state was done separately from that for
the liquid but in both cases the general layout of the program was as

indicated below.

Main Minimisation Free energy
pProgram subprogram subprogram
Thermodynamic

subprograms
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Very little need be said about the main program and the thermodynamic
subprograms, in the main program values of temperature, density, etc.
were set and then the minimisation subprogram called. On return from
the minimisation routine the thermodynamic subpréogram was called and the
pressure, entropy and other thermodynamic functions calculated. The
thermodynamic subprogram used the free energy subprogram, but this latter
computation will be discussed below. On return to the main program the
results were printed out and the variables reset prior to the whole process
being repeated.

For the minimisation routine a very general subroutine, obtained

43

from the Harwell subroutine library -, was used. The methed is that of
Powell43 for finding the minimum of a function of several variables with-
out calculating derivatives. The reason for not using this method in
the calculation for the Tsuzuki model is that we had come across neither
the method nor the subroutine at that time. The minimisation routine
calls the free energy subprogram whenever a value of the free energy is
required.

The only things thavFgfgbidation in the free energy subprogram are,
firstly, the value of i at which the summations or expressions 8.45 and
8.46 are terminated, and secondly, the methods used to calculate the
various integrals, The potent;al becomes negative when r)<¢ and it is

easy to show that when,r>¢,x,}l. Thus the potential becomes negative

(2= 2)(E" v as

*
For the largest possible density, namely close packed density @ =42, we

o
find, using 9.13 and the fact that z, = 11/2, that i) 3. Thus, for all

when o )l.

values of the density in which we are interested the terms of the summa-
tion in 8.45 are negative (or zero) when i=3,4,5,.... Consequently the
summation may be terminated at any value of i greater than 2 without
disturbing the direction of the inequality. However, it is known68 that
the number of molecules does not increase rapidly enough as the shell
size increases to maintain the validity of the smearing approximation.

Using the data of ref. 68 we can calculate shell surface densities.(Table9.3)
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* *
shell no. i Ni 25 4zdi
1 12 1 12
2 6 12 ERE N N
= 2
3 24 g3 8 b 27
4 12 2 3
5 24 | 45 2
6. 8 46 1%
Table 9.4 Valueg of the shell surface densities.

From Table 9.4 it can be seen that even for i1=2 the surface density d;

is already quite small but from our preceeding remarks it is not possible
to terminate the sum after only one term. The density does not fall
below the i=2 value until i=6 and thus if we include the i=2 term (as we
must) then it seems sensible to include all terms up to i=5 since the
smearing approximation will be at least as valid for all these shells as
it ds for 1s2; Consequently we terminate the series in egns. 8.45 and
8.46 after five terms.

To minimise the right hand side of expression 8.45 for given T* and e*
the minimising subprogram typically needs to evaluate 8.45 one hundred
times, Consequently, a typical calculation requires the triple integral
in 8.45 to be evaluated 500 times and thus, a highly efficient method of
calculating the triple integral is essential. After much experimentation
we foundﬁthat a combination of the 32 point and the 24 point (twice)

09

Gaussian quadrature formulae was sufticient to evaluate the integral

to fiive figure accuracy in a time of about one second. In addition,

if B and C are zero then the integrals over M, and.}&lin 8.45 can be
evaluated exactly, giving 4, and this serves as a check on the numerical
integration. The integrals J and JB were also evaluated using a 24 point
Gaussian quadrature formula. With regard to the integrals in 8.61 and
8.62 it is possible to derive analytically (see appendix 10) expressions
for them but the accuracy i1s not sufficient for the values of f encountered.
Thus numerical techniques must be resorted to again. The infinite ranges
and the form of the integrands are ideally suited to the application of

69

a Gaussian-Laguerre quadrature formula and a 15 point version was used.
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In Table 9.5 the results for monatomic molecules are displayed.

*

*

T AS avh
m m
Theory Q.75 1.40 17.9
Argon 0.70 1.69 14.4
Xenon Q.74 1.71 15.1
Neon 0.70 | 1.64 | 15.1
Krypton | 0.71 1.69 152

Table 9.5.

Comparison of theoretical and experimental

results for monatomic molecules,

For

monatomic molecules V,=1,V. =0 and € and ©

are just the L-J (12:6) parameters.

(See appendix 11 for the source of experimental

data,)

In Fig. 9.1 the theoretical equation of state for the solid is compared

with machine calculated values,

d

Fig. 9.1.

=

Jr

41

Equation of state for different isotherms. The

points shown by ¢ and @ are machine calculated

values for the solid phase and are taken from ref. 19.
The points ¢ are calculated at TF =0.903 and » at
T* =0.72.
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Finally the results for some diatomic molecules are given in Table 9.6,

Theory Experiment
T AS sv% n AS AV
m m m m
H2(Cl) y1.1 0.48 1.04 12.2
D2(Cl) SLad 0.60 127 13.0
H,(Q) 0.81 1.95 27.0 | 0.38 1.04  12.2
D2(Q) 0.81 1.95 27.0 0.50 La 2 13.0
N2 0.44 2.07 31.5 0.66 1.37 1.5
O2 0.54 2.21 34.8 0.46 0.98 —_—
| eth sern ot 0D o
Cl2 0.2 Opaereter ° 0:67 Aot T
Br2 0.57 2.41 39.8 0.51 4‘77._. = =
Table 9.6. Comparison of theoretical and experimen;;i results for

*
some diatomic molecules. Tm is the reduced melting
temperature kT/iLJ where zLJ is the L-J (12:6) parameter.
(see Table 9.2)

It should be pointed out ithat these results are the zero-pressure
melting properties. In principle, the theory can be used to calculate
the phase diagram of each substance by solving 1.1 for different pressures;
however, the amount of computing required is too great for us to contemplate
this at present.

From Table 9.4 it is seen that the results for monatomic molecules
are good zalthough a glance at Pig. 9.1 indicates that the good agreement
must, in part, be due to cancellation of errors in the solid and ligquid
calculations., For diatomic molecules the theoretical results are, at
best, poor. In the case of H2(Cl) and D2(Cl) the melting temperature is
greater then 1.l and in the case of 012 it is less than 0.2. For the
other molecules the predicted volume change is much too large.

There are two possible sources of error, namely, the determination
of parameters and the theory itself. O0f the three parameters that have
to be determined (see egn. 9.2) the one which raises the most doubt is A,
We have used a property of the gas, the second virial coefficient, to
determine a potential which is to be used in the solid state. Now in
principle this shou:d not matter but since in a gas the attractive forces

dominate, (by virtue of the large average intermolecular spacing) the
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second virial coefficient i1s not a good method of determining a repulsive
parameter. The same objection holds for monatomic molecules but in this

case the equivalent parameter, £ I also appears in the attractive part

and so the use of second virial goefficients is quite justified. This

is also reflected in the good results for monatomic molecules. Thus to
obtain better results we certainly need an improved determination of Aj; a
method which uses the resulis of a measurement on the solid state will
probably be best. In fact the whole question of the determination of
intermolecular forces needs to be reconsidered: if, for example, we take
A=33.0 for 02 then the valueof T: predicted isin agreement with eXperiment,
but the entropy and volume changes predicted are still much too large.

The view that an accurate determination of the forces is the most difficult

part of the problem is held by Hoover and ROSSTO

who state "a rigorous
theoretical free energy calculation for a real material proceeds in two
steps, both difficult. First, the crystal structure must be given and
the forces with which the atoms or molecules interact must be determined.
Second, the macroscopic consequences of the forces have to be calculated
using statistical mechanics.... The first step seems to be the harder
one, For even the simplest of real materials reliable quantum calcula-—
tions of interparticle forces in condensed phases have not been carried
out.m

Secondly, there is the possibility of error in the theory itself.
Certainly it is the source of some error since it is a variational calcul-
ation but drawing on the results of Table 9.% we expect that the error
inherent in the theory is small compared with the error due to the inaccu-
rate determination of the intermolecular force. There is also evidence
that the errors in the free energy tend to cancel each other. Hoover
and ROSSTO claim that the errors in the Mansoori-Canfieldl8 treatment of
the ligquid state and in the cell model of solids are both about O.3NkT.

In view of these remarks we conclude that the basic theory is itself
sound but that a careful investigation of intermolecular forces and an
accurate determination of parameters is required before the full potential

of the method is realised.
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CHAPTER 10

CONCLUDING REMARKS.

10.1 Comparison of Results.

In this section we compare the results of sections 2.7,6.2 and 9.3.
With this in mind we have plotted the results displayed in Figs. 2.9,
2,104 2.11,6.6,6.7,6.8 and Tables 9.5 and 9.6 on Figs. 10.1-10.3.

0.4 otk
258 1k Gl
22 k G IS

2.1 F

2.0
® 33
1% b

1.8 L

S*
t}'m

L2 }

1.1 L
l.o ™

e

*

-8 1 i i 3 i L " i i 1 [ T
B sl B8 3 A 5 8 0 B8 § 1o ia "
Fig. 10.1. Comparison of theoretical and experimental results
for different models: entropy change against melting

temperature. (see Fig. 10.2 for the key to numbers.)
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1.8 E

*
AS
m
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1.4
1.3 |

.8 . . A N4
0 10 20 30 40

Big., 10,2, Comparison of theoretical and experimental results

for different models: entropy change against volume
change. The circled points are the results of the
variational method. The other points are experimental
vaiues. For Br2 the experimental results are T;=O.51
Sm=4.77.

1. Xe 2. A 3. Kr 4. Ne 5. CO 6. CBI‘4 Te N2 8. Dz(Q) 9. D2(Cl)

10. CH, 11. ccl, 12. F, 13. H2(Q) 14 . H2(Cl) 15. 0, 16. CF, 17. Br

M monatomic variational result. a.y=12, c=1l3 b.Yy=6, c=1} c.y=5, c=1;

d.y=6, c=0.85 e.y=6,ce0.63.

2
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Fig. 10.3. Comparison of theoretical and experimental
results for different models: volume change

against melting temperature.

From these diagrams 1t appears that the Pople-Karasz (PK) method
and its extension gives the best results, and that the Tsuzuki (T) method
and its extension is better than the variational method. However, 1t
should bte rnoted that the PK and T methods both contain adjustable parameters:
in the case of PK, the ratio Ho/z is adjusted to give the correct melting
temperature for argon (see section 2.2), whilst in the T model, ¢ is not
determined adequately. (see sections 4.3 and 5.3) On the other hand,
the variational method contains no parameters which are freely adjusted
to give agreement with experiment. The parameters which appear in the
intermolecular potential are all determined from independent experimental
measurements and in the case where the determination is theoretically
sound, for monatomic molecules as already explained, the agreement with
experiment is quite good. As we have previously pointed out, the poor
agreement for diatomic molecules is almosfcertainly due to our inability

to determine adequate intermolecular forces.



—-98~

By comparing Figs. 2.8 and 6.2 we see that the PK model predicts that
T; falls with increasing ¥ whilst the extended T model predicts that T;
rises with increasingv. Although the parameter Vv has different meanings
in each model, in both cases it is an indication of the strength of the
barrier to rotation or re-orientation and so these results are in conflict.
The experimental results indicate that polyatomic molecules melt at lower
reduced temperatures than the rare gases and so the PK results are to be
preferred. Since we have had to make several approximations to arrive
at 8.27, a potential which is more complicated than that used in the T
model, we see that the true potential is markedly dirferent from the T
potential, 'V‘L‘m e ‘\-’u (1#%_9’)'5(1—&518) , and presumably this is the source
of the conflict. Certainly on the basis of the simple potential above,
T: should increase with increasing V. With the exception of H2 (and D2)
the variational method is in agreement with experiment on this point.

Finally, the PK model predicts a solid-solid transition whilst the
other two models do not. (More accurately, the variational method does
not; however, that predicted by the T model occurs at the point associated
with the breakdown of applicability of the model due to the partition
function being non-separable into translational and rotational parts.)
The variational method was applied to the solid-liquid transition and so
it is hardly surprising that we do not predict a solid-solid transition.
By considering a second solid state reference system it may be possible
to predict a solid-solid transition. Alternatively, the use of the Maxwell
equal area rule on isotherms for the solid state theory as at present may
indicate that a solid-solid transition takes place but we have not invest-
igated tpis possibility because of.lack ot computational time.

In conclusion, we may say that although the variational method obtains
the worst results, it 1s potentially the best method in that it contains
no ifreely adjustable parameters and, in addition, it is also a theoretically
sound attempt at a microscopic approach to the problem. However, the

determination ot the intermolecular potential must be improved.

10.2 Upper and Lower Bounds for the Free Energy.

In this section we discuss the validity of the upper bound, which
we have been using as the basis of a variational principle, and, in addition,
derive a lower bound which may be used as the basis of a complementary

variational principle. However, before embarking on this we shall examine
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more closely the idea of cvomplementary variational principles.
Two variational formulations of the same problem are said to be comp-
lementary if one involves minimising some functional and the other involves

maximising a related functional. The general theory, as well as numerous

T1 5

examples, is discussed by Robinson and Arthurs and extensive references

are given by these authors. As an example of complementary variational

13,74 bounds on the time-independent

principles we quote the Temple-Kato
Schrodinger equation, If we have a system with Hamiltonian H whose lowest
energy eigenvalue is El then these authors have shown that El satisfies

the inequalities

T, = {3.T& &£ By & Ty (O

Tz (o W dac /(o8 pac

¢)be1ng any trial wavefunction. One thing immediately obvious from 10.1

where

is that 1t is much more difficult to obtain a lower bound as this involves

J However, it is not obvious that in many cases the lower bound

2.
provides a better estimate than the upper bound. For example, Temple73

has shown, by using complementary variational techniques, that the lowest

eigenvalue, M, of the eigenvalue problem

L . 2
dﬁ‘i . C)}aﬁz with y=y'=0 at x = +1
) ) .

in the domain {-1,1]

satisfies q- Bk & A & \os
Now, in fact, the exact value of Xw 18 1©% =9.8696 which illustrates that
the lower bound provides the better estimate. A general survey of the
field indicates that the following hypothesis may be true: if a lower bound
is more difficult to calculate than an upper bound then the former i1s the
more accurate. The converse should also be true. With these remarks
in mind we will discuss the possibility of obtaining bounds on the Helmholtz
free energy.

Consider a classical system of N particles interacting through a
potential Uo(zl’zﬁ""’zN)' Then the configurational Helmholtz free

energy is given by
~RF o _ L\ -8l
2. ‘5 g4 el QM = [VE! @ OKIEQi

where g =1/kT and dgpg stands for all the co-ordinates over which the
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integration is performed. Huelle3 has shown that if the system is to
exhibit thermodynamic behaviour in the thermodynamic 1limit (for the definition
of the term 'thermodynamic behaviour' see Buelle3 p.1l) then

1) the interaction between distant particles must be negligible

11) the potential must be stable.
‘-_An interaction is said to be stable if there exists BO)O such that
UO(_I_'l,...,zN) > --NB0 for all N?-;O.] The stability criterion is also
sufficient to ensure the convergence of the grand partition function.
The former condition can also be made more definite by introducing the
notion of temperedness. ALl pair potentials,P(r), which are such that
ﬁb(r) L0 for I'>/RO for some Ro satisfy the temperedness condition.

The probabilaity distribution function for the N molecules is

b o Mo

© NI GR
Suppose now that this system is perturbed by a potential Ul(El’”"EN)

such that Ul(gl,...,zN) ), -NB The free energy of the complete system

l.
is given by

Pl - Ni S _ﬁ(\m*u)dﬁccg

- '_Q:‘f“’Fo < &:%U1>0
where < QTRU“>G s S - ‘gu‘ PQ 0\-2 §

Thus the perturbation free energy, F. , is given by

.].’
_F\ . - Feo S — Ly "/N O-
T T NeT — A B o R

Assuming that F. can be written as power series in R

1 oo _
e Fu= 2 5% G e
w=i

Zwanzig42, using Thiele' ?5 theory of semi-invariants, was able to derive
expressions for the . in terms of <Ull{>o (k,1 integers). T 10.3 18
valid then the upper bound

FE < Fo v LU\ \C 4
can be derived. However, the series 10.3 exists only if

1)  the series iﬁ u} “ @) converges. (CI)

LIn the thermodynamic 1limit we must consider the free energy per particle.

i.e. P /N
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\ R L
1wy = UFH S exists ard is finite. (c2)
Condition C2 implies that 9 =r3NU§e_PU°
and infinity. Temperedness ensures that 390 as r>« and provided

tends to zero as r tends to zero

Ul and Uo are suitably chosen,3>06 as rvo. Near r=0 the choice Uo= hard
core and Ulz soft core is suitable but the reverse choice is not. If Ul
is a pair potential,d(r), then we require r%ﬁ(r)«aO as r=> 0o .

To obtain conditions under which Cl holds is much more difficult
but Cl is not a necessary condition for the existence of the bound 10.4

as the following argument shows.

LMy = rle § ¢ ST TRy

. 12
e o @ <U.-\>D % < '\.__ {3 Wy .\_‘% 4‘*00"‘ 172\(_- ‘3U\\+ E(ul)‘c] ¢

« Qep (;— 89-a1?233¢>>0 g (OB < \)

The last step follows from Taylor'!s theorem in its truncated form, Thus
= ‘\A;> ~ B LD
< ¥ o] }/ Q. ¥ £
Substituting this result in 10.2 we have

_ lmui—§<uhb/N

o g

i.e. = é:\ Fe & <u\l>o

To use 10.4 as a variational principle we consider U0 to be a trial or

reference system. If the real system is described by a potential U then

we have
E & Fo 4 dUu-Ued, o5
exchange ) .
If we ndw/ the roles of the trial and real system we find
Fo + 41(}-“'k*0i> 'SL = (06

where the average in 10.6 is over the system described by U. However,
we are normally interested in the properties of the system described by U

and so if we could evaluate the average in 10.6 we would not regquire to
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do so as this would imply that we could evaluate the properties of the
system under consideration without resorting to the use of wvariational
methods. Thus the variational principle 10.6 is useless for any genuine
calculation. It should be noticed that it could not be applied to the
systems described in 8.7 as C2 does not hold.

Nevertheless, a usable lower bound can be derived from 10.2 by

noticing that the stability condition implies

Q. le‘ < Q_ﬁhJ@‘

~

_E‘_ _ 8
il

Thus

LsCo -
e oy e B o7
N\=T NRT T

i.e. =

10.8 can be used as a variational principle, —NBl being a lower bound

of the perturbing potential. 10,5 and 10.8 are, therefore, complementary
variational principles. The variational principle 10.8 is easier to
apply than 10.5 and so, according to our hypothesis, the latter should

give a better estimate of F.

10,3 Suggestions for Further Work.

We conclude this thesis with some suggestions for further work. In
passing we have noted improvements that could be made in the PK and Tsuzuki
models (e.g. using a triangular shaped distribution function- see section
4.3) but their crudeness probably does not justify too great an effort.
However, the wvariational method has a great deal of potential and it is
in this direction that most effort should be aimed.

The whole subject of intermolecular potentials for polyatomic molecules
requires careful investigation and, in addition, the determination of
parameters must be improved either by relating them to some measurable
property of the solid state or else by some ab initio calculation. If
this can be achieved, the theory described in chapter 8 could well be
improved upon by choosing better reference systems. For example, in
section 8.4 we used an angular equivalent of the smearing approximation in
order to evaluate E(r,5l). If this approximation could be avoided it
would lead to a better reference system but it would also almost certainly

mean that the sevenfold integration of egn. 8.44 would have to be evaluated
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completely numerically. However, this is likely to lead to a substantial
if not vast increase in computing time and so an improvement in computing
techniques will probably be necessary. [In fact, if this sevenfold inte-
gration had to be evaluated numerically, then to apply the variational
principle at just one temperature and density would take at best 14 hours
and at worst 225 hours of continuous computing on an IBM 360/44 computer.
Thus an improvement in computers themselves rather than computing techniques
is probably required.) An investigation of the possibility of predicting
solid-solid transitions by means of the variational principle is also
worthwhile.

Finally some improvements in the general methods may be possible,

76

As pointed out by Rowlinsorn = three body forces are not negligible in the
solid and liquid states and these may have to be taken into account before
agreement with experiment is obtained. It would also be well worth the
effort if the bounds 10.5 and 10.8 could be improved upon. This may be
achieved by considering high and low temperature expansions of egn. 10.2,
that is, by considering under what conditions the free energy may be

expanded as an ascending or descending series in 3.
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APPENDIX 1

REPRESENTATTON OF & (JU).

The § function, g(’% in one dimension is defined such that it satisfies
the following equations,

O
S SOGNAe = | AL
—a

(googedow = £() A2

where f(x) is an arbitrary function. S(%) may be represented as

: : L . cexes
SOO = Lm g o ©% x'_"‘ = A -3

% 5o O -’O}L\,.,msa :

In accordance with ki-\ and AV S(N)satisfies

§ St =1
a\m%iv,

(gL gty ddz= ge)
cm'l‘ts

where g(d) is an arbitrary function of the angles® and® . However,
AR = S®ADAF.  and so %(&_\“—'3(@)S(5«) where 3(&) is given by Al'3 and
S (®) by

@
; 2 38 0g 7
(@)= b § e

20 O © ofhsrnase

)

This curious representation 0f $(®) arises because of the occurrence of
Sin® in adl,
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APPENDIX 2

ASYMPTOTIC EXPANSIONS FOR THE ROTATIONAL PARTITION FUNCTION, ENERGY AND
ENTROPY.

N
_a‘ Ax.  is known as Dawson's integral and an asymp-

totic expansion for large a has been quoted by Dingle?’

a

The integral S
This expansion
can immediately be substituted in the equations for J,E and S but the
resultant expressions are not so useful for computations as Lk'ih and LIS
since they involve something of the form- constant/divergent series.
On the other hand, the expressions Lk'lh and Li$ involve the ratio of
divergent series of a very similar nature and thus it is to be hoped that
when these series are truncated the error involved in this process will be
of the same magnitude for both, Of course, the two forms of equation
for each of J,E andS are equivalent but perhaps the most direct way of
deriving Ltk and k¥ is the following.

We take as cur starting point the equation L0  which involves the
integral

o [TE oL (es N
Tle)= Q*&Sﬁva A L= Q/ET
Jo
Using the fact that the integrand is an even function about K(* and the
substitution W = |- &s2® ywe find
e 3
; R — ol A wdw
TW)= L 2 Cos {8 (W]

Substituting
3

‘ =1+ & 4 B ke S wr .
Cos O T, 29, (2%
into I(t) and replacing ug by v we get
R
: — AV 2B o2 g S yFir-.. )
J:(»L\_..iig V(A Y e HVErER Y YA
(6]

For large ™ the upper limit can be taken to be infinite and hence
Tl kb dod 4 4 B Mo B L oo,
(<) l%&+ % %

and therefore

Differentiation of this asymptotic expansion is valid and hence we arrive
at k'l ang LIS,
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APPENDIX 3

VALUES OF THE COEFFICIENTS b(J)

EY
Bird.

The first 40 coefficients are taken from Hirschfelder, Curtiss and

by which the entry is to be multiplied.

O e o T e . e A B T = S

TR S SN A S ST O T A TN G ST O SN o Y SR N S S S I S Sy S ST S A
OV O N U R W N H O W= onT R W O

5 (3)
+0.173300092(1)
-0.256369335(1)
-0.866500460(0)
-0.427282225(0)
-0.216625115(0)
-0.106820556(0)
-0.505458602(~1)
-0.228901192(~1)
-0.992865111(-2)
-0.413293819(~2)
~0.165477518(-2)
-0.638726811(-3)
-0.238187337(-3)
-0.859824554(~4)
-0,301005975(~-4)
~0.102360066(-4)
-0.338631722(-5)
-0,109133894(=5)
-0.343058281(-6)
-0.105304634(~6)
-0.315974732(~17)
~-0.927683684(-8)
—0.266731917(~8)
-0.751680455(-9)
-0.207780298(=9)

53
54

-0.563760342(-10) 55
-0.150241138(-10) 56
~0.393507931(~11) 57
-0.101353149(~11) 58
-0.256846309(-12) 59

+ ()
-0.640738297(-13)
-0.157421932(-13)
-0.381084270(-14)
-0.909350173(-15)
-0.213977798(-15)
-0.496703876(~16)
-0.113781845(-16)
-0.257301557(~-17)
-0.574574040(-18)
-0.,126740983(-18)
-0.276237519(-19)
-0.595064372(~20)

-0.126729176(-20) -

-0.266889336(-21)
-0.555947229(-22)
-0,114573705(-22)
-0.233658980(-23)
-0.471649387(-24)
-0.942507412(-25)
~-0.186494018(-25)
-0.365462058(~-26)
-0.709408616(-27)
-0.136428144(-27)
~0.259979210(-28)
-0.490988777(~29)
-0.919118419(-30)
-0.170570776(-30)
-0.313859360(-31)
-0.572696800(-32)
-0.103641460(-32)

The number in brackets after the entry gives the power of ten

wEd)
-0.186045570(-33)
-0.331312864(-34)
-0.585389288(-35)
-0.102634041(-35)
-0.178578577(-36)
-0.308395557(=37)
-0.528659192(-38)
-0.899661395(-39)
-0.152006923(-39)
-0.255019108(-40)
-0.424864071(-41)
-0.702970177(-42)
-0.115524464(-42)
-0.188582182(-43)

' =0.305812631(-44)

-0.492692188(-45)
-0.788674679(-46)
-0.125446234(-46)
-0,198284843(-47)
-0.311477990(-48)
-0.486299852(-49)
-0.754661180(=50)
-0.116413244(-50)
-0.178519615(-51)
-0.272165214(-52)
-0.412545329(-53)
-0.621772787(-54)
-0.931838554(-55)
-0.138875583(-55)
-0.205832571(-56)



90
91
92
93
94
95
96
97

L(3)

-0.303411074(-57)
-0.444839623(~-58)
~0.648716941(-59)
-0.941046888(-60)
-0.135798673(=60)
~0.194953723(-61)
-0.278446841(~62)
-0.395685713(~63)

-107=

L (3)

~0.559471352(-64)
-0.787129896(-65)
-0.110198903(-65)
-0.153529297(-66)
-0.212867226(-6T)
~0.293731093(-68)
-0.403398496(-69)
-0.551418260(-70)

106
107
108
109
110
111
112
113

A (3)

-0.750255962(-71)
-0.101610131(-71)
-0.136988584(-72)
-0.183851483(-73)
-0.245642582(-74)
~0.326746698(~T5)
-0.432719800(~76)
-0.570567479(=77)
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APPENDIX

LIMITING VALUES FOR THE EXPRESSION T.13.

In chapter 7 we derived the inequality 1'3 for the free energy Fs'
Fs 4 nt?l <3 (W)

N
where
QLM:—LL{: J&)i LE‘“ .m%(mmg
i
Q\Jﬁ/ir'
SA A () [CQL?)) &e(2)] < ag® A%

In this appendix we derive values of 3(A) and dF A)/dA at zero and infinity.

Since i
[5 4 (18) = 2, " as

e
. . —A s ;
it 1s easy to show (by expanding « and integrating term by term ) that

/T—; Jv:%— (‘!—;f—) = |- % for small A.

8 [Eag ()] 2 (- 5) = -8

iz
We also require the values of the integrals S PL‘%)ckg and SD Q(.‘@D\g
(=]
Using the series expansion of‘;(s,g) fbl‘\§\<,l we have

Hence

and

RLE) = 2. K‘%‘?S(‘z}g A .lo-lt:?-@s(lq)% e
Now 5(_&,):\5(8) S | and hence

PR & (\=3)™" 4 (t+2) =29

al®) = (-7 + (1+1)® -2

P and Q are now easily integrable and we find

|z iz
{ P(ag = I'ses (aag = ss-l
Thus putting these results together we find
ki F(B) = 'L[SS=-01lC'. - pses’lﬂ Al
Ao

We also have the obvious result that



..,]_09_

bsnen E}(i&\ = R Al
A~ oo
Now
— Al iz 2
A3 — | € VAl 24 Al S\Y_(’—QL‘%)_ EP(‘%)]?‘.{:“T‘ 0\3
P T E N T A
’ i~
+ - cRCE) - RO(D) A
AR UA)  RLJE )] L 1™ ag

IR G S S ik Jﬂlrci <Al AT
A A s (Ll L oA (Al2)

On evaluating limiting values for this expression we find

how &2 g+ 0-q301 B Al 2
AS o AW

The values of B and C are such that equation AWl gives a positive value
while ALY gives a negaiive value. Hence the expressions AL\~ AL3
indicate that3}(A) has at least one minimum in [O, co]. Numerical
minimisation of ¥(A) and subsequent evaluation of F(A) in the neighbour-
hood of the numerically found minimum indicate that it is probably the

only minimum,
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APPENDIX 5

DERIVATION OF EéZ).

Since the expressions for E( 2)
slightly _ & . .
are both/lncorrect we derive the correct expression here, The inter-

quoted by de Boer"k and Buckinghamﬁm

action between two hydrogen molecules has also been calculated by Massey
and Buckingham_‘q but using a different approximmation method and consequ-—
ently their result is different from that of refs.4k and78 (corrected).
Since the calculations of refs. Ll and 18 are more recent than that of refl

79 we shall follow the former. Qur starting point is Buckingham's

equation 46 for the dispersion energy, u[(ﬁ;sl;*), between two molecules
in states nq and fig respectively.,
i S Uki;m.] Utve) ¥ d\UM) (n2)
disp T L«(_U\'t‘“) *_u?z,)) Ae 2% ‘“\h :\B% AS: |

+ higher order terms.

ey . A e oo R ; th
is the polarizability tensor of the i molecule in the n.

Lo
state. In our case hoth molecules are of the same type and in their
ground states. Thus b\&“‘)-: t“':ﬁ}ﬁbeing essentially the average

of the denominator in the second order perturbation expression for the

dispersion energye. Hence

W U p——je— fg-é 5% .
B K7 ilﬁ.f*T’“YS &‘wﬁ 0{2‘55 AS-

-Ta\ig —_ Vd\\_/g Rm‘ = (% Elﬂ K{E— R?- ga{@) RHS

For a diatomic molecule (axial symmetric molecule described by Daoh)

U{*rs o UL.L gd\ﬁ *—kd-“—'d\_‘*\ ‘-Q.ggiﬁ
= A Sqp + Ly (3halp - Sup)
Ae = bon

Qo are the direction cosines of the axis, A the average polarizability
and ¥ the isotropy factor. The line Jjoining the centres defines the

z—axis as shown below.

molecule 1 // R \\ino_lejuie;’ 2}
Then 'Tatp, = O (AF+R)

T = T‘Qb""" -i1/R3 s T?-'E = 2/{23



-111-

Also
s Ay = B e, Ly =08
Xy (B3m2 9 Costp — 1)
X + Xy (smrosinzp —0)
=& +2y (22D -))
dng= BTy 2D Conds Sim b
Axe = 3XYSw (59 Cs &

Ayz = 3y 2wd CesD n b
with similar expressions forle etc, (9‘,':]:,) define the orientation of

molecule 1. The summation in egqn. AS*2A gives

Tox Tax Dk‘x.xa(z)gx_ + T T‘:m oy r.b“z Xy ""T’*’LT‘E%J“ e A2 e
- Tuy T : i
93 DA Lan + Tag Toy RiggRegy + Ton Teadiga dage
T&Txxd‘u‘*lzm i T%%Tm“"*\za frgy * Tea Tradipr Aoga
On substituting for each of these components we find
3AERS ( 2 53 — -
L(R[" l+x (b% B+ Cc 8& .‘)

U.gk\js,‘, -~
;L'}J'ZY\C&S \-\'Caszaz (\g“"‘a gm(a?-(b%(dm z.) 1%59 (os® )a‘lg

Changing to the angles defined in fig.®:3 does not change this expression

(2) . .
b s X ] e
and hence Ea is given by udisp
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APPENDIX ©
EVALUATION OF E(r,Jl).

We have

L

WReTe (@, = f—cii(’@“—‘” ()3 “* g v (F)
L (R B8 v )-2)
- PQ :
R and cos p are given by
RZ = (v 4 oF - Lav (s9)

E(C.J0 = g_g' g uui JU) % ind A9 ol

Ces BT = % S Conp Sm® (5T + g?i%\asmp SC®S T
v (et 0 @
E(r, ) splits up into th:»fsum_of three integrals of the type
i &- Sm %"*‘3&%‘@ w= 6,\2,\l
O=o $=o

plus two integrals of the type

- A 2 g bfa
3. = Co TR Adekds = P
o w L‘ (-: ‘ &
o= =0 @\
Ir is easily evaluated and we flnd
' T . = E S S
o (u ‘.L) ev L (a- \*‘\"‘ = (r)\-hr)“‘l
J. splits up into a sum of integrals all of which are easily evaluated

1
and gives

§ | l A _ .__L____l_
“T\“ = T ol %M{(@%QLﬂth Y_(\G\,‘.q-j\z ¥ LD\-—\P)R'

- \ | L U’” +0Z ) Ces ®
s Kg"‘_ ;2 LO'\ ) (C’k*ﬂ"c:xi {" L<_00r [

-

q)ha‘ E 1 perY®

- ]_ 1 {_.“L_- H_L_l _
(o) ELO o3 ri (e=)* (o vy

- L. Lo Cens Oi H«O\Y‘ { ((:-;:;—S\k (- \L\-"k
__.l-—m-.._. 1 meg il \ k i

6% ot (a=v)'* - (o P2

)
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If we expand J in powers of r we find
Z
J, = ws ® o rz“k_ \LT"G:&@[ 2L1 £
P 3 alk {‘ * + 2 B0 \+ == 5’ a2
The expression for JQ is similar with@ . Emin replacing @/E,

By expanding In in powers of r and assembling all these expressions to

give E(r, &) we finally arrive at eqn. 8.23.
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APPENDIX 7
EVALUATION OF ¢ (0, 3).

In this appendix we indicate how tc calculate the angular interaction
of a molecule at the centre of its cell with its twelve nearest neighbours.
From eq. 8.15 the angular interaction between two molecules is proportional
to cos Q + cos 92 and hence to 101r1d the total angular interaction all we
have to do is sum (oos 9 + cos °9 ) over the twelve nearest neighbours.
However, we must define the orlenuatlons of the molecules in terms of
some fixed set of axes and thus the problem really involves summing the
angular part of 8.16 over the nearest neighbours. The direction cosines
of the lines Jjoining the central molecule to each of the nearest neighbours
are easily found by considering the geometry of the lattice and then,
after averaging over all orientations for each of the neighbours, the
summation is easily evaluated and gives an interaction proportional to

0052C3 and hence to cos 2@ .
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APPENDIX 8
EVALUATION OF A (-

In this appendix we evaLuate{\‘.explicitly° Since Manscori and
Canfieldﬂ have made an error in the evaluation of their corresponding
N. we consider the calculation in some detail,

From 3-33% we have
aD
A, = N __,_ﬁii-—— :E_(fA‘ %i,JZ\):E.(/JG' %ﬁ) JL*)CfﬁA.

® 'V hra@ﬂlia
o

If we assume that f is large it is frivial to show that
— 3z R -
g= ot Tmre) A

If |\ < i|a then
iz -2\~ GnA®)  _4g>
< A

T &, JL) = 3 e jg
<\
= g2
. £6(l %9\@)).9_ S
>t -4t
where we have neglected a term involving < ; The assumption that

T is large is justified since if this were not the case it would be
impossible to speak of a molecule being confined to a cell. In any
case, drawing on our calculations of chapter 7 we see from Fig. 1A that
the corresponding f,(A), in that case is large and thus we assume f to
be large in this case, Eventual calculation bears out this assumption

completely. Thus
- RU-Ca1B) _a2y

o : .
T ay= { X “ ; Al e
O

N

A3 2
i ctarwrsa
and consequently

e <)
- -t () E ~ - R[a)?>
©
with the conditions (aa=R/e)” <i 4 and (pn- Rf) =L ()L
Define the Heaviside function, H(x), by

Hoy=3 L x7°
(o xeo
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then

Ax o Smue: b @ Al BT (et 0T
«ﬁ\\-.. LU~ R () - ‘Lklgo‘ym

= m-—- \ = '-,0*2"- z - Rle)®
_SO‘L e A o I S W

o N NV S e R LNV et 5 et in

A is seen to be the sum of four terms the first of which is a straight-
forward integral. Because of the occurrence of the Heaviside functions,
when the integrands of the other three terms are non-zero they are each
of the form < z%wnpﬂe G zv However, we have already neglected terms

involving ¢ it and so for cons¢stency the three terms involving Heaviside

functions are neglected. Thus

AN oL ’___T_E_.__\ @,_F?% Q fe (__i)z

£.+4- o

(52598

Consequently to be consistent with our previous

A
s
—-ﬂU
(-\,\/b
[
1

where 2f = il + 12.

WOTK'A{ is wero unless
(2 -R\& L

&
(525 40

X CL . 0N A Q-
ie. ZEi— — Z£ B & 2 + = A8-3
39, N
By putting in the constants we arrive at egn.¥3S.
Mansoori and Canfield state that the condition corresponding to A8.3

is zi—a<12< Z;+a. This error is due to inconsistency in the neglect of
2z,

. < : -t ;
terms involving e v where[fz.% and the subsequent result is that the

limits in their integral corresponding to eqn. 8.44 are such that the

integral diverges when i=1l.
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APPENDIX 9

THE CLASSICAL SECOND VIRIAL COEFFICIENT FOR AN ANGLE-DEPENDENT POTENTIAL.

The classical second virial coefficient for an angle dependent

rotential is given }:;,r‘-sl
0 i T LT
sy =-5{ S (] fard seoe e do s deirn
o e o o

where Qw_: Z%%_\ and 81,8, and (b are the three angles necessary to
specify the mutual orientation of two molecules. If c{:\,_-»o as r - °o

we have

- s _'.\)_._. R 2T ES C)\AD\E ‘ﬁ¢|h . . _ w
%(.T) tl-\zT Su go &t- g ‘\\?. O\J‘\L gMa‘gw\gl(kBldS;OKCb 1z

In this case

b= hi&z( \_@,q‘ < Ty (4\-,_] g-\- \12121(%%\\11{\1\ (,Ca%zgl +
S T |

which is independen* of $ . Thus B&)= ‘c:c:.B*QT“) where \:,Q,‘-'h%‘—TfN = and
b T U
Sy = B ETC S R B D o) -2

_.w‘ﬁl % ;m. ?’.:".ab %Si(\l‘}«\ tadd —l)lid&xo’y.o\}.«t

Let A= \i L}.\\ +}A{‘\-— . Then expanding exp( _L\fr ‘3_;__:%% as a series

S
R¥ (vF) = % Z.%\x/\zl
rhere : o [k s A ) ®Q 2 v v
Be = % ™ )‘_m ;:__ic.a = )Ll‘ it %

Y -;;\,, ~ 2L ool b

v : 4
Expanding exp(%, -;L*‘;;:_) as a series we have
= ¢
RS
B, = Z— LL
d=o
where

Y @ AN (% L9 2 Qv A
Ceq = S?S; G ("‘é’r&%%%\\a (T“%‘) ETG*‘*“ Yot 5=

\
; \RT?L- -.L:::.. ?—”‘) M A Apez
By substituting \3:,%_ —b,_ and using the definition ot the factorial function
and then integrating over/.q and f,\,_ we find

QmJL == (Q\Dm wd, = Yy bk\u&) ’k--zv:_bu.h&q-hﬂ

we have
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where e = a (
Te = _Zo E ( \( )( )‘) )“-\—\ ')\kéj\:r
% L (—2e+62-wr)
Du el = (- 'S”UL\ Dl '_ : '\L-:_ WL 462 -\-v\-l‘s‘)] {
L

anl satisfies the recurrence relations
2 (L
bkkm = {t(‘hh%—t’:&_“'“_‘)—xv\ L;’F)b“\;&

L \1(ih\a +eQaw~w)¥71 Y

whkd

\>h¥d4:jL'_ (. 3V 13 (h"t*)—‘

Finally

A (LR VPR A
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APPENDIX 10

APPROXIMATE EVALUATION OF THE INTEGRALS IN 8.61 AND 8,62.

The integral in 8,61 is obviously a combination of the integrals

I5’I6’I11’112’Il3 and 114 where

o0
SV\-.Q_ AS

, o0
T = S S
" o L(S) +5(O> o et rb sty s ~ A+ (AL

o= (- b= ey o= 8y
A = 12y (\+ 29) £ =y (\e4n)

It is easy to show that In is given by

(#s] WER, S
+ s g %L- AS _
I G d -go |— § 0t bist
where e
. Qut3 = T o 2. ‘--
LTS o= K.b“"l‘)“t i L i |

By expanding the denominator as a binomial series and integrating term
by term we obtain the following asymptotic series for In

- o G Y RSN CSEY (w=) (w2 y (L= tog 492 3
MU RO U 2 GEtT T et e

Similarly, it is easy to show that the integral in 8,62 is a combination

of integrals like

SAS
. Lk Ls\ ¢ ‘3(*»)]9*

and an asymptotic expansion for Jn is

T~ i Sl\ 4 2w - (n=1) (w-2) V{\(‘(’:" o\ +4y?)
LF%?*k)l X)) 21O (\_Fgln;‘z
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APPENDIX 11

EXPERIMENTAL DATA.

In this appendix we list some experimental data for a few simple
molecules. Td ts the melting temperature,txsm the change in entropy on
melting, T; andlSSthh#reduced meiting temperature and reduced entropy
change, andAV% the change in volume on meliing. The source of the

thermodynamic data is indicated by the letter (a) or (b).

Nare TmoK Asm( eu) £/k°k o & T:; 4 S; A% Source
A 83.85 3.35 120.9 3.403  .694 1.69 14.4 (a)
Xe 161.30 3.4 219.0 4.032  J137 1.7% 15.1 (a)
Ne 24.5T 3.26 35.25 2.765 697  1L.64 15.1 (a)
Kr 115.95 3.36  1b4.5 3,599  .705 1.69 15.1 (a)

Hé(Qu) 13.95 2,06 37.00  2.928 37T 1.04 12.2 (a)
H2(Cl) 13.9% 2,06 29,2 287 A8 1,04 12.2  (a)
Dg(Qu) 18.65 2.52 37.00  2.928  .504 I.2" 13.0 (a)
D2(01) 18.65 2.52 31,1 2.87 .600 1.27 13.0 (a)

N, 63.23  2.73 95.48  3.704  .662  1.37 7.5 (a)

0, 54.32 1.95 117.7% 3.52 461 98 - (b)

co 68,1 2.93 100.2 3.763  .680 1.47 -—  (a)

NO 109 .4 5.03 131. BT 835  2.53 —— (a)

B, 53.54 2.95 112, 3.653 478  1.13 —— (b)
012 172.16 8.89 347, 4,115  .482  4.47 —— (b)

257 4.4000  L.670

Br, 265 .9 9.48  520. 4.268 511 4.77 —— (v)

I, 386.8 9.67  550. 4.982  .707 4.87 —— (v)
HC1 158.94 2.99  360. 3.30% 442 1,50 —— (b)

HI 222.36 3.08 324. 4.123 686 1.55 == (v)
CH4 90.68  2.48 @ ———  em—— 593 1.25 8.7 (a)(bv)
CF, 89.47  1.87 === e «450 94 3.56 (D)
0014 250.3 2.4 — e 522 1.21 5.22 (a)(b)
CBr4 36343 2.70 === eem——— HTT 1.36  —— (b)

(a) A.Eucken,Z.angew.Chem. 55,163(1942)

(b) American Institute of Physics Handbook, (McGraw-Hill, New York, 1957)
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With the exception cf the tetrahedral molecules the LJ parameters
have all been taken from Hirschfelder et. al%‘ In the case of H2 and D2
the values ofg ando depend on whether a quantum correction is taken into
account or omitted. Where more than one value has been quoted by ref.3\

we have averaged them in all cases except Cl, where the two values lie so

2

far apart that it seems better to quote them both. For the tetrahedrall
*

molecules we have used the approximate relationship Tm-= 0.T3Tm/Tb

quoted by Pople and Karasz!I Tb is the boiling temperature.
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