

University of St Andrews

Full metadata for this thesis is available in

St Andrews Research Repository
at:

http://research-repository.st-andrews.ac.uk/

This thesis is protected by original copyright

http://research-repository.st-andrews.ac.uk/

Computer-Assisted Proofs and the Fa,b
Conjecture

Dale C. Sutherland

A Thesis submitted for the degree of Doctor of Philosophy

University of St. Andrews

March 2006

fur el$e...

TL
I- \9Co

Contents

Declarations iii

Acknowledgements iv

Abstract v

1 Introduction 1

1.1 Definitions and Elementary Theory 1
1.2 Coset Enumeration 4

1.2.1 The Todd-Coxeter Coset Enumeration Algorithm ... 4
1.2.2 The Modified Todd-Coxeter Algorithm 7

1.3 Coset Enumeration, Strategies and Computer Implementation 13
1.3.1 GAP: Groups, Algorithms, Programming 15
1.3.2 ACE: Advanced Coset Enumerator 17

2 PEACE: Proof Extraction after Coset Enumeration 23

2.1 Introduction 23

2.1.1 Coset Enumeration and Definition Sequences 26
2.1.2 The Proof Table 28

2.2 PEACE and the Modified Todd-Coxeter Algorithm 50
2.3 Additions to PEACE 55

2.4 The PEACE GAP package 61
2.5 Results 63

3 From Proofwords to Proofs 69

3.1 Proof Trees 69

i

3.2 Lemma-based Proof Generating Program 77

4 The Fa'b'c Conjecture 83
4.1 Introduction 83

4.2 Using Lemma based PEACE proofs 85
4.3 Fa-c'a'a+c for a, c G Z 95
4.4 Fa"c'a'a+2c for a, c G Z 109
4.5 fa-c,a,a+kc for a, c, /c G Z 127
4.6 pa-2c,a,a+kc for ^ £ Z with (2, Jfc) = 1 146
4.7 pa~jc,a,a+kc £or ^ Jgg with (j, fc) = 1 166

5 Proof of the F°'b'c Conjecture 169

A Corrected Proof of Lemma 3.3 203

A.l Lemma 3.3 and the Original Proof 203
A.2 The Corrected Proof 205

B Proof of the Fa'b'c Conjecture for d = 5 209
B.l G. Havas and E. F. Robertson's proof 209

B.l.l Introduction 209

B.1.2 Proof of the Conjecture when d — 5 210

Bibliography 218

ii

Declarations

I, Dale Christina Sutherland, hereby certify that this thesis, which is approx¬
imately 60, 000 words in length, has been written by me, that it is the record
of work carried out by me and that it has not been submitted in any previous
application for a higher degree.

date: 06/<-'3 / OU signature of candidate:
name of candidate: Dale C. Sutherland

I was admitted as a research student in September 2002, and as a candidate
for the degree of Doctor of Philosophy in September 2003; the higher study
for which this is a record was carried out in the University of St Andrews
between 2002 and 2005.

date: CU / y?/ ob signature of candidate:
name of candidate: JJaie v;. sutneriana

I hereby certify that the candidate has fulfilled the conditions of the Resolu¬
tion and Regulations appropriate for the degree of Doctor of Philosophy in
the University of St Andrews and that the candidate is qualified to submit
this thesis in application for that degree.

date: . signature of supervisor :
name of supervisor: Prof. Edmund F. Robertson

In submitting this thesis to the University of St Andrews I understand that
I am giving permission for it to be made available for use in accordance
with the regulations of the University Library for the time being in force,
subject to any copyright vested in the work not being affected thereby. I also
understand that the title and abstract will be published, and that a copy
of the work may be made and supplied to any bona fide library or research
worker.

date: k~W vA- signature of candidate:
name of candidate: uaie ouinenanu

m

Acknowledgements

With gratitude, I would like to acknowledge those who provided me with
help and support during this degree. I wish to first thank my supervisor,
Prof. Edmund F. Robertson, who gave me so much time, encouragement,
assistance and direction throughout these three years. For all their ideas and
collaboration in my research, I must thank both Dr. George Havas and Prof.
Robertson.

For providing financial support, I want to express my appreciation to the
three funding bodies: the Overseas Research Students Awards Scheme, the
University of St Andrews and the School of Mathematics and Statistics at
the University of St Andrews. This funding could not have been attained
without the help of my supervisor as well as Prof. Nikola Ruskuc and Dr.
Colin M. Campbell.

Finally, I would like to acknowledge my family and friends. You were

there for me, and I thank you.

IV

Abstract

This thesis studies finitely presented groups and the process known as coset

enumeration, which finds the index of a finitely generated subgroup in a

finitely presented group, provided this index is finite. The Todd-Coxeter
algorithm for coset enumeration is described, as well as its modified version,
additionally finding a presentation for the subgroup. Coset enumeration is
suitable for computer implementation, and GAP and ACE, two programs

containing such functions using different strategies, are outlined.
Proof Extraction After Coset Enumeration (PEACE) is a computer pro¬

gram that allows one to show a group element is in the subgroup. Descrip¬
tions are provided of modifications to PEACE, giving this program the extra

functionality of creating subgroup presentations with the Modified Todd-
Coxeter algorithm. Using different strategies during the enumeration to
determine varied subgroup presentations is also discussed. Additionally, a

program converting the output of the original PEACE program, showing
an element's membership of the subgroup, into a lemma-based step by step

proof is implemented and described.
'The Fa'b'c conjecture' was proposed by Campbell, Coxeter and Robertson

in 1977 to classify the groups

Fa'b'c — (r, s\r2,rsarsbrsc)

by considering the homomorphic image Ha'b'c = (r, s|r2, rsarsbrsc, s2^a+b+c^).
The lemma-based proof generating program is used as an aid in considering
the groups Fa'b'c and the corresponding conjecture. Lastly, a proof showing
this conjecture to be true is provided.

v

Chapter 1

Introduction

1.1 Definitions and Elementary Theory
As this thesis concentrates largely on groups within the class having finite
presentations, we begin by introducing necessary definitions and concepts for
this area of group theory.

Definition 1.1 Let A be a set, and let A consist of the alphabet formed
from the union of A and X' — {x~l\x el}. A word w over A is said to be
reduced if neither xx~~x nor x_1x appear as a subword of w for any x E X.

To describe the concept of a group of reduced words, we need first to
introduce an identity element. This will be the empty word, composed of
no letters. It is obviously a reduced word itself, and we denote it by 1.
For a word, w — x\lx^...x^, where each Xi E X and E { — 1,1} for
i E {1,2,77-}, the inverse w~l is x~en ... xfe2xfei. This leaves only to
describe the composition of two reduced words. The concatenation of two
reduced words may not itself be reduced, but from it, we can produce a

reduced word by continually cancelling each xx~l or x~lx that appears until,
for every x E X, no such subwords occur.

Definition 1.2 Let A be a set. The free group generated by A, A(A), is
the set of all reduced words over Au{:r-1|:r E A} under the binary operation

1

of concatenation with reduction.

Definition 1.3 Let G be a group and H < G be a subgroup. For any

a g G, the right coset of H generated by a is the set Ha = {ha\h g H}.
Similarly, the left coset of H determined by a is the set {ah\h g H}, which
is denoted by aH.

Some elementary results follow from the concept of cosets.

Theorem 1.4 Let G be a group, and let H < G.

• For a g G, where H is finite, \Ha\ = \aH\ = \H\. When H is infinite,
all of Ha, aH and H have the same cardinality.

• G = LU Ha = U0€0 aH.

• For a,b G G, either Ha = Hb or Ha fi Hb = 0. Similarly, either
aH = bH or aH n bH = 0.

• For o, b g G, then Ha — Hb if and only if a6_1 g H. For left cosets,
aH = bH if and only if a~lb g H.

Theorem 1.5 Let G be a group, and let H < G. If R = {Ha\a g G} and
L = {aH\a gG}, then |i?| = \L\ where B or L is a finite set. Where either
are infinite, R and L have the same cardinality.

Definition 1.6 Let G be a group and H < G be a subgroup. The index of
H in G, denoted [G : H], is the number of right cosets, or equivalently, left
cosets of H in G.

Definition 1.7 Let G be a group. For h,g G G, the conjugate of h by g,

written h9, is the group element g~lhg.

Definition 1.8 Let G be a group and N < G. N is said to be a normal
subgroup of G, denoted N <G, if, for every g g G and h g N, the conjugate
h9 lies in N. Equivalently, for some h\ g N, we have h° = h\.

2

Where N <j G, it also holds that g~lNg = N for any g £ G, each right
coset of TV in G is also a left coset and TVa = aN for every a £ G. Given
this, it follows that the set of cosets of IV in G forms a group when TV < G.

Definition 1.9 Let G be a group and N<G. The factor, or quotient, group

of TV in G, written G/TV, is the group formed from all the left, or right, cosets
of N in G with the binary operation

(aN)(bN) = (ab)N, a,beG.

Definition 1.10 Let G be a group and R C G. The normal closure of R
in G is the intersection of all normal subgroups containing R.

Where G is a group, the normal closure of a subset R C G is generated
by the set of conjugates, {g~1hg\g £ G,h £ R}, and is the smallest normal
subgroup containing R.

Definition 1.11 Let TV be a set and R C J-{X). If we consider the group

G = R(X)/N, where TV is the normal closure of R in X(X), then (X\R) is
said to be a presentation of G, and we write G = (X\R). The elements of
X are referred to as defining generators and the elements of R as defining
relators.

Oftentimes, if G has a group presentation, we will simply write G = (-V|i?)
rather than G = (W|i?). We may also refer to a relation r = 1 where we
mean the relator r G R, and G can be presented as G = (TV|{r = l|r G R}).

Definition 1.12 G is said to be finitely presented if there exists a presen¬

tation, G = (TV 17?), such that both X and R are finite sets.

Where G = (TV|i?) is a finitely presented group with TV = {xi,... ,xn}
and R = {ri,..., rm}, then for simplicity, the presentation can be written as

G = (xu ... ,xn\ri, ...,rm)

3

rather than G = ({xi,..., x„}|{ri,..., rm}).

1.2 Coset Enumeration

The main aim of group theory is to gather information on and make classi¬
fications of groups, most of whose size render hand calculations impractical.
Computing the size and structure of large groups by listing each element is
inefficient with regards to both time and memory and impossible for infinite
groups. As such, designing algorithms to simplify these computations has
become an important problem in computational group theory.

Given a group G and a subgroup H < G, the problem of determining the
index of H in G is called coset enumeration and is one of the most important
tools for investigating finitely presented groups. When H is trivial, coset
enumeration determines the size of G, and where the size and structure of H
are already known, it may reveal information on the same characteristics for
the whole group, without considering all the elements.

Although it was probably first used by E. H. Moore [25] to find ab¬
stract definitions of groups, the method for the enumeration of cosets, given
a finitely generated subgroup of finite index in a finitely presented group,
was first described by J.A. Todd and H.S.M. Coxeter in 1936 [29]. Sev¬
eral modifications of this algorithm have also been outlined, which have the
added benefit of constructing a presentation for the subgroup in terms of
the subgroup generators as well as determining the index. As many of our

results were obtained from programs based on this procedure, we will give
an outline of both the Todd-Coxeter coset enumeration algorithm and the
Modified Todd-Coxeter coset enumeration algorithm.

1.2.1 The Todd-Coxeter Coset Enumeration Algorithm

Let G be a finitely presented group such that

G = (X\R),

4

with X = {x\,x2, ■ ■ ■, xn} and R = {r'i, r2,..., rm}, and let H < G be a sub¬
group generated by a finite set of group elements, {hi, h2,.. ■, hi}. Provided
[G : H\ is finite and the elements of both the relator set R and the generating
set of H are written as products of the defining generators of G and their
inverses, the Todd-Coxeter coset enumeration algorithm gives a method for
computing the index of H in G.

The method refers to cosets as numbers, usually determined by the order
in which they are introduced into the process. As H is itself a coset, it is
indicated by the number 1 and at the start of the algorithm, is the only
coset defined. Three types of tables, relator, subgroup generator and coset,
are created in the first step, and coset enumeration proceeds by continually
adding information to the tables until all the rows are complete, or closed,
when the process terminates. The number of rows in the coset table, each
representing a coset, is the index.

Let us consider a subgroup generator hi of H. H is a subgroup, and
so, for any h £ H, we must have hhi £ H, thus Hht — H or Ihi = 1.
For each subgroup generator hi = x^1 x\%2 .. .x^f of H, where Xik £ X and
eik £ { — 1,1} for k £ {1,2,...,s}, the associated one-row table is:

x
»2

«2 X;

1 1

The relator tables are formed based on the fact that, in the group G, each
relator rj £ R is equivalent to the identity, and as such, given any coset a,
we have arj — a. Thus, for each t\

-sn 2

Xjl X32 . x
jt

£ R, where Xjk £ X and
6jk £ { — 1,1} for A; £ {1, 2,..., t}, we form the table:

x
n

h
rXn

32
X

Jt

1 1

The relationship holds for each coset, and so, unlike the one-row subgroup
tables, for every new coset defined during the enumeration, an additional
row, containing the new coset number in the first and last columns, is added
to the relator tables.

5

Information regarding the relationships amongst cosets when acted upon

by group generators is indicated in these two types of tables in the same way.

If, in one row of the table corresponding to the word w = x^*1 x}}2 ... x{*s,
where xik G X and eik G { — 1,1} for k G {1, 2,..., s}, the j-th and j + 1-th
column entries are the cosets a and 6, respectively, then we know axP — b
and bx: = a.

l3

The coset table contains a column for each of the group generators x G X
as well as its inverse and grows during the enumeration to contain a row

for each coset. This table is used to store the relationships amongst cosets

through the multiplication by a generator. If we have determined that axkk =

b, for cosets a and b and e*, G { — 1,1}, then the entry in the column headed
by xekk and in the a-th row is b.

Information is added to the tables in any of three different ways: defini¬
tions, deductions or coincidences. A definition is the simplest form of new

information and involves introducing a new coset into the process to fill an

empty entry in a table. Definitions are immediately added to the coset table
and used to help complete rows in the other tables. Numerous cosets may

need to be defined before new information of another type is found.
When the last empty entry in a row in either a relation or a subgroup

table is filled, we may obtain new information called a deduction. If the
relationship axerr = b had been used to complete the row in the table:

rp^-T rp^-S«X/ ~ „

a

then we obtain new information, bxess = c, indicated by the underline. This
deduction can then be added to the other tables, possibly resulting in further
deductions.

A coincidence occurs when a deduction has been obtained, but the coset
table already contains a different value for the corresponding entry. Here,
two cosets, a and 6, have been revealed to be the same, and b is removed
from the tables by replacing every occurrence of b by a and by deleting the
6-th rows from the coset and relator tables. Processing coincident cosets can

result in the discovery of further deductions and coincidences.

6

The process is guaranteed to terminate in a finite number of steps if the
index of the subgroup H in G is finite, although the time required and num¬

ber of cosets defined can vary dramatically, even if G is trivial. Obviously, if
the index of the subgroup is infinite, the ever-growing coset table can never

be completed, and the process will continue forever. During coset enumera¬

tion, we cannot know whether the process will ever actually terminate. At
any stage of a long enumeration, it may be that the number of cosets is,
in fact, infinite or that the index is finite, but the process requires a very

large, but finite, number of steps. Thus, coset enumeration provides us with
information only when it terminates, and it cannot determine that the index
of a particular group over one of its subgroups is infinite.

As process termination depends only on the index being finite, not on

the order of the coset definition sequence, coset enumeration allows for a

great variation of approaches. There have been numerous strategies, such
as Felsch-type, Hasselgrove-Leech-Trotter-type (HLT-style) and Lookahead-
type definition styles, suggested for the order in which cosets should be de¬
fined to minimise the required time and number of defined cosets during the
process.

1.2.2 The Modified Todd-Coxeter Algorithm

The Modified Todd-Coxeter algorithm for coset enumeration proceeds in a

fashion much the same as that of the original coset enumeration method,
using a similar set up of relator, subgroup and coset tables. In this modifi¬
cation, however, we have an augmented coset table, and as well as keeping
track of each coset, the process also involves choosing an element of each
coset, known as its coset representative. The set of coset representatives is
used to find a presentation for the subgroup H.

With the original Todd-Coxeter coset enumeration algorithm, a number
indicated an entire coset, and in the initial step of the process, the number
1 was set to indicate the entire coset H. The table entries now, however,
refer to the coset representative ra of a coset a, and in the augmented coset

table, the coset representative of H is given to be the identity element and

7

is indicated by 1.
Previously, both the first and last columns of a row in the relator and

subgroup tables contained the coset number that the row represented. Be¬
cause the numbers indicated entire cosets, this resulted from the fact that
for any coset o, any relator r and any subgroup generator h, then ar — a

and 1 h = 1. Using the idea of coset representatives, the triviality of the
relators allows us to write rar = ra for any relator r and any coset a with
representative ra, and our new relator tables can be set up as before. We
require some changes, however, with the formation of the subgroup tables.
Here, 1 represents the identity rather than the entire subgroup H, and for
any subgroup generator h, we no longer have lh = 1, but 1 h = hi. Thus,
while the first column entry is 1, the last column now contains hi.

During this modified version, if we deduce that Taxekk £ b for cosets a and
b, Xk £ X, ek £ { — 1,1} and ra and rb the coset representatives of a and 6,
respectively, it cannot be assumed that raxek = rb. Both raxek £ b and rb £ b,
and since Hrb = b, then raxek £ Hrb. Thus, there must exist a subgroup
element h £ H such that Taxek = hrb, and as the coset table deals in coset
representatives rather than cosets, we need to find this element h in terms of
the subgroup generators. In the ra-th row and in the column headed by xekk,
the augmented table would contain the entry hrb.

The idea of computing corrective subgroup elements to allow relationships
amongst cosets to be expressed in terms of their coset representatives can

be extended to products of group generators. Finding the subgroup element,
using the concept of coset representatives, is a matter of successively replac¬
ing each coset representative-generator pair by its corresponding augmented
coset table entry. If ra, rb and rc are the coset representatives of the cosets a,

b and c, respectively, and hk, hi £ H have been found such that rax^ = h^rb
and Tbx^- = /qrc, then both ax^ = b and bxj = c. Let us consider Ta{x'^x-).
Obviously, it lies within the coset c, but we want to find h £ H so that

8

Ta{x^x]J) = hrc. Here,

hrc = Ta{xe>x)J)
€i €j/-T- rjf I rr> •>

' a^i *^j

= hkrbxj
= hkTbxJ

hkhiTc,

and h = hkhi.
We do not need to worry about determining this subgroup element when

making new definitions. If, during the process, we define raxek = r for some
coset a with representative ra, xk G X and ek G { — 1, 1}, then where b = ax£k ,

we take the coset representative of b to be exactly the element r. Thus, the
corresponding coset table entry for rax£k is simply r.

The augmented coset table begins to contain these corrective subgroup
elements after a deduction is made in a subgroup table. For each subgroup
generator hi = x^ x^ ... x£l* G H, with xik G X and eik G { — 1,1} for
k G {1, 2,..., s}, we have Hhi = hiH and 1 hi = htl. If the table for hi closes
giving a deduction implying axX = b for cosets a and b, then

closed, there must be an entry in the augmented coset table corresponding
to each entry in the row, excepting that of the deduction. From these, we

can form the words w\ and w2 so that

1xV>x%...xZ=hil

and

with la:-'1,£U £<fc-1
h ' ' ' ifc-i

-1 ei i ^*1?— 1

lxh ■ ■ ■ xh-1 = WlT« and lxXis ... x>+l = w2rb.

9

Both w\ and w2 are products of subgroup generators, and we have

lsfaf...# = hd
lx-'1 ... x-k = hdx~tis ... xTeik+1U 1 Is lfc+1

W\ raxl'k = hiW2Tb.

Hence, our augmented coset table entry for Tax^k is

W^lhiW2Tb.

As any relator r:) = x*?1 x£ ... x£, with xJk G X and e]k G { — 1,1} for
fcG {1, 2,..., £}, is trivial, then given any coset a with representative ra, we

have aXj = a and Tarj = ra. If the deduction implying axe-k = b occurs from
the completion of the rc-th row of the relator table, where all a, b and c are

cosets with representatives ra, rb and rc, then

T djl dj2 djt — T

'cXj 1 Xj2 ' ' ' Xjt ~~ lc

and
si- d'h dj2 djk — T d~€jt t* tjk+11 ^ i'<-> • • • ' • • jk+ 1

Using the augmented coset table, we can then find the two words, w\ and
w2, over the subgroup generators so that

Thus,

W/ ■ ■ ■ xLl = wir« and t-xhh ■ ■ ■ = w*Tb-

WiTaXjk = w2rb,

and the augmented coset table entry for Tax-k is

wx lw2Tb.

Coincidences may also occur in this modified version of the Todd-Coxeter
algorithm. When two cosets, a and b, are found to be the same, however,

10

we cannot remove rb, the representative of b, from the tables in the same

fashion as the original method, by merely replacing each occurrence with ra,

the representative of a. While a and b are identical, it is not necessarily the
case that the representatives were chosen to be the same coset element and
so, they cannot be used interchangably. If a and b are found to be coincident
from a deduction implying cxek = a, where cxekk = b had previously been
determined, then we must have words w\ and w2, both products of subgroup
generators, such that

Tcx[k = WiTa and rcxekk = w2rb.

Thus, W\Ta = w2rb, and we can remove rb from the tables by replacing each
occurrence of rb with W\Ta.

Once all the tables have closed, then the index has been determined and
the set of coset representatives, along with the augmented coset table, can be
used to find a presentation for the subgroup. One of the benefits of using the
modified Todd-Coxeter algorithm is that the resulting presentation for the
subgroup is given in terms of the original subgroup generators, rather than
a new generating set as is seen in other methods, such as the Reidemeister-
Schreier method.

For any trivial word w = x-^ x~-2 ■■■X?* = 1, with Xjk E X and E
{ — 1.1} for k E {1, 2,..., t}, then it must be the case that wra = raw = ra
for any coset a with representative ra. Applying our augmented coset table,
we obtain:

Ta = Taw

_ 2
—

Iaxn xj2 . . . xjt
= Wlnx'g.-.xf

WiW2 . . . U)sTa,

where the table contains rax-k — WiTb, T~bX-2 = w2tc and so on. Thus,
w = w\w2 ws — 1. As, for i E {1,2, each is obtained from

11

the augmented coset table, it must be a product of the subgroup generators

{hi,..., hi}, so w = 1 has been rewritten in terms of these generators. Any
relator of the group G is also a relator of the subgroup H, and from our

augmented coset table, can be rewritten for the subgroup presentation. The
method employs this rewriting step when a deduction is found in a relator
table, and therefore, new information for the subgroup presentation is found
only in lines of relator tables where a deduction has not occurred.

The method also used the step 1 hi = htl where deductions were found
in the subgroup table for hi G {hi,..., hi}. After the tables have been
completed, in any subgroup table where a deduction did not occur, we obtain
new information. Using our rewriting process, where hi = ...xG

H, with Xik G X and eik G { — 1,1} for k G {1, 2,..., s}, then we can find a
word w over the subgroup generators so that

1 hi = lx^x£ ...x£ = wl.

Thus, hil = wl, and we have a new relator w~lhi, a product of subgroup
generators, for our presentation.

Where G is a group with finite presentation (X|i2), |A| — n and \R\ = m,

it has been shown [26] that a presentation for a subgroup H = {hi,... ,hi) of
G with finite index [G : H] = a, where the cosets are numbered contiguously,
can be given as

{hi,..., hi | lhi = hd for i G {1,2,...,/},
jrj~X — 1 for j G {1,2,..., a} and r G R).

Thus, using the augmented coset table and the rows of the relator and sub¬
group tables without deductions, we are able to determine all the relators
necessary to form the presentation of our subgroup H.

12

1.3 Coset Enumeration, Strategies and Com¬
puter Implementation

Both forms of the Todd-Coxeter coset enumeration method allow for com¬

puter implementation, and it is thought that the first such occurrence was a

partial implementation of the original Todd-Coxeter method by Haselgrove
in 1953 on the EDSAC I at Cambridge, described by Leech [24], Even in
the modern group theory programming language and computer system, GAP
[16], most methods for finitely presented groups rely on coset enumeration.

The main issue in the implementation of coset enumeration is determining
the best rule for introducing new cosets. When the index of the subgroup
in the group is finite, the algorithm is guaranteed to terminate. The tables
will eventually close for any sequence of coset definitions, as long as for each
defined coset a that does not become coincident, then each of the cosets ax

for Xi £ X and € { — 1,1} will be introduced in a finite number of steps.
This simple condition is known as Mendelsohn's condition, and a theorem
proving this is given by Neubiiser in [26]. The length of sequences with this
property, however, can vary dramatically as a result of the definition strategy.

As computer programs are judged according to their time and space ef¬
ficiency, and the total number of defined cosets determines the memory re¬

quired as well as greatly influences the running time, an implementation that
defines the fewer number of redundant cosets is generally regarded as the bet¬
ter one. Even the strategies in the earliest coset enumeration implementa¬
tions by Felsch [12], Leech [24], Haselgrove and Trotter [30] were proposed to
reduce total cosets, and since then, extensive experimental studies on various
strategies have been performed, such as in [8] and [18].

In the Todd-Coxeter algorithm for coset enumeration, there are three
types of tables, and relator and subgroup tables are used to determine de¬
ductions once a row is completed. This is equivalent, however, to performing
scans of the relators and subgroup generators both from the left and right
using the coset table and so, the storage of relator and subgroup tables is very

inefficient with regard to space. Rarely do implementations include tables
other than the coset table.

13

There are two classical strategies of coset enumeration. The first, known
as the Felsch-method after the first description of a program using this
method was given by Felsch in 1961 [12], concentrates primarily on the coset
table, making definitions so that table entries are filled line by line. After
each definition ax — b for cosets a and b, scans are made from coset a of
all cyclic permutations of the relators beginning with x and then, from coset

6, ones beginning with a:"1, so that resultant deductions and coincidences
can be found and processed. This Felsch-type definition strategy tends to
find fewer redundant cosets as deductions and coincidences are found and

handled before any new definitions are made. The scans required after each
definition, however, can lead to longer running times.

The Haselgrove-Leech-Trotter (HLT) method, the other of the earliest de¬
scribed strategies and the basis of the implementation by Haselgrove, makes
definitions in an attempt to close a line in one of the relator or subgroup
tables. The method proceeds by completing a scan from every coset for
each relator, at each stage making definitions enough to fill the row in the
corresponding table. Additionally, for the subgroup, scans are made of the
subgroup generators as well. Only after the scan of a row is complete and
this new deduction formed are the new definitions processed to find the re¬

sulting deductions and coincidences. The many scans involved in the Felsch
method are avoided using the HLT method, although leaving all deductions
and coincidences until a row has been filled tends to cause more redundant

cosets to be introduced.

It can be a faster method, but the HLT style does not attempt to make use

of any new information resulting from definitions made while tracing relators
until much later. In a strategy based mostly on the HLT method, described
in [8] and called the Lookahead method, enumeration alternates between two
phases. In the first, definitions are made in the HLT style, considering rows in
relator and subgroup tables without processing definitions to find deductions
and coincidences until a certain number of cosets have been defined in the

phase. The process then switches from this defining phase to the lookahead
phase, using the definitions to find impending deductions and coincidences to
add to the tables. According to their comparisons with the Felsch method,

14

and the pure HLT method, Cannon, Dimino, et al. [8], formed the conclusion
that the Lookahead method was, in general, better than the other two.

1.3.1 GAP: Groups, Algorithms, Programming
The GAP computational discrete algebra system [16] provides a program¬

ming language as well as libraries of algorithms and algebraic objects. Al¬
though many of the functions in GAP are implemented in the GAP program¬

ming language itself, the kernel of GAP is written in the C programming
language. GAP was developed mainly to facilitate computational research
in group theory, although it includes many packages providing links to other
systems and is used in research and teaching of various areas of algebra.

As the GAP system and programming language provide an extensive set
of functions for finitely presented groups, most of which employ some form
of the coset enumeration method in their implementation, GAP is used as

a tool in much of this thesis. Both the Todd-Coxeter coset enumeration

algorithm and its modified version are included in the GAP functions for
finitely presented groups, so we shall briefly describe their implementations.

Coset enumeration is performed in GAP using the Felsch-type definition
strategy and thus, the rule for determining the next definition is to search
the table, row by row, for the next empty entry. After making a definition
to fill this entry and expanding the table if necessary, scans of all applicable
subgroup generators and cyclic permutations of the relators are made. Here,
storage is needed for the coset table, the subgroup generators and all cyclic
permutations of the relators. Any GAP function requiring coset enumeration
uses the function Coset.TableFromGensAndRels, which requires three lists,
the group generators, the group relators and the subgroup generators, as

input. The user is also able to set a maximum value for the number of cosets
defined in the process. As long as the number of live cosets at any point does
not exceed the maximum or the available memory, this function, written in
the GAP language, outputs a data structure representing the coset table,
whose length is the index.

In the GAP system, the faster language, C, is used to implement time

15

critical operations, and as the time necessary to perform the numerous relator
and subgroup generator scans is one of the disadvantages of using the Felsch
strategy, CosetTableFromGensAndRels does not perform these required scans

itself. To reduce the running time, this GAP function passes the scanning
task to a C function, FuncMakeConsequences, which also determines and
processes any deductions and passes control, in turn, to the C function Han-
dleCoinc when a coincidence occurs.

GAP also has the capability of finding subgroup presentations of finitely
presented groups and contains functions implementing the Modified Todd-
Coxeter algorithm as well as those using a modification of the Reidemeister-
Schreier method. The Reidemeister-Schreier method builds a subgroup pre¬

sentation using Tietze tranformations and a completed coset table, although
it does not necessarily produce a presentation in the original subgroup gener¬

ators. Recall that the Modified Todd-Coxeter method of coset enumeration

has the advantage of producing a presentation in the original subgroup gen¬

erators, but the entries in the augmented coset table can become very large
and the method can produce quite lengthy relators.

The subgroup elements of the augmented coset table can be expressed
as words in the given generators of H, but in general, these words tend to
become unmanageable because of their enormous lengths. The GAP imple¬
mentation of the Modified Todd-Coxeter methods is based 011 an algorithm
outlined by Arrell and Robertson [2] using a tree structure and Tietze trans¬
formations to cut down the length of the presentation and reduce the size
requirements of the augmented coset table.

In Arrell and Robertson's algorithm, products in the augmented coset
table of length greater than one are not allowed to be carried through the
enumeration. A highly redundant list of subgroup generators is built up

starting from the original generators of H and adding additional generators,
which are defined as abbreviations of products of length two in the preceding
generators. Thus, each of the subgroup elements in the augmented coset table
can be expressed as a word of length at most one in the resulting subgroup
generators.

If H = (Xh\Rh) and the product h^h*2 is encountered, where ht) h3 G

16

Xii and €1,62 £ { — 1,1}, then a new subgroup generator h = h^hj2 is intro¬
duced. Adding h to the set of subgroup generators and h = h\lht2 to the set
of relators of H produces

{xHu{h}\RHyj{h-lh?hf}),

an equivalent presentation to that of H = (XH\Rh), as it has merely under¬
gone a Tietze transformation.

The additional products in the coset table will now only be in the form
of single subgroup generators, or their inverses. Thus, only the index of the
element in the set of generators, with a negative sign to indicate an inverse,
needs to be stored in the augmented coset table. Although a tree structure
is required to keep track of the definitions of new subgroup generators, this
is still better space-wise than forming an augmented coset table in the usual
way.

Similarly to the original Todd-Coxeter method functions in GAP, the
modified version, AugmentedCosetTableMtc, also uses the Felsch definition
strategy, passing control to the C functions, FuncMakeConsequences2 and
HandleCoinc2, to perform necessary scans and to find and handle deduc¬
tions and coincidences. AugmentedCosetTableMtc returns a data structure

representing the augmented coset table as well as the tree to decode the
secondary generators. This function is usually called from within another
GAP function, and the returned augmented table can be used to form the
subgroup relators in the new subgroup generator set. The decoding tree is
then used to convert the resultant presentation to one over the original sub¬
group generator set, and rather than simply performing back substitution,
attempts are made to reduce the number and length of relators and eliminate
generators by performing Tietze transformations.

1.3.2 ACE: Advanced Coset Enumerator

The Advanced Coset Enumerator (ACE) exists both as a stand-alone pro¬

gram written in C [17] as well as a package for the GAP system [15] and
provides a very powerful tool for research with finitely presented groups.

17

ACE allows for experimentation in coset definition strategy and enumera¬

tion style through user controlled options, and the biggest advantage of the
ACE coset enumerator is the huge number of options available with regard
to strategy, style, and manipulation of the presentation. There also exist
options allowing the user to interact with ACE during an enumeration as

well as those for running an enumeration on equivalent presentations of the
group, using different combinations of relator orderings, permutations and
inversions.

While the built-in GAP coset enumerator allows only for the use of the
Felsch coset definition strategy, in ACE, one can choose from various prede¬
fined strategies or can tailor strategies using a combination of styles. Here,
when a new coset number has to be defined, there are basically three pos¬

sible types. A definition using the Felsch strategy, scanning the coset table
and filling the first empty entry, is known as a C-style definition, and based
on the HLT strategy, an R-style definition refers to one in which a coset is
defined to fill the first empty entry during a relator scan. ACE also creates a

stack of coset definition possibilities that will complete the scan of a relator
from a coset, and one may choose to make definitions from this Preferred
Definition Stack. Using preferred definitions follows a strategy known as the
minimal gaps strategy, where the idea is that by closing a row in a relator
table, a deduction is immediately obtained.

The enumeration styles are mainly determined by different combinations
of the C style and R style definitions, which are controlled through alterations
of the values of the ct factor and rt factor options. There are eight styles: C
style, Cr style, CR style, R style, R* style, Rc style, R/C style and defaulted
R/C style, and by assigning values to ct factor and rt factor, one of the styles
can be selected. Other options influencing the enumeration strategy are asis,
fill factor, lookahead, mendolsohn, no relators in subgroup, pd mode, pd size
and row filling. Thus, the user can control the enumeration by choosing an

appropriate set of options for a specific presentation, which is beneficial for
experimentation with enumeration strategies to find the best definition style,
producing the fewest redundant cosets.

Alternatively, ACE contains various commands for predefined eniunera-

18

tion strategies formed from the eight styles and other options. If no strategy
option is passed to ACE, default is used, which presumes that the enumera¬
tion will be easy, although switches to a strategy designed for more difficult
enumerations if this is found to be untrue. Two other straightforward op¬

tions are easy and hard. Easy will quickly succeed or fail, default may succeed
quickly or will try the hard strategy, and hard will run more slowly, from the
beginning.

The remaining predefined strategies are felsch, hit, pure ct, pure rt and
sims, where felsch can have either of the values 0 or 1 and sims can be
assigned any of the values 1, 3, 5, 7 or 9. The ACE definition styles and
strategies are outlined in detail in the manuals of both the ACE GAP package
and the ACE stand-alone.

The coset enumeration is invoked by either of the commands, begin or

start, and ACE will return the index if there is sufficient memory for the
maximum number of defined cosets in the table at every point in the process.

If an enumeration is attempted and insufficient memory is available for this
maximum number of cosets required to find the index, one can make changes
in style, strategy or in the group presentation and subgroup generator list
themselves and start a new enumeration.

However, ACE also allows the user to change some parameters and con¬
tinue with the enumeration, retaining any information in the coset table and
building upon it. There are two modes in which this can be done. The mode
with command continue resumes the subgroup generator and relator scans

from where the enumeration left off, while the redo or check mode keeps
all the current table information but begins scanning from coset 1 again. If
the enumeration stopped during the relator scans for coset number a and
if the changes to the enumeration would invalidate the current coset table,
such as if the add relators or add generators commands had been used to
add elements to the set of group relators or subgroup generators, then it is
not guaranteed that the scans of the relators and generators for the cosets
with numbers less than a would still be completely determined by the table.
Thus, only the ACE mode redo, rather than continue, can be used to resume
an enumeration in this case.

19

As the purpose of ACE is to find the index of a finitely presented group

over a finitely generated subgroup, where, in many cases, an extremely large
number of cosets are required, space saving is critical, and once a coinci¬
dence has been determined, there is no longer any need to keep a record of
the inactive coset. Thus, ACE provides two commands which control the
recovery of memory allocated to redundant cosets from the coset table, leav¬
ing a compacted table where all active cosets are numbered contiguously.
The compaction option defines the percentage of rows of the table that must
be redundant before ACE will automatically begin to reallocate table rows

during an enumeration. The recover command allows the user to explicitly
invoke a table compaction.

The ACE commands, aep and rep, allow the user to run the enumeration
for different combinations of relator orderings, rotations and inversions. The
aep option, for all equivalent presentations, takes in an integer value from 1
to 7, which, written in binary, represents the active flags for the three types
of relator manipulations. An enumeration is then performed for each combi¬
nation of the orderings, rotations, and inversions that are active according to
this set of flags. The option rep stands for random equivalent presentations
and takes in two integer arguments, where the first is the same flag repre¬

senting integer as that of aep and the second is the number of presentations
to be generated and tested.

The ACE package provides both an interactive and non-interactive GAP
interface with the Todd-Coxeter coset enumeration functions of the ACE

stand-alone C program. Using input and output streams, the ACE package
controls the commands written to these streams according to the GAP func¬
tion call and translates the C program output read from these streams into
appropriate GAP output. The user may still control enumeration style and
definition strategy in this interface as the package allows options to either be
specified during a function call or pushed onto a stack before the function is
invoked.

As well as functions for each of the facilities available in the ACE stand¬

alone, the GAP interface also provides the function ACECosetTableFrom-
GensAndRels, accepting the same inputs as the built-in GAP enumerator

20

CosetTableFromGensAndRels, but using the ACE enumerator to find the
coset table. As such, one can employ the powerful ACE enumerator with
any of the ACE options and strategies to generate different coset tables in
GAP than would be produced by the built-in function.

Many of the GAP functions for finitely presented groups require coset
enumeration, and although CosetTableFromGensAndRels is the main driver
in GAP for coset enumeration, it is regarded as an internal function, often
being called from within another function for groups of this type. GAP
allows, however, for the usual coset enumerator to be supplanted by the ACE
coset enumerator so that the function, ACECosetTableFromGensAndRels,
becomes the main driver and ACE is used for coset enumeration. This is

easily obtained by assigning

TCENUM := ACETCENUM;

so that a call to CosetTableFromGensAndRels, either directly by the user or

indirectly from within a function, actually calls the ACE equivalent. When
coset enumeration is called internally, any options passed to the calling func¬
tion are in turn passed to ACECosetTableFromGensAndRels and so, the
strategies and style options of ACE can still be employed. The GAP enu¬

merator can be reset to the original GAP coset enumerator by the command

TCENUM := GAPTCENUM;

With this, using the ACE package in GAP can be very helpful in experimen¬
tation and programming with finitely presented groups, as it allows the user

access to the various GAP functions for groups of this type as well as provides
the user with the ability to control the enumeration, normally unavailable in
GAP.

Although many strategies and style options are available for coset enu¬

meration, ACE does not contain functionality for the Modified Todd-Coxeter
version or any other method of finding presentations for subgroups. As the
main driver for the GAP functions using the Modified Todd-Coxeter algo-

21

rithm is CosetTableFromGensAndRelsMtc rather than CosetTableFromGen-

sAndRels and only the latter is reassigned by the command

TCENUM ■= ACETCENUM;,

replacing the default GAP enumerator with that of ACE does not influence
the Modified Todd-Coxeter functions within GAP.

Considering methods for generating presentations for subgroups of finitely
presented groups and attempting to find 'better' such presentations is where
our research began. Although ACE allows one to experiment with coset

enumeration, no such tool existed for the Modified Todd-Coxeter method of
generating subgroup presentations. The C program, Proof Extraction After
Coset Enumeration (PEACE), uses an ACE-based enumerator, and our work
of modifying this program for the Modified Todd-Coxeter algorithm and
developing a GAP package is covered in the next chapter.

22

Chapter 2

PEACE: Proof Extraction after

Coset Enumeration

2.1 Introduction

Once coset enumeration lias been employed to find the index of a finitely
presented group G over a finitely generated subgroup H < G and a complete
coset table has been formed, one can use this to prove that a group element
h G G is also a member of the subgroup. If

G ^ (X\R)

with X — {xi, X2,..., xn} and R = {n, r2,..., rm}, then expressing h in
terms of the group generators and their inverses, we can write

7, _ ™£il ™e»2li Xjj ,

where xik G X and eifc G { — 1,1} for k G {1,2,..., s}. As the index [C : H]
has been found and the coset table is closed, we are able to then determine

23

the set of cosets {1. a.\, ct2,. ■ ■, as} such that

<*i =

a2 = OL\X£ ,

as = as_ixIIs.

Thus, lh = lx^x^2 ... x^s = as. As H is a subgroup and the coset table
does not contain any redundant cosets, then h is actually a subgroup element
only if as = 1. Otherwise, h H where as / 1.

The ability to show the membership of a group element in the subgroup
relies on the validity of the coset table, and for a specific enumeration per¬

formed using the Todd-Coxeter algorithm, this cannot be easily checked.
Thus, although proofs have been given for the correctness of enumerations
using some coset definition strategies, we would require such a proof for the
strategy of our specific enumeration before we could assume the coset table
is valid. However, using the definition sequence of a completed enumeration,
the C program, Proof Extraction After Coset Enumeration (PEACE) [19],
written by George Havas and Colin Ramsay, allows one to extract an easily
verified proof of the subgroup membership for a group element.

In its output, PEACE produces a string expressing a reduced group ele¬
ment h & G as a product of subgroup generators and, possibly conjugated,
group relators. As it freely reduces to the original word and, when the re¬

lators are removed, reduces to a product of subgroup generators, it is easily
shown that this proof word represents h in both its original form as well as

written as a product of the subgroup generators. Thus, it forms a proof that
h G H, and the proof word as well as the presentation of G, the generators
of H and the original group element h make up the proof certificate.

Example 2.1 As an example of a PEACE proof word and certificate, con¬

sider the presentation for A5,

A5 = (a, b\a2,b3, (ab)5),

24

with the subgroup generated by {afe, ba} and isomorphic to A4. For the group
element w = a~1b4ab3, PEACE produces the proof word

[Aba] [Aba] [Aba] [Aba] (bbb),

where A represents the inverse of the generator a, square brackets enclose sub¬
group generators and round brackets, group relators. Removing the brackets,
it is easily seen that the proof word reduces to Ab4ab3, which is exactly the
original word w, and as the relator (63) is trivial, then

w = Ab4ab3

— [Aba][Aba][Aba][Aba](bbb)
= [Aba] [Aba] [Aba] [Aba]
= (6a)4.

We have thus obtained a proof of vu E (ab, ba). This simple example can also
be easily shown by hand since (63) = 1 and a~1b4ab:i = a~lba — ba E (ab, ba).

As already indicated, the main inputs of PEACE include the group pre¬

sentation, the subgroup generators and the group element whose membership
in the subgroup is to be proved. PEACE allows for presentations with a gen¬

erating set of size of up to 26, and each generator must be input as a lower
case letter. PEACE then refers to the inverse of a generator as its corre¬

sponding upper case letter, and the inverse of the generator x can be input
as either x— 1 or X. In this chapter, we will keep to our notation of referring
to the generator inverse as x~l. To input the group G and subgroup H < G
defined by

G = (xi,x2, • • .,xn\ri,r2,... ,rm) and H = (hi,h2,hi),

where m, n 6 Z+, / 6 Z*, n < 26, the group generators are all lower case

letters and elements of the set of relators as well as those of the set of subgroup
generators are words over the defining generators and generator inverses, we

25

require the initial PEACE commands:

group generators: X\, X2, ■ ■ ■, xn\

group relators: ru r2,..., rm;

subgroup generators: hi, h?, ■ ■ ■, hp,

Typically, a PEACE run involves 3 steps:

1. generation of a definition sequence by coset enumeration,

2. manipulation of the definition sequence,

3. production of a proof table and resulting proof words.

The outputs of PEACE are whether or not the group element, which is input
after the proof table has been generated, is also a subgroup element, and if
it is found to be so, the associated proof certificate.

We will complete our introduction of PEACE by describing the three
steps of a run for the original C program. The rest of this chapter will be
devoted to outlining our modifications of PEACE to perform the Modified
Todd-Coxeter algorithm for coset enumeration as well as our development of
a PEACE package for GAP. We designed such tools with the aim of using
them to experiment with forming subgroup presentations, to try and find
'better' such presentations than formulated by the built-in GAP functions.

2.1.1 Coset Enumeration and Definition Sequences

The objective of a PEACE run is to find a proof showing the presence of
a group element in the subgroup, and as the produced proofs vary with
different definition sequences, an ACE-based enumerator is used, allowing
for experimentation to obtain different sequences and thus, different proofs.

Similarly to ACE, all of the predefined strategy commands, default, easy,

felsch, hard, hit, pure c, pure r and sims, are included in the PEACE enu¬

merator. PEACE also allows the strategy to be defined by the user with the
options, asis, ct factor, fill factor, lookahead, mendolsohn, no relators in sub¬
group, pd mode, pd size, rt factor and row filling. An additional option, col

26

ordering, controls the order in which the group generators and their inverses
are laid out in columns of the coset table. This option can be useful for
strategies such as felsch, where definitions are made according to the coset
table, filling the left most empty column entry in the first incomplete row.

The enumeration is queued using the begin or start commands, and if
the enumeration is able to complete, the resultant table can be printed
with the print table input. An incomplete enumeration may be resumed
in PEACE with different parameters using the continue command, and sim¬
ilarly to ACE, this mode retains all the information of the coset table and
the relator and subgroup generator scans are resumed from where they left
off before the enumeration halted. However, as no options exist that modify
the presentation and would require the command redo rather than continue
in ACE, there is 110 PEACE command equivalent to redo, which began the
scanning of all relators and subgroup generators again from coset 1. Each
of the other two steps of a PEACE run are invoked only by user commands,
and thus, the enumeration step can be performed multiple times with differ¬
ent combinations of options and styles to produce a definition sequence of a

desired type before the proof table is formulated.
In addition to a column for each generator and generator inverse, the

PEACE coset table also contains four auxiliary columns. Unlike ACE, where
redundant cosets have no further use and the coset table can be compacted
to remove these redundant cosets, in PEACE, the entire definition sequence

must be retained as it is necessary to build the proof table. Thus, for each
row, the entries in the first two auxiliary columns contain information on

whether the coset is redundant and with which other coset it is coincident as

well as linking to the next pending coincidences in the queue. The last two

auxiliary columns contain the coset a and the generator or generator inverse
a defining the coset (3 represented by the row of the table, such that aa = (3.

Although the second step of a PEACE run is not actually required once a

complete definition sequence has been produced, there are some options, such
as ds op, enumds and prune, which allow for the output or manipulation of
the sequence. The ds op command prompts PEACE to output the definition
sequence of the last enumeration, either to a file or to the standard output

27

stream.

The enumds command takes in an integer argument specifying the num¬

ber of definitions to be tried, which must be smaller than the current defini¬
tion sequence legnth, and PEACE attempts enumerations with all definition
sequences of this specified length.

The option, prune, based on the short-cut method of the Interactive Todd-
Coxeter (ITC) GAP package [13], tries to reduce the length of a complete
definition sequence. If this length is /, then tracing backward from the last
processed coset number an, the coset numbers {otik,..., cq2, cqj} can be found
such that the definition sequence contains

«ii = lxh1 and ak =

where x\li is a generator or generator inverse for each i E {2, 3,..., k} and
cm — cmk. Thus, tliey are the cosets involved in the definitions that were

actually used to reach coset number cq. These coset numbers are marked as

'indispensable', and the definition of each coset in this set is moved to the
beginning of the definition sequence. The definitions of the remaining cosets
in the original sequence are placed at the end, and the enumeration is then
begun again using this re-arranged sequence. Although it must complete the
enumeration, as the original definition sequence was enough to lead to a full
table closure, the enumeration may finish before all of the definitions have
been processed. The subset of definitions of the re-arranged sequence closing
the tables then becomes the new definition sequence, and this procedure is
repeated, creating shorter definition sequences, until all cosets are marked
'indispensable' and the final, pruned definition sequence has been produced.

2.1.2 The Proof Table

Setting up the Table
Given that a complete definition sequence has been formulated, the final

step of a PEACE run is to build a table from which a proof word can be
produced. The proof table is set up similarly to that of the coset table in an

enumeration and, in a sense, an entry retains the reason or the event in the

28

enumeration resulting in this entry. As we will be referring to two different
tables, let us adopt the notation CT{row, col) to mean the entry in the coset
table for the coset number row and generator or generator inverse col. We
will use PT(row, col) for the corresponding entry in the proof table.

Once PEACE has a completed coset table, the generation of the proof
table is performed on the PEACE command pt. The command loop parses

this command and calls the function puce-pt(), which clears the coset table
by setting each entry to 0, excepting the last two auxiliary columns con¬

taining the definition sequence. These definitions were enough to close the
tables, so the current coset table size is sufficient and the proof table is allo¬
cated memory enough for the same number of rows and columns. Unlike the
coset table, however, each entry consists of a pointer accessing a linked-list
detailing the history of all the events that obtained new information for this
entry. Initially, the state of each of these proof table entries is NULL and
modified to be that of a list once the entry is filled or altered by a definition,
deduction or coincidence. The proof table also contains one auxiliary col¬
umn, which, similarly to the first auxiliary column of the coset table, records
the coincidences as well as their proof words.

Each element of the linked list is a structure with three main attributes

in addition to the next pointer for the proceeding element in the list. The at¬
tributes are seq, the number indicating where in the sequence of events this
new information was determined, result, the resulting coset for the coset-

generator pair corresponding to the proof table entry containing the linked
list, and data, a pointer to the data or the determined proof word for this
deduction or coincidence. Thus, where a is a coset number and is either
a group generator or its inverse, the entry PT(a,r-') is a list, not only indi¬
cating the coset numbers (3j such that we have found ax= (3j by definition
or deduction, but also the proof word showing the deductions and coinci¬
dences involved in determining each of these relationships. Each entry in the
auxiliary column of the proof table is a single element of this structure type,

containing the proof word formed from the relator or subgroup generator
scan resulting in the coincidence.

After the coset table has been cleared and the shell of the proof table

29

built, each definition in the sequence saved in the third and fourth auxiliary
columns of the coset table is processed in order, entered into the tables and
placed on the deduction stack. Here, with the definition ax[' = (5 for coset
numbers a and P, group generator Xi and e, G { — 1,1}, the entry CT(a,x■*)
is reset to (5. Memory is allocated for the data structure representing this
definition where the member attribute seq, for the sequence number, is given
a value accordingly and result is assigned the value f3. For definitions, the
data field pointer and next pointer are both NULL, and as no deductions will
have yet been found or processed, the pointer PT(a,xeii) is set from NULL
to the single element list containing this definition.

Using the Tables: Scans, Deductions and Coincidences
The process for building the proof table proceeds similarly to coset enu¬

meration, using information in the table to perform relator and subgroup gen¬

erator scans to deduce new information. Before continuing with the method
generating a proof table, descriptions are required of some functions used
within puce-pt(), namely alO-apply, al0-coinc and alO-dedn. From within
these functions, there are also calls to the function, ptbldl, for generating
proof words, and functions dealing with secondary coincidences, al0-colsl2,
ptbld2and ptbldS.

Relator and Subgroup Generator Scans
The alO-apply function takes in a coset number and subgroup generator

or cyclic permutation of a relator and applies the coset to this group element
using the coset table in an attempt at finding a new deduction or coincidence.
If the application is on the coset a by the word

with xik G X and eik G { — 1,1} for k G {1,2,... ,j}, then firstly, a forward
scan is initiated, stopping when all of the cosets as for s G {1, 2,..., a} have

30

been found such that

aar-J1 = ai, axx^ = a2,

and either there is no coset table entry for or the forward scan

completes and j — a. In the latter case, then there may be a coincidence and
it needs to be checked that, for coset numbers, aa — a. If a < j, however,
a backward scan is then performed, finding cosets (3t for t E {1, 2,..., b} so

that
—«»

(XX;. = Pi, PlXi' = P2, Pb-lXi 1)
= Pb-

—h
It stops where either there is no coset table entry for PbX^^ or the backward
scan has reached the same point as that of the forward scan and a = j — b.
Here, the equivalent row in the relator or subgroup generator table would be

xh X: X„■

a (X\ &a— 1

'j-b+1
■ i-b+1

X-.

Pb- Pl ad-a, Pb

and both aa and Pb have been determined for one entry. Thus, a check for
a coincidence must be done and when, for coset numbers, aa 7^ pb, alO-apply
passes control to the function alO^coinc.

If the backward scan stopped with a < j — b — 1 then there is insufficient
information in the coset table to close the row of this table. However, where
a = j — b — 1, then

x.
u xi "ba

a CX\

ig+l

an

xi3 6+1^7 — b+1
X:

Pb Pi a

The coset numbers aa and pb appear as adjacent entries, and the deduction
Pb has been found. This new information is pushed onto the de-QtaX

la+l
»a+l

duction stack to be processed later, and ptbldl is then called.

Proof Words from Deductions

When a deduction has occurred, this new information needs to be added
to the linked list of events that have modified the result of the appropriate
proof table entry. The function ptbldl determines the proof word for the data

31

pointer attribute of the new element to be added to the list. In PEACE, if
a deduction f3x^ = 7 is found whilst scanning the relator

for the coset a with Xik G X and e,fc G { — 1,1} for k G {1,2,..., s}, then this
deduction resulted from the use of the coset table to find the cosets

a.\ = as+i = a and at — at-laq'l"1 for t G {2, 3,..., s + 1}.

Thus, (3 = otj, 7 = ctj+1 and

= /*Cr • • ■ omo ■ ■ ■ 0+1
—1 eii / \

— -T T I V ■ \ T T—

3 ij-i * * * V lJ is ' ' ' ij+i
~6ij-2 ~~ ei\ (\ ~„ ~€ij+1

=
• • • Xh \ri)Xis ■■■ Xij+[

= (r<)aris s ...

= ctfrAx,- e's ... x- tj+1

6ij+1
= «i+2^,+r
~ aj+1

= 7-

The new element of the linked list for the proof table entry PT(/?,x7) has
result set to 7, while the member attribute data points to the proof word of
the form

. ™ e,j-l rr~€i2 eH /V \ rr~e's ~eis-l €tj+1
(3 xij~ 1 aj-i ■ ■ - xi2 a2 xi 1 « v v a xis as -Ps-i • • • <77+2 xq+i 7

Subgroup generators involved in deductions are indicated by square brack-

32

ets, and similarly, for the same deduction obtained from a scan of a subgroup
generator S; with a = 1, the proof word data attribute accesses the string

„ T~eh-1 ^~£l2 ~£i 1 , LI , rr~eis ry £^S 1 ~£*J + 1
j3 xij~l aj-1 • • • Xi2 a2 1 iS»J 1 xis as Xis-1 ■ ■ ■ aj+2 XiJ+i 7

Involving the coset numbers in the proof word is important. A proof word
contains the reasoning behind and events resulting in new information in the
coset table. For example, consider the proof table entry PT{a^x\i) where
one of the elements of this linked list has the simple proof word

a xTj p x~kk 7 (r) 7

and result 7. Obviously, the proof word indicates that this entry was obtained
scanning relator r = x^x^xf from coset 7, but to show the entire sequence
of events resulting in this deduction, we need to include the reasoning and
events behind each of axep — [3 and fdxj = 7. Thus, where a w 1 p and
0 W2 7 are the respective proof words, then we can make the expansion

«x73 p xke" 7 (r) 7
=7 a w\ p w2 7 (r) 7.

Through continual expansion, the justification for axe> = 7 then includes all
the events leading to this deduction.

Coincidences

Once a proof word is found and entered into the proof table, however,
later deduction processing may yield a coincidence making one of the coset
numbers in the proof word redundant. A coincidence of coset numbers P
and 7, found so 7 becomes redundant, means that some proof table entry

PT(a, x\l) contains a list of least two elements, namely, one with result P and
one with result 7, each possessing different proof words. Although 7 is now

redundant, it may have been involved in a previous deduction and appear

in a proof word of another proof table entry. If the string a XT 7 xp § is a
substring of a proof word, then the events and reasoning behind this proof

33

word includes that of the deduction ax-' = 7, not ax]* = (3. Therefore, the
expansion requires the proof word for the entry with result 7. However, as

7 had become redundant, no further deductions would be made for 7 and
there may be no entry for 707' = 8. Thus, the expanded proof word becomes
a x* ry=/3 x<j3 5 and incorporates the proof words for ax^ = 7 and (3xe- — 8,
as well as that of the coincidence 7 = (3.

Coincidences are handled by the function al0-coinc, making the coset
with highest index redundant. In the coset table, cosets can be indicated
as redundant using the first two auxiliary columns, and it is simply a mat¬
ter of replacing each occurrence of the now inactive coset with the other and
clearing the entries in the redundant row. Handling coincidences in the proof
table cannot be done in the same way. As mentioned above, coset numbers
are a necessary part of proof words and can appear in the proof words of
various proof table entries if they are part of the scan which resulted in the
deduction. Since redundant coset numbers are needed even after a coinci¬

dence has been found, the coincidence is indicated in the auxiliary column of
the proof table and the event resulting in this new information is recorded in
the form of a proof word. Thus, whenever the redundant coset is encountered
in a proof word expansion, there is a proof word outlining the reason for the
coincidence, which must be included in the proof word so that processing can

continue from the non-redundant equivalent of the coset.
If a coincidence is found during a relator or subgroup generator scan, then

this is a primary coincidence and the proof word for the auxiliary column of
the proof table in the redundant row is determined by the function ptbld2.
The proof word is found in a similar manner to that of a deduction, and
where the scan involved the word

Wi = xil1xi

for coset a with xik G X and e;fc G { — 1,1} for k G {1,2,..., j}, then the
equivalent row in the relator or subgroup generator table would be

1 X€ia X^
f\ fa ^a-f-1 fX

(X (X\ (Xa—\ CX-ai fij—a ftb—1 (X

34

for some a E {1,2,... ,j} given that the forward scan produced the coset
numbers as for s E {1,2,..., a} and the backward scan produced the coset
numbers (3t for t E {1,2,...,j — a}. Thus, ota and (3j_a are found to be
coincident and the coset with highest coset number is redundant. Using

1 —6n ^2 / \ — 1 e^a+ l1 = Xa • • • Xi2 Xh (wi)xij Xi,J ■ ■ • Xia+1 .

then where the coset numbers aa > f3j-a, the auxiliary column entry in row

aa of the proof table would contain the proof word for aa = (3j-a as

«a x7atia ■ ■ ■ ai x7eil a (Wi) a x^j ^ ... xJ+{+1 p._a

Alternatively, when aa < (3j-a, then the proof word of /3j-a — aa in the
auxiliary column entry of row /3j-a would be

€ia+1 e*j (\~ 1 ~.eia

fij—a Xia+1 •••/?! x*i a a XH ai • • • ^aQ o:a.

Given a coincidence of coset numbers a and (3, the function al0-coinc also
handles the transfer of information from (3, the redundant coset number, to
a. For each generator or generator inverse , the entries CT(a,x\l) and
CT(P,xl') must be compared to use the information in the /3-th row to fill
empty entries and modify current entries in that of the cr-th row of the tables
and to find secondary coincidences. The inverse entries are also updated
accordingly.

Various cases exist and require different proof words to show both the co¬
incidence and any secondary coincidences. The PEACE manual [19] outlines
the formation of the proof words for each case, although we will describe this
formation for a few of the most general cases. Obviously, if CT(f3,xeil) = 0,
then nothing needs to be done.

Where CT(a,x\[*) = 0 and CT(P,xeii) = (3, then there are two cases. If
CT(a,x~Ci) = 0, then PT(a,xeii) becomes the list composed of the single
element with result a and proof word

a=/3 xi (3=a,

35

while a single element is assigned to the empty list PT(ot, x{ e"), having result
a and proof word

a=0 xi /3=a.

If CT(a, x~ei) =7/0, however, then a secondary coincidence has been
found involving the cosets a and 7, which is added to the coincidence queue.

For CT(a^x\i) = 0 and CT((3,x^) = 7 ^ /?, the entry PT(a,xeii), which
had previously been NULL, is given a list element with result 7 and the proof
word attribute data of

a—(3 xi 7-

The list at entry PT(7, x~£<) must contain an element with result j3 and is
given a new head element with result a and data

7 xi (3=a.

Lastly, the coset table is adjusted so that CT(a, X*') = 7 and CT(/3, xf) = 0,
and the coincidence is added to the first two auxiliary column entries of row

(3.
During the formation of the rest of the proof table, if ax\' or 7xj~€i occurs

during a scan, then the resulting cosets will be given as 7 or a, respectively.
Any new proof word using one of these new relationships will contain the
substring a XT 7 °r 7 x~ei a■ Proof words formed before the coincidence
was discovered, however, are left unchanged and may still contain p xf 7 or
7 x((ei p. The entries of the proof table are not cleared after a coincidence,

and so there is still an element of the list PT((3, £•*) with result 7 and proof
word p w\ 7 for some string w\ of generators, generator inverses, coset
numbers and either '=' symbols or a relator or subgroup generator, which
can be used for the expansion. The same is true of the list PT(7, xxti) for an

element with result /3, whose proof word is 7 tuf1 p. Using the proof table,
where the coincidence of cosets a and /? is given in the auxiliary column of
the (3-th row with proof word p w2 a f°r some string the expansions of

36

a 7 and 7 xi e* a are then

a ^7 =* a=0xi 7
=4> aw^p 7
=> a wi1 pw17

and

7 %i 1 a => 7 p=a
=* lwil (3=a
=> 7 wf1 p w2 a.

Thus, the justifications include the fact that the new deductions had been
obtained from old deductions plus a coincidence.

Where CT(fi,x•*) = A 7^ 0 and CT(a,xli) = <5 / 0, there is a possible
secondary coincidence of cosets A and 5, and several special cases arrise where

{a,/3}n{A,<5} ^ 0. Secondary coincidences can trigger a sequence of coinci¬
dences, which must be reflected in the proof word. Each of these is added to
the coincidence queue handled by the function al0-colsl2 and, athough coin¬
cidences are processed in the order in which they are determined, secondary
coincidences must be immediately marked in the first auxiliary columns of
the coset and proof tables and their proof words determined as they affect
the resulting proof table entries. If {a,/?} D {A, A} = 0, then the proof word
for the new element of PT(a,xli) cannot be formed until the representatives
of cosets A and 5 are determined, assuming a is not found redundant. A
previously determined coincidence involving either A or 8 may still be unpro¬

cessed and in the coincidence queue and thus, either A or 8 may be marked
as redundant and represented by a different coset. However, once all sec¬

ondary coincidences are found for this case and where A and 8 are found to
be represented by the cosets A' and 8', respectively, then the proof word of
this final secondary coincidence will take the form

A'= • • • =A XP p=a xi 8= ■■■ =8

37

if, for coset numbers, A' > 5'. Otherwise, the form is

§'= ■ ■ ■ —Sxi a—P xi A= • ■ • =A'.

Filling the Proof Table

Having processed the definition sequence and saved all of these definitions
in the coset and proof tables, puce.pt performs an initial scan of the subgroup
generators for coset 1 as well as of cyclic permutations of the relators for all
cosets before the deduction stack is processed. This scan, using alO.apply,
occurs to determine any deductions and push them onto the deduction stack,
all the while entering the appropriate data in the coset and proof tables. It
also occurs solely in case the definition sequence, and thus the deduction
stack, had been empty.

A call to alO-dedn is then made by puce.pt to process the deduction stack.
Popping off the top most deduction ax\l = (3, all the cyclic permutations of
the relators beginning with xe/ are applied to coset a, and all cyclic permu¬
tations of the relators ending with x\{ are scanned from coset /3 using calls
to alO.apply. Any new deduction is added to the deduction stack, the proof
word of the new proof table entry element is determined by ptbldl and coinci¬
dences handled by alO.coinc. This process continues until the deduction stack
is empty and all deductions have been processed. However, since alO.dedn
only applies the deductions to relators, another loop is required to scan the
subgroup generators. This, of course, may result in further deductions and
the deduction stack will need to be processed again. Thus, puce.pt alter¬
nates between calls to al0.dedn and a loop scanning each subgroup generator
using alO.apply until the subgroup generator scans produce no deductions or

coincidences and the deduction stack is empty.
If the definition sequence is valid, these definitions will have been enough

to close the tables and complete the enumeration. At this point in the con¬

struction of the proof table, the coset table should be complete and the scans

of all subgroup generator and all cyclic permutations of the relators should
contain no holes. For safety, puce.pt calls the function chkct, which checks
the coset table by performing these scans.

38

To help illustrate the process of forming a proof table, we shall work
through a small case.

Example 2.2 The quaternian group Q$ can be given by the presentation

(a, 6|a4, 64, a2b~2, aba~4b)

and the subgroup (a) over Qg has index 2. Using the definition sequence

2 = 16_1,3 = 2£>—1,4 = 36_1, these definitions are first added to the coset
table to obtain:

coset a a 1 6 b~l coinc chain defn

1 0 0 0 2 n/a n/a 11/a
2 0 0 1 3 0 0 16-1

3 0 0 2 4 0 0 26"1

4 0 0 3 0 0 0 36"1

Before these deductions are processed, we must perform the subgroup
generator and relator scans. Firstly, the subgroup generator a is applied to
coset 1. The forward and backward scans result in the deduction la = 1,
and as this was from a subgroup generator scan, then PT(l,a) is given the
element with result 1 and proof word \ [a] Similarly, an element is added
to PP(l,a-1) with result 1 and proof word i [a-1] p The coset table is
updated so that both CT(l,a) = 1 and CT(l,a_1) = 1.

Moving to the relator scans and beginning with coset 1, no new deductions
are obtained for the relator a4. For 64, there is no information in the table for
the forward scan. The backward scan, however, gives i b~4 2 b~l 3 b~l 4, so
we obtain 16463626^ an<^ the deduction 16 = 4. An element with result
4 and proof word

1 (&4) 1 h~l 2 h~l 3 6_1 4

is added to the proof.table entry PT(1,6). The inverse entry PP(4,6_1) is
given an element with result 1 and proof word 4 6 3 6 2 6 1 (6~4)p and the
coset table is modified as well.

At this point, the partial coset and proof tables are:

39

coset a a"1 b b~l coinc chain defn

1 1 1 4 2 n/a n/a n/a
2 0 0 1 3 0 0 lb-1

3 0 0 2 4 0 0 2b-1

4 0 0 3 1 0 0 3b-1

coset #1 coset #2
a 1 ![«]! a NULL

a-1 1 l[a_1]l a-1 NULL

b 4 1(64)16-126"136-14 b 1 defn
b-1 2 defn b~x 3 defn

coinc n/a coinc null

coset #3 coset #4
a NULL a NULL

a-1 NULL a-1 NULL

b 2 defn b 3 defn
r1 4 defn b'1 1 4b3b2bl(b~4)l

coinc null coinc null

Considering the next relator o?b~2 with coset 1, the forward scan com¬

pletes and results in -y a \ a \ 6_1 2 6_1 3- Since the scan should finish 011
1, we have obtained a primary coincidence of cosets 1 and 3. Thus, the
associated proof word is

3 b 2 b 1 a~l 1 a_1 1 (a2b~2) 1.

We now need to transfer any relevant information from the redundant
coset 3 to coset 1. For both a and a-1, nothing needs to be done as

CT(3,a) = 0 and CT{3,a~l) = 0. For the group generator b, however,
we have CT(1, b) = 4 and CT(3, b) = 2 and, thus, have encountered the sec¬

ondary coincidence of the cosets 2 and 4. Since no previous and unprocessed
coincidences involving either 2 or 4 had been found, then the representatives

40

of these cosets are just themselves and the proof word is

4 b~l 1 = 3 b 2.

This coincidence is added to the chain of pending coincidences, and coset 4 is
marked as redundant and represented by 2. The proof table entry PT(1, b) in¬
volves the coincidence of cosets 2 and 4 and is left until this coincidence is pro¬

cessed, when it will be handled along with its inverse, PT(2,b~1). CT(3,b)
is then reset to 0 and, as CT(2, 6_1) will be handled when the coincidence of
2 and 4 is processed, this entry is also reset to from 3 to 0.

The last step of processing the coincidence of cosets 1 and 3 is to consider
CT(1,6_1) and CT(3,6_1). Since the former contains 2 and the latter 4, we
have the secondary coincidence of cosets 2 and 4. As this coincidence has
already been determined, although not yet completely processed, the coset
table indicates that the representative coset of 4 is actually 2. As the entry of
CT(1,6_1) is already 2, then nothing needs to be done except to reset both
CT(3, 6_1) and CT(4, b) to 0. The tables at this stage are:

coset a a 1 b b-1 coinc chain defn

1 1 1 4 2 n/a n/a n/a
2 0 0 1 0 0 0 lb-1

3 0 0 0 0 1 4 2b~l

4 0 0 0 1 2 0 3b-1

41

coset #1 coset #2
a 1 l[o]l a NULL

a"1 1 1 [<•-']! a-1 NULL

b 4 1(64)16-126"136-14 6 1 defn
6-1 2 defn 6-1 3 defn

coinc n/a coinc null

coset #3 coset #4
a NULL a NULL

a-1 NULL a-1 NULL

b 2 defn 6 3 defn
6-1 4 defn 6-1 1 4636261(6-4)l

coinc 1 36261a-1la-1l(a26-2)l coinc 2 46-1l = 362

Before we can return to the relator scans, we still need to process the
coincidence of cosets 2 and 4, which is sitting in the chain of pending coinci¬
dences. As the coset table entries for row 4 are all 0 for the group generators

a, a-1 and 6, nothing needs to be done for these cases. For 6-1, then since
CT(2, 6-1) — 0 and CT(4,6-1) = 1, we add a new element to PT(2,b~1)
with result 1 and proof word 2 = 4 ^_1 1- The coset table is updated so

CT(A,b~l) = 0 and CT(2,6-1) = 1. Additionally, for PT(l,b), a new list
element is added with result 2 and proof word 4 64 — 2, and CT(1,6) is
changed to 2.

coset a a 1 6 6-1 coinc chain defn

1 1 1 2 2 n/a n/a n/a
2 0 0 1 1 0 0 16-1

3 0 0 0 0 1 0 26-1

4 0 0 0 0 2 0 36-1

42

coset #1 coset #2
a 1 l[a]l a NULL

a"1 1 IK1]! a-1 NULL

b 2 164 = 2 6 1 defn
4 1(64)16_126~136~14

b-1 2 defn 6-1 1 2 = 46-1l

3 defn
coinc n/a coinc null

coset #3 coset #4
a NULL a NULL

a"1 NULL a-1 NULL

b 2 defn 6 3 defn
b~l 4 defn 6-1 1 4636261(6-4)l

coinc 1 36261a-1la-1l(a26-2)l coinc 2 46-1l = 362

There are no more pending coincidences and we can return to the relator
scans, with coset 1 and relator aba"xb. Using the current coset table, the
forward scan gives i a i b 2, while the backward scan yields ^ 6-1 2. To¬
gether, we have 1 a -y b 2 a-12 b y and the deduction 2a~l — 2. Thus, since
CT(2,a-1) = 0, this coset table entry is set to 2 and a new list element is
given to PT(2,a-1) with result 2 and proof word

2 b~l 1 a_1 1 {aba~lb) y 6-1 2.

Similary, we set CT(2,a) = 2 and a new list element is added to PT(2,a)
with result 2 and proof word

2 b 1 (b^ab^a'1) \ a x b 2.

Here, the tables are:

43

coset a a 1 6 6"1 coinc chain defn

1 1 1 2 2 n/a n/a n/a
2 2 2 1 1 0 0 16"1

3 0 0 0 0 1 0 2b-1

4 0 0 0 0 2 0 3b-1

coset #1 coset #2
a 1 l[a]i a 2 261(6_1a6_1a_1)lal62

a-1 1 l[a_1]l a"1 2 26_1la_1l(a6a~16)16~12
b 2 164 = 2 6 1 defn

4 1(64)16"126-136"14
b~x 2 defn 6"1 1 2 = 46_11

3 defn
coinc n/a coinc null

coset #3 coset #4
a NULL a NULL

a-1 NULL a-1 NULL

b 2 defn 6 3 defn
b~l 4 defn b-1 1 4636261(6"4)1

coinc 1 36261a~1la_1l(a26~2)l coinc 2 46~41 = 362

As neither scanning each relator for coset 2 nor processing each of the pre¬

viously determined deductions yields any further coincidences or deductions,
the proof table is complete.

Using a complete proof table, a group element h can be shown to also
be a subgroup element by extracting its proof word from the proof table.
The peace command, prove: h, extracts the proof word if it is a subgroup
element, and either cert or acert prints out the proof certificate. While cert
allows cyclic permutations of the relators to appear in the proof word, acert
produces the proof word with the original relators. Where

h = Xh Xi2 ■ ■ ■ Xis «

44

with xik G X and eik G { — 1,1} for k G {1, 2,..., s}, then, using the coset
table, the non-redundant coset numbers at for t G {0,1,..., s} can be found
so that

(*0 = 1 and ctk = ock-ixP for k G {1, 2,..., s}.

As long as the coset number as — 1, then h is a subgroup element, and from

1 xh ai xt2 ■ ■ ■ cts_i XC 1,

the proof word can be formulated by continually expanding it through the
substitution of proof table entries. For h, the first expansion would involve
the element with result in the list at entry PT(ctk-i, x^) for each k G
{1,2, Where the associated proof word is afc_1 Wf, ak for strings
Wk, then

1 xh otx xi2 ■ ■ ■ a,-! XC 1

1 Wi ai w2... as_ 1 Ws I-

If the list element with result is a definition, then no substitution occurs

and ak-i xik at remains. The expansion proceeds by continually scanning
left to right, replacing each coset number-generator pair, or coset number-=
pair indicating a coincidence, with its corresponding proof word according to
the resulting coset number until each such pair is a definition.

After every scan, the intermediate proof word is reduced, so that any

substring of the form w\ a u>2 ft w?1 a w3 for strings w\, W2 and becomes
W\ a W3. This reduces the size of the proof word in PEACE and requires
fewer substitutions to complete the expansion. The proof table contains
only one element of the list PT(a, x) with result (3 for generator or generator
inverse x, and the entry PT(/3,x_1) has only one element of result a. The
associated proof word of the latter is the inverse of that of the former, so

reducing at each stage does not affect the resulting proof word.

45

Example 2.3 As a simple example, consider

(P\P3,P2),

a presentation of the trivial group. Using the trivial subgroup, coset enumer¬

ation is performed and the proof table is built and output with the PEACE
input commands,

gr: p;

rel: p3, p2;
start;

pt;

pr pt;

The PEACE output of the proof table is given below, where the column
entries indicate result, seq or the number indicating where in the sequence

of events this deduction was made and data. The bottom row represents the
auxiliary column of the proof table, outlining whether the coset is redundant,
if it is a primary (P) or secondary (S) coincidence and the associated data
proof word. We will use the table to show how PEACE forms the proof word
of p4 to prove it is also a subgroup element.

coset #1 coset #2
p 1 6 1 = 2pl p 1 2 defn

2 4 l(pp)lP2
p 1 7 1P2 = 1 P 1 3 2pl(PP)l

2 1 defn
coinc n/a coinc P 5 2PlP2Pl(ppp)l

Consider the group element p4, which is obviously in the trivial subgroup
as the group is {1}. From the coset table, p4 becomes

1P1P1P1P1,

46

and using the proof table, \ p \ expands to

1 P 1

1=2 P 1

1 (P3) 1 P 2 P 1 P 2 P 1

1 (pi) 1 (P2) 1 p 2 P 1 (P2) 1 P 2 P 1

1 (P3) 1 (P2) 1 (p2) 1,

and

1P1P1P1P1 1 (p3) 1 (P2) 1 (P2) 1.
V

V '
x4

Thus, the proof word for p4 is

(P3)(p2)(p2)(P3)(p2)(p2)(P3)(p2)(p2)(P3)(p2)(p2),

which freely reduces to p4. Removing the relators, it reduces to 1.

Example 2.4 For an example containing subgroup generators, consider the
element w = ab3a of the group G = (a, 6|a4, 63, a_16_1a6) with subgroup (a2),
which has index 6 in G. This is input into PEACE by

gr:ab;
rel:a4,b3,ABab;
gen:a2;
start;

pt;

pr pt;

The formulated proof table is then

47

coset #1 coset #2
a 2 16 l[aa]lA2 a 1 2 defn
A 2 1 defn A 1 15 2al[AA]l
b 4 18 l(bbb)lB3B4 b 6 22 2(bbb)2B5B6
B 3 3 defn B 5 20 2al(ABab)lB3A5

coinc n/a coinc null

coset #3 coset #4
a 5 24 3bla2(ABab)2B5 a 6 31 4 = 7a6

8 28 4(aaaa)4:A6A7A8
A 5 7 defn A 6 25 Ab3(BAba)3A3BG
b 1 4 defn b 3 6 defn
B 4 5 defn B 1 17 4b3bl(BBB)l

coinc null coinc null

coset #5 coset #6
a 3 8 defn a 4 26 6b5a3(ABab)3B4
A 3 23 hb2(BAba)2A\B3 A 4 32 6A7 = 4

7 11 defn
b 2 19 5a3bl(BAba)lA2 b 5 10 defn
B 6 9 defn B 2 21 6b5b2(BBB)2

coinc null coinc nidi

coset #7 coset #8
a 6 12 defn a 7 14 defn
A 8 13 defn A 4 27 8a7a6a4(AAAA)4
b null b null

B null B null

coinc S 30 7A8 = 6a4 coinc P 29 8A4b3a5(ABab)5BG

From the coset table, ab3a becomes

la2666562al,

48

and using the proof table, it expands with reduction to

la2b6b5b2al
=> l [a2]i A 2 (b3) 2B5B6b5a3b1 (BAba) 1 A 2 a f

=> l [°2]l -4 2 (^) 2 B 5 a 3 6 1 (BAba) i

=> i [a2]^ A 2 (^3) 2 a 1 (^5aft) l-s3^5a3^1 (BAba) i

=> 1 [fl2]l ^ 2 (&3) 2 a 1 (4l#aft) 1 (BAba) x

=> l [«2]i A 2 (ft3) 2 a 1.

Thus, the proof word for aft3a is [a2]A(ft3)a. With the commands,

prove :ab3a;
cert;

the proof certificate is output.

#- PEACE 1.100 proof certificate
* Group Generators

aft
* Group Relators

ftftft

aaaa

ADab
* Subgroup Generators

aa

* Word

abbba
* Proof Word

[aa]A(bbb)a
#

49

2.2 PEACE and the Modified Todd-Coxeter

Algorithm
Once PEACE has been described, it is easy to see the similarities of the
Modified Todd-Coxeter coset enumeration algorithm with the methods to

produce a proof table and extract a proof word. A subgroup presentation is
formed in the Modified Todd-Coxeter algorithm by rewriting each subgroup
generator and group relator in terms of the subgroup generators to determine
the subgroup relators. The proof table provides a way to rewrite a subgroup
element in terms of the subgroup generators, so, as they must be subgroup
elements, each of the subgroup generators and group relators can be rewritten
from this table.

Recall that in the Modified Todd-Coxeter algorithm, when the first de¬
duction is determined in the table of a subgroup generator h, we use the
fact that 1 h = hi to find the augmented coset table element. For example,
where h = abc and this initial subgroup generator deduction resulted from
the information la — a and lc-1 = P obtained from the augmented table,
then we write

1 abc = hi

ab = hlc

ab = hp.

Thus, the table entry for row a and column corresponding to b is hp. This
new entry is carried through the enumeration so that whenever ab is en¬

countered in a relator or subgroup generator table scan, it is replaced by
hp.

Consider the same deduction in the construction of the PEACE proof
table. Here, writing

b = o_1[a6c]c_1,
then the determined proof word for the element of the list PT(a1b) with

50

result (3 would be
a A 1 [abc] i C ^

where, in PEACE, A and C represent a-1 and c_1, respectively. Only the
result of this deduction, however, is carried through the formation of the proof
table. For the group element w — w\bw2, with W\ and w2 also group elements,
scanning from coset number 7 where we have found either 7w\ = a from the
forward scan or, from the backward scan, 7w^ = (3, then only p B a will
appear in the proof word for this deduction assuming neither a nor /3 have
been found redundant. However, a word g that is either a subgroup generator
or a group relator must be in the subgroup, and once the proof table has
been completed, we are able to continually expand g to find a proof word.
Rewriting g as its corresponding string of coset numbers and generators and,
again, assuming neither a nor (3 are redundant coset numbers, if there is a

substring a b p, then the substitution a A j [abc] \ C p would be made
in the expansion. Therefore, expanding any such proof word in the proof
table results in a proof word that has a form alike that of the augmented
coset table entry, although it also contains group generators and generator
inverses. These extra elements are those coset number-generator pairs that
resulted from definitions, could not be further expanded and were necessary

only to show the resultant proof word freely reduces to the original word.
Deductions involving relators found during the construction of the proof

table are handled similarly to those involving subgroup generators, and the
relator is enclosed with parentheses, rather than square brackets. In the
Modified Todd-Coxeter algorithm, however, these types of deductions use

yr = 7 rather than 7r = 7-7 for a relator r and coset number 7, and thus, r

does not appear in the deduced augmented coset table entry. However, if a

proof word in a proof table entry had all relator substrings removed and was

then reduced, the resulting proof word could be expanded to form a proof
word similar to that of the corresponding augmented coset table entry of the
Modified Todd-Coxeter algorithm.

It is easy to see that the method of determining proof table entries for a

deduction could be changed to simulate that for determining the augmented

51

coset table entries. In fact, the complete proof table could be itself used to
obtain the subgroup presentation for the Modified Todd-Coxeter algorithm.
This coset enumeration algorithm employs the fact that, if G is a group with
finite presentation (X|i2), |.X| = n and \R\ = m, then a presentation for a

subgroup H — (hi,..., hi) of G with finite index [G : H] = a can be given as

(hi,..., hi | lhi = hil for i e {1,2,...,/},
jrj~1 = 1 for j € {1,2,..., a} and r € R).

Consider the constructed proof table. Each entry can be expanded and
slightly altered, removing relators and reducing, to resemble the correspond¬
ing augmented coset table entry. If, for a subgroup generator hi, we extract
its proof word from the table, then we obtain a string which, when all the
brackets are removed, reduces to When the relators are removed and the

resulting string reduced, we are left with a product of subgroup generators

equivalent to ht and a new relation of the subgroup. This corresponds to the
relator lhi — hil of the subgroup presentation.

The same can be done for a relator r £ R and coset number 1. The

extraction from the proof table of the proof word for r rewrites r = 1 in
terms of the subgroup generators and corresponds to the relator lrl = 1 of
the subgroup presentation.

It remains to determine the subgroup relators jrj-1 for r E R. and
j £ {2, 3,..., o}. The prove command in PEACE only allows a scan from
coset 1, but, using the proof table and the same method for extracting a

proof, we can obtain a string of subgroup generators and conjugates of re¬

lators by expanding from aj r a-. Reducing freely, we are left with r and,
after removing any relators, we obtain a conjugated product of subgroup gen¬

erators. The latter is either trivial or has the form g~lhg for a group element
g and product of subgroup generators h. Because this is equivalent to r and
we know r = 1, we have g~lhg = 1 and h — 1, a new subgroup relator. The
group element g-1 is such that it belongs to coset j and j — Hg~l. From
Example 2.4 with relator a4 and coset number 2, then 2 °4 2 1S rewritten

52

as 2ala2ala2' ail(l

2fllfl2°l°2

=>■ 2 a 1 laa\ 1 A 2 a 1 taa] 1 A 2

=> 2 a 1 [aal 1 M 1 A 2.

Removing coset numbers leaves ah2a~l where h is the subgroup generator aa.
This still freely reduces to r = a4 and so, is also trivial. As such, ah2a~l — 1
and h? = 1, which is the subgroup relator corresponding to 2a42 = 1.

Hence, from our proof table, we can extract each of the necessary relators
for the subgroup presentation.

Example 2.5 Consider again the group presented by

(a, 6|a4, 63, a~lb~lab)

with subgroup (a2) from Example 2.4. Using the same proof table, then the
proof words extracted for each relator and non-redundant coset are

Coset

Group
Relator Proof Word

Subgroup
Relator

1 a4 [oa] [aa aa]2 = 1
b3 (666) 1 = 1

ABab (ABab) 1 = 1

2 a4 a[aa] [aa]A aa]2 = 1
b3 (666) 1 = 1

ABab (ABab) 1 = 1

53

Group Subgroup
Coset Relator Proof Word Relator

3 a4 b[aa]A(ABab)a(ABab)[aa]
A(ABab)a(ABab)B

[aa]2 = 1

b3 b(bbb)B 1 = 1

ABab (ABab) 1 = 1

4 a4 b(BAba) A(BAba)ab(BAba)
A(BAba)a[AA]BB(aaaa)
b(BAba)A(BAba)ab(BAba)
A(BAba)a[AA]BB(aaaa)

to
II h-1

b3 bb(bbb)BB 1 = 1

ABab b(BAba)b(BAba)A(BBB)
a(bbb)BB

1 = 1

5 a4 ab[aa]A(ABab)a(ABab) [aa)A
(.ABab)a(ABab)BA

[aa]2 = 1

b3 ab(BAba) A(bbb)a(ABab) BA 1 = 1

ABab ab(BAba)A(BAba)a[AA\B
(BAba)A(BAba)ab(BAba)
A(BAba)a[AA]BB (aaaa)b
(BAba)A

1 = 1

6 a4 b(BAba)ab(BAba) A(BAba)a
[AA]BB (aaaa)b(BAba) A
(BAba)ab(BAba) A(BAba)a
[AA]BB (aaaa)b(BAba)AB

[AA]2 = 1

b3 bab(BAba)A(bbb)a(ABab)BAB 1 = 1

ABab ba(ABab)B(AAAA)bb[aa\A
(ABab)a(ABab)BA(ABab)
a(ABab)b(BBB) [aa\A(bbb)
a(ABab)BAB

[aa]2 = 1

Therefore, using h = a2, the subgroup presentation is (h\h2).

Having thus realised that the Modified Todd-Coxeter method for deter¬
mining subgroup presentations in terms of the original subgroup generators

54

could be simulated using PEACE, we set about to make additions to the
program to give PEACE this functionality. Presentations can be judged in
terms of length, efficiency, ease of computability or any other desirable trait.
The built-in Modified Todd-Coxeter method in GAP uses the Felsch strategy
for coset definitions and so does not allow for experimentation in determining
'better' subgroup presentations. Different proof tables are obtained from dif¬
ferent definition sequences, and as PEACE uses an ACE-based enumerator,
which controls the resulting definition sequence, adding this new function¬
ality to the PEACE program would allow for such experimentation in the
hopes of producing various presentations of a subgroup.

2.3 Additions to PEACE

The version of PEACE for which we made our modifications and additions, to
allow for the formation of subgroup presentations using the Modified Todd-
Coxeter algorithm, was version 1.1. Our idea was that, by experimenting
with different enumerations and definition sequences, we might be able to
form different and, potentially, better such presentations.

PEACE was designed with the intention of having the ability to work
alongside the GAP package, Interactive Todd Coxeter (ITC) [13], a program

that allows the user to interact with an enumeration of a subgroup of a

finitely presented group, executing single steps using a graphics surface, and
thus, letting the user see exactly what is happening. Definition sequences

can be input to and output from ITC, and the PEACE commands ds ip and
ds op were added to allow for these sequences to be created or modified in
either PEACE or ITC and passed back and forth between the two programs.

In this version of PEACE, however, while the option ds op had been added
to allow for a definition sequence to be output in various formats to a file or to
the screen, the implementation of the option ds ip had not been completed,
and the use of this command in PEACE resulted solely in the production of
the message, "** The ds ip feature has not been (fully) implemented yet".
Therefore, our first addition to PEACE was the completion of the functions
needed for this option.

55

The ds ip option invokes a call to al2-readds, which parses in a comma

separated definition sequence either from a file or from standard user input.
This definition sequence is stored in two arrays, where, if the coset number
i is defined as i = jx, then the entry at index i — 1 of one contains the coset
number j and that of the other, the generator letter x. The coset table is then
set up and initialised as for an enumeration, except the definition sequence is
entered into the last two auxiliary tables. Each definition is saved in the coset
table and pushed onto the deduction stack. The subgroup generators are then
scanned from coset 1 and the cosets in the table are processed against the
relators by a call to procdefn for each coset. This function determines and
processes further deductions and coincidences to fill the table. The validity
of the coset table is then checked with chkct, testing for any holes in the
subgroup generator and relator scans.

Only complete definition sequences are accepted with the PEACE com¬

mand ds ip. If the coset table formed using ds ip is not valid and there are

holes found in the scans of chkct, then the PEACE run is aborted. Thus,
another user command was added to PEACE to allow for partial definition
sequences, ds ipp behaves similarly to ds ip except, rather than checking the
table after processing the definitions, the table is completed using the func¬
tion allstart, which resumes the enumeration using the current definition
strategy, similarly to the continue PEACE command.

To modify PEACE for the Modified Todd-Coxeter algorithm of deter¬
mining subgroup presentations, the keywords, mt, pr mt, rewrite and pre¬

sentation, were added. It would have been possible to form the subgroup
presentation from a proof table, removing any relators from the resultant
proof words of the subgroup generators and relators to find the equivalent
product of subgroup generators for a new subgroup relator. Additional func¬
tionality would then only have been needed to extract the proof words of
the relators for coset numbers other than 1. However, from Example 2.5, we

can see that the extracted proof words of even a very simple case can grow

quite long. It was desired to be able to use the modified PEACE program

to find subgroup presentations for much larger and more complicated groups

and subgroups and so, the command mt was added to form a new modified

56

table.

The function puce.mt produces the modified table, which has the exact
same structure as that of a proof table. This function is based on the proof
table version, puce.pt, making calls to alO-apply and alO.dedn to use the saved
definition sequence and build the table. The first step of puce.mt, however,
is to set the new global variable mtbuild to true. The words in each element
of the lists of a table entry are identical to those that would be in the proof
table, except without any relators, so rather than introducing new functions
for each of the functions, alO.apply and alO.dedn, as well as the proof word and
coincidence building functions, ptbldl, ptbld2 and al0.colsl2, these functions
were modified slightly so relators are omitted from the produced words when
the mtbuild flag is true. Also, when the flag is true and hi is the z-th subgroup
generator as ordered by PEACE, then where [hi] or [h~l] would appear in
a word in the proof table, the modified table uses the notation [jx.i] and
[.X.i], respectively, in the corresponding word. After the modified table
is completed, mtbuild is reset to false. The command pr mt outputs the
formulated modified table.

For any coset other than the subgroup, if the usual method was employed
for extracting the proof word of a relator from the table, however, a conju¬
gated product of subgroup generators would be produced, rather than the
desired unconjugated product. The new reduction function mtcred was then
implemented, based 011 the reduction function for the extraction of a proof
word pwred, but changed so that, as well as removing any strings x~lx from
the modified proof words, a word with the form xyx"1 was reduced to y for
strings x and y.

The command rewrite was added as a modified table equivalent to the
prove and acert/cert input commands for the proof table. This command
takes in a word h, and if the initial trace finds that it is, in fact, a subgroup
element, extracts the modified proof word from the modified table. This
word is equivalent to h and written as a product of subgroup generators,

using the new notation of [jx.i] for the z-th subgroup generator.
The last new command implemented for PEACE was presentation. Our

aim for this enhanced PEACE program was to incorporate it into a GAP

57

package based on the one formed for ACE. This package acts as an inter¬
face to the C program, interacting with ACE through input and output
streams. Thus, the presentation command does not produce the actual sub¬
group presentation, but extracts the modified proof word from the table for
each subgroup generator and relator for coset 1 and for each relator for all
other non-redundant cosets. Thus, it lists all the necessary subgroup relators
for the presentation, which could easily be read in by the GAP interface and
turned into a formal presentation.

Example 2.6 The Fibonacci group F{2, 5) [9], defined by the presentation

(a, 6, c, d, e|a6c_1, 6cd_1, cde-1, dea-1, eab~l),

has been shown to be isomorphic to Cn, the cyclic group of order 11 [10].
Of course, as [F(2, 5) : (a)] = 1, then a must generate the entire group and
have order 11.

PEACE 1.100

gr:abcde;
rel:abC,bcD,cdE,deA,eaB;
gen:a;

start;
INDEX = 1 (a=l r=l h=5 n=5; 1=4 c=0.00; m=4 t=4)
mt;

Modified Todd-Coxeter Table build

Initialising the CT/MT ...

Filling the CT/MT ...

Checking the CT/MT ...

CPU=0.00

#
pres;

From subgroup generators:
a = [_x_l]

58

From relators:

Coset #:1
abC = [_x_l] [_x_l] [_x_l] [_x_l] [_x_l] [_x_l] [_x_l] [_x_l] [_x_l] [_x_l] [_x_l]
bcD =

cdE = [_X_1] [_X_1] [_X_1] [_X_1] [_X_1] [_X_1] [_X_1] [_X_1] [_X_1] [_X_1] [_X_1]
deA =

eaB =

#

Thus, we have the subgroup presentation (xilx}1).

Example 2.7 For a larger example, the group Ae = PSL(2,9) can be
presented as

(a, 6|a2,64, (a6)5, (a&2)5}.

Here, (a, ab) is a Sylow 2-subgroup, and using the modified PEACE program,
we obtain:

PEACE F100

gr:ab;
rel:a2,b4,(ab)5,(ab2)5;
gen:a,Bab;
hard;
start;
INDEX = 45 (a=45 r=l h=50 n=50; 1-4 c=0.00; m=45 t=49)
mt;

#- Modified Todd-Coxeter Table build
Initialising the CT/MT ...

Filling the CT/MT ...

Checking the CT/MT ...

CPU-0.00

#
pres;

59

PEACE then outputs the resulting subgroup relators. Where a — [_x_l]
and Bab = [nr_2], the non-trivial subgroup relators given by PEACE are:

Coset # Relator Subgroup Relator
1 a2 [_x_l] [_a;_l]
2 a2 [-^-2] [ur_2]
11 b4 [_X_1][_X_1]
12 b4 [ACA][ACA]
21 b4 [_W_2][_A:_2]
22 b4 [AC.2][ACA]
26 (ab)5 [-xA][jxJ2\[jxA][jxJ2][jxA}[-xJ2][ACA][ACJ2\
33 (abf (jxA][jxA)[xcA}[jxA)(jxA}(jxJ2][ACA)[ACJ2\
39 a2 [jxA](jxA}(jxA}(jxA}(ACA)(ACJ2](ACA}[jxJ2}

[_z_l] [ACA] [_X_1] [ur_2] [_xA] [_A_2] [ACA] [_A_2]
42 a2 [_x_2] [_rc_2]
43 (ab)5 [jxA][jxJ2][jxA][jxJ2}[jxA][jx-2][AXA][AXA]
44 a2 [_x_l]'[_x_l]
45 a2 [ur_l] [_rc_2] [jt_1] [je.2] [W_l] [~X_2] [_AC_1] [.xJl]

[jxA] [ACA] [ACA] [_x_2] [je_1] [AC.2] [ACA] [_X_2]
47 (tt5)5 [jxA][jx-2][jxA][jx-2][AXA][AXJ2][jxA][jx-2]
48 a2 [_x_2] [ur_l] [ur_2] [ACA] [_AT_2] [.xA\ [~x22] [-X-1]

[-X-2] [ur_l] [ur_2] [uc_l] [_x_2] [ur_l] [ur_2] [W_l]
[_A_2] [_x_l] [jxA] [_A_1] [_X_2] [„xA] [_x_2] [ur_l]

(ab)5 [jt-2] [jxA] [_x_2] [ACA] [_X_2] [_x_l] [_rc_2] [_x_l]
49 b4 [ACA}[AC.2}[ACA}[AC.2}[ACA][AC.2}[ACA][ACA]

As X\ = x71 and X2 = xJ1, the set of relators is then {x^x^, (xix2)4}
and the subgroup presentation is

(x1,x2\x21,xl, (x1x2)4).

60

2.4 The PEACE GAP package
From our modified version of PEACE, a GAP package was created, based 011

the ACE GAP package. The GAP code acted as an interface to the C pro¬

gram through input and output streams, providing functions to perform tasks
by writing commands and options to the C program and reading and inter¬
preting the resultant output. As well as the PEACE equivalents for most of
the functions of ACE, the package was augmented for the various procedures
of the PEACE C program to contain interactive and non-interactive func¬
tions, such as PEACEGenerateProofTable, PEACEGenerateModifiedTable,
PEACEProve, PEACEProofCertificate, PEACEProof, PEACEProofNoStart,
PEACEGeneratePresentation, PEACESubgroupPresentation and PEACE-
SubgroupPresentationNoStart.

The main driver of the Modified Todd-Coxeter algorithm in GAP is Aug-
mentedCosetTableMtc, which outputs a data structure for the augmented
coset table containing secondary generators and a tree from which these
can be converted back into products of primary generators. Implementing
a PEACE equivalent would involve creating a new table in GAP from the
modified table by expanding each a x p, where for non-redundant coset
numbers a and [3 and generator or generator inverse x, the entry of the coset
table at row a and column corresponding to x is (3. Then, a set of secondary
generators would need to be introduced to produce a table of the correct
structure. Our main goal, however, was to use PEACE to produce the sub¬
group presentations, rather than GAP, which builds subgroup presentations
using the Modified Todd-Coxeter method by producing this augmented table
and then employing a rewriting process to generate the new subgroup rela¬
tors. We thus decided it was more beneficial to first implement a PEACE
equivalent of the GAP function PresentationSubgroupMtc, so that PEACE
was used entirely to produce the subgroup presentation.

PEACEPresentationSubgroupMtc takes in, as input, a finitely presented
group G, a subgroup H < G and, optionally, the string to be given as the
subgroup generator name in the produced presentation. PEACE strategy op¬

tions and styles can also specified for nse during and after the enumeration

61

by being either passed as options in the function call or pushed onto the op¬

tion stack before PEACEPresentationSubgroupMtc is invoked. The function
PEA CESubgroupPresentation is then called to create a new PEACE ses¬

sion, from which PEACEStart, PEACEGenerateModifiedTable and PEACE-
GeneratePresentation are employed to perform the enumeration, generate
the modified table and prompt PEACE to output the subgroup relators.
PEACEGeneratePresentation then reads the subgroup relators into GAP,
creating the set of elements to be used as the relators of the presentation,
which is returned to PEACESubgroupPresentation.

As shown in Example 2.7, the relators may appear numerous times in
the output and one relator may also appear as a substring of another. To
reduce the number of unnecessary relators and the length of some relators in
the new subgroup presentation, PEACEGeneratePresentation calls the GAP
function SimplifyPresentation, which searches for relator subwords in each
relator of the presentation and reduces the number and length of the relators.
Thus, PEACEPresentationSubgroupMtc outputs the presentation produced
by PEACE, where the relators have been reduced by Tietze transformations.

The GAP enumerator is supplanted by the ACE enumerator when the
assignment

TCENUM := ACETCENUM]

is made. Using the PEACE package, the similar assignment

TCENUM := PEACETCENUM\

causes PEACECosetTa.bleFromGensAndR.els to be employed whenever a call
is made to CosetTableFromGensAndRels. This results because TCENUM

is a data record with member attribute CosetTableFromGensAndRels, and
both ACETCENUM and PEACETCENUM are similar records with the

attribute CosetTableFromGensAndRels assigned to be ACECosetTableFrom-
GensAndRels and PEACECosetTableFromGensAndRels, respectively. Sup¬
planting the GAP function PresentationSubgroupMtc, therefore, would re¬

quire PEACETCENUM to contain a new member attribute Presentation¬

SubgroupMtc:=PEACEPresentationSubgroupMtc. The addition of the record

62

element PresentationSubgroupMtc would also be required in the internal data
record TCENUM of GAP to allow this function to be overwritten.

2.5 Results

In order to test our modified version of PEACE against GAP. a script was

written to run our new function PEACEPresentationSubgroupMtc 100 times
on a specific group and subgroup with different, randomly generated style
option values. A presentation for each of the five shortest resulting total
relator lengths was then logged to a hie. The script also called the GAP
version of this function, so the PEACE outputs could be compared.

The group presentations and subgroup generating sets used in our initial
trials of PEACE were obtained from the Ph.D. thesis of Ali-Reza Jamah

[23]. Where PEACE produced a presentation with different total relator
length than that of GAP, to check the results were accurate and defined the
same group, the function IsomorphismGroups was used to show that the two

groups defined by the differing presentations were isomorphic.

Example 2.8

A5 ^ PSL(2, 5) = PSL(2, 4) = (a, b\a2, b\ (abf)

• Taking the subgroup (a, [b, a]26_1), which is a Sylow 2-subgroup, GAP
produced a presentation with 2 generators and 3 relators of total length
8. In each of 100 runs of PEACE using randomly generated style
options, a presentation of the same length and generator and relator
set sizes was produced.

• GAP returned a presentation for the Sylow 3-subgroup (b) having 1
generator and 1 relator of length 3. PEACE produced a presentation
with the same characteristics for each of its 100 runs.

• For the Sylow 5-subgroup (ab), both GAP and PEACE output presen¬

tations with 1 generator and 1 relator of length 5.

63

• For the three maximal subgroups, A4 = (ab,ba), Dw = (aba,bab) and
S3 = (a, bab-1 (ab)2), both GAP and PEACE produced similar presen¬

tations, one with 2 generators and 3 relators of total length 11 for A4
and D\o and one with 2 generators and 3 relators of total length 9 for
5.3.

Example 2.9

PSL(2, 7) S PSL(3,2) = (a, b\a\ 63, (ab)7, [a, b]4)

• For the Sylow 2-subgroup (a, ab), each of the 100 runs of PEACE pro¬

duced a presentation with 2 generators and 3 relators of length 12,
similarly to GAP.

• The Sylow 3-subgroup (b) produced the same result, as both PEACE
and GAP returned presentations with 1 generator and 1 relator of
length 3.

• Likewise for the Sylow 7-subgroup (ab), the PEACE output was compa¬

rable to that of GAP, with presentations made up of a single generator
and relator with length 7.

• Both generating sets for the maximal subgroup S4, namely {a, bab}
and {a,bab1}, resulted in comparable presentations from PEACE and
GAP, creating presentations with 2 generators and 3 relators of total
length 13.

• Finally, for the maximal subgroup 7 : 3 given by (ba,bab), GAP pro¬

duced a presentation with 2 generators and 3 relators of total length
12. For the 100 PEACE runs, two different presentations were cre¬

ated. A presentation with total length 12 appeared 57 times, while the
remaining 43 runs resulted in a presentation with total length 18.

The 2 previous examples involved quite small groups and subgroups and
were used as a test that the output of PEACE was accurate. In these cases,

64

PEACEPresentationMtc produced comparable results to that of the GAP
version of this function. When we moved on to larger groups, such as A$,
PSL(2, 8) and then PSL(2,11), we began to see more variable results.

Example 2.10

As = PSL(2,9) ^ (a, 6|a2, b\ (,ab)5, (ab2)5)

• Both PEACE and GAP produced a presentation with 2 generators and
3 relators of total length 12 for the Sylow 2-subgroup (a, a6).

• Using the Sylow 3-subgroup (ab^1 abab2, bab'1 (ab)2), GAP produced a

presentation with 2 generators and 3 relators of total length 10. Like¬
wise, each of the 100 PEACE runs output the same presentation for
the subgroup.

• A 1-generator, 1-relator presentation with relator length 5 was pro¬

duced with both the PEACE and GAP functions for the Sylow 5-
subgroup (ab).

• While, for the maximal subgroup A5 = (a,ab2ab~lab), GAP produced
a presentation with 2 generators and 3 relators of total length 15, the
simplified presentations output from PEACE for the 100 runs included
43 with total relator length 15, 17 of length 41, 28 of length 61 and 12
of length 93.

• As can also be generated by the set {a, abab~1ab2}, and the presentation
formed by GAP for this subgroup had 2 generators and 4 relators of
total length 45, which simplified to a presentation with 2 generators
and 3 relators of total length 15. The presentations for As given by
PEACE included 24 of length 15, 42 of length 41, 26 of length 61 and
8 of total relator length 93.

• For the maximal subgroup 32 : 4 = (ab,ba), the GAP function gave a

subgroup presentation with 2 generators and 3 relators of total length

65

17. Of the 100 PEACE runs, 5 of the resultant subgroup presentations
had length 17 and 95 had length 23.

• PEACE was able to produce a subgroup presentation with relator
length smaller than the simplified presentation given by GAP for the
maximal subgroup, S4 = (a, bab(ab2)2). The presentation returned by
GAP has 2 generators and 4 relators of total length 33, simplifying to a

presentation with 2 generators and 4 relators of total length 21. While
PEACE produced a presentation with length 21 for 21 of the 100 runs, it
also constructed a presentation with length 13 for 79 runs. For one such
instance, the presentation was (hi, h2\hf, h\, hih^lhih% 1hih%lhih^ 1),
and, using the GAP function IsomorphismGroups, we were assured
that the group formed from this presentation was the same as that of
the presentation given by GAP. Alternatively, one could rewrite this
presentation as (hi, h3\hj, h\, (hih3)4}, where h3 — h^1, which is a stan¬
dard presentation for S4.

• S4 can also be generated by the set {a, (b2a)2bab}, and for this sub¬
group, the presentation given by GAP was one with 2 generators and
3 relators of total length 13. 83 runs of PEACE produced a presenta¬
tion with the same relator length. There were also 15 occurrences of a

presentation with length 21 and 2 with length 33.

Example 2.11

PSL(2,8) ^ SL(2,8) = (a, b\a2, b3, (ab)9, ((ab)3(aG1)4)2)

• For the maximal subgroup 23 : 7 = (a,bab"l(ab)2), GAP output a pre¬

sentation with 2 generators and 4 relators of total length 26, which
could not be simplified further by the function SimplifyPresentation.
Of the 100 PEACE runs, however, 19 produced a presentation with
length 18, 1 of length 21 and 80 of length 26. One of the presentations
of length 18 was (hi, h2|/i^, h\, h^hih^2h1h|hi) and was shown to de¬
fine the same group as that produced by GAP through the use of the

66

function IsomorphismGroups.

• For the maximal subgroup Di8 = (a,abab), both GAP and PEACE
produced presentations with 2 generators and 3 relators of total length
22.

Example 2.12

PSL(2,11) = (a, b\a2, 63, (ab)u, ((a6)3(a6"1)3)2)

PSL{2,11) has order CCO and, even using the Sylow 2-subgroup (a, a^ba^b),
100 runs of PEACE could not be completed for this case. The process was

extremely slow and after eight runs, the C program halted in the middle
of extracting a proof for a relator, leaving GAP waiting for output that
would never arrive. However, in the eight completed PEACE runs, each
produced a presentation with total length 8, similarly to the GAP function,
PresentationSubgroupMtc.

As indicated, the PEACE package produced comparable results to the
GAP function for formulating subgroup presentations with the Modified
Todd-Coxeter algorithm. In many cases, by experimenting with the coset
definition style, PEACE returned various different presentations for a sub¬
group, and in a few instances, produced presentations with shorter total
relator length than GAP. Thus, it was shown that PEACE could be used for
experimentation with coset definition styles and strategies with the Modified
Todd-Coxeter algorithm for finding presentations of subgroups. However,
even for relatively small cases, such as the group PSL{2,11) with order 660,
the extractions of proof words for each relator produced intermediate proof
words that were extremely long, too long for the C program to manage.

Larger groups caused slower proceedings and more occurrences of failed runs

due to insufficient memory. Thus, as we wanted to be able to experiment with
much larger groups, where the subgroup presentations were more complex,
PEACE was deemed an impractical tool.

67

Chapter 3

From Proofwords to Proofs

3.1 Proof Trees

As we have seen, once PEACE produces a proof word for an element h of
the group, it has proved that h is also an element of the subgroup. This can

be easily verified as the proof word is a product of subgroup generators and
conjugated relators and, removing all brackets, freely reduces to h. While the
proof word is itself a proof, it does not show any step by step reasoning usually
provided in a mathematical proof. Oftentimes, similar steps and reasonings
to those of an established proof can be used in the proofs of other cases or

changed to make generalisations for objects with similar characteristics. We
wondered whether, given a proof word, we could use it to prove similar cases

for other group and subgroup pairs, and we, thus, attempted to implement
a procedure converting a proof word into such a step by step logical proof to
aid in this process.

We found that producing a step by step proof from a PEACE proof
certificate is a matter of recursively dividing the proof word into disjoint
products. If p is the proof word and q is obtained from p by removing the
relators and reducing, then clearly, p and q represent the same element and
pq~l = 1. Here, q is merely h written as a product of the subgroup generators.

Let us consider the word w that is obtained from pq~l where we have re¬

moved the square brackets indicating subgroup generators and then reduced

69

the resulting word to obtain a product of group generators and relators.

Lemma 3.1 Proving w = 1 is equivalent to providing a proof of p = q.

Proof. For each subgroup generator that had appeared in p, the inverse is
found in q~l. Consider the first such generator of q"1. By the construction of
q'1, it is the inverse of the last subgroup generator of p. Thus, the subword
of pq~l between the generator and its inverse is a product of conjugated re¬

lators and must be trivial. Therefore, the generator acts as a conjugator of
this trivial subword, and this conjugated subword is also trivial. Continu¬
ing inductively, each subgroup generator of q~x acts as a conjugator for the
subword of pq"1 found between itself and its inverse, producing yet another
trivial subword.

We need now to check that w, too, has this form. As it has been reduced
after removing the square brackets surrounding the subgroup generators, it
may be the case that all or part of a subgroup generator has disappeared
in the process. In this instance, however, consider the subword between
and including this partial subgroup generator a and its inverse a~l in the
unreduced word. The part of this word that disappears with the subgroup
generator must have the form a-1 and also be part of a conjugate of a relator.
Thus, similarly to the a"1 that had been the inverse of the original partial
subgroup generator a, it must be such that a lies within this subword on

the other side of the relator. After having reduced, either a and a-1 are

adjacent and also disappear in the reduction, or both a and a~l are in the
reduced word, conjugating the subword between them. Thus, removing the
relators in w, we would then be left with the identity, and, removing the
square brackets, w is a valid proof word itself: a proof word for the identity.
Proving w = 1 is equivalent to providing a proof of p = q. □

Example 3.2 The group

F(2, 5) = (a, b, c, of, e|a6c_1, bed'1, cafe-1, dea'1, eab"1)

is isomorphic to C\\. The subgroup (a) is the entire group and so, b E (a).

70

For the element b, PEACE produces the proof certificate

PEACE 1.100 proof certificate
* Group Generators

abcde
* Group Relators

abC

bcD

cdE

deA

eaB
* Subgroup Generators

a

* Word

b

* Proof Word

d{aED){dCB){bAE)D{deA)[a][a]c{eDC)C{cBA)[a\{bcD)d
(dCB) {bAE) D {deA) [a] [a] (cBA) [a] {bAE) (eDC) [A] [A] {aED)
d{eaB){bcD)D{dCB) [A] {abC)c{cdE) {eaB) (bcD)C(cdE)
{eaB) [A] {abC) [A] [A] {aED)d{eaB) {bcD)D{dCB) [A] {abC)
c{cdE)C[A][A]{aED)d{eaB){bcD){deA)D{dCB)[A]{abC)
[A] [A] {aED)d{eaB){bcD)D{dCB) [A] {abC)c{cdE)C[A\ [A]
{aED)d{eaB) {bcD) {deA) {bAE) D {deA) [a] [a]
#

Where p is the proof word, then removing relators and reducing, q becomes

[A] [A] [A] [A] [A] [A] [A],

and the adjusted proof word w, obtained from pq"1 by removing any square

brackets, is then

71

w = d(aED)(dCB)(bAE)D(deA)aac(eDC)C(cBA)a{bcD)d
(dCB)(bAE)D(deA)aa(cBA)a{bAE)(eDC)AA(aED)
d(eaB)(bcD)D(dCB)A(abC)c(cdE)(eaB)(bcD)C
(<cdE){eaB)A(abC)AA(aED)d(eaB)(bcD)D(dCB)A
(abC)c{cdE)CAA(aED)d(eaB)(bcD){deA)D(dCB)A
(<abC)AA(aED)d(eaB)(bcD)D(dCB)A(abC)c(cdE)CA
A(aED)d(eaB)(bcD)(deA)(bAE)D(deA)aaaaaaaaa

Freely reducing, w becomes ba7, while removing the relators, w reduces to 1.

Given that w is formed from products of conjugates of trivial elements,
which can be further decomposed into products of conjugates of trivial ele¬
ments, then w can be broken up into disjoint products, such that

where is a word over the group generators and conjugates uy. Each Wi

is either a relator, an inverse relator or, like w, can be broken down further
into disjoint conjugated products. Thus, the proof word w can be recursively
broken down until all such products are relators.

A rooted tree can then be created with w as the root and each vertex,
a subword of w. For a vertex, v, where we would write v — v^v^2 ■ ■ ■ vl'k
with each Xij being a word over the group generators, then the children of v
are the words vi, t>2,..., Vk such that V\ is the left-most child of v.

The leaves of the tree are then relators or their inverses and each vertex in

the tree is equivalent to the group identity. We are now in a position to build

w = w^w^2 • • -

Vk

vu vu

72

up our step-by-step proof.
A subtree can be viewed as a proof for the word r at the root, where

the last line of this proof is 1 = r. Beginning with one branch in the tree,
consider the leaf vertex Vj and its parent, v = v*n v^lk.
As Vj is a leaf, it must be a relator and so, is trivial. Our proof begins with
the lines

1 = Vj

= Z"1VjXi.

where each line has been reduced.

Using the subtrees rooted at every vn for n G {1,..., j — 1} U{j +1,... k},
we can form the proofs for each of 1 = vn and extend them to obtain 1 =

x~*vnxin. Now, to obtain 1 = v in our proof, we need sucessively apply each
of the proofs of 1 = Vnln for integers n from j — 1 down to 1 and then for
integers n from j + 1 to k.

When considering the word Vn'n for n < j, from the proof 1 = x~nvnXin,
we form the lemma a = b where b~l is the subword of v'n" of maximal length
such that

xinVnXin = ab~l,
and the last line of our main proof is 1 = bw'. Thus, by substituting a for 6,
the next line of our proof would be

1 — aw'.

For n > j, from the proof 1 = ayj vnxiri, we form the lemma c = d where
c~l is the subword of maximal length such that

x7nVnXin = c~ld:

and the last line of our main proof is 1 = w'c. Thus, by substituting d for c,

the next line of our proof is
1 = w'd.

73

Each substitution is equivalent to multiplying either on the right or left
by x~lvnXin, thus, iteratively applying the substitutions obtained from these
lemmas for n from j — 1 down to 1 and then for n from j + 1 to k, we end
up with a proof for

Xi1 X'i-1 Xij X'j+1 X*kI =v11 .. . Vj_ 1 V- Vj+{ ■ ■ - Vkk = V.

Example 3.3 For a simple example, consider the group F-1,1'3, presented
by

_p-l,l,3 _ s|r2)

over the subgroup (rsr). For the element s6, PEACE produces the proofword

(R2) [rsr] (R2)(rSrsrs3)S3(R2)(rSrsrs3)s31

which shows s6 = 1, and of course, s6 G (rsr). Thus, our adjusted proof
word is simply the original proof word having removed any square brackets:

r_1s~1r_1(r_2)rsr(r_2)(rs~1rsrs3)s_3(r_2)(rs_1rsrs3)s3.

We can now divide the proofword up into disjoint products.

a — r-1s-1r-1(r~2)rsr
b = (r~2)(rs~1rsrs3)
c = s~3(r~2)(rs~1rsrs3)s3.

Reducing further gives

Or = r-2

bi = r~2

^2 = rs_1
-2

Cl = r

-i
C2 = rs

74

Then, the proofword can be written as (ai)rsr(6162)(cic2)s3, and our resulting
tree structure is

r 1r l(r 2)rsr(r 2)(rs 1rsrs3)s 3(r 2)(rs 1rsrs3)s3
= (a1)rsr(b1b2)(c1c2)s3

r
-2 (r 2)(rs 1rsrs3) (r 2)(rs 1rsrs3)

= (bi)(b2) = (ci.) (c2)= ai

—9 —1 *3 —2 —1
r rs rsrs r rs rsrs

= bx = b2 = Ci = c2

If, in this example, we always use the leftmost child as the main branch
of a subtree, then the first line of our proof is ax — 1, which we obtain
because ax is a relator. We then need to find the lemmas corresponding
to (&i)(62) and (ci)(c2), which are obtained from the proofs constructed by
the subtrees rooted at these elements, to apply them to cq = 1. Now, in
these subtrees, the main branches are bx and ci, respectively, and we require
the lemmas corresponding to &2 and c2. These nodes are both leaves and
so, are relators. Thus, we obtain &2 = 1 and c2 = 1 in the first line of
the proofs of these lemmas. We need to find a subword w of bx so that
b\ = w\w, 62 = iu~1W2 and 6i62 reduces to WiW2. Here as bx — r~2 and
62 = rs~1rsrs3, then w = r-1, and the required lemma corresponding to 62
is r_1 = s~1rsrs3. Similarly, the required lemma for c2 is r-1 = s_1rsrs3.
Thus, using this lemma and the relator b\ = C\ = r-2, we can find the proofs
of &!&2 = CiC2 = r_1s_1rsrs3 = 1.

Again, as neither 62 nor CiC2 are the main branches of the tree, we need
to convert the proofs, 6i&2 = and (qc2 = 1, into useful lemmas to apply in the
main proof. The current line in our proof is ax = 1, but before we can use

each of fq62 = and cic2 = 1, we need to conjugate ax by rsr and reduce, thus
resulting in the next line in our proof, r~1s~1r~2sr — 1. Now, multiplying
a\sr by b\b-2 = r~ls~1rsrs3 on the right would result in r_1s_1r_1srs3 and so,

75

the proof b\b2 = I needs to be converted to the lemma r~1sr = srs3. Using
this, the next line in our proof is then r_1s_1r_1srs3 = 1. We need now to

apply {c\C2)s = s~3r~ls~lrsrs& on the right, resulting in s6. Here, our proof
of cic2 = 1 is converted to the necessary lemma by first conjugating by s3
and then re-arranging the new relation to obtain r_1s_1r_1srs3 = s6. Thus,
the final line of our proof, corresponding to the proof of the root of the entire
tree and obtained from this new lemma, would be s6 — 1, as required.

The proof as well as the necessary and sometimes, very simple, lemmas
formed from the tree are as follows:

Lemma 3.3.1 r-1 = s~Vsrs3

Proof

1 = rs^rsrs3
— 1 —1 H

r 1 = s rsrs

Lemma 3.3.2 r~lsr = srs3

Proof

1 = r_1.r_1
— 1—1

= r s rsrs

r~lsr = srs3

Lemma 3.3.3 r_1s_1r_1srs3 = s6

Proof

1 = r~l ,r~l
— 1—1

— r s rsrs

— s~3(r~1s~1rsrs3)s3
= s~3r~1s~1rsrs6

s6 = r_1s_1r_1srs3

Lemma 3.3.1 corresponds to the leaves, 62 and C2, Lemma 3.3.2 corre¬

sponds to the subtree rooted at 6i&2 and Lemma 3.3.3, to that of C1C2, ex¬

tended for (cic2)s3. Our proof is then

from b2 or C2

from b\
from Lemma 3.3.1

from c\

from Lemma 3.3.1

76

1 = (r-2) from a i

from Lemma 3.3.2

from Lemma 3.3.3s.6

3.2 Lemma-based Proof Generating Program
From our method of obtaining these lemma-based proofs from PEACE proof
words, we implemented code to automate this procedure. The main wrapper

function for this procedure is findProof\ which takes in both a proof word
string and a filename to which the lemmas and step by step proof are output.
As any necessary relators and subgroup generators will appear in the proof
word and are indicated by their respective types of brackets, the function does
not require any of the group generator, group relator or subgroup generator
sets.

ftndDisjConj is employed to first break the proof word up into disjoint
conjugates and place these words as vertices in a tree structure, beginning
at the root and continually subdividing, considering one level of the tree at
a time. The tree is then a list representing the successive levels in the tree,
where each element is also a list, corresponding to the nodes in order from
left to right. The tree is structured so that every branch has the same length.
Thus, if a relator is obtained in an early step, then the corresponding branch
is extended by a path of vertices, each with the relator as the corresponding
word, until the branch is the same length as the others and the final list
in the tree contains all of the leaves, or relators. Since extra brackets are

added to surround each disjoint product of the word in a node, it is easy to
determine the number of children required for each vertex when using this
tree to construct the required lemmas and proofs.

Once findDisjConj has returned the tree containing the subdivided proof
word, findProofTree builds up the required lemmas and the step by step proof.
Each node is given a proof structure, containing a list of strings involved in
the proof, a lemma number, a height number to indicate in which level of the

77

tree it sits, as well as a list containing the numbers of the lemmas involved
in the proof. Beginning at the bottom of the tree, the proof for each leaf
node is created, with lemma number 0, height 0, an empty list of involved
lemmas and a single element string list containing Vj — 1", where is the
relator corresponding to this leaf. Working up towards the root of the tree,
each level of the tree is processed in turn, generating the proofs of the nodes
in that level. As the tree has been extended in parts so that each branch has
the same length and the leaves all appear in this bottom level, then working
upwards, not each node in the same level of the tree will be given the same

height number. If the node contains only one relator, the proof of this node
is simply the proof of its child, with the same height number, string elements,
list of involved lemmas and lemma number.

The proof for each node is created from the proofs of its children. In an

attempt to require fewer lemmas in our final proof, the child with the proof
having the maximum height number is chosen as the main branch, and our

new proof is given a height one greater than this. The lists of strings of the
proofs for each of the children nodes are also given either one or two new

string elements. These convert the proofs into the required lemmas, showing
the re-arrangement of the trivial word cib = 1 into a-1 = b to be used in the
main proof. The extra string element is added if the trivial word needs to
be conjugated before being re-arranged. Each of the lemma numbers of the
children used in this proof is then added to the list of involved lemmas for
the proof, where the number of the main branch is the first element, followed
by those multiplied on the left and then those multiplied on the right. The
lemma number for this node is then given a value accordingly. When the
proof for the tree root has been determined, the process terminates.

Ignoring very trivial lemmas, such as those relators with lemma number 0
that have not been re-arranged, findProof writes the proofs in order of lemma
number to the specified file. As such, the output is not very user friendly; the
main proof is given in segments amongst the required lemmas, but one can

determine this main proof by working backwards, using the list of involved
lemmas at each step to determine the number of the main branch. Although
the program contains recursive functions, a type which can be very expensive

78

in terms of running time and algorithm complexity, this was not thought to
be an issue as the internal processing of PEACE can produce long internal
proof words and so, insufficient memory prevents extremely long proof words
from being produced.

Example 3.4 The Klein group K — (a,£>|a2,62, (ab)2) has order 4. For the
proof that K is abelian, we require a~lb~xab = 1 and so, over the trivial
subgroup, we can use PEACE to generate the proof word of a~lb~xab G (1).
PEACE produces the word A(B2)a(A2)(abab), freely reducing to ABab and,
having removed relators, to 1.

Original/Adjusted Proofword:
A(B2)a(A2)(cibab)

Original/Adjusted Equation:
ABab = 1

Lemma

0 abab — 1

A = bab

1 B2 = 1

A(B2)a = 1
AB2a = 1

2 A.A = 1

Abab = 1

Ba = ab

resulting from:[0]
3 AB.Ba — 1

ABab = 1

resulting from:[1,2]

Example 3.5 For a more complicated example, the group E\ is defined by

79

the presentation

E\ = (a, 6, c\c laca 2,a 1bab 2,b 1cbc 2).

This group is actually trivial, although it is not obviously so, and £j is
interesting because it also a possible counter-example to the Andrews-Curtis
conjecture [1]. Higman [22] proved E\ to be trivial by showing that one

generator could be expressed in terms of the others and by then using a

result involving derived groups. He manually proved c = ba~Ab~la2b to show
this. Using PEACE, Havas and Ramsay [20] provided a proof word of the
same, containing only eight relators and showing c £ (a,b}. Here, we use

this proof word to give a step by step proof of c = ba~4b~1a2b1 through
cb~la~2baAb~l = 1. The output from our program, interpreted into lemmas
and a main proof, is as follows.

Havas and Ramsay's Original Proofword:
(Cbc2B) [6] [A] [A] (a2CAc) [A] [A] (a2CAc) [B] (bC2Bc)

Cb(ca2CA) (aB2Ab)Bc(CacA2)[a\ [a] (Cbc2B) [b}
Original Equation:

c — bAABa2b

Adjusted Equation:
cBA2ba4B = 1

Adjusted ProofWord:
{Cbc2B)bA2 (a2 CAc) A2 (a2 CAc) B{bC2Bc) Cb(ca2 CA)

(,aB2Ab)Bc{CacA2)a2{Cbc2B)bBA2ba4 B

Lemma 3.5.1 a-1 = 6-2a-16

Proof

1 = ab~2a~lb from 2nd relator

a-1 = b~2a~~lb

Lemma 3.5.2 bc~x = c~lbc

Proof

1 = bc~2b~~lc from 3rd relator

be"1 — c~lbc

80

Lemma 3.5.3 a) a xc = ca 2 and b) c xa = a2c 1
Proof

1 = c~xaca~2 from 1st relator
— 1 —2

a c = ca

Lemma 3.5.4 b xca 2 = c2b 1a 2
Proof

1 = c~xbc2b~x
= a2(c-16c2&-1)a~2
= a2c"xbc2b~xa~2

from 3rd relator

ca c2b~la-2

Lemma 3.5.5 be 2b 1c = 1

Proof

xbc2b 11 = c

= bc-2b-1

from 3rd relator

The proof is then

1 =
2—1 —1

ca c a

2—1 —1
ca c .a

ca2c_16~2a_16

from 1st relator

from Lemma 3.5.1

c

c"

c'

c'

c~

c'

b(ca2c lb 2a 1b)b xc
cbca2c lb 2a X/

bca2c~xb~2 ,a~x c

bca2c~lb~2ca~2
bca2c~xb"x .b~xca~2
bca2 c~xb~x c2b~x a~2

from Lemma 3.5.3a

from Lemma 3.5.4

81

= c~lbc.a?c~lb~lc?b~la~2
= bc~~la2c~lb~lc2b~la~~2 from Lemma 3.5.2

= b~l(bc~la2c~lb~lc2b~la~2)b
= c~1a2c~1b~1c2b~1a~2b
— c~la.ac~lb~lc2b~la~2b
= a2c~1ac~1b~1c2b~1a~2b from Lemma 3.5.3b

= a~2(a2c~1ac~1b~1c2b~1a~2b)a2
= c~1ac~1b~1c2b~1a~2ba2
= c~1a.c~1b~1c2b~1a~2ba2

a c~2b~lc2b~la~2ba2 from Lemma 3.5.3b

= ba~2(a2c~2b~1c2b~1a~2ba2)a2b~1
= bc~2b~1c2b~1a~2ba4b~1
= 6c~26_1c.c6-1a~2&a46_1 from Lemma 3.5.5

= cb~~l a~2ba4b~l

The results we obtained from using PEACE along with our lemma-based
proofs generated from proof words by our new program are contained in the
following chapter.

82

Chapter 4

The Fa,^,c Conjecture

4.1 Introduction

In 1966, at a conference held in Waterloo, Ontario, R. M. Foster, an electrical
engineer, presented a census of symmetric trivalent graphs with up to 400
vertices. His work in this area had started in the 1920s, due to his interest
in electrical networks and the use of symmetric graphs. The census was

compiled largely by hand, with only one omission of order up to 402, and is
now known as the Foster Census [14].

H. S. M. Coxeter had one of the few copies of this document and he, too,
became interested in the subject. During Coxeter's research, while consid¬
ering groups with Cayley graphs that are 0—symmetric [11], he defined the
finitely presented groups, Fa'b'c.

Where a,b,c £ Z, the finitely presented group Fa'b'c is defined as

pa,b,c _ ^ s|r2^ rsarsbrscy

The Fa'b'c groups fall in the class having a two-generator, two-relator
presentation, and as known finite groups of this class were few, Campbell,
Coxeter and Robertson began an investigation which led to 'the Fa'b'c con¬

jecture', published in 1977 [3]. In the work leading to the conjecture, the

83

structure of Fa'b'c was examined by considering the homomorphic image,

Ha,b'c — (r, s|r2, s2™, rsarsbrsc) where n — a + b + c.

Where 6 : Fa'b'c —> Ha,b,c is the natural homomorphism, then 6 is also an

epimorphism. Thus, by the first isomorphism theorem, we have

Fa'b'c/kerd = Ha'b'c.

Campbell, Coxeter and Robertson were able to completely determine the
structure of the groups Ha'b,c, and where d — (a — b,b — c), they found that
when (a, 6, c) = 1, unless n = 0 or (d, 6) = 6, i/aAc is a finite metabelian
group. Also when (a, b, c) = 1, if d > 6 or n = 0, the groups Fa'b'c are

infinite. When (a,b,c) = t ^ 1. the groups Fa'b'c and Fta^c are infinite
unless ffaAfc/i>c/i was abelian, in which case, Fa,b,c = Ha'b'c = C2n. It was

then left to determine the structure of the kernel of 9 with Fa'b'c for d < 5

and (a, b,c) = 1.
While all of the results used in [3] to determine the structure of Ha'b,c

are true, the proof of Lemma 3.3, stating that the derived group of Ha'b'c
is abelian when (a, b, c) — 1, is flawed. As the Fa,b'c conjecture only com¬

pletely determines groups of this type if the structure of Ha'b'c is known, it
is imperative that the required lemma holds. We thus give a revised proof
for Lemma 3.3 of [3] in Appendix A.

In the following chapters, we will use the notation x ~ y to refer to x

commutes with y for two elements x and y.

The Fa'b'c conjecture is as follows.

The Fa'b'c Conjecture: (Campbell, Coxeter and Robertson [3, §12])
Suppose (a, 6, c) = 1 with n = a + 6 + c^0 and let

q . ^pia,6,c ^ j_jra,b,c

be the natural homomorphism. Setting N = kerO, then

• N = 1 if d = 1,

84

• TV = 1 if d = 2,

• TV = C2 if d = 3,

• TV = Qs if d — 4, and

• TV = SL(2, 5) if d = 5.

The conjecture was proved true when d = 1 in [5], and an alternative
proof can be found in Corollary 3.4 of [6]. Many special cases supporting
the conjecture have been proved, as in [3], [6], [7], [27] and [28], and quite
recently, a proof for d = 5 was given by Havas and Robertson [21], which also
appears in Appendix B. The proof of the conjecture in the cases d G {2, 3, 4}
is quite different in nature from d = 5, due to the fact that in the former
cases, (d, 6) ^ 1. In this chapter, we shall outline the process from which we

obtained proofs for these last three cases.

4.2 Using Lemma based PEACE proofs
Since its formulation in 1977, other than for some special cases, attempts at

proving the Fa'b'c conjecture had been unsuccessful by conventional means,

and the cases d G {2,3,4} remained open. We began our research with
groups of this type after testing our program for generating lemma based
proofs from PEACE proofwords using a few small groups of the form, Fa'biC,
and found it to be a very useful tool.

A group, Fa'b'c for a,b,c G Z where d = 2, can be shown to be a sup¬

porting instance of the conjecture if it can be proved that Fa'b'c = F[a'b'c
or, equivalently, s2n = 1. Thus, this would be done by finding the PEACE
proofword of s2n for the group Fa'b'c over the trivial subgroup and, with our

program, generating its corresponding step by step proof.
Our first attempts using PEACE and our proof generating program were

for the element s2k+8 in the subgroup (rsr) of the group F1'3'1*, for k —

3, 5, 7, 9. All of these groups fall into the case d = 2, and, using our script,
PEACE was run 1000 times with randomly generated variables and strate-

85

gies. Our aim was to find the shortest proofwords, where length was measured
by the number of relators appearing in the proofword. We used the subgroup
(■rsr) in an attempt to reduce the size of the proofwords, and therefore, the
length and complexity of the resultant proofs. By running coset enumera¬

tion, it was easy to see that s2fc+8 = 1 for these small examples, as including
the relator s2k+8 did not change the index over the trivial subgroup, and so,

g2k+8 £ (rsr). Thus, s2k+8 ~ s, and since s2k+8 = rslr for some integer t,
then s2k+8 ~ rsr and s2k+8 is central. Here, s2k+8 = sl and s2k+8 = 1. so

t = 0, and a proof of s2k+8 £ (rsr) is actually a proof of s2k+8 = 1 as our

proofword would reduce to the identity after removing all relators.
For the instances involving k — 7 and k = 9, the proofwords generated

were extremely long and so, to shorten the definition sequence and reduce
the size of the resultant proofword, runs using the PEACE prune option were

also initiated.

For each group, the five best proofwords were considered and we used our

program to produce proofs from these proofwords. As even short proofwords
result in proofs with many steps using our method, those obtained from our

PEACE runs for the groups F1,3, with k = 3, 5, 7, 9 were very long. The
shortest proofword of s18 in the subgroup (rsr) of the group F1,3'5 had a re¬

lator length of 17, yet produced a 44 step proof, while the shortest proofword
of s26 for F1'3'9 had length of 37 and yielded a 250 step proof.

Although we could not hope to find patterns and make generalisations
from such proofs, we did try to observe common characteristics and seek
significant ideas within the proofs. After comparing and studying each of our

PEACE-generated proofs, we were able to make the following observations:

• The difficulty did not seem to increase with increasing values of k.

• Expressions longer than 4 syllables rarely appeared in the proofs of
s2fc+8 _ ^ go after r2 _ ^ an words in the proof were essentially of the
form rsarsf3rs1rs5 = 1 for some a, /?, 7, 5 £ Z.

• The proofs seemed to use the fact that, in this particular case, b — a —

2a.

86

From these observations, we were able to formulate a proof that s2k+8 = 1
in the groups F1,3'k for k £ Z. The resulting theorem, along with its proof,
is given below.

Theorem 4.1 For the groups

F1'3^ = (r, s\r2, rsrs3rsk)

where k G Z, then s2k+8 — 1 and

Fl,3,k ^ #1,3,* = (r;S|r2)rsrs3rsfc;S2fc+8^

Proof. For Fl,3,k with k E Z, we have

rsr = s~krs~3 (4.1)
rs3r = s~1rs~k (4.2)

h
rs r = s_3rs_1

ik~3r = (rs~3r){rskr)
F 9 _ 1

= sT5 rs (4.3)
ik+3r = (rs2r)(rskr)

= s-1rs-lfe+3Vs_1 (4.4)
rs2r — (rsr)(rsr)

(4.5)

We now show that s2k+8 — 1 in F1,3'k.

87

1 3 k1 = rsrs rs

^ *3 Ic — I
— s rsrs rs

s3rsk.s k+1rs3rsk 3
rs 1rs k+1rs3rsk 3 by 4.1

— 1 L- _L 1 Q U_ Q
5 rs ^ rs .rs r

s Vs fc+1rsfc+3rs 2rs 1 by 4.3
rs k+1rsk+3.rs 2r.s 2
rs k+1rsk+3 .s3rsk+3rsk.s 2 by 4.5
rS y y ^ ^

^^ "I-1 ^k"J-G y^k-\-3y gk 2

rs k+1rsk+6.s 1rs (fc+3'rs 1.sk 2 by 4.4
g~k-\~lygk-\-5yg (/C+3) ygkSy

s~k+lrsk+5rs~(k+Z) skrs-2rs-l 4.3

S fc+1rSfe+5rS 3rs 2rs 1

s~krsk+b ,rs~3r.s~2r

s krsk+5,skrs.s V by 4.2
^ ky^2lk~I-5 ^ 1 y

-k^, 02k+5 03^0k= s rs + .s rs by 4.1
g— ky^2k~\~Sy^k

— g2k+8

□

Encouraged by our success with the computer generated proofs for F1,3'k,
we then tried to find proofs for the groups F3,5'k with fceZ, where k is odd
to ensure d = 2. However, the same characteristics of the F1,s,k proofs did
not appear in those for F3'5'k, as the proofs found by PEACE increased in
difficulty with the size of k and more than 4 syllables were involved in the
relations at many stages of the proofs. Also, in this case, we did not have
b — a = 2a, so our proof for F1,3,k could not easily be generalised for F3'5'k.

We did, however, make the observation that relations of a certain type

continually appeared in the resulting PEACE proofs as well as in our at¬

tempted manipulations of the relators. For F3'5'7, we used PEACE and our

88

proof generating program to verify the truth of relations

(rs10rs5)2 = 1, (rs12rs3)2 = 1 and (rs14rs)2 = 1

in the group. It was recognised that proving the validity of all relations of
this form in such a sequence is sufficient since (rs°rs15)2 = 1 is a member of
this sequence and

1 = (rs°rs15)2 = s30,
as required.

Examining different proofs for F3,5'k with small k, we found that the
relations

(rs2m+3rsk~2m+5)2 = 1 for m e Z

held, and having discovered what we should try to prove, we used induction
to obtain a proof of this result. As k must be an odd integer to force d — 2,
then k + 5 must be even. Thus, substituting m = (k + 5)/2 into our new

relation sequence gives (rsk+8rs°)2 = rs2k+16r = 1 and s2/c+16 == 1, proving
F3'5'k = H3'5'k for an odd integer k.

We had noticed in the case of F1,3'fc that our proof required the fact that
there existed a relation amongst the three powers, a = 1, b = 3 and c = k,
namely b — a = 2a. This did not hold in the groups F3,5'fc and was the
reason the proof could not be modified for groups of this type. Thus, we
chose to next consider groups of the type Fa~2'a,a+2 for an odd integer a,

as, for such a group, there can be found some symmetry in its form. Here,
if a is an odd integer, then d = 2, (a — 2, a, a + 2) = 1 and the relations
(a + 2) — a = a — (a — 2) —2 exist. We hoped these relationships amongst
a — 2, a and a + 2 could be used to help find a proof.

Studying the resultant PEACE proofs for groups of this type, we were
able to see occurrences of members of the sequence

(rs2mrs3a_2m)2 = 1 for me Z.

It would be enough if we could show that all relations of this type held, as

substituting m = 0 would give s2n = sea = 1 and the kernel of the natural

89

homomorphism 9 : Fa~2>a>a+2]ja-2,a,a+2 woui(} trivial, as required.
However, using the special relationships amongst the powers of s in the

relator rsa~2rsarsa+2, we were able to determine that both s2a ~ rs2r and
r ~ s~2rs4 and found that it was sufficient to show that every element of the
sequence

(rs2mrs3"-2m)2 = 1 for m € Z

was a relation in the group. An induction proof was thus employed, and our

proof for the case Fa~2'a,a+2 is as follows.

Theorem 4.2 For the groups

Fa-2,a,a+2 = ^ s\r^^ rs^rs^+2)

where a G Z and a odd, then s6a = 1 and

Fa-2,a,a+2 ^ ^a-2,0,0+2 = (r> s|r2; rs»-2rSarSa+2, S6").

Proof. For Fa~2>a>a+2 where a is odd, we have

n — cl — 2 "t a t ft "t 2

= 3a,

1 = (a —2, a, a+ 2) and
d — ((a — 2) — a, a — (a + 2))

= 2.

Also,

rsa_2r = s-a_2rs~a,
rsar = s2~ars~a~2 and

rsa+2r = s~ars2~a.

As it is easily seen that Fa'6'c = F~c~b~a, then i?a-2,a,a+2 _ ^r-a-2,-a,-a+2
and we need only prove cases where a is an odd natural number.

90

Outline of proof:

1. s2a ~ rs2r and r ~ s~2rs4.

2. (rs2arsa)2 = 1.

3. (rs2rnrsa~2rn)2 = s2a for all positive integers m.

4. s6a = 1.

Proof of 1: s2a ~ rs2r and r ~ s~2rs4

Since rsa~2rsarsa+2 = 1 and r2 = 1, then

rs2ar = (rsar)(rsar)
= s2~ars~a~2 .s2~ars~a~2
= s2~ars~2ars~a~2,

rs2ar = (rsa+2r)(rsa 2r)
= s~ars2~a ,s~2~ars~a

= s ars 2ars a

and so,

rs2ar = s2~a(sars2arsa)s~a~2
2 2a -2

— s rs rs .

Hence, s ~ rs r.

Also,

rs2r — (rs2 ar)(rsar)
= sarsa+2.s2 ars a 2

= sars4rs a 2

sa(sars4rs 2rs4rs a 2)s a 2.

91

So, as s2a ~ rs2r, then rs2r = rs4rs 2rs4rs 4 and rs2rs 2rs4rs 4 = 1.
Thus, rs~2rs4r — s"2rs4 and r ~ s~2rs4.

Proof of 2: (rs2arsa)2 = 1

rs2arsars2arsa = rs2a(s2~ars~a-2)s2arsa
_ rsa+2rsa_2rsa

= 1

Proof of 3: (rskrsa~k)2 = s2a for k an even positive integer
Proof by induction:

Base step

k = 2

rs2rsa~2rs2rs°~2 = rs2(s~a_2rs~a)s2rsa_2
= rs~ars2~arsa~2

= sa+2sa~2

= s2a

k = 4

rs4rsa 4rs2rsa 4 = rs4rsa 2.s 2rs4.rsa 4

= rs4rsa~2rs~2rsa as r ~ s_2rs4
4 / 2—a.n-a\2„

= rs (s ars a)s rs

= rs2~ars~a~2rsa

= rs2~a(sa~2rsa)sa
= s2a

Inductive step

Assume for all k < i + 2, i and k even and 2 < i,

(rskrsa~k)2 = s2a,

92

and so, rskrsa k — sa+krs kr as well. Thus, for all k < i + 2, i
and k even and 2 < i,

(sa+krs~kr)2 = s2a.

Also, rskrsa~krskrsa~k = s2a, giving rsa~krskr — s~krsa+k.
Now, choose k = i + 4. Using r ~ s~2rs4,

(sa+irs~ir)2(rsi+4rsa~i~4)2(si~ars~ir)2
= sa+lrs~lrsa+lrs4rsa~l~4rsl+4rs~4rs~lrsl~ars~lr
= sa+lrs~lrsa+l+2rs~2rsa~'%rs1'rs2rs~l~2rsl~ars~lr
= sa+lrs~lrsa+l+2rs~2.rsa~lrstr.s2rs~l~2rst~ars~lr
= sa+lrs~lrsa+l+2rs~2(s~lrsa+l)s2rs~l~2rsl~ars~lr
= sa+irs~irsa+i+2rs~i~2rsa+i+2rs~i~2rsi~ars~ir
= sa+lrs~lr.sa+l+2rs~'l~2rsa+l+2rs~'l~2r.s'l~ars~'lr

a+i —i (2cl\ i—a —irs~lr(s)sl~ars~lr
= s°+irs'~Vsa+irs-V

a-\-i —i\2

= S

(s rs~lry
2a

However, since (sa+trs V)2 = s2a and ars V)2 = s 2a, then

(rsl+4rsa~l~4)2 = s2a.

Therefore, for all even integers k, where k > 2,

(rskrsa~k)2 = s2a.

Proof of 4: s6a = 1

We can assume that a is an odd natural number, so 2a is even and

93

positive. Substituting k = 2a in our relations (rskrsa k)2 = s2a gives

(rs2ars~a)2 = s2a.

and so,

s6a = s2as2ag2a

= s2a(rs2ars~ars2ars~a)s2a
= rslarsars2arsa by 1
= (rs2arsa)2
= 1.

Thus, as s6a = 1, then we have Fa 2-a>a+2 = Ha 2'a>a+2 for a an odd
integer, as required. □

The relationships amongst the powers of s in the relator rsa~2rsarsa+2
were able to help us prove the conjecture for groups of the type Fa~2>a<a+2 with
a an odd integer. The next step, therefore, was to study the groups Fa~3>a>a+3
for a G Z where (a, 3) = 1, and see if our proof of Fa~2>a>a+2 could be modified
for this case. We found that we could easily prove steps corresponding to

steps 1, 2 and 3 from Theorem 4.2 for jp«-3.a.a+3. Similar steps could also
easily be shown for the groups jpa-4>a>a+4 with (a, 4) = 1. Using different
substitutions for k in the resultant sequences (rsckrsa~ck)2 = s2a in Fa~c>a>a+c
for c = 3 or c = 4 where (a, c) = 1, we found we were able to prove the
conjecture for groups of this type. The proof follows in the next section.

The use of PEACE and our program to generate step by step proofs from
proofwords had thus provided us with sufficient results to take a very large
first step in our work with the Fa,b,c conjecture. From our proof of ^a-c-a>a+c
for c G {2,3,4} with (a, c) = 1, we made continual generalisations and
modifications, with an increasingly difficult induction proof at each stage, to

94

form the proofs for the cases,

Fa-c,a,a+2c with (fl, c) = 1,
Fa-c,a,a+kc with (a, C) = 1,
Fa-2c,a,a+fcc ^ ^ ^ = { and £ Qdd

and finally,
Fa-jc,a,a+kc ^ ^ = j and k) = 1,

for a,j, k E Z with c E {2,3,4}. These proofs will be given in the remaining
sections of this chapter. Once we had found the proof for groups of type,
Fa-c,a,a+c for c ^ 3, 4} with (a, c) = 1, we no longer relied 011 PEACE and
the technique of converting proofwords to proofs. However, each subsequent
proof was based on the information we had originally obtained through its
use. By studying and comparing examples of PEACE proofs for small cases,

one can find try to find patterns and make observations in the aim of gen¬

eralising to a broader class of groups, and this technique was found to be a

very useful tool in solving the Fa'b'c conjecture.

4.3 fa~c,a,a+c for a^c ^ ^

The Fa,b'c conjecture relies 011 the condition that (a, b, c) — 1. For the groups,
Fa—c,a,a+c wdp a,c E Z, this means we require (a, c) = 1. Additionally,
previous results have shown the Fa'b'c conjecture to be true for d = 1 and
d = 5, where d is defined to be (a — b,b — c). For d > 6 with (a, b,c) — 1, the
groups Fa'b'c are infinite. Thus, we need only consider c E {2,3,4} to show
the conjecture holds for all groups of the type Fa~c'a'a+c for a, c E Z where
(a,c) = 1.

Modifying our proof of Fa~2'a'a+2 for Fa~3'a'a+3 was relatively simple. The
first three steps of the proof were updated merely by the substitutions of a —3
for any occurrence of a — 2 and of a + 3 for any a + 2 in the first few lines,
altering any resultant calculations. Once these steps had been determined,
it was actually found that in this case, the first two are sufficient to show

95

s12a = 1. Using a result from [6], this is enough to show the cyclic group

of order 2 is the kernel of the natural homomorphism from Fa~3'a'a+3 to
jLTa—3,a,a+3

Formulating the proof for the case c = 4, however, required a bit more

effort. The kernel of the previous two cases is either trivial or C2, whereas for
f?a-4'a'a+4) it adopts a more complicated form as the quaternion group Qg. A
presentation for Qg is (x,y\x4,x2 — y2,y~lxy — x~l). Thus, taking x = s6a
and y = rs6ar, we needed to show that s24a is trivial, s12a is central and
rs~6ars6ars6ar = s~6a as well as that the kernel is generated by s6a and rs6ar
to prove Fa~4'a'a+4/Qg = ffa-A,a,a+4_ while the modifications of the three
steps of Theorem 4.2 followed similarly to the alterations made for c = 3,
additional steps were required to show the kernel had the correct form.

According to the Fa'b'c conjecture, we must have (a, 6, c) = 1 to ensure

proper results. Consider Fa~c'a'a+c. Here, s2n — s6a and d — c. For c G

{2,3,4}, if (a — c, a, a + c) ^ 1, then a must either be a multiple of c or,

where c = 4, a could alternatively be a multiple of 2. Thus, the conjecture
holds only when (a, c) = 1 for c G {2, 3,4}. However, we noticed that the first
three steps of Theorem 4.2, altered for the correct value of c, held regardless
of whether (a, c) = 1 or otherwise. Using these facts, we were able to find
an additional result when (a, c) 7^ 1, and we include it in our proof of the
groups Fa~c>a'a+c for a, c E Z.

Theorem 4.3 For the groups

Fa-c,a,a+c = ^ ^a-c^a^a+c)

with aeZ and c G {2, 3, 4}, let

Ha-c,a,a+c = ^ ^o-c^a^a+c^^

If,

• c — 2 and (a, 2) = 1, then s6a = 1 and

pa—2,a,a+2 ^ ^a—2,a,a+2

96

• c = 3 and (a, 3) = 1, then s12a = 1 and

pci—3,a,a+3j — JL^a—3,a,a-|-3

• c = 4 and (a, 4) = 1, then s24a = 1, s12a ~ r and

pa—4,a,a+4]-j[a~4,a,a+4

• (a, c) ^ 1 then (a — c, a, a + c) ^ 1, s6a = 1 and

pa-c,a,a-\-c r^> pj-a—c,a,a-\-c

Proof. For Fa~c,a,a+c, we have

a — c H- a a H- c

3a,
6a

(a — c, a, a + c) when (a, c) = 1 and
((a — c) — a, a — (a + c))
c.

Also,

rsa~cr = s~a~crs~a,

rsar = sc~ars~a~c and

rsa+cr = s~arsc~a.

From Lemma 2.1 in [3], we have Fa'b'c = F~c'b~a, so

pa—c,a,a+c a—c,—a,—a+c

and we need only prove the case where a is positive.
Our proof begins with the three necessary steps (I - III) to prove each of

n —

In

l =

d =

97

the cases c = 2, c = 3 and c = 4.

I. s2a ~ rscr and r ~ s~crs2c

Since rsa~crsarsa+c _ j ancj r2 _ then

rs2ar = (rsar){rsar)
= (sc_ars_a_c) (sc_ars_a_c)
= sc~ars~2ars~a~c

and

rs2ar = (rsa+cr)(rsa~cr)
= (s~arsc~a)(s~c~ars~a)
= s~ars~2ars~a,

so,

rs2ar = sc_a(sars2arsa)s_a~
= scrs2ars~c.

Hence, s ~ rscr.

Also,

rscr = (rsc ar)(rsar)
= (sarsa+c) (sc~ars~a~c)

sars2crs a c

sa(sars2crs~a~c)(sars2crs~a~c)i
s2ars2crs~crs2crs~2a~2c.

So, as s ~ rscr,

t* 9c c 9c 9c

rs r = rs rs rs rs

1 = rscrs~crs2crs~2c.

98

Thus, rs crs2cr = s crs2c and r ~ s crs2c.

(rs2arsa)2 = 1

rs2arsars2arsa = rs2a(sc-ars~a-c)s2arsa
= rsa+crsa~crsa

= 1

(.rsckrsa-cky = s2a in Fa-c,a,a+yk £ Q £ (2,3,4}
Proof by induction:

Base step

k = 1

rscrsa~crscrsa~c — rsc(s~a~crs~a)scrsa~
— rs~arsc~arsa~c

= sa+csa~c

= s2a

k = 2

rs2crsa~2crs2crsa~2c = rs2crsa-cs~crs2crsa-2c
= rs2crsa~crs~crsa
— rs2c(s~a~crs~a)s~crsa
_ rsc~ars~a~crsa

= sasa

= s2a

Inductive step

Assume (rscfcrsa-cfc)2 = s2a for all integers k, with k <i.

99

Then, using k = z, we know

(rscirsa~ci)2 = s2a
rscirsa~ci = sa+clrs~cir

(sa+cirs~cir)2 = s2a

and, using k = i — 1,

{rsci~crsa~ci+c)2 = s2a
rsa~ci+crsci~cr = sc-cirsa+^

(s~a+ci~crsc~cir)2 = s~2a
(sa+ci-crsc-cirj 2 = s2a_

Now, consider A: = i + 1, or (rscl+crsa 01 c) .

(Sa+ci-crsc-cirf^sci+crsa-ci-cy(s-a+ci-crsc-cirj2
sa+ci-crsc-cirsa+ci-crs2crsa-ci-crsci+crs-2crsc-cirs-a+ci-crsc-cir

sa+ci-crsc-cirsa+drs-crsa-ci+crsci-crscrs-cirs-a+ci-crsc-cir

sa+ci-crsc-cirsa+cirs-crsa-ci+crsci-crscrs-cirs-a+ci-crsc-cir

sa+ci-crsc-cirsa+cirs-csc-cirsa+ci-cscrs-cirs-a+ci-crsc-cir

sa+d-crsc-cirsa+cirs-cirsa+cirs-cirs-a+ci-crsc-cir

sa+ci-crsc-cirsa+cirs-cirsa+cirs-cirs-a+ci-crsc-cir

sa+ci-crsc-cirsa+ci-crsc-cir

s2a

Since (sa+cl crsc Clr)2 = s2a and (s a+ci crsc CV)2 = s 2a, then
^rgci+crga-ci—c^2 _ ^2a

Thus, by induction, (rscfcrsa-cfc)2 = s2a jn fa~c,a,a+c for g fj anc|
cG {2,3,4}.
Proof of the Case c = 2

Given in Theorem 4.2.

100

2. Proof of the Case c — 3

Fa-3,a,a+3 = ^ s\r^rrs\

For ^a-3-a'a+3) if we can show that s2n = S6a = s~6a, or s12a = 1, then
we have shown that

Fa-3-a.«+3/C2 ^ Ha-3,a,a+3 = (r, rs«-3rs«rsa+3).

• s2a ~ rs3r and r ~ s~3rs6 from I

('rs2arsa)2 = 1 from II
• rs6ar = s~6a

= rs2arsars2arsa

= rs2arsa(sa~3rsarsa+3)s2arsa
— rs2ars2a~3rsars3a+3rsa
— s3a~3rs2ars~arsars3a+3rsa
= s3a~3rs2a(sa+3rsa~3)sars3a+3rsa
= s3a~3rs3a+3rs2a_3rs3a+3rsa
= s3a_3rs3a+3rs_3rs3a+3rs3a
= s3a~3rs~a+3rs~3rs7a+3rs3a
= s3a~3rs~ars6rs7a~3rs3a
= s4arsa+3rs7a~3rs3a
= s3ars6ars3a

= s6ars6ar

Thus, s 6a = rs6ar.
• sl2a = 1 and s6a ~ r

101

Since s 6a = rs6ar, then we have

rs'6a = s6ar and

rs6a = s~6ar.

Hence,

56a = rsa~3rsarsa+3s6a

= rsa-3rsa.rs6a.sa+3

= rsa~3rs~5arsa+3

= rsa-3.rs~6a.sarsa+3

— rs7a~3rsarsa+3

= rs6a .sa~3rsarsa+3

= s~6arsa~3rsarsa+3
= s~6a.

Thus, s12a = 1 and s6a ~ r.

Fa-3,a,a+3/C2 ^ #a-3,a,a+3 when (^3) = L
Consider (x) where x = s6a. Obviously it is a subgroup of the
kernel of the homomorphism from F to H, and since

rxr = rs6ar = s6a = x

and s xxs — x,

then (x) is the kernel.
We have shown that s4n = s12a = 1 and s6a generates the kernel
of the homomorphism. Thus, either Fa~3>a>a+3 ^ Fa-3,a,a+3 Qr

Fa-3,a,a+3 j(j2 ^]ja-3,a,a+3 jj. cannot pe that a — 3 = a = a + 3
(mod 6) and we also have

(a — 3 — a, a — (a + 3), 3) = (—3, 3, 3) = 3,

102

so, by Theorem 3.3 of [6], Ha 3>a>a+3 is finite and has Schur mul-
tiplicator C%.
We now know Fa~3'a'a+3 is hnite and as it has a 2-generator, 2-
relator presentation, it has deficiency 0 and, by Corollory 1.2 of
[31], a trivial multiplicator. Thus, Fa~3'a'a+3 ^ F«-3,a,a+3^ ancj
must be such that, when a is not a multiple of 3,

pa—3,a,a-f3 jpi^ 3,a,a+3

3. Proof of the Case c = 4

Fa-4,a,a+4 = (r? ^a-^a^a+4^

For Fa~4'a'a+4) we want to prove that s24a — 1, sl2a is central and
rs~6ars6ars6ar = s_6a. Thus, the kernel of the natural homomorphism
from F to H could be shown to be generated by x = s6a and y — rsGar
and would be

(x,y\x4,x2 = y2,y~lxy = a:"1),

which is a presentation for Qg-

• s2a ~ rs4r and r ~ s~4rs8 from I

• s4a ~ rs2r

From s2a ~ rs4r, we have s4a ~ rs4r. Also, as a is odd, we know
2a + 2 = 0 (mod 4) and

rs4ar = s~2a_2rs4ars2a+2.

So,

rs2rs4ars 2r — rs2s 2a 2rs4ars2a+2s 2r
= rs~2ars4ars2ar

— rs~2arrs2ars4a

= s4a

103

and s4a ~ rs2r.

• (rs2arsa)2 = 1 from II
• rs7a~4rs7ars7a+'1 = 1

1 = rs2arsars2arsa

= rs2arsa(sa~4rsarsa+4)s2arsa
= rs2ars2a~4rsars3a+4rsa

= s4a~4rs2ars~2arsars3a+4rsa

= s5a~4rs2a(sars2arsa)sars3a+4r
= s5a~4rs3ars2ars2ars3a+4r

= s9a~4rs3ars2ars2ars3a+4rs~4a
= s9a~4rs3ars2ars2ars4~ars~4ars4ar

= s9a~4rs3ars2ars2a(sarsa+4)s~4ars4ar
= s9a~4rs3ars2ars3ars~3a+4rs4ar

= s9a~4rs3ars2ars3ars4~ars4ars~2a
_ s7a~4rs3ars2ars3ars4~ars4ar

= s7a_4rs3ars2ars3a(sarsa+4)s4ar
= s7a_4rs3ars2ars4ars5a+4r

= s7a~4rs7ars7a+4r.

So, rs7a-4rs7ars7a+4 — i.

(rs4krsa~4k)2 = s2a, VfcgN from III
We know we can assume a is a natural number, so setting k — a

in the previous equation, we have

rs4ars~3ars4ars~3a = s2a

104

and

s5a = rs4ars 3ars4ar

s 4ars4arsars4ar as rs4ar ~ s2

s9a = rS4a .VSaT. S4aT

= rs2ars a.rs2ar. as (s2arsa)2 = 1
= rs2ars~2ars~2ars~a again, as (s2arsa)2 = 1

s6a = rs2ars~2ars~2ars~4a
— rs2ars-ears-2ar &g rs2ar ^

Thus, as rs2ar ~ s4, then

s6a = rs6ars-6ars-6ar. (4.6)

Substituting A: = 2a, we have

rs8ars~7ars8ars~7a = s2a.

So,

s4a = s2ars8ars~7ars8ars~7a
= rs8ars2as'7ars8ars~7a
= rs8ars~5ars8ars~7a
= rs8ars~13ars8arsa

= rs8ars~13ars7a+4 ,sa~4rsa

= rs8ars~13ars7a+4rs~a~4r
= rs8ars~13a(s~7ars~7a+4)s~a~4r
= rs8ars~20ars~8ar
= s~20a.

Thus, s24a = 1

105

• Using k = 3a and s12a = s 12a gives

rs l2ars llars 12ars lla = s2a.

So,

Now,

rs HarS = S13a

rs~12ars~7ars~12ar = s17a

rs~12a(s7a+4rs7a~4)s~12ar = W7a

rs~5a+4rs~5a~4r = W7a

1 = rs7a~4rs7ars7a+4

= rs7a-4(s5a+4rs5a--4)s7a+4
rs12ars12a

= rsl2ars~l2a.

Thus, s12a ~ r and s12a is central.

• Let x = s6a and y = rs6ar, and consider (x,y). Obviously, (x,y)
is a subgroup of the kernel of the homomorphism from F to H.
It is also easily seen that rxr — y, ryr — x and s_1xs = x, and
we only need to test s~lys to show that (x,y) is the kernel.
Since rsa~Arsarsa+A — rs7a~4rs7ars7a+4,

1 = rs~ars6ars7ars6a and

rs6ar = sars'6ars~7a.

We know a is an odd number, so we have two cases.

(a) a = 1 (mod 4)
Here, a + 1 = 2 (mod 4) and 6a = 2 (mod 4), so 7a + 1 = 0
(mod 4).

106

Thus,

rs6ar — s7a+lrs6ars 7a 1 and

s_1rs6ars = s7ars6ars~7a,

and we have

s lrs&ars = s7ars6ars 7a

= s8ars'6ars-Ua

= rs~6ars~6a

y

(b) a = 3 (mod 4)
Now, a + 1 = 0 (mod 4).
Thus,

rs6ar = sa+1rs6ars a 1 and

s 1rs6ars — sars6ars a,

and so,

s 1rs6ars — sars6ars a

= s2ars~6ars~8a

= s~6ars~6ar

x hj \

Hence, {x, y} generates the kernel. Also, x and y both have order
dividing 4, and x2 = y2 as s12a is central. We have also shown
y~lxy = x~l from 4.6, so therefore, (x, y) is a homomorphic image
of Qs, which has derived length 2. It is left to prove (x,y) = Q$-
Consider the group

Qa,b,c _ ^r^s|r2^ s8^rsarsbrsc^

107

which is obviously a homomorphic image of Fa'b'c. Here, Ga'b'c =

Qa',b',c' ^ where a'? \j and (J are G) Jj and c modulo 8. Using Fa~4,a'a+4
for the case d = 4, then a is odd and a' £ {1, 3, 5, 7}. Thus, we are

left with only four cases for Ga~4'a'a+4, namely G5'1'5, G7'3'7, G1'5'1
and G3'7'3. Using GAP, we obtain that each of these four groups

has derived length 4. Thus, as Ga~4,a,a+4 is a homomorphic image
of Fa~4'a'a+4, the latter must have derived length of at least 4.
From Theorem 3.5 of [3], we know that all groups Ha'b,c are finite
metabelian groups when (a, 6, c) = 1, n ^ 0 and (d, 6) ^ 6. As a is
odd and d = 4, then //a-4>a>a+4 [s finite metabelian and, therefore,
has derived length 2. This implies that {x,y), the kernel of the
natural homomorphism from Fa~4>a>a+4 to Ha~4,a'a+4, must have
derived length at least 2. Thus, (x,y) = Qg.

4. Proof of the Case (a, c) ^ 1

When (a, c) ^ 1 for c £ {2, 3, 4}, then we have (a — c, a, a + c) ^ 1 and
either of two cases

(a) a is a multiple of c or

(b) c = 4 and a is a multiple of 2.

If a is a multiple of c, then all of a — c, a and a + c are divisible by c

and, as such, are not co-prime. If we consider Fa~c,a,a+c where a — ck
for some integer k, then it is the case that rs2ar ~ sa since rs2ar ~ sc.
Therefore,

1 = rsa~crsarsa+c
_ rg3a-crsarsc-a

= rs3a~c(sc~ars~a~c)sc~a
= rs2ars~2a.

and so, s ~ r

108

The relation rs2arsars2arsa — 1 from II, then reduces to s6a = 1, and
we find that where a is a multiple of c, Fa~c>a'a+c ^ jja-c,a,a+c^

We just need to look at the case where c = 4 and a = 2m for some odd
integer m. Using (js4krsa~4k)2 = s2a with k = m gives

s2a = (rs4krsa~4k)2
= (rs4mrsa~4m)2
= (rs2arsa~2a)2
= (rs2ars~a)2

and rs2ars~ars2ar = s3a.

Since we have rs2ar ~ s4, then rs2ar ~ s2a, and

sia = rs2ars~ars2ar

s5a = s2a(rs2ars~ars2ar)
— rs2arsars2ar.

We also know rs2arsars2arsa — \; so s5a = s~a aifo s6a = Thus,
Fa-4,a,a+4 ^ //a-4,a,a+4 where a = 2m for 771 odd.

□

4.4 Fa c'0,a+2c £or c £ ^

It was the symmetry of the relator rsa~crsarsa+c in the groups Fa~c>a>a+c with
c 6 {2, 3, 4} that played a large role in our proof of the Fa'b'c conjecture for
groups of this type. Thus, for our next step, it seemed the natural progression
to study groups of a similar form, namely Jp«-c>a>a+2c) as there still exists
simple relationships amongst the powers of s in the relator rsa~crsarsa+2c.

For the groups

Fa-c,a,a+2c = ^ ^a-c^a^a+2^

109

we have n = a — c + a + a + 2c = 3a + c, d = ((a — c) — a, a — (a + 2c)) = c

and s2n = s6a+2c.
After having proved the case of Fa~c'a'a+c for c G {2,3,4}, we looked

to see if this proof could be modified for the groups Fa~c,a,a+2c. Several
problems arose, however. In our original proof, we required the two facts,
s2a ~ rscr and r ~ s~crs2c, in both the induction proof of the relation
sequence (rsckrsa~cky = s2a for k G N and the reasoning linking our relation
sequence to the final results. The same arguments for these two facts could
not be used with the groups Fa~c'a'a+2c as, we had |(a — c) — a\ = \a — (a + c)|
for Fa~c,a'a+c, but here, the equivalent relationship |(a — c) — a| = |a— (a + 2c)|
did not hold.

Using a similar idea and further manipulations of the relators, however,
we did find that we could prove rs6a+2cr ~ sc. We also returned to our earlier
work in Fa~2'a'a+2, when we had noticed

(rs2krs3a~2k)2 = 1 for k G Z.

In our study of the groups Fa~c,a,a+2c, relations of a similar type appeared.
These relations had the form

(rsa+cfc+crs2a-cfc)2 = 2 for k £

and we recognised that if we could prove such a sequence of relations existed
in Fa~c'a'a+2c, we would have enough to prove at least the case where c = 2.

Thus, we set out to find an inductive proof for this new sequence of
relations. We found, however, that it was easier to prove if we considered the
two elements, (rsa+cfc+crs2a-cfc)2 — i and (rs2a+ck+crsa-cky _ ^ together
and, similarly to the case Fa~c'a'a+c, we were able to prove the conjecture
for groups of the type Fa~c>a>a+2c for c £ {2, 3, 4} using our sequence and
rg6a+2cr ^ sc_

One of the conditions of the Fa'b'c conjecture is that a, b and c must be
co-prime. As well as showing the conjecture is correct for groups of the type,
pa-c,a,a+2c wpp c ^ {2,3,4} and (a,c) = 1, our proof method also allowed

110

us to extend our research to the cases where (a, c) 7^ 1, and we include it in
the proof for groups of the type Fa"c'a,a+2c for c G {2, 3, 4}.

Theorem 4.4 For the groups

Fa-c,a,a+2c = ^a-c^^c)

with a G Z and c G {2, 3,4}, let

Ha-c,a,a+2c = ^ ^o-c^a^o+ite /a+2c^

If,

• c = 2 and (a, 2) = 1, then s6a+4 = 1 and

pa—2,a,a-f4 pjra—2,a,a+4

• c = 3 and (a, 3) = 1, then s12a+12 = 1 and

pa—3,a,a+6 j — Ha~3>a»a+6

• c = 4 and (a, 4) = 1, then s24a+32 = 1, si2«+i6 ^ r ancj

pa—4,a,a+8j — JJa~4»a>a+8

• (a, c) 7^ 1 then (a — c, a, a + 2c) 7^ 1, sCa+2c = 1 and

ria—c,a,a+2c ^ rra—c,a,a+2c

111

Also,

Hence,

c,a,a+2c
i we have

n = a — c + a + a A 2c

= 3a + c,

s2n =
6a+2c

1 - (a — c, a, a -1- 2c) when (a, c) =

d = ((a — c) — a., a — (a + 2c))
— c.

rsa~~cr = s-a-2crs~a,
rsar = sc~ars~a~2c and

rsa+2cr = s~arsc-a.

rs2a~2cr — (rsa-cr)2
— s~a~2crs^2a~2crs"' (4.7)

rs2a~cr = (rsa~cr){rsar)
_ s-a-2crsc-2ars-a-2c anfJ

= (rsar)(rsa~cr)
= sc-ars~2a-4crs'a,

(4.8)

(4.9)

rs2ar = (rsar)a^\2

sc-ars-2a-crs-2c-a (4.10)

112

rs2a+cr — (rsa~cr)(rsa+2cr)
= s~a~2crs~2arsc~a and (4-11)
= (rsa+2cr)(rsa~cr)
= s~ars~2a~crs~a, (4.12)

rs2a+2cr = (rsar){rsa+2cr)
= sc~ars~2a~2crsc~a and (4.13)
= (rsa+2cr)(rsar)
= s~ars2c~2ars~a~2c, (4.14)

rs.2a+4cr = (rs«+2c)2
= s-arsc-2arsc-a, (4.15)

rscr = (rsar)(rsc_ar)
= sc-ars-2crsa+2c and (4-16)
= (rsc~ar)(rsar)
= sars3crs~a~2c. (4.17)

rs2cr = (rsa+2cr)(rs~ar)
= s~ars3crsa~c and (4.18)
= (rs~ar)(rsa+2cr)
= sa+2crs~crsc~a, (4.19)

rs3cr = (rsa+2cr)(rsc_ar)
= s_arscrsa+2c and (4.20)
= (rsc~ar)[rsa+2cr)
= sars2crsc-a. (4.21)

113

So,

rs2a-cr = s~a~2crsc~2ars~a~2c

= s a 2c(sars2a+Acrsa c)s a 2c from 4.8 and 4.9
= s~2crs2a+4crs~3c, (4.22)

rs2a+cr — s ars c 2ars a

= s~a(sa~crs2arsa+2c)s~a from 4.12 and 4.11
= s~crs2ars2c, (4.23)

rs2a+2cr = sc-ars-2c-2arsc-a
= sc~a(sa+2crs2a~2crsa)sc~a from 4.13 and 4.14
= s3crs2a'2crsc. (4.24)

We begin by proving the two steps (I and II) necessary to prove each of
the cases, c = 2, c = 3 and c = 4.

I gc

Using equations 4.23, 4.22 and 4.24 gives

6a+2c„ /„„2a+c„\/„„2a—c w 2a+2c
rs r — {rs+cr){rs cr)(rs r)

s-crs6a+2crsc.

II. In Fa c'a-a+2c for all integers k,

(rs2a+cfc+crsa-cfe^2 = j &nd
trs2a-ckrsa+ck+c\2 _

Proof by induction for k > — 1:

Base step

114

rs2arsa+crs2arsa+c — rs2arsa+c(scrs2a+crs 2c)sa+c
= rs2arsa+2crs2a+crsa~c

= rs2a(s~arsc~a)s2a+crsa-c
rsarsa+2crsa~c

= 1

rs2a+crsars2a+crsa = rs2a+c(sc-ars~a~2c)s2a+crsa
= rsa+2crsa~crsa

k = 0

rs2a+crsars2a+crsa = 1 from base case, k = — 1

rs2arsa+crs2arsa+c — 1 from base case, k = — 1

k = 1

rs2a+2crsa~crs2a+2crsa-c = rs2a+2c^-a-2crs-o^2a+2crsa-
= rsarsa+2crsa_c

= 1

rs2a-crsa+2crs2a-crsa+2c = ^a-c^-a^c-aj^a-Cj.^c
= rsa~crsarsa+2c
= f

Inductive step

115

Assume for all integers i, with — 1 < i < k,

(rs2a+ci+crsa-ci)2 = j and

(rs2a~cirsa+ci+cY = 1.

So,

rSa+Ci+Cr = sci-^rs-a-ci-crsci-2a &nd

rsa~cir = s~2a~ci~crsci~ars~2a~ci~c

Since we have shown it to be true for k G { — 1, 0,1}, we can assume

k > 2.

Consider i = k with 2 < k. We know that because — 1 < k — 3 < k,
we have

rsa+ck-2cr _ s-2a+ck-3crs~a-ck+2crs-2a+ck-3c &nd

r^a-ck+3c^, _ s~2a—ck+2crg—a+ck-3crg—2a—ck+2c

Also, 0 < k — 1 < k gives us

rsa-ck+cr _ s-2a-ckrs~a+ck-crs~2a-ck

Thus, using

rsa+ck-2cr s-2a+ck-3crs-a-ck+2c^s~2a+ck-3c

rs3cr = sars2crsc~a,
rs~a+ck-3cr __ s2a+ck-2crsa-ck+3crs2a+ck-2c

and

rg2a+ckr _ s-a+ck-crs~2a-ckrs~a+ck-c

116

rs,a+ck+c,r

(rs'ta+ck—2c,r){rs3cr)
^s-2a+c/c-3crg-a-cfc+2crs-2a+cfc-3c^sars2crsc-
s—2a+cfc—3c^s—a—cfc+2c ^-a+cfc—3cy g2crsc-a

s-2a+cfc-3c sa-cfc+3crs2a+cfcrsc-a

s-2a+ck-3c^sc-ars~a-2c^sa-ck+3crs2a+ckrsc-a
s~3a+ck~2crs~ck+c rg2a+ck^ gc-a

g—3a+ck—2c rs~ar s~2a-ckrs~2a+ck
s-3a+ck-2c^a+2c^sa-c^s~2a-ck^s~2a+ck
s-2a+ckrs-a-ck-crs~2a+ck

rsa-ck+c,r _ s~2a-ckrs-a+ck-crs~2a-ck

—a—ck+2c 2a—ck+3c a+ck—2c 2a—ck+3c
I — O I O I &

rs cr sa+2crs~3crs~a

and

s-a-ck-c^s-2a+ckrs-a-ck-c

117

we obtain

rsa~ckr

= (rsa~ck+cr) (rs~cr)
= (s~2a~ckrs~a+ck~crs~2a~ck)(sa+2crs~3crs~a)
_ g-2a-ckrs~a+ck-c rg-a-ck+2cr g-3crs~a
_ s~2a-ck rga+2cr sa+ck-2crg2a-ckrg-a

= s~2a~ck(s~arsc~a)sa+ck~2crs2a~ckrs~a
= s~3a~ckrsck~c.rs2a~ckr.s~a
_ -3a-ck rs~a-2cr s~2a+ckrs-2a-ck-c
__ s-3a-ck^sa-crsa^s-2a+ckrs~2a-ck-c

2a—cfc—<yg—a+cfc -2a—cfc—c

By induction, for all integers k > — 1,

(rs2a+cfc+crsa-c^2 = x &nd

(rs2a_cfcrsa+cfc+c)2 = 1

Now we need to consider the integers k < — 1. Let i > 0. Here, using
k = —i, then

(rs^a+ck+crsa-ck^ 2 _ ^rg2a-ci+crga+c^2
= (rs2a-c(i-1)rsa+c(z-1)+C)2 and

/rs2a-cfcrga+cfc+c^2 _ ^rg2a+cirga-ci+c^2
_ ^rs2a+c(i-l)+crga-c(i-l)^2

Thus, the case k = — i is equivalent to that of i — 1 for i > 0. Since
i > 0, then i — 1 > — 1, and so,

(rs2«+cfc+crga—cfc) 2 = j and

(rg2a-ckrsa+ck+cY = x for £ < _L

118

Therefore, for all integers k,

{rS2a+ck+crsa-c^ 2 = I and

/rs2a-c/crsa+cfc+c~j2 __ -y

Proof of the Case c — 1

pa 2,a,a+4 _ (p^s\r2pga 2rSarSa+4)

For Fa~2>a<a+4^ if we can prove s2n — s6a+4 = 1, then we have shown
that Fa~2'a<a+4 = Ha~2'a'a+4 = (r, s\r2, s6a+4, rsa~2rsarsa+A).

• For all integers k,

(rs2a+2fc+2rsa-2fc)2 _ ^ and
(rs2a~2krsa+2k+2)2 = 1 by II.

• Using k = a in the above equations, we have

^ _ (fS2a~2ayga^'2a~^2^2
= (rs°rs3a+2)2
= (s3a+2)2
= s6a+4_

Proof of the Case c = 3

pa-3,a,a+6 _ g\r2^rsa~3rsarsa+6}
2n

For ira-3.«-a+6) n = a- 3 + a + a + 6 = 3a + 3. If we prove s:
s6a+6 __ 6a—6 ^ Qr s12a+12 _ ^ jn pa-3,a,a+6^ we cail ghow that
pa—3,a,a+6j— //"a_3>a>a+6 = (p g\j-2 g6a+6 ^sa~3VSaTSa+6)

119

• For all integers k,

(rs2a+3fc+3rsa-3fc)2 = x and

(rs2a-3fcrsa+3/=+3)2 = X by jj

• Substituting k = a in the above equations gives

_ ^rsa+3a+3rs2a-3a^2
= s4a+3rs~ars4a+3rs~ar

= s4a+3{sa+6rsa-3) s4a+3 (sa+6rsa~3)
= s5a+9rs6a+6rsa~3

= s5a+9rs6a+6rsa~3

= s6a+6rs6a+6r.

Thus, r56o+6r = s~6a-6 and s6a+6 = rs~6a~6r.
• We know rsa~3rsarsa+6 = \ and rs6a+6r = s_6a~6 so,

s-6a-6 = ^5o-3rsorso+6^5-6a-6j
= rsa-3rsa.rs~6a-6.sa+6
= rsa~3rs7a+6rsa+6

= rsa~3.rs6a+6.sarsa+6

= rs~5a~9rsarsa+6

= rs-6a~6.sa'3rsarsa+6
= s6a+6rsa~3rsarsa+6

s6a+6

Thus, s 6a 6 = s6a+6, s6a+6 is central and s12a+12 = 1.

Fa-3,a,a+6/C2 ^ #a-3,a,a+6 where ^ 3) = 1
Consider (x), where x = s6a+6. Obviously it is a subgroup of the

120

kernel of the homomorphism from F to H, and since

rxr = rs6a+6r = s6a+6 = x

and s~lxs = x,

then (x) is the kernel.
We have shown that s4n = s12a+12 = 1 and s6a+6 generates the
kernel of the homomorphism. Thus, either Fa-3>a>a+6 ^ ^-a-3,a,a+6
or Fa~3'a'a+6/C2 = Ha~3'a'a+6. It cannot be that a — 3 = a = a + 6
(mod 6) and we also have

(a — 3 — a, a — (a + 6), 3) = (—3, —6,3) = 3,

so, by Theorem 3.3 of [6], #a~3>a>a+6 is finite and has Schur mul-
tiplicator CT
We now know gnj^e anci as ^ }ias a 2-generator, 2-
relator presentation, it has deficiency 0 and, by Corollory 1.2 of
[31], a trivial multiplicator. Thus, Fa_3'a'a+6 ^ ^a-3,a,a+6^ arK]
must be such that, when a is not a multiple of 3,

pa—3,a,a+6j 3,a,a+6

3. Proof of the Case c = 4

Fa-4,a,a+8 = ^ s|r2; rs«"4rs<Ysa+8)

For Fa~4'a'a+8, we neefi pr0ve that rs-6a-8rs6a+8rs6a+8r = s~6a"8,
s24a+32 _ I ancJ s12a+16 jg centra] jn ^a-4,a,a+8_ presentation for
Qs is (x, y\x4, x2 = y2,y~lxy — x~l). Thus, taking x = s6a+8 and
y = rs6a+8r and proving that the kernel is generated by s6a+8 and
rs6a+8r, we would then be able to show Fa_4'a'°+8/Q8 = Ha~4<a'a+8.

• rs6a+sr ~ s4 by I.

121

For all integers k,

(rs2a+4k+4rsa~4k)2 = 1 and

(rs2a-4fcrsa+4fc+4)2 = 1 by II.

Setting k = a and k = 0 in the previous equations, we obtain

rs-2ars5a+4rs-2ars5a+4 = 1 and

rs2a+4rsars2a+4rsa = 1.

So, as rs2ar = s4rs2a+4rs-8, then

1 = rs~2ars5a+4rs~2ars5a+4

= (s8rs-2a_4rs-4)s5a+4(s8rs-2a_4rs~4)s5a+4
= s8rs~2a~4rs5a+8rs~2a~4rs5a
= rs~2a~4rs5a+8rs~2a~4rs5a+8

= rs'2a-4rs5a+8(sars2a+4rsa)s5a+8
= rs~2a~4rs6a+8rs2a+4rs6a+8.

We also know that rs6a+8r ^ s4 and, as a must be odd to ensure

(a — 4, a, a + 8) = 1, then rs6a+8r ~ s2a+2. Thus,

1 = rs~2a~4rs6a+8rs2a+4rs6a+8

= rs~2rs6a+8rs2rs6a+8

and s 2rs6a+8rs2 = rs 6a 8r.

We know a must be odd, so s6a+6 is a multiple of 4. Therefore,
from s~2rs6a+8rs2 = rs~6a~sr and rs6a+8r ~ s4, we obtain

rs-6a~8rs6a+8rs6a+8r = s~6a~8 and

rs6a+8rs6a+8rs~6a~8r = s"6^8. (4.25)

122

We have

s-6a-8rs6a+8rs6a+8 = rs"6«-8r SO,

s6a+8rs6a+8 = ^60+8^-60-8^

Alternatively,

s6a+8rs6a+8rs-6a-8 = rs^a-8r ^

s6a+8rs6a+8 = ^-60-8^.60+8^

Hence,

rs6a+8rs~6a~8r = rW6a~8rs6a+8?

s12a+16 _ rs12a+16r^

and s12a+16 is central.

Also,

rs6a+8rs-6a-8r _ ,,6a+8^, 0-6a-8(rs6a+8rs~6a~8r)~l
s6a+8rg6a+8 __ ^-60-8^-60-8

s12o+16 = rs-12o-16r_

Thus, s12a+16 = g—12a—16 and s24o+32 = y

Since we have that rs-6a-8rs6a+8rs6a+8r — s~6a~8, s24a+32 — \
and s12a+16 is central, we need only check that |s6a+8) rs6a+8r|
generates the kernel of the homomorphism from F to H. Let
x — s6a+8 and y = rs6a+8r, and consider (x,y). Obviously, (x,y)
is a subgroup of the kernel, and we have rxr = y, ryr — x and
s~lxs — x. We now need to test s_1ys G (x, y) to show that (x, y)
is the kernel.

123

Using k = a + 1 in (rs2a+4fc+4rsa 4fc)2 = 1; we have

1 = rs6a+8rs-3a-4rs6a+8rs-3a-4 and

sars6a+8rs'a = s4a+4rs~6a~8rs2a+4.

We also know rs6a+8r ~ s4, so

sars6a+8rs~a = s4a+4rs~6a~8rs2a+4
= rs~6a_8rs6a+8.

As it must be such that a is an odd number, we have two cases.

(a) a = 1 (mod 4)
Here, a + 1 = 2 (mod 4).
Thus,

rs6a+8r = sa+1rs 6a 8rs a 1 and

s-1rs6a+8rs = sars~6a-8rs-a,

and we have

s_1rs6a+8rs = sars~6a~8rs~a
= rs~6a~8rs6a+8

= y 1x-

(b) a = 3 (mod 4)
Now, a + 1 = 0 (mod 4).
Thus,

rs6a+8r = sa+1rs6a+8rs~a~1 and

s-lrs6a+8rs = sars6a+8rs-a)

124

and hence,

s 1rs6a+8rs — sars6a+8rs a

= s-6a~8rs6a+8r

= x~ly.

Therefore, {x,y} generates the kernel. Also, x and y both have
order dividing 4, we know y~lxy = x~l from 4.25 and, since §12a+16
is central, x2 = y2. Given this, we know (x, y) is a honromorphic
image of Qs, which has derived length 2. It is left to show (x, y) =

Qs-
Consider the group

Ga'b,c — (r,s\r2,s8,rsarsbrsc),

a homomorphic image of fa'b'c. Here, ga'b'c = ga',b',c', where a', b'
and d are a, b and c modulo 8. Using Fa~4>a>a+8 for the case d = 4,
then we know a is odd and so, a' E {1, 3, 5, 7}. Thus, we are left
with only four cases for (ja-4,a,a+8; g5'1'1, g7'3'3, g1'5'5 and g3'7'7.
Using GAP, we obtain that each of these four groups has derived
length 4, and Fa~4'a'a+8 must have derived length of at least 4.
From Theorem 3.5 of [3], the groups ha,b,c are finite metabelian
groups when (a, 6, c) = 1, n ^ 0 and (d, 6) 6. As a is odd
and d = 4, then /fa~4>a>a+8 js finite metabelian and, therefore, has
derived length 2. This implies that (x, y), the kernel of the natural
homomorphism from ^«-4,a,a+8 ^a-4,a,a+8^ must fiave derived
length at least 2 and (x,y) = Qs-

4. Proof of the Case (a, c) ^ 1

When (a,c) 7^ 1 for c E {2,3,4}, then we have (a — c, a, a + 2c) 7^ 1
and either of two cases

(a) a is a multiple of c or

125

(b) c — 4 and a is a multiple of 2.

If a is a multiple of c, then all of a — c, a and a + 2c are divisible by c

and, as such, are not co-prime. For Fa~c^a'a+2c where a — cm for some

integer m, then using (rs2a+ck+crsa~ckY = i and substituting k = m,

we have

Y — (j.s"2a+ck+crsa-cky.
_ ^rs2a+cm+crsa-cm^2
= (rs2a+a+crsa~af
= (rs3a+crs0)2
= rs6a+2cr,

and so, s6a+2c — 1.

We find that where a is a multiple of c, Fa~c,a'a+2c = }[a~c,a'a+2c.
We just need to look at the case where c = 4 and a — 2m for some odd
integer m. Using k = m in ^rs2°-4fcrsa+4fc+4j2 — i gives

1 = (rs2«-4fcrs«+4fc+4)2
= (fS2a-4"ysa+47n+4)2

^rs2a-2arsa+2a+4)2
= (s3a+4)2
_ 6a+8

^ 5

and s2n = s6a+8 = 1. Hence, pa-4>a'a+8 ^ j]a-4,a,a+8 wiiere a — 2m for
m odd.

Thus, if c E {2, 3, 4} and (a — c, a, a + 2c) ^ 1, we find that

j?CL—c,a,a+2c £ja—c,a,a-\-2c

□

126

4.5 Fa c>a'a+kc for a,c,fcGZ

Having formulated proofs of the conjecture for two similar types of groups,

pa-c,a,a+c and pa-c,a,a+2c for c ^ {2,3,4}, we hoped we could use them to
make a generalisation for a larger set of groups, and our next step was,

therefore, to try groups of the type Fa~c,a'a+kc for an integer k.
At first glance, it seemed the transition from our proof of Fa~c'a'a+2c

to a proof of Fa~c,a'a+kc would be relatively easy. In Fa~c'a'a+kc, we have
s2n — s6a+2fcc-2c; and it was easy to obtain rsea+2kc~2c ^ sc using the same

arguments as in the former proof. It was also noted that if we could prove

equivalent relation sequences in Fa~c,a,a+kc to those in Fa~c'a'a+2c, the desired
results for each of the cases, c = 2, c = 3 and c = 4, would follow similarly
to the proof of Fa~c'a'a+2c.

Thus, we concentrated on trying to prove the relation sequences,

(rs2a+cm+fcc-crsa-cm)2 = £ and

^rs2a-cmrsa+cm+kc-c^2 _ £

for an integer m, and set out to first find an inductive proof over m for
m > — 1. Although we could prove the base cases, m = 0 and m — 1, the
first problem occurred with the base case m — — 1, which we realised was no

longer obvious.
A much larger difficulty was found in the inductive step. In the proof of

(rs2a+cm+crsa-cm)2 = £ &nd

(rs2a_cmrsa+cm+c)2 = 1

for Fa~c'a'a+2c, the first line of this step involved rewriting rsa+cm+cr as

(rsa+cm_2cr)(rs3cr). We could continue because rsa+cm~2cr is determined
in the case m — 3 and, given that we had three base cases beginning with
— 1, then 2 < m and — 1 < m — 3 < m. Hence, we could assume the relation

^rs2a-cm+3crsa+cm-2cr^2 _ £ from our inductive hypothesis.
If we were to use the same proof for our relation sequence, the first line,

127

modified slightly to fit the new type of groups, would be

rsa+cm+kc~cr _ (rsa+cm~'2cr^rskc+cr^

However, to continue, we would need to be able to assume the relation
^rs2a-cm+kc+crsa+cm-2cry _ j which falls in the case m — k — 1 of the
relation sequences. Thus, to use our inductive hypothesis, we would need
0 < m — k — I < m and k + 1 < m. Even being able to prove all the three
base cases m G { — 1,0,1} would not be enough if k > 2.

However, we noticed that if, instead of having k + 1 base cases, we were

able to prove both relations for the case m — k — 1, then the induction proof
from Fa-c'a'a+2c could be easily modified and used for the groups Fa~c'a'a+kc.
It required some work, and once we had found a proof for the relations of
this case, our proof only required the two base cases, m — 0 and m = 1. As
these had already been determined, we were able to formulate a proof of the
conjecture for the groups Fa~c,a,a+kc with a,k G Z and c G {2,3,4}, which
we now state in the form of a theorem.

Theorem 4.5 For the groups

Fa-c,a,a+kc = ^ g|r^rs^rs\s^)

with a G Z and c G {2, 3, 4}, let

Ha-c,a,a+kc = ^ ^a-c^a^a+Jrc s6a+2kc-2cy

If,

• c = 2 and (a, 2) = 1, then s6a+4fc-4 = i and

j^cl—2,a,a+2fc £j[a~2,a,a+2/c

• c = 3 and (a, 3) = 1, then s12a+12fc-12 = \ and

p<a—3,a,a+3kj jLj'a—3,a,a+3k

128

• c — 4 and (a, 4) = 1, then s24a+32/c 32 = 1, si2«+i6fc 16 ^ r and

pa—4,a,a+4/cj — J-/a—4,a,a+4/c

• (a, c) 7^ 1 then (a — c, a, a + /cc) 7^ 1, s6a+2fcc-2c = 1 and

pa—c,a,a+kc qu J-[a~c,a,a+/cc

Proof. 111 ^"-c.a.a+fcc^ wg }mvg

n = a — c + a + a + fcc

= 3a + kc — c,

2n 6a+2/cc—2c
o — ^

1 = (a — c, a, a + kc) when (a, c) = 1 and
d = ((a — c) — a, a — (a + kc))

= c.

Also,

rsa-cr = s'a-kcrs~a,

Hence,

rsar = sc~ars~a~kc and

rsa+kcr = s~arsc~a.

rs2a~2cr = (rsa-cr)
= s~a~kcrs~2a~kcrs~a i (4.26)

129

rs2a cr = (rsa cr)(rsar)
= s~a~kcrsc~2ars~a~kc and (4.27)
= (rsar)(rsa~cr)
= sc~ars~2a~2kcrs~a, (4.28)

rs2ar = (rsar)2
= sc-ars-2a-fcc+crs-a-/cC) (439)

rs2a+kc-cr = (rs"-cr)(rsa+fccr)
= s~a~kcrs~2arsc~a and (4.30)
= (rsa+kcr)(rsa~cr)
= s~arsa^„-2a-kc+crs-a^ (43^

rs2a+kcr = (rs«r)(rsa+/ccr)
= sc~ars~2a~kcrsc~a and (4.32)
= (rsa+kcr)(rsar)
= s~ars2c~2ars~a~kc, (4.33)

r§2d+2kcr _ ^rsa+kc^2
-a„ _c—2a^ „c—a (4.34)

rscr = (rsar)(rsc ar)
= sc~ars~kcrsa+kc and (4.35)
= (rsc~ar)(rsar)
= sarskc+crs~a~kc, (4.36)

130

rskcr = (rsa+kcr)(rs ar)
= s~~arskc+crsa~c and (4.37)
= (rs~ar)(rsa+kcr)
= sa+kcrs~crsc~a, (4.38)

rskc+cr = (rsa+fccr)(rsc_ar)
= s~arscrsa+kc and (4.39)
= (rsc~ar)(rsa+kcr)
= sarskcrsc~a. (4.40)

So,

rs2a~cr = s~a~kcrsc~2ars-a-fcc
= s~a~kc(sars2a+2kcrsa~c)s~a~kc from 4.27 and 4.28
= s~kcrs2a+2kcrs~kc~c, (4.41)

rs2a+kc-cr = s-ars-2a-kc+crs-a
= s~a(sa~crs2arsa+kc)s~a from 4.31 and 4.30
= s~crs2arskc, (4.42)

rs2a+kcr = sc~ars~2a~kcrsc~a
= sc_a(sa+fccrs2a_2crsa)sc_a from 4.32 and 4.33
= skc+crs2a~2crsc. (4.43)

J rgQa+2kc-2Cy ^ gC

Using equations 4.42, 4.41 and 4.43 gives

rs6a+2kC-2cr = (rs2a+kc-cr^rs2a-cr^rs2a+kcrj
= s~crs6a+2kc-2crsc.

131

II. In Fa c'a'a+fcc; for all integers m > 0,

(rs2a+cm+fcC-crsa-cm)2 = j and

^52a-cmr5tt+cm+fcc-cj2 _ j

Proof by induction:

Base step

m = 0

rs2a+kc-crsars2a+kc-crsa
= rs2a+kc~c(sc~ars~a~kc)s2a+kc~crs
_ rsa+kcrsa-crsa
= 1

m = 1

rs2arsa+kc-crs2arsa+kc-c
= rs2arsa+kc~c(scrs2a+kc~crs~kc)sa+kc~c
= rs2arsa+kcrs2a+kc~crsa~c
= rs2a(s~arsc~a)s2a+kc~crsa~c

rsarsa+kcrsa c

= 1

rs2a+kcrsa-crs2a+kcrsa-c

= rs2a+kc(s~a~kcrs~a)s2a+kcrsa~c
= rsarsa+kcrsa~c
= 1

132

rs2a~crsa+kcrs2a~crsa+kc
= rs2a~c(s~arsc~a)s2a~crsa+kc
= rsa~crsarsa+kc

Inductive step

Assume for 0 < i < rn,

(rs2a+ci+fcc-crsa-ci)2 = j &nd

^rs2a-CYsa+ci+fcc-c^2 _ ^

Since we have shown it to be true for m G {0,1}, we can assume

m > 2.

Consider i = m, with 2 < m. We know 0 < m — 2 < m, so

^rs2a+cm+fcc-3crsa-cm+2c>)2 = j and
^^2a—cm+2cj,^a+cm+fcc—3c^2 _ j

Also, 0 < m — 1 < m, so

(rs2a+cm+/cc-2crsa-cm+c)2 = X and
^rs2a-cm+crsa+cm+kc—2c^2 _ ^

We need some additional equations for our proof. Consider m —

k — 1. Where m < k, then m — k — 1 < 0 and we cannot assume

that either

(rs2a—c{m—k—l)^^a+c{m—k—l)+kc—c\2 ^^2a—cm+kc+c^,^a+cm—2c^2
= 1 or

Lrg2a+c(m—k—l)+kc—c^,ga—c(m—k—l)^2 _ ^.^a+cm—2c^^a—cm+kc+c^2
= 1.

133

Using our inductive hypothesis, however, we can form the proofs
for these necessary equations. We have

r = skcrsa crscrs a kc, from 4.38

1 = (rsa+cm+fcc-2crs2a-cm+c)2
1 = ^y.g—a+cm—2cy,g—2a—cm—kc+3c\2

and

1 - ^rg2a+cm+kc-2crsa—cm+c^2

which gives

From

rs2a-cm+kc+crsa+cm-2cr
= rs2a-cm+kc+crsa+cm~2c
= rs2a_cm+fcc+c rsa+cm+kc-2cr sa~crscrs~a~kc
= rSkcrs~a~cm-kc+2c rs-a+cm-2cr gcrs-a-kc
— rskcrsa-crsa-cm+2c rg2a+cm+kc-2cr g-a-kc
— rskc rsa~cr gcfg~^a~cm~kc+^crg~2a+crn-kc-c
= rgkc (^g~a~kcrg~a\gcrg~'ia-crn-kc+2crs~2a+cm~kc-c
_ rg~a rsc~ar g~2a~cm~kc^crg~2a+cm-i;c-c
_ j.g—a^garsa+kc^g—2a—cm—kc+2crg—2a+cm—kc—c

Q—a—cm+2c —2a+cm—kc—c— o / o

r = sa+kcrsa~crsa,
r = sc~ars~a~kcrs~a,

_ ^rs2a+cm+kc-2crsa-cm+c^2
-[_ ^rg-2a+cm—kc—c^s—a—cm+2c^2

and

^ ^.g2a—cm+kc+Cy,ga+cm—2c^2

134

we obtain

a—cm+kc+c 2a+cm—2cr
_ rsa-cm+kc+crs2a+cm-2c r

= rsa~cm+kc+crsZa+cm+kc-2crsa,-crsa

_ rsa-cm+kc+c ^ s3a+cm+kc-2c^,sa~crga
— rs-cm+kc+2crs-a-kc rs2a+cm+kc-2cr sa~crsa

_ rs~cm+kc+2c j.g-2a+cm-kc-c^ s-2a-cm—kc+2c^,scm-2ty,
_ rsa+kcrs2a-cm+kc+c rg-a-kcr scm-2crs<i
= rsa+fccrs2a_cm+fcc+c^sa_crsa^scm_2crsa
_ r a+kcr s3a-cm+kcrsa+cm-2crsa

— (s~arsc~a)s3a~cm+kcrsa+cm~2crsa
_ --a ^20—cm+fcc+c^a+cro—2ty

^—2a—cm-\-2c^,^—a-\-cm—kc—c

Thus,

^rs2a-cm+fec+crsa+cm-2c-)2 = 1 &nd
(rs2a+cm-2cr^a-em+fcc+e) 2 _

Now, let i = m.

From

a+cm—2c —2a+cm—kc-c —a—cm+2c —2a+cm—kc—c
I O / O I O / o j

rskc+cr = sarskcrsc~a,
y,g—a+cm—kc—Cy, _ s2a+cm-2crsa—cm+kc+crs2a+cm-2c

and

rs2a+cm+kc—2cr _ g-a+cm—2a-cm-fcc+2cys-a+cm-e

135

we find

rsa+cm+kc-cr

= (rsa+cm~2cr) {rskc+cr)
s-2a+cm-kc-crs-a-cm+2c ^g-a+cm-kc-c^ gkcrgC-a

_ —2a+cm—kc—c ygar ga-cm+kc+c^g2a+cm+kc—2c^,gC-a

^—2a+cm—kc—c/gc—a^,^—a—kc\ga—cm+kc+c^,g2a+cm+kc—2c^,g
_ 3a+cm—cm+c ^g2a+cm+kc—2c^ gc~a

_ s-3a+cm—kc g-2a—cm-kc+2c^,g—2a+cm
—3a+cm—kcf a+fcc a—c\ —2a—cm—kc+2c —2a+cm

O I o / o J o /

_ g-2a+cm g—a—cm—kc+c^,g-2a+cm

and, using

rsa-cm+cr _ g—2a—cm—kc+2Cy,g—a+cm—Cy,g—2a—cm—kc+2c

rs~cr = sa+kcrs~kc~crs~a,
^,g—a—cm+2c^ _ ^2a—cm+kc+c^,ga+cm—20^g2a—cm+kc+c

and

2a—cm -a-cm-ic+c -2o+cm -«-cm-k+c
/ O / O / / <_> «

136

we have

rsa-cmr

= (rsa~cm+cr) (rs~cr)
s-2a-cm-kc+2crs—a+cm-c rg-a-cm+2cr ^-kc-c^^-a

_ g—2a—cm—kc+2c .^a+fcc^ sa+cm-2c^g2a-cm^g-a
_ s-2a-cm-kc+2c^s-arsc-a^sa+cm-2crs2a-cmrs-a

g—3a—cm—kc+2Cy,gCm—c rg2a-crn^ ^-a
— 3a—cm—kc+2c —a—kc —2a+cm —2a—cm—kc+c

O . / O / . O / O

—'ia—cm—kc+2c(a—c a\ —2a+cm —2a—cm—kc+c
O I <3 / <_> J «_> / «_>

—2a—cm—fcc+c —a+cm —2a—cm—kc+c
— O I O I o

Thus, by induction, for all integers m > 0,

(rs2a+cm+fcc-crsa-cm)2 = y and
^rs2a-cmrsa+cm+kc-c^2 _ ^

Let us now choose m < 0. Using m = —i for an integer i > 0, we have

^rs2a+cm+kc-crsa-cmy, _ s2a-ci+kc-crga+ci^2
_ ^rs2a-c(i-k+l)rsa+c(i-k+l)+kc-c^2 an(j

/ s2a-cmJ.sa+cm+fcc-cj2 _ s2a+ci^sa-ci+kc-cyi
_ ^rs2a+c(i-k+l)+kc-crsa-c(i-k+\)y.

Thus, this is equivalent to the case m = i — k + 1. Obviously, as i > 0,
then i + 2 > 0, and we have

^rs2a+c(i+2)+kc-crsa-c(i+2)y = y and
^rs2a-c(i+2)rsa+c(i+2)+kc-c^2 _ y

137

During the proof of m, however, we found that the two expressions were

also trivial for m — k — 1. Hence, for m = i + 2, we have the equations
true for (i + 2) — k — 1 = i — k + 1, and so, we have a proof for all
negative integers as well.

Hence, for all integers ra,

(rs2a+cm+kc-crsa-cm^2 = 1 and

^s2a-cmrga+cm+fcc-cj2 _ ^

1. Proof of the Case c — 2

pa-2,a,a+2k _ s\r2 Fsa~2rsarsa+2k}

For Fa~2'a'a+2k} n = 3o + 2fc — 2 and, if we can show that s2n =

s6a+4fc-4 _ ^ tden we }iave proved that Fa~2>a>a+2k ^ fja-2,a,a+2k _

(r, s|r2, 56a+4fc_4) rsa~2rsarsa+2k).

• For all integers m,

(rs2a+2m+2fc-2rsa-2m-)2 = j &nd

(rs2a~2mrsa+2m+2/c~2)2 = 1 by II.

• Using m — a in the above equations, we have

I _ /^^2a—2a^ga-\-2a+2k—2^2
= (rs°rs3a+2k~2)2

^3o+2/c-2^2
6a+4fc—4

«_> .

2. Proof of the Case c = 3

Fa-3,a,a+3k = ^ s\r2^ rs^rs^rs^k)

138

For Fa 3>a>a+3A:) then n = 3a + 3k — 3. If we can prove s2n = s6a+6fc 6
s—6a—6fc+6^ Qr si2a+i2fc-i2 _ ^ then we have enough to show

p*a-3,a,a+3kj^ jja-3,a,a+3k _ s|^2 ^60+6/0-6 ^ga—3^^a+3k\^

• For all integers to,

(rs2a+3m+3k-3rsa-3mj2 = and
(rs2a-3mrsa+3m+3fc-3)2 = j by jj

• Substituting to = a in the above equation gives

^ _ ^g<»+3a+3fc—3y,^2a—3o^2
= s4a+'ik-3rs-ars4a+3k-3rs-ar
_ s4a+3k-3 ^a+3k ^sa-3^ s4a+3k-3 ^ga+3krsa—3^
_ 5a+6fc-3 6a+6fc-6^sa-3
_ s6a+6fc-6rs6a+6fc-6r

TllUS yg6a+6fc—6^, = 6a—6fc+6 gjy-J ^6a+6fc—6 _ yg~6a—6/c+6^,
• We know rsa~3rsarsa+3k — \ an(j rs6a+6fc-6r = s-6a-6fc+6 gQ^

s-6a-6fc+6 _ ^sa-3^sa^sa+3fc^s-6a-6fc+6^
_ rsa~3rga rs-6a-6fc+6 ^a+3/c
_ ^,^0-3^,^70+6/0-6^,^0+3^
_ rs"-3 rs6a+6fc-6 sarso+3fc
= rs_5a_6fc+3rsarsa+3fc
_ rs~6a-6k+6 sa-3rsarga+3k
_ s6a+6k-6rsa-3rsarsa+3k

6a+6fc—6
O •

Thus, s6a+6fc 6 is central and s12a+12fc 12 = 1.
j?a-3,a,a+3kj^ fja-3,a,a+3k wJiere 3) = 1.

139

Consider (x) where x = s6a+6k 6. Obviously it is a subgroup of
the kernel of the homomorphism from F to H and, since

rxr = rs6a+6k~6r = s6a+6k~6 = x

and s_1xs = x,

then (x) is the kernel.
We have shown that s4n = sl2a+l2k~12 = \ and s6a+6fc-6 gener_

ates the kernel of the homomorphism. Thus, either pa'3^a+3k ^
#a-3,a,a+3fc Qr Fa-3,a,a+3kjQ ^ Ha-3,a,a+3k jt cannot be that
a — 3 = a = a + 3k (mod 6) and we also have

(a — 3 — o, a — (a + 3k), 3) = (—3, —3k, 3) = 3,

so, by Theorem 3.3 of [6], Ha~3>a>a+3k is finite and has Schur mul-
tiplicator C2.
We now know Fa~3>a>a+3k is finite and as it has a 2-generator, 2-
relator presentation, it has deficiency 0 and, by Corollory 1.2 of
[31], a trivial multiplicator. Thus, Fa~3>a>a+3k ^ j^a-3,a,a+3k^ arl(]
it must be such that, when a is not a multiple of 3,

pa—3,a,a+3/c J ^ pa-3,a,a-\-3k

3. Proof of the Case c = 4

Fa-4,a,a+4fc = (r, S|r2, rS^VsVs"^)

For ^?a-4>a>a+4fc; we need to prove that r5-6a-8fc+8rs6a+8fc-8rs6a+8fc-87- =

s-6a-8fe+8^ g24a+32fc—32 _ ^ anci si2a+i6fc-i6 -g centra} a presentation
for Qs is (x,y\x4,x2 = y2,y~1xy = x~x). Thus, taking x = s6a+8fc~8
and y = rs6a+sk~8r and also proving that (s6a+8fc-8; rs6a+8fc-8r^ ^jie
kernel of the natural homomorphism from F to H, we can show the
kernel is isomorphic to Qg.

140

rs6a+8k 8r ~ s4 by I.

For all integers m,

(rs2a+4m+4k-4rsa-4mj2 = j and
(rs2a-4mrsa+4m+4fc-4)2 = by jj

Setting m = a and m — 0 in the previous equations, we obtain

rs~2ars5a+4fc_4rs_2ars5a+4fc_4 = 1 and

rs2a+4fc-4rsars2a+4fc-4rsa = j

So, as rs2ar = s4rs2a+4fc_4rs~4fc, then

2 — rs-2ars5a+4/c-4rs-2ars5a+4fc-4
= (s4Vs_2a_4fc+4rs_4)s5a+4A:_4(s4fcrs_2a~4fc+4rs_4)s5a+4fc_4
= s4fcrs~2a-4k+4rs5a+8k-8rs~2a-4k+4rs5a+4k—8
_ rs-2a-4fc+4rs5a+8fc-8rs-2a-4/c+4rs5a+8fc-8
_ r5-2a-4fc+4?,s5a+8fc-8^sa^s2a+4/c-4?,5a js5a+8fc-8
= 7-5_2a_4fc+4^56a+8fc_8^s2a+4'c_4?-s6a+8'c_8

We also know that rs6a+8fc-8r ^ s4 and, because a must be odd if
(a — 4, a, a + 4k) — 1, then rs6a+8fc~8r ^ s2a+4fc+2 Thus,

^ _ rs-2a-4fc+4^s6a+8fc-8r52a+4fc-4?,s6a+8fc-8
= rs2rs6a+8k~8rs~2rs6a+8k~8

g 2^Qo,~\~8k «§ 8/c+8^

We know a must be odd, so s6a+8fc-6 is a multiple of 4. There¬
fore, from s-2rs6a+8fc-8rs2 = rs-6a-8fc+8r anf] rs6a+8fc-8r ^ s4) we

141

obtain

rs~6a-8k+8rs6a+8k-8rs6a+8k-8r _ s~6a-8k+8 and

rs6a+8k-8rs6a+8k-8rg—6a-8k+8r _ g—6a—8fc+8 ^

We have

-6a—8fc+8,„ 06a+8fc—8^,^6a+8fc—8 _ 6a—8fc+8^,s rs

s6a+8k-8rs6a+8k-8 _ rs6a+8k-8rs~6a-8k+8r

Alternatively,

^6a+8fc—8^^6a+8fc—8^,^—6a—8fc+8 _ ^s-6a-8fc+8^ gQ

^6a+8fc—8^,^6a+8fc—8 _ 6a—8fc+8j,g6a+8fc—8^,

Hence,

f§^a~^~8k~8TS~®a~8k~^~8 j* _ rs-6a-8k+8rs6a+8k-8r
12a+16fc—16 _ 12a+16fc—16

«_> — f O ! 5

and s12a+16fc 16 is central.

Also,

rs6a+8k-8rs~6a-8k+8r _ ^rs6a+8fc-8rs-6a-8fc+8r^-l
6a+8fc-8 6a+8fc-8 _ -6a-8fc+8 -6a-8fc+8

o / «_> — o / o

s12a+16fc-16 _ rs-12a-16fc+16r

TllUS, s12a+16k~16 = S-12a-16fc+16 and s24a+32fc-32 = j

Since we have that rs-6a-8k+8rs6a+8k~8rsea+sk~8r — s~6a~8k+8,
s24a+32fc-32 _ ^ and si2a+i6fc-i6 jg central; we need only check that

{s6a+8fc-8) rs6a+8fc-8r} generates the kernel of the homomorphism
from F to H. Let x = s6a+8fc~8 and y = rs8a+8k~8r^ and consider
(x,y). Obviously, (x,y) is a subgroup of the kernel and we have

142

rxr — y, ryr — x and s xxs = x. This leaves only to test s

Using m = a + k — lin (rs2a+4™+4fc-4r,§a-4m)2 = 1, we have

?,g6a+8fc-8?,s-3a-4fc+4?,s6a+8fc-8?,s-3a-4/c+4 _ j

and

sars6a+8k-8rs~a _ s4a+4k-4rs~6a-8k+Srs2a+4k-4

sars6a+8k-8rs-a _ s4a+4k-4rs~6a-8k+8rs2a+4k-4
rs-6a-8k+8rs6a+8k-8

As a is an odd number, we have two cases.

(a) a = 1 (mod 4)
Here, a + 1 = 2 (mod 4).

rs6a+8fc-8r = sa+1rs-6a-sk+8rs~a-1 and

s-1rs6a+8fc-8rs = sars-6a-8k+8rs-a_

Given this, we find

s-lrsea+8k-8rs = sars-6a-8fc+8rs-a
_ rs~6a-8k+8rs6a+8k-8

We also know rs6a+8k 8r ~ s4, so

Thus,

V 1x-

(b) a = 3 (mod 4)
Now, a + 1 = 0 (mod 4).
Thus,

rsfia+Sk—8,r sa+lrs6a+8fc-8rs-a-l &nd

sars6a+8k~8rs~a

143

and so,

s-1rs6a+8fc-8rs = sars6a+8k~8rs~a

6a—8fc+8^.^6a+8fc—8^

= x~ly.

Hence, {x,y} generates the kernel. Also, x and y both have order
dividing 4, y~lxy — x"1 from 4.44 and x2 = y2 since s12a+16fc-16
is central. Given this, we know (x, y) is a liomomorphic image of
Qs, which has derived length 2. It is left to show (x,y) = Qs-
Consider the group

Qa,b,c _ ^ s|r2^ g8^ rsarsbrsc^

a homomorphic image of Fa,b'c. Here, Ga,b,c = Ga',b',c', where a',
b' and c' are a, b and c modulo 8. Using Fa~4'a'a+4k for the case

d = 4, then a is odd and a' G {1,3,5,7}. Thus, we are left with
only eight cases for Ga~4'a'a+4k. When k is odd, we have G5'1,5,
G7'3,7, G1'5'1 and G3'7'3, and when k is even, G5'1'1, G7'3'3, G1'5'5
and G3-7'7. Using GAP, we obtain that each of these groups has
derived length 4 and so, Fa~4>a<a+4k must have derived length of
at least 4.

From Theorem 3.5 of [3], the groups Ha'b'c are finite metabelian
groups when (a, 6, c) = 1, n ^ 0 and (d, 6) 7^ 6. As a is odd
and d — 4, then /fa~4>a>a+4fc js finite metabelian and, therefore,
has derived length 2. This implies that (x,y), the kernel of the
natural homomorphism from Fa~4'a'a+4k to Ha~4'a,a+4k, must have
derived length at least 2. Thus, (x,y) = Qs-

4. When (a, c) / 1

According to the Fa'b,c conjecture, we must have (a, b, c) = 1 to ensure

proper results. Consider Fa~c'a'a+kc. Here, s2n — s6a+2kc~2c and d — c.

When (a, c) 7^ 1 for c G {2,3,4}, then we have (a — c, a, a + /cc) 7^ 1

144

and either of two cases

(a) a is a multiple of c or

(b) c = 4 and a is a multiple of 2.

If a is a multiple of c, then all of a — c, a and a + kc are divisible by c

and, as such, are not co-prime. If we consider Fa"c'a'a+kc where a = ci
for some integer i, then using m = i in (rs2a+cm+kc-crsa-cm)2 — \ gives

_ ^rs2a+ci+kc-crsa-ciy.
_ ^rs2a+a+kc-crsa-a^2
= (rs3a+kc~cr)2
— rsea+2kc-^cr

and so, s2n = s6a+2kc-2c = 1.

We find that where a is a multiple of c, Fa~c'a'a+kc = Ha~c'a>a+kc.
We just need to look at the case where c = 4 and a = 2i for some odd
integer i. Using to = f in (rs2a-4mrs"+4m+4fc-4)2 — \ gives

I _ ^rs2a-4irsa+4i+4k-4^2
= ^i52a_2a^5a+2a+4'c_4 j2

^3a+4fc—4^2
6a+8k—8

— 6 i

and s2n = 56a+8fc_8 = l. Hence, jpa-4>a>a+4/c ^ j^a-4,a,a+4fc w}iere a = 2i
for i odd.

Thus, where c G {2,3,4} and (a — c, a, a + kc) ^ 1, we find that
pa—c,a,a+kc pa—c,a,a+kc

□

145

4.6 Fa 2c'a'a+fcc for a, c, k G Z with (2, /c) = 1
With our proof of the groups Fa~c,a'a+kc for a,k E Z and d = c E {2,3,4},
we had thus finished the proof of the Fa'b'c conjecture for all groups where
d = (a — b,b — c) for some d E Z and the difference between two of the powers
of s in the relator rsarsbrsc is exactly d.

Our final aim was to show the Fa,b,c conjecture true for all groups of the
form, Fa~ic'a,a+kc for a,j,k £ Z, (j,k) = 1 and d — cE {2,3,4}. However,
for the groups Fa~c'a,a+kc, it had been much easier to generalise our proof of
pa-c,a,a+2c than use that of Fa~c,a,a+c, and so, before finally considering
the groups Fa~:>c'a'a+kc with (j, k) = 1, we decided to take a smaller step and
study the groups Fa~2c'a'a+kc for a,k E Z, (2, k) — 1 and d = c E {2, 3, 4}.

In order to use the same arguments for Fa~2c,aA+kc as in the proof of the
groups Fa~c'a'a+kc, we would need rs6a+2kc~4cr sc as well as the fact that,
for all integers m,

(rs2a+cm+kc-2crsa-cmj2 = j and
^rs2a-cmrsa+cm+kc-2c^2 _ ^

Employing a similar proof technique to our former proof and using (2, k) = 1,
we could easily show rs6a+2kc~4cr ^ sc_ it was again our induction proof on

to > 0 for the second required step that caused the most difficulty.
We found that while we could prove the base case to = 0, the second base

case to = 1 was no longer obvious. A proof for to = 2, however, required
little effort. Also, performing a straightforward conversion of the inductive
step using the appropriate changes for the new groups, we found that when
considering the case for to, we needed only to assume that the relations were

true for to — 4 and to — 2 in our hypothesis. Both to — 4 and to — 2 are

even whenever to is, and thus, as we had the base cases, m = 0 and to = 2,
we had an inductive proof for the relation sequences for all integers m > 0
where to is even.

This would not do, however, as even in our following arguments for the
most simple case c = 2, or the groups Fa~4'a'a+2k with (2, k) = 1, we required

146

a substitution of m = a into the relation sequences. Since we needed (a, 2) =

1 to ensure (a — 4, a, a + 2k) — 1, then we could not make this substitution
as a is not even, and it was not enough to have the relations hold for just
even integers.

Studying our inductive proof further, however, we realised that when
considering the two relations for m, we had been required to prove those for
m — k — 2. As k must be odd and both m and 2 are even, then m — k — 2
is itself odd, but yet the two relations hold. Thus, for any odd integer I, the
two relations hold for I + k + 2. Additionally, with the proof of I + k + 2,
we have a proof of the relations for (I + k + 2) — k — 2 = I, and hence, the
relation sequences hold for all integers m.

Having acquired all the tools that we needed for this case, we formulated
the proof of the conjecture for the groups F°~2c,a>a+fcc with a, k £ Z, (2, k) — 1
and d — c £ {2, 3, 4}, and we state it now in the form of a theorem.

Theorem 4.6 For the groups

pa—2c,a,a+kc = ^ ^a-Zc^a^a+fcc)

with a £ Z, c £ {2, 3, 4} and (2, k) — 1 let

Ha-2c,a,a+kc = ^ rsa-2crgarsa+kc^ s6a+2kc-4cy

If,

• c — 2 and (a, 2) = 1, then S6a+Ak~8 = 1 and

P*cl—4,a,a+2/c 4,a,a-f-2/c

• c = 3 and (a, 3) = 1, then s12a+i2fc-24 — \ and

j?a—6,a,a+3A;J~ ffa~6,a,a+3fc

147

c = 4 and (a, 4) = 1, then s24a+32fc 64 = 1, si2«+i6A; 32 ^ r an(j

pia—8,a,a+4kj — Ha~3'a'a4_4'c

• (a, c) 7^ 1 then (a — 2c, a, a + kc) ± 1, s6a+2fcc"4c

Fa--2c,a,a+/cc r^/ j£ja—2c,a,a+/cc

Proof. In Fa-2c'a'a+fcc, we have

n = CL — 2c ~t~ a d -f~ kc

= 3a + kc -
- 2c,

s2n =
6a+2kc—4c

1 = (a — 2c, a, a + kc) when (a, c) =

d = ((a — 2c) — a, a — (a + /cc))
— c when (2, k) = 1.

Also,

rsa"2cr = s~a~kcrs~a,
rsar = s2c~ars~a~kc and

rsa+kcr = s~ars2c~a.

Hence,

rs2a~icr — (rsa~2cr)2
= s~a~kcrs~2a~kcrs~a (4.45)

148

rs2a 2cr — (rsa 2cr){rsar)
= s-^rs2c-2ars-a-kc &nd (4.4(3)
= (rsar){rsa~2cr)
= s2c~ars~2a~2kcrs~a, (4.47)

rs2ar — (rsar)2
= s2c-ars-2a-fcc+2Crs-a-fcC) (4 4g)

rs2a+fcc-2cr = (rs«-2cr)(rsa+fccr)
_ s-a-kcrs~2ars2c-a an(| (4.49)
= (rsa+kcr)(rsa~2cr)
= s~ars~2a~kc+2crs~a, (4.50)

rg2a+k°r _ (rsar)(rsa+fccr)
S2c-ars-2a-kcrs2c-a and

= (rsa+kcr)(rsar)
= s~ars4c~2ars~a~kc, (4.52)

rs2ci+2kcr _ (rsa+kc^ 2
= s~ars2c~2ars2c~a, (4.53)

rs2cr — (rsar)(rs2c ar)
= s2c~ars~kcrsa+kc and (4.54)
= (rs2c~ar){rsar)
= sarskc+2crs~a~kc, (4.55)

149

rskcr = (rsa+kcr)(rs ar)
= s~arskc+2crsa~2c and (4.56)
= (rs~ar)(rsa+kcr)
- °a+kcrs~2crs2c~a, (4.57)= s

rskc+2cr = (rsa+kcr)(rs2c ar)
= s~ars2crsa+kc and (4.58)
= (rs2c~ar)(rsa+kcr)
= sarskcrs2c~a. (4.59)

So,

rs2a~2cr = s~a~kcrs2c~2ars~a~kc
a—kc(02a+2/cc„ a—2c\ —a—he

= s a (sars rsa)s a from 4.46 and 4.47
= s-fccrskc„c,2a+2kcrs~kc-2c ^

rg2a+kc-2cr _ s-ars-2a-fcc+2crs-a
= s~a(sa~2crs2arsa+fcc)s~a from 4.50 and 4.49
= s~2crs2arskc, (4.61)

rs2a+kcr = s2c-ars-2a-fccrs2c-a
= s2c~a(sa+kcrs2a~4crsa)s2c~a from 4.51 and 4.52
= skc+2crs2a~4crs2c. (4.62)

We start by proving the necessary steps (I-III) to prove each of the cases,
c = 2, c = 3 and c = 4.

J rs&a+2kc-Acr ^ gC

150

From the equations 4.60, 4.61 and 4.62, we have both

rs,6a+2kc—4c,r (rs,2a+kc—2c,r) (rs2a~2cr) (rs2a+kcr)
s-2crsea+2kc-4crs2c

and

rs,6a+2kc—4c,r ,2a+kc—2c,r)

Since (2, k) — 1, then k — 1 must be a multiple of 2 and

s-°rs&a+2kc~4crsc _ gkc-c s~kcrs6a+2kc-4crskc g-kc+c
= s(k-l)crs6a+2kc-4crs~(k-l)c
_ rg6a+2kc-4cr

In Fa~2c<a>a+kcj for aii even integers m > 0,

(rs2a+cm+fcc-2crsa-cm)2 = j &nd
^s2a-cm^sa+cm+fcc-2c^2 _ ^

Proof by induction:

Base step

m = 0

rs2a+kc-2crsars2a+kc-2crsa

rsa+kcrsa~2crsa

1

151

rs2arsa+kc~2crs2arsa+kc-2c
= rs^arsa-+^c-^c^s^crs^a+kc-2crs-kc^sa+kc-2c
— rg2arsa+kcrs2a+kc-2crsa-2c
= rs2a(s~ars2c~a)s2a+kc~2crsa~2c
= rsarsa+kcrsa~2c
= 1

rs2a+kcrsa-2crs2a+kcrsa-2c
= rs2a+kc(s~a~kcrs~a)s2a+kcrsa~2c
= rsarsa+kcrsa~2c
= 1

rs2a-2crsa+kcrs2a-2crsa+kc
= rs2a~2c(s~ars2c~a)s2a~2crsa+kc
= rsa~2crsarsa+kc
= 1

Inductive step

Assume for 0 < i < m and i and m even,

(7.s2a+ci+fcc-2crs«-cij2 = j &nd
^rs2a-c«rsa+ci+fcc-2c^2 _ ^

Since we have shown it to be true for m G {0,2}, we can assume

m > 4.

Consider i = m, with 4 < m and m even. This means 0 < m — 4 <

152

TO, SO

(rs2a+Cm+fcc-6crsa-cm+4C)2 = j ^

(rs2a-cm+4crsa+cm+/cc-6c)2 _ ^

We also have 0 < to — 2 < to, so

(rs2a+cm+fcc—4crsa—cm+2c)2 = j and

(j-g2o.—cm+2c^,^a+cm+kc—4c^2 __

We need some additional equations for our proof. Consider to —

A; — 2. As to is even, but k is odd, then to — A: — 2 is not even and,
where to < A; + 2, then to — A; — 2 < 0 and we cannot assume that
either

^rs2a—c(m—k—2)^,^a+c(m-k—2)+kc—2c\2 _ ^s2a—cm+kc+2c^^a+cm-Ac^2
= 1 or

^rs2a+c(m-k-2)+kc-2cr^a—c(m—k—2)^2 _ ^2a+cm—Ac^sa-cm+kc+2c^2
= 1.

Using our inductive hypothesis, however, we can form the proofs
for these necessary equations. We have

r = skcrsa~2crs2crs~a~kc, from 4.57

j _ ^gO+cm+fcc—4c^,^2a—cm+2c^2
2 _ a+cm—4c^,^—2a—cm—fcc+6c^2

and

J _ /^s2a+cm+fcc-4c^5a-cm+2c\2

153

which gives

From

rs2a-cm+kc+2crsa+cm-4cr
_ rs2a-cm+kc+2crsa+cm-4c
_ rs2a-cm+kc+2c rsa+cm+kc-4cr ga-2crs2crg-a-kc
— rskcrs~a-cm-kc+4c rs-a+cm-4cr g2crg-a-kc
_ rgkcrga-2crsa—cm+4c rg2a+cm+kc-4cr g—a-kc
— rskc rsa"2cr g2Cy,g—2a—cm—kc+4c^,g—2a+cTn—kc—2c
_

rgkc^s~a-kcrg-a^ s2c^s-2a-cm-kc+4c^s~2a+cm-kc-2c
_ rg~a rs2c~ar s_2a_cr"_fcc+4cj-<g_2a+c,n_fcc_2c
__ rg—a ^garga+kc^g—2a—cm—kc+4crg—2a+cm—kc—2c

—a—cm+4c —2a+cm—kc—2c
<5 / o .

r = sa+kcrsa~2crsa,
r = s2c~ars~a~kcrs~a,
1 = ^rs2a+cm+^c-4crsa-cm+2cj2
1 = (j-g~2a+cm—kc—2c^,g—a—cm+4c^2

and

1 = (rs2a-cm+kc+2crsa+cm-4c^2

154

we obtain

rsa-cm-i-kc+2crs2a+cm-4cr
— rgd—cm+kc+2c 2a+cm—4c r

_ rsa—cm+kc+2crs3a+cm+kc—4crsa—2crsa
_ ^sa-cm+fcc+2c ^ 53a+cm+fcc—4cysa—2c^,^a
= rs-cm+fcc+4crs-a-fcc rs2a+cm+fcc-4cr ^a^c^a
__ ^,^-cm+/cc+4c ^g—2a+CTn—kc—2cr 2a—cm—fcc+4c^^cm—4c^sa
= rsa+fccr52a-c)ri+fcc+2c rs~a~kcr scm~4crsa
— rsa+kcr s3a~crn+kcrsa+crn~4crsa
— ^s~arg2c-a\ ^ia-cm+kc^sa+cm-4crga
— s~a rs2a-cm+kc+2crsa+cm-4cr

—2a—cm+4c —a+cm—kc—2c
— l o

Thus,

(rs2a-cm+kc+2crsa+cm-4cj2 = j ^

^rg2a+cm—4c^sa—cm+kc+2c\2 _ j

Now, let i = m.

From

a+cm—4c —2a+cm—kc—2c —a—cm+4c —2a+cm—kc—2c
I o / — O / o / o 7

rSkc+2cr = sarskcrs2c~a,
rs~a+cm—kc-2cr __ ^2a+cm—4c^.^a—cm+kc+2c^,g2a+cm—4c

and

^,g2a+cm+kc—4c^, __ ^—a+cm—2c^,^—2a—cm—kc+4c^,^—a+cm—2c

155

we find

rs
,a+cm-\-kc—2c,r

(rs',a+cm—4c,r)(rskc+2cr),fcc+2c,

_ 2a+cm—fcc—2c^,^—a—cm+4c a+cm-kc-2c^, ^kc^^Zc—a
_ s-2a+cm—kc-2c rs®r sa-cm+kc+2c^,g2a+cm+kc—ic^^c—a

g—2a+cm—kc—2crg2c—ay,g—a—kc^ga—cTn+kc+2c^g2a+cm+kc—4Cy,g2c—a
g—3a+cm—kc^g—cm+2c ^,^2a+cm+kc—4c^, <,2c—a

_ 3a+cm-kc yg-°-r g—2a—cm—kc+4c^,^—2a+cm
—3a+cm—kc/ a+kc a—2c\ — 2a—cm—fcc+4c — 2a+cm

I O / u J O / o

—2a+cm —a—cm—fcc+2c —2a+cm
o I O / O «

a—cm+2c —2a—cm—kc+4c —a+cm—2c —2a—cm—kc+4c
/ «_> / — o / o / o

and given,

sa+kcrs~~kc~2crs~a

rs—a—cm+4c,r ^2a—cm-\-kc+2c^,^a+cm—4c^,^2a—cm+kc+2c

and

rs
2a—cm

r
-a—cm—kc+2c —2a-{-cm —a—cm—kc+2c

o f o / <b

156

we have

= (rsa~cm+2cr) (rs~2cr)
— s~2a-cm-kc+Acrs~a+cm-2c rs~a-cm+Acr s~kc-2crs~a
— g—2a—cm—kc+Ac ga+cm-Ac^,^a-cm^g-a
_ s-2a-cm-kc+ic^s-a^s2c-a^ sa+cm-4crs2a-cm^s~a
_ s-3a-cm-kc+4crscm-2c ^^a-cm^, —a

3a—cm—kc+Ac —a—kc —2a+cm —2a—cm—kc+2c
— O ./ O I.o I o

_ g—3a—cm—kc+Ac ^a—2c^,^a\^—2a+cm^,g—2a—cm—kc+2c
c—2a—cm—kc+2c —a+cm —2a—cm—kc+2cc? / O / o

Thus, by induction, for all even integers m > 0,

(rs2a+cm+fcc-2crsa-Cm^2 = x and

^rs2a-crnrsa+cm+kc-2c^2 _ ^

In F"-2c'a'a+kc^ for au integers m,

(rs2a+cm+kc-2crsa-cmj2 = and

^rg2a-cmrsa+cm+kc—2c^2 _ ^

Let us now choose an even integer m < 0. Using m = —i for an even

integer i > 0, we have

(rs2a+cm+fcc-2<ysa-cm)2 _ ^rg2a-ci+kc-2crsa+ci^2
— ^rs2a-c(i-k+2)rsa+c(i-k+2)+kc-2cy. &nd

(rs2a_CTnrsa+cm+fcc_2c)2 = (rs2a+cVsa_ci+fcc-2c)2
_ ^rs2a+c(i-k+2)+kc—2crsa—c(i-k+2)\2

157

Thus, this is equivalent to the case m = i — k + 2. Obviously, as i > 0
and i is even, then i + 4 > 0, i + 4 is even and the two expressions
equal the identity for m = i + 4. During the proof of m, however, we

found that the two expressions were also trivial for m — k — 2. Thus,
for to = i + 4, we have the equations true for (i + 4) — k — 2 — i — k + 2,
and the proof holds for all negative even integers as well.

In the proof for m, an even integer, we were able to show the two

equations held for m — k — 2, which is an odd number as (2,k) = 1.
Consider m = i+1, where i is even. Obviously, i+k+ 3 is even and thus,
the two equations hold for m = i+k+3. Using the proof for m = i+k+3,
we can show that the two equations hold for (i + k + 3) — k — 2 = i + 1.
Thus, for any even integer i, we can show the equations also hold for
i + 1.

Hence, for all integers m,

(rs2a+cm+fcc-2crsa-cm) 2 = x ,md

^rs2a-cmrsa+cm+kc-2c^2 _

1. Proof of the Case c = 2

Fa-4,a,a+2k = ^r^s\r\rs^rs^rs^)

For /ra-4,a,a+2fc> then n = 3a + 2k — 4 and d = 2 where (2, k) = 1. If
we can show that s2n — s6a+4k~8 = 1, then ^?a-4>a.«+2fc ^ fja-A,a,a+2k _

(\V c>6a+4/c—8

• For all integers m,

^s2a+2m+2k-4rsa-2m^2 = j and

(rs2a-2mrsa+2m+2fc-4)2 = j by JJJ

158

• Using m — a in the above equations, we have

^ — (rS^a~2a^^a+2a+2/c—4^2
= (rs°rs3a+2k-4)2

^3a+2k—4^2
_ s6a+4k-8

2. Proof of the Case c = 3

pia—6,a,a+3k _ s\r2^rsa~6rsarsa+3k}

For j?a-6,a,a+3/c^ n _ ga _|_ 3/. _ g and d _ 3 where (2, A;) = 1. If we

can show that s2n = s6a+6k'12 = s-6a~6k+12, or si2<*+i2fc-24 = ^ then
we have enough to show

j^a—6,a,a+3kj(J^ Od j^a—6,a,a+3k _ ^ ^6a+6fc—12 j-ga~^fgafga^~3k^

• For all integers m,

(rs2a+3m+3fc—6rsa—3m)2 = j and
('rs2a-3mrsa+3m+3fc-6-)2 = x gy JJJ

• Substituting m — a in the above equations gives

J _ /?,sa+3a+3fc-6?,s2a-3a^2
= s4a+3fc-6rs"ars4a+3fc"6rs-ar
__ s4a+3k—6^a+3krsa-6^4a+3k-6^a+3krsa—6^
_ s5a+6k-6rs6a+6k-12rsa-6
_ ^6a+6fc—12^,^6a+6fc—12^,

Thus, rs6a+6fc-12r = s-6a-6fc+12; and s6a+6fc-12 = rs-6a-6fc+12r_

159

We know rsa 6rsarsa+3k = i and rs6a+6k 12r = s 6a 6fc+12 so,

s-6a-6fc+12 _ ^rsa-6rsarsa+3k^s~6a-6k+12^
_ rga-6rsa rs~6a-6k+12 ga+3k
_ rsa-6rs7a+6k-12rsa+3k

= rsa~6 rs6a+cfc_12 sarsa+3k
— rs-5a-6fc+6rsarsa+3fc
_ rg-6a-6k+12 sa-6rsarga+3k
_ s6a+6k-12rsa-6rsarsa+3k

6a+6/c—12
—

«j

Thus, S 6a 6fc+12 = s6a+6fc 12 ancj s6a+6fc 12 jg central; so

s\2a+\2k-2A _ j

Fa-6,a,a+3^2 ^ Ha-6,a,a+3k where (^3) = J
Consider (x) where x = s6a+6k~n. Obviously it is a subgroup of
the kernel of the homomorphism from F to IF and since

TXr = rs6a+6fc"12r = s6a+6fc-12 = x

and s lxs = x,

then (x) is the kernel.
We have shown that s4n = s12a+12fc-24 — \ and s6a+6fc-i2 gener_

ates the kernel of the homomorphism. Thus, either Fa~6>a<a+3k ^
ffa~6,a,a+3k Qr pa-6,a,a+3kj ^ Jja-6,a,a+3k _ gjnce (2,k) = 1, then
it cannot be that a — 6 = a = a + 3k (mod 6). Also,

(a — 6 — a, a — (a + 3k), 3) = (—6, —3k, 3) = 3,

so, by Theorem 3.3 of [6], Ha~6'a>a+3k is finite and has Schur mul-
tiplicator CV

160

We now know Fa 6>a>a+3fe is finite and as it has a 2-generator, 2-
relator presentation, it has deficiency 0 and, by Corollory 1.2 of
[31], a trivial multiplicator. Thus, Fa~6^a+3k ^ Ha~6'a>a+3k, so it
must be such that, when a is not a multiple of 3,

j^cl—6,a,a+3/c jjjci-6,a,a-\-3k

3. Proof of the Case c = 4

Fa-8,a,a+4k = ^ s\r^ rs^rs\s^)

For fa-8,a,a+4k ^ n _ 3a _|_ 4£ _ 8 an(| d = 4. where (2, k) = 1. We want to
prove that 6"—8^+lWs6a+8fc—16^,g6a+8/c—16j, _ 6a—8fc+16 g24a+32k—64 _

1 and s12a+16fc-32 is central. Given this, we could show that the kernel
of the natural homomorphism from F to H is generated by s6o+8fc-16
and rs6a+8fc-16r anci is isomorphic to Q$.

• rs6a+8fc-16r ^ s4 by j

• For all integers m,

(rs2a+4m+4fc-8rsa-4m-)2 = x and

(rs2a-4mrsa+4m+4A:-8)2 = x by JJJ

• Setting m = a and m = 0 in the previous equations, we obtain

rs~2ars5a+4k~8rs~2ars5a+4k~8 = 1 and

rs2a+4fc-8rsars2a+4/c-8rsa = ^

161

So, as rs2ar — s?'rs2a+4k 8rs 4fc then

_ 2a^,^5a+4/c—8^,^—2a^,^5a+4fc—8
= (s4krs~2a~4k+8rs~8)s5a+4k~8(s4krs~2a~4k+8rs~8)s5a+4k~

2a—4/c+8^,^5a+8A:—16^,^ —2a—4/c+8^g5a+4/c—16
_

rs~2a-4k+8rs5a+8k-16rs~2a-4k+8rs5a+8k-16
_ rs-2a-4fc+8rs5a+8/c-16^5ars2a+4fc-8rsa\s5a+8fc-16
_ 2a—4fc+8^,^6a+8fc—16^,^2a+4fc—8^,^6a+8fc—16

We also know that rs6a+8k 16r ~ s4 and, because a must be odd to
ensure (a — 8, a, a + 4fc) = 1), then rs6a+8fc~16r ^ s2a+4fc-6_ ^llus^

J _ 2a—4fc+8^,^6a+8fc—16j,^2a+4fc—8^,^6a+8/c—16
= rs2rs6a+8/c-16rs-2rs6a+8fc-16

and S~2^.g6a+8fc—16^2 _ ^^-60-8^+16^

We know a must be odd, so s6a+8fc~14 [s a multiple of 4. Therefore,
from s-2rs6a+8fc-16rs2 _ rs-6a-8fc+16r an(j rs6a+8fc-16r ^ g4^ wg

obtain

rs-6a-8fc+16rs6a+8fc-16rs6a+8fc-16r _ 5-6a-8/c+16 an(-[

rs6a+8fc-16rs6a+8/c-16rs-6a-8fc+16r _ s-6a-8fc+16 gg\

We have

s-6a-8fc+16rg6a+8fc-16rs6a+8fe-16 _ ^^-60-8^+16^ go

^6a+8fc—16j,^6a+8fc—16 _ r^6a+8k-16 — 6a—8fc+16^

Alternatively,

s6a+8fc-16rs6a+8fc-16rs-6a-8fc+16 _ rs~6a-8k+16r SQ

^6a+8fc—16^.^6a+8fc—16 _ ^^-60-8^+16^^60+8^-16^

162

Hence,

rs6a+8k-16rs~6a—8Ai+16^ _ ^s-6a-8fc+16^s6a+8/c-16^,
12a+16fc—32 _ 12a+16fc—32

O / o / j

and s12a+16fc-32 is central.

Also,

rs6a+8k-l6rs~6<i-8k+16r _ ^rs6a+8k-l&rs~6a-8k+16r^-l
6a+8fc—16 6a+8fc—16 —6a—8/c+16 —6a—8fc+16

o / «b — o / o

s12a+16fc-32 _ rs-12a-16fc+32r

Thus 32 = s-12a—16/c+32 an(J ^24a+32fc-64 _

• Since we have that 7'S-6a-8fc+16rs6a+8fc-16rs6a+8fc-167- = s-6a-8fc+i6^
s24a+32fc-64 _ ^ an(j si2a+i6fc-32 js centraJ; we need only check that

{.sGa+8fc-i6; rs6a+8fc-i6,r| generates the kernel of the homomorphism
from F to H. Let x = s6a+8fc-16 and y = rs&a+8k-i6r^ ancj congider
(x, y). Obviously, (x, y) is a subgroup of the kernel. We also have
rxr = y, ryr — x and s_1xs = x, leaving only to test s-1?/s to
show that (x, y) is the kernel.

Using m = a + k — 2 in (jS2a+4m+4fc-8rsa-4m)2 = i; we have

^56a+8fc—16^—3a—4fc+8?,56a+8A:—16^-30—4/c+8 _ ^

and

^0^,^60+8^-16^,^-0 _ ^4a+4fc—8^,^—6a—8fc+16^,^2a+4/c—8

We also know rs6a+8fc-16r ~ s4, so

sa^s6a+8/c-16rs-o _ s4a+4/c-8,rs-6a-8fc+16rs2a+4fc-8

= 7.s_6a_8fc+l67'S6a+8fc_16

There are two cases, as a is an odd number.

163

(a) a = 1 (mod 4)
Here, o + 1 = 2 (mod 4).
Thus,

rs6a+8fc-16r = sa+lrs-6a-8fc+16rs-a-l ^

s_1rs6a+8fc_16rs = sars~6a~8k+16rs'a.

Using this, we find

s-1rs6a+Sfc-16rs = sars-6a-8fc+16rs-a
_ rs~^a-8^'+16^,g6a+8fc-16
= y~xx-

(b) a = 3 (mod 4)
Now, a + 1 = 0 (mod 4).
Thus,

rs6a+8fc-16r = sa+lrs6a+8fc-16rs-a-l &nd

s-1rsea+8fc-16rs = sars6a+8fc-16rs-a;

SO,

s-1rsea+8fc-16rs = sars6a+8fc-16rs-a
_ 6a—8fc+16j,^6a+8fc—16^,
= x~ly.

Hence, {x, y} generates the kernel. Also, x and y both have order
dividing 4, y~lxy — x~~l from 4.63 and x2 — y2 since s12a+16fc_32 is
central, so (x, y) is a homomorphic image of Q$, which has derived
length 2. It is left to show (x,y) = Qg-
Consider the group

Ga'b'c = (r, s|r2, s8, rsarsbrsc),

164

a homomorphic image of Fa'b'c. Here, Ga'b'c = Ga''b''c', where a',
b' and d are a, b and c modulo 8. Using Fa~8'a'a+4k for the case

d = 4, then a is odd and a' G {1,3,5,7}. Thus, we are left with
only four cases for Ga~8,a'a+4k. As (2,k) — 1, then k is odd, and
we have G1'1'5, G3'3'7, G5'5'1 and G7'7'3. Using GAP, we obtain that
each of these groups has derived length 4, and Fa~8'a'a+4k must
have derived length of at least 4.
From Theorem 3.5 of [3], we know that all groups Ha'b'c are finite
metabelian groups when (a, b, c) = l,n/ 0 and (d, 6) 7^ 6. As a is
odd and d — 4, then F[a~8'a'a+4k js finite metabelian and, therefore,
has derived length 2. This implies that (x,y), the kernel of the
natural homomorphism from Fa~8'a'a+4k to //«-»,must have
derived length at least 2. Thus, (x,y) = Q$.

4. When (a, c) 7^ 1

According to the Fa,b'c conjecture, we must have (a, b,c) = 1 to ensure

proper results. Consider Fa~2c^a+kc. Here, s2n = sea+2kc~4c and d = c

when (2,k) = 1. When (a, c) 7^ 1 for c G {2,3,4}, then we have
(a — 2c, a, a + kc) 7^ 1 and either of two cases

(a) a is a multiple of c or

(b) c = 4 and a is a multiple of 2.

If a is a multiple of c, then all of a — 2c, a and a + kc are divisible by c

and, as such, are not co-prime. If we consider Fa~2c-°>a+fcc where a = ci
for some integer i, then using m — i in (rs2a+cm+kc-2crsa~cm)2 = 1 gives

1 /(rs,2a+cj+fcc—2(' 2

(rs,2a+a+A;c—2c a—a\2

(rs',3a+fcc—2e \2r)
rs,6a-f2/cc—4c,

and so, s2n = s6a+2kc 4c = 1.

165

We find that where a is a multiple of c, Fa 2c>a-a+fcc ^ Ha 2c-a.a+fcc.
We just need to look at the case where c — 4 and a — 2i for some odd
integer i. Using m — i in (rs2a-4mrsa+4m+4fc-8)2 = \ gives

£ _ ^rs2a-4irsa+4«+4fc-8j2
__ ^rs2a-2arsa+2a+4k-8^2

/^3a+4fc—8^2
6a+8fc—16

^ 5

and s2n = s6a+8fc"16 = 1. Hence, Fa~8'a'a+4fc ^ Ha~s>a>a+Ak where a = 2i
for i odd.

Thus, where c G {2,3,4} and (a — 2c, a, a + kc) ^ 1, we find that
j£pa—2c,a,a-\-kc jLja—c,a,a-\-kc

□

4.7 ^pa-jc,a,a+fcc for ^ ^ k £ Z with (j, k) = 1
The difficulties we encountered in trying to modify our proof of the Fa'fc'c
conjecture for the groups Fa~c'a,a+kc with a,c,k G Z to one for the groups

pa-2c,a,a+kc £or C) ^ ^ with (2, k) = 1 gave us a good indication of what
to expect for our last generalisation.

For the groups Fa~jc>a>a+kc for a, c, j,k G Z with (j, /c) = 1, we still needed
to be able to prove two steps in order to use the same following arguments
for the cases, c = 2, c = 3 and c = 4, the first of which was relatively easily
determined. By the same form of induction for the second step as for our

previous groups, we found we could obtain a proof for all multiples of j,
m — Ij for some integer /,

(rs2a+rnd+kd-jdrsa-mdj2 = £ and

^rs2a-mdrsa+md+kd-jd^2 _ £

However, we needed these relation sequences to be true for all integers m,

166

not only multiples of j. Previously, we had been able to show they held for
the rest of the integers because while proving the equations for m, we also
proved the case m — k — j. However, in this earlier proof, j — 2, so while
m was even, m — k — 2 was odd and this was enough. Here, (j, k) = 1, so

where m is a multiple of j, m — k — j is neither a multiple of j nor of k, and
we have not determined the truth of the relation sequences for all integers.
Thus, we needed another induction proof to consider including multiples of
k. Once that was determined, however, the fact that j and k are co-prime
allowed us to show the relation sequence was true for all integers m.

As groups of the form, Fa~jc'a,a+fcc for a,c,j,k e Z with (j,k) = 1,
actually encapsulate all groups Fa'b'c, our proof of this case finished our

study of the Fa'b'c conjecture. The proof is contained in the next chapter.

167

Chapter 5

Proof of the Fa' >c Conjecture

In our investigation of the Fa'b'c conjecture, we found it easier to consider
these groups when written as

Fa-jd,a,a+kd = ^^2^ ^a-jd^a^a+fcd) f

for some j,k G Z where (j, k) = 1.
Beginning with the original form,

pa,b,c _ s|r2) r5ars6rsc),

it is obvious that Fa'b'c = Fc'a'h and, for Fc,a'b, we have

n = a + b + c,

d = (c — a, a — b) and
^2n ^2a+26+2c

When considering Fc'a,b with d — (c — a, a — b), then for some integers j
and k, it must be that

a — c — jd and b — a = kd with (j, k) — 1.

Thus, c — a — jd and b = a + Aid, and we can write any Fa'b'c equivalently
clS

169

Fa-jd,a,a+kd = (rj s|r2> ^a-jd^a^a+fed^ ^ = L

We will use this notation throughout.
Before we can give our proof of the conjecture, some preliminary results

and lemmas, which form the building blocks of our proof, must be stated.
For Fa~id<a<a+kd with (j, k) = 1, we have

n = a — jd + a + a + kd
— 3a + kd — jd and

2n 6a+2kd—2jd
o — .

Note that in Fa~id^a+kd; we have

rsa~jdr = s-a-kdrs~a,
rs V = s3d-ars-a-kd and

rs"+kdr = s-arsjd-a_

Hence, we obtain the simple relations

rs2a-2jdr = (rs«-^r)2
= s~a~kdrs~2a~kdrs~a, (5.1)

rg2a-jdr _ {jSa-3dr^(j-gar^
= s-a-kdrsjd-2ars-a~kd and (5.2)
= (rsar)(rsa~^dr)
- sjd~ars~2a~2kdrs~a, (5.3)

rs2ar = (rsar)2
= Sjd~arS-2*-kd+idrs-a-kd^ (5.4)

170

rs2a+kd-jdr = (r5«-jrfr)(rs«+Wr)
= s'a-kdrs'2arsjd-a and (5.5)
= (rsa+kdr)(rsa-jdr)
= s-ars-2a'kd+jdrs-a, (5.6)

rs2a+kdr = (rs<y)(rsa+fedr)
= sjd-ars-2a-kdrsjd-a ^ (57)
= (rsa+kdr)(rsar)
= s-ars2jd~2ars~a-kd, (5.8)

rs2a+2kdr _ (rsa+kdrj 2
= s~~arsjd~2arsjd~a, (5.9)

rsjdr — (rsar)(rs*d ar)
= sjd~ars-kdrsa+kd and (51Q)
= (rsjd-ar)(rsar)
= sarskd+jdrs~a~kdi (5.11)

rskdr = {rsa+kdr){rs~ar)
= s-arskd+jdrsa~jd and (5.12)
= (rs~ar)(rsa+kdr)
= sa+kdrs-jdrsjd-a? (5.1.3)

rskd+jdr = (rsa+kdr)(rsjd~ar)
= ,s~arsjdrsa+kd and (5.14)
= (rsjd'ar){rsa+kdr)
= sarskdrsjd~a. (5.15)

171

So,

rs2a~^dr = s-a-kdrsjd-2ars-a~kd
= s-a-kd(sars2a+2kdrsa-id)s-a-kd from 5.2 and 5.3
= s-kdr^a+2kdrs-kd~id, (5.16)

rs2a+kd-jdr _ s-ars~2a-kd+jdrs-a
_

g a^a jdrs2arga+kd^s a from 5 g and 5 5
= s~jdrs2arskd, (5.17)

rg2a+kdr _ sjd-ars~2a-kdrsjd-a
= sjd-a(s*+kdrs2a-2jdrsa>)sjd-a frQm 5 7 5_g
= skd+jdrs2a-2jdrsjd. (5.18)

From these numerous equations, we can form and prove the necessary

lemmas.

Lemma 5.1 In the groups Fa~id^a+kd with j, k E Z, then

rs&a+2kd-2jdr ^ gd

Proof. Using the equations 5.16, 5.17 and 5.18, we find

rg6a+2kd-2jdr _ s2a+kd-jd\/ s2a-jdr^rg2a+kdr^
= s-idrsQa+2kd-2jdrsjd and

rs6a+2kd-2jdr _ ^rs2a-jdr^rs2a+kdr^rs2a+kd-jdr^
= S~kdrS®a+2kd-2jdrskd

172

Since (j, k) = 1, then xj + yk

s-drs&a+2kd-2jdrsd _

= 1 for some integers x and y, and

s~(xj+yk)drs6a+2kd-2jdrs(xj+yk)d

g-xjd s~ykdrs6a+2kd-2jdrsykd gxjd

s~xjdrs&a+2kd-2jdrgxjd

rs&a+2kd-2jdr

Lemma 5.2 In Fa •?d,a'a+fcd, for all integers I > 0,

(rs2a+(lj)d+kd-jdrsa-(lj)dy = j &nd

(,rs2a-(lj)drsa+(lj)d+kd-jd^2 _

Proof. Proof by induction on I

Base step

1 = 0

rs2a+kd-jdrsars2a+kd-jdrsa
= rs2a+kd-jd(sjd-ars-a-f:d\s2a+kd-jdrsa
= rsa+kdrsa-0drsa
= 1

rg2arsa+kd—jd 2a a+kd—jd

= rs2"rs"+kd-jd(sjdrs2a+kd-jdrs-kdjsa+kd-jd frQm 5 yj
— rs^arsa+kdrs2a+kd-jdrsa-jd
— rs^a^s~arsjd-a^s2a+kd-jdrsa-jd
= rsarsa+kdrsa~jd
= 1

173

I =1

rs2a+kdrsa-jdrs2a+kdrsa-jd
_ rs2a+kd^s~a-kdrs-a\2a+kdrsa-jd
= rsarsa+kdrsa~jd

= 1

rs2a~^drsa+kdrs2a~:'drsa+kd
= rs2a~id{s~ars:'d~a)s2a~^drsa+kd
= rsa-ddrsarsa+kd
= 1

Inductive step

Assume for 0 < i < I,

(rs2a+(ij)d+kd-jdrsa-{ij)dj2 = j and

(rg2a-(ij)drSa+(ij)d+kd-jdy _ ^

Since we have shown it to be true for I € {0,1}, we can assume I > 2.

Consider i = /, with I > 2. We know 0 < / — 2 < Z, so

(,rs2a+{l-2)jd+kd-jdrsa-(l-2)jd^2
_ ^rs2a+ljd+kd-3jdrsa-ljd+2jd\2
= 1

and

(,rs2a-(l-2)jdrsa+(l-2)jd+kd-jd\2
_ ^rs2a-ljd+2jdr^a+ljd+kd-3jd\2
= 1.

174

Also, 0 < I — 1 < /, so

and

(,rs2a+(l-l)jd+kd-jdrsa-{l-l)jd\2
_ ^rs2a+ljd+kd-2jdrsa-ljd+jd\2
= 1

^rs^a-{l-l)jdrsa+(l-l)jd+kd-jd^2
_ ^rs2a-ljd+jdrsa+ljd+kd—2jd^2
= 1.

We need some additional equations for our proof. As (j, k) = 1, then
(I — l)j — k is not a multiple of j and we cannot assume that either

^rs2a-((l-l)j-k)drsa+((l-l)j-k)d+kd-jd^2
_ ^rs2a-ljd+kd+jd^sa+ljd-2jd\2
= 1

^s2a+((i-l)j-A:)c!+fc(i—jdy,5o-((/-l)j-fc)d\2
^rs2a+ljd-2jdrsa-ljd+kd+jd^2
1.

Using our inductive hypothesis, however, we can form the proofs for

175

these necessary equations. We have

r = skdrsa jdrsjdrs a kd, from 5.10
_ ^rsa+ljd+kd-2jdrg2a-ljd+jd\2

^ = ^rs-a+ljd-2jdrs~2a-ljd-kd+3jd^2
and

^ _ ^rg2a+ljd+kd-2jdrsa-ljd+jd^2

rs2a-ljd+kd+jdrsa+ljd-2jdr
_ rs2a-ljd+kd+jdrsa+ljd-2jd
__ rg2a-ljd+kd+jd rga+ljd+kd-2jdr ga-jd^gjd^g-a-kd
— rgkdrs-a-ljd-kd+2jd rg-a+ljd~2jdr gjdrg-a-kd
= rskdrsa-2drsa~ldd+22d rs2a+ljd+kd-2jdr g-a-kd
_ rgkdrsa-jdrsjdrs-2a-ljd-kd+2jdrs-2a+ljd-kd-jd
— rg-argjd-arg-2a-ljd-kd+2jdrg-2a+ljd-kd-jd

c.-a-ljd+2jdrg—2a+ljd-kd-jd

sa+kdrsa-jdrsa^
sjd-ars-a-kdrs-a#
/rg2a+ljd+kd-2jdrsa—ljd+jd\2

trg-2a+ljd-kd-jdrg-a-ljd+2jd\2

(,rg2a—ljd+kd+jdrga+ljd-2jd\2

From

r =

r =

1 =

1 =

and

1 =

176

we obtain

rsa-ljd+kd+jdrs2a+ljd-2jdr
_ rsa-ljd+kd+jdrs2a+ljd-2jd ^

_ rsa-ljd+kd+jd ^ s3a+ljd+kd-2jdrga-jdrga
_ rs-ljd+kd+2jdrs-a-kd rg2a+ljd+kd-2jdr sa—jdrsa

rs~ljd+kd+2jd rs-2a+ljd-kd-jdr s~2a-ljd-kd+2jdrgljd-
— rSa+kdrs2a-ljd+kd+jd rs~a~kdr sljd-^jdrsa
_ rga+kdr s3a-ljd+kdrga+ljd-2jdrsa
_ s~a rs'2a-ljd+kd+jdrsa+ljd-2jdr ga

-2a-ljd+2jdrs~a+ljd-kd-jd

Thus,

/g2a—ljd+kd+jd^,ga+ljd 2jd^2 _ ^ and

(rs2a+ljd-2jdrSa~~ljd+kd+jd)2 =

Now, we can consider i — I.

Using

rskd+jdr = sarskdrsjd-a^ from 5^5
_ ^rsa+ljd-2jdrg2a-ljd+kd+jd\2

I _ ^rs~a+ljd-kd-jdrs~2a-ljd+2jd\
and

^ _ ^rs2a+ljd+kd-2jdrsa—ljd+jd\2

2

177

we have

rs^a-ljdrsa+ljd+kd-jdr
= rs^a~ljd^y.ga+ljd—2jd^ \
= rs~kd~jdrs~a~l:'d+2jd.rs-a+ljd-kd-jdr skdrsjd~a
— j-s~^d—jd^^a^^a—ljd+kd+jd^,^2a+ljd+kd—2jd^,^jd—a

= rs~lcd~-'d(s:'d~ars~a~kd)sa~^d+lcd+-'drs2a+l-'d+lcd~2:'drs:'d~a
= fg~a~kd^,g—ljd+jd y, g2a+ljd+kd—2jd^, jd—a
— rS~a~^dfS~aVg~'^'a~^d—kd+2jd^^—2a-\-ljd
= s~a-ljd-kd+jdrs-2a+ljd

and, from

we find

rs J<V = sa+fc<Vs kd jdrs a, from 5.11

J _ ^rga-ljd+jdrs2a+ljd+kd-2jd^2
^ ^rs~a-ljd+2jdrs~2a+ljd-kd-jd^2

and

^rs2a-ljdrga+ljd+kd-jd^2

rg2a+ljd+kd—jdrsa-ljd
— rs2a+ljd+kd-jd^rsa-ljd+jdr^ (yg-jd^
—

rg3drg~a+ljd—jdrg—a—ljd+2jd^,^—kd—jd^,^—a

— rSjdrS~a+ljd~jd.rs-a-hd+2jdr g—kd—jd^g—a
— fs^dr ga~khd—2jdl^g2a—ljdly,g—a
— J* ^g—a-y,gjd—a\^a-\-ljd—2jd^g2a—Ijd^ a
— Tgjd-aygljd jd j,g2a—ljd^ ^—a

— y d—a g—a—kd^g—2a+ljd g—2a—ljd—kd+jd
— g—a+ljdy,g—2a—ljd—kd+jd

178

Thus, by induction, for all integers I > 0,

(rs^a+{lj)d+kd-jdrsa-{ij)d^i _

(rsia~^'^drsa+^^d+kd~^d)2 =

Lemma 5.3 In pa~id,a,a+kd ^ £or ap integers I,

s2a+(lj)d+kd-jdrga-(lj)d^2 _

(j-sia~^l^drsa+^d+kd~^d)2 =

Proof. Let us consider an integer I < 0. Using
we have

trs^a+(lj)d+kd-jdrsa-{lj)d^2
_ ^rs2a-ijd+kd-jdrsa+ijdry.
_ ^rs2a-((i+l)j-k)drsa+{{i+\)j-k)d+kd-jd^2

and

(rs2a-(/j)drsa+(ii)d+fcd-jd)2
_ ^rs2a+ijdrsa-ijd+kd-jdr^2
_ /g2a+(<(i+\)j-k)d+kd-jdrsa-{(i+l)j-k)d^2

Thus, a proof of (z + l)j — k is equivalent to one of Ij. Obviously, as i > 0,
then i + 2 > 0 and so, the two expressions equal the identity for I = z + 2
according to our induction proof. During the proof of Ij, however, we found
that the two expressions were also trivial for (/ — 1)j — k. Thus, for I — i + 2,
we have the equations true for (z + 2 — 1)j — k — (z + 1)j — k, as required,
and the proof holds for all negative integers as well. □

1 and

1.

□

1 and

1.

I = — z for an integer z > 0,

179

Lemma 5.4 In Fa id>a>a+kd^ for ap integers / an(i m > o,

(,rs'2a+(lj-rnk)d+kd-jdrsa-(lj-mk)dy. _ ^ an(J

rs2a-{lj-mk)drsa+(lj-mk)d+kd-jd^2 _ j

Proof. Proof by induction 011 m > 0
Let I be an integer so we know from our previous inductive proof that

both

(rs2a+{lj)d+kd-jdrsa~(lj)dy.
= 1,

[rs2a~^Pdrsa+^l^d+kd~^d)2
= 1

and

(,rs2a+((l-l)j-k)d+kcl-jdrsa-((l-l)j-k)d^2
_ ^rs2a+ljd-2jdrga-ljd+kd+jd^2
= 1,

^rs2a-((l-l)j-k)drsa+((l-l)j-k)d+kd-jd^2
_ ^rg2a-ljd+kd+jdrsa+ljd-2jd^2
= 1.

We also have the same true for I + 1, so

^rs2a+(l+l)jd+kd-jdrsa-(l+l)jd^2 _ rs2a+ljd+kdrga-ljd—jd^2
= 1,

^rs2a-(l+l)jdrsa+(l+l)jd+kd-jd^2 _ s2a-ljd-jd)rga+ljd+kdy.
= 1

180

and

^rs2a+(lj—k)d+kd—jd,^ga-(lj—k)dy2 _ ^a+ljd—jd^^a—ljd+kd^l
= 1,

(r sa^^~k)d+kd—jd^2 _ ^,g2a—Ijd+kd^,^a+ljd—jd^2
- 1.

Induction on m > 0:

Base step

m = 0

and

m — 1

and

^rs2a-(lj-0)drsa+(lj-°)d+kd-jd^2
— (rcj2a-ljdrsa+ljd+kd—jd\2
= 1

(,rg2a+(lj-0)d+kd-jdrsa-(lj-0)d^2
__ ^rs2a+ljd+kd-jdrsa-ljd^2
= 1.

rs2ci-{lj-k)drsa+(lj-k)d+kd-jd\2

^rs2a-ljd+kdrsa+ljd-jd^2
1

(j.s^a+{lj-k)d+kd-jdrsa—Q'j-k)d^
(,rs2a+ljd-jdrsa-ljd+kd\2
1.

181

Inductive step

Assume for 0 < i < m,

(rS2a+{lj-ik)d+kd-jdrsa-(lj-ik)d^2 _ 2 ancl

^rs2a-(lj-ik)drsa+(lj—ik)d+kd-jd\2 _

Since we have shown it to be true for m 6 {0,1}, we can assume m > 2.

Given, 0 < m — 1 < m, we know

^rs2a+(lj-(m-l)k)d+kd-jdrsa-(lj—(m—l)k)d\2
^,^2a-\-ljd—mkd+2kd—jdf^^a—ljd-\-mkd—kd\2

= l

and

(rs2a~(b-(m-l)k)drga+(lj-(m-\)k)d+kd-jd^2
^2a—ljd+mkd—kd^^a-\-ljd—mkd+2kd—jd^2

Also, since we assumed I to be an integer, we can assume the above
equations for (/ — 1)j and (I + l)j as well. Hence,

/ 2a+(Z—l)jd—mkd-\-2kd—jd a— (/—l)jd+mkd—kd\2[I o / «b J

^g2a+ljd—mkd+2kd—2jd^gd—ljd+mkd—kd+jd^2
= 1

and

^g2a—(l—l)jd+mkd—kd)^ga+(l—l)jd—mkd+2kd—jd^2
^g2a—Ijd+mkd—kd+jd^^a+ljd—mkd+2kd—2jd^2

= i,

182

and

^j.g2a+{l+l)jd—mkd+2kd—jdirf,^a—(l+l)jd+mkd—kd\2
^j.g2a+ljd—mkd+2kdy,ga—ljd+mkd—kd—jd^2
1

(j,s2a-(l+l)jd+mkd-kd)^sa+(l+l)jd-mkd+2kd-jd^2
^j.^2a—ljd+mkd—kd—jdj,^a+ljd—mkd+2kd\2
1.

Consider i — m.

Using

r = skdrsa~3drsjdrs~a~kd, from 5.13

^ ^ga+ljd—mkd+2kd—jdj,g2a—ljd+mkd—kd\2
^ ^g—a+ljd—Tnkd+kd—jdy,g—2a—ljd+mkd—2kd+2jd\'.

and

^ ^,g2a.+ljd—mkd+2kd—jdy,ga—ljd+mkd—kd^2

183

we obtain

rg2a-{lj-mk)d.rsa+(lj-mk)d+kd-jdr
_ rg2a-ljd+mkdrsa+ljd-Tnkd+kd-jd
— rs^a-ljd+mkdrsa+ljd-mkd+2kd.-jdrsa-jdrsjdrs-a-kd
— rs2a-ljd+mkd rs<i+ljd-mkd+2kd-jdr ga~jdrsjdrs-a-kd
— rskdrs~a—ljd+mkd-2kd+jd rs~a+ljd-mkd+kd-jdr gidr„—a—kd
= rgkdrsa-jdy,ga-ljd+mkd-kd+jd ^s2a+ljd-mkd+2kd-jd s~a-kd
— rskdrsa-jdrsjdrg-2a—ljd+mkd-2kd+jdrs-2a.+ljd-mkd
_ rs-arsjd-ars-2a-ljd+mkd-2kd+jdrs~2a+ljd-mkd

—a—Ijd+mkd—kd+jd —2a+ljd—mkd
<_> / O

—a—(lj—mk)d—kd+jd —2a+(lj—mk)d
— / <_> ,

As I is an arbitrary integer, we can assume the above is true for / + 1,
and thus,

and so

^rs2a-((l+\)j-mk)drsa+{{l+\)j-mk)d+kd-jdy.
^g2a—Ijd+mkd—jd^^a+ljd—mkd+kd\2
1.

From

r skd+jdrs-a-kdrs-jdrsa from 5_n

t 2a+ljd—mkd+2kd a—Ijd+mkd—kd—2
I/O I o

/ g—2a+ljd—mkd+jd^,a—Ijd+mkd—kd\2

and

^ga+ljd—mkd+kd—jdy,g2a—ljd+mkd^2

184

we have

rsa-(lj-mk)d 2a+(lj-mk)d+kd-jdr
y,ga—ljd+rnkdj,g2a+ljd—rnkd+kd—jd ^

_ rsa-ljd+mkd ^a+ljd-mkd+lkd^, —a—
_ rskd+jdrs~2a-ljd+rnkd-2kd rs~2a+ljd-mkd+jd^ g~3drsa
_ kd+jd -a-kd 2a-ljd+mkd-jd rsa+ljd-mkd+kd-jdr ga

= rskd+idrs-a~kdrs-idrs-a-lid+mkd-kd+jdrs~a+ljd-mkd
= rsa+kdrsa-jdrs-a-ljd+mkd-kd+jdrs-a+ljd-mkd

—2a—Ijd+mkd—kd+jd —a+ljd—mkd
O I O

_ —2a—(lj—mk)d—kd+jd —a+(lj—mk)d
O I O)

and so,

r^s2a+(lj-mk)d+kd—jdrsa—(lj—mk)d^2 _ £

Hence, for all integers I and m > 0,

^rs2a+(lj-mk)d+kd-jdrsa-(lj-mk)dy. _ £ &n(£
/s2a-(lj-mk)drsa+(lj-mk)d+kd-jd\2 _ £

Lemma 5.5 In Fa for ajj integers / and m > 0,

(,rs2a+(lj+mk)d+kd-jdrsa-(lj+mk)dy. _ £ an(£
r 2a-(lj+mk)d a+{lj+mk)d+kd- ■3d\2 _ I

Proof. Proof by induction on m > 0

Base step: m — 0

^rs2a-(lj+0)drsa+(lj+0)d+kd-jd^2 _ ^g2a-ljdrga+ljd+kd-jd^2
= 1

185

and

^rs2a+(lj+0)d+kd~jdrsa-(lj+0)d^2 _ ^r^a+ljd+kd-jd^ga-ljd\2
= 1.

Inductive step

Assume for 0 < i < m,

rs2a+{lj+ik)d+kd-jdrsa-(lj+ik)d\2 _ ^ anfj

^rs2a—(lj+ik)drsa+(lj+ik)d+kd—jd\2 _ ^

Since we have shown it to be true for m = 0, we can assume m > 1.

We know 0 < m — 1 < m, so

^rs2a+(lj+(m-l)k)d+kd-jdrsa-(lj+(m-l)k)d\2
^g2a+ljd+mkd—jd^^a—Ijd—mkd+kd^2

= 1

and

^rs2a-{lj+(m-l)k)drsa+{lj+{m-\)k)d+kd-jd^2
^g2a—ljd—mkd+kd^,^a+ljd+mkd—jd^2

= 1.

Also, since we assumed I to be an integer, we can assume the above
equations for (/ — l)jf as well. Thus, given 0 < m — 1 < m, we know

^g2a+(l—\)jd+mkd—jd^^a—(I—l)jd—mkd+kd) ^2
(2a+ljd+mkd—2jd a-ljd—mkd-\-kd+jd\2— I / ».) I £> J

= l

186

and

^y,g2a—(I—l)jd—mkd+kd.) ^a+(l—l)jd+mkd—jd^2
^,^2a—ljd—mkd+kd-\-jd^,^a+ljd+mkd—2jd^2

= 1.

Consider i — m.

From

r = s~kd-jdrs~arsjdrsa+kd, from 5.11

^ /y,g2a+ljd+mkd—2jdy,ga—ljd—mkd+kd+jd>j2
Y ^,g—2a+ljd+mkd—kd—jdj,g—a—ljd—mkd+2jd^2

and

j Sy,g<i+ljd+mkd—jdy,g2a—ljd—mkd+kd^2

we have

= rsa—{l0+mk)drs^a+{lj+mk)d+kd-jdr
a—ljd—mkd 2a+ljd+mkd+kd—jd

I O I O . / .

_ yga—ljd—mkd rs2a+ljd+mkd-2jdr
_ r„—kd—jd „—2a—ljd—mkd+2jd rs~2a+ljd+mkd-kd-jd^ gjdrsa+kd
= rs-kd-jdrs-ars2a-ljd-mkd+kd+jd ^sa+ljd+mkd—jd^, sa+kd
= ys~kd~ddrs~argjdrs-a~ljd-mkd+jdrs-CL+ljd+mkd
— rsa-jdrsars-a-ljd-mkd+jdrs~a+ljd+mkd

£—2a—ljd—mkd—kd+jdpg—a+ljd+mkd

and so,

rs2a+(lj+mk)d+kd-jdrsa-(lj+mk)d^2 _ j

As I is an arbitrary integer, we can assume the above is true for / — 1,

187

and thus,

From

we have

and so,

^rs2a+((l-l)j+mk)d+kd-jdrsa-((l-l)j+mk)d\2
^g2a+ljd+mkd+kd—2jd^^a—Ijd—mkd+jd^2

= l.

r = s kdrsa+kdrs jdrsjd a, from 5.10

^ ^.£,a+ljd+mkd—jd^,^2a—ljd—mkd+kd^2
j ^y,g—a+ljd+mkdy,g—2a—ljd—mkd—kd+jd\2

and

j ^g2a+ljd+mkd+kd—2jd^^a—Ijd—mkd+jd^2

rg2a—(lj+mk)drsa+(lj+mk)d+kd-jd^,

j.g%a—Ijd—mkd ga+ljd+mkd+kd—jd

rs2a-ljd-mkd ga+ljd+mkd-jd^ ga+kdrg-jd^gjd-a

rs-kdrs~a-ljd-mkd+jd rg-a+ljd+mkdr g-jdrgjd-a

rs~kdrsa+kdrsa-ljd-mkd 2a+ljd+mkd+kd-2jdr sjd~a

rg-kdrsa+kdrs-jdrs-2a-ljd-mkd-kd+2jdr„-2a+ljd+mkd
a—fcd —a —2a—ljd—mkd—kd+2jd —2a+ljd+mkd

I O / o / / o

—a—Ij d—mkd—kd+jd —2a+ljd+mkd
«_5 / O ^

rrs2a-(lj+mk)drsa+{lj+mk)d+kd-jd\2 _ j

188

Hence, for all integers / and m > 0,

(,rs2a+(lj+mk)d+kd-jdrsa-(lj+mk)dy _ ^

rs2a-(lj+mk)drsa+(lj+mk)d+kd—jd^2 _ j

Lemma 5.6 For all integers / and m,

^rs2a+(lj+Tnk)d+kd-jdrsa-(lj+mk)d\2 _ ^ ancJ

^rg2a-(lj+mk)d^sa+(lj+mk)d+kd-jd\2 _

Proof. We know that for all integers / and m > 0,

^rs2a+(lj+mk)d+kd-jdy,sa-(lj+mk)d^2 _ ^

rs2a-(lj+mk)drsa+(lj+mk)d+kd-jd^2 _ ^

(rs2a+{lj-mk)d+kd-jdrsa-(lj-mk)dy. _ ^ flr|fj

(,rs2a-(lj-mk)drsa+(lj-m.k)d+kd-jd\2 __

Thus, it holds for both m and —m and, for all I and m,

ff <f2a+(lj+mk)d+kd-jdrsa-(lj+rrik)dyi _ ^ an(J

^rs2a-(lj+mk)drsa+(lj+mk)d+kd-jd^2 _ ^

□

□

Lemma 5.7 For all integers i,

(rs2a+id+kd-jdrsa-idj2 = j &nd

^rs2o.-idrsa+id+kd—jd\2 _

Proof. Since (j, k) — 1, there exists integers a: and y such that xj + yk = 1.
Thus, for any integer i, we have ixj + iyk — i. Setting I = ix and m = 2?y,

189

we have

^rs2a+id+kd-jdrsa-idy. _ ^.^a+ixjd+iykd+kd-jd^^-ixjd-iykd^l
= ^rs2a+(ixj+iyf!:)d+kd-jdrsa-(ixj+iyk)d^2
_ ^rs2a+(lj+mk)d+kd-jdrsa-(lj+mk)d^2
= 1

and

rs2a-idrsa+id+kd-jd^2 _ ^^a-ixjd-iykd^^a+ixjd+iykd+kd-jd-^l
__ / s2a-{ixj+iyk)drsa+{ixj+iyk)d+kd-jdy.
_ ^rs2a-(lj+mk)drsa+(lj+mk)d+kd-jd^2
= 1.

Hence, for all integers z,

(r52a-Hd+kd-jdrsa-id)2 = X and

^rs2a-idrsa+id+kd-jd^2 _ ^

□

As well as new lemmas, we also require some results from former works,
which we shall state without proof.

Lemma 5.8 (Campbell, Coxeter and Robertson [3, Lemma 2.1])

pa,b,c pb,c,a pc,a,b

p—c,—b,—a p—b,—a,—c p—a,—c,—b

pa,c,b pc,b,a pb,a,c

p—b,—c,—a p—c,—a,—b p—a,—b,—c

From this, it can be seen that one need only consider cases where n > 0
and a > b > c. We also require two additional theorems, one from Camp-

190

bell, Coxeter and Robertson's paper of 1977, and another from a paper by
Campbell and Robertson of 1981.

Theorem 5.9 (Campbell, Coxeter and Robertson [3, Theorem 3.5])
If (a, b,c) = 1 and n/0, then Ha'b,c is a finite metabelian group if, and only
if, a, b and c are not equivalent modulo 6.

Theorem 5.10 (Campbell and Robertson [6, Theorem 3.3])
Where (a, b, c) — 1, if a = b = c (mod) 6, then Ha'b,c is infinite. Otherwise,
Ha,b'c is finite and the Schur multiplicator is

1 if (a — 6, b — c, 3) = 1

C2 if (a - 6, b - c, 3) = 3.

Having outlined all the necessary lemmas and equations, we are in a

position to restate the conjecture and form our proof. However, we will
begin with an additional result obtained from our lemmas for those groups

pa,b,c w}iere (a,6, c) 7^ 1.

Theorem 5.11 Suppose (a, b, c) ^ 1 with n = a + 6 + c^0, then

Fa,b,c ^ Ha,b,c for d < 5

Proof. According to the Fa'b'c conjecture, we must have (a, 6, c) = 1 to ensure

proper results. Using the notation pa-3d^a+kd with (j,k) = 1, we have
s2n _ g6a+2kd—2jd^ Consider d G {1, 2, 3, 4, 5}, where (a—jd, a, a+kd) — t ^ 1.

t — (a — jd, a, a + kd)
= (jd, a, kd)
= (■a,{jd,kd))
= (a,d(j,k))
= (a, d) as (j, k) = 1

191

Thus, t divides d and u = (t, d) = t. Obviously where d = 1, we cannot have
a t / 1 that divides d. So. for d E {2, 3,4, 5} with t ^ 1, then (a, d) 4 1 and
either of two cases

1. a is a multiple of d or

2. d = 4 and a is a multiple of 2.

If a is a multiple of d, then all of a — jd, a and a + kd are divisable by d
and, as such, are not co-prime. If we consider fa~id^a+kd where a = md for
some integer m, then using i — m in (rs2a+ld+kd-jdrsa-idy _ ^ our resup
from Lemma 5.7 gives

I _ ^rs2a+md+kd-jdrsa-md^2
_ ^rs2a+a+kd-jdrsa-ay.
_ ^rg3a+kd-jdr^2
= rsGa+2kd~2idr

and so, s2" = s6a+2kd~2id = p
We find that where a is a multiple of d, Fa~idv>a+kd ^ fja-jd,a,a+kd
We just need to look at the case where d = 4 and a = 2m for some odd

integer m. Using i = m in (rs2a-4ysa+4l+4fc~4-i)2 = i gives

^ — ^rs2a-4mrsa+4m+4k-4j^2
— (t-52a_2a^5a+2a+4fc_4t)2
__ ^s3a+4A:-4j\2

6a+8/c —8j

and s2rt = s6a+8k~8i = 1. Hence, Fa-4j'a,a+4'c = #a-4.?>>a+4fc wpere a — 2m
for m odd.

Thus, where d € {2, 3, 4, 5} and (a — jd, a, a + /cd) / 1, we find that

jjpa-jd,a,a-\-kd j_£a—d,a,a-\-kd

□

192

We move on to stating our proof for the Fa'b'c conjecture.

The Fa'b'c Conjecture: (Campbell, Coxeter and Robertson [3, §12])
Suppose (a, b,c) — 1 with n = a + 6 + c^0, and let

Q . pa,b,c ^ jja,b,c

be the natural homomorphism. Setting N = kerO and d — (a — b,b — c), then

N = 1 if d = 1,

N = 1 if d = 2,

N = C2 if d = 3,

N = Qs if d — 4, and

N = SL(2, 5) if d = 5.

Proof. For the group Fa'b'c, we will use the equivalent form, Fa^jd,a'a+kd for
j, k 6 Z with (j, k) = 1.

• From Lemma 5.8, we know, for Fa~id,a'a+kd, we can assume without
loss of generality that

o — jd < a < a + kd,

and thus, d, j and k must all have the same sign. If they are all
negative, setting

d! = —d,j' = —j and k' = — k

gives
a — jd = a — j'd' and a + kd = a + k'd'.

As such, Fa-jd'a'a+kd = Fa-j'd''a<a+k'd' where d',j',k' > 0, and so, we

can assume

d > 0, j > 0 and k > 0.

193

• A proof of the case d = 1 as well as an alternate proof were given by
Campbell and Robertson in [5] and [6]. For completeness, we provide
another for this case using our discovered characteristics of the groups

pa,b,c

When d = 1, the groups have the form

Fa-j,a,a+k = (r, ,rsa~jrSarSa+k) ,

for integers j > 0 and k > 0 where (j, k) — 1, with

n = a — j + a + a + k
= 3a + k — j.

If we can show that s2n = .s6a+2fc_2j = 1 in jpa~i.a>a+fc) then we have
proved

pa-j,a,a+k Fa-j,a,a+k _ ^ ^j^.2 g6a+2k-2j rsa~jrsarga+k^

From Lemma 5.7, for all integers i, we have

(rS2a+i+k-jrsa-i)2 = 1 and {rs2a-irsa+i+k~j)2 = 1,

and using i = a in the first equation, we obtain

^ _ ^rs2a+a+/c-irsa-a^2
= (rs3a+k~jrs0)2
_ ^3a+/c-j^2

6a+2k—2j
— o

= s2n.

Thus Jpa_-''a'a+'c = Ha~j>a>a+k

• The proof for d = 2 follows similarly to our proof of d = 1. Here, for

194

j > 0 and k > 0,

pa-2j,a,a+2k _ ^ s\r2^ rsa~2irsarsa+2k) ^

where (j, k) = 1, with

n = a — 2j + a + a + 2k
= 3a + 2k — 2j and

d = ((a — 2j) — a,a — (a + 2k)) — 2.

If we can show that s'2n = s6a+4fc~4i = \ in fa-2j,a,a+2k ^ ^}ien we wqi
have proved

p<a—2j,a,a+2k jja-2j,a,a+2k _ ^ ^1^,2 ^Ga+Ak—Aj fsa~2irgayga+2k)

From Lemma 5.7, we obtain

(rs2a+2i+2k-2jrsa~2ij2 = 1 and ^rs2a-2irsa+2i+2fe-2^2 = 1

for all integers i. Substituting i — a into the second equation, we have

_ (^fs2a~2a^,^a+2a+2A:—2j^2
= (rs0rs3a+2fc~2-')2
_ /g3a+2k—2j ^2

6a+4/c—4;
— o

= s2n.

XhuS Fa~2j'a'a+2k ~ Ha-2j,a,a+2k

• Assume d = 3. Then, for j > 0 and k > 0 with (j, k) = 1, the groups
have the form

Fa-3j,a,a+3k = s\r2y rs"-Vrs"rs°+Zk) ,

195

and we have

n = a — 3j + a + a + 3A;
= 3a + 3k — 3j and

d = ((a — 3j) — a, a — (a + 3k)) = 3.

To show,

pa—3j,a,a+3kjjja-3j,a,a+3k _ ^ s|^2 g6a+6/c-6j rsa~^rsarsa+'ik^

we are required to prove

g2n g6a+6k—6j _ ^—6a—6k+6j ^ gl2a+12fc—12j _ ^

Lemma 5.7 with d — 3 gives us

(rs2a+3i+3k-3jrsa-3ij2 = j and (rs2a-3ysa+3i+3fc-3j)2 = X

for all integers i. By substituting i = a, the second equation becomes

^ _ ^rsa+3a+3fc-3j'rs2a-3a^2
= s4a+3fc-3jrs-ars4a+3fc-3irs-ar
_ sAa+3k-3j ^sa+3krsa-3j^s4a+3k-3j^sa+3krsa-3j ^
_ g5a+6k-3j rg6a+6k-6j rsa-3j
_ s6a+6k-6j rg6a+6k-6jr

Thus rs&a+6k-&jr _ g—6a—6fc+6j and g6a+6fc-6j _ rs~6a-6k+6jr

Using rs6a+6fc-6tr = s-6a-6fc+6j wpp rsa-3jrsarsa+3k^ an origjna] rela-

196

tor, we find

s~6a-6k+6j _ Srsa-3jrsarsa+3k^s-6a-6k+6j^
= rsa_3-3rsa rs~6a~6k+6j sa+3fc
_ rsa-3jrs7a+6k-6jrsa+3k

= rsa~3j rs6a+6fc~6l sarsa+3fc

= rs~5a~6fc+3trsarsa+3fc

= ^5_6a_6fc+6t sa~z^rsarsa+zk
_ g6a+6k-6j rga-3j rsarga+3k

6a+6fc—6j
O

Thus, S 6a 6fc+6l = s6a+6k 6i; s6a+6fc 6j -g cen^ra} ancf s12a+12fc 12j _ ^
as required.

Consider (x) where x = s6a+6fc~6j. Obviously it is a subgroup of the
kernel of the homomorphism from F to H and, since

rxr = rs6a+6k~6jr = s6a+6k-ej = x and s^xs = x,

then (x) is the kernel. We know from Theoreom 5.11 that if 3 divides
Ci then Fa~rsj jja—3j,a,a+3k

We have shown that s4n = s12a+12fc-12i = \ and sea+6k-6j generates the
kernel of the homomorphism. Thus, either pa~3xa>a+3k ^ pa-3j,a,a+3k
or pa-3j,a,a+3kj^ fja-3j,a,a+3k_ gjnce (j'; .= 1, then it cannot be
that a — 3j = a = a + 3k (mod 6). Also,

(a — 3j — a, a — (a + 3k), 3) = (—3j, 3k, 3) = 3,

so, by Theorem 5.10, Ha~3xa<a+3k [s finite and has Schur multiplicator
C2.

We now know Fa~3xa>a+3k is finite and as pa~3xa<a+3k has a 2-generator,
2-relator presentation, it has deficiency 0 and, by Corollory 1.2 of [31],
a trivial multiplicator. Thus, Fa-3i>a>a+3k ^ jja-3j,a,a+3k^ arl(j h must

197

be such that, when a is not a multiple of 3,

pa—3j,a,a+3kj*^'a a+3/c

The case d = 4 requires a bit more work than the first 3 cases, as we

need to show the kernel is isomorphic to the group Q$- With d — 4,
the groups take the form

Fa-4j,a,a+4k = ^

where j > 0, k > 0 and (j, k) — 1, and we have

n = a — 4j + a + a + Ak
= 3a + 4k — 4j and

d = ((a — 4j) — a, a — (a + 4/e)) = 4.

We want to show that rs-6a-8k+8irsea+8k~8jrs6a+sk-8jr _ g-6a-8k+8j ^

g24a+32k—32j _ | and s12a+16fc-16j jg cer]drai in ^a-4j,a,a+4/c_ Given this,
if we show the kernel of the natural homomorphism from F to H is
generated by s6a+8fc-8l and rs6a+8k~8Jr? we would then have enough to

prove that the kernel is, in fact, isomorphic to Q$.

From Lemma 5.1 with d = 4, we find that rs6a+8k~8ir ~ s4. Also, the
results obtained from Lemma 5.7 with d = 4 become

(rs2a+4i+4k-4jrsa-4ij2 = j and g2a-4irsa+4i+4k-4^2 = j

for all integers Setting /' = a in the second equation and i = 0 in the
first results in

rs-2ars5a+4k-4jrs-2ars5a+4k-4j = , &nd

r52a+4fc-4jr5ars2o+4fc-4jrsa = j

198

So, as rs2ar = s4:>rs2a+4k Airs 4k from 5.17, then

Y — rs-2ars5a+4fc-4jrs-2ars5a+4fc-4j
_ ^s4krs-2a-4k+4jrs-4j^s5a+4k-Aj ^s4krs-2a-4k+4jrs-4j^s5a+4k-4j
_ s4krs—2a—4k+4jrs5a+8k—8jrs—2a—4k+4jrs5a+4k—8j
_ rs~2a~4k+4j rs5a+8k-8j rs~2a-4k+4j rs5a+8k-8j
_ rg-2a-4k+4jrg5a+8k-8j fsarg2a+4k-4jrga^s5a+8k-8j
_ ^s-2a-4fc+4jrs6a+8fc-8j?,s2a+4fc-4jrs6a+8A:-8j

It must be the case that a is odd, as we would have (a —4j, o, a+4/c) 7^ 1
otherwise. We also know that rs6a+8k-8ir ^ s4 So, given that 4 cannot
divide 2a, we have

rs&a+8k-8jr ^ g2a+4k-4j+2

Thus,

]_ _ rg-2a-4k+4jrs6a+8k-8jrg2a+4k-4j rs6a+8k-8j
= rs2rs6a+8k~8jrs~2rs6a+8k~8j

and fs8a+8k~8-'rs2 — 7*,g_6a_8fc+8if

Again, using that fact that a must be odd, we find that 6a + 8k — 8j is
not a multiple of 4. Therefore,

s~6a-8k+8j rs6a+8k-8j rs6a+8k-8j _ rs~8a-8k+8jr anj

s6a+8k-8jrs6a+8k-8jrs~6a-8k+8j _ rs~8a-8k+8jr

From these, we additionally obtain

g6a+8k-8j rs8a+8k-8j __ rs6a+8k-8j rs~6a-8k+8jr &ncj

s6a+8k-8j rs6a+8k-8j _ rs~6a~8k+8j rs6a+8k-8jr

199

and hence,

rs6a+8k-8jrs~6a-8k+8jr _ rg-6a-8k+8jrg6a+8k-8jr

s12a+16fc-16j = rs12a+16fc-16jr

Thus, s12a+16fc 16J is central.

Also,

rs6a+8k-8jrs~6a-8k+8jr __ ^rg6a+8fc-8j rg-6a-8k+8jr^-l
s6a+8k-8jrs6a+8k-8j _ g-6a-8k+8j rs~6a-8k+8j

s12a+16k-16j _ rs-12a-16k+16jr

Thus gl2a+16fc—16j g—12a— 16/c+16j a-Q(J g24a+32fc—32j ^

We have all of rs~ea~8k+8-'fsGa+8lc~8irs6a,+8k-8jr _ g-6a-8fc+8j

g24a+32k—32j _ ^ an(j g12a+16fc-16j jg centrap anci we lleeci only check that
{g6a+8fc—8j ^ rs6a+8fc-8jr| generates the kernel of the homomorphism from
F to H. Let x = s6a+8fc-8i and y = rs6a+8fc-8irj anci consider (x,y).
Obviously, (x, y) is a subgroup of the kernel.
It is easily seen that rxr — y, ryr = x and s_1xs = x, and it is left to
consider to show (x, y) is the kernel.

Using i = a + k — j in (rs2a+4l+4fc-4.Jrsa-4*)2 _ ^ we jmve

]_ _ rg6a+8k-8jrg-3a-4k+4jrg6a+8k-8jrg-3a-4k+'lj

SO,

sarg6a+8k-8jrg-a _ g4a+4k-4jrg-6a-8k+8jrg2a+4fc-4?

We also know rs6a+8fc-8ir ~ s4 so

garg6a,+8k-8jrg-a _ g4a+4k-4j rg-6a-8k+8j rg2a+4k-4j
_ rg-6a-8k+8j rg6a+8k-8j

There are two cases, as a must be an odd integer.

200

1. a = 1 (mod 4)
Here, a + 1 = 2 (mod 4).
Thus,

rs6a+8fc-8ir = sa+lrs~6«-8fc+8irs-a-l and

s~1rs6a+8k~8jrs = sars-6a-8k+8jrs~a.

Given this, we find

s~1rs6a+8k~8jrs = sars-ea-8k+8jrs-a
_ rs-6a-8k+8jrs6a+8k-8j
= y_1£-

2. a = 3 (mod 4)
Now, a + 1 = 0 (mod 4).
Thus,

rs6a+8fc-8,r = sa+lrs6a+8fc-8irs-a-l &nd

s-lrs6a+8k-8jrs = sars6a+Sk-8jrs-at

and so,

s-lrs6a+8fc-8irs = sars6a+8k-8jrs-a
_ s~6a-8k+8j rg6a+8k-8jr
= x'xy.

Hence, {x, y \ generates the kernel. Also, x and y both have order 4,
y~lxy — x"1 and x2 = y2 since s12a+16fc-16t js central. So, (x, y) is a

homomorphic image of Qg, which has derived length 2, and it is left to
show (x, y) = Qg.
Consider the group

Ga'b'c — (r, s\r2, s8, rsarsbrsc),

201

a homomorphic image of Fa'b,c. Here, Ga,b'c = Ga''b,c', where a', b' and
d are a, b and c modulo 8. Using Fa~4J^a+4k for (j,k) — 1, then a

is odd and a' G {1,3,5,7}. Thus, we are left with only 12 cases for
Qa-8,a,a+4k^ when j is even, then k is odd and we have G11'5, G3'3',
G5-5'1 and G7'7'3. Where k is even, j must be odd and we have the
cases, G5'1,1, G7'3'3, G1'5,5 and G3'7'7. Where both j and k are odd, we

are left with the final four cases, G5'1'5, G7'3'7, G1'5'1 and G3,7'3. Using
GAP, we find that each of these groups has derived length 4 and so,

pa-4j,a,a+4k must have derived length of at least 4.

By Theorem 5.9, the groups Ha'b'c are finite metabelian when (a, 6, c) =

1, n / 0 and (d,6) 7^ 6. As a is odd and d = 4, then /f«-4i>a>a+4fc js
finite metabelian and, therefore, has derived length 2. This implies
that (x,y), the kernel of the natural homomorphism from Fa-4J>a>a+4k
to Ha~4j'a'a+4fc, must have derived length at least 2. Thus, (x,y) = Qs-

• The proof of the case d — 5 was given by Havas and Robertson [21], and
is found in Appendix B. Their proof of d = 5 could not be extended
for d — 2, d = 3 or d — 4 as it requires that (d, 2ri) — 1, a statement
true only when d = 1 or d — 5. From our results, we were unable to
obtain a proof for this last case using similar techniques to our proofs
of the other cases.

□

202

Appendix A

Corrected Proof of Lemma 3.3

In Campbell, Coxeter and Robertson's paper of 1977 [3], which first outlined
the Fa'b'c conjecture, a proof was given for a lemma regarding the derived
group A'a'6-C of Ha'b'c, a homomorphic image of Fa'b'c. The lemma was then
used to completely determine the order and structure of the groups Ha'b'c,
which, should the Fa'b'c conjecture be proved true, would then determine the
groups Fa'b'c.

The proof of this lemma has since been found invalid, and we begin
by stating the lemma and outlining the problem with the original proof.
A corrected proof, based on the proof of Theorem 3.3 from Campbell and
Robertson's paper of the following year [4], follows.

A.l Lemma 3.3 and the Original Proof
The subgroup Ka'b'c of Ha,b'c is defined as being generated by the set

{xi\xi = sl~lrsn~l+l,i G {1,2,... ,n},n = a + b + c}.

Lemma 3.1 of [3] had shown that Ka'b'c was the derived group of Ha'b'c, while
Lemma 3.2 gave a presentation for Ka,b'c. For simplicity, we use the notation

203

x\\ where for i = j\ (mod n) and i = j2 (mod 2n),

xn if ji =0;
and €j

xh if ji ± 0.

1 if 1 < J2 < n;
— 1 if n + 1 < j2 < 2n — 1 or j2 = 0.

The presentation for Ka,bx is then given as

Ka'b'c = (xux2,...,xn\x%° ti+a+b
i i+a+b' 1 < i < n).

Lemma 3.3 states that Ka'b'c is abelian if (a, 6, c) = 1.
The original proof begins by showing that for any ay, we have both ay ~

xi+a and ay ~ Xi+t,. An inductive proof is then attempted to show that
ay ~ Xi+sa+tb for integers s,t > 0. As o, b and c are co-prime, then any

integer j can be written as

for some integers a, (3 and 7, and therefore, j = j(a — ^)a+j((3—7)6 (mod n).
With the result of the inductive proof, using s = j(a — 7) and t = j(f3 — 7),
then we have

and thus, Ka'b'c is abelian.
The problem, however, lies within the inductive proof. In the inductive

hypothesis, it was assumed that ay ~ ay+sa+tb holds for 0 < s + t < k, and
the relation

was then used to show it held for the sum, s + t — k + 1. This step, however,
did not take into account the cases where either s or i was 0. For example,
consider t — 0. Then, s — k + 1, and the proof would require the relation

j = j(aa + /3b + ^c)
= j{a--y)a + j(/3-7)b + j~f(a + b + c)

ti+sa+tb ei+sa+(t-l)b ei+(s-l)a+(t-l)b
i+sa+tb Xi+sa+(t-l)bXi+(s-l)a+(t-l)b

£t+so „U+sa+(-l)6 ei+(s-l)a+(-l)6
xi+sa ~ i+sa+(—1)6 i+(s—l)a+(—1)6 '

204

However, as the induction stipulated both s > 0 and t > 0, then it cannot
be assumed that either

^i+sa-f (—1)6 ei+(s—l)a+(—1)6
Xi ~ xi+sa+l_>)b or ay ~

and the inductive step does not work.
Although the proof of this lemma is incorrect, the actual lemma is true,

and the results based on it still hold. A revision of the proof is now given.

A.2 The Corrected Proof

This version of the proof for Lemma 3.3 in [3] is based on the proof of Theorem
3.3 of [4], We shall first state three lemmas necessary in our revised proof.

Lemma A.l In the group Ka,b'c, if, for the integer j and all integers i, we

have Xi ~ ay+j, then ay ~ ay_j.

Proof. Since ay ~ xi+j holds for all integers i taking the subscripts modulo
n, then it must hold for i — j and thus, ay_j ~ Xi-j+j = ay. □

Lemma A.2 If, for the integers s and t, we have ay ~ xi+sa+tb for all integers
i, then Xi ~ Xi-ta~sb hi the group Ka'b'c.

Proof. We have each of the relations

ei+sa+tb ei+sa+(t-l)6 ~ei+(s-l)a+(t-1)6
Xi+sa+tb ~ xi+sa+^t-l)b'Li-\-(s-l)a-[-(t-l)b

ei+sa+tb —ei+(«+ l)a+(t+l)6 ei+(s+l)a+t6
i-\-sa-\-tb f- (s —1) ex—}— (i —|— 1) ^ 2T(s-fT)ci-}-t6
^i+sa+tb ei+sa+ (t+l)6 ei+(s — l)a+t6

Xi+sa+tb ~ xi+sa+(t+l)bXi+(s-l)a+tb

By their symmetry, if we have ay ~ Xi+sa+tb, then Xi ~ Xi-ta-sb• O

Lemma A.3 If, for the integers s and t, we have ay ~ xi+sa+tb for all integers
i, then ay ~ xi+ta+sb in the group Ka'b>c.

205

Proof. If Xi ~ xi+sa+tbi then by Lemma A. 2, xt ~ x^ta-sb, and from Lemma
A.l, then X, ~ xi+ta+sb■ hi

Theorem A.4 (Campbell and Robertson [3, Lemma 3.3])

Ka< b>c = (Xl,X2,..., xn\x%° = x^x'ffff 1 <i<n)

is abelian if (a, 6, c) = 1.

Proof. We start by showing Xi ~ xi+a and x, ~ xi+b for an integer i. A
relation of the presentation is

~.€i+a+b ei+a+6 _ —«i„ej+a
xz+a — xi+a+6' ou ^z+a+h "°z ^i+a •

We also have
^i+n+a _ 6j+n ej-f-n + a + b

•^z+n+a "^z-bn z-f-n+a+6'

which can also be written as

Thus,

r,. e'+ a -. —tirf ei+a+ b
xi+a i+a+b

ei+a+b ««+<» — £j
^i+o+b z+a ■

/v. €i ~.e*+a —- ~c*+a~. £*
i i+a i+a

and Xi ~ xi+tt.

A similar argument, using the relations,

rpei ,v,e<-o £i+6 1 7,ei+™ — U+n-a O+n+a+b
xz xz—a *^z+b a.uu ^i+n ^i+n—a^i+n+a+bi

shows that Xj ~ Xi+b-

Let Ti be the triple (i, i + a, i + a + b) of subscripts modulo n of x for the
relation

+ a ^>et^€i + a + 6
i+a i i+a+b'

Now consider x, for some j. If x, ~ xu and Xj ~ x^ for u,v G 7), and where

206

the third element of the triple is w, then we can write xw as a product of xu

and xVl and Xj ~ xw as well.
Now, let A be the set {j\x, ~ Xi+j for all 1 < i < n). Since we have

shown Xi ~ xi+a and Xi ~ xi+b, then both a E A and b E A. Obviously,
Xi ~ Xi, and we have xi ~ Xj+a, so by our earlier remark and from triple
T-i = (z, i + a, i + a + b), then a + b E A. To show all the elements of I\a'b,c
commute with one another and the group is abelian, we need to show all of
1,2,...,n e A.

Using the argument of the original proof, since (a, b, c) — 1, there exist
integers a, (3 and 7 such that any integer j can be written as

j = j(aa + /3b + 7c)
= j(a-^)a + j(p-^)b + j^y(a + b + c)

so, j = j(a — 7)a + j(/3 — 7)b (mod n). It would suffice then to prove that
sa + t.b e A for all s,f G Z since, for each j — 1,2,, n, using s — j(a — 7)
and t = j((3 — 7), then j E A. Thus, Ka'b'c would be shown to be abelian.

Our induction proof of x, ~ xi+sa+tb for s, t E Z is on k, the maximum of
|s| and \t\. For k — 0, both s = 0 and t = 0, and obviously, Xi ~ Xj. For the
inductive hypothesis, assume the two elements commute for max{\s\, |f|} <
k. Considering max{\s\, |f|} = k + 1, from Lemma A.3, we have only four
cases:

(i) t — k + 1, —k + 1 < s < k

Here, t — l = k and —k < s — 1 < A: — 1, so by the inductive hypothesis,

~ *^i+sa+(t—1)6 and Xi ~ Xj_|_(s_i)a^_p_i)t,

and as

ei +sa+ tb ei+sa+(t- 1)6 — ei+ (s- 1)o+ (t - 1)6
xi+sa+tb ~ i+sa+(t—l)b i+(s—l)a+(t—l)b '

then Xj ~ Xj+sa+t6 and sa + tb E A.

(ii) t = k + l,s = k + l

207

From case (i), we know the relationship holds for t = k + 1 and s = k,
and using Lemma A.3, we thus have shown it for the case t — k and
s = k 4- 1. Our inductive hypothesis allows us to assume it is true for
t = k and s = k, so using

£i+sa+ tb £i + sa + (t-l)b ~ ei+ (s-l)a+(t-1)6
Xi+sa+tb ~~ Xi+sa+(t-l)fAj+(s-l)a+(t-l)&

^t+(fc+l)a+ (fc+1)6 £i+(k+l)a+kb £i-\-ka-{-kb
i+(fc+l)a+(fc+l)6 — Xi+{k+l)a+kbXi+ka+kb >

the fact that ay commutes with both terms on the right hand side shows
Xi ~ xi+sa+th and sa + tb € A.

(iii) t = k + 1, s = —k

From case (i) and Lemma A.3, we have ay ~ xi+^+i)a+(-k+\)bi and from
the hypothesis, we know ay ~ Xi+ka-kb- Thus, using the relation

ei + (fc+l)a — kb ^i+ (A:+l)a+ (—fc + l)h ^i+ka — kb

Xi+(k+l)a-kb ~ Xi+(k+l)a+(-k+l)bXi+ka-kbi

then Xi ~ xi+(k+i)a-kb- Again, using Lemma A.3, ay ~ xi+^k)a+^+1)b
and sa + tb <E A.

(iv) t = k + 1, s — —k — 1

From case (iii), we have ay ~ xi+^+i)a+(-k)b, and using Lemma A.2, we
obtain Xi ~ Xi+ka+(-k-\)b' As there exists the relation

ei+(k+ l)a+(-k-l)b ei+ (/c + l)a+(-fc)6 ei+ka+(-k-1)6
i+(fc+l)a+(—k—1)6 2+(/c+l)a+(—k)b i+ka+(—k—l)b'>

then Xi ^ /e—1)6* Also, by Lemmct A.3, Xi ^ ^—i)<z-i-(/c-}-i)6•

Hence, sa + tb G A.

So, by induction, ay ~ xi+sa+tb and sa + tb £ A for all integers s and t.
Thus, Ka>bx is abelian. □

208

Appendix B

Proof of the Fa> ,c Conjecture
for d =5

Here, we give the proof of the case d = 5 of the Fa' ,c conjecture as it is the
only case we have not been able to prove using our results. This proof was

given by G. Havas and E. F. Robertson in a 2005 paper [21].

B.l G. Havas and E. F. Robertson's proof

B.l.l Introduction

Coxeter defined the groups Fa'b'c by

Fa'b'c — (r,s\r2,rsarsbrsc).
These arose because some of the groups have Cayley graphs which are '0-

symmetric' or 'faithful'. Campbell, Coxeter and Robertson investigated the
groups Fa'b'c in [3] and, after determining the structure of various subclasses,
made 'the Fa'b'c conjecture' which we state after some preliminaries.

Define n — a + b + c and d = (a — b,b — c). The structure of the groups

Ha'b'c = (r, s|r2, s2n, rsarsbrsc)

is completely determined in Section 3 of [3]. Provided (a, b, c) — 1, n ^ 0

209

and (d, 6) ^ 6, the groups Ha,b'c are finite metabelian groups. If d > 6 the
groups Fa,b'c are infinite.

The Fa,b'c conjecture is as follows. Suppose (a, 6, c) = 1 and let

Q . jpa,b,c ^ jr_^a,6,c

be the natural homomorphism. Let TV = kerO. Then
N = 1 if d= 1,
N = 1 if d = 2,
TV = C2 if d = 3,
TV ^ Q8 if d = 4,
TV = SL{2,5) if d = 5.
Here we present a proof that the conjecture holds when d = 5. The proof

was suggested by studying small cases using the ACE enumerator [15], as
available in GAP [16]. The proof of the conjecture in the cases d = 2,3 and
4 is quite different in nature from that presented in this paper since in these
cases (d, 6) ^ 1.

B.1.2 Proof of the Conjecture when d = 5

In what follows we assume that d = 5 and TV = herd. First we indicate the

strategy behind our proof by breaking the proof into a number of steps.
Step 1. s2n commutes with rs5r.
Step 2. s10" is central in Fa'b'c.
Step 3. e = s2n, f = rs2nr generate TV.
Step 4. e5, /5, (e/)3 and (/e2)2 are central in TV.
Step 5. Put M = (e5, /5, (e/)3, (/e2)2). Then N/M ^ A5.
Step 6. TV is perfect.
Step 7. M is contained in the multiplier of A5.
Step 8. TV = SL(2,5).
We proceed to prove each of these steps in turn. We will use the notation

a ~ b to mean that a commutes with b.

210

Proof of Step 1. From r2 = 1 and rsarsbrsc = 1 we have

(sarsb)(s~crs~b) = (rs~cr){rsar) = rsa~cr.

Hence sa(rsb~cr)s~b — rsa~cr.
Similarly sb(rsc~ar)s~c = rsb~ar and sc(rsa~br)s~a = rsc~br. From the

first and third of these we have s2a(rsb~ar)s~b~c = rsa~cr, and using the
second of the three relations

s2a+b(rsc-ar)s-b'2c = rsa~cr.

Hence

s2a+6s6+2c^sa-cr^-2a-6s-6-2c = rsa-cr

showing that s2n ~ rsa~cr. Similarly s2n ~ rsb~ar so, since 5 = d = (a —

c,b — a), s2n ~ rs5r.
See also Lemma 1.1 of [7].
Proof of Step 2. Since a = b = c (mod 5) we have n = 3a (mod 5)

so n = 0 (mod 5) if and only if 5|(a, 6, c) showing that n is coprime to 5.
From (1), s2n ~ rs5r so s5 ~ rs2nr. Hence s10n ~ rs5r and s10n ~ rs2nr.
Since (5, 2n) = 1, we have s10n ~ rsr. We now see that s10n ~ rsar, so
s10n ~ s-crs-6, showing that s10n ~ r and so s10n is central in Fa'biC.

See also Theorem 2.6 of [7].
Proof of Step 3. To prove that (e, f) — N we need to show that

N — (e)F = (e, /). Put N — (e, /). Then rer = f G N and s-1es = e G N.
Also rfr = e G N. It remains to consider s"1 fs.

Now s5 ~ rs2nr so, if a = b = c = 1 (mod 5), s2n_1 ~ rs2nr. Hence

s~lrs2nrs — s~2n .rs2nr.s2n = e-1/e.

Similarly ifa = 6 = c = 2 (mod 5), s~lrs2nrs — e_3/e3, while a = b =

c = 3 (mod 5) gives s_1rs2nrs = e~2fe2 and a = b = c = 4 (mod 5) gives
s~lrrs2nrs = e~4/e4.

Proof of Step 4. First we need a lemma.

211

Lemma B.l (i) s2n commutes with rs2nrs2nr.
(ii) s2n commutes with rs2nrs4nrs2nr.

Proof, (i) s2n commutes with rsarsbr since it commutes with sc. Since
a = b = c (mod 5) we see that

2n — a = a + 26 + 2c = 0 (mod 5)

so s2n ~ rs2n ar.

Similarly s2n ~ rs2n_6r so

s2n ~ rs2n~ar.rsarsbr.rs2n~br = rs2nrs2nr.

(ii) rs2nrsAnrs2nr = (rs2nrs2nr)2.
We need to check that e5, /5, (e/)3 and (/e2)2 are central in TV. The first

two are easy since e5 = s10n which is central in N by (2). Also /5 = rsl0nr.
But s10n is central in Fa'b'c by (2) so f5 — s10n which is central in N.

Before proving the final two elements are central we prove another lemma.

Lemma B.2 (s2nr)6 = (rs2nrs4n)2.

Proof.

(s2nrf = s2n.rs2nrs2nr.s2n.rs2nrs2nr
= rs2nrs2nr.rs2nrs2nr.sin

= rs2nrs4nrs2nrs4n

= (rs2nrs4n)2

Hence the lemma is proved.
By Lemma B.2 we see that (e/)3 = (/e2)2 so to prove these elements

212

central it suffices to examine one of them.

e(/e2)2

(/e2)2e

Also

fife2)2

But

(fe2)2f rs2nrs4nrs2nrs4n ,rs2nr

Hence /(/e2)2 = (/e2)2/ as required.
Proof of Step 5. Certainly M is a normal subgroup of N since its

generators are central. However

Proof of Step 6. To prove that N is perfect we add the relation e ~ /
and prove that e = / = 1.

However r = sarsbrsc and s2n commutes with the right hand side so

s2n ~ r proving that s2n is central.
Also rs2nr = s2n so e = f. That s2n = 1 now follows from Theorem 3.3

of [6]. this proves that N is perfect.
Proof of Step 7. We have M < Z(N) and M < N'. Also N/M = A5,

so M = M(AS) = C2.
Proof of Step 8. Follows from what has been proved above.

N/M ^ (e, /1e5, f, (e/)3, (/e2)2) - A5

Now e ~ / gives s2n ~ rs2nr. But we also have s2n ~ rs5r by (f) so,

since (2n, 5) = 1, we have s2n ~ rsr.

2f3

Bibliography

[1] J. J. Andrews and M. L. Curtis. Free groups and handlebodies. Pro¬
ceedings of the American Mathematical Society, 16:192-195, 1965.

[2] D. G. Arrell and E. F. Robertson. A modified Todd-Coxeter algorithm.
In M. D. Atkinson, editor, Computational Group Theory, pages 27-32,
London, 1984. (Durham, 1982), Academic Press.

[3] C. M. Campbell. H. S. M. Coxeter, and E. F. Robertson. Some families
of finite groups having two generators and two relations. Proceedings of
the Royal Society. London. Series A. Mathematical, Physical and Engi¬
neering Sciences, 357(1691):423—438, 1977.

[4] C. M. Campbell and E. F. Robertson. Classes of groups related to Fac.
Proceedings of the Royal Society of Edinburgh. Section A. Mathematics,
78(3-4):209-218, 1977/78.

[5] C. M. Campbell and E. F. Robertson. On 2-generator 2-relation soluble
groups. Proceedings of the Edinburgh Mathematical Society. Series II,
23(3):269-273, 1980.

[6] C. M. Campbell and E. F. Robertson. Groups related to Fa'b'c involving
Fibonacci numbers. In C. Davis, B. Grunbaum, and F. A. Sherk, editors,
The geometric vein: the Coxeter Festschrift, pages 569-576. Springer,
New York, 1981.

[7] C. M. Campbell and E. F. Robertson. On the Fa'b,c conjecture. Mit-
teilungen aus dem Mathematischen Seminar Giessen, 23(164) :25—36,
1984.

215

[8] J. J. Cannon, L. A. Dimino, G. Havas, and .J. M. Watson. Implemen¬
tation and analysis of the Todd-Coxeter algorithm. Mathematics of
Computation, 27:463-490, 1973.

[9] J. H. Conway. Advanced problem #5327. American Mathematical
Monthly, 72:915, 1965.

[10] J. H. Conway. Solution to advanced problem #5327. American Mathe¬
matical Monthly, 74:91-93, 1967.

[11] H. S. M. Coxeter, R. Frucht, and D. Powers. Zero-symmetric graphs:
Trivalent Graphical Regular Representations of Groups. Academic Press,
New York, U.S.A., 1981.

[12] H. Felsch. Programmierung der Restklassenabzahlung einer Gruppe
nach untergruppen. Numerische Mathematik, 3:250-256, 1961.

[13] V. Felsch, L. Hippe, and J. Neubuser. GAP - Groups, Algorithms,
and Programming, Version 4-4'- Package IPC. The GAP Group, 2004.
(http://www.gap-system.org).

[14] R. M. Foster. The Foster census. Charles Babbage Research Centre,
Winnipeg, MB, 1988. R. M. Foster's census of connected symmetric
trivalent graphs, With a foreword by H. S. M. Coxeter, With a bio¬
graphical preface by Seymour Schuster, With an introduction by I. Z.
Bouwer, W. W. Chernoff, B. Monson and Z. Star, Edited and with a

note by Bouwer.

[15] G. Gamble, A. Hulpke, G. Havas, and C. Ramsay. GAP - Groups, Algo¬
rithms, and Programming, Version 4-4: Package ACE. The GAP Group,
2004. (http://www.gap-system.org).

[16] The GAP Group. GAP - Groups, Algorithms, and Programming, Ver¬
sion 4-4, 2005. (http://www.gap-system.org).

[17] G. Havas and C. Ramsay. Advanced Coset Enumerator: ACE version

3.001, 2001. (http://www.itee.uq.edu.au/~cram/ace3001.tar.gz).

216

[18] G. Havas and C. Ramsay. Experiments in coset enumeration. In W. M.
Kantor and A. Seress, editors, Groups and computation. III (Columbus,
OH, 1999), volume 8 of Ohio State University Mathematical Research
Institute Publications, pages 183-192. de Gruyter, Berlin, 2001.

[19] G. Havas and C. Ramsay. Proof Extraction After Coset Enumeration:
PEACE version 1.100, 2003. (http://www.csee.uq.edu.au/~havas/
peacelvl.tar.gz).

[20] G. Havas and C. Ramsay. On proofs in finitely presented groups. In
C. M. Campbell, M. R. Quick, E. F. Robertson, and G. C. Smith, editors,
Groups - St Andrews 2005 (St. Andrews, 2005), London Mathemati¬
cal Society Lecture Note Series, Cambridge, 2006. Cambridge Univer¬
sity Press, (to appear) (also at http://www.itee.uq.edu.au/~havas/
opigsta.pdf).

[21] G. Havas and E. F. Robertson. The Fa'b'c conjecture is true,
I. 2005. (http://turnbull.dcs.st-and.ac.uk/circa/Preprints/
fabcF.pdf).

[22] G. Higman. A finitely generated infinite simple group. Journal of the
London Mathematical Society. Second Series, 26:61-64, 1951.

[23] A.-R. Jamah. Computing with simple groups: Maximal subgroups and
presentations. Ph.D. thesis, University of St. Andrews, St. Andrews,
United Kingdom, 1988.

[24] J. Leech. Coset enumeration on digital computers. Proceedings of the
Cambridge Philosophical Society, 59:257-267, 1963.

[25] E. H. Moore. Concerning the abstract groups of order A:! and 1/2k\ holo-
hedrically isomorphic with the symmetric and alternating substitution-
groups on k letters. Proceedings of the London Mathematical Society
(1), 28:357-366, 1897.

[26] J. Neubiiser. An elementary introduction to coset table methods in
computational group theory. In C. M. Campbell and E. F. Robertson,

\

217

editors, Groups—St. Andrews 1981 (St. Andrews. 1981), volume 71 of
London Mathematical Society Lecture Note Series, pages 1-45, Cam¬
bridge, 1982. Cambridge University Press.

[27] M. Perkel. Groups of type Fa'b~c. Israel Journal of Mathematics, 52(1-
2): 167—176, 1985.

[28] F. Spaggiari. On certain classes of finite groups. Ricerche di Matematica,
46(l):31-43, 1997.

[29] J. A. Todd and H. S. M. Coxeter. A practical method for enumerating
cosets of a finite abstract group. Proceedings of the Edinburgh Mathe¬
matical Society, 5:26-34, 1936.

[30] H. F. Trotter. A machine program for coset enumeration. Canadian
Mathematical Bulletin. Bulletin Canadien de Mathematiques, 7:357-368,
1964.

[31] J. Wiegold. The schur multiplier: an elementary approach. In C. M.
Campbell and E. F. Robertson, editors, Groups—St. Andrews 1981 (St.
Andrews, 1981), volume 71 of London Mathematical Society Lecture
Note Series, pages 137-159, Cambridge, 1982. Cambridge University
Press.

218

