University of St Andrews

Full metadata for this thesis is available in St Andrews Research Repository at:
http://research-repository.st-andrews.ac.uk/

This thesis is protected by original copyright

APPLICATIONS OF COMPUTER GRAPHICS

TO
PLANT SCIENCE
by
Colin R. Norton B.Sc,M.Sc,Ph.D,M.I.Biol.

A thesis submitted to The University of St.Andrews for the degree of Master of Science. Department of Computational Science, 1979.

Th 9341

Frontispiece
The Three-dimensional Plotting of Data

DECLARATI ON

I hereby declare that the following thesis is based upon work done by me, that the thesis is my own composition and that it has not previously been presented for a higher degree.

The research was carried out in the Department of Computational Science of The University of St.Andrews under the supervision of Professor Cole.

CERTIFICATE

I hereby certify that Colin R. Norton has been engaged upon research for a minimum of three terms under my supervision and that he is qualified to submit the accompanying thesis in application for the degree of Master of Science.

ACKNOWLEDGENENTS

Generous thanks are given to the following three people :-

1. Professor A.J. Cole for his enthusiastic tutoring, friendship and his generous help in supervising this project;
2. Professor R.M. Cormack for stimulating an interest in statistical/computational techniques and his continued support of my work;
3. John Henderson for a great many hours of help debugging programs and solving other hardware and software problems.

CONTENTS

SECTION I THEORETICAL CONSIDERATIONS 14
CHAPTER 1 Introduction 15
1.1 Biological Research 15
1.2 Types of Biological Science 15
1.3 Problems of Data Interpretation 16
1.4 Why a Graphics Package? 16
CHAPTER 2 Preliminary Considerations in a
Graphics Package 20
2.1 Other Packages Available 20
2.2 A Graphics Package for Biology 21
2.3 Illustrations taken from the Literature 22
CHAPTER 3 Preparation of the Packages 28
3.1 Plotting Facilities Available Locally 28
3.2 Hardware 28
3.3 Software - 29
3.31 The Playtime System 29
3.32 The Graffiti Plotting System 30
3.33 Ghost 30
3.34 Extensions to Ghost 32
3.4 Software Development for the Present Packages 33
3.41 Choice of Programming Language 35
3.42 System Choice for the Project (Hardware) 36
3.43 Software Refinements used in the Program 36
SECTION II THE GRAPHICS PACKAGE - GRAPHA 49
CHAPTER 4 A User Manual for Grapha, a
Pre-programmed Graphics Package
for the Applied Sciences
SECTION III THE HIDDEN LINE PACKAGE 124
CHAPTER 5 A User Manual for Hide: aPre-programmed Package for ThreeDimensional Graph Plotting
including Shading and Hidden Line
Calculation
SECTION IV THE GRAPH PLOTTING PACKAGES IN USE 169
CHAPTER 6 The Versatility of the Packages 170
6.1 Two-dimensional Graphs 170
6.2 Three-dimensional Graphs 181
6.3 Stereo Plots 181
6.4 Mixed Plots 181
6.5 Coloured Plots 199
CHAPTER 7 Conclusion to Thesis 208
REFERENCES 220
APPENDIX 223

NOTE
The prospective user will normally have access to Sections II and III only i.e. the user manuals.

List of Tables used in the Text

SECTION I

Table 1.1

Table 1.2

Table 3.1
Percentage use of $360 / 44$ computer systems by department (at St.Andrews University) 1976-1977.

Percentage use of terminals by department (at St.Andrews University) 1976-1977.

Plot type table for packages Grapha and Hide.

SECTION II

Grapha Table 1.
Grapha Table 2.

Grapha Table 3.
Additional facilities available for all Grapha plots.

Grapha Table 4. Key to Grapha Tables 5, 6 and 7.
Grapha Table 5.

Grapha Table 6.
Grapha Table 7.
Grapha Table 8.
Plot type table for plots using Grapha.
Conventions adopted for three-
dimensional data preparation. Data checklist for two and three dimensional plots using Grapha.

Data checklist (part 2).
Data checklist (part 3).
A list of output messages with their significance.

SECTION III
Hide Table 1.
Major differences between Hide and Grapha packages.

Hide Table 2.	Plot type table for all plots using Hide.		
Hide Table 3.	Conventions adopted for three dimensional data preparation.		
Hide Table 4.	Additional facilities available for all Hide plots.		
Hide Table 5.	Key to Hide Table 6.		
Hide Table 6.	Data checklist for Hide plots (with hidden lines).		
Hide Table 7.	List of output messages with their		
meanings.			
Table 7.1		\quad	Cost-time analysis for plots using
:---			
Grapha.			

List of Figures used in the Text

Frontispiece The three-dimensional plotting of data

SECTION I

Figure 2.1

Figure 2.2
Three-dimensional representation of a $6 x 7$ data matrix with non-linear axis intervals (from Das, Patau and Skoog, 1956)

Figure 2.3
A $6 x$ ' data matrix using linear scaling (from Gray, 1977)

Figure 2.4

Figure 2.5

Figure 3.1
-

CION II
Grapha Figure 1.
A plot using the two-dimensional help option

Figure 6.05	Multiple graph plotting on to one output field (Grapha)
Figure 6.06	The use of alternative viewpoints
	for a three-dimensional plot (Grapha)
Figure 6.07	Plotting without hidden lines (Hide)
Figure 6.08	The use of broken hidden lines and a text option (Hide)
Figure 6.09	The use of a base shading option (Hide)
Figure 6.10	Oblique viewpoint and base shading
	in use (Hide)
Figure 6.11	Calculation of stereo viewpoints
Figure 6.12	Plotter inaccuracy for small stereo
	plots
Figure 6.13	Stereo pairs produced under Grapha
Figure 6.14	Stereo pairs produced under Hide
Figure 6.15	Comparison of black and white with
	colour (Figure 6.16) plot (Hide)
Figure 6.16	Colour version of Figure 6.15 (Hide)
Figure 6.17	Hidden axis marking and red base
	shading under Hide
Figure 6.18	The use of a coloured grid option
	(Grapha)
Figure 7.01	A user produced plot (Grapha)
Figure 7.02	A user produced three-dimensional
	plot (Grapha)
Figure 7.03	A user produced spaced plot (Grapha)
Figure 7.04	A user produced hidden line plot (Hide)

SECTION I

THEORETICAL CONSIDERATIONS

CHAPTER 1

INTRODUCTION

1.1 Biological Research

It has recently been suggested that more has been done for experimental biology by R.A.Fisher (e.g. Fisher, 1925) than by any other person this century (Heath,1976). This is remarkable for Fisher's contribution has been in the field of data interpretation.

A brief outline of the types of biological experimentation will give an insight into the data interpretation problem.

1.2 Types of Biological Science

a) Observational Science

Early biologists favoured observational
science where an event was observed in the 'wild' or 'natural' population. A hypothesis is then constituted on which a prediction can be based. Further observations then follow, which may support or disprove the hypothesis. Additional literature review may then be used as further evidence.

In observational science there are experiments, which are provided by nature. They are therefore not designed to test a specific hypothesis and are rarely conclusive.
b) Experimental Science

This heading encompasses most current biological research work. The common link here is the observation of events in the 'natural' population which itself stimulates interest in the problem and provides a basis for constructing a hypothesis. This may then be subjected to rigorous analysis.

1.3 Problems of Data Interpretation

Rigorous analyses of data often do not immediately impart their critical information to the biologist. There is a particularly strong argument in favour of a visual representation of data for many applications. This should not replace but complement formal analysis.

1.4 Why a Graphics Package?

Computer use by different departments at St.Andrews University confirms that the exact sciences account for most computer time used (Tables 1.1 and 1.2). Of the experimental sciences, biologists use little central processor unit time. This is not a result of non-applicability to biology, but is probably in part due to lack of knowledge in computational technique. Few biologists are familiar with a programming language.

In biological research a number of specific forms of analysis or data presentation are frequently
used, the majority of which can be provided as preprogrammed packages. Packages of this type are appealing to the biologist since the data is not transformed in any way.

This thesis describes two packages which have been specifically developed with the above points in mind. In the context of St.Andrews University, these packages fit in with the available software as pre-programmed data presentation packages.

At present, there is a statistical package available, which is user interactive via a video terminal (RAX statistical system). This does not extend to a video-graphics system; graphics may be produced using an off-line plotter for which there are a number of software routines (or plotting commands). It is necessary to be familiar with a programming language to use this facility (A User's Guide to Ghost; Graph Plotting in Algol W).

A non-language package is not available locally although it would provide a positive contribution to biological sciences.

The current packages are designed to yield output to illustrate biological data for scientific articles.

Table 1.1
Percentage use of $360 / 44$ computer systems by department (at St.Andrews University) 1976-1977
(Extract from University of St.Andrews Computing
Laboratory Annual Report 1976-1977)

DEPARTIIENT	MFT	RAX	0.S.	TOTAL
SCIENCE FACULTY				
Astronomy	16.32	4.70	0.27	8.49
Biochemistry	0.06	0.20	-	0.06
Botany	0.01	0.04	-	0.01
Chemistry	9.36	4.97	96.44	42.17
Computational Science	9.23	56.44	0.08	12.51
Geography	0.38	0.22	-	0.21
Geology	0.55	1.40	-	0.46
Mathematics (Applied)	14.49	7.30	-	7.89
Mathematics (Pure)	0.86	2.03	-	0.70
Mathematics (Statistics) 3.59	1.48	-	1.91
Physics	3.74	1.55	-	1.99
Theoretical Physics	5.18	2.32	-	2.78
Physiology	0.68	0.23	-	0.36
Psychology	-	0.23	-	0.03
Zoology	-	0.03	-	0.00
	64.45	83.41	$\underline{96.72}$	29.57
ARTS FACULTY				
Archaeology	0.02	0.02	-	0.01
Economics	0.10	0.72	-	0.15
Maritime Archaeology	0.02	-	-	0.01
Mediaeval History	0.46	0.00	-	0.22
Moral Philosophy	0.28	0.44	-	0.20
	0.88	1.18	-	0.59
SERVICES				
Computing Laboratory	12.08	13.55	3.21	8.89
Gatty Marine	0.46	0.45	-	0.28
Information Systems	19.35	1.56	-	0.36
Non ISU Administration	0.15	0.09	-	0.08
Library	2.61	0.02	-	1.24
	34.65	15.67	3.21	19.85

Table 1.2

Percentage use of terminals by department (at St.Andrews
University) 1976-1977
(Extract from University of St.Andrews Computing
Laboratory Annual Report 1976-1977)

DEPARTMENT	$\begin{aligned} & \text { Jobs run } \\ & \text { from } \\ & \text { terminals } \end{aligned}$	$\begin{gathered} \text { Terminal } \\ \text { connect } \\ \text { time } \\ \hline \end{gathered}$	```Costed units of all terminal jobs```
SCIENCE FACULTY -			
Astronomy	$3 \cdot 32$	3.61	2.91
Biochemistry	0.24	0.59	0.26
Botany	0.03	0.09	0.05
Chemistry	6.19	8.52	5.55
Computational Science	62.08	59.98	61.76
Geography	0.17	0.34	0.18
Geology	0.85	1.60	1.28
Mathematics (Applied)	4.77	4.26	7.84
Mathematics (Pure)	1.91	2.12	2.24
Mathematics (Statistics)) 0.57	1.63	1.15
Physics	2.26	1.96	1.69
Theoretical Physics	3.21	2.59	2.75
Physiology	0.35	0.37	0.26
Psychology	0.10	0.58	0.32
Zoology	0.05	0.04	0.04
ARTS FACULTY			
Archaeology	0.00	0.00	0.00
Economics	0.46	1.32	0.82
Maritime Archaeology	-	-	-
Mediaeval History	-	-	-
Moral Philosophy	0.62	0.44	0.43
SERVICES			
Computing Laboratory	11.18	7.77	8.47
Gatty Marine	0.50	0.57	0.55
Information Systems	1.12	1.60	1.44
Non ISU Administration	0.02	0.01	0.01
Library	0.00	0.02	0.01

CHAPTER 2

PRELIMINARY CONSIDERATIONS IN A GRAPHICS PACKAGE

2.1 Other Packages Available

A large number of statistical packages have been developed for applications use. An explanatory classification follows -
a) Subroutine sets or programs for use by the advanced programmer
b) Data manipulation, editing or storage programs
c) Statistical packages for the non-programmer.

Most packages are of the type described in a) (Schucany and Minton, 1972), while neither a) nor b) is relevant to the aims of this work. Comparatively few packages are available for the non-programmer especially to produce graphics (although some probably do exist which have not been documented).

Some of the more widely used pre-programmed packages include MAQUEST - a system for processing questionaires, STAT 3600 - a general package for statistics, OMNITAB II - numerical analysis, statistical analysis, STAT SYSTEM/1130 - factorial analysis STAT-PACK - statistics, especially regression, SPSS - very large collection of statistics software (27,000 lines of code) includes descriptive
statistics, correlation, analysis of variance, scatter diagrams, and is very widely used in biological research.

Usually, these packages are accessed using prepared software (punched cards, magnetic or paper tape etc.). More packages are now becoming available which are interactive time sharing systems using a video terminal. Developments in this area are likely to increase although full core capability and hard copy are often required for complex plots.

No package has been found by the author which solves similar problems to those tackled here, but the locally available RAX statistical system is a preprogrammed package capable of producing

1. scatter diagrams
2. histograms
3. line plots
as well as a number of other non-graphical analyses.

2.2 A Graphics Package for Biology

Factorial analysis of appropriately designed experiments is one of the most valuable tools for data evaluation in horticulture, as well as other branches of biology. However, numerous attempts have been made to represent data in a graphical manner but tedious manual plotting has been necessary.

Examination of Figures 2.1 to 2.5 using a hand lens suggests that none of these pictures was computer drawn since the lines are continuous rather than finely broken.

The most significant contribution in a package of this type would be the ability to plot and view three-dimensional models of data. Also, the facility for standard two-dimensional graphs may be included since the majority of data sets may be represented in this way.

2.3 Illustrations taken from the literature

Figures 2.1 to 2.5 are representative examples of biological illustration taken from the literature. These were studied in order to note desirable features for inclusion in the current package. (However, the biological significance of these diagrams may not be apparent out of context.)

Figure 2.1

Three-dimensional illustration of a 4×4 data matrix (taken from Street, H.E., 1969)

Figure 2.2

Three-dimensional representation of a 6×7 matrix with non-linear axis intervals
(from Das, Patau and Skoog, 1956)

Figure 2.3

A 6×7 data matrix using linear scaling
(from Gray, 1977)

Figure 2.4

A regular 4×4 data grid in three dimensions (from Wareing and Phillips, 1971)

Figure 2.5
Logarithmic data transformation of a 5×5 data grid (from Hartmann and Kester, 1968)

CHAPTER 3

PREPARATION OF THE PACKAGE

3.1 Plotting Facilities Available Locally

The pre-programmed package currently presented has been implemented as an extension of the facilities available at St.Andrews University. A brief resumé of these facilities follows in order to isolate the contribution of this package in perspective. (User manuals are included in Sections II and III of this thesis.)

3.2 Hardware

An abbreviated list of relevant hardware available follows :-

IBM 360/44 computer
PLOTTER (The Computer Instrumentation Itd. 6011 Off-line digital plotter)

The plotter is of the "delta mode" type and is capable. of :-

1. framing and scaling
2. point to point plotting
3. character plotting
4. geometric figure plotting
5. pen changes (choice of two)
6. user override of "delta mode" facility

3.3 Software

For comparative purposes, other plotting software available locally is described.
3.31 The Playtime System

This system was developed within the Department of Computational Science at St.Andrews and is written in Algol W for use with the 6011 plotter described above. A picture is declared and described within a specially structured block. Within this description the following facilities are available :-

1. Definition of ranges for axes
2. Move to a point or join to a point
3. Plot or print the picture
4. Choice of execution flow summary
5. Insert a copy or offset a copy
6. Specified rotation of output (whole or part picture)
7. Mirror image reflection
8. Text plotting
9. Drawing of borders, graticules, axes, polygons
10. Selection of pen, broken or full lines
11. Superimposition
12. Curve drawing
(Graph Plotting in Algol W - The Playtime System, 1975)
The Playtime System incorporates several new features. For example, it is written in the context of Algol W, copying and offset copying are incorporated and
pictures may be rotated or given as a mirror image reflection.

3.32 The Graffiti Plotting System

Again, this system was developed in the same department as a logical development of the Algol W Playtime system. However, several important additions have been incorporated. The most important of these are :-

1. Three-dimensional plotting
2. The use of indefinite dimensions for logical space picture description, so that a box may be specified to plot only part of a threedimensional picture
3. Hidden line plots
(The Graffiti Plotting System, 1977)
In use, both the Playtime and Graffiti plotting systems require the user to program for his application using the language Algol W .
3.33 Ghost

The Ghost system at St.Andrews is based upon the U.K:A.E.A. Culham system called Ghost (1) (Larkin, 1967). The system comprises a number of plotting commands as subroutines which may be called from other programs.

The main features allow for :-

1. Diagnostic routines
2. Plotter on/off
3. Pen choice
4. Frame advance and count
5. Choice of plotter space units and size
6. Choice of paper size
7. Choice of compression ratio
8. Point and join line drawing
9. Broken or full lines
10. Boxes and borders for plots
11. Histogram drawing
12. Plotting points
13. Curve drawing (various)
14. Circle, elipse, parabola, hyperbola, arc drawing
15. Rotation and expansion
16. Choice of character set, size, rotation, and location of characters
17. Character positioning
18. Number plotting
19. String plots
20. Graticule and axis drawing

In. the case of this package, the user must program in Fortran IV to call each subroutine when a plotter command is required. Thus it is necessary to call subroutines for plotter turn-on, page sizes, character sizes, character sets etc. prior to point and join commands for line drawing. (see also - A User's Guide to Ghost, 1973)
3.34 Extensions to Ghost
a) Line printer output of plots is now possible for rapid assesment of output but since character size variation, line drawing and accurate point plots are not possible, only rough plots are given. (Software Memo No. 010 University of St.Andrews, Balch,1976).
b) Three-dimensional Plotting and Contouring. A set of subroutines has been added to the Ghost libraries for three-dimensional plotting. The subroutines allow for the following possibilities :-

1. Setting up three-dimensional space, centre and viewpoint of a three-dimensional object 2. Automatic scaling of three-dimensional space into two dimensions
2. Isometric and perspective plotting
3. Point, drawing, box, etc. but in three dimensions
4. Axis, graticule and grid drawing in three dimensions
(Software Memo No.009, Balch,1976)
c) Hidden Line Plotting.

This package has not hitherto been available. While it was written by Balch as an extension to Ghost, part of the present work involved the setting up of this package and editing a manual for it.

The main facilities are as follows :-

1. Definition of areas as window or opaque during plotting, i.e. subsequent areas will / will not plot over them
2. Definition of and ignoring areas when called This is an extension to Ghost which allows the user to define areas of the plotter paper inside or outside of which the pen may not draw. There are at least two job steps using Hide. The first of these is the user's program containing the plotting commands. These do not write directly on to the plotting tape but write a simplified set of commands on to a disk. The next job step is the line hiding program which reads from the disk and calculates which lines to plot prior to writing instructions on to the plotter tape. (Hide - a line hiding package, 1979)
3.4 Software development for the present package

Sections II and III describe the use of two packages. The first (Section II)-'Grapha - A preprogrammed graphics package for the applied sciences'is used for two-dimensional or three-dimensional graphical plots. Several special features have been introduced. The programs are entirely pre-programmed, so that it is only necessary to enter the data in the correct format (see User Manual Sections II and III)
in order to produce graphical output.
It is possible to fit a number of small plots into one page of output with or without spaces between plots. Several different types of plot may be produced in a single job run because the program has been designed to recycle without limit (other than user time limit). A wide choice of type of plot with various forms of text and annotation is possible e.g. multiple plots on one frame with labels for each plot appended below.

Most of the Ghost subroutines may be accessed in order to substitute values e.g. broken line mark space ratio, italics, page formats, character sizes.

The second package-'Hide - a package for threedimensional graph plotting, including shading and hidden line calculation (a pre-programmed package)' is similar in concept to the first package. This package allows for three-dimensional data plotting with hidden line omission and base shading (where visible from the viewpoint). Because of the size of this program and its higher C.P.U. time demands, it has been separated into a separate package. (Two-dimensional plots have been omitted from this package.)

In the development of these packages, a number of computational problems were encountered, the
solution for which is described in $3.41,3.42$ and 3.43 . 3.41 Choice of programming language

Although programming using only the C.I.I. plotter commands (3.2) could have been used, the use of prepared packages avoids duplication of material. A choice between Algol W and Fortran based packages was therefore made.

It was thought desirable to program in Algol W, and therefore, packages based on this language should be more appropriate. However, Fortran (Ghost) commands were used for two reasons :-

1. the general flexibility of the Ghost packages available at St.Andrews
2. the Graffiti Plotting System (3.32) was not available until the greater part of this project was completed.

In order to use mixed language programming, the Fortran subroutines were made to behave like Algol W procedures. The number of Fortran Ghost routines could nọt exceed 32 because of system limitations, and therefore, several short Fortran programs were compiled external to the main program. Each of these external programs was given a Fortran subroutine name. For example, an externally compiled Fortran program called

SUBROUTINE SETUP (values for setup parameters)
could be accessed by the following declaration at the start of the main Algol W program -

Procedure plottersetup (values for setup parameters);
Fortran "setup"
Where required in the program, a call -
plottersetup (values for setup parameters); automatically invoked the external program.

The packages developed exceeded the full core capacity of the $360 / 44$ Computer which necessitated a similar external compilation of several Algol W procedures, since program overlaying is not possible in Algol W.
3.42 System choice for the project (hardware)

The IBN 360/44 computer was used to prepare control tapes which could be plotted, off-line, at any time on the CIL plotter. As the plotter packages were only available through the 44 NFT operating system (44MFT Guide to System Use,1976) and not through the RAX video terminal system, 44 MFT has been used throughout, while the full core (rather than time sharing) requirement was necessary to avoid compiler overflow. (At least 186 K of the available 200 K is required.)
3.43 Some software refinements used in the program
a) Level of access to program (see Sections II and III for method use of package)

In order to write a program which is both simple
to use and versatile for more advanced applications, several conditional steps have been incorporated into the packages. The conditions, and thus the variables for user entry, are set using a readcard statement. Readcard reads a single card (80 characters) as a string. An example could read as follows :begin

Readcard (sentence);
if sentence $=$ "help" then predeclared variables else readon (A, B, C, D, E)
end;
In this way, data entry can be limited by minimal requests for user information. If the user enters "two-dimensional help", for example, a number of parameters will be set automatically. In this way 1. one data set for analysis will be assumed 2. a two-dimensional plot is specified
3. titles will be omitted
4. axis lengths will be based on minimum and -maximum data values
5. picture size will be set to a pre-determined value (suitable for A4 size paper)

Alternatively,if the single word "help" is entered on the first card, then greater user manipulation is allowed, with a number of parameters still being pre-set.

Table 3．1a

Plot type table for package Grapha（Section II）

2.1 two dimensional graph
2.2 two dimensional graph with titles overlaid
2.3 two dimensional graph with sub－titles（at foot of page of graphs）

2．4 two dimensional graph with axes（large markings） around the edge of the page only and titles
2.21 or 2.41 as for 2.2 or 2.4 but titles are overlaid on graph in such a manner that overlay of the plot is minimised

3.1 three dimensional graph
3.2 three dimensional graph with titles overlaid
3.3 three dimensional graph with sub－titles at foot of page

3．4 three dimensional graph with titles overlaid and large axis markings兴米

4．1 three dimensional graph with dotted base lines
4．2 three dimensional graph with dotted base lines and title

4．3 Three dimensional graph with dotted base lines and subtitles

4．4 three dimensional graph with dotted base lines and titles with large axis markings

Table 3.1 a continued
5.1 three dimensional graphs produced as stereo pairs
5.2 three dimensional graphs produced as stereo pairs with titles
5.3 three dimensional graphs produced as stereo pairs with sub-titles
5.4 three dimensional graphs produced as stereo pairs with titles and large axis markings

Table 3.1 b

Plot type table for package Hide (Section III)

6.1 three dimensional graph with hidden lines omitted
6.2 three dimensional graph with hidden lines omitted with titles
6.3 three dimensional graph with hidden lines omitted with sub-titles
6.4 three dimensional graph with hidden lines omitted and including titles and large axis markings

7.1 three dimensional graph with hidden lines dotted
7.2 three dimensional graph with hidden lines dotted and titles
7.3 three dimensional graph with hidden lines dotted and sub-titles
7.4 three dimensional graph with hidden lines dotted and titles and large axis markings

米
8.1 three dimensional graph with hidden lines omitted and base shaded
8.2 three dimensional graph with hidden lines omitted, base shaded and titles
8.3 three dimensional graph with hidden lines omitted, base shaded and sub-titles

Table 3.1 b continued

8．4 three dimensional graph with hidden lines omitted， base shaded，title and large axis markings米 \because 为
9.1 to 11.3 similar to 6.1 to 8.3 but a stereo option is given

米
12.1 to 17.3 similar to 6.1 to 12.3 but the whole of the base of the figure is shaded regardless of viewpoint

If a blank card is entered at this point, then maximum user manipulation is possible.
b) Plot and title type selection

To simplify data entry, the type of plot chosen has been given a numeric value (not necessary for the user to enter in all cases, see Sections II and III). This numeric value indicates both the type of plot and the type of title to be given. These are tabulated in Tables 3.1 a and 3.1 b to illustrate the possibilities using the packages. Section II covers options 2.1 to 5.4 in this table while Section III covers options 6.1 to 17.3.

For simple plots, the plot type is pre-programmed into the package and will not need to be selected by the user (see User Manuals Sections II and III).

As an example of plot type, 4.2 (a threedimensional graph with dotted base lines and a title) requires a program of the type -
if plotype $>=2$ and plotype <3 then
begin comment this block sets up values for arrays etc. for 2 D plots;
end
else
if plotype> $=3$ then begin comment 3D bounds set up; end;

```
case ((round (plotype))-2) of
    begin comment logical variable for 3D type
    end; :
titletype := round ((plotype-(truncate(plotype)))*10);
if titletype>=0 and titletype<<3 then
    begin comment logical variables assigned
                        for titles
    end;
```


c) Graph title location

A further programming refinement has been introduced for two-dimensional plots. The title may be overwritten on to the graph, or appended at the base of a page of graphs. However, an option (integrated title) when specified, scans graph data values once to the left and once to the right, to find both the smallest and the largest data values :-
maxremembered :=1;
minremembered := p;
comment $p=$ last value in data array;
for $k:=2$ until p do
if $C(1$, maxremembered $)<C(1, K)$ then

C (1, maxremembered) := C ($1, \mathrm{~K}$);
for $K:=p-1$ step -1 until 1 do
if $C(1$, minremembered $)>C(1, K)$ then
C (1, minremembered) := C ($1, \mathrm{~K}$);
comment array C contains data values for 2D plot -restricted to one dimensional array;

Thus comparison of these values with their limits (axis minimum and maximum values) selects the larger interval for title location.

d) Array declarations

A further programming problem arose in the declaration of different numbers and sizes of arrays for two-dimensional or three-dimensional plots within the same program as it was necessary to read all data values into arrays whether for two or three dimensional plotting. To make the arrays in scope, for the plotting routines, the declarations have been made identical for two and three dimensional plots. An initial value for the number of points and the number of graphs is read in to define these arrays. If arrays are declared -
real array $A(1:: p x+2)$;
real array $B(1:: p y+2)$;
real array C (1::px + 2, 1::py +2);
then for two-dimensional arrays where $p=$ number of points
if $p x:=-1$
and py := p-2
then we have
real array $A(1:: 1)$; - no array required, no space allocated
real array B (1::p); - array for x axis values (horizontal)
real array C (1::1, 1::p); - one dimensional array
for y values (vertical axis)
For three-dimensional arrays where $\mathrm{px}:=$ number of points on x axis (horizontal axis 1) and py := number of points on y axis (horizontal axis 2), we have real array $A(1:: p x+2) ;-$ array for x axis intervals with two extra memory locations for base values to facilitate plotting (base values usually $=0$ or bottom of solid object).
real array $B(1:: p y+2) ;-$ as above but for y axis real array C (1::px + 2, 1::py +2); - array with two dimensions for all data values (values for top plane of solid object)

In this way, a single array declaration will suffice for the whole package.
e) Sequential plotting of planes for hidden line calculation

The method used for hidden plane plots requires some clarification.

With respect to the viewpoint, each three-
dimensional plane was plotted one face at a time and then declared opaque to further plots. This was done as follows :-

Procedure opaqueplot;
begin comment draws each face sequentially starting from viewpoint and declaring each area opaque in the same order. Assume a grid as in Figure 3.1 for plotting, where $\mathrm{px}=$ no points on x axis (3) and $\mathrm{py}=\mathrm{no}$ points on y axis (4);
for $V:=p x+p y$ step -1 until 2 do
for $I:=1$ until $p x$ do
for $J:=1$ until py do
if $I+J=V$ then
begin comment check for y boundary condition;
if $J-1 \quad 0$ then
face (I, J, I, J-1);
comment check for x boundary
condition;
if I-1 0 then
face (I, J, I-1, J);
comment face is a procedure which draws a plane and then declares it opaque
end
end;

Figure 3.1

Two-dimensional representation of hidden face problem
in three-dimensional data matrix

Notes : For a sequential plot of each plane from the viewpoint (each plane being declared opaque as plotted) the following order would be required :- $(3,4),(2,4),(3,3),(1,4),(2,3)$, $(3,2),(1,3),(2,2),(3,1),(1,2),(2,1),(1,1)$.

A plot in both directions from each co-ordinate is required e.g. for 3,4 join to 3,3 and join 3,4 to 2,4. This figure represents the base of the object only - the program also has to plot the vertical dimension, but is omitted here for clarity.

Similarly, where base shading was required as visible from the viewpoint, a whole base shade was used, but the opaque areas were missed in the same way.

SECTION II
(CHAPTER 4)

A USER MANUAL
FOR
GRAPHA
A PRE-PROGRAMIED GRAPHICS PACKAGE
FOR THE
APPLIED SCIENCES

CONTENTS OF GRAPHA

1. A user manual for Grapha - a pre-programmed graphics package52
2. Two dimensional plotting using Grapha 54
2.1 Two dimensional help plots 56
2.2 Help plots in two dimensions 59
2.3 Complex two dimensional plots 68
3. Three dimensional plotting using Grapha 79
3.1 Three dimensional help plots 80
3.2 Help plots in three dimensions 84
3.3 Complex plots using Grapha (three dimensional) 89
4. Plot type table 102
5. Conventions for data presentation 103
6. Additional facilities for all plots 107
7. Data checklist tables 109
8. Error messages 115
9. References 120
10. Appendix 121

NOTES ON USE OF GRAPHA

1. For two dimensional plotting, turn to 2.1 for a first-time plot. For three dimensional plotting, turn to 3.1 for a first-time plot.
2. Sections 2.2, 2.3 are more complex in use but give greater user control over two dimensional plots.

Similarly, Sections 3.2 and 3.3 give greater user control over three dimensional plots.
3. Where hidden line calculation is required, use manual for Hide (only after initial plots using this manual).
4. Check assembled data against Tables 4 to 8 .
5. Three dimensional data conventions are given in Table 2.

1. A User Manual for Grapha - a Pre-Programmed Graphics Package

This manual describes the use of the package GRAPHA which produces both two and three dimensional graphical output. The most important feature of the package is the ease with which plots may be produced. No knowledge of computer use or of programming is required.

A description of the submission of data for this package follows, while at the end of this manual, data checklists may be found (Grapha Tables 4 to 7) which are useful for cross-checking the validity of the already assembled data cards. Attention is also drawn to Grapha Table 3 for additional options available for any type of plot, while Grapha Table 8 lists output messages with their meanings. An example is included for each main category of plot.

Reference is made in this text to three other manuals. These are
'A User's Guide to Ghost'
'Three-dimensional Plotting and Contouring'
'44MFT - Guide to System Use'.
Where reference to these manuals is useful for clarification, the appropriate item is noted. For example, Ghost $=$ gargs means that the sub-routine
gargs is called as described in 'A User's Guide to Ghost'. Alternatively, Grapha Table 8 lists the parameters and output messages with their meanings.

The line printer output for each job includes a representation of the graphical output. This output will not be accurate, but only an approximation of the data.

When data has been prepared for analysis, advice should be sought from the programming advisory service on how to access the package (alternatively see Appendix).
2. Two-dimensional Plotting using Grapha

Three levels of entry to the two-dimensional plotting program are available. They differ in the degree of user control over the plots produced and therefore, in their ease of use. The level of entry is specified on the first card entered by the user.

Except where otherwise indicated, all entries should commence in column one of the data card. Where the instruction is set between quotation marks, then these will be omitted since they only serve here to indicate characters which are to be entered on the cards.

The three levels of entry are :-
a) "TWO-DIMENSIONAL HELP" (see Grapha User Manual 2.1) where the maximum number of variables is assigned automatically by the - program. This produces only the bare essentials of a plot.
b) "HELP" (see Grapha User Manual 2.2) where greater user control is given e.g. to allow for page headings etc.
c) " " (see Grapha User Manual 2.3)

A blank card is entered for complex plots where maximum user control is given over

```
output e.g. page size, type of characters
may be specified.
```

It should be noted that for option a) the exact wording (including hyphen) should be given, otherwise option b) will be given by default.

Example of the use of TWO-DIMENSIONAL HELP option

in Grapha

A typical extract of a laboratory record might read as follows :-
5.1.78 A comparison of the effect of temperature of seed presoaking on germination in rice Cultivar - Oryza sativa L. cv. Oeiras

Duration of soaking - 48 hours
Temperature of soaking - 0, 10, 20, 30 degrees C Number of seeds per batch - 30

Results

	0	10	20	$30^{\circ}{ }_{C}$
germination	12	23	23	29
out of 30				

To plot this data as a simple graph, the following method might be used :- Four points are to be plotted on one graph. The co-ordinates of these points are as follows - $(0,12),(10,23),(20,23)$ and $(30,29)$.

2.1 TWO-DIMENSIONAL HELP PLOTS

Card 1. "TWO-DIMENSIDNAL HELP"
Card 2. number of points per graph (integer) e.g. 4 number of graphs in set (integer) (These graphs must be of the same type with only the data values changed.) At least one space must be left between these two values. e.g. 1

Card 3. input of data in sequence :x 1 (independent variable) then $\mathrm{y} 1 \mathrm{eg} 0 \quad 12$ $x 2 \quad y 2$ eg $10 \quad 23$
$x 3 \quad y 3$ eg $20 \quad 23$
xn yn eg $30 \quad 29$
These values may be integer (whole figures) or real (figures after decimal point) and must be spaced by at least one blank space. Cards 4. onwards. Repeat Card 3 for each data set (= data for one graph) in turn until the - limit for the number of graphs in the set has been reached.

Example (compare with Figure 1)

TWO-DIMENSIONAL HELP
41
$\begin{array}{llllllll}0 & 12 & 10 & 23 & 20 & 23 & 30 & 29\end{array}$

Grapha Figure 1.
A plot using the two-dimensional help option

2.2 HELP PLOTS IN TWO DIMENSIONS

Card 1. "HELP" (or any other non-blank entry e.g. to act as a mnemonic for some purpose)

Card 2. Enter plot type (only the numeric value) selected from below :2.1 - plots without individual titles 2.2 - plots with individual titles 2.3 - plots with subtitle below graph (Note that if more than one figure is given after the decimal point in option 2.2 e.g. 2.21, then the title is placed to minimise overlay of the graph. The second figure must not be 0.)

Card 3. number of points per graph (integer) e.g. 4 number of graphs in the set (integer) e.g. 2 If 1000 is entered, then a multiple plot (several lines) may be drawn. In this case, enter an integer for the number of lines and re-enter number of graphs. The graphs in one set must be of the same type but with fresh data values.

Card 4. (optional) Enter "NO BORDERS" to omit frames from plots.

Card 5. (optional) Enter "NO AXES" to omit axes from plots.

Card 6. Enter a title for the page heading up to 80 characters long. Placing of the title elements may be improved, if necessary, by manipulating the position of the letters of this card suitably. Only one card is allowed for the page heading. e.g. help plot with labelling

Card 7. Enter values for :-
x axis minimum value (integer or real) eg. 0 x axis maximum value eg. 30 y axis minimum value eg. 0 y axis maximum value eg. 30 (one space or more between each) If a multiple plot, repeat Card 7. as necessary.

Card 8. Read individual graph title (one card only up to 80 characters). Only use in plot option 2.3 (see Card 2 above). e.g. rice seeds soaked for 48 hours

Card 9. onwards. Input of data in sequence :x1 (independent variable) $y 1$ x2 y2 xn yn (at least one blank between each value) e.g. $\begin{array}{llllllll}0 & 12 & 10 & 23 & 20 & 23 & 30 & 29\end{array}$ Repeat cards 8 and 9 until the number of graphs in the set has been reached.

Card 10. onwards. If a multiple plot has been selected, then enter text as follows :1) number of lines of explanatory text (integer)
2) a line of text (1 card) followed by x and y co-ordinates for start (real values)
3) repeat 2) until integer value in 1) has been reached

Note : Text is only appended to the last plot.

Example of the use of Grapha-help package

Laboratory book extract :-
The effect of temperature of pre-soaking on
germination of rice seeds
Length of treatment : 48 or 96 hours
Temperature of soaking : $0,10,20$ or $30{ }^{\circ} \mathrm{C}$
Number of seeds per batch : 30

Results

Temp. of soak	$0^{\circ} \mathrm{C}$	$10^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$
germination out of 30 seeds after	12	23	23	29
48 hour soak				
germination out of 30 seeds after 96 hour soak	24	22	27	21

Example of help plot

The results may be plotted as below :-

LABELS
POINTS
14 12
TEMPERATURE DEGREES C GERMINATION
HELP
2.2 42
see Grapha Table 3 for explanation of
(opis labelling

HELP PLOT WITH LABELLING
$0 \quad 30 \quad 0 \quad 30$
RICE SEEDS SOAKED FOR 48 HOURS
$\begin{array}{llllllll}0 & 12 & 10 & 23 & 20 & 23 & 30 & 29\end{array}$
RICE SEEDS SOAKED FOR 96 HOURS
$\begin{array}{llllllll}0 & 24 & 10 & 22 & 20 & 27 & 30 & 21\end{array}$
(Compare with Grapha Figure 2)

Grapha Figure 2a.
Two-dimensional plot with labelling run under Grapha help

HELP PLOT WITH LABELLING

Grapha Figure 2 b .
Two-dimensional plot with labelling run under Grapha help

HELP PLOT WITH LABELLING

2.3 COMPLEX TWO-DIMENSIONAL PLOTS

If help plots do not provide the required degree of user control, then this option should be chosen.

Card 1. " " or blank card
Card 2. integer for number of types of graph to be plotted This allows recycling of the program (limited by user time limit), in which case several different types of plot may be produced in one job. Note that Cards 1 and 2 are entered only at the start of fresh job and not in the recycling mode
e.g. 1

Card 3. Blank card
Card 4. Plot type. Enter a value for plot choice chosen from the plot type table (Grapha Table 1) with a value greater or equal to 2 but less than 3. If more than one decimal place is given (must be non-zero in the second place) in option 2.2 , then the title is placed to minimise overlay of the graph plotted. Where subtitles are chosen, there is an arbitrary limit of 28 subtitles per page (otherwise the writing would be too
small to read). Titles in excess of this number will be omitted. e.g. 2.2

Card 5. Points. Enter an integer value for the number of points per graph and an integer for the number of graphs in the current plot type category. e.g. 41 If the number of graphs entered $=1000$, then a multiple plot (several lines on one graph) can be drawn. An integer for the number of lines should then be entered followed by a new value for the number of graphs.
Card 6. If this card reads (optional card) "NO BORDERS" then none will be given.

Card 7. If this card reads (optional card) "NO AXES"
then no axes (scale values) will be given on the plots produced.

Card 8. To specify sizes for plotter characters enter "SIZESTATED"
followed by values for each of the following individual title height required (cms), point for start of title on X and on Y axes (horizontal and vertical axes respectively), size for main title letters and X and Y co-ordinates for start of main title.
(Note: co-ordinates relate to plotter paper size not dimensions within the box.)
e.g. sizestated $0.5 \quad 6 \quad 12.2 \quad 1 \quad 424$

Card 9. Enter a page heading for output e.g. "ITALIC LETTER OPTION"

Card 10. If
"BROKEN LINES"
is entered on this card then subsequent plots will be produced in broken line format. It is then necessary to enter values for the computation of mark-space ratio for which four integer values are required (new card). (See User's Guide to Ghost)

Card 11. If page size is to be set automatically, enter a blank card. Otherwise, enter a card reading
"PAGESIZE"
followed by values for the following :1. Underflow suppression - this should normally be set on (1) for the first plot but will fail if set on for subsequent passes (off=0)(Initio in 44 MFT guide to System Use). e.g. 1
2. Initialise (Ibcint in 44 MFT Guide) on $=1$, off $=0$ (set to 1 for first pass only). e.g. 1
3. Turn plotter on on initial pass (1).

To turn off set 0 (Cilplt in Ghost).
e.g. 1
4. Select units for plotting -
$1=\mathrm{cms}$
$2=\mathrm{mms}$
3 = inches
(Ghost $=\mathrm{cms}, \mathrm{mms}$, inches)
e.g. 1
5. Select for italic or non-italic characters1 = italic
$0=$ non-italic characters
(italic in Ghost)
e.g. 0
6. Select for debugging option for return of plotter parameters (not normally required).

1 = debug
$0=$ no debugging
(gargs in Ghost)
e.g. 1
7. Select for character set -
$0=$ Hollerith
1 = upper case Roman
2 = lower case Roman
3 = upper case Greek

4 = lower case Greek
5 = Flexowriter case normal
6 = Flexowriter case shift
(Ghost $=$ ctrset)
e.g. 2
8. Select for printing of frame number

1 = frame count
$0=$ no frame count
(Ghost $=$ grend)
e.g. 1
9. Select for perspective control irrelevant in two dimensional plots but enter either 0 or 1 . e.g. 0

All of the above values may be entered on one card with a gap between each. Nine integer values must be entered.
10. Enter values for page limits in cms. (i.e. overall size of page including margins etc.) as real or integer values for -
limits 1 (x minimum value) e.g. 0
limits 2 (x maximum value) e.g. 25
limits 3 (y minimum value) e.g. 4
limits 4 (y maximum value) e.g. 30
(Ghost $=$ limits)
11. Enter value for actual space to be occupied by the plot in cms - (real or integer) Plotter space 1 (x axis minimum) e.g. 0 Plotter space 2 (x axis maximum) e.g. 20 Plotter space 3 (y axis minimum) e.g. 5 Plotter space 4 (y axis maximum) e.g. 25 (Ghost $=$ pspace)

Card 12. Axis scale limits. Enter values for the mathematical size of the graph (i.e. minimum and maximum data scale values) x axis minimum data scale value e.g. 0 x axis maximum data scale value e.g. 30 y axis minimum data scale value e.g. 0 y axis maximum data scale value e.g. 30 (Ghost $=$ mspace)
Card 13. Individual graph size. Enter x axis length in cms (real or integer). If x axis length is set greater than 200 then extra text may be entered on to each page of graphs and x axis length becomes equal to (x axis length - 200). If x axis length is set greater than 100 , then an axis labelling option is given (one label each way for the whole page of graphs regardless of the number of graphs per page. An alternative option for individual
graph axis labelling is given in Grapha Table 3). (Labels for the X and Y axes (if just specified) are entered on two further cards. (Where values for x length of greater than 300 are encountered, then both options (text and axis labelling) will be given with graph lengt equal to the number of units over 300 after Card 14).) If x length is not an integer, then one graph per page is given. e.g. 14

Card 14. Enter y axis length. If this value is not an integer, then the graphs will be blocked on to one page, within the limits defined, with a space left around each graph. This space will be defined by the value of the first decimal figure times 10. If only one graph per page is required, then x length (Card 12) should be entered as a non-integer value, otherwise graphs will be blocked on to one page.
e.g. 12.2 (Enter X and Y axis labels on 2 further cards if specified under 13.)
Card 15. Heading for each graph. If an option from 2.2 to 2.4 (inclusive) was selected for plot type, then enter an individual graph heading up to 80 characters long (one card). e.g. meteor seeds soaked for 48 hours

Card 16. onwards. Data for plot. Enter data in
sequence for current graph -
$x 1$ (independent variable) $y 1(r e s u l t)(r e a l$ or x2 y2 integer) xn yn

If a multiple graph has been selected, then repeat these cards for each line to be plotted.

Leave at least one gap between each data value.
e.g. $\begin{array}{llllllll}0 & 3 & 10 & 18 & 20 & 24 & 30 & 0\end{array}$

Other cards. Repeat Cards 15 and 16 for each data set.

Repeat all cards from this or other sections for the next plot type (if number of graph types originally entered allows).

Text cards. Where a multiple plot or text (x length greater than 200) has been specified, then enter -

1. The number of strings to be plotted (up to 80 characters each).
2. The line of text and its x and y co-ordinates for plotting (start of line). (2 cards)
3. Repeat text card 2 until the integer value specified in card 1 has been reached.

Example of two-dimensional blank or complex plot

 (compare with Grapha Figure 3)

LABELS
POINTS
$\begin{array}{llll}14 & 10 & 3 & 17\end{array}$
$\left\{\begin{array}{l}\text { see Grapha Table } 3 \\ \rightarrow \text { for explanation of } \\ \text { these options }\end{array}\right.$
temperature degrees C
germination out of 30 seeds
2.2

41
SIZESTATED
$0.5 \quad 6 \quad 12.21424$
italic letter option
PAGESIZE

1	1	1	1	1	1	2	1	0
0	25	4	30					
0	20	5	25					
0	30	0	30					

14

12.2

meteor seeds soaked for 48 hours
$\begin{array}{llllllll}0 & 3 & 10 & 18 & 20 & 24 & 30 & 0\end{array}$

Grapha Figure 3.
Complex plot with italics run under Grapha
italic letter option

temperature degrees c

3. Three-dimensional Plotting using Grapha

As with two-dimensional plotting, several levels of entry are possible for three-dimensional plotting, the levels differing in the extent of user control over output. Each level is accessed according to the initial card entered :-
a) "THREE-DINENSIONAL HELP"
b) "HELP"
c) " " for complex plots
(no entry but a blank card must be substituted)
The exact wording must be given for a) while any other non-blank entry will give b) by default. Sections 3.2 and 3.3 should be ignored in the first attempt to use three-dimensional plotting.

3.1 THREE-DIMENSIONAL HELP PLOTS

This is the simplest plot form for three dimensional plots and therefore requires minimal user submitted information.

Card 1. Problem. Enter
"THREE-DIMENSIONAL HELP"
Card 2. Points. Enter integer value for number of data intervals on x axis and integer value for number of intervals on y axis. Enter integer value for number of graphs in set (each of these values must be separated by at least one blank space). e.g. 341

Card 3. Data. Enter x axis interval values for data points (see Grapha Table 2 for data interval example).
e.g. $24 \quad 4896$

- Enter y axis intervals (integer or real). e.g. $0 \quad 10 \quad 20 \quad 30$

Card 4. onwards. Data for vertical axis. Enter data values for each point in the grid as follows (see Grapha Table 2) $x 1$ y1 x1 yn $x 2 \mathrm{y} 1 \quad \mathrm{x} 2 \mathrm{yn}$ xn y1 xn yn

$$
\begin{array}{rrrrr}
\text { e.g. } & 24 & 22 & 23 & 13 \\
& 18 & 24 & 0 \\
& 7 & 7 & 15 & 0
\end{array}
$$

Note that this option only produces the bare essentials of a plot. It will be necessary to label the plot manually afterwards.

Example of the use of three-dimensional help Grapha plots (compare with Figure 4)

THREE-DIMENSIDNAL HELP
341
$24 \quad 48 \quad 96$
$\begin{array}{llll}0 & 10 & 20 & 30\end{array}$
$\begin{array}{llll}24 & 22 & 23 & 13\end{array}$
$\begin{array}{llll}3 & 18 & 24 & 0\end{array}$
17150

Grapha Figure 4.
Three-dimensional help plot run under Grapha

3.2 HELP PLOTS IN THREE DIMENSIONS UNDER GRAPHA

Card 1. Problems. Any non-blank entry e.g."HELP"

Card 2. Plot type. Enter plot type chosen from plot type table (Grapha Table 1) i.e. value greater than 3 or equal to 3 . e.g. 4.2

Card 3. Points. Enter integer value for number of variables on x axis and an integer value for number of variables on y axis (see Grapha Table 2). Enter integer value for number of graphs in set.
(At least one blank space must be left between each of these values.) e.g. 341

Card 4. Page heading. Enter a string of up to 80 characters for the page heading. Otherwise enter a blank card.
e.g. help plot with titles

Card 5. Enter individual graph heading (string up to 80 characters) - can be used to enter additional information (if specified in plot type e.g. $X=$ hours, $Y=$ degrees, $Z=$ germination

Card 6. Mathematical space. Enter minimum and

```
maximum axis values for plot -
    x axis minimum value
    x axis maximum value
    y axis minimum value
    y axis maximum value
    z axis minimum value
    z axis maximum value
(Ghost = mspace)
e.g. 24 96 0 30 0 30
```

Card 7. Data intervals. Enter x axis data intervals and y axis data intervals (integer or real)
(see Grapha Table 2)
e.g. 244896
$\begin{array}{llll}0 & 10 & 20 & 30\end{array}$
Card 8. Data. Enter data in x planes (integer or real) as follows -

$x 1$	$y 1$
$x 2 y 1$	$-x 1 y n$
$x n y 1$	$-x 2 y n$
$y n y n$	

- (see Grapha Table 2)
e.g. $3 \quad 22 \quad 2313$
$\begin{array}{llll}3 & 18 & 24 & 0\end{array}$
17150

```
Example of help plot (three-dimensional)
(compare with Grapha Figure 5)
HELP OPTION CHOSEN
4 . 2
34
1
HELP PLOT WITH TITLES
X = HOURS, Y = DEGREESC, Z = GERMINATION
24 96 0 30 0 30
24 48 96
0}101020 3
3
3}1818\quad24\quad
17 15 0
```

Grapha Figure 5.
Help plot in three dimensions (Grapha)

HELP PLOT WITH TITLES

3.3 COMPLEX or " " (blank) PLOTS USING GRAPHA (THREE-DIMENSIONAL)

Card 1. Problem. Enter a blank card.
Card 2. Number of graph types. Enter number of types of graph to be plotted (integer value). This allows recycling of the program (limited by user time limit), in which case, all cards are repeated as in this list on subsequent passes with the exception that this card (2) will be omitted on subsequent passes. (Other plot types may be added to the job also.)
e.g. 1

Card 3. Blank card.
Card 4. Plot type. Enter a value for plot choice taken from the plot type table (Grapha Table 1) (value greater than or equal to 3). Note that where a plot type uses subtitles, a limit of 28 per page is given. e.g. 3.1

Card 5. Points. Enter an integer value for the number of points on the x axis and an integer value for the number of points on the y axis (see Grapha Table 2). Enter an integer value for the number of
graphs in the set. (Each value must be separated by at least one blank space.) e.g. 341

Card 6. Border omission. If this card reads "NO BORDERS"
then no frames will be given around the plots.
Card 7. Label size. If this card reads(optional) "SIZESTATED"
then enter values for each of the following 1. individual title height (cms) (real or integer)
2. X axis value for start of title
3. Y axis value for start of title
4. height of main title letters
5. X axis value for start of main title
6. Y axis value for start of main title

Card 8. Page heading. Enter a page heading of up to 80 characters (or a blank card).
e.g. 3D plot with text

Card 9. Broken lines. If this card reads (optional) "BROKEN LINES" the subsequent plots will be given in broken line format. It is then necessary to enter values for the mark space ratio. These four integer values should be entered on a new card.
e.g. broken lines

$$
\begin{array}{llll}
1 & 2 & 1
\end{array}
$$

Card 10. (optional) To change the preset mark space ratio for plots normally using broken lines (other than those in 9 above), enter "BROKEN"
followed by four values for mark space ratio on another card (see User's Guide to Ghost).

Card 11. Page size. For automatic setting of page size, enter a blank card, otherwise enter "PAGESIZE"
followed by values for the following -

1. underflow suppression ($1=o n, 0=o f f$)
2. initialize ($1=$ on, $0=o f f$)
3. plotter turn on ($1=$ on, $0=$ off)
4. set plotter units ($1=\mathrm{cms}, 2=\mathrm{mms}$, 3 = inches)
5. italics ($1=$ on, $0=o f f$)
6. debugging ($1=$ on, $0=$ off)
7. characterset (see User's Guide to Ghost)
8. framecount ($1=$ on, $0=$ off)
9. perspective control ($0=$ perspective plot, 1 = isometric plot)
10.Enter values for page limits in cms (or as above)(limited by plotter paper size - see CIL Plotter Guide) as -
limit 1 width-minimum value (real or integer) limit 2 width-maximum value " "
limit 3 height-minimum value (real or integer)
limit 4 height-maximum value " "
10. Enter values for plotter space (2D)
i.e. area actually available for graphical output (in cms or as above) as width 2 D axis minimum value (real or integer)

$"$ "	" maximum	$"$	$"$	$"$
height "	" minimum	$"$	$"$	$"$
$" ~ " ~ " ~ m a x i m u m ~$	$"$	$"$	$"$	

e.g. blank card

Card 12. Enter values for mathematical space (2D). For automatic scaling, enter

```
"0 0 0 0"
    (see Three-dimensional Plotting and Contouring)
    e.g. 0 0 0 0
```

Card 13. Individual graph size. Enter a value for graph width (real or integer). If width value is not an integer, then only one graph per page is given, otherwise graphs will be blocked on to one page.

If X axis length is greater than 200 , then text may be entered on to each page of
graphs and X axis length becomes equal to (x axis length -200).

If X axis length is greater than 100 , then an axis labelling option is given for the whole page of graphs. (Labels for the x and
y axes respectively must then be entered on two further cards after Card 14.) e.g. 207

Card 14. Enter y axis length or graph height. If y axis length is not an integer, then graphs will be blocked on to one page, within the limits defined, but a space will be left around each graph. This space will be defined by the value of the first decimal figure times 10. e.g. 10 (Enter X and Y labels if specified

Card 15. Individual graph heading. Enter an individual graph heading of up to 80 characters long if specified in plot type.

Card 16. Three-dimensional set up parameters. Enter each of the following values :1. (optional) Enter 2000 in order to plot data sets with different centres.
2. (optional) Enter 1000 to append X, Y and Z to the respective axes for identification purposes.
3. Enter centre co-ordinates for object to be plotted. e.g. 1000

$$
0 \quad 0 \quad 0
$$

Card 17. Three-dimensional plotter space. Enter estimated size for plotter space (in cms) for three-dimensional space as x minimum value (real or integer cms) x maximum
" 1
y minimum "
y maximum
" "
z minimum
11
z maximum
"
"
(Ghost 3D = PSPC3D)
e.g. $5 \quad 20 \quad 5 \quad 20 \quad 5 \quad 20$

Card 18. Mathematical space in three dimensions. Enter values as follows :x axis minimum value for scale (real or x maximum integer)
y minimum
y maximum
z minimum
z maximum
11

- e.g. $24 \quad 96030030$ (Ghost 3D $=$ MSPC3D)

Card 19. Data intervals. Enter x axis intervals (integer or real) (see Grapha Table 2). Enter y axis data intervals. e.g. $24 \quad 4896$

$$
\begin{array}{llll}
0 & 10 & 20 & 30
\end{array}
$$

Card 20. (several cards) Entry of data in x planes (see Grapha Table 2) $x 1$ y1 $\quad-x 1$ yn $x 2$ y1 -x2 yn xn y1 -xn yn
e.g. $3 \quad 22 \quad 2313$
$\begin{array}{llll}3 & 18 & 24 & 0\end{array}$
17150
Card 21. Viewpoints, axes and grids. Enter view 1 as follows -

1. If view $1=1000$, then a set of standard views will be given and the program will terminate. (Some of these views may prove unsatisfactory, but at least one should prove useful for a given data set.)
2. If view $1=999$, then axes (annotation also) will be omitted from all plots in the set.
3. If view $1=998$, then readon integer values for $X Y, X Z, Y Z$ where these represent planes for which a graticule will be drawn if a value of 1 is entered (e.g. 010 will highlight plane XZ by drawing a graticule in that plane). e.g. 998

010
4. If view $1=997$, then grids will be drawn, but axes omitted. Again, three integer values should be entered to indicate which planes are to be highlighted by graticule drawing.
5. Re-enter a value for view 1 if any of the above values have been entered (i.e. x co-ordinates of view point). e.g. 100
6. Enter values for views 2 and 3 (y and z co-ordinates of viewpoint chosen). e.g. 100100

Card 22. Centres. If centre 1 was previously entered as 2000, then re-enter centres 1,2 and 3 as in Card 14. The same options are available.

Card 23. Series of viewpoints. This program will continue to draw the same object from a number of view points. These may be entered as view 1 , view 2 and view 3 as above (including options for selection of axes / grids). A value of greater than 1000 will terminate this part of the program. Alternatively, this part of the program may be terminated with a series of standard views by entering the value 1000 (in the last case i.e. view 1 greater than 1000 do not enter view 2 or 3). e.g. 1001

Card 24. Repetitions. The whole series of cards may be repeated (except Card 2 for number of graph types) to the limit set by the number of graph types initially entered. Two and three dimensional plots may be mixed in a run.

Card 25. Text option (where x length is greater than 200). Text will be added to the last plot in the plot type section only. In this case enter :-

1. The number of strings (up to 80 characters) of text to be plotted (integer value). e.g. 3
2. Enter a line of text with x and y co-ordinates for the start of the line of text. e.g. X = hours of soaking

512
3. Repeat line 2 until the integer value specified in 1 is reached. e.g. Y = temperature of soaking 511 $Z=$ germination out of 30 510

```
(Compare with Grapha Figure 6)
.....(blank card)
1
.....(blank card)
3.1
3 4 1
3D PLOT WITH TEXT
BROKEN LINES
1212
0 0 0 0
207
10
1 0 0 0
0 0 0
5
24 96 0 30 0 30
24 48 96
0 10 20 30
3 22 23 13
3}18\quad18\quad24\quad
17 15 0
998
0 1 0
100 100 100
```

Example of complex three-dimensional plot using Grapha

1001

3
$\mathrm{X}=$ HOURS OF SOAKING
$5 \quad 12$
$Y=T E M P E R A T U R E$ OF SOAKING
511
$Z=$ GERMINATION OUT OF 30
510

Grapha Figure 6.
Complex three-dimensional plot (Grapha)

$X=$ HOURS OF SORKING
$Y=$ TAPERATRRE OF SOFKING
$Z=$ GERMINATION OUT DF 30

Grapha Table 1

Plot Type Table for Plots using Grapha

2.1 two-dimensional graph
2.2 two-dimensional graph with titles overlaid
2.3 two-dimensional graph with sub-titles (at foot of page of graphs)
2.4 two-dimensional graph with axes(large markings) around the edge of the page only and titles
2.21 or 2.41 as for 2.2 or 2.4 but titles are overlaid on graph in such a manner that overlay of the plot is minimised

米
3.1 three-dimensional graph
3.2 three-dimensional graph with titles overlaid
3.3 three-dimensional graph with sub-titles at foot of page

4.1 three-dimensional graph with dotted base lines
4.2 three-dimensional graph with dotted base lines and titles
4.3 three-dimensional graph with dotted base lines and sub-titles

5.1 three-dimensional graphs produced as stereo pairs
5.2 three-dimensional graphs as stereo pairs with titles
5.3 three-dimensional graphs with stereo pairs and sub-titles

Grapha Table 2

Conventions adopted for Three-dimensional Data Preparation

1. The two independent variables will be known as X and Y and will be represented by the two horizontal axes in a three space co-ordinate system. The vertical or Z axis will be the independent variable (or experimental result). It is recommended that, initially, the independent variables should be visualised as a two-dimensional co-ordinate grid. For example, imagine an experiment with four temperature treatments and three duration treatments. This might be represented as follows :-

2. Any symmetrical data pattern may be represented in this way, while a non-symmetrical matrix may be made uniform by the substitution or repetition of values. In a fertilizer experiment, three fertilizers were used - nitrogen, potassium and phosphorus (abbreviated to N, P and K). These fertilizers were applied in all combinations. They could be represented as follows :-

or

or

3. The data is then entered in order as

| X1Y1 X1Y2 X1Y3 | - X1Yn |
| :--- | :--- | :--- |
| X2Y1 X2Y2 | - X2Yn |
| X3Y1 | -X3Yn |
| XnY1 | - XnYn |

with a single data value (real or integer) for
each co-ordinate pair.
4. Compare the following diagram with the data
submitted -

$$
\begin{array}{llll}
\mathrm{X} 1 \mathrm{Y} 1=4.2 & \mathrm{X} 1 \mathrm{Y} 2=3.5 & \mathrm{X} 1 \mathrm{Y} 3=2.1 & \mathrm{X} 1 \mathrm{Y} 4=0.9 \\
\mathrm{X} 2 \mathrm{Y} 1=3.5 & \mathrm{X} 2 \mathrm{Y} 2=3.0 & \mathrm{X} 2 \mathrm{Y} 3=1.8 & \mathrm{X} 2 \mathrm{Y} 4=0.7 \\
\mathrm{X} 3 \mathrm{Y} 1=3.0 & \mathrm{X} 3 \mathrm{Y} 2=2.0 & \mathrm{X} 3 \mathrm{Y} 3=1.1 & \mathrm{X} 3 \mathrm{Y} 4=0.3 \\
\mathrm{X} 4 \mathrm{Y} 1=1.9 & \mathrm{X} 4 \mathrm{Y} 2=0.8 & \mathrm{X} 4 \mathrm{Y} 3=0.7 & \mathrm{X} 4 \mathrm{Y} 4=0
\end{array}
$$

Data entry sequence -

$$
\begin{array}{llll}
4.2 & 3.5 & 2.1 & 0.9 \\
3.5 & 3.0 & 1.8 & 0.7 \\
3.0 & 2.0 & 1.1 & 0.3 \\
1.9 & 0.8 & 0.7 & 0
\end{array}
$$

Grapha Table 3

Additional Facilities Available for All Grapha Plots:
Debugging information, recycling of program for several types of plot and labelling of axes in plots

Any job may commence with one or more of the following conditional cards, provided that they are entered in the stated order if more than one condition is to be set.

a) DEBUGGING INFORMATION

The first card in the data set may read "DEBUGGING INFORMATION" in which case additional detail of plotter commands will be printed. This option should only be used when really necessary because many parameters internal to the program will be output, while their meaning will have little significance to the casual user.
b) A SET OF PLOT TYPES

Where a help option is chosen (blank options already include this option), recycling of the whole program may be given for a sequence of graphs of differing types. In this case, a blank card should be entered followed by a card with an integer value for the number of graphs to be produced. Any plot type may be subsequently selected.
c) AXIS LABELLING IN TWO-DIMENSIONAL PLOTS

A card reading "LABELS" should be entered in
order to access this option. Normally, axis labels will be plotted automatically at specific points, but this may be overridden by including a card reading "POINTS" followed on another card by four integer or real values for the x and y co-ordinates of the x axis label and y axis label respectively. In either case, two cards for the two axis labels should follow, firstly for the x and then for the y axis. Up to 80 characters are permitted but this will depend upon the size of the plot since long labels may exceed the plotting area. (For blank or complex plots, enter after number of graph types.)

Grapha Table 4
Key to Tables 5,6 and 7

+	$=$ essential card
-	$=$ not to be included
+/-	$=$ optional
1*	$=$ one times
n*	$=\mathrm{n}$ times
string or s	$=$ string of alphanumeric characters up to 80 units (i.e. one card)
integer or i	$=$ an integer value
real or r	= a real value (i.e. with decimal point)
PURPDSE	$=$ need for card entry
NECESSARY	$=$ whether program will fail if
	supplied/not supplied
TYPE OF ENTRY	$=$ type of information called for
	by program
DEPENDENT CARDS	$=$ other cards which must be entered
	after first
OTHER NOTES	$=$ e.g. C1, C2, C3, V1, P1 etc.
	(see Table 8) , .
2D	= two-dimensional
3D	$=$ three-dimensional

Grapha Table 5
Data Checklist for two and three dimensional plots using Grapha
List of cards

	PURPOSE	USE	NECESSARY	TYPE	ENTRY	NOTES
	Debug	any option	+/-	1*S	"DEBUGGING INFORMATION"	
	Complex plots		+	1*S	E	Enter a blank card
$\stackrel{\stackrel{1}{\stackrel{\rightharpoonup}{\bullet}}}{\stackrel{\rightharpoonup}{\circ}}$	Number of graph types	blank plots	E+	1*S	"1*i"	This is the number of graph types in this job.
$\begin{aligned} & R \\ & \mathrm{E} \\ & \mathrm{E} \\ & \mathrm{~S} \\ & \mathrm{~T} \\ & \mathrm{~A} \\ & \mathrm{R} \\ & \mathrm{~T} \end{aligned}$	Axes label	any option	+/-	1*S		Can enter another card reading - "POINTS" followed by another with 4*r for xy co-ordinates for horizontal and vertical label position (otherwise axis label in preset position). X axis label Y axis label
First essential card for help plots	Problem		+	1*S	"TWO-DIMENSIONAL HELP" "THREE-DIMENSIONAL HELP "STEREO HELP" "HELP" "	$\left.\begin{array}{l}\text { A cards } \\ \text { B cards } \\ \text { C cards } \\ \text { D cards } \\ \text { E cards }\end{array}\right\}$Enter using Grapha Table 6

Grapha Table 6
Data checklist

	PURPOSE	NECESSARY	TYPE	ENTRY	NOTES
	Type of plot	$\begin{aligned} & \mathrm{D}+ \\ & \mathrm{E}+ \end{aligned}$	1*r	from Table 1	Selects type of plot required.
2D	$\left\{\begin{array}{l}\text { Number of } \\ \text { points } \\ \text { Number of } \\ \text { plots }\end{array}\right.$	A+ D+ E+	$2 * i$	number of points per graph number of plots in set	If number of plots in set $=1000$, then enter number of lines per graph then re-enter number of graphs.
3D	$\left\{\begin{array}{l} \text { Number of } \\ \text { points on } \\ X \text { and } Y \text { axes } \\ \text { Number of } \\ \text { plots } \end{array}\right.$	$\begin{aligned} & \mathrm{B}+ \\ & \mathrm{C}+ \\ & \mathrm{D}+ \\ & \mathrm{E}+ \end{aligned}$	$3 * i$	number of intervals on X and Y axes, number of plots in set	A set $=$ graphs all of same type with same axis intervals etc.
	Omit border	$\begin{aligned} & \mathrm{D}+/- \\ & \mathrm{E}+/- \end{aligned}$	1*s	"NO BORDERS"	
	Omit axes	$\begin{aligned} & D(\text { if } 2 D)+/-\quad 1 * s \\ & E(\text { if } 2 D)+/- \end{aligned}$		"NO AXES"	
	$\begin{aligned} & \text { Title } \\ & \text { size } \end{aligned}$	E+/-	1*S	"SIZESTATED"	Also enter 6*r for sizes
	Pageheading	$\begin{aligned} & \mathrm{D}+ \\ & \mathrm{E}+ \end{aligned}$	1*s	" "	Enter blank card if no page heading

Grapha Table 6 continued

PURPOSE	NECESSARY	TYPE	ENTRY	NOTES
broken lines	E+/-	1*S	"BROKEN LINES" or "BROKEN"	Also enter 4^{*} r for markspace ratio.
page size	E+	1*s	"PAGESIZE"	If blank card placed here, do not enter plotter characters (next
plotter characters	E+	1*S		Enter 9*i to change plotter setup.
X axis value limits Y axis value limits	$\begin{aligned} & D(\text { if 2D) } \\ & E+ \end{aligned}$	4*r		minimum and maximum axis markings for X and Y axes
$\begin{aligned} & \text { plot size } \\ & (\mathrm{cms}) \end{aligned}$	E+		$\begin{aligned} & " 1 * r \text { or } i, \\ & 1 * r \text { or } i " \end{aligned}$	First for plot width, second for height (cms). For text option add 200 to width. For label X and Y axes, add 100 to width (follow by $2 *$ s for X and Y labels). For both, add 300 to width. If width value not an integer, then one graph per page given. If height not an integer, then space left around graphs.

inimum and maximum axis
markings for X and Y axe
First for plot width, second for height (cms).
For text option add 200 to

For label X and Y axes, add
100 to width (follow by $2 *$ s
for X and Y add 300 to width.
If width value not an integer,
 If height not an integer, then space left around graphs.
Grapha Table 7
Data checklist

PURPOSE	NECESSARY TYPE	ENTRY	NOTES
$\begin{aligned} & \text { Title } \\ & \text { (not main } \\ & \text { heading) } \end{aligned}$	if specified 1^{*} S	"title"	i.e. sub-title or individual title
Data	$\begin{array}{ll} \text { A+ } & n^{*} r \\ D+ & \\ E+ & \end{array}$	enter data as x, y co-ordinate pairs	If multiple graph, repeat.
Text	$\left.\begin{array}{l}\text { E(if length } \\ \text { greater than } \\ 200)+ \\ \begin{array}{l}\text { A }+/- \\ \mathrm{D}+/- \\ \mathrm{if} \\ \mathrm{E}+/- \\ \text { mrltiple } \\ \text { graphs on } \\ \text { plot }\end{array}\end{array}\right\}$$1 * i$ $1 * \mathrm{~s}$ $2 * r$	"number of sentences" $\left.\begin{array}{l}\text { "sentences" } \\ \mathrm{X}, \mathrm{Y} \text { co-ordinates }\end{array}\right\}$	Repeat until "number of sentences"

$\stackrel{\text { ค }}{\sim}$

Title (not main heading)	if specified	$1 *$ s	"title"	i.e. subtitle or individual title
Object centre	$E+$	$1 * r$	centre 1	2000 repeats centres, 1000 XYZ appended to axes. (Re-enter C in either case.)
Plotter setup	$E+$	$2 * r$	centre 2, centre 3	P1-P6

Grapha Table 7 continued

Grapha Table 8
A list of output messages with their significance
A4 \quad A4 page size pre-set, either true
or false
A (1 - PX) - intervals for X axis data in 3D plots

Axeslabel - selection of axis labelling, either true or false
axessi - intervals for axis numbering plotted
B (1 - PY) - horizontal axis data values if 2D plot, otherwise data intervals for Y axis data in 3D plots

Border - frame plotted around the graph
Broken (1-4) - broken line mark space ratio
C (1-3) - or centre (1-3), centre co-ordinates for three-dimensional plot
$C(1,1)-C(P X, P Y)$ - vertical axis data values if twodimensional plot, otherwise data values for data matrix in threedimensional plots
card - a computer coded (punched card) entered by the user
char - character in use
characterset - the character set (number) selected
centre - the centre of the object being plotted

REFERENCES

44MFT Guide to System Use. Tecnical Report.
University of St.Andrews Computing Laboratory.

3D Plotting and Contouring. Software Memo 009, University of St.Andrews Computing Laboratory.

A User's Guide to Ghost. Technical Report CL/73/2. University of St.Andrews Computing Laboratory.

APPENDIX

The package is accessed in the following manner. Cards should be submitted which read as follows :-

```
passcard
```

job card
//SYSRDR ACCESS CLOPT(GRAPHA)
data submitted as described below
$/ 8$

A description of the passcard and job card may be found elsewhere (44MFT Guide to System Use,1976), but a brief note is also included here. The passcard will normally be punched with the user ID and password (issued on registration at the computer unit). No blank spaces are permitted between any of the characters which must start in column one.

A job card is essential to every job and should be similar to the one shown below -
//IDNANE JOB ,T1P30
The IDNANE will not exceed 8 characters in total while the time and page limits are optional (if none are entered then a value for each will automatically be set, but this may not be sufficient for the job
in hand) where time and page limits are not entered, the comma should still be entered one space on from JOB. At present, convention dictates the use of orange cards for all of the above with the exception of the white passcard. The orange cards are termed job control language (JCL) cards, and are used to access both hardware (the central processing unit or CPU, tape units, disk drives etc.) and software (normally the medium carrying the program instructions e.g. tape, disk and cards).

It is necessary to indicate to the computer operators which units are required when these are not normally accessed automatically. Thus, the white passcard has sections requesting this information. In the current context, the following entries should be made :-
name
department
tick 44 NFT (the system in which the program is .available)
enter FULL CORE in the blank box (Because of the large storage requirement of this program, it will not run unless the whole CPU space is available for execution.)
the job name should be entered from the JOB card Finally, it is necessary to tick the box marked plotter which indicates to the operators that
the plotter tape should be loaded. (This tape will carry all of the information for the graphical output to be plotted later.)

When a request for a plot is to be made, the job name, the date and time at which it was run should be submitted along with the request.

SECTION III
 (CHAPTER 5)

A USER MANUAL FOR HIDE:
A PRE-PROGRANIIED PACKAGE
FOR THREE DIMENSIONAL GRAPH PLOTTING INCLUDING SHADING AND HIDDEN LINE CALCULATION

CONTENTS OF HIDE

1. Shading and hidden line three-dimensional plots using the package Hide 126
2. Use of Hide three-dimensional help option 128
3. Use of Hide help package 132
4. Hide complex plots 137
5. Major differences between Hide and Grapha packages 151
6. Plot type table 153
7. Conventions adopted for three-dimensional data preparation 155
8. Additional facilities available for all Hide plots 159
9. Data checklist tables 160
10. Output messages 167
11. References 168

NOTES ON USE OF HIDE

1. To use the line hiding option, consult Hide Manual Section 2 for a first time plot. Sections 3 and 4 require greater user manipulation but are more versatile.
2. Check assembled data against Tables 5 and 6 .
3. Table 3 gives data conventions.
4. If the data has not been plotted using Grapha, then use Grapha first.
5. SHADING AND HIDDEN LINE THREE-DINENSIONAL PLOTS USING THE PACKAGE HIDE

This package is similar to Grapha in concept (Norton, 1979) but also contains shading and line hiding routines. However, two-dimensional plots are not available in this package because of computer space considerations. HIDE should only be used where Grapha is unsuitable since central processor unit time (CPU time) is considerably increased when using the line hiding options. Other differences in use are listed in Hide Table 1.

Four levels of access to this program are available and these differ in their requirement for user submitted information. The three levels are known as :-
"THREE-DINENSIONAL HELP"
"STEREO HELP"
"HELP"
" . " blank or complex plots.
For a given plot, the lowest option in the list capable of producing the required output should be used. A description for use follows.

Hide Table 2 lists the types of plot which are available in help or blank plots (three-dimensional and stereo help automatically select a plot type).

Hide Table 3 shows the conventions used for data submission under Hide.

For clarification of certain parameters, the user is referred to"A User's Guide to Ghost","3D plotting and contouring", "44MFT - A Guide to System Use" and "Hide - a line hiding package". Where difficulty may be encountered, a note is appended, e.g. (Ghost = gargs) for a debug option. Alternatively, Hide Table 7 lists the significance of all the named parameters and output messages.

The attention of the user is drawn to the following tables found at the end of this manual a) Hide Table 4. Additional facilities available for all Hide plots
b) Hide Table 5. Key to Hide Table 6.
c) Hide Table 6. Data entry checklists.
d) Hide Table 7. List of output messages and their meanings.

A line printer representation of plots is also given along with output. The first of these does not include any hidden line calculation, while subsequent plots are only included to indicate to the user that a plot has been produced as they are not a good representation of the plot produced.

2. USE OF HIDE "THREE-DIMENSIONAL HELP" OPTION

Little user control is given but output requiring annotation is produced with minimal user information requests. To use this option, the first card should read -

Card 1. "THREE-DIMENSIONAL HELP"
Card 2. Enter the number of data intervals on the X and Y axes as integer values. Also enter the number of graphs in the set.

Card 3. Enter data intervals for X and for Y axes e.g $24 \quad 4896$ $\begin{array}{llll}0 & 10 & 20 & 30\end{array}$

Card 4. Entry of data in grids (see Hide Table 3) -

X1Y1			$-\mathrm{X1Yn}$	
X2Y1			$-\mathrm{X} 2 \mathrm{Yn}$	
X3Y1			-XnYn	
e.g.	24	22	23	13
	3	18	24	0
	1	7	15	0

Card 5. onwards. Repeat Card 3 to number of graphs in set.
THREE-DIMENSIONAL HELP
341
$24 \quad 48 \quad 96$
$\begin{array}{llll}0 & 10 & 20 & 30\end{array}$
$\begin{array}{llll}24 & 22 & 23 & 13\end{array}$
$\begin{array}{llll}3 & 18 & 24 & 0\end{array}$
17150

Hide Figure 1.
Three-dimensional help plot with hidden lines omitted

3. USE OF HIDE-HELP PACKAGE

Card 1. A card to indicate help status should be entered initially. e.g. HELP

Card 2. A numeric value for plot type should be entered (chosen from Hide Table 2). e.g. 8.1

Card 3. Enter number of data intervals (see Hide Table 3) on both X and Y axes (two integer values).
e.g. 34

Enter number of graphs in set (all of the same plot type)(integer value).
e.g. 1

Card 4. Page heading. Enter a string of up to 80 characters for the page heading, otherwise enter a blank card.
e.g. RICE HELP

Card 5. Enter an individual title if specified in plot type.

Card 6. Enter maximum and minimum axis values for plot (6 real values) -
x axis minimum value x axis maximum value

y	$"$	$"$	$"$	y	$"$	$"$	$"$
z	$"$	$"$	$"$	z	$"$	$"$	$"$
e.g. 24	96	0	30	0	30		

Card 7. The data intervals for the two-dimensional lattice forming the base of the plot should be entered (see Hide Table 3).
x1 x2 -xn e.g. $24 \quad 4896$
y1 y2 -yn e.g. $0 \quad 10 \quad 20 \quad 30$
Card 8 onwards. Data. Enter data in X planes (integer

$$
\begin{aligned}
& \text { or real) in order (see Hide Table 3) as - } \\
& \begin{array}{cccc}
\mathrm{x} 1 \mathrm{y} 1 & \mathrm{x} 1 & \mathrm{y} 2 & -\mathrm{x} 1 \\
\mathrm{yn} \\
\mathrm{x} 2 \mathrm{y} 1 & --\mathrm{x} 2 & \mathrm{yn} \\
\mathrm{xn} \mathrm{y1} & & --\mathrm{xn} \text { yn } \\
\text { e.g. } & 22 & 23 & 23 \\
12 & 23 & 23 & 29 \\
24 & 22 & 27 & 21
\end{array}
\end{aligned}
$$

Example of Hide-help
(Compare with Hide Figure 2)
HELP
8.1341
RICE HELP
$24 \quad 96 \quad 0 \quad 30 \quad 0$ 30
2448 96
01020 30
$\begin{array}{lll}22 & 23 & 23\end{array}$ 29
$12 \quad 23 \quad 23$ 29
$24 \quad 22 \quad 27$ 21

Hide Figure 2.
A help plot using Hide

RICE HELP

4. HIDE COMPLEX PLOTS

Card 1. Several debugging options are available in Hide but only a limited debug output will be given unless the first card reads :"DEBUGGING INFORMATION".

In normal use, this option should not be required, while careful thought should be given before requesting a debug option since the output becomes excessive. (A further override and other debug options are available later in this program.) e.g. debugging information
Card 2. Blank card. This selects for complex plotseg blank card
Card 3. Enter an integer value for the number of types of plot in the current job. e.g. 1

Card 4. Blank card. This sets the program to complex plot (recycling mode).e.g. blank card

Card 5. To set the type of plot, a value must be selected from Hide Table 2 and entered here (one real value).
e.g. 7.1

Card 6. Enter the number of data intervals on the X axis and the number of data intervals on the Y axis (two integer values) and the number of graphs in the set (one integer
value).
e.g. 541

Card 7. (optional) To pre-set character size, a card should be entered as follows :7a) "SIZESTATED"
followed by real values for each of the following (six real values) :7b)individual title size (centimetres); X and Y co-ordinates for start of individual title ;
main title size;
X and Y co-ordinates for start of main title.

Card 8. Enter a line of text (or a blank card) for a page heading.
e.g. plot type 7.1 (hidden broken lines)

Card 9. (optional) For a plot made up of broken lines throughout, enter :-
9a) "BROKEN LINES"
or for a plot where the size of broken
lines e.g. hidden lines is to be specified,
enter :-
"BROKEN".
e.g. broken

9b) In either case, enter four real values for mark space ratio intervals. e.g. 1212

Card 10. For control over page size, plotter characters etc., enter "PAGESIZE", otherwise enter a blank card.
e.g. blank card

1. If"PAGESI:ZE" is entered, then enter nine integer values for :underflow suppression initialize plotter turn plotter on/off
units for plotting
italic / non-italic characters
de bugging
character set
printing of frame number
perspective control
A full description of these can be found in !'A User Manual for Grapha - a
pre-programmed graphics package for the applied sciences". The value 1 will turn each of these parameters on, while the value 0 turns them off.

Note that underflow suppression and plotter initialization should only be turned on once otherwise the job will fail. There are two major differences from Grapha.
a) Perspective control allows for isometric
(1) or perspective (0)plots.
b) Additional debugging facilities are available. A value of $1,11,21$, or 31 may be entered. The higher values give more information but since output becomes excessive, it is not recommended that these options are used. However, where they are selected, the output is normally self-explanatory (see Hide Table 7).
2. If "PAGESIZE"is entered above, then enter :four real values for page limits width minimum value width maximum value height minimum value height maximum value
(Ghost $=$ limits)
3. If "PAGESIZE" is entered above, then enter four real values for two-dimensional graph space :width minimum value width maximum value height minimum value height maximum value
(Ghost $=$ pspace)
Card 11. For axis marking limits in two dimensions,
enter four values for mathematical space. If in doubt, enter "0 0000 , otherwise refer to "3D PÏotting and Contouring". (Ghost $=$ mspace)
e.g. 0000

Card 12. Graph width may be specified by entering a value (in centimetres). If text is required on the plot itself, add 200 to the width value. If this text is to be manipulated from two to three dimensions, add a further 300 to this value e.g. $200+300+10=510$.
a) e.g. 210
b) enter graph height in centimetres e.g. 10

Card 13. If an individual title has been specified in the plot type chosen, then enter the title here.
e.g. INDIVIDUAL TITLE

Card 14. (optional) Several object centres for a given plot are possible. Enter "2000" to use this facility.

Card 15. (optional) Axes may have a large letter X, Y or Z appended appropriately for identification purposes. Enter "1000" to use this facility. e.g. 1000

Card 16. (optional) Alternating isometric and perspective plots may be given by entering
"999".
Card 17. Enter values for the object centre as three real values. e.g. 3210

Card 18. Enter graph plot size in three-dimensional space as follows :-

X minimum value (cms)(real or integer)
X maximum value
Y minimum value "
Y maximum value "
Z minimum value "
Z maximum value "
(Ghost 3D $=$ PSPC3D)
e.g. $\begin{array}{llllll}5 & 15 & 5 & 15 & 5 & 15\end{array}$

Card 19. (optional) Where the pre-set shade density is unsatisfactory, another value may be substituted as follows. Enter "1001" and a value for density. e.g. "50".

Card 20. Enter axis limits for three-dimensional
space as follows :-
X minimum axis marking
X maximum " "
Y minimum " "
Y maximum " "
Z minimum " "
Z maximum " "
(Ghost 3D = MSPC3D)

$$
\text { e.g. } 1
$$

Card 21. Enter number of data values on X axis (integer). Enter number of data values on Y axis. " (Hide Table 3)

$$
\begin{array}{lllll}
\text { e.g. } & 1 & 2 & 3 & 4 \\
\\
1 & 2 & 3 & 4 & 5
\end{array}
$$

Card 22. Enter data grid as described in Hide Table 3 as follows :-

X1Y1 X1Y2X1Yn
X2Y1 X2Y2X2Yn
XnY1 XnY2 XnYn
Any number of new cards may be used. e.g. 1234
$\begin{array}{llll}5 & 6 & 7 & 8\end{array}$
$\begin{array}{llll}9 & 10 & 11 & 12\end{array}$
$\begin{array}{llll}13 & 14 & 15 & 16\end{array}$
$\begin{array}{llll}17 & 18 & 19 & 20\end{array}$
NEW VIEW
Card 23. (optional) Enter "999" if neither grids nor axes are required on the plot. Enter "998" if grids and axes are required followed by three integers. If any of the three integers $=1$, then a grid will be drawn for that plane, viz. XY, XZ, YZ.

Enter "997.5" for axes to be drawn only
where visible from the viewpoint (then
enter "100 100 100")。
Enter "997" for grids to be drawn followed by three integer values as above. Axes only given by default.

Card 24. Enter viewpoint co-ordinates (X, Y and Z) $-V_{1}$, $\mathrm{V}_{2}, \mathrm{~V}_{3}$ (real values).
e.g. $10 \quad 1050$

Card 25. If centre $1=2000$ (on last entry), then re-enter values for C.

If $C_{1}=2000$ again this option becomes available for the next plot.
If $C_{1}=1000$, then X, Y and Z will be appended to each axis for identification purposes. If $C_{1}=999$, then alternating isometric and perspective plots will be given.

Several of the above values may be entered if they are entered in order of decreasing value. Enter three real values for centre.

Card 26. If a value greater than 500 was entered on Card 12 (width of graph), then text and text manipulation will be given. The following must be entered :-

1) either a value of zero or text as in Card 27 (text below plot),
2) character size for text on plot
3) number of lines of text on plot
4) read a line of text
5) enter " 00 "
6) enter X and Y co-ordinates in twodimensional space for transformation to three-dimensional space
7) enter transformation values where $X=X T(1) * x+X T(2) * y+X T(3)$ $Y=Y T(1) * x+Y T(2) * y+Y T(3)$ $Z=Z T(1) * x+Z T(2) * y+Z T(3)$ as three real values for $\mathrm{XT}(1-3)$
as three real values for YT(1-3)
as three real values for

$$
\mathrm{ZT}(1-3)
$$

Card 27. If width was specified as more than 200 but less than 300, then enter text as follows (unless directed from Card 26) :-

1) Enter integer value for number of lines e.g. 6.
2) Enter a line of text followed by real values for the X and Y co-ordinates for the start of this line of text. e.g. any number of lines of text desiredfor example $5 \quad 14$
3) Repeat 2) until the integer value entered
in 1) is reached.
Card 28. If stereo, repeat Cards 26 and /or 27.
Card 29. Enter a value greater than 1000 to stop the program or enter a value of 1000 to give a series of standard views of the object; otherwise return to NEW VIEW. e.g. 1001
```
Example of use of Hide complex plot
(Compare with Hide Figure 3)
DEBUGGING INFORMATION
1
7.1
5}44
PLOT TYPE 7.1 (HIDDEN BROKEN LINES)
BROKEN
1212
0}00
2 1 0 1 0
1 0 0 0
3 2 10
5
1
1 2 3.4 5
1 2 3 4
1 2 3 4
5
9 10 11 12
13}1014\quad15 16 
17 18}19192
```

```
1010 50
```

6

ANY NUMBER OF LINES OF TEXT DESIRED FOR EXAMPLE
514
A LIST OF AXIS ANNOTATION MAY BE ENTERED AS FOLLOWS
$5 \quad 13.3$
$X=$ ONE HORIZONTAL AXIS, IN THIS CASE HOURS OF SOAKING
$5 \quad 12.6$
$Y=O T H E R$ HORIZONTAL AXIS, HERE TAKEN AS TEMPERATURE OF SOAKING

$5 \quad 11.9$

$Z=$ VERTICAL AXIS OR INDEPENDENT VARIABLE, IN THIS CASE GERMINATION OUT OF 30
511.2

SEEDS .
510.5

1001

Hide Figure 3.
A complex plot using the hidden line package (Hide)

PLOT TYPE 7. 1 (HIDDEN BROKEN LINES)

ANY MMBER OF LINES OF ILXT DESIRED FOR EXAMPLE
A LIST OF XIS AMVTATION MAY BE ENTERED AS FOLLOWS
$X=$ ONE HORIZONTAL AXIS_ IN THIS CASE HOURS OF SOAKING.
$Y=$ OTHER HORIZONTTL AXIS, MERE TAKEN AS TEMPLRATURE OF SOAKING.
$Z=$ VERTICAL AXIS OR INLEPENDENT WRIABLE IN THIS CANE GLAMINATION OUT OF 30 SEEDS.

Hide Table 1.

Major differences between HIDE and GRAPHA packages

1. Where a line hiding option is chosen, only one graph per page will be given regardless of graph size chosen. (That is to allow for the memory requirements for the hidden line points.)
2. It is recommended that the output from any job should be restricted to one graph because the plotter tape is produced in two separate stages. This means that an error in graph 7, for example, will cause graph 1 to fail on its second stage of computation - thus the whole job will fail.
3. In general, three-dimensional data prepared for Grapha will run under Hide although size of output may vary.
4. A number of additional plot types are available see Hide Table 2.
5. Shading and shading density are under user control.
6. Character plotting in three-dimensional space is also available with rotational characters.
7. A pre-set for alternating isometric and perspective plots is available.
8. Access to the package is similar to Grapha i.e. passcard job card
```
//SYSRDR ACCESS CLOPT(HIDE)
/*
        data submitted as described below
    /*
/*
/&
```

Note the addition of an additional /* before the termination card (/\&). This card executes the line hiding part of the program.

Hide Table 2.
Plot type table for plots using Hide
3.1 three-dimensional graph
3.2 three-dimensional graph with titles overlaid
3.3 three-dimensional graph with sub-titles at foot of page
3.4 three-dimensional plot with titles overlaid and large axis markings

4.1 three-dimensional graph with dotted base lines
4.2 three-dimensional graph with dotted base lines and title
4.3 three-dimensional graph with dotted base lines and sub-titles
4.4 three-dimensional graph with dotted base lines and titles and large axis markings

5.1 three-dimensional graphs produced as stereo pairs
5.2 three-dimensional graphs produced as stereo pairs with titles
5.3 three-dimensional graphs produced as stereo pairs with sub-titles
5.4 three-dimensional graphs produced as stereo pairs with titles and large axis markings
6.1 three-dimensional graph with hidden lines omitted
6.2 three-dimensional graph with hidden lines omitted and with titles
6.3 three-dimensional graph with hidden lines omitted and with sub-titles
6.4 three-dimensional graph with hidden lines omitted and including titles and large axis markings

7.1 three-dimensional graphs with hidden lines dotted
7.2 three-dimensional graphs with hidden lines dotted and titles
7.3 three-dimensional graphs with hidden lines dotted and subtitl
7.4 three-dimensional graphs with hidden lines dotted and titles and large axis markings
8.1 three-dimensional graph with hidden lines omitted and base shaded
8.2 three-dimensional graph with hidden lines omitted, base shaded and titles
8.3 three-dimensional graph with hidden lines omitted, base shaded and subtitles
8.4 three-dimensional graph with hidden lines omitted, base shaded, title and large axis markings
9.1 to 11.3 similar to 6.1 to 8.3 but a stereo option is given

12.1 to 17.3 similar to 6.1 to 12.3 but the whole of the base of the figure is shaded regardless of viewpoint

Hide Table 3.
Conventions adopted for three-dimensional data preparation

1. The two independent variables will be known as as X and Y and will be represented by the two horizontal axes in a three space co-ordinate system. The vertical or Z axis will be the dependent variable (or experimental result). It is recommended that, initially, the independent variables should be visualised as a two-dimensional co-ordinate grid. For example, an experiment with four temperature treatments and three duration treatments might be represented as follows :-

or

2. Any symmetrical data pattern may be represented in this way, while a non-symmetrical matrix may be made uniform by the substitution or repetition of values. In a fertilizer experiment, three fertilizers were used - nitrogen, potassium and phosphorus (abbreviated to N, P and K). These fertilizers were applied in all combinations.

They could be represented as follows :-

or

3. The data is then entered in order as :-

with a single data value (real or integer) for each co-ordinate pair.
4. Compare the following diagram with the data submitted -

$$
\begin{aligned}
& \mathrm{X} 1 \mathrm{Y} 1=4.2 \mathrm{X} 1 \mathrm{Y} 2=3.5 \mathrm{X} 1 \mathrm{Y} 3=2.1 \mathrm{X} 1 \mathrm{Y} 4=0.9 \\
& \mathrm{X} 2 \mathrm{Y} 1=3.5 \mathrm{X} 2 \mathrm{Y} 2=3.0 \mathrm{X} 2 \mathrm{Y} 3=1.8 \mathrm{X} 2 \mathrm{Y} 4=0.7 \\
& \mathrm{X} 3 \mathrm{Y} 1=3.0 \mathrm{X} 3 \mathrm{Y} 2=2.0 \mathrm{X} 3 \mathrm{Y} 3=1.1 \mathrm{X} 3 \mathrm{Y} 4=0.3 \\
& \mathrm{X} 4 \mathrm{Y} 1=1.9 \mathrm{X} 4 \mathrm{Y} 2=0.8 \mathrm{X} 4 \mathrm{Y} 3=0.7 \mathrm{X} 4 \mathrm{Y} 4=0
\end{aligned}
$$

Data entry sequence -

4.2	3.5	2.1	0.9
3.5	3.0	1.8	0.7
3.0	2.0	1.1	0.3
1.9	0.8	0.7	0

5. Data intervals. These are integer values for the number of points for which there are data values. This means the number of intervals on the X and on the Y axes. In the previous example, the integer values would be 3 and 4.

Hide Table 4

Additional facilities available for all Hide plots Debugging information and recycling of the program

Any job may commence with one or more of the following conditional cards, provided that they are entered in the stated order if more than one condition is to be set.
a) DEBUGGING INFORMATION

The first card in the data set may read
"DEBUGGING INFORMATION" in which case additional detail of plotter commands will be printed. This option shoulc only be used when really necessary because many parameters internal to the program will be output, while their meaning will have little significance to the casual user.
b) A SET OF PLOT TYPES

Where a help option is chosen (blank options already include this option), recycling of the whole program may be given for a sequence of graphs of differing types. In this case, a blank card should be entered followed by a card with an integer value for the number of types of graph to be produced. Any plot type may be subsequently selected.

Hide Table 5

Key to Hide Table 6

Hide Table 6.
Data checklist for Hide plots（with hidden lines）

が仕びひのほと
Hide Table 6 continued

PURPOSE	CONDITION	NECESSARY	TYPE	ENTRY	NOTES
Omit frame	help or blank plot	$+/-$	$1 * S$	"NO BORDERS"	optional

Hide Table 6 continued
NOTES
If greater than 300 sets for
transformation of text on plot
(width becomes width -300).
If greater than 200 text option
given (width $=$ width -200).
Values may be additive.

Graph blank plots height	+	1*r		
Individual if specified title in plot type entry	+	1*s	"title"	
Several blank plots centre plots	+/-	1*r	"2000"	several plots of same data with different centres
Axis blank plots labelling	+/-	1*r	"1000"	X, Y and Z appended to ends of appropriate axes
Isometric blank and plots perspective plots (alternating)	+/-	1*r	"999"	gives two plots of each data set (isometric and perspective plots)
Centre for blank plotted data plots	+	3*r	"centre 1-3"	

Hide Table 6 continued

	PURPOSE	CONDITION N	NECESSARY	TYPE	ENTRY	NOTES
	3D plotting space (cms)	blank plots	+	6*r	"pspace3D 1-6"	
	Shade density	help or blank plots	+/-	1*r	"1001"	then enter density of shading 1*r
	3D axis marking	help or blank plots	+	6*r	"mspace3D 1-6"	
	Data	all plots			X axis data intervals Y axis data intervals	
	Data grids				X plane 1 as X1Y1 to X plane 2 as X2Y1 to until X plane n as XnY1 to	$\begin{aligned} & \text { X1Yn } \\ & \text { X2Yn } \\ & \text { XnYn } \end{aligned}$
N E W	Axes and grids (optional)	blank plots	+/-	1*r	$\begin{aligned} & \text { "999" } \\ & \text { "998" } \\ & \text { " } 997.5 " \end{aligned}$	No grids or axes Grids and axes Axes partly hidden if behind planes plotted
V I E					"997"	Grids only No entry gives axes only
W	Grid plane	if "998" or "997" entered on previous card	${ }^{+}$	3*i	e.g. "0 1 0"	Grids drawn where 1 given thus XY,XZ,YZ planes

Hide Table 6 continued

	PURPOSE	CONDITION	NECESSARY	TYPE	ENTRY	NOTES
	Axis hide	if "997.5" entered on previous card	$+$	3*1	"100 100 100"	
	Viewpoint	blank plots	+	3*r	"view 1-3"	
	$\left(\begin{array}{l} \text { Several } \\ \text { centre } \\ \text { plot } \end{array}\right.$	if several centre ent on earlier i.e."2000"		1*r	"2000"	several centre plot
	$\left\{\begin{array}{l}X, Y \text { and } \\ \text { Z axis } \\ \text { labels }\end{array}\right.$	if "2000" previous c	$\begin{aligned} & \text { n } \\ & \text { rd } \end{aligned}$	1*r	"1000"	X, Y and Z axis labels
	Isometric/ perspectiv plots	$\begin{aligned} & \text { if "2000" } \\ & \text { ve "1000" or } \\ & \text { previous ca } \end{aligned}$	$+/-$	1*r	"999"	alternating isometric and perspective plots
	Centre	if "2000" "1000" or on previous	$\begin{aligned} & r_{\text {card }}+ \\ & \text { 999" } \end{aligned}$	$3 * r$	"centres 1-3"	
	$\begin{aligned} & \text { Transforme } \\ & \text { text } \\ & \text { overlay } \end{aligned}$	d if width greater tha on earlier		$1 * r$	"character size transformed overl	

Hide Table 6 continued

PURPOSE	CONDITION	NECESSARY	TYPE	ENTRY	NOTES
Text	if width	+	$1 * i$	"number of lines of text"	Repeat text and
entry	greater than		$1 * s$	"string of text"	co-ordinates until
	200 on earlier		$2 * r$	"X, Y co-ordinates for text" number of lines of	
	card			text reached.	
				If X=0 then transform	
				as below.	

$\begin{array}{ll}\text { Text } & \text { if width } \\ \text { size } & =100 \\ \text { Transform } & \text { if } X=0 \\ \text { text to } 3 D & \\ \text { above }\end{array}$
$+$

[^0]

Hide Table 7

List of output messages with their meanings
(refer to manual "Grapha - a pre-programmed graphics package for the applied sciences" for messages not included here)

NESSAGE SIGNIFICANCE
area X - number of area of plot currently being handled 1

CPU time	central processor unit time used up to
	this point 1
endar -	end of description or definition of
	current area 1
ignall $\quad-$	previous area definitions all ignored at
	this point 1

ignore X - previous definition of area X ignored ${ }^{1}$
normal - return line hiding package to normal state ${ }^{1}$
notrn - return two to three dimensional character transformation to normal state ${ }^{2}$
opaque X - area X has been defined as opaque to further plotting ${ }^{1}$
sumopq - all defined areas become opaque as one opaque area ${ }^{1}$
trnfrm - transformation of two dimensional characters for three-dimensional plotting ${ }^{2}$
vector - listing of vectors used in plot (e.g. the lines used in shading) ${ }^{1}$

1. "Hide - a line hiding package"
2. "3D plotting and contouring using Ghost"

REFERENCES

44Nit Guide to System Use. Technical Report. The University of St.Andrews Computing Laboratory. Hide - a line hiding package. The University of St. Andrews Computing Laboratory Report.

Norton, C.R. 1979 A User Manual for Grapha - a preprogrammed graphics package for the applied sciences. The University of St. Andrews Computing Laboratory.

3D Plotting and Contouring. 1976 Software Memo 009, The University of St.Andrews Computing Laboratory.

A User's Guide to Ghost. Technical Report CL/73/2 The University of St.Andrews Computing Laboratory.

SECTION IV

THE GRAPH PLOTTING PACKAGES
IN USE

CHAPTER 6

THE VERSATILITY OF THE PACKAGES

This chapter includes a number of figures illustrating the nature of output possible using the packages described. The figures produced are based, in the main, on biological experimentation by the author.

6.1 Two-dimensional graphs

An interesting feature of this package is the ability to block a number of graphs on to one page. Figures used to demark axes may be enlarged and plotted on the edge of the page only (Figure 6.01) and in combination with title integration for minimal overlay of the graphs (Figure 6.02). A series of titles (suba notation) may be appended at the foot of the page (Figure 6.03).

Alternatively, it may be desirable to block a number of figures on to one page while leaving a specified gap around each plot (Figure 6.04).

It is often useful to plot several graphs on to one output field. In this case, up to four graphs may be plotted using different plot formats (solid or broken lines, black or red colouration)(Figure 6.05).

Figure 6.01
Example of blocking of graphs on to one page using large axis markings (Grapha)
(Data for plot in Appendix Table 1)

30.0	RICE SEEDS SOAKED FOR 24 HORS		
30.0	CAPROT SEEDS SOAKHD FOR 24 HOURS		
30.0	LETVCE SEAS SOAKED FOR 24 HORS	LETVCE SEASS SORKD FOR 48 HOURS	LETVOE SEADS STREED FOR \%\% Hows
30.0	RAOISH SEEDS SOAKAD FOR 24 HOURS	RADISH SEEDS SOAKED POR 48 HOURS	RADISH SEEDS SOAKED FOR 96 HOURS
	30.0	30.0	30.0

```
Figure 6.02
Use of integrated title option for minimal graph
overlay by title (Grapha)
(Data for plot in Appendix Table 2)
```

GEPMINATION OUT OF 30

Figure 6.03

The sub-title option for a page of graphs (Grapha)
(Data for plot in Appendix Table 3)
igure 6.03
The sub-title option for a page of graphs (Grapha)
(Data for plot in Appendix Table 3)

SUBTITLES, LARGE AXES FIGURES, LABELS.

1 RICE SEEDS SOAKED FOR 24 HOURS 2 RICE SEEDS SOAKED FOR 48 HOURS 3 RICE SEEDS SOAKED FOR 96 HOURS 4 CARROT SEEDS SOAKED FOR 24 HOLRS 5 CARROT SEEDS SOAKFD FOR 48 HOURS 6 CAPROT SEEDS SOAKRED FOR 96 HOURS 7 LETTUCE SEEDRS SGAKED FOR 24 HOURS 8 LETIUCE SEEDS SOAKED FOR 48 HOURS 9 LETTUCE SEEDS SOAKED FOR 96 HOURS 10 RADISH SEEDS SOAKED FOR 24 HOURS 11 RADISH SEEDS SOAKED FOR 48 HOLRS 12 RADISH SEEDS SOAKED FOR 96 HOURS 13 METEOR SEEDS SOAKED FOR 24 HOURS 14 METEOR SEEDS SOAKED FOR 48 HOURS

15 HETEOR SEEDS SOAKED FOR 96 HOURS 16 PIONEER SEEDS SOAKED FOR 24 HOURS 17 PIONEER SEESS SOAKED FOR 48 HOURS 18 PIONEER SEEDS SOAKED FOR 96 HOLRS 19 INWARD SEEDS SOAKED FOR 24 HOLRS 20 ONAARD SEEUS SOAKED FOR 48 HOLRS 21 ONMARD SEEDS SOAKED FOR 96 HOLRS 22 GLADSTONE SEEUS SOAKED FOR 24 HOURS 23 GLADSTONE SEEDS SOAKED FOR 48 HOLRS 24 ELADSTONE SEEUS SOAKED FLR 96 HOURS

Figure 6.04
The spacing of graphs on a single page (Grapha)
(Data in Appendix Table 4)

spaces

Figure 6.05
Multiple graph plotting on one output field (Grapha)
(Data for plot in Appendix Table 5)

SUPERIMPDSED GRAPH OPTION

SLACK LINE = GPAPH 1.

BLACK BROKEN LINE = GRYF 2.

RED LINE $=$ GRPPH 3.

6.2 Three-dimensional graphs

The relief of data plots may be heightened by using a broken line option for the base (comparatively economical of CPU time), while specification of a different pen colour will produce better relief (Figure 6.18).

Examples of the use of hidden line plots, base shading and dotted hidden lines are shown in Figures 6.07 to 6.10 .

6.3 Stereo plots

Using the above techniques, 'apparent' depth may sometimes be difficult to visualise. However, the production of stereo pairs is straightforward using this package. A viewpoint separation similar to that of human eyes (6.5 cm) is calculated equally to either side of the user specified viewpoint (Figure 6.11).

Viewing of stereo pairs is possible using a pocket stereoscope. However, plotter inaccuracy (Figure 6.12) suggests that photographic reduction of stereo pairs is more feasible. Figures 6.13 and 6.14 illustrate larger scale stereo plots.

6.4 Mixed plots

Either package may be used to run a series of mixed plots, limited only by user time limit.

Figure 6.06

The use of alternative viewpoints for a three
dimensional plot (Grapha)

3D PLOT OPTION

$X=$ NUMBER OF HOURS OF SOAKING
$Y=$ TEMPERATURE OF SOAKING
$Z=$ GERMINATION OUT OF 30

Figure 6.07
Plotting without hidden lines (Hide)
(Data in Appendix Table 6)

PLOT 6.1 USING HELP OPTION

Figure 6.08
The use of broken hidden lines and a text option (Hide)
(Data in Appendix Table 7)

PLOT TYPE 7. 1 (DOTTED LINES).

INDIVIDUAL TITLE
$X=X$ AKIS LABEL.
$Y=Y$ AXIS LABEL,
$Z=Z$ AKIS LABEL

Figure 6.09
The use of a base shading option (Hide)
(Data in Appendix Table 8)

PLDT TYPE 8.3 WITH TEXT

Figure 6.10
Oblique viewpoint and base shading in use (Hide)
(Data in Appendix Table 9)

$3 D$ PLOT OPTION

$X=$ NUMBER DF HOURS OF SOAKING
$Y=$ TEMPERATURE OF SOAKING
$Z=$ GERMINATION OUT OF 30

Figure 6.11

Calculation of stereo viewpoints

Figure 6.12
Plotter inaccuracy for small stereo plots (Grapha)

SUBTIILE UPIIUN

Figure 6.13
Stereo pairs produced under Grapha

3 DIMENSIONAL BLOCK DIAGRAMS IN STEREO PAIRS.

$X=$ HOURS OF SOAKING
$Y=$ TEMPERATURE OF SOAKING
$Z=$ GERMINATION OUT OF 30 SEEDS

Figure 6.14
Stereo pairs produced under Hide
(Data in Appendix Table 10)

STEREO PAIRS OF 30 BLOCK DIAGRAMS.

30.0

20.0

$X=$ HOLRS OF SOAKING
$r=$ TEPERATURE OF SOFKING
$Z=$ GEPMINATION OUT OF 30 SEEDS
6.5 Coloured plots
Specification of coloured inks for the plotter will automatically produce coloured plots. Figures 6.15 and 6.16 show the same plot in colour and in black and white. Figure 6.17 shows hidden axis marking with a red base shading, while Figure 6.18 shows the use of a coloured grid option.

Figure 6.15
Comparison of black and white with colour (Figure 6.16)
plot (Hide)
(Data in Appendix Table 9.)

3D PLOT OPIION

$X=$ MUMER DF HDURS OF SOAKING
$Y=$ TEPEGRATURE OF SOAKING

Za GERMINATION OUT OF 30

Figure 6.16
Colour version of Figure 6.15 (Hide)
(Data in Appendix Table 9.)

$3 D$ PLOT OPTION

$X=$ NUMBER OF HDURS OF SDAKING
$Y=$ TEPPEPATURE OF SOAKING
$Z=$ GERMINATION OUT OF 30

Figure 6.17

Hidden axis marking and red base shading under Hide (Data in Appendix Table 11)

PLOT TYPE 12.3 (SUBTITTLES GIVEN).

Figure 6.18

The use of a coloured grid option (Grapha)

HELP PLOT WITH TITLES

CHAPTER 7

CONCLUSION TO THESIS

These packages have been instituted for use by non-programmers, but it may be argued, in view of the complex and varied nature of the plots possible, that the simple nature of the package has been lost. However, the first time user is able to use only those parts of the manual appropriate to his plot. The more advanced user may wish to make slight changes to the plot produced, without resorting to non pre-programmed plotting. It was therefore thought desirable to include as many options in the package as possible.

A number of plots have been produced by a biological user with no prior knowledge of programming or of computer usage. The first plot produced (using only the manual enclosed for guidance) is shown in Figure 7.01. Subsequent plots by the same user are given in Figures 7.02 to 7.04.

Data assembly for a simple plot (Figure 7.01) took approximately 15 minutes while card punching (demonstration given) took a similar length of time.

A cost-time analysis has also been produced (in relation to operation costs for the computational part of this work) for these packages. Table 7.1

Figure 7.01
A user produced plot (Grapha)

Figure 7.02
A user produced three-dimensional plot (Grapha)

HORMONES AND CALLUS GROWTH RATE (2,4-D AND KINETIN)

Figure 7.03
A user produced spaced plot (Grapha)

CALLUS SURFACE AREA (MM**2) AFTER 24 DAY

HORYONE IN IEOILM MKN

Figure 7.04
A user produced hidden line plot (Hide)

lists the relative costs (based on the St.Andrews University Computing Laboratory costing system) and computer requirements for the figures used in this thesis run under Grapha. Table 7.2 lists similar information for plots run under Hide.

From these tables, it may be seen that almost any job run under Grapha mounts only insignificant costs. However, line hiding options rapidly multiply costs quite dramatically. Since plots of this type are very difficult to produce manually, this cost is thought to be justifiable.

Table 7.1

Cost-time analysis for plots using Grapha

| Type of
 plot | Number
 of
 plots | Lines
 of
 text/
 page | | Matrix
 size |
| :--- | :--- | :--- | :--- | :--- | | Debug CPU Pages Cost |
| :--- |
| option time |
| used |

GRAPHA

Fig.1	1	0	4 points	-	0.06	5	$21 p$
Fig.2	2	4	4 points	-	0.15	7	$35 p$
Fig.3	1	4	4 points	+	0.10	6	$26 p$
Fig.4	$1(3)$	0	$4 * 3$	-	0.13	9	$35 p$
Fig.5	$1(3)$	2	$4 * 3$	-	0.26	9	$50 p$
Fig.6	1	4	$4 * 3$	-	0.10	5	$26 p$

CHAPTER 6

Fig.6.01	$3(27)$	15	4 points	-	0.47	19	$88 p$
Fig.6.02	$2(27) 18$	4 points	-	0.37	16	$72 p$	
Fig.6.03	$2(27)$	27	4 points	+	0.48	28	1.00
Fig.6.04	$2(19)$	37	4 points	-	1.19	14	1.19
Fig.6.05	1	7	$5 * 4$	-	0.10	5	$26 p$
Fig.6.06	$1(2)$	4	$3 * 4$	-	0.14	5	$32 p$
Fig.6.12	1	4	$3 * 4$	-	0.18	6	$36 p$
Fig.6.13	1	4	$3 * 4$	-	0.26	5	$44 p$
Fig.6.18	$1(3)$	2	$4 * 3$	-	0.29	9	$52 p$

CHAPTER 7

Fig.7.01	4	2	4 points	-	0.26	12	$53 p$
Fig.7.02	3	0	$4 * 4$	-	0.18	9	$40 p$
Fig.7.03	$1(4)$	13	4 points	-	0.19	6	$37 p$

Table 7.2

Cost-time analysis for plots using Hide

| Type of
 plot | Number
 of
 plots | of
 text/
 page | |
| :--- | :--- | :--- | :--- | | Matrix |
| :--- |
| size |\quad| Debugoption time
 used |
| :--- |

HIDE

Fig.1	4	0	$4 * 3$	-	2.06	13	2.17
Fig.2	4	1	$4 * 3$	-	5.41	13	4.84
Fig.3	1	7	$4 * 5$	-	1.20	7	1.63

CHAPTER 6

Fig.6.07	4	1	$3 * 4$	-	2.06	13	2.35
Fig.6.08	1	5	$4 * 5$	$+(21)$	1.56	38	2.25
Fig.6.09	1	3	$4 * 5$	$+(21)$	3.36	45	3.51
Fig.6.10	2	4	$4 * 3$	$+(21)$	6.51	87	6.56
Fig.6.14	1	4	$4 * 3$	-	3.28	9	3.03
Fig.6.15	2	4	$4 * 3$	$+(21)$	6.51	87	6.56
Fig.6.16	1	2	$5 * 4$	$+(21)$	6.51	87	6.56
Fig.6.17	1	2	$5 * 4$	$+(21)$	2.51	40	2.88

CHAPTER 7
$\begin{array}{llllllll}\text { Fig.7.04 } & 4 & 0 & 5 * 5 & - & 5.55 & 14 & 4.91\end{array}$

REFERENCES

CIL Plotter. The Computer Instrumentation Ltd. 6011 Off-line Digital Plotter used with the 360/44. Technical Report CS/72/4 The University of St.Andrews Computing Laboratory.

The Computer Instrumentation Ltd. 6011 Off-line Plotter. See CIL Plotter.

Das, Patau and Skoog,F. 1956. Taken from S.E.B. Symp. Vol.XI Biological Action of Growth Substances.

3D Plotting and Contouring. 1976. Software Memo 009, The University of St.Andrews Computing Laboratory.

Fisher, R.A. 1925 Statistical Methods for Research Workers. Oliver and Boyd, Edinburgh. 14 th Edition, 1970.

Ghost. A User's Guide to Ghost. Technical Report CL/73/2 The University of St.Andrews Computing Laboratory.

The Graffiti Plotting System. 1977 The University of St.Andrews Computing Laboratory Report.

Graph Plotting in Algol W. The Playtime System. 1975 St.Andrews University Computing Laboratory Technical Report.

Gray, D. 1977 Temperature sensitive phases during the germination of lettuce (Lactuca sativa) seeds

Annals of Applied Biology, 86, No.1,p80.
Hartmann, H.T. and Kester, D.E. 1968 Plant Propagation Principles and Practices. 2nd Edition. Prentice Hall, New Jersey.

Heath, O.V.S. 1976 In Praise of Experiments. In : Perspectives in Experimental Biology Ed. Sunderland, N.,Pergamon Press.

Hide - a line hiding package. The University of St.Andrews Computing Laboratory Report.

Larkin, F.M. 1967 A graphical output language and it's implementation. Culham Laboratory. CLM-P139.

Line Printer Output from Ghost. University of St. Andrews Computing Laboratory Software Memo.

Maquest - Rosenne,J. A statistical system for questionaires. Mem Alef Electronic Computers Ltd, P.o.Box 2300, Ramat-Gan, Israel.

44NFT Guide to System Use. Technical Report. The University of St.Andrews Computing Laboratory.

Omnitab II A computer program for statistical and numerical analysis. National Bureau of Standards, National Technical Information Service, 5285 Park Royal Road, Springfield, Virginia 22151.

The Playtime System - See Graph Plotting in Algol W. RAX video. Introduction to the Use of RAX with 2260 s

CL/72/5 The University of St.Andrews -221-

Computing Laboratory.
Schucany, W.R. and Minton, D.M. 1972 A survey of statistical packages. Computing Surveys 4 (2), 65.

SPSS Statistical Package for the Social Sciences. 2nd Edition. Nie, N.H., Hull, G.H., Jenkins, J.G., Steinbrenner, K., and Bent, D.H. 1975 McGraw Hill. Stat 3600 Stat Systems Group, Computer Laboratory, Michigan State University, East Lansing, Michigan 48823.

Stat-pack A Biostatistical Programming Package. Goddard Computer Science Institute, 9000 Harry Hines, Dallas, Texas.

Stat System / 1130, IBM Statistical System. IBM Corp., Data Processing Division, 112 East Post Road, White Plains, New York 10601.

Stree, H.E. 1969 Growth in organised and unorganised systems. In: Plant Physiology Vol. VB Ed. F.C. Steward, Acad. Press, London. University of St.Andrews Computing Laboratory Annual Report. 1976-1977.

User's Guide to Ghost. - See Ghost.
Wareing, P.F. and Phillips, I.D.J. 1971 The Control of Growth and Differentiation in Plants Pergamon Press.

APPENDIX

```
Appendix Table 1.
Data used for Figure 6.01
(Note : Figure 6.01 includes the first 12 plots of a
2 7 \text { plot series)}
.....(blank card)
1
LABELS
POINTS
13 5 2.93 19
                                    TEMPERATURE OF SOAKING
                                    GERMINATION OUT OF 30
2.4
4 27
            SOAKING INJURY IN SEEDS
0 30 0 30 \cdots...(blank card)
5
5
RICE SEEDS SOAKED FOR 24 HOURS
0
RICE SEEDS SOAKED FOR 48 HOURS
0
RICE SEEDS SOAKED FOR 96 HOURS
0
CARROT SEEDS SOAKED FOR 24 HOURS
0
CARROT SEEDS SOAKED FOR 48 HOURS
0
CARROT SEEDS SOAKED FOR 96 HOURS
```

$\begin{array}{llllllll}0 & 18 & 10 & 20 & 20 & 25 & 30 & 15\end{array}$
LETTUCE SEEDS SOAKED FOR 24 HOURS $\begin{array}{llllllll}0 & 26 & 10 & 24 & 20 & 30 & 30 & 28\end{array}$ LETTUCE SEEDS SOAKED FOR 48 HOURS $\begin{array}{llllllll}0 & 25 & 10 & 26 & 20 & 27 & 30 & 23\end{array}$
LETTUCE SEEDS SOAKED FOR 96 HOURS
$\begin{array}{llllllll}0 & 28 & 10 & 27 & 20 & 26 & 30 & 26\end{array}$
RADISH SEEDS SOAKED FOR 24 HOURS
$\begin{array}{llllllll}0 & 29 & 10 & 26 & 20 & 28 & 30 & 29\end{array}$
RADISH SEEDS SOAKED FOR 48 HOURS
$\begin{array}{llllllll}0 & 25 & 10 & 28 & 20 & 27 & 30 & 17\end{array}$
RADISH SEEDS SOAKED FOR 96 HOURS $\begin{array}{llllllll}0 & 25 & 10 & 27 & 20 & 26 & 30 & 14\end{array}$
METEOR SEEDS SOAKED FOR 24 HOURS
$\begin{array}{llllllll}0 & 3 & 10 & 22 & 20 & 23 & 30 & 13\end{array}$
NETEOR SEEDS SOAKED FOR 48 HOURS $\begin{array}{llllllll}0 & 3 & 10 & 18 & 20 & 24 & 30 & 0\end{array}$

NETEOR SEEDS SOAKED FOR 96 HOURS
$\begin{array}{llllllll}0 & 1 & 10 & 7 & 20 & 15 & 30 & 0\end{array}$
PIONEER SEEDS SOAKED FOR 24 HOURS
$\begin{array}{llllllll}0 & 2 & 10 & 8 & 20 & 12 & 30 & 8\end{array}$
PIONEER SEEDS SOAKED FOR 48 HOURS
$\begin{array}{llllllll}0 & 1 & 10 & 6 & 20 & 10 & 30 & 0\end{array}$
PIONEER SEEDS SOAKED FOR 96 HOURS
$\begin{array}{llllllll}0 & 5 & 10 & 12 & 20 & 2 & 30 & 0\end{array}$
ONWARD SEEDS SOAKED FOR 24 HOURS
$\begin{array}{llllllll}0 & 6 & 10 & 15 & 20 & 17 & 30 & 10\end{array}$

ONWARD SEEDS SOAKED FOR 48 HOURS
$\begin{array}{llllllll}0 & 1 & 10 & 13 & 20 & 9 & 30 & 0\end{array}$
ONWARD SEEDS SOAKED FOR 96 HOURS
$\begin{array}{llllllll}0 & 0 & 10 & 18 & 20 & 4 & 30 & 0\end{array}$
GLADSTONE SEEDS SOAKED FOR 24 HOURS
$\begin{array}{llllllll}0 & 7 & 10 & 20 & 20 & 15 & 30 & 14\end{array}$
GLADSTONE SEEDS SOAKED FOR 48 HOURS
$\begin{array}{llllllll}0 & 5 & 10 & 17 & 20 & 20 & 30 & 0\end{array}$
GLADSTONE SEEDS SOAKED FOR 96 HOURS
$\begin{array}{llllllll}0 & 0 & 10 & 0 & 20 & 1 & 30 & 0\end{array}$
BBEAN SEEDS SOAKED FOR 24 HOURS
$\begin{array}{llllllll}0 & 7 & 10 & 13 & 20 & 4 & 30 & 12\end{array}$
BBEAN SEEDS SOAKED FOR 48 HOURS
$\begin{array}{llllllll}0 & 10 & 10 & 14 & 20 & 1 & 30 & 1\end{array}$
BBEAN SEEDS SOAKED FOR 96 HOURS
$\begin{array}{llllllll}0 & 6 & 10 & 3 & 20 & 2 & 30 & 0\end{array}$

Appendix Table 2.

Data used for Figure 6.02
(Note - the first 15 graphs are included in Figure 6.02 out of a 27 plot series.)

LABELS
POINTS
$\begin{array}{llll}14 & 2.4 & 2.5 & 21\end{array}$
TEMPERATURE OF SOAKING
GERMINATION OUT OF 30
2.41

427
PLOT TYPE 2.21
$0 \quad 30 \quad 0 \quad 30$
44
RICE SEEDS SOAKED 24 HOURS
$\begin{array}{llllllll}0 & 22 & 10 & 23 & 20 & 23 & 30 & 29\end{array}$
RICE SEEDS SOAKED 48 HOURS
$\begin{array}{llllllll}0 & 12 & 10 & 23 & 20 & 23 & 30 & 29\end{array}$
RICE SEEDS SOAKED 96 HOURS
$\begin{array}{llllllll}0 & 24 & 10 & 22 & 20 & 27 & 30 & 21\end{array}$
CARROT SEEDS SOAKED 24 HOURS
$\begin{array}{llllllll}0 & 21 & 10 & 23 & 20 & 20 & 30 & 24\end{array}$
CARROT SEEDS SOAKED 48 HOURS
$\begin{array}{llllllll}0 & 9 & 10 & 23 & 20 & 17 & 30 & 23\end{array}$

CARROT SEEDS SOAKED 96 HOURS
$\begin{array}{llllllll}0 & 18 & 10 & 20 & 20 & 25 & 30 & 15\end{array}$
LETTUCE SEEDS SOAKED 24 HOURS
$\begin{array}{llllllll}0 & 26 & 10 & 24 & 20 & 30 & 30 & 28\end{array}$
LETTUCE SEEDS SOAKED 48 HOURS
$\begin{array}{llllllll}0 & 25 & 10 & 26 & 20 & 27 & 30 & 23\end{array}$
IETTUCE SEEDS SOAKED 96 HOURS
$\begin{array}{llllllll}0 & 28 & 10 & 27 & 20 & 26 & 30 & 26\end{array}$
RADISH SEEDS SOAKED 24 HOURS
$\begin{array}{llllllll}0 & 29 & 10 & 26 & 20 & 28 & 30 & 29\end{array}$
RADISH SEEDS SOAKED 48 HOURS
$\begin{array}{llllllll}0 & 25 & 10 & 28 & 20 & 27 & 30 & 17\end{array}$
RADISH SEEDS SOAKED 96 HOURS
$\begin{array}{llllllll}0 & 25 & 10 & 27 & 20 & 26 & 30 & 14\end{array}$
METEOR SEEDS SOAKED 24 HOURS
$\begin{array}{llllllll}0 & 3 & 10 & 22 & 20 & 23 & 30 & 13\end{array}$
METEOR SEEDS SOAKED 48 HOURS
$\begin{array}{llllllll}0 & 3 & 10 & 18 & 20 & 24 & 30 & 0\end{array}$
METEOR SEEDS SOAKED 96 HOURS
$\begin{array}{llllllll}0 & 1 & 10 & 7 & 20 & 15 & 30 & 0\end{array}$
PIONEER SEEDS SOAKED 24 HOURS
$\begin{array}{llllllll}0 & 2 & 10 & 8 & 20 & 12 & 30 & 8\end{array}$
PIONEER SEEDS SOAKED 48 HOURS
$\begin{array}{llllllll}0 & 1 & 10 & 6 & 20 & 10 & 30 & 0\end{array}$
PIONEER SEEDS SOAKED 96 HOURS
$\begin{array}{llllllll}0 & 5 & 10 & 12 & 20 & 2 & 30 & 0\end{array}$
ONWARD SEEDS SOAKED 24 HOURS
$\begin{array}{llllllll}0 & 6 & 10 & 15 & 20 & 17 & 30 & 10\end{array}$

ONWARD SEEDS SOAKED 48 HOURS
$\begin{array}{llllllll}0 & 1 & 10 & 13 & 20 & 9 & 30 & 0\end{array}$
ONWARD SEEDS SOAKED 96 HOURS
$\begin{array}{llllllll}0 & 0 & 10 & 18 & 20 & 4 & 30 & 0\end{array}$
GLADSTONE SEEDS SOAKED 24 HOURS
$\begin{array}{llllllll}0 & 7 & 10 & 20 & 20 & 15 & 30 & 14\end{array}$
GLADSTONE SEEDS SOAKED 48 HOURS
$\begin{array}{llllllll}0 & 5 & 10 & 17 & 20 & 20 & 30 & 0\end{array}$
GLADSTONE SEEDS SOAKED 96 HOURS
$\begin{array}{llllllll}0 & 0 & 10 & 0 & 20 & 1 & 30 & 0\end{array}$
BEAN SEEDS SDAKED 24 HOURS
$\begin{array}{llllllll}0 & 7 & 10 & 13 & 20 & 4 & 30 & 12\end{array}$
BEAN SEEDS SOAKED 48 HOURS
$\begin{array}{llllllll}0 & 10 & 10 & 14 & 20 & 1 & 30 & 1\end{array}$
BEAN SEEDS SOAKED 96 HOURS
$\begin{array}{llllllll}0 & 6 & 10 & 3 & 20 & 2 & 30 & 0\end{array}$

Appendix Table 3

Data used to plot Figure 6.03

```
(first out of a series of 27 plots)
```

LABELS
POINTS
$17 \quad 11.7 \quad 3 \quad 18$
TEMPERATURE OF SEED SOAKING DEGREES C GERMINATION OUT OF A BATCH OF 30 SEEDS

2.3

4
27
SUBTITLES, LARGE AXES FIGURES, LABELS.
PAGESIZE
$\begin{array}{lllllllll}0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$
$0 \quad 30 \quad 0 \quad 30$
$\begin{array}{llll}5 & 25 & 5 & 25\end{array}$
$0 \quad 30 \quad 0 \quad 30$
33
RICE SEEDS SOAKED FOR 24 HOURS
$\begin{array}{llllllll}0 & 22 & 10 & 23 & 20 & 23 & 30 & 29\end{array}$
RICE SEEDS SOAKED FOR 48 HOURS
$\begin{array}{llllllll}0 & 12 & 10 & 20 & 20 & 23 & 30 & 29\end{array}$
RICE SEEDS SOAKED FOR 96 HOURS
$\begin{array}{llllllll}0 & 24 & 10 & 22 & 20 & 27 & 30 & 21\end{array}$
CARROT SEEDS SOAKED FOR 24 HOURS
$\begin{array}{llllllll}0 & 21 & 10 & 23 & 20 & 20 & 30 & 24\end{array}$

CARROT SEEDS SOAKED FOR 48 HOURS
$\begin{array}{lllllll}0 & 9 & 10 & 23 & 20 & 17 & 30\end{array}$ 23

CARROT SEEDS SOAKED FOR 96 HOURS
$\begin{array}{lllllll}0 & 18 & 10 & 20 & 20 & 30 & 15\end{array}$
LETTUCE SEEDS SOAKED FOR 24 HOURS
$\begin{array}{llllllll}0 & 26 & 10 & 24 & 20 & 30 & 30 & 28\end{array}$
LETTUCE SEEDS SOAKED FOR 48 HOURS
$\begin{array}{llllllll}0 & 25 & 10 & 26 & 20 & 27 & 30 & 23\end{array}$
LETTUCE SEEDS SOAKED FOR 96 HOURS
$\begin{array}{llllllll}0 & 28 & 10 & 27 & 20 & 26 & 30 & 26\end{array}$
RADISH SEEDS SOAKED FOR 24 HOURS
$\begin{array}{llllllll}0 & 29 & 10 & 26 & 20 & 28 & 30 & 29\end{array}$
RADISH SEEDS SOAKED FOR 48 HOURS
$\begin{array}{llllllll}0 & 25 & 10 & 28 & 20 & 27 & 30 & 17\end{array}$
RADISH SEEDS SOAKED FOR 96 HOURS
$\begin{array}{llllllll}0 & 25 & 10 & 27 & 20 & 26 & 30 & 14\end{array}$
METEOR SEEDS SOAKED FOR 24 HOURS
$\begin{array}{llllllll}0 & 3 & 10 & 22 & 20 & 23 & 30 & 13\end{array}$
METEOR SEEDS SOAKED FOR 48 HOURS
$\begin{array}{llllllll}0 & 3 & 10 & 18 & 20 & 24 & 30 & 0\end{array}$
NETEOR SEEDS SOAKED FOR 96 HOURS
$\begin{array}{llllllll}0 & 1 & 10 & 7 & 20 & 15 & 30 & 0\end{array}$
PIONEER SEEDS SOAKED FOR 24 HOURS
$\begin{array}{llllllll}0 & 2 & 10 & 8 & 20 & 12 & 30 & 8\end{array}$
PIONEER SEEDS SOAKED FOR 48 HOURS
$\begin{array}{llllllll}0 & 1 & 10 & 6 & 20 & 10 & 30 & 0\end{array}$

PIONEER SEEDS SOAKED FOR 96 HOURS
$\begin{array}{llllllll}0 & 5 & 10 & 12 & 20 & 2 & 30 & 0\end{array}$
ONWARD SEEDS SOAKED FOR 24 HOURS
$\begin{array}{llllllll}0 & 6 & 10 & 15 & 20 & 17 & 30 & 10\end{array}$
ONWARD SEEDS SOAKED FOR 48 HOURS
$\begin{array}{llllllll}0 & 1 & 10 & 13 & 20 & 9 & 30 & 0\end{array}$
ONWARD SEEDS SOAKED FOR 96 HOURS
$\begin{array}{llllllll}0 & 0 & 10 & 18 & 20 & 4 & 30 & 0\end{array}$
GLADSTONE SEEDS SOAKED FOR 24 HOURS
$\begin{array}{llllllll}0 & 7 & 10 & 20 & 20 & 15 & 30 & 14\end{array}$
GLADSTONE SEEDS SOAKED FOR 48 HOURS
$\begin{array}{llllllll}0 & 5 & 10 & 17 & 20 & 20 & 30 & 0\end{array}$
GLADSTONE SEEDS SOAKED FOR 96 HOURS
$\begin{array}{llllllll}0 & 0 & 10 & 0 & 20 & 1 & 30 & 0\end{array}$
BROAD BEAN SEEDS SOAKED FOR 24 HOURS
$\begin{array}{llllllll}0 & 7 & 10 & 13 & 20 & 4 & 30 & 12\end{array}$
BROAD BEAN SEEDS SOAKED FOR 48 HOURS
$\begin{array}{llllllll}0 & 10 & 10 & 14 & 20 & 1 & 30 & 1\end{array}$
BROAD BEAN SEEDS SOAKED FOR 96 HOURS
$\begin{array}{llllllll}0 & 6 & 10 & 3 & 20 & 2 & 30 & 0\end{array}$

Appendix Table 4

Data used to plot Figure 6.04

.....(blank card)

1

LABELS
temperature
germination
2.2

4
19
SPACES
$0 \quad 30 \quad 0 \quad 30$
4
4.1
lettuce seeds soaked for 48 hours
$\begin{array}{llllllll}0 & 25 & 10 & 26 & 20 & 27 & 30 & 23\end{array}$
lettuce seeds soaked for 96 hours
$\begin{array}{llllllll}0 & 28 & 10 & 27 & 20 & 26 & 30 & 26\end{array}$
radish seeds soaked for 48 hours
$\begin{array}{llllllll}0 & 25 & 10 & 28 & 20 & 27 & 30 & 17\end{array}$
radish seeds soaked for 96 hours
$\begin{array}{llllllll}0 & 25 & 10 & 27 & 20 & 26 & 30 & 14\end{array}$
meteor seeds soaked for 24 hours
$\begin{array}{lllllll}0 & 3 & 10 & 22 & 20 & 23 & 30\end{array}$
13
meteor seeds soaked for 48 hours

$$
\begin{array}{llllllll}
0 & 3 & 10 & 18 & 20 & 24 & 30 & 0
\end{array}
$$

meteor seeds soaked for 96 hours
$\begin{array}{llllllll}0 & 1 & 10 & 7 & 20 & 15 & 30 & 0\end{array}$
pioneer seeds soaked for 24 hours
$\begin{array}{llllllll}0 & 2 & 10 & 8 & 20 & 12 & 30 & 8\end{array}$
pioneer seeds soaked for 48 hours
$\begin{array}{llllllll}0 & 1 & 10 & 6 & 20 & 10 & 30 & 0\end{array}$
pioneer seeds soaked for 96 hours $\begin{array}{llllllll}0 & 5 & 10 & 12 & 20 & 2 & 30 & 0\end{array}$
onward seeds soaked for 24 hours
$\begin{array}{llllllll}0 & 6 & 10 & 15 & 20 & 17 & 30 & 10\end{array}$
onward seeds soaked for 48 hours
$\begin{array}{llllllll}0 & 1 & 10 & 13 & 20 & 9 & 30 & 0\end{array}$
onward seeds soaked for 96 hours
$\begin{array}{llllllll}0 & 0 & 10 & 18 & 20 & 4 & 30 & 0\end{array}$
gladstone seeds soaked for 24 hours
$\begin{array}{llllllll}0 & 7 & 10 & 20 & 20 & 15 & 30 & 14\end{array}$
gladstone seeds soaked for 48 hours
$\begin{array}{llllllll}0 & 5 & 10 & 17 & 20 & 20 & 30 & 0\end{array}$
gladstone seeds soaked for 96 hours
$\begin{array}{llllllll}0 & 0 & 10 & 0 & 20 & 1 & 30 & 0\end{array}$
bean seeds soaked for 24 hours
0710
13
20
430
12
bean seeds soaked for 48 hours $\begin{array}{llllllll}0 & 10 & 10 & 14 & 20 & 0 & 30 & 1\end{array}$
bean seeds soaked for 96 hours
$\begin{array}{llllllll}0 & 6 & 10 & 3 & 20 & 2 & 30 & 0\end{array}$

```
Appendix Table 5
Data used for Figure 6.05
LABELS
POINTS
12 13.3 3 17
HORIZONTAL AXIS
VERTICAL AXIS
HELP
2.1
5
1 0 0 0
4
1
SUPERIMPOSED GRAPH OPTION
0}10\quad0\quad1
0
0
lllllllllll}\begin{array}{llllll}{10}&{2.5}&{6}&{5}&{4}&{7.5}\end{array}
0
4
BLACK LINE = GRAPH 1.
5.5 12
BLACK BROKEN LINE = GRAPH 2.
5.5 10
RED LINE = GRAPH 3.
5.5 8
RED BROKEN LINE = GRAPH 4.
5.5 6

\section*{Appendix Table 6}

Data used for Figure 6.07

HELP

\section*{6.1}
\(3 \quad 41\)
PLOT 6.1 USING HELP OPTION
\(\begin{array}{llllll}24 & 96 & 0 & 30 & 0 & 30\end{array}\)
\(24 \quad 48 \quad 96\)
\(\begin{array}{llll}0 & 10 & 20 & 30\end{array}\)
\(\begin{array}{llll}3 & 22 & 23 & 13\end{array}\)
\(\begin{array}{llll}3 & 18 & 24 & 0\end{array}\)
17150
```

Appendix Table 7
Da.ta used for Figure 6.08
DEBUGGING INFORMATION
1
7.2
5}44
NO BORDERS
SIZESTATED

```

```

PLOT TYPE 7.1(DOTTED LINES).
0}000
210 10
INDIVIDUAL TITLE
1 0 0 0
3 2 10
5
1001 30
1
1 2 3 4
123
1234
5 6 7 8

```
```

9 10 11 12
13}1014\quad15 1
17}17818192
997.5
100 100 100
10 10 50
3
X = X AXIS LABEL.
5.5 12
Y = Y AXIS LABEL.
5.5 10
Z = Z AXIS LABEL.
5.5 8
1 0 0 1

```
Appendix Table 8
Data used in Figure 6.09
DEBUGGING INFORMATION
1
8.3
54 ..... 1
PLOT TYPE 8.3 WITH TEXT
\(0 \quad 0 \quad 0 \quad 0\)
210 ..... 10
HIDDEN LINES OMITTED
1000
32 ..... 10
\(\begin{array}{lllll}5 & 15 & 5 & 15 & 5\end{array}\) ..... 15
1001 ..... 100
\(1 \quad 5 \quad 1 \quad 4 \quad 0\) ..... 20
123.4 ..... 5
1
1\(\begin{array}{llll}5 & 6 & 7 & 8\end{array}\)
\(9 \quad 10 \quad 11 \quad 12\)
\(13 \quad 14 \quad 15\) ..... 16
171819 ..... 20
\(10 \quad 10 \quad 50\)

1

CNHIDE PACKAGE WITH TEXT
510
1001
```

Appendix Table 9
Data used in Figures 6.10, 6.15, 6.16
pen colours may be specified for relief.

```

\section*{DEBUGGING INFORMATION}
```

1
8 . 1
3
4
1
3D PLOT DPTION
0}000
2 1 0 1 0
1 0 0 0
48}1
0
1 0 0 1 1 0 0
24.0
24.0 48.0 96.0
0.0}10.0\quad20.0\quad30.
3.0 22.0 23.0 13.0
3.0 18.0 24.0 0.0

```
Note that this program produces two plots and different
```

1.0 7.0 15.0 0.0
997.5
100 100 100
100 60 90
3
X = NUMBER OF HOURS OF SOAKING
5.5 12.3
Y = TEMPERATURE OF SOAKING
5.5 11.4
Z = GERMINATION OUT OF 30
5.5 10.5
60 30 30
3
X = NUMBER OF HOURS OF SOAKING
5.5 12.3
Y = TEMPERATURE OF SOAKING
5.5 11.4
Z = GERMINATION OUT OF 30
5.5 10.5
1 0 0 1

```
```

Appendix Table 10
Data used in Figure 6.13
.....(blank card)
1
9.1
3 4 1
STEREO PAIRS OF 3D BLOCK DIAGRAMS
0}000
2 1 0 1 0
1 0 0 0
48}151

```

```

24}9660030 0 30
2448 96
0 10 20 30
3}222 23 13
3}118\quad24\quad
1 7 15 0
997.5
100 100 100
10060 90
3
X = HOURS OF SOAKING

```
\(5.5 \quad 5.1\)
Y = TEMPERATURE OF SOAKING
\(5.5 \quad 4.2\)
\(Z=\) GERMINATION DUT OF 30 SEEDS
\(5.5 \quad 3.3\)
0
1001
Appendix Table 11
Data used for Figure 6.17
DEBUGGING INFORMATIDN

1
    8.3
\(\begin{array}{lll}5 & 4 & 1\end{array}\)
NO BORDERS
PLOT TYPE 12.3(SUBTITLES GIVEN).
    0000
    1010
    \(\mathrm{X}=\mathrm{LABEL} 1, \mathrm{Y}=\mathrm{LA} A E L 2, \mathrm{Z}=\mathrm{LABEL} 3\)
    1000
    3210
    \(\begin{array}{llllll}5 & 15 & 5 & 15 & 5 & 15\end{array}\)
    100150
    151.4020
    12345
    1234
    1234
    \(\begin{array}{llll}17 & 18 & 19 & 20\end{array}\)
    \(\begin{array}{llll}13 & 14 & 15 & 16\end{array}\)
    \(9 \quad 10 \quad 11 \quad 12\)
```

5 6 7 8
1234
997.5
100 100 100
10 10 50
1 0 0 1

```
```


[^0]: Repeat until number
 of lines of text rea

