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Dynamical backaction effects between

localised spins and electronic

conductors

Stephanie Matern

In this thesis we present an investigation of the influence of quantum correlations on a

quantum system’s dynamical behaviour. Our focus is specifically on the time dependence

of quantum spins in an environment of itinerant electrons. This is an archetype for strong

correlation physics, whose dynamical onset is the central correlation effect investigated

in this work.

We derive an analytic result for the time evolution of a single localised quantum spin in

weak contact with conduction electrons. This result is obtained from a detailed analysis

of the pole structure of the Nakajima-Zwanzig equation for the reduced density matrix

in Laplace space. We provide a description of the full time range, from very short times

in which a novel result for non-Markovian behaviour is obtained, to long times in which

we recover the well-known exponential decay expressions. For the short times we show

how the non-Markovian memory effects of the spin’s dynamics arise from the backaction

of coherent electronic particle-hole fluctuations.

As an application of the fast dynamics we propose a cooling protocol going beyond the

paradigm of thermodynamic cycles. The protocol relies on a rapid pump scheme with

a repeated reinitialisation of the fast quantum coherent dynamics, with each repetition

carrying away a small amount of heat from the electronic environment. This protocol is

temperature independent and designed to circumvent a natural bottleneck in standard

demagnetisation cooling due to long relaxation times at low temperatures.

Finally we extend the dynamics to a pair of localised spins coupled through the same

electronic environment, using a self-consistent projection operator framework. In con-

trast to the conventional RKKY coupling we derive a set of coupled equations including

the temporal and spatial correlations. This set becomes finite through a meticulous iden-

tification of the electronic fluctuations responsible for the coupled dynamics, allowing for

a numerical solution.
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Introduction
1

A realistic quantum system is never truly isolated but part of a bigger structure. Interac-
tions between the system and the environment are unavoidable. In a strict sense, an iso-
lated quantum system as often considered in textbook descriptions does not exist. On the
one hand, this can be seen as a nuisance, for instance with regard to decoherence of well
prepared quantum states. On the other, it is an opportunity to investigate and eventually
exploit the dynamics and correlations between system and environment. Experimental
advances across many fields open the door to investigate quantum correlations on the
nanoscale and at low temperatures. For example ultracold atom experiments present a
platform for simulating small scale quantum systems and studying their dynamics [1–4].
Magnetic resonance techniques allow for probing local fields of small spin ensembles [5–8].
Looking into the field of quantum computation, nanostructures such as quantum dots [9,
10], superconducting setups [11, 12] or single atoms [13] can be used to realise qubits.
Closely related is the field of quantum information where the correlations between differ-
ent parts of the quantum system serve as a valuable resource [14, 15]. The common theme
of these examples is the consequences of the system-bath interaction on the behaviour
within the system, understood through the correlations due to that interaction.

In this work we address the influence of the system’s surroundings on its dynamics,
with a particular focus on the short time dynamics and the quantum correlations built up
between system and environment. The example systems treated consist of localised spins
embedded in a electronic conductor. Such a model is a building block to describe the
experimental setups across the different fields mentioned above, ranging from capturing
the relaxation of a magnetic moment in a resonance experiment, to describing the decay
of a coherent state or spin qubit.

The dynamical response of certain systems provides a noninvasive way to probe it. A
well known and widely used example is magnetic resonance imaging with its application in
medicine. Here, the excitation of an ensemble of spins (the hydrogen nuclei in the human
body) and their decay back into the equilibrium states provide us with a diagnostic tool
to, e.g., distinguish different tissues in the human body. The relevant observable is the
relaxation time [16, 17], which is the average time it takes for a system to return to its
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1 Introduction

equilibrium state. Magnetic resonance experiments such as nuclear magnetic resonance
(NMR) and electron spin resonance techniques (ESR) help us to learn about the current
state of the system by analysing the resonance peaks present. In many scenarios the
relaxation time itself is a fit parameter based on the classical model of a magnetic moment
and its reaction to an outer magnetic field [18]. The typical decay rate allows us to extract
information about the effects on the system’s dynamics due to the interaction between
system and bath. A prominent example in condensed matter systems is the so-called
Korringa law [19, 20] which indicates Fermi liquid behaviour. It connects the shift of the
resonance peak due to local magnetic fields to the relaxation time and the temperature.
Its failure is often connected to strongly correlated phases and interacting systems [21–
23].

With the advances of magnetic resonance experiments pushing into the nanometre
regime [5–8], as well as using nuclear spins for computational tasks [24], the question
arises if one would need to take into account quantum correlations to describe the re-
laxation dynamics correctly. In strongly correlated systems the spatial correlations such
as magnetic ordering are often taken into account [23]. But, when considering Lorentz
invariant systems, time and space should be treated on the same footing. Investigating
quench dynamics and the importance of temporal correlations for the dynamical be-
haviour in correlated many-body systems is an active field of research [25–27]. In our
contribution we go beyond the phenomenological description to address the influence of
temporal correlations in the dynamical behaviour of a spin system coupled to a bath of
itinerant electrons.

Short lived quantum correlations driven by the environment are important for the
dynamics of the system. A prominent example is quantum dots which are a promising
platform to realise spin qubits [9, 10, 28]. Here, the microscopic knowledge of the quantum
dynamics is essential to understand the relaxation processes and mechanisms that set the
decoherence time. How long a quantum state remains coherent is especially important
for any process where the state is used for computational purposes [24, 28–30]. With the
work presented here we hope to make steps towards increasing our understanding in how
environments may be engineered to achieve desired effects on a quantum system [31–34].

The environment does not necessarily only lead to decoherence and decay but can
also mediate an effective interaction between the parts of quantum systems. One exam-
ple is the Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction between localised spins
through the conduction electrons [35–37]. Parts of the work presented here develop an
approach based on [38] which enables us to study a collection of quantum systems that
are effectively coupled by the shared environment. In a quantum information setting a
coupling to the bath and the mediated effective interaction has been shown to influence
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the entanglement [39]. Entanglement between quantum states is used as a resource for
quantum informational tasks and protocols [14, 15]. In a condensed matter setting it has
been suggested that the entanglement between magnetic impurities can be tuned by an
external magnetic field [40]. Using the platform of localised spins we investigate what role
temporal correlations play in the dynamical behaviour of quantum systems containing
more than one spin. Furthermore the environment can be utilised to transport heat from
one reservoir to the next. This is the case for any thermodynamic process where work is
done by the system, such as in an Otto motor or a refrigerator. The condensed matter
setup of the latter uses the demagnetisation of nuclear spins to cool down the surrounding
electrons [41–47]. As experiments push for lower and lower temperatures down into the
microkelvin regime for nanostructures [45] and even into the nanokelvin regime on cold
atom platforms [48], the idea to utilise quantum coherent effects to support or speed up
the relaxation processes is easily at hand [49–52]. In the quantum counterpart to the
classical Otto motor, single molecule quantum heat engines are experimental accessible
platforms to study such effects [53–55].

The methods developed in the field of open quantum systems provide a framework to
investigate the underlying nature of the dynamics. An open quantum system describes
a setup where the system of interest is coupled to a large environment [56–60]. The
full dynamics are intractable due the extensive number of degrees of freedom making
the exact description challenging. However, the aim is to still capture the effects of
the environment on the quantum system’s dynamics. The object of interest here is the
reduced density matrix, where the degrees of freedom of the environment are traced out.
Then, its equation of motion is given by a master equation.

Quantum master equations are widely used to obtain information about time-dependent
properties [56–60]. The starting point to derive a master equation for the reduced density
of the system on the microscopic level is the von Neumann equation and in many phys-
ical setups the equation of motion is given by a master equation of Lindblad form [61,
62]. At the heart of the Lindblad master equations sits the Born-Markov approximation.
Within this approximation the bath is treated as a large memoryless reservoir, i.e., it is
always in equilibrium and the interaction with the system cannot change the state of the
reservoir [56, 63]. The state of a system in contact with such a reservoir thermalises and
decays exponentially fast, such as the magnetisation of a paramagnet after turning off
the external magnetic field.

However, at sufficiently short times, the memory time of the system-bath correlations
are finite. On this short time scale the dynamics are dominated by quantum correlations,
leading to a memory effects which in turn can result in non-Markovian dynamics [59, 60].
In this work we will focus on a coherent backaction of the electronic environment onto the

3



1 Introduction

spin system [33, 34, 64] and the resulting dynamics including the non-Markovian evolution
due to a finite memory time of the system. To capture memory effects a generalised quan-
tum master equation approach beyond the Lindblad description is necessary. There are
different paths to derive such generalised quantum master equations beyond the Marko-
vian approximation [56, 65]. One example is a field-theoretic approach within a path
integral formulation which relies on the Feynman-Vernon influence functional [66]. An-
other route, which is the one followed in this work, is the projection operator method [56,
65, 67–69]. The technique relies on finding a closed equation of motion for the system’s
dynamics by a projection onto the relevant part of the system-bath setup. Formally,
the projection corresponds to tracing out the degrees of freedom of the environment.
This leads to a generalised quantum master equation known as the Nakajima-Zwanzig
equation [67–69] which is used throughout the work presented here. Incorporating the
Born-Markov approximation would directly lead to a Born-Markov master equation or
even Lindblad equation [56]. The full Nakajima-Zwanzig equation is time-nonlocal and
the memory kernel, which is the operator encoding the convolution of different times,
makes it generally difficult to solve. In some cases, this difficulty can be sidestepped by
analysing the equation of motion in Laplace space [64, 70, 71]. In our approach we make
use of the Laplace transformation to gain access to the full quantum dynamics of a lo-
calised spin embedded in electron conductor. From the projection operator technique one
can also derive a time-convolutionless master equation which is local in time in contrast
to the Nakajima-Zwanzig equation. The complication of keeping track of the system’s
history in this case is hidden in the inversion of a superoperator and an unique solution
cannot be found in all cases [56]. Any generalised master equation has the potential to
capture non-Markovian dynamics. The non-Markovian contributions are encoded in the
influence functional [66, 72, 73], time-dependent coefficients [71, 74, 75] or the memory
kernel [64, 76], depending on the chosen approach. Much work has been dedicated to
explain the dynamics of a two-level system coupled to a bosonic environment [77–80] or
spin bath [64, 81–83], while the dynamics of systems coupled to a fermionic bath are
much less understood [33, 34, 84–86].

In this work we step also away from bosonic environment and we assume an itinerant
electronic environment as found in a metal or semiconductor. Since the bath is fermionic
the underlying dynamical response is determined by the Pauli principle and we are able
to probe strongly correlated systems. The coherence and relaxation mechanisms play a
fundamental role to understand the full quantum dynamical response of such systems.
Using a projection operator method to formulate a generalised quantum master equation,
the main question concerns the resulting dynamics for the spin system while taking into
account the full quantum coherent backaction from the bath. In Chapter 2 the methods

4



and the theoretical groundwork are presented. This includes a general discussion about
dynamics in open quantum systems before the Nakajima-Zwanzig equation is derived.
This generalised master equation is the starting point for the systems discussed in this
thesis. Furthermore, we derive an extension to the Nakajima-Zwanzig equation based
on a self-consistent projection operator method [38]. Chapter 3 presents the results for
an explicit example system of a single spin coupled to an electronic conductor. After
presenting the phenomenological approach to the decay of a magnetic moment we use
the open quantum system framework to derive the full coherent quantum dynamics of
the example system. The full dynamics show a fast initial decay that we are utilising to
propose a cooling protocol in Chapter 4. In this setup, the surrounding bath is cooled by
driving an ensemble of quantum systems. The scientific findings of Chapters 3 and 4 are
published in [87]. In Chapter 5 we adapt a generalised master equation approach that
allows for a time-dependent bath state. Within this framework we are able to address
multiple spins in the same electronic environment. Lastly, we conclude our findings in
Chapter 6.
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Non-Markovian dynamics in open
quantum systems

2

Studying dynamics in systems out of equilibrium gained a lot of attention in recent
years due to the ability to simulate small quantum systems experimentally [2, 3, 26].
Experimental platforms such as cold atoms system [1, 2] or trapped ions [88, 89] enable
us to address questions ranging from quench dynamics in closed system to open quantum
system dynamics in solid state physics as well as quantum optics.

Within the open quantum system perspective, there has been an increasing interest
in the joint quantum dynamics of system and environment mediated by the system-bath
interaction [26, 60]. The environment, formed by surrounding matter or radiation, is
often treated as a bath that destroys the system’s quantum coherence. In many cases, it
is assumed that the interaction with the bath is instantaneous and only the current state
of the environment is important. This is the Markovian approximation where correla-
tions within the bath in time are disregarded. In many cases the Markovian description
captures the system’s dynamics. Only at short times as well as in systems with strong
system-bath coupling or finite baths, treating the bath as a memoryless reservoir is not
sufficient. During the memory time, time-dependent bath correlations build up. They
lead to so-called memory effects and a generalised master equation is needed to describe
the resulting dynamics where the full history of the system-bath correlations are taken
into account. In the work presented in this thesis we will include a coherent backaction
from the bath back onto the system which is the result of such memory effects. In this
chapter we give a short overview about dynamics in open quantum systems on a more gen-
eral footing. We will cover the Born-Markov approximation, followed by an overview of
different techniques to capture non-Markovian dynamics and how non-Markovianity can
be utilised. Furthermore we will derive a generalised quantum master equation within the
projection operator approach known as the Nakajima-Zwanzig equation [67, 68] as well
as an extension [38] which treats the bath state self-consistently in contrast to the usual
equilibrium. Those equations are our starting point to investigate coherent backaction
effects in the spin systems discussed in later chapters.

7



2 Non-Markovian dynamics in open quantum systems

Figure 2.1: Sketch of an open quantum system. The system is embedded in a large bath or
environment. The Hamiltonian of the full setup splits into the system contribution HS , the
environment HB and the interaction Hint between them.

2.1 Dynamics in an open quantum system

In most realistic settings, a quantum system is not closed but in contact with an environ-
ment, as it is otherwise impossible to interact with or probe the system. The framework
of open systems takes into account the influence by the environment or bath on the
quantum system’s dynamics due to an interaction between the two which is sketched in
Fig. 2.1. In the subsequent discussion about the standard approach to open quantum sys-
tem we adopt the derivations of the references [56, 65] to lay the groundwork for further
developments. The Hamiltonian H(t) of the full system, including the quantum system
and its environment, can be written as

H(t) = H0 + Hint(t), (2.1)

with explicit time dependence of the interaction term Hint. The Hamiltonian H0 =
HS + HB is the free Hamiltonian describing the system and the bath evolution, respec-
tively. The terms bath and environment are used throughout this thesis to describe the
surrounding of the open quantum system. The term bath is used for large reservoir in a
thermal state and a less specific surrounding is described as environment. In particular
we will study the effects of an electronic environment where the coupling between the
quantum system and the electrons is a spin-spin interaction. To discuss the dynamics of
such systems the density matrix ρ(t) is used. Knowing the full time dependence of the
density matrix allows for the computation of any physical observable including their time
evolution. The full dynamics of a given Hamiltonian and the equation of motion for the
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2.1 Dynamics in an open quantum system

density matrix ρ(t) are determined by the von Neumann equation

ρ̇(t) = −i [H(t), ρ(t)] . (2.2)

The square brackets [·, ·] denote the commutator and H is the system’s Hamiltonian as in
Eq. (2.1). Here and henceforth we set � = 1. Introducing the Liouvillian superoperator
L the equation can be written as

ρ̇(t) = L(t)ρ(t), (2.3)

with L(·) = −i[H, ·]. Assuming the perturbation is the main cause of complications
it is advantageous to transform into a frame rotating with the free evolution. In this
interaction picture the time evolution of the unperturbed Hamiltonian is H0 and the
perturbation is Hint from Eq. (2.1), the time evolution of the density matrix ρ̂ is given
by

ρ̂(t) = Û(t, t0)ρ(t0)Û †(t, t0), (2.4)

where ·̂ is used to denote an operator in the interaction picture. The interaction picture
time evolution operator Û is defined as

Û(t, t0) = U †
0(t, t0)U(t, t0), (2.5)

with the evolution U0 of the non-interacting system

U0(t, t0) = e−iH0(t−t0), (2.6)

and U(t, t0) the time evolution operator for the full system. Then the von Neumann
equation in the interaction picture can be written as

d

dt
ρ̂(t) = −i

�
Ĥint(t), ρ̂(t)

�
= L̂int(t)ρ̂(t). (2.7)

Here, the interaction Hamiltonian Ĥint is evolved under the evolution of the free system

Ĥint(t) = U †
0(t, t0)Hint(t)U0(t, t0). (2.8)

9



2 Non-Markovian dynamics in open quantum systems

Integrating Eq. (2.7) leads to the formal solution

ρ̂(t) = ρ̂(t0) − i

� t

t0
dt�
�
Ĥint(t�), ρ̂(t�)

�
. (2.9)

To extract any physical meaning from the general solution one has to make one or
more assumptions for most cases. Widely used is the approximation of a weak system-
environment coupling. In this weak coupling limit where the interaction between system
and bath is small, we can treat the equation of motion for the density matrix Eq. (2.7)
perturbatively. A generic system-bath setup is sketched on the left in Fig. 2.2. To capture
second order processes in the interaction, the formal solution Eq. (2.9) is inserted back
into the von Neumann equation in Eq. (2.2) which leads to

d

dt
ρ̂(t) = −

� t

t0
dt�
�
Ĥint(t),

�
Ĥint(t�), ρ̂(t�)

��
, (2.10)

under the condition that
�
Ĥint, ρ̂(t0)

�
= 0. (2.11)

To go beyond second order in the interaction, one can iterate this procedure which leads
to more nested commutators of the interaction Hamiltonian at different times.

Generally we are only interested in the reduced density matrix of the the system ρS

where we trace out the degrees of freedom of the environment

ρS(t) = TrB {ρ̂(t)} . (2.12)

To find a closed equation of motion for ρS we assume that

ρ̂(t0) = ρS(t0) (2.13)

from which the condition Eq. (2.11) directly follows. In many situations, such as setups
with a weak coupling between system and a large environment, it is justified to further
assume that the full density matrix ρ̂(t) can be approximated by a product state between
system ρS(t) and environment ρB

ρ̂(t) = ρS(t) ⊗ ρB. (2.14)

The underlying reasoning for this assumption is given by the Born approximation from
scattering theory. In this case it is assumed that the wave function is not significantly
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2.1 Dynamics in an open quantum system

changed by a weak scattering potential and only a first order correction in the poten-
tial is taken into account [90]. In the open quantum system setting we assume that the
state of the environment with a macroscopic number of degrees of freedom is not signifi-
cantly changed by the interaction with the much smaller quantum system which justifies
Eq. (2.14). Additionally, the state of the bath itself is often assumed to be in thermal
equilibrium at some temperature T = 1/β and is written as a Gibbs state

ρB = e−βHB

Tr {e−βHB } . (2.15)

Therefore, tracing over the environment in Eq. (2.10) leads to a master equation for the
reduced density state of the system under the approximation in Eq. (2.14)

d

dt
ρS(t) = −

� t

t0
dt� TrB

��
Ĥint(t),

�
Ĥint(t�), ρS(t�) ⊗ ρB

���
. (2.16)

The structure of Eq. (2.16) is still complicated if Hint(t) has some non-trivial time-
dependence due to the convolution. Later on, we will see that this equation is basically
the Nakajima-Zwanzig equation. This is a generalised master equation able to take into
account memory effects due to time-dependent bath correlations. For now, Eq. (2.16) is
simplified further by employing the Markov approximation. Combining the assumption
Eq. (2.14) with the Markov approximation is referred to as Born-Markov approximation
[56] and its effects is sketched in Fig. 2.2. It assumes that the current state of the system
does not depend on any previous state and therefore neglects any dependence on the his-
tory of the system-bath interaction. This means that the integral Eq. (2.16) is nonzero
only over a short time interval in which ρS remains unchanged. In practice, this allows us
to replace ρS(t�) by ρS(t) in the integrand of Eq. (2.16). We now make the substitution
t� → t − t� and send the upper limit of the integral to infinity while choosing t0 = 0. The
last step is justified under the assumption that the bath correlations, which are build
up in the nested commutator structure, decay sufficiently fast. This is visualised in the
sketch on the right of Fig. 2.2. With these assumptions and substitutions in place, we
arrive at the Born-Markov master equation

d

dt
ρS(t) = −

� ∞

0
dt� TrB

��
Ĥint(t),

�
Ĥint(t − t�), ρS(t) ⊗ ρB

���
. (2.17)

The Born-Markov master equation is local in time and the complication of the time-
convoluted structure of Eq. (2.16) is eliminated. To get to the widely used Lindblad
equation [61, 62] the interaction Hint is split into products of system and bath operators,
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2 Non-Markovian dynamics in open quantum systems

Figure 2.2: On the left-hand side we show a sketch of a small, two-level quantum system coupled
to a large environment with many degrees of freedom. The interaction between system and bath
is weak and the full density matrix can be written as Eq. (2.14). Induced excitations in the
environment indicated by the orange arrows dissipate into the bath without changing the state
of the reservoir. The corresponding time evolution of correlations within the bath is sketched
on the right. For the system’s evolution at time t0 only the current bath state is significant
for the system’s dynamics according to the Markov approximation. The bath correlations decay
exponentially fast and the history of the system-bath evolution is irrelevant on the system time
scale.

Aj and Bj

Hint =
�

j

Aj ⊗ Bj . (2.18)

The operators Aj can be decomposed into the eigenoperatos Aj(ω) of the system Hamil-
tonian HS . The frequency ω is the difference in energy between system eigenstates and
within the secular or rotating wave approximation all contributions of different frequen-
cies are neglected. Finding the system and bath operators in the interaction picture and
inserting them for the interaction Hamiltonian Ĥint in Eq. (2.17) leads to an equation of
motion of the Lindblad form

ρ̇S(t) = −i
�
H �, ρS(t)

�
+ D(ρS(t)) (2.19)

with the dissipator D

D =
�

ω

�

α,β

γk

�
Aβ(ω)ρS(t)A†

α(ω) − 1
2
�
A†

α(ω)Aβ(ω), ρS(t)
��

. (2.20)
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2.1 Dynamics in an open quantum system

The first term in Eq. (2.19) corresponds to the contribution of the system Hamiltonian
HS via the eigenoperators or Lindblad operators Aj(ω) to the dynamics and is known as
the Lamb shift

H � =
�

ω

�

α,β

SαβA†
α(ω)Aβ(ω). (2.21)

It captures the fact that due to the system-bath interaction the eigenenergies of the
system alone are renormalised. The prefactors Sαβ are defined via the one-sided Fourier
transformations of the bath correlation functions

Γαβ =
� ∞

0
dt TrB

�
B†

α(t)Bβ(0)
�

(2.22)

originating from the integrand in Eq. (2.17) and

Sαβ(ω) = 1
2i

�
Γαβ(ω) − Γ∗

βα(ω)
�

. (2.23)

The dissipator D in Eq. (2.19) encodes the information of how much the evolution of the
reduced system is altered by surrounding environment by the rates γαβ . More concretely,
the dissipation rates γαβ are given by the real part of the bath correlation functions

γαβ(ω) = Γαβ(ω) + Γ∗
βα(ω) (2.24)

They are the characteristic decay rates of a system in contact with a bath. Some of the
components correspond to, e.g., the relaxation and decoherence times T1 and T2 of the
decay of a magnetic moments coupled to an environment.
Eq. (2.19) is the most general equation which describes the quantum dynamics of a system
which ensures a completely positive and trace preserving (CPTP) map. This was first
shown independently by Lindblad [61] as well as by Gorini, Kossakowski and Sudarshan
[62]. Positivity means that the eigenvalues of a matrix are real and positive. The density
matrix is a statistical operator and its eigenvalues correspond to the probability of a
certain state. It is therefore crucial to preserve positivity during the time evolution. Due
to the statistical nature of the density matrix one has to find the system it describes
in some state. Consequently, the trace of the density matrix must be normalised to a
constant. This physical property must also be preserved during the time evolution. When
deriving a quantum master equation, no matter which approach is chosen, we need to
make sure that the master equation is a CPTP map, at least for the time within the
regime of validity.
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2 Non-Markovian dynamics in open quantum systems

Figure 2.3: On the left we again sketch a small quantum system coupled to large reservoir, similar
to Fig. 2.2. Stepping away from the Markov approximation the induced excitations in bath
indicated by the orange wavy lines can impact the system dynamics through memory effects,
specifically a coherent backaction. The correlations within the bath decay on a finite time scale
set by the memory time, which is not much smaller than the characteristic time scale of the system
evolution, as shown on the right. Therefore the system’s evolution is affected by the whole history
of bath correlations up to the time t0.

2.1.1 Beyond Lindblad and Born-Markov master equations

Dynamics described by a master equation that goes beyond the Born-Markov approx-
imation are generally termed as non-Markovian dynamics [59, 60]. A master equation
that describes the dynamics of the quantum system beyond the Lindblad description
Eq. (2.19) is easily obtained from Eq. (2.16). Replacing the reduced density system ρ(t�)
by ρ(t) we arrive at the Redfield equation [91]

d

dt
ρS(t) = −

� t

t0
dt� TrB

��
Ĥint(t),

�
Ĥint(t�), ρS(t) ⊗ ρB

���
. (2.25)

The Redfield equation is local in time, nonetheless it sill captures some of the bath
correlations that build up over time. Unlike the Born-Markov approximation, it takes
into account the current time in the integration limit and therefore the bath correlation
maintain a time-dependence. Not only the current state of the bath is relevant but also
the history of the bath correlation building up over a memory time τM affect the system’s
dynamics which is sketched in Fig. 2.3. Other time-local approaches lead to Lindblad-like
equations of motion, where the rates are allowed to be time-dependent and therefore they
are able to capture more complicated dynamics [71, 74, 76]. If one takes into account the
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2.1 Dynamics in an open quantum system

full history of the system, i.e., the state of the density matrix at the current time does
depend on all past times, as in Eq. (2.16), one arrives at generalised quantum master
equations such as the Nakajima-Zwanzig equation [67, 68]. We will derive the Nakajima-
Zwanzig equation using the projection operator technique in detail in Section 2.2, which is
the starting point for the investigations presented in this thesis. In the Nakajima-Zwanzig
equation the effects of the whole history of the system-bath coupling enter intuitively
through a memory kernel which connects different times. Solving the dynamics in a
time-nonlocal description is generally difficult. We will be able to sidestep this difficulty
by analysing the equation of motion in Laplace space [64, 71]. Within the projection
operator approach it is also possible to derive a time-convolutioness master equation
local in time [56, 75, 76, 92]. To find a solution the inverse of an operator is required
which does not always have a unique solution [56].

Other perturbative approaches include reaction coordinate and collision models [93].
Here, one (or a few) modes from the environment are incorporated into the quantum
system itself. Within this enlarged system, the system-bath dynamics are treated more
carefully. Closely related is the idea to map the bath degrees of freedom onto an semi-
infinite chain [94]. Apart from the projection operator technique, master equations can
be formulated within a field-theoretical approach. Historically, this was done for quan-
tum systems with harmonic environments. They rely on a path integral formalism [72],
utilising the Feynman-Vernon influence functional [66], to capture dynamics beyond the
Markovian regime [73]. Combining these ideas with an efficient setup of tensor networks
[95, 96] led to powerful computational approaches to simulate the dynamics in open
quantum systems [97–99], even for fermionic environments [86].

For any type of generalised master equations based on a perturbative approach there
is no unambiguous procedure to ensure that the evolution of system under a master
equation beyond a Lindblad description maintains the positivity of the density matrix
[100] and one has to rely on case to case studies [74, 101, 102]. In the past few years,
an enormous theoretical effort was made to classify non-Markovian dynamics and find
suitable measure which determine the degree of non-Markovianity as well as make the
definition of non-Markovian dynamics more rigorous [59, 101, 103] in order to understand
the conditions for a CPTP evolution.

With the growing understanding of non-Markovian dynamics the idea to exploit mem-
ory effect is plausible. For example, non-Markovian dynamics have been shown to lead
to noise cancellation [34] as well as playing a role in quantum information error cor-
rection protocols [104] or modifying the Stark shift [105]. On the experimental side,
non-Markovian effects are measurable [49, 106], which hopefully enables us to employ
non-Markovianty in quantum thermal machines [50, 52, 107–110]. These are only a few
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2 Non-Markovian dynamics in open quantum systems

examples and we will come back to them and expand further throughout this work.

2.1.2 Initial slip

Non-Markovian dynamics can only occur on short time scales or when the environment
is small, when quantum fluctuations dominate over temperature induced fluctuations as
they destroy any coherence. However, after this short time which is the memory time
τM of the system, the evolution becomes Markovian. The memory time τM is set by
an energy scale within the system, e.g., the temperature T . Instead of finding a general
quantum master equation that would correctly describe the short time behaviour during
the memory time of the system, one can try to formulate a modified, effective Markovian
master equation. This master equation then is only valid for times t > τM . It takes
into account non-Markovian or short-time effects by an initial slip of the time evolution
of the density matrix. Originally, the slippage scheme was introduced as a procedure
to maintain the positivity of the density matrix evolution [111–113]. The initial slip is
defined by the offset between the real initial value of the density matrix and the initial
value of the effective evolution

ρS(0) − ρeff(0). (2.26)

To determine the initial slip one compares the full dynamics of the reduced density matrix

ρS(t) = eLfulltρS(0) (2.27)

and the effective dynamics under the evolution of the Liouvillian Leff

ρeff
S (t) = eLefftρeff

S (0). (2.28)

The idea of the initial slip is sketched in Fig. 2.4. The orange line marks the correct
evolution of ρs(t) under the full Liouvillian Lfull according to Eq. (2.27). The effective,
Markovian evolution defined in Eq. (2.28) is shown in purple. For times beyond the
memory time, t > τM , both density matrices Eqs. (2.27) and (2.28) have the same time
evolution. They only differ at short times for t < τM and the offset in Eq. (2.26) at t = 0
defines the initial slip. The initial conditions for both density matrices fulfil the relation

ρeff(0) = SρS(0). (2.29)

where the slippage operator S was introduced [114, 115]. The slippage modifies the initial
condition of the evolution. Since the evolution is the same for long times the dynamics for
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t

ρ
(t
)

ρfull

ρeff

τM

initial slip

Figure 2.4: The time evolution of the density matrix is sketched. Evolution under Lfull is shown by
the orange line, and the effective evolution is represented by the dashed, purple curve. Adjusting
the initial condition for the effective evolution by an initial slip leads to the recovery of correct
evolution for times t > τT . For t < τM the effective evolution does not bear any physical meaning.

the reduced density matrix can be approximated with the evolution under the effective
Liouvillian

ρS(t) ≈ eLefftSρS(0). (2.30)

The form of the slippage operator S depends on the actual physical system. It encodes the
difference of the bath correlation functions at short and long times. The non-Markovian
effects are thus hidden in the slippage. Taking them into account effectively leads to a
modified initial condition Eq. (2.29). The evolution under the effective dynamics with the
modified initial condition makes sure that the evolution is physical and the correct one,
but only for times t > τM . As a simple example for an initial slip, we assume the effective
evolution to be Markovian, and the dynamics of a single component of the density matrix
is an exponential decay, similar to [74],

ρeff(t) = e−γtρeff
S (0) (2.31)

where the rates γ are given by the bath correlation functions as in Eq. (2.24) for a specific
system. For the full quantum dynamics, that are also valid for times shorter than the
memory time τT , in a time-local form of the time evolution might be given by

ρ̇S(t) = −γ�(t)ρS(t), (2.32)
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2 Non-Markovian dynamics in open quantum systems

with the solution

ρS(t) = e−
� t

0 dt�γ�(t�)ρS(0) (2.33)

where the rates γ� are time-dependent and capture non-Markovian effects. Equating
Eqs. (2.32) and (2.33) at long times allows us to read off the appropriate initial slip

ρeff
S (0) = exp

��
−
� t

0
dt�γ�(t�) + γ

�
t

�
ρS(0). (2.34)

Initial slips are discussed in the literature as a mechanism to avoid a non-positive map
when deriving a master equation from a microscopic Hamiltonian, e.g. via projection
operator techniques [111–114, 116]. However, one needs to keep in mind that the initial
slip does not have any quantitative information about the short time dynamics in the
system [74]. The effective evolution is only physical for times larger than the memory
time. Later on, we will use the initial slip to describe the offset between the Markovian
dynamics and the full quantum dynamics in the spirit of Eq. (2.26), although we will
have access to the full dynamics.

2.2 Nakajima-Zwanzig equation

In this section we introduce the generalised quantum master equation known as the
Nakajima-Zwanzig equation [67, 68]. It is a time-nonlocal equation of motion for the re-
duced density matrix and explicitly takes into account the quantum correlations building
up due to the system-bath interaction in time. Therefore, this master equation captures
coherent backaction effects between the system and the bath which will lead to non-
Markovian dynamics on short time scales. The Nakajima-Zwanzig equation forms the
starting point to calculate the dynamics of an example system in Chapter 3. The follow-
ing derivation is based on a projection operator method and it follows the references [56,
65]. First, we consider the full density matrix ρ(t) of a system-environment structure and
assume it can be split into a relevant and an irrelevant part [65, 68]

ρ(t) = ρrel(t) + ρirr(t). (2.35)

The relevant part of the density matrix ρrel captures slow fluctuations while the rapidly
fluctuating contribution is described by the irrelevant part ρirr. Later on, in the open
quantum system setting, ρrel will correspond to the system part and ρirr is associated
with the environment degrees of freedom. The aim is to be able to write the expectation
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2.2 Nakajima-Zwanzig equation

value of any observable A only in terms of the relevant part ρrel such that

�A� = Tr {Aρ(t)} = Tr {Aρrel(t)} , (2.36)

with the trace over all degrees of freedom and consequently

Tr {Aρirr(t)} = 0. (2.37)

It can formally be achieved by introducing a projection operator P . The linear map P is
required to project onto the relevant subspace of the Hilbert space such that Eq. (2.36)
is true and

�A� = Tr {Aρ(t)} = Tr {APρ(t)} . (2.38)

is satisfied. To be able to address all remaining states in the given Hilbert space, the
complement Q of the projection P is defined with

P + Q = 1. (2.39)

Furthermore, the projections P and Q satisfy

P 2 = P (2.40)

Q2 = Q, (2.41)

and combing this with Eq. (2.39) it follows directly that

PQ = QP = 0. (2.42)

The action of the operators P and Q projection onto different part of the density matrix
is sketched in Fig. 2.5. The aim is, to derive an equation for the reduced density matrix
related to Pρ(t). The equation of motion for Pρ as well as Qρ follow from the von
Neumann Eq. (2.2) and we obtain

d

dt
Pρ = PLρ(t) = PLPρ(t) + PLQρ(t), (2.43)

d

dt
Qρ = QLρ(t) = QLPρ(t) + QLQρ(t), (2.44)
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2 Non-Markovian dynamics in open quantum systems

Figure 2.5: Sketch of the action of the operators P and Q which project onto the relevant and
irrelevant part of the density matrix ρ.

where we used the identity Eq. (2.39) in the second step. The Liouvillian L = −i[H, ·] is
defined via the time-independent Hamiltonian H

H = H0 + Hint (2.45)

with the free system-bath Hamiltonian H0 = HS + HB and the interaction term Hint as
before. Now we find a formal solution of Eq. (2.44) which is then inserted into Eq. (2.43).
A formal solution of Eq. (2.44) can be found by introducing an integrating factor h(t, t0)
such that

h(t, t0) d

dt
Qρ(t) − h(t, t0)QLQρ(t) = h(t, t0)QLPρ(t). (2.46)

The function h(t, t0) itself is defined via the differential equation [68]

d

dt
h(t, t0) = −h(t, t0)QL. (2.47)

The inverse h−1(t, t0) of its general solution is often identified as a time propagator [56]

h−1(t, t0) = G(t, t0) = T̂ exp
�� t

t0
dt�QL

�
, (2.48)

where we introduced the time-ordering operator T̂ , which orders its arguments chrono-
logically. Since here the Liouvillian L is time-independent the time propagator reduces
to

G(t, t0) = eQL(t−t0) and G(t0, t0) = 1. (2.49)
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2.2 Nakajima-Zwanzig equation

Thus, the differential equation Eq. (2.46) can be written as

d

dt
(h(t, t0)Qρ(t)) = h(t, t0)QLPρ(t). (2.50)

Using the definition of the time propagator above the solution is given by [65, 68]

Qρ(t) = G(t, t0)Qρ(t0) +
� t

t0
dt� G(t, t�)QLPρ(t�)

= QeLQ(t−t0)ρ(t0) −
� t

t0
dt� QeLQ(t−t�)LPρ(t�). (2.51)

Thus, we find an explicit expression for the term Qρ(t). Replacing the corresponding
term in Eq. (2.43) we immediately arrive at the Nakajima-Zwanzig equation [67, 68]

d

dt
Pρ(t) = PLPρ(t) + PLQeLQ(t−t0)ρ(t0) +

� t

t0
dt� PLQeiLQ(t−t�)LPρ(t�). (2.52)

This equation is a closed equation of motion for the relevant part of the system ρrel(t)
closely related to projection of the full density matrix Pρ(t). The notion of relevant and
irrelevant parts provides the formal background and is generally applicable [65]. For open
systems, as considered here, the splitting comes quite naturally between system and bath.
In addition this will allow us to do a few more useful transformations. We are interested
in the system dynamics for which the reduced density matrix

ρS(t) = TrB {ρ(t)} , (2.53)

is sufficient. A good choice for the projector P is then

P (·) = TrB {·} ⊗ ρB, (2.54)

where ρB is the reduced density of the environment and the trace is taken over the bath
degrees of freedom. In a physical setup the initial state is often prepared and brought
in contact with the environment at t0. Therefore, there are no correlations between the
system and bath at t0. The initial state for the full density matrix can be chosen as
product state between system and bath

ρ(t0) = ρS(t0) ⊗ ρB(t0). (2.55)

Consequently, Pρ(t0) = ρ(t0) and the second term in Eq. (2.52) is zero. Just as the
Hamiltonian can be split into its constituent parts, the Liouvillian superoperator L can
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2 Non-Markovian dynamics in open quantum systems

be written as

L = L0 + Lint, (2.56)

with L0 = LS + LB. Inserting this into Eq. (2.52) the first term reduces to P (LS +
Lint)PρS(t) as PLBP = 0. The initial bath state is often taken to be thermal Gibbs
state in equilibrium. As the interaction Hint usually induces an excitation in the bath we
require odd moments of the interaction Liouvillian to vanish

PLintP = 0, (2.57)

and the first term of Eq. (2.52) reduces to PLSPρ(t). Otherwise it would violate con-
servation laws like energy or particle conservation within the system. Furthermore, the
combination PLQ is only non-zero for the interaction part, PLQ = PLintQ and corre-
spondingly QLP = QLintP according to Eq. (2.42). In the integral of the last term in
Eq. (2.52), the time evolution involving the Q projection can be written as [65]

QeLQt = Q2eLQt = QeQLtQ. (2.58)

Using these relations and tracing over the bath degrees of freedom, the Nakajima-Zwanzig
equation for the reduced density matrix ρS of an open quantum system reads

ρ̇S(t) = LSρS(t) +
� t

t0
dt� TrB

�
LintQeiQL(t−t�)LintρS(t�) ⊗ ρB

�
. (2.59)

The Nakajima-Zwanzig equation is an exact quantum master equation to all orders in
the interaction which takes into account temporal correlations and their history. Unfor-
tunately, at this point it only presents a formal solution and cannot provide any detailed
insight into the system dynamics. The integro-differential equation is hard to solve with
the difficulty hidden in the time-convolution of the integrand. The evolution operator
exp[iQL(t−t�)] encodes the build up of the bath correlation functions over time. Defining
the memory kernel

Σ(t − t�)(·) = TrB

�
LintQeiQL(t−t�)LintρB ⊗ (·)

�
(2.60)

Eq. (2.59) becomes

ρ̇S(t) = LSρS(t) +
� t

t0
dt� Σ(t − t�)ρS(t�). (2.61)
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2.2 Nakajima-Zwanzig equation

This last equation will be the starting point in the following to employ further approxi-
mations to the Nakajima-Zwanzig equation.

2.2.1 Born approximation of Nakajima-Zwanzig equation

In the weak coupling limit Eq. (2.61) can be expanded in the interaction strength. The
time evolution operator exp[QL(t − t�)] obeys the Schwinger-Dyson equation [65]

eQ(L0+Lint)t = eQL0t +
� t

0
dt� eQL0(t−t�)QLinte

QLt�
, (2.62)

where L0 = LS + LB is the unperturbed Liouvillian. The identity provides a con-
trolled way to expand the memory kernel Eq. (2.60) to arbitrary orders in the interaction
strength. The expansion is perturbative in the interaction Hamiltonian Hint but we stress
that there is no assumption on the time evolution and all memory effects are taken into
account. Up to second order in the interaction the memory kernel is then given by

Σ(2)(t − t�)(·) = TrB

�
LintQeQL0(t−t�)LintρB ⊗ (·)

�
. (2.63)

Using the identity 1 − P = Q and the fact, the projection P has no effect inside the trace
the Born approximation of the memory kernel reduces to

Σ(2)(t − t�)(·) = TrB

�
Linte

L0(t−t�)LintρB ⊗ (·)
�

. (2.64)

Inserting this expression back into the full Nakajima-Zwanzig equation (2.61)

ρ̇S(t) = L0ρS(t) +
� t

t0
dt� TrB

�
Linte

L0(t−t�)LintρB ⊗ ρS(t�)
�

, (2.65)

or

ρ̇S(t) = L0ρS(t) +
� t

t0
dt� Σ(2)(t − t�)ρS(t�). (2.66)

In Chapter 3 we will use this last equation as the starting point to employ further ap-
proximations to the Nakajima-Zwanzig equation and study the dynamics of a single spin
embedded in an electronic environment. Taking into account all memory effects we de-
termine the full quantum coherent dynamics in detail.

We can now connect the Nakajima-Zwanzig equation to the Markovian formulation
in Section 2.1. Assuming that the correlations in the bath decay sufficiently fast and
therefore faster then any correlations in the system, the interaction between bath and
system is instantaneous and does not depend on the history of the joint evolution. This
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2 Non-Markovian dynamics in open quantum systems

is the Markov approximation and the reduced density matrix of the system ρS within the
integral is again taken to be

ρS(t�) → ρS(t). (2.67)

Adjusting the integration limits in the same way as in Section 2.1, the equation of motion
within the Born-Markov approximation reads

ρ̇S(t) = L0ρS(t) +
� ∞

0
dt� TrB

�
Linte

L0(t−t�)LintρB

�
ρS(t). (2.68)

This equation corresponds to Eq. (2.17) after transforming into the interaction picture.
Similarly, the Redfield master equation in Eq. (2.25) is recovered by only changing the
time index of the reduced density matrix according to Eq. (2.67).

2.3 Self-consistent projection operator method

In this section a generalised master equation based on the projection operator method is
derived. However, in contrast to the derivation of the Nakajima-Zwanzig equation (2.59),
the projection operator itself is time-dependent. The result will be a self-consistent master
equation similar to the Nakajima-Zwanzig equation which was proposed by Degenfeld-
Schonburg and Hartmann [38]. In contrast to the Nakajima-Zwanzig equation, the bath
reference state has a time dependence. It is constantly updated and takes into account
the changes in the environment. The derivation presented here follows the derivation in
the appendix of the original paper [38].

The starting point is the setup that a quantum system, possibly in its own environment,
is coupled to (many) other quantum systems, which are essentially copies of the first one.
One can think of a lattice with some coordination number and a single quantum system
at each lattice point, sketched in Fig. 2.6 for a single impurity spin in an electron spin
bath. Then we are interested in the dynamics of one of the systems, e.g. system S0, in
contact with all the other ones. All other systems act as bath to the system of interest
labelled S0. The time-dependent projections will lead to a reference bath state which is
self-consistently determined by all local dynamics in each subsystem Sn. The starting
point for the equation of motion for the full density matrix is once again given by the
von Neumann equation

ρ̇(t) = Lρ(t), (2.69)
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2.3 Self-consistent projection operator method

Figure 2.6: Sketch of an array of coupled quantum system, for example an impurity spin in an
electronic spin bath. Each localised spin is incorporated in its own environment and each of the
subsystems has some local dynamics, possibly including memory effects which are indicated by
the ripples and wavy lines. One subsystem is chosen as system of interest, here S0, and all other
systems Sn act as a bath for S0. They interact with each other by some coupling A.

where the Liouvillian superoperator is by

L = L0 + Lint =
N�

n=0
LSn + Lint. (2.70)

The Liouvillian L0 is given by the sum of all Liouvillians LSn containing the eigendynamics
for each subsystem Sn. The interaction between the subsystems of coupling strength A

can be split into the interaction terms that are directly in contact with the system of
interest S0 and all other interactions between the subsystems deep within the bath

Lint =
Z�

n=1
LS0,Sn

int + L✁S0
int. (2.71)

Throughout we use the notation ✓Sj to denote all subsystems excluding the system Sj .
Instead of having a generic bath made of fermionic or bosonic modes, here the environment
formed by the neighbouring quantum systems is allowed to have more structure. Each
system can have its own local dynamics, indicated by the ripples and wavy arrows in
Fig. 2.6. As in the case for the time-independent projection operators we want to find an
equation of motion for the relevant part of the density matrix, i.e., the reduced density
matrix of the system in which we are interested. The projection operator P is now defined
as

P S0
t (·) = Tr

✁S0
{·} ⊗ ρ

✁S0
, (2.72)
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2 Non-Markovian dynamics in open quantum systems

where the projection P carries a time index. All subsystems ✓S0 act as bath to the system
of interest S0. The density matrix for all systems acting as the environment is assumed
to be a product state of all individual systems

ρ
✁S0

(t) =
�

Sn �=S0

ρSn(t). (2.73)

Each reduced density matrix is self-consistently defined as

ρSn = Tr
✁Sn

{ρ(t)} (2.74)

at all times t. The complement QS0
t to the projection P S0

t is

QS0
t = 1 − P S0

t . (2.75)

Both projections obey the relations
�
P S0

t

�2
= P S0

t , (2.76)
�
QS0

t

�2
= QS0

t , (2.77)

P S0
t QS0

t = QS0
t P S0

t = 0, (2.78)

similar to the relations in Section 2.2. Additionally,

Ṗ S0
t = −Q̇S0

t , (2.79)

Ṗ S0
t QS0

t = −Q̇S0
t P S0

t = 0. (2.80)

The first identity follow directly from the definition Eq. (2.75), the second can be proven
by utilising the first one, a full proof can be found in Appendix A. Each projector concerns
only a single subsystem such that there is no need for a special relation between the
projectors for different subsystems. To find an equation of motion for the reduced density
matrix ρS0 defined via the projection P S0

t

P S0
t ρ(t) = Tr

✁S0
{ρ(t)} ⊗ ρ

✁S0
(t)

= ρS0(t) ⊗
�

Sn �=S0

ρSn(t), (2.81)

we start with the von Neumann equation Eq. (2.69) for the relevant part and the irrelevant
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2.3 Self-consistent projection operator method

part of the density matrix

d

dt

�
P S0

t ρ(t)
�

=
�
Ṗ S0

t + P S0
t L

�
P S0

t ρ(t) + P S0
t LQS0

t ρ(t) (2.82)
d

dt

�
QS0

t ρ(t)
�

=
�
−Ṗ S0

t + QS0
t L
�

P S0
t ρ(t) + QS0

t LQS0
t ρ(t). (2.83)

As before, the aim is to find a solution to Eq. (2.83). However, in contrast to the derivation
of the Nakajima-Zwanzig equation, we need an expression for Ṗ S0

t P S0
t ρ(t), where

Ṗ S0
t (·) = d

dt

�
Tr

✁S0
{·} ⊗ ρ

✁S0
(t)
�

= Tr
✁S0

{·} ⊗
�

d

dt
ρ
✁S0

(t)
�

, (2.84)

to proceed. This term can be written as

Ṗ S0
t P S0

t ρ(t) = Tr
✁S0

{ρ(t)} ⊗
�

d

dt
Tr

✁Sn
{ρ(t)}

�

= ρS0(t) ⊗ ρ̇
✁S0

(t). (2.85)

The last part is a short hand for the time derivative for the all reduced density matrices
that act as a bath to the system S0

ρ̇
✁S0

(t) =
�

Sj �=S0

ρ̇Sj (t) ⊗
�

Sn �=Sj

ρSn(t). (2.86)

Including the reduced density matrix ρS0(t) for the system of interest we arrive at

Ṗ S0
t P S0

t ρ(t) =
�

Sj �=S0

Tr
✁Sj

{ρ̇(t)} ⊗
�

Sn �=Sj

ρSn(t). (2.87)

The equation of motion for the full density matrix ρ(t) is determined by the von Neumann
equation and we can substitute in the full Liouvillian L in the derivative

Tr
✁Sj

{ρ̇(t)} = Tr
✁Sj

��
N�

k=1
LSk

+ Lint

�
ρ(t)

�

= Tr
✁Sj

�
N�

k=1
LSk

ρ(t)
�

+ Tr
✁Sj

{Lintρ(t)} . (2.88)
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2 Non-Markovian dynamics in open quantum systems

Splitting the traces of the first term leads to

Tr
✁Sj

�
N�

k=1
LSk

ρ(t)
�

= Tr
✁Sj





N�

k=1,k �=j

LSk
ρ(t)



+ Tr

✁Sj

�
LSj ρ(t)

�
, (2.89)

where

Tr
✁Sj





N�

k=1,k �=j

LSk
ρ(t)



 = 0. (2.90)

To show that this identity holds, we consider a single trace for simplicity

TrSk
{LSk

ρ(t)} = −iTrSk
{[Hk, ρ]} . (2.91)

Expanding in the eigenstates ek, e�
k of the system Sk the trace can be expressed as

TrSk
{LSk

ρ(t)} = −i
�

ek,e�
k

��ek|Hk| e�
k��e�

k|ρ(t)|ek� − �ek|ρ(t)| e�
k��e�

k|Hk|ek�� . (2.92)

In the eigenbasis the factor �ek|Hk| e�
k� commutes with the density matrix term such

TrSk
{LSk

ρ(t)} = −i
�

ek,e�
k

��ek|Hk| e�
k��e�

k|ρ(t)|ek� − �e�
k|Hk|ek��ek|ρ(t)| e�

k��

= −i
�

ek,e�
k

�ek|Hk|e�
k� ��e�

k|ρ(t)|ek� − �e�
k|ρ(t)|ek��

= 0. (2.93)

Then, Eq. (2.90) holds as the above relation is valid for all individual subsystems Sk.
Returning to Eq. (2.88), we obtain

Tr
✁Sj

{ρ̇(t)} = Tr
✁Sj

�
LSj ρ(t)

�
+ Tr

✁Sj
{Lintρ(t)}

= LSj ρSj (t) + Tr
✁Sj

{Lintρ(t)} , (2.94)

where we used that in the first term the operator LSj only acts on the subsystem Sj

and is therefore unaffected by trace over all degrees of freedom in all other subsystems.
Finally, we find an expression for Ṗ S0

t P S0
t ρ(t) by substituting Eq. (2.94) into Eq. (2.87)

Ṗ S0
t P S0

t ρ(t) =
�

Sj �=S0

�
LSj ρSj (t) + Tr

✁Sj
{Lintρ(t)}

�
⊗
�

Sn �=Sj

ρSn(t). (2.95)
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To ease the notation we define a new projection operator

P ✁S0
t (·) =

�

Sj �=S0

P
Sj

t (·)

=
�

Sj �=S0

�

Sj �=Sn

ρSj (t) ⊗ Tr
✁Sj

{·} , (2.96)

and the final expression for Ṗ S0
t P S0

t can be written as

Ṗ S0
t P S0

t ρ(t) = L
✁S0

P S0
t ρ(t) + P ✁S0

t Lintρ(t)

= L
✁S0

P S0
t ρ(t) + P ✁S0

t Lint
�
P S0

t + QS0
t

�
ρ(t). (2.97)

Substituting Eq. (2.97) into the equation of motion for the irrelevant part in of the density
matrix QS0

t ρ(t) in Eq. (2.83) leads to

d

dt

�
QS0

t ρ(t)
�

=
�
−L

✁S0
− P ✁S0

t Lint + QS0
t L
�

P S0
t ρ(t) +

�
−P ✁S0

t Lint + QS0L
�

QS0
t ρ(t).

(2.98)

To simplify this further we make use of the fact that TrSn{LSn ·} = 0, as seen in Eq. (2.93),
and that P S0

t LS0 = LS0P S0
t which follows directly from the definition of the projection

as LS0 only acts on subsystem S0. The equation of motion of QS0
t ρ(t) is therefore

d

dt

�
QS0

t ρ(t)
�

= CtLintP
S0
t ρ(t) + (CtLint + L0) QS0

t ρ(t), (2.99)

with L0 = �Sn
LSn and where we defined the superoperator

Ct = −P ✁S0
t + QS0

t = 1 −
�

Sn

P Sn
t . (2.100)

We can formally solve the differential equation by introducing an integrating factor as
previously in Eq. (2.46). Here, the function h(t, t0) has to satisfy

d

dt
h(t, t0)QS0

t ρ(t) = −h(t, t0) (CtLint + L0) QS0
t ρ(t). (2.101)

The function h(t, t0) again takes the form of a time propagator given by

h−1(t, t0) = G(t, t0) = T← exp
�� t

t0
dt� (Ct�Lint + L0)

�
, (2.102)

with the chronological time-ordering operator T← and the solution of Eq. (2.99) then
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2 Non-Markovian dynamics in open quantum systems

reads

QS0
t ρ(t) = G(t, t0)QS0

t ρ(t0) +
� t

t0
dt� G(t, t�)Ct�LintP

S0
t ρ(t�). (2.103)

In the last step we insert the solution Eq. (2.103) into the equation of motion of the
relevant part of the system Eq. (2.82) and trace out all subsystems that act as a bath to
the system S0

ρ̇S0(t) = Tr
✁S0

�
Ṗ S0

t P S0
t ρ(t)

�
+ Tr

✁S0

�
P S0

t LP S0
t ρ(t)

�

+
� t

t0
dt�Tr

✁S0

�
P S0

t LG(t, t�)Ct�LintP
S0
t ρ(t�)

�
. (2.104)

The first term vanishes as

Tr
✁S0

�
Ṗ S0

t P S0
t ρ(t)

�
= Tr

✁S0

�
L
✁S0

P S0
t ρ(t) + P ✁S0

t Lintρ(t)
�

= 0, (2.105)

and the second one reduces to

Tr
✁S0

�
P S0

t LP S0
t ρ(t)

�
= Tr

✁S0

�
P S0

t

�
LS0 + L

✁S0
+ Lint

�
P S0

t ρ(t)
�

= LS0ρS0(t) + Tr
✁S0

�
LintP

S0
t ρ(t)

�
. (2.106)

Finally, we arrive at a Nakajima-Zwanzig-like closed equation of motion for the reduced
density matrix of the subsystem S0 [38]

ρ̇S0(t) = LS0ρS0(t) + Tr
✁S0

�
LintP

S0
t ρ(t)

�
+
� t

t0
dt�Tr

✁S0

�
LintG(t, t�)Ct�LintP

S0
t ρ(t�)

�
.

(2.107)

It grants access to the dynamics of a particular subsystem in a many-body quantum
system. In addition to the Nakajima-Zwanzig approach Eq. (2.107) correlations within
all subsystems are captured by the superoperator Ct. The bath reference state formed by
the subsystems acting as a bath to the system of interest maintains a time dependence
and is determined self-consistently. However, Eq. (2.107) is generally difficult to solve
due to the complexity of a time-nonlocal description known from the Nakajima-Zwanzig
approach. Additionally, the time propagator or dynamical map G(t, t�) in Eq. (2.102)
takes a more complicated form as its explicitly depends on the projection Ct. In order
to simplify the structure of Eq. (2.107) we expand the time propagator as a Dyson series
[38, 65] in powers of the interaction Liouvillian Lint which we used before in Eq. (2.62).
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This leads to the expression

G(t, t�) = T exp
�� t

t�
dt�� (L0 + Ct��Lint)

�

= eL0(t−t�) +
� t

t�
dt�� eL0(t−t��)Ct��LintG(t, t��). (2.108)

Going up to the second order in the interaction corresponds to the Born approximation.
Furthermore, we note that Lint according to Eq. (2.71) can be split into the terms that
directly couple to the system of interest and all other ones. Since we defined the bath
reference state as a product state in Eq. (2.73) all terms containing the interaction within
the bath L✁S0

int drop out. Only interactions between the system S0 and its nearest neigh-
bours are relevant, consequently the full interaction Liouvillian Lint can be replaced by
the relevant terms LS0,Sn

int . Inserting these considerations into Eq. (2.107) we arrive at the
master equation

ρ̇S0(t) = LS0ρS0(t) +
Z�

n=1
Tr

✁S0

�
LS0,Sn

int P S0
t ρ(t)

�

+
Z�

n=1

� t

t0
dt�Tr

✁S0

�
LS0,Sn

int eL0(t−t�)CS0,Sn

t� LS0,Sn
int P S0

t ρ(t�)
�

, (2.109)

where Z is the number of neighbours the system of interest S0 is directly coupled to. Not
only the interaction Liouvillian reduces to the terms of directly coupled subsystems but
also the projector CS0,Sn

t = 1−��S0Sn� P Sn
t where the sum only runs over the neighbours.

We will use this master equation as a starting point to study two localised spins in a
common environment with indirect coupling via the shared bath. The time-dependent
projection in this approach enables us to use a self-consistently determined bath state
at every time step. In contrast to the standard Nakajima-Zwanzig equation, introducing
more system degrees of freedom, e.g., more impurity spins, the equation itself does not
become more complicated as the influence of neighbouring spins is purely covered by
summing over all relevant subsystems. However, a time-dependent projection introduces
a time-dependent bath state of which we need to take care. In Chapter 5 we will derive
the equation of motion for the impurity spins, considering the itinerant electrons as the
bath and then reversing the setup. Treating the impurity spins as a bath will lead to an
equation of motion for the electronic environment, more precisely we find equations of
motions for the relevant bath correlation functions which need to be solved as well.
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Coherent backaction in single spin
systems

3

In many physical setups, the understanding of the system’s dynamical behaviour is crucial
to interpret their performance. At low temperatures one might need to take into account
quantum correlations to correctly describe the relaxation process in an NMR experiment
[5–8] or predict the coherence time for a qubit which can be realised on many experimental
platforms [9–13]. Most realistic and indeed interesting physics occurs when the system
is coupled to a larger environment. The framework of open quantum systems provides a
recipe to tackle these questions [56–58].

In this chapter we investigate the dynamics of a single spin coupled to an electronic
environment in detail. This type of system is the fundamental building block to model
an NMR system or qubit state. Starting from the Nakajima-Zwanzig equation (2.66)
we derive an equation of motion up to second order in the system-bath interaction.
The generalised master equation gives access to the full time evolution while taking into
account the full history of the system’s dynamics. We analyse the equation of motion
for the localised spin density in Laplace space and our analytic solution covers the full
quantum coherent time evolution. At long times the decay is purely exponential in
agreement with Markovian dynamics. The decay is characterised by the relaxation and
decoherence time, T1 and T2, and recovers the expected results from the literature. At
short times, the system’s dynamics is dominated by coherent quantum fluctuations which
in turn lead to non-Markovian dynamics.

Investigating the implication of the memory effects, we find that even in the simple non-
interacting example system the coherent backaction of the electronic bath has a notable
effect on the localised spin dynamics. Although a Fermi gas has an innocent descrip-
tion, its physical properties are dominated by the Pauli principle. Similar to a quantum
critical strongly correlated system they are largely independent of further microscopic
details and dependent only on a few universal parameters such as the Fermi energy EF ,
the temperature T and possibly a driving voltage or the magnetic field [23, 117]. These
characteristics make the simple, free Fermi gas an appealing candidate to study corre-
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lated, coherent dynamics. The critical behaviour is indeed evident in the fact that the
Fermi gas exhibits a strong correlation response such as the Kondo effect [118, 119] or
the Fermi-edge singularity [120–123]. With our focus on the short time dynamics we are
exploring the onset of exactly these correlated many-body responses.

3.1 Decay mechanism in spin systems

We start by outlining the phenomenological description of the time evolution of the
magnetisation of a nuclear spin ensemble in contact with conduction electrons. The
intuitive approach leads to the macroscopic Bloch equations [18] which describe the decay
of the magnetisation of a spin ensemble. Treating the localised or nuclear spins and the
surrounding electrons as statistical ensembles we can characterise the decay by a single
parameter which is the temperature T . The decay is governed by the bath’s thermal
fluctuations which are the primary channel for dissipation. Therefore, it is expected that
the relaxation time T1 is set by the temperature of the bath. Indeed, the relaxation time
increases for lower temperature. This behaviour is captured by the Korringa relation [19,
20] which predicts the proportionality T1 ∼ 1/T . We then link to the the density matrix
approach where we highlight which assumptions will no longer be valid in our further
investigation.

3.1.1 Bloch equations

Before turning to a specific interaction between nuclear and electron spins, we present a
phenomenological argument following the references [16, 17] which results in an equation
of motion for the magnetisation of a spin ensemble interacting with its surrounding, known
as the Bloch equations [18]. The first observation is that in a homogeneous magnetic field
the magnetisation of an ensemble of free spins can be described by

Ṁ = γM × B. (3.1)

This is a fully classical equation of motion for a magnetic moment M with a gyromagnetic
ratio γ in a static field B. Furthermore, in a static field chosen to point along the z

direction, the magnetisation saturates at its equilibrium value M0 = Mz = Bz. The
equilibrium is reached according to

d

dt
Mz = − 1

T1
(Mz − M0) (3.2)
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with the longitudinal relaxation time T1. The relaxation time T1 is the average time, a
spin ensemble needs to get back to equilibrium after excitation by an externally applied
field. At this point T1 is an experimental observable. Later on, we find an expression for
the relaxation time beyond the classical description based on the probability of transition
rates for the spin flips induced by the interaction between spin system and surrounding
electrons. If the spin ensemble acquires a transverse field component by, e.g., a short
magnetic pulse, we can observe that the transverse magnetisation decays with

d

dt
Mx = −Mx

T2
, (3.3)

d

dt
My = −My

T2
, (3.4)

with the transverse relaxation time T2. The transverse component decays because of the
interaction with its surrounding. The last assumption states that we can combine the free
motion Eq. (3.1) of the spins with the observed relaxation of Eqs. (3.2) to (3.4). Thus,
we arrive at the Bloch equations [18]

d

dt
Mx = γMyBz − Mx

T2
, (3.5)

d

dt
My = γMxBz − My

T2
, (3.6)

d

dt
Mz = − 1

T1
(Mz − M0), (3.7)

for the choice of the homogeneous field along z. This set of macroscopic equations are
purely classical and it describes the magnetisation of an ensemble of spin. The longitu-
dinal and transverse relaxation times T1, T2 are the accessible observables in magnetic
resonance and spin echo experiments. The Bloch equation (3.7) leads to an exponential
decay of the magnetisation. In the next section we step away from the phenomenological
description. We will see that the decay of the magnetic moment remains exponential in
a high temperature expansion which corresponds to a Markovian description of the time
evolution.

3.1.2 Spin-lattice relaxation

To characterise the relaxation mechanism of spin ensemble in contact with an environment
it proves useful to assign the temperatures TI and Tel to the statistical ensemble of nuclear
spins and the electronic environment, respectively. Then the relaxation process, e.g., in
metal, can be interpreted as an equilibration between the nuclear spin system and the
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conduction electrons. If we describe each part as a statistical ensemble, which itself
is in equilibrium, the only free parameter is indeed given by the temperature of the
corresponding system. In the following we derive an expression for the relaxation time
T1 based on the concept of a spin and lattice temperature, TI and Tel, where we adapt
the approach of [16, 17].

The ensemble of nuclear spins with inverse temperature β = 1/TI can be described by
a density matrix

ρI ∼ e−βH , (3.8)

with H the Hamiltonian of the spin system. The average energy Eavg for the spin system
can be obtained in two different ways, namely from the statistical point of view and from
the microscopic transitions. Their comparison leads to an expression for the T1 time over
which the spin temperature reaches equilibrium with the lattice or electron temperature.
One the one hand, by postulating a spin temperature the average energy Eavg is given by

Eavg = Tr {ρH} = 1
Z

Tr
�

He−βH
�

(3.9)

with the partition sum Z and H the Hamiltonian describing the system. Within a high
temperature expansion this leads to

Eavg = − 1
ZT →∞

βTr
�

H2
�

= − 1
ZT →∞

β
�

n

E2
n, (3.10)

where n labels the eigenenergies En of the Hamiltonian. A high temperature expansion
is justified because the energy difference between two neighbouring states is small. We
are looking at the Zeeman levels of nuclear spins and compared to the level splitting
any other energy scale is large. In our investigation of the decay dynamics of single spin
we explicitly do not use a high temperature expansion and therefore keep the quantum
fluctuations which lead to a non-Markovian contribution. The change in the average
energy Eavg is then given by

d

dt
Eavg = − d

dt
β

1
ZT →∞

�

n

E2
n. (3.11)

On the other hand, the average energy is given by all the energies of every available state

Eavg =
�

n

pnEn (3.12)
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3.1 Decay mechanism in spin systems

with the probability pn of finding the state |n� occupied. The probabilities follow a
Boltzmann distribution

pn = 1
Z

e−βEn , (3.13)

and �n pn = 1. The rate of change for occupancy is governed by transition probabilities
Wi→f from an initial state |i� to a finial state |f� and we find

d

dt
pn =

�

m

pmWm→n − pnWn→m. (3.14)

Here, only the diagonal part of the density matrix is used for the rate equation. Omitting
the off-diagonal terms, which contain the quantum coherences, corresponds to a classical
description which is fully justified by the high temperature expansion. If the nuclear spin
system and the lattice are in thermal equilibrium, the transition in one direction is as
likely the inverse process

peq
mWm→n = peq

n Wn→m, (3.15)

and they obey the detailed balance. The equilibrium temperature can be approximated
as the lattice temperature since the reservoir is large compared to the nuclear spin system.
Using the equilibrium temperature in Eq. (3.13) and inserting it into the rate equation
(3.14) we find the detailed balance relation between the transition probabilities Wn→m

and the inverse process

Wn→m = Wm→neβel(Em−En). (3.16)

Inserting this result into Eq. (3.12) and taking the time derivative leads to a second
expression for the change in the average energy

d

dt
Eavg = 1

2
�

n,m

pmWm→n

�
1 − eβ(Em−En)e−βL(Em−En)

�
(En − Em)

≈ 1
2ZT →∞

�

n,m

Wm→n(β − βL) (En − Em)2 . (3.17)

To get to the last line we can use the high-temperature expansion and approximate
pm ≈ Z−1

T →∞. Comparing Eq. (3.17) to Eq. (3.11) the change in the nuclear spin system’s
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3 Coherent backaction in single spin systems

temperature throughout the equilibration process is given by [16, 17]

d

dt
β = βel − β

T1
, (3.18)

with the inverse relaxation time T1

T −1
1 = 1

2

�
n,m Wm→n (Em − En)2

�
n E2

n.
. (3.19)

We can relate Eq. (3.18) to the Bloch equation of z-component Eq. (3.7) via Curie’s law
M ∼ β where the relaxation time T1 indeed corresponds to the characteristic time scale
for the decay of a magnetic moment. Nonetheless, the rate equation (3.18) for the spin
temperature is not limited to nuclear spins and conduction electrons but is valid for any
type of localised spin in an electronic environment.

For an explicit expression for the relaxation time T1 we can compute the transition
probabilities W in Eq. (3.19) with Fermi’s golden rule [124, 125]

Wi→f = 2π

�
|�f |V |i�|2δ(Ei − Ef − ΔE). (3.20)

The states |i� and |f� are the initial and final spin states of the transition with the
corresponding energies Ei and Ef , ΔE is the energy difference of adjacent states and V

is the scattering potential. In a metal this potential corresponds to the hyperfine contact
interaction between nuclear and s-electron spins

Hint = −Aδ(xI)I · S, (3.21)

with the nuclear spin I at position xI and the itinerant electronic spin S. The hyperfine
coupling is given by [16, 17]

A = 8π

3 γeγn�2, (3.22)

where γn and γe are the gyromagnetic ratios for the nuclei and electrons, respectively.
Using Eq. (3.20) to compute the transition probabilities leads finally to an expression for
the relaxation time [16, 17, 19]

1
T1

∼ A2 (ν(EF ))2 kBT (3.23)

with the density of states ν(EF ) at the Fermi energy. The proportionality of 1/T1 ∼ T

is the Korringa relation [19] which we comment on further in Section 3.1.4.
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3.1 Decay mechanism in spin systems

3.1.3 Connection to open quantum systems

To obtain an estimate for T1 in Eq. (3.19) one needs to calculate the weights of the
transition probability Wi→f for a specific interaction between nuclear spins and the lattice.
They are, one the one hand, given by Fermi’s golden rule in Eq. (3.20) as discussed
above. On the other hand they can be determined in the density matrix description. The
eigenvalues of the density matrix determine the probability amplitudes of each eigenstate.
A state then consists of a linear combination of those eigenstates. The transition rates
Wi→f directly correspond to the rate of change for the corresponding entry in the density
matrix for the spin system ρS(t)

(ρ̇S(t))mn = Wm→n. (3.24)

The calculation of the transition probabilities using a density matrix approach [126],
which in a more general formulation leads to the Redfield equation (2.25) [63, 91], builds
on the phenomenological description introduced in Section 3.1.1. Within the Born-
Markov equation or the Lindblad description, the transition probabilities, and conse-
quently the characteristic decay times T1 and T2, are determined by the bath correlation
functions such as Eq. (2.24). The exact form of the bath correlations is set by the inter-
action term of the Hamiltonian describing the system-bath structure. For the description
of a localised spin in contact with an electronic reservoir we assume again the contact
interaction in Eq. (3.21). With this interaction we can write the interaction Hamiltonian
of Eq. (2.18) as

Hint = −A
�

α=x,y,z

Iα ⊗ Sα
j=0, (3.25)

where the sum is taken over all spin components of the localised spin I and the electron
spin S. The Hamiltonian for the impurity spin is given by the Zeeman term

HS = bI
zIz (3.26)

in an external field in z-direction. The prefactor is defined by bI
z = gIµIBz with the g-

factor of the impurity spin gI and its magnetic moment µI . Within the Lindblad descrip-
tion the equation of motion in Eq. (2.19) can be derived as follows. The eigenoperators
Aα(ω) are defined via the projection onto the eigenspaces belonging to the eigenvalues
±bI

z of the system Hamiltonian HS . Their difference can take the values ω = 0, ±2bI
Z .
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3 Coherent backaction in single spin systems

The corresponding Fourier transformed bath correlation functions are

Γαβ(ω) = A2
� ∞

0
dt e−iωt Trel

�
Sα(t)Sβ(0)

�
(3.27)

with the trace over the electronic bath. The renormalisation of the energy states of the
localised spin due to the bath coupling corresponds to the Lamb shift in Eq. (2.21). Here,
any contribution of Sαβ ∼ Γαβ − Γ∗

βα for Aα(ω)Aβ(ω) ∼ Iz will shift the energy states.
For the dissipating part, the decay rates γαβ(ω) are given by the electron spin correlation
functions

γαβ(ω) = A2
� ∞

−∞
e−iωtTrel

�
Sα(t)Sβ(0)

�
. (3.28)

Their components determine the decay rates T1 and T2 for the longitudinal and transverse
decay of the localised spin. The exact form of the bath correlation functions will be
calculated later when the generalised approach beyond the Born-Markov description is
presented. The underlying question is how these correlations alter the system’s decay
dynamics when the entire history of the system-bath interaction is taken into account
and if the dynamical behaviour deviates from a pure exponential decay.

3.1.4 Knight shift and Korringa relation

In standard magnetic resonance experiments, the location of the resonance peak deter-
mines the energy of the magnetic moment and the linewidth carries information about
the lifetime. In an external magnetic field B each nuclear spin I is not only subject to
the applied field. The conduction electrons in a metal are paramagnetic. Their response
modifies the local field which then influences the nuclear spin on top of the external field
[16, 17, 23]. A schematic of a localised spin in a paramagnetic environment is shown
in Fig. 3.1(a). In a resonance experiment therefore the nuclear resonance frequency is
shifted by is the Knight shift K [127], according to this local field. It is proportional to
the magnetic susceptibility χ of the conduction electrons in the magnetic field

K ∼ �Ilocal� ∼ χB. (3.29)

Fig. 3.1(b) displays a typical resonance signal. Its width is associated with the life time
of the state, here we chose the relaxation time T1 as an example. Due to the locally
enhanced field the nuclear Larmor frequency ω0 is shifted ω̃0 = ω0 + K where K ∼ ΔH.
In the density matrix picture parts of the renormalisation of the energies of the system
Hamiltonian in Eq. (3.26) due to the Lamb shift would further contribute to the shift of
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3.1 Decay mechanism in spin systems

Figure 3.1: (a) Schematic of a nuclear spin in a metal. The external magnetic field is locally
enhanced by ΔH due to the magnetic polarisation of the conduction electrons. (b) The Knight
shift corresponds to the shift of the NMR signal at ω0 for a field H (orange dashed line) due to
the locally enhanced field H + ΔH to new resonance frequency ω̃0 = ω0 + K (solid purple line).

the resonance peak. For simple metals, the Knight shift can be related to the relaxation
time T1 [16, 17, 20]

T1K2 = �
4πkBT

γ2
e

γ2
I

(3.30)

which is know as the Korringa relation [19]. The Korringa relaxation connects the tem-
perature T and the relaxation time T1. They obey

T1T = κ, (3.31)

where κ is a material dependent constant. The relation in Eq. (3.31) is used to identify the
state of the conduction electrons. Electrons which can be described as a non-interacting
Fermi gas are expected to recover T1 ∼ 1/T . In such a simple metal the restriction by the
Pauli principle allows only a small number of electrons around the Fermi energy to inter-
act and therefore relax the nuclear spin. Experimentally, the violation of the Korringa
behaviour hints at strong correlations in the electron system which is used as an indicator
of the breakdown of the Fermi liquid description [21, 22]. The interactions renormalising
the Fermi liquid then modify the Korringa constant κ. The change in κ gives an indica-
tion about the presence of interactions. Descriptions including strong correlation effects
usually take into account spatial correlations, for example anti-ferromagnetic fluctuations
[23]. The Korringa relation is a direct consequence of the high temperature expansion
and the Markov approximation. How the Korringa behaviour is affected by temporal
correlations remains unclear in many correlated systems which is the motivation for our
study in the following.
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3 Coherent backaction in single spin systems

Figure 3.2: Schematics of the considered system: An impurity spin is coupled to itinerant electrons.
The ripples indicate the contact interaction between localised spin and the surrounding bath and
the creation of an excitation in the bath. The coherent backaction due to the short lived electron
correlations are represented by the wavy lines.

3.2 Short and long time dynamics of a localised spin in
an electronic conductor

The full time evolution of a localised spin, e.g., a nuclear spin, coupled to itinerant
electrons through a contact interaction is now derived. We focus in particular on memory
effects leading to non-Markovian behaviour. A sketch of the considered system is shown
in Fig. 3.2. Taking into account the full history of the system-bath interaction, we
investigate how the decay is altered by the short lived quantum correlations. Even for
the environment of the non-interacting electrons a memory effect due to the restriction
of fluctuations by the Fermi surface becomes apparent. Our approach is based on an
expansion of the exact Nakajima-Zwanzig equation in the coupling constant, set up in such
a way that the analytical structure of the memory kernel that causes the non-Markovian
behaviour is preserved. The analytical result describes the full time range from the short
time non-Markovian contributions to the well-known exponential decay expressions. The
short time dynamics of the localised spin is dominated by a logarithmic temperature
independent decay before crossing over to the standard thermally induced exponential
decay. The considered model can be described by the Kondo-type Hamiltonian

H =
�

kσ

�kc†
kσckσ + bel

z

�

j

Sz,j + bI
zIz + AI · Sj=0. (3.32)

The spin operators I and S for the localised spin and the electrons are normalised to
|I| = |S| = 1. The first term in the Hamiltonian models the free Fermi gas with the
energy dispersion �k and fermionic creation and annihilation operators c†

kσ and ckσ. The
momenta k label all possible electronic states with spin index σ. The second is the Zeeman
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3.2 Short and long time dynamics of a localised spin in an electronic conductor

term for the electronic spin operators

Sj =
�

σσ�
c†

jστσσ�cjσ� (3.33)

written in terms of the real-space creation and annihilation operators for the electrons,
c†

jσ and cjσ� at position j with the vector τ of Pauli matrices. For the ease of notation we
assume an underlying lattice to describe the electron system and we discuss the continuum
limit later on. The prefactor bel

z = gµBBz includes the electronic g-factor, the Bohr
magneton µB and the external, uniform magnetic field Bz applied along the z-axis. These
two terms correspond to the bath Hamiltonian HB. The third term corresponds to the
Zeeman term of the localised spin with bI

z = gIµIBz, where gI is the appropriate g-factor
for the impurity spin and its magnetic moment µI in the external field. Additionally, we
neglect the paramagnetic magnetisation of the electrons because it is proportional to bel

z

which is usually small. This allows us to set

�S(t)� = 0, (3.34)

which corresponds to disregarding the Knight shift [127]. To include the Knight shift we
could add it into the rotating frame picture or subtract �S� from the spin operators and
only treat spin fluctuations. As our focus will be on the decay and not the deterministic
precession, neglecting the Knight shift makes the formalism for the decay more accessible.
The interaction term couples the impurity spin to its electronic environment through
the contact spin-spin interaction of strength A. The Zeeman term of the localised spin
causes principally a spin precession. To avoid that the physics is obscured by the latter
it is helpful to switch to the rotating frame where the precession is removed by the
transformation

H → H − bI
zJz (3.35)

with the total angular momentum for the z-component

Jz = Iz +
�

j

Sz,j . (3.36)

Then, the Hamiltonian Eq. (3.32) takes a simplified form in the rotating frame

H =
�

kσ

�kc†
kσckσ + bz

�

j

Sz,j + AI · Sj=0, (3.37)
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3 Coherent backaction in single spin systems

where we defined bz = bel
z − bI

z. In the rotating frame the spin operators transform as

I± → I±e±ibI
zt, S±,j → S±e±bI

zt,

Iz → Iz, Sz,j → Sz,j , (3.38)

under the assumption in Eq. (3.34) and where

I± = 1
2 (Ix ± iIy) , (3.39)

S±,j = 1
2 (Sx,j ± Sy,j) . (3.40)

We assume the localised spin operator I to be a spin-1/2 operator. The advantage
of considering spin-1/2 is the most accessible algebra while maintaining all the general
physics. For any other choice of a quantum spin we expect similar dynamical behaviour
as a larger spin does not introduce any other correlations. The spin system is a two-level
system and all its states can be expressed with the four operators I↑, I↓, I± where we
define

I↑ = 1
2 (1 + Iz) , (3.41)

I↓ = 1
2 (1 − Iz) . (3.42)

They will form the basis to address the system dynamics using the density matrix de-
scription.

3.2.1 Memory effects in a simple metal

To capture the dynamics of the impurity spin driven by the interaction with the electron
spins we adopt a Nakajima-Zwanzig approach similar to [64]. The Nakajima-Zwanzig
master equation (2.59) provides then an equation of motion for the reduced density matrix
ρI describing the impurity spin

ρI = Trel {ρ} , (3.43)

where ρ is the full density matrix of the whole system, including the impurity spin and
the electronic environment. Since the model is formulated in a rotating frame, the first
term of the Nakajima-Zwanzig equation is zero and we have

d

dt
ρI(t) =

� t

0
dt�ΣBorn

I (t − t�)ρI(t�), (3.44)
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3.2 Short and long time dynamics of a localised spin in an electronic conductor

which is valid within the Born approximation Eq. (2.66) and therefore up to second order
in the interaction A. The memory kernel is given by

ΣBorn
I (t − t�)(·) = Trel

�
Linte

L0(t−t�)Lintρel ⊗ (·)
�

. (3.45)

The non-interacting part of the Liouvillian is, due to the rotating frame, defined solely
by the free electronic Hamiltonian

L0(·) = −i [H0, ·] (3.46)

with

H0 =
�

kσ

�kc†
kσckσ + bz

�

j

Sz,j . (3.47)

The interaction Liouvillian contains the spin-spin coupling term with

Lint(·) = −i [Hint, (·)] = −i [AI · S, (·)] . (3.48)

To solve the integro-differential Eq. (3.44) we study it in the Laplace space. The Laplace
transformation removes the convolution within the time integral of Eq. (3.44). Full details
for the Laplace transformation of Eq. (3.44) can be found in Appendix B. In Chapter 5
we will address the dynamics of two localised spins in contact with a common electronic
environment. In this setup the Laplace transform is no longer helpful because the time
convolution within the equation of motion cannot be removed. However, in the current
setup of a single spin the analysis of the reduced density matrix in Laplace space leads
to a closed analytical expression for the full time evolution.

In general, the Laplace transform f̃(s) of some function f(t) is defined as

f̃(s) =
� ∞

0
dt e−tsf(t) (3.49)

where the Laplace variable s has to fulfil Re(s) > 0. Later on the result will be ana-
lytically continued to the full complex plane to pick up the pole structure. The latter
fully determines the system’s dynamics which in turn is found by the inverse Laplace
transformation. As mentioned above, the Laplace transform of Eq. (3.44) removes the
convolution in the time integral and we arrive at

ρ̃I(s) =
�
s1 − �ΣI(s)

�−1
ρI(t = 0), (3.50)

45



3 Coherent backaction in single spin systems

with the initial condition ρI(t = 0). The Laplace transform of the memory kernel is given
by

�ΣI = Trel {Lint (s1 + L0) Lintρel} , (3.51)

and the details for the Laplace transform starting from Eq. (3.44) can be found in Ap-
pendix B. We first solve for the localised spin dynamics in Laplace space and then return
to the real time domain.

3.2.1.1 Matrix representation of the memory kernel

It is advantageous to move into a basis spanned by the localised spin operators {I↑, I↓, I−, I+}
for the analysis. It will allow us to use a vector representation of the reduced density
matrix in the superoperator space where the superoperators are represented by 4 × 4 ma-
trices. The spin operator form a complete basis as they fulfil the commutation relations

[Iz, I±] = ±I±, (3.52)

[I+, I−] = Iz, (3.53)

where Iz = I↑ − I↓ according to Eqs. (3.41) and (3.42), I± is defined in Eq. (3.39). In
this basis the localised spin density matrix decomposes into

ρI = ρ↑I↑ + ρ↓I↓ + ρ−I+ + ρ+I−. (3.54)

Due to the decomposition the density matrix components are determined by the coeffi-
cients ρβ with β =↑, ↓, −, + which are just complex numbers. For the expectation values
for the different impurity spin components we have

�Iβ� = TrI {IβρI} = Iρβ (3.55)

after tracing over the system’s degrees of freedom. Choosing this specific basis, every
operator O can be written as a product of operators, with one part acting only on the
system’s degrees of freedom and the other part only acting on the electronic ones, i.e.,

O = o↑I↑ + o↓I↓ + o+I− + o−I+. (3.56)

In the following, lower case operators are used when they only act on the electronic degrees
of freedom, upper case operators are reserved for the localised spin operators. Within
this basis all superoperators are represented by 4 × 4 matrices and will be denoted by a
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3.2 Short and long time dynamics of a localised spin in an electronic conductor

double hat ˆ̂(·) throughout the discussion. The non-interacting part of the Hamiltonian
can be written as

H0 = h0 ⊗ 1I . (3.57)

Therefore, the matrix representation for the Liouvillian superoperator ˆ̂L0 is given by

ˆ̂L0 = L−
h0

1I . (3.58)

The superscript − denotes the commutator, i.e., L−
h0

o = −i[h0, o]. To find matrix repre-
sentation for the interaction Liouvillian we decompose the interaction Hamiltonian into
system and bath operators

Hint = h↑I↑ + h↓I↓ + h+I− + h−I+, (3.59)

with h↑ = −h↓ = hz = Sz,0/2 and h± = 2AS±,0. To find the matrix representation of
the interaction Liouvillian ˆ̂Lint we need to determine its action on the general operator
O defined by Eq. (3.56) in the localised spin basis. All components of ˆ̂Lint are given by
the commutator [Hint, O] where all entries are labelled by the all combinations of oαIβ

with α, β =↑, ↓, −, +. The explicit calculation can be found in Appendix C.1. The matrix
representation of the interaction Liouvillian is then given by

ˆ̂Lint =




L−
hz

0 hL
− −hR

+
0 −L−

hz
−hR

− hL
+

hL
+ −hR

+ −L+
hz

0
−hR

− hL
− 0 L+

hz




. (3.60)

Again the superscript − refers to the commutator and the superscript + refers to the
anti-commutator with the bath operator in the subscript. The superscripts R, L indicate
if the electron operator acts from the right- or left-hand side, e.g., hR

−O = Oh− and
hL

−O = h−O. Using the matrix representations for the Liouvillian superoperators in
the definition of the memory kernel in Eq. (3.51) leads to an explicit expression for the
memory kernel

��ΣI(s) =




F1(s) −F2(s) 0 0
−F1(s) F2(s) 0 0

0 0 F−(s) + Fz(s) 0
0 0 0 F+(s) + Fz(s)




. (3.61)
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The Laplace transformation of the electron spin-spin correlation functions F1,2,±,z(s) are
defined as

F1(s) = 2A2
� ∞

0
dt e−stRe

�
eibI

zt �S−,0(t)S+,0(0)�
�

, (3.62)

F2(s) = 2A2
� ∞

0
dt e−stRe

�
eibI

zt �S+,0(t)S−,0(0)�
�

, (3.63)

F−(s) = A2
� ∞

0
dt e−(s+ibI

z)t �{S+,0(t), S−,0(0)}� , (3.64)

F+(s) = A2
� ∞

0
dt e−(s−ibI

z)t �{S−,0(t), S+,0(0)}� , (3.65)

Fz(s) = A2

2

� ∞

0
dt e−st �{Sz,0(t), Sz,0(0)}� , (3.66)

where the shorthand �·� replaces the trace Trel{·ρel} over the electronic degrees of freedom
and ρel is the equilibrium state of the bath. Notice that ρel is at the end of each trace.
The Hamiltonian of the electrons is quadratic so that later on, the spin-spin correlators
simply decouple to fermionic expectations values of particles and holes according to Wick’s
theorem [128]. Additional details regarding the derivation of the matrix representation
of the memory kernel can be found in Appendix C.2.

Each superoperator acts on the system vector

�ρI = (ρ↑, ρ↓, ρ−, ρ+)T , (3.67)

such that we can solve the equation of motion for the density matrix for each component.
From the structure of the memory kernel in Eq. (3.61) we see that the evolution of
the components ρ↑,↓ fully decouple from the components ρ± in a similar manner to the
classical description with the Bloch Eqs. (3.5) to (3.7). This corresponds to the decay
along different directions. The evolution of the longitudinal component along the z-
direction is given by ρz = ρ↑−ρ↓. The components ρ± describe the decay in the transverse
direction.

3.2.2 Pole structure and inverse Laplace transformation

The impurity spin dynamics are driven by the coupling to conduction electrons and the
exact nature of the effects are captured by the bath correlation functions. With the
explicit expression for the memory kernel ��Σ(s), the equation of motion in Eq. (3.50) for
the density matrix coefficients takes the form

�̃ρ(s) =
�
s1 − ��Σ(s)

�−1
�ρI(t = 0). (3.68)
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To proceed, we determine the inverse of the superoperator

�
s1 − ��Σ(s)

�−1
=




s − F1(s) F2(s) 0 0
F1(s) s − F2(s) 0 0

0 0 s − F−(s) − Fz(s) 0
0 0 0 s − F+(s) − Fz(s)




−1

.

(3.69)

Its inverse is given by the inverse of each 2 × 2 block on the diagonal and we obtain

�
s1 − ��Σ(s)

�−1
=
�

M−1
1 0
0 M−1

2

�
, (3.70)

with

M−1
1 =




s−F2(s)
s(s−F1(s)−F2(s))

−F2(s)
s(s−F1(s)−F2(s))

−F1(s)
s(s−F1(s)−F2(s))

s−F1(s)
s(s−F1(s)−F2(s))


 , (3.71)

M−1
2 =




1
s−F−(s)−Fz(s) 0

0 1
s−F−(s)−Fz(s)


 . (3.72)

Consequently, the impurity spin longitudinal and transverse components, ρ̃z(s) = ρ̃↑(s) −
ρ̃↓(s) and ρ̃±(s), in the Laplace domain are given by

ρ̃z(s) = sρz(t = 0) − F2(s) + F1(s)
s [s − F1(s) − F2(s)] , (3.73)

ρ̃±(s) = ρ±(t = 0)
s − F±(s) − Fz(s) , (3.74)

with the initial values for the reduced density matrix ρz,±(t = 0). Returning to the real
time domain involves the inverse Laplace transform s → t which is defined as

k(t) = 1
2πi

lim
R→∞

� λ+iR

λ−iR
ds etsk̃(s), (3.75)

for some function k(t) and its Laplace transformation k̃(s). The complex number λ is
chosen such that all singularities of k̃(s) are located to the left of the integration contour.
The complex line integral is known as the Bromwich contour and it is sketched in Fig. 3.3.
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Re[s]

Im[s]

Markov pole

0

non-Markovian poles

Figure 3.3: Sketch of the pole structure in Laplace space. The Bromwich contour for the inverse
Laplace transformation is marked by the black dashed line, it is closed at R → ∞. It encloses
all possible poles, Markovian and non-Markovian, of the different density matrix components in
Laplace space in Eq. (3.73).

The density matrix coefficients in the time domain are then given by

ρz(t) = lim
R→∞

� λ+iR

λ−iR

ds

2πi
est sρz(t = 0) − F2(s) + F1(s)

s [s − F1(s) − F2(s)] , (3.76)

ρ±(t) = lim
R→∞

� λ+iR

λ−iR

ds

2πi
est ρ±(t = 0)

s − F±(s) − Fz(s) . (3.77)

We will solve the inverse Laplace transform later on, but we already comment on some
the general features in the following.

The system’s dynamics is fully encoded in the pole structure of the integrands in
Eqs. (3.76) and (3.77). Within a Markovian treatment the s dependence of the memory
kernel �Σ is neglected and the spin-spin correlation functions Fα (Eq. (3.62) to Eq. (3.66))
in the memory kernel would reduce to Fα(s = 0). They then indeed correspond to
the bath correlation functions that appear in the Lindblad description Eq. (3.27). The
smallest pole that enters in this case is located at s = �Σ(s = 0).

Beyond the Born-Markov approximation the Markovian behaviour is still captured
by the singularity closest to s = 0. This is because t ∼ 1/s and consequently s = 0
corresponds to long times in the real time domain. In Fig. 3.3 the Markovian poles is
marked in orange. However, keeping the s dependence of �Σ provides a small but crucial
difference. The small correction due to the full s dependence is the source of the initial
slip discussed in Section 2.1.2 of the full time evolution. The reduced amplitude of the
Markovian evolution is compensated for by the non-Markovian contribution. Taking into
account the full s dependence of the electron response functions leads to a sequence of
additional poles, which are sketched in Fig. 3.3. We will be able to identify them as the
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3.2 Short and long time dynamics of a localised spin in an electronic conductor

non-Markovian part of the dynamics and calculate their contribution.
Up to this point, the discussion is general and not limited to the specific example of

itinerant electrons. The information of the dynamical behaviour is encoded in the bath
correlation functions Fα(s). If they are known, the analysis of the pole structure in
Laplace space can be transferred to different physical setups with different types of envi-
ronments. After locating the singularities and identifying the Markov and non-Markovian
poles, one performs the inverse Laplace transform and arrives at the full time evolution
up to the second order in the interaction. The exact details of the dynamical behaviour
for the explicit example of the impurity spin are the focus of Sections 3.2.4 and 3.2.5.

3.2.3 Bath correlations in Laplace space

The electron spin-spin correlation functions Fα(s) (Eqs. (3.62) to (3.66)) carry the infor-
mation about the impurity spin’s dynamics in contact with the electronic environment.
These time-nonlocal correlation functions capture the short-lived coherent quantum fluc-
tuations that will lead to non-Markovian dynamics. To analyse them further, we model
the itinerant electron bath as a free Fermi gas. Since the interaction is restricted to a
contact interaction at j = 0 we can write the electron spin Sj in momentum space as

Sj=0 =
�

kk�,σσ�
c†

kστσσ�ck�σ� . (3.78)

For simplicity, we first consider the zero field limit, bI
z = 0. In this case, the spin-

spin correlation functions are all identical due to the SU(2) symmetry of the Fermi gas,
F1 = F2 = F± = Fz. In particular, the correlator Fz(s) is given by

Fz(s) = −A2

2
a2d

(2π)d

� t

0
dt e−ts

�

kk�,σ

�
ei(�k−�k� )t

�
c†

kσ
ckσ

��
ck�σc†

k�σ

�
+ c.c

�
, (3.79)

where c.c. denotes the complex conjugate. We choose here a discrete k summation,
assuming an underlying lattice with the lattice constant a with the volume a2d of the
first Brillouin zone in d spatial dimensions. However, a continuum description would
yield the same result. The Hamiltonian H0 is diagonal in the electronic creation and
annihilation operators c†

kσ and ckσ such that the time evolution of the spin operators is
simply given by the phase factor exp(±i�kt). To perform the summation over momenta
k, k� the density of states

ν(�) = ad

(2π)d

ddk

d�
(3.80)
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is introduced in a contiuum limit such that the summation can be replaced by an integral
over the energy �. Since the relevant excitations influencing the dynamics of the system
are the particle-hole fluctuations close to the Fermi surface we shall consider a sufficiently
wide band such that ν(�) can be set constant to ν0 = ν(EF ) in the energy integration. As
such ν0 does not overshadow the universal physics near the Fermi energy EF . However,
it also gives rise to ultra-violet divergences since a constant density of states is extended
to high energies. To resolve this problem we introduce a cutoff ξ0 and replace the density
of states by

ν(�) = ν0e−|�|/ξ0 . (3.81)

The energy � is chosen such that � = 0 corresponds to the Fermi energy EF . The
replacement in Eq. (3.81) for the true density of states has the advantage of incorporating
all non-universal high energy physics in a single parameter ξ0. Through the expansions
in ξ0 it is then possible to precisely separate universal low energy from non-universal
high energy physics. To simplify the discussion of the spin-spin correlators we define the
functions

F (s) = − 1
ν0

� ∞

0
dt e−ts

�
d� ν(�)ei�tf(�)

�
d��ν(��)e−i��t �1 − f(��)

�
, (3.82)

and

G(s) = − 1
ν0

� ∞

0
dt e−ts

�
d� ν(�)e−i�tf(�)

�
d��ν(��)ei��t �1 − f(��)

�
, (3.83)

with the Fermi-Dirac distribution

f(�) = 1
1 + exp

�
�

kBT

� , (3.84)

where kB is the Boltzmann constant. Note that s ∈ C such that G(s) is not simply the
complex conjugate of F (s). Eq. (3.82) corresponds to the first term of Eq. (3.79), apart
from a modified prefactor, after replacing the sum over all momenta with the integral over
the energy �, ��. Similarly, Eq. (3.83) corresponds to complex conjugate term in Eq. (3.79)
and the difference in comparison to the function F (s) is the reverse time evolution of the
expectation values. To solve the integral over the energy, we assume a symmetric form
of the density of states, ν(�) = ν(−�), and for the distribution of the holes we use that
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3.2 Short and long time dynamics of a localised spin in an electronic conductor

1 − f(�) = f(−�). With these assumptions we arrive at

F (s) = −
� ∞

0
dt e−ts

��
d� e−|�|/ξ0ei�tf(�)

�2
. (3.85)

Using the residue theorem a closed form of the energy integral is found, see Appendix D.1
for details,

F (s) = −
� ∞

0
dt e−ts (πkBT )2

sin2
�
πkBT

�
it + ξ−1

0

�� . (3.86)

The high energy cutoff manages the divergence of the integrand at short times. The
ξ0-independent contribution captures the universal behaviour around the Fermi surface
in the low energy sector. Finally, the time integral of the Laplace transform Eq. (3.86)
leads to a hypergeometric function, see Appendix D.2. After an expansion in the inverse
cutoff ξ−1

0 we obtain

F (s) = iξ0 − πkBT + s

�
ln
�2πkBT

iξ

�
+ ψ

�
1 + s

2πkBT

��
(3.87)

where we neglect all terms with negative power of ξ0. In this expression, ψ(z) is the
digamma function

ψ(z) = Γ�(z)
Γ(z) , (3.88)

where Γ(z) is Euler’s Gamma function and the prime indicates the derivative with respect
to z. Expressions with the digamma function can often be found in the literature for
integrals involving the Fermi function [129, 130]. Additionally, the constant ψ(1)/2 =
−γ/2 is absorbed in the logarithm such that ξ0 → ξ with

ξ = ξ0eγ/2, (3.89)

where γ is the Euler-Mascheroni constant. The redefinition is justified as the cutoff ξ is
due to the non-universal behaviour at the band edges. An exact determination can only
be done for an explicit model or through an experiment. Any other constant playing a
similar role can therefore be absorbed into a renormalisation of the cutoff and does not
change the universal behaviour. The result for the function G(s) is found similarly, the
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3 Coherent backaction in single spin systems

only difference is a conjugation in the cutoff iξ0 → −iξ0 such that

G(s) = F (s)|iξ0→−iξ0

= −iξ0 − πkBT + s

�
ln
�2πkBT

−iξ

�
+ ψ

�
1 + s

2πkBT

��
. (3.90)

The functions F (s) and G(s) can be used to write the response function in Eq. (3.79) as

Fz(s) = α [F (s) + G(s)] , (3.91)

where the dimensionless coupling parameter

α = (Aν0)2 (3.92)

was introduced. In the following discussion α will appear as the small expansion param-
eter. This is justified because we assumed the coupling strength A to be small and we
are working within the Born approximation.

3.2.3.1 Low and high temperature limits

The only relevant parameter that dictates the behaviour of the bath at the Fermi level
is the temperature T . Therefore, there are two distinct regimes for the response function
Fz(s). For high temperatures, where Re(s) < kBT/�, thermal fluctuations dominate the
dynamics. In the opposite limit, Re(s) > kBT/�, quantum fluctuations prevail and the
dominant contributions to the dynamics are driven by those quantum fluctuations. This
leads to memory effects from the particle-hole fluctuations around the Fermi energy. The
particle-hole fluctuations are a universal feature which only depends on the existence of
the Fermi level. The introduction of the high energy cutoff ξ0 earlier ensures that the
bath correlator only captures the important physics around the Fermi energy. In the
following, we study the low and high temperature limits of the correlator

Fz(s) = −2απkBT + 2αs

�
ln
�2πkBT

ξ

�
+ ψ

�
1 + s

2πkBT

��
, (3.93)

as it was defined in Eq. (3.91). First, we consider the limit T → 0 where the quantum
critical correlations in the bath are visible. In the low temperature limit of Eq. (3.93)
the digamma function’s asymptote is a logarithm [131], ψ(z) ∼ ln(z), which cancels the
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3.2 Short and long time dynamics of a localised spin in an electronic conductor

temperature dependence of the logarithm in the second term. This leads to

Fz(s) ∼ 2αs ln
�

s

ξ

�
. (3.94)

The logarithmic behaviour of the response function hints at the underlying Kondo effect
driven by quantum correlations. Calculating the spin-spin correlator at finite temperature
and taking the limit T → 0 bypasses a direct calculation at T = 0. The immediate
evaluation for T = 0 leads to a branch cut along the negative real axis due to the
logarithmic response and treating the branch cut analytically is much more involved.
Second, in the limit of Re(s) � kBT/� the digamma function ψ(z) tends to the Euler-
Mascheroni constant −γ [131], which again is absorbed in the cutoff ξ → ξ � similar to
Eq. (3.89) and we obtain

Fz(s) ∼ −2απkBT + 2αs ln
�2πkBT

ξ�

�
. (3.95)

The first term, independent of the Laplace variable s, will later be identified as the
Markovian contribution and it defines the relaxation time of the localised spin. The
second term linear in s reduces the Markovian decay amplitude due to the renormalisation
of the electron fluctuations. Already in these crude limits of the temperature we can infer
that Markovian dynamics are relevant on timescales t � �/kBT . On the other hand we
expect the non-Markovian effects of quantum correlations to cause a deviation from the
standard Markovian dynamics at short times scale, t < �/kBT .

3.2.3.2 Bath correlation functions in a finite field

In a finite magnetic field, the full expressions for the spin-spin correlations functions are
given by Eq. (3.62) to Eq. (3.66). They can also be expressed as combinations of the
functions F (s) and G(s), which are defined in Eqs. (3.87) and (3.90), by shifting the
argument in the Laplace transform such that

s → s ± ibI
z. (3.96)
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The sign is determined by the corresponding phase factor in Eq. (3.62) to Eq. (3.66). The
full expression for the bath correlation functions are therefore given by

F1(s) = α
�
F (s − ibI

z) + G(s + ibI
z)
�

, (3.97)

F2(s) = α
�
F (s + ibI

z) + G(s − ibI
z)
�

, (3.98)

F−(s) = α
�
F (s + ibI

z) + G(s + ibI
z)
�

= Fz(s + ibI
z), (3.99)

F+(s) = α
�
F (s − ibI

z) + G(s − ibI
z)
�

= Fz(s − ibI
z), (3.100)

Fz(s) = α [F (s) + G(s)] . (3.101)

3.2.4 Markovian dynamics

Using the explicit expressions for the spin-spin correlation functions, we analyse the
corresponding singularities of the denominator in Eqs. (3.76) and (3.77). The Markovian
behaviour is captured by the poles s ∼ α and neglects the s dependence of the electronic
response functions (Eq. (3.97) to Eq. (3.101)) which was discussed in Section 3.2.2.

For the longitudinal component we find a trivial pole at 1/s for s = 0. Splitting of the
simple pole we rewrite ρ̃z(s) in Eq. (3.73) as

ρ̃z(s) = 1
s

F2(0) − F1(0)
F1(0) + F2(0) +

ρz(t = 0) − F2(0)−F1(0)
F1(0)+F2(0)

s − F1(s) − F2(s) . (3.102)

Here, the first term is time-independent and corresponds to the equilibrium value ρeq
z

which is reached in the long time limit t → ∞. Using the definitions for F1(s) and F2(s)
in Eqs. (3.97) and (3.98) at s = 0 the equilibrium value evaluates to

ρeq
z = F2(0) − F1(0)

F1(0) + F2(0) = − tanh
�

bI
z

2kBT

�
. (3.103)

As expected the long time limit corresponds to the paramagnetic polarisation of the spin
in a magnetic field. Eq. (3.103) is indeed the result obtained from standard thermody-
namics when considering the polarisation of a two level system in a Zeeman field.

Further singularities can be found by requiring

s − F1(s) − F2(s) = 0, (3.104)

and

s − F±(s) − Fz(s) = 0, (3.105)
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3.2 Short and long time dynamics of a localised spin in an electronic conductor

for the decay of ρz(t) and ρ±(t). Keeping in mind that the Markovian contribution
neglects the short time dynamics and therefore contributions for finite values for s we
want to solve the above two equations such that s ≈ 0. All details on the derivation of
the Markov poles and their residues can be found in Appendix E.1. The Markov pole of
Eq. (3.104) to O(α) is given by

sM
z = −2α

bI
z

tanh
�

bI
z

2kbT

� . (3.106)

Note that this already includes an expansion in α as s ∼ α and any further s dependence
is neglected. For the transverse components of Eq. (3.105) we find

sM
± = −4απkBT ∓ i2αbI

z

�
2 ln

�2πkBT

ξ�

�
+ ψ

�
1 ∓ ibI

z

2πkBT

��
. (3.107)

The residues for the Markovian poles are

Res
�
sM

z

�
= esM

z t

1 − 4α
�

ln
�

2πkBT
ξ

�
+ Re

�
ψ
�
1 + ibI

z
2πkBT

��� , (3.108)

Res
�
sM

±
�

= esMt

1 − 2α
�
2 ln

�
2πkBT

ξ�

�
+ ψ

�
1 + ibI

z
2πkBT

�� . (3.109)

The correction of O(α) in the denominator shows a reduction of the residue’s weight
and indicates that there is a missing part of the full dynamics which will be captured
by the non-Markovian contribution. The Markov approximation assumes a time-local
evolution of the reduced density matrix for the impurity spin which is characterised
by an exponential decay. The time for the decay is set by the relaxation time T1 and
decoherence time T2 for the two different components of the density matrix. The two
characteristic times can be read off from the negative real part of the Markov poles in
Eqs. (3.106) and (3.107) which enter the residues Eq. (3.108), i.e.,

Re
�
sM

z,±
�

= − 1
T1,2

. (3.110)
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Reintroducing � �= 1 such that the dimensions are fully correct, this leads to

T1 = �
2α

tanh
�

bI
z

2kBT

�
, (3.111)

T2 =
� tanh

�
bI

z
2kBT

�

2απkBT tanh
�

bI
z

2kBT

�
+ απbI

z

. (3.112)

For the T1 time we recover the known results for the magnetic field dependence of the
relaxation time [16, 17, 47]. In the case of a vanishing magnetic field bI

z = 0, the two
characteristic times coincide and

T1 = T2 = �
4απkBT

. (3.113)

Here, we find directly the proportionality between the relaxation time and the inverse
temperature which is the Korringa relation of Eq. (3.31) [16, 17, 19, 20]. The Korringa
constant κ = T1T is identified as

κ = �
4απkBT

, (3.114)

as in the literature [16, 17, 47]. Since we recover the Korringa relation, we can conclude
that the temporal correlations of the of the conduction electrons would not be able to
explain the violation of the Korringa law in a Fermi liquid system at low temperatures
as reported in [21]. In panel (a) of Fig. 3.4 we show the magnetic field dependence of the
relaxation and decoherence time. Due to the SU(2) symmetry, T1 = T2 in the zero field
limit. Breaking this symmetry by applying a magnetic field leads to

T1 = �
2απbI

z

, (3.115)

T2 = �
απbI

z

. (3.116)

In the limit of large fields bI
z � kBT

T2 = 2T1, (3.117)

which again agrees with the literature for systems with broken SU(2) symmetry [16, 17,
132, 133]. In Fig. 3.4(b) the evolution of the ratio T2/T1 as a function of the external
field is shown. For all fields, T1 < T2 < 2T1 and the limit in Eq. (3.117) is reached rather
slowly.
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Figure 3.4: (a) Plot of TT1,2/κ, with the Korringa constant κ = �/4απkB as a function of the
ratio of magnetic field and temperature bI

z/2kBT to visualise the scaling behaviour of the T1 and
T2 time as given in Eqs. (3.111) and (3.112). (b) The ratio T2/T1 is plotted across the same range
as in (a), for large fields we achieve T2 = 2T1.

Knowing the residues for the Markov poles enables us to derive the Markovian contri-
bution to the full time dynamics by performing the complex contour integration. For the
two different components, the Markov decay is then given by

ρM
z (t) = ρeq

z + (ρz(t = 0) − ρeq
z ) e−t/T1

1 − 4α
�

ln
�

2πkBT
ξ

�
+ Re

�
ψ
�
1 + ibI

z
2πkBT

��� , (3.118)

ρM
± (t) = ρ±(t = 0)e−t/T2eiω±

1 − 2α
�
2 ln

�
2πkBT

ξ�

�
+ ψ

�
1 + ibI

z
2πkBT

�� , (3.119)

which simplifies in the zero field limit to

ρM
z,±(t) = ρz,±(t = 0)e−t/T1,2

1 − 4α ln
�

2πkBT
ξ��

� . (3.120)

Here, in the constant ξ�� we absorbed the constant contribution of ψ(1)/2 and redefined
the cutoff ξ� → ξ�� in the spirit of Eq. (3.89). As indicated by the residues for the Markov
poles, the amplitude of the Markovian decay is reduced from 1 to [1 − O(α)]. Since our
results are formulated for the rotating frame of reference we do not pick up the precession
of a spin in an external field. For finite field the bath coupling renormalises the precession
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Figure 3.5: The Markovian decay of the reduced density matrix for the impurity spin is plotted
as function of t/τT with τT = �/2πkBT for the parameters, α = 0.001 and kBT = ξ/200. The
dotted line mark the T1,2 times. In panel (a) the evolution of ρM

z,± in the zero-field limit is plotted
(orange curve). For finite magnetic field, with b = 2πkBT , ρz tends to the equilibrium value
ρeq

z = − tanh(1) indicated by the dashed purple line. For bI
z > 0 the spin ρM

z (t = 0) = 1 is
initialised against the magnetic field, hence, ρeq

z < 0 in this case. Panel (b) shows the transverse
components ρM

± in a finite field. The solid line corresponds to the absolute value |ρM
± | and the

dashed lines to the real and imaginary parts, ρM
x = Re[ρM

± ] and ρy = ±Im[ρM
± ].

frequency of the transverse spin components to

ω± = ∓2αbI
z

�

�
ln
�2πkBT

ξ�

�
+ Re

�
ψ

�
1 ∓ ibI

z

2πkBT

���
. (3.121)

Unlike the Knight shift discussed in Section 3.1.4, the frequencies ω± have a strong
magnetic field dependence which becomes non-linear for fields bI

z > 2πkBT and for large
enough fields even change sign. At low fields, the frequencies are linear in the field. In
Fig. 3.5 we show the Markovian contribution to the full time evolution of the reduced
density matrix. Panel (a) depicts the decay of the longitudinal component. In the
zero-field limit (orange curve), ρz(t) and ρ±(t) have the same evolution according to
Eq. (3.120). The decay is characterised by single exponential with the characteristic
relaxation or decoherence time marked with the dashed lines. For a finite field bI

z, the
z-components reaches the equilibrium state given by Eq. (3.103) marked ρeq

z in the plot.
In panel (b) of Fig. 3.5 the Markovian decay of the transverse components is shown.
The solid purple line represents the absolute value |ρ±(t)|, the dashed lines show the real
and imaginary parts ρx(t) = Re [ρ±(t)] and ρy(t) = ±Im [ρ±(t)]. A magnetic field of
bI

z = 2πkBT was chosen such that the precession of the spin with the frequency ω± in
Eq. (3.121) is of order ω ∼ 1/T2 and therefore are clearly visible in the decay.
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Figure 3.6: In the complex plane the ψ(z) diverges at z = −n. Close to the singularity we expect
to find a pole exactly where the small parameter α cancels the divergence and αψ(z) = O(1).
This is possible around a small region around the singularity ñ marked by the orange semi-circle.
The correction p of O(α) we want to determine pins down the exact point where αψ(z) = O(1).
In comparison to α the next singularity at z = −ñ − 1 is far away.

3.2.5 Non-Markovian dynamics

The spin-spin correlations functions for finite values of the Laplace variable s are domi-
nated by the behaviour of the digamma function ψ(z). The digamma function itself has
a sequence of singularities at negative integers z = −n. This can easily be seen from its
series expansion

ψ(1 + z) = −γ +
�

n≥1

z

n(z + n) , (3.122)

with γ the Euler–Mascheroni constant. In the expression of the spin-spin correlators Fα

the digamma function appears always with the small prefactor α. Close to the singu-
larities of ψ(z), the small factor α cancels the divergence such that αψ(z) ∼ O(1). In
Fig. 3.6 a single pole z = −ñ is sketched. In the region marked by the orange semi-circle
αψ(z) ∼ O(1) is fulfilled. Consequently, we expect to find the zeros of the denomina-
tor in Eqs. (3.76) and (3.77) near each singularity at z = −n. To determine the poles
of Eqs. (3.76) and (3.77) we rely on the expansion in Eq. (3.122) and notice that the
entire sum can be approximated by just the diverging term. This will lead to a rather
straightforward equation to determine a correction p of O(α). The correction p is then
the distance to the singularity at z = −n and will correspond to the radius of the semi-
circle in Fig. 3.6. Going through these steps we find a sequence of non-Markovian poles
at z0 ≈ −n + p.
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As in the Markovian case, we need to again solve

s − F1(s) − F2(s) = 0, (3.123)

for the longitudinal component. In the zero field limit, the relevant digamma func-
tion is given by ψ (1 + s/(2πkBT )) and inserting the definitions of F1(s) and F2(s) into
Eq. (3.123) leads to

0 = s + 4απkBT − 4αs ln
�2πkBT

ξ�

�
− 4αsψ

�
1 + s

2πkBT

�
. (3.124)

The second and third term are already O(α) and we neglect them as we are looking for a
solution s0 ∼ O(1). The location of s0 is close to the divergence of ψ(1 + s/2πkBT ) such
that have

s0 = −2πkBT ñ + p, (3.125)

with the small correction p of O(α) which is visualised in Fig. 3.6. Using the expansion
in Eq. (3.122), we only need to keep the diverging term with n = ñ and we obtain

0 =


s − 4α

s2

2πkBT

ñ
�

s
2πkBT + ñ

�



�����
s→s0

. (3.126)

Evaluating this last expression and only keeping the terms O(1) leads to the correction p

0 = −2πkBT ñ − 4α
(2πkBT )2ñ

p

=⇒ p = −8απkBT. (3.127)

Note that there is no dependence on the integer ñ in the correction such that we are able
to discuss the non-Markovian poles at each ñ separately. Thus, the non-Markovian poles
for ρz(t) are located at

sn = −2πkBTn + p, (3.128)

with integer number n. These poles indeed correspond to values near the Matsubara
frequencies indicating the connection to the quantum fluctuations of the system. In
fact, these are bosonic frequencies which means they arise from particle-hole fluctuations
around the Fermi surface.

Again, we see the direct influence of the temperature on the dynamics. The distance
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3.2 Short and long time dynamics of a localised spin in an electronic conductor

between two neighbouring non-Markovian poles is proportional to T . At large tempera-
tures the first non-Markovian pole is ‘far away’ from the Markovian one close to s ≈ 0
which hints at small non-Markovian contribution. This matches the expectation that the
thermal fluctuations dominate over the quantum coherent correlations.

Each non-Markovian pole contributes with an exponential decay with a weight given
by its residue. The corresponding residues, see Appendix E.2, for each of the poles sn

are given by

Res(sn) = 4α

n
esnt. (3.129)

For large n, corresponding to short times, the weight 4α/n is suppressed which we can
understand if we recall that the non-Markovian contribution is driven by particle-hole
fluctuations. Large n correspond to the creation of more particle-hole pairs where the
probability decreases for increasing n at a given temperature T . The non-Markovian
contribution to the full time evolution of the reduced density matrix can be found by
summing up all residues belonging to the infinite sequence of non-Markovian poles. For
bI

z = 0 the evolution of ρz(t) and ρ±(t) is identical and we obtain

ρnM
z,±(t) =

�

n≥1

4α

n
e−2πkBT (n+4α)t/�ρz,±(t = 0),

= −4αe−4αt/τT ln
�
1 − e−t/τT

�
ρz,±(t = 0), (3.130)

with the thermal time τT = �/2πkBT . The collective sum of all particle-hole fluctuations
leads to an exponential decay which is a modified logarithm. The characteristic decay is
not set by the relaxation time T1 but by the thermal time τT since

ln
�
1 − e−t/τT

�
∼ e−t/τT (3.131)

for times t > τT and is therefore shorter than the Markovian decay by 1/α. In the limit
of small times t � τT the non-Markovian dynamics tend to a logarithmic decay

ρnM
z,± ∼ ln(t/τT ), (3.132)

which we will also discuss later in combination with the Markovian decay in Section 3.2.6.

To locate the non-Markovian poles at finite field we follow the same procedure as before,
and here the relevant digamma function ψ

�
1 +

�
s ± ibI

z/2πkBT
��

is shifted. For finite
fields, the magnetic field dependence of the reduced density matrix differs for the compo-
nents ρz(t), ρ± and we have to treat them separately. Starting with the z-component, we
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3 Coherent backaction in single spin systems

need to solve Eq. (3.123) for the finite field correlators F1(s) and F2(s) which are defined
in Eqs. (3.97) and (3.98) and we obtain

0 = s − 2α(s + ibI
z)ψ

�
1 + s + ibI

z

2πkBT

�
− 2α(s − ibI

z)ψ
�

1 + s − ibI
z

2πkBT

�
, (3.133)

where we already dropped all O(α) terms. Again using the expansion Eq. (3.122) and
keeping only the diverging term for a particular ñ leads to

0 = s − 2α

(s+ibI
z)2

2πkBT

ñ
�

s+ibI
z

2πkBT + ñ
� − 2α

(s−ibI
z)2

2πkBT

ñ
�

s−ibI
z

2πkBT + ñ
� . (3.134)

As before the pole will be close to the divergence such that inserting Eq. (3.125) into the
last expression yields

0 = −2πkBT ñ − 2α
(2πkBT )2ñ

p + ibI
z

− 2α
(2πkBT )2ñ

p − ibI
z

, (3.135)

where we only keep O(α). The ñ dependence drops out and we can solve for the correction
pz

r

pz
r = −4απkBT + r

�
(4απkBT )2 − (bI

z)2, (3.136)

with r = ±. For finite field we find two poles in close vicinity of the singularity of the
digamma function given by

sz
n,r = −2πkBTn + pz

r , (3.137)

for every integer n.
For the residues of r = ± we obtain

Res
�
sz

n,r

�
= 2α

n
esz

n,rt


1 − r

4απkBT�
(4απkBT )2 − (bI

z)2


 , (3.138)

details of the calculation can again be found in Appendix E.2.
In Fig. 3.7 the positions of the non-Markovian poles in Laplace space and the weight

of the residue depending on the magnetic field are shown. To visualise the movement,
with respect to the magnetic field, their location in the complex plane is sketched in
panel (a). At zero field, there is only one non-Markovian pole for each n according to
Eq. (3.128). Applying a finite field leads to a second pole appearing close the divergence

64



3.2 Short and long time dynamics of a localised spin in an electronic conductor

Figure 3.7: (a) Sketch of the position of the non-Markovian poles of Eq. (3.137) in Laplace space
for a given ñ = −2πkBTn depending on the magnetic field. For bI

z = 0, we find a single pole
ñ + p according to Eq. (3.128) marked in blue. For bI

z > 0 a second pole appears close to ñ on
the real axis. With increasing field, the two poles, corresponding to r = ±1, approach each other
on the real axis. At a critical field b̃ = 4απkBT they meet. For even higher fields, they gain an
increasing imaginary part. (b) Plot of the residue’s weight as a function of the applied field bI

z for
both poles labelled by r = ±1. The residue of the pole appearing at ñ in (a) has zero weight for
bI

z = 0 (purple line). It grows continuously until the weights for both residues diverge at bI
z = b̃.

They carry the same contributions to the overall dynamics for higher fields.

of the digamma function at ñ = −2πkBT . This pole is invisible at bI
z = 0 as its residue is

proportional to bI
z at low field. The positions of both poles are given by sz

n,r in Eq. (3.137).
The pole for r = −1 follows the orange trajectory, and the pole corresponding to r = +1
the purple one. For magnetic fields bI

z < 4απkBT both poles move towards each other
with increasing field. This will lead to a modified decay rate in the time evolution. At a
critical field b̃ = 4απkBT they meet and for this field, only one non-Markovian pole for
each n exists. For fields bI

z > 4απkBT they split and they are leaving the real axis gaining
a positive or negative imaginary part as indicated on the trajectories. Their distance to
the real axis is symmetric and increases linearly with the magnetic field. The symmetry
around the real axis can be understood in the following way. The component ρz(t) in the
chosen basis of the impurity spin represents the expectation values for the z-component
�Iz�. As Iz is a hermitian operator, it has real eigenvalues. Therefore the dynamics cannot
become imaginary and only real valued oscillations are allowed. In Fig. 3.7(b) the weight
of the residue, which corresponds to the last factor in Eq. (3.138) is plotted as a function
of the magnetic field, again for both poles sz

n,r for r = ±1. We are able to recover the
zero-field limit from Eq. (3.137) as the residue for bI

z = 0 vanishes, therefore only the pole
at sz

n,r for r = −1 contributes to the dynamics. For finite fields, the weight of the r = +1
branch increases until the residues at the critical field b̃ = 4απkBT diverge. To determine
the full dynamics, however, we sum over both r = ±1 and the divergences cancel. In
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3 Coherent backaction in single spin systems

fields bI
z > 4απkBT the residues’ weights are evenly distributed, which corresponds to

the situation of two non-Markovian poles at equal distance to the real axis.

For the transverse components ρnM
± (t) we find a similar situation. The only difference

are the arguments of the digamma function, ψ(1 + s/2πkBT ) and ψ(1 + (s ∓ ibI
z/2πkBT ).

We can make use of the calculation for ρz by shifting s → s ± ibI
z/2 and bI

z → bI
z/2.

Including these changes, we find the location of the poles s±
n,r

s±
n,r = −2πkBTn ∓ i

2bI
z + p±

r , (3.139)

with

p±
r = pz

r |bI
z→bI

z/2 = −4απkBT + r
�

(4απkBT )2 − (bI
z/2)2. (3.140)

The corresponding residues are

Res
�
s±

n,r

�
= Res

�
sz

n,r ∓ ibI
z

�
|bI

z→bI
z/2

= 2α

n
es±

n,rt


1 − r

4απkBT�
(4απkBT )2 − (bI

z/2)2


 . (3.141)

The poles s±
n,r follow the same pattern as sz

n,r discussed in Fig. 3.7 and the constant shift
of ∓ibI

z in Eq. (3.139) modifies this only slightly.

The summation over all 2n residues in Eqs. (3.138) and (3.141), for each pair of poles
sz

n,r, s±
n,r, leads to the non-Markovian part of the evolution for ρz(t)

ρnM
z (t) =

�

n≥1

�

r=±
Res

�
sz

n,r

�
[ρz(t = 0) − ρeq

z ]

= −4αe−4αt/τT ln
�
1 − e−t/τT

�
h(t, bI

z) [ρz(t = 0) − ρeq
z ] , (3.142)

and

ρnM
± (t) =

�

n≥1

�

r=±
Res

�
s±

n,r

�
ρ±(t = 0)

= −4αe±ibI
zt/2�e−4αt/τT ln

�
1 − e−t/τT

�
h(t, bI

z)ρ±(t = 0), (3.143)
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3.2 Short and long time dynamics of a localised spin in an electronic conductor

Figure 3.8: Non-Markovian decay of the components of the reduced density matrix is plotted as
function of t/τT with τT = �/2πkBT for α = 0.001. The solid orange curve in panel (a) shows
the evolution ρnM

z = ρnM
± at zero magnetic field. The purple line corresponds to ρz at finite field.

In panel (b) the evolution of ρnM
± for finite field is shown. The dashed lines correspond to ρnM

x

and ρnM
y The finite field value is bI

z = 4πkBT = 2�/τT .

with the function

h(t, bI
z) = cosh

�
t

�

�
(4απkBT ) − (bI

z)2
�

− 4απkBT�
(4απkBT )2 − (bI

z)2
sinh

�
t

�

�
(4απkBT )2 − (bI

z)2
�

. (3.144)

The characteristic decay time of the non-Markovian part of the reduced density ma-
trix differs from the Markovian part set by the relaxation and decoherence time T1

and T2. For times t > τT the logarithmic factor in the non-Markovian decay reduces
to ln (1 − exp[−t/τT ]) ∼ exp[−t/τT ] and therefore is 1/α shorter than the characteristic
times for the Markovian decay. Again, we see that the regime in which the non-Markovian
behaviour is dominant is set by the temperature and high temperatures erase the memory
effects. In the absence of a magnetic field or only small fields, the temperature remains
the only scaling parameter able to influence the dynamics which is a manifestation of the
scale-free nature of the Fermi gas. The effects of an external magnetic field are captured
by the function h(t, bI

z). For low fields, it renormalises the decay as seen in the analysis of
the poles in Fig. 3.7. For higher fields, b > 4απkBT , h(t, bI

z) oscillates with the frequency�
(bI

z)2 − (4απkbT )2. The frequency saturates at the nuclear cyclotron frequency bI
z/� in

the limit of large fields or low temperature T .

In Fig. 3.8 the non-Markovian part of the decay according to Eqs. (3.142) and (3.143)
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3 Coherent backaction in single spin systems

is plotted. In the zero-field limit, the evolution of ρnM
z and ρnM

± coincides and is shown
in panel (a) by the orange curve. The purple curves show the evolution for the different
components at a finite field b = 4πkBT . In panel (a) the decay of ρnM

z is plotted and panel
(b) shows the absolute value |ρnM

± |. The dashed lines correspond to the real and imaginary
parts, ρnM

x = Re(ρnM
± ) and ρnM

y = ∓Im(ρnM
± ). The field is chosen to be large enough such

that the oscillations it induces are of frequencies relevant to the non-Markovian time
scale τT . In contrast to the oscillations of the Markovian part, here they appear for
both components, ρnM

z and ρnM
± . The onset field and frequencies vary for the different

components due to their dependence on the function h(t, bI
z) for the longitudinal and

h(t, bI
z/2) for transverse components. The dynamics for the impurity spin were derived

under the assumption that an applied field does not magnetise the environment such
that �Sz� ≈ 0. Therefore even high fields should not exceed bI

z ∼ 2πkBT . Nonetheless,
including the sample’s magnetisation would lead to a constant shift of the magnetic field
which can be absorbed in the field bI

z itself. This would renormalise the positions of
the non-Markovian poles. Therefore, we expect that the influence of the magnetic field
captured by the function h(t, bI

z) in Eq. (3.144) remains a good approximation for higher
fields bI

z � 2πkBT .

3.2.6 Full time evolution and initial slip

The full time evolution of the impurity spin’s density matrix is given by the combination
of Markovian contribution, Eqs. (3.106) and (3.107), and the non-Markovian part as
derived in Eqs. (3.142) and (3.143). Adding the contributions leads to

ρz(t) = ρeq
z + (ρz(t = 0) − ρeq

z ) e−t/T1

1 − 4α
�

ln
�

2πkBT
ξ

�
+ Re

�
ψ
�
1 + ibI

z
2πkBT

���

− 4αe−4αt/τT ln
�
1 − e−t/τT

�
h(t, bI

z) [ρz(t = 0) − ρeq
z ] , (3.145)

and

ρ±(t) = ρ±(t = 0)e−t/T2eiω±

1 − 2α
�
2 ln

�
2πkBT

ξ�

�
+ ψ

�
1 + ibI

z
2πkBT

��

− 4αe±ibI
zt/2�e−4αt/τT ln

�
1 − e−t/τT

�
h(t, bI

z/2)ρ±(t = 0). (3.146)

The universal dynamics for all times t > �/ξ are dominated by the non-Markovian part for
times t < τT . Then, they crossover to the exponential decay of the Markovian contribution
for times t > τT where thermal fluctuations suppress the memory effects.

For very short times t < �/ξ, the systems evolution is not universal and determined by
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3.2 Short and long time dynamics of a localised spin in an electronic conductor

Figure 3.9: (a) The temperature dependence of the initial slip Δρ0
z,± for bI

z = 0 is plotted and
ξ ∼ EF . The dashed line marks the initial slip amplitude for the parameters in Fig. 3.10. (b) The
magnetic field dependence for Δρ0

z (light blue) and Δρ0
± (purple) is plotted for kBT = ξ/200.

the band structure of the electronic bath. However, the evolution is quadratic in t which
can be seen from a Taylor expansion around t = 0 of the equation of motion. In the limit
t → 0 Eq. (3.44) can be written as

d

dt
ρI(t) ≈

� t

0
dt�ΣI(0)ρI(0)

≈ tΣI(0)ρI(0). (3.147)

Integrating the last line leads to

ρI(t) ≈
�
1 + t2Σ(t = 0)

�
ρI(t = 0). (3.148)

After the initial, non-universal decay, the universal non-Markovian behaviour sets in. Its
onset is logarithmic for both, longitudinal and transverse, components

ρz,±(t) ∼ ln
�

ξt

�

�
(3.149)

and independent of the temperature. This logarithmic signature can be identified as
the leading term of a Fermi edge singularity response in a many-body system [120–123].
Triggered by the local spin-spin interaction between impurity spin and itinerant electrons,
this behaviour would lead to Kondo correlations when considering an interaction with an
arbitrary number of induced spin flips [118, 119].

As discussed in Section 2.1.2 the amplitude of the non-Markovian contribution can be
identified as an initial slip of the evolution [34, 111, 113, 114, 116]. The Markovian decay
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3 Coherent backaction in single spin systems

in Eqs. (3.118) and (3.119) can be written as

ρM
z±(t) ∼ e−t/T1,2

1 + Δρ0
z,±

, (3.150)

which defines the initial slip Δρ0
z,± of O(α)

Δρ0
z =

�����−4α

�
ln
�2πkBT

ξ

�
+ Re

�
ψ

�
1 + ibI

z

2πkBT

�������� , (3.151)

Δρ0
± =

�����−2α

�
2 ln

�2πkBT

ξ�

�
+ ψ

�
1 + ibI

z

2πkBT

������� . (3.152)

In Fig. 3.9 we plot its temperature dependence in panel (a). The initial slip amplitude
decays with increasing temperature T . This agrees with our expectation that for higher
temperatures the non-Markovian contribution is washed out by the thermal fluctuations.
Note, however, that ξ ∼ EF and therefore T � ξ. In this limit the temperature de-
pendence of the initial slip is negligible. The magnetic field dependence is displayed in
Fig. 3.9(b). It shows that bI

z only has a small effect on the slippage amplitude. The
initial slip due the non-Markovian decay always leads to a systematic offset of the decay
amplitude at all times t > τT for any T, bI

z.
The full decay according to Eqs. (3.145) and (3.146) is plotted in Fig. 3.10. The initial

slip is again indicated in panel (a). The solid orange line represents the full decay of
ρz(t) and ρ±(t) in the absence of a magnetic field. The orange dashed line indicates the
Markovian contribution ρM

z,± and the dotted black lines corresponds to a purely Markovian
evolution without taking into account the coherent backaction effects. The difference
between the Markovian contributions in- and excluding memory effects marks the initial
slip Δρ0

z,± in the zero-field limit.
Similarly, in panel (b) the full evolution for a finite field bI

z ∼ kBT is plotted (solid
lines) in comparison to a purely Markovian decay (black dotted line). In panel (c) again
the full evolution for finite magnetic fields is shown, but on a logarithmic scale to focus
on the non-Markovian features of the decay. The solid lines correspond to the same field
as in (b) and the dashed lines to a higher field for which the oscillation of the function
h(t, bI

z) become visible.

3.3 Summary and outlook

Starting from an open quantum system approach the full quantum coherent dynamics of
an impurity spin coupled to an electronic bath has been derived. Following a generalised
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Figure 3.10: The full time evolution of the different components is plotted including Markovian
and non-Markovian dynamics for α = 0.001 and kBT = ξ/200. The non-Markovian time regime
for which t < τT is shaded in grey. In (a), the zero-field limit is shown. The solid orange line
corresponds to the full evolution ρz,± while the dashed line corresponds to only the Markovian
decay from the calculation. The offset to a purely Markovian decay in a Born-Markov treatment
(dotted black line) marks the initial slip. For finite field, the evolutions for ρz (blue) and ρ±
(purple) differ, as shown in panel (b) with bI

z = 4πkBT = 2�/τT . For comparison, a purely
Markovian decay exp (−t/T1,2) is marked by the dotted black lines. Panel (c) shows the decay for
the same parameter choice as in (b) for the solid lines. The dashed lines show the decay for the
corresponding component for a very large field, b = 40πkBT = 20�/τT , such that the oscillations
of the function h(t, bI

z) become noticeable.

master equation approach, we gained detailed insight in the system’s dynamical behaviour
through the analysis of the poles in Laplace space. The final result yields an analytic
expression for the system dynamics in Eqs. (3.145) and (3.146), covering the short time
dynamics which are driven by quantum correlations and then crossing into an exponential
decay driven by thermal fluctuations. The conventional approach for the description
of the decay of a magnetic moment interacting with an electronic reservoir leads to a
strictly exponential decay characterised by the spin-lattice T1 or spin-spin relaxation time
T2. It is based on the Bloch equations for the magnetisation and the relaxation times
are introduced phenomenologically and a purely time-local Markovian time evolution is
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3 Coherent backaction in single spin systems

assumed. The resulting decay is purely exponential and its characterised by the relaxation
and decoherence time T1 and T2.

We recover this dynamical behaviour in the Markovian part of the decay. Furthermore,
we find the Korringa relation, i.e. TT1 = κ with the Korringa constant κ = 4απkB and
expressions for the relaxation times which are known in the literature. In contrast to the
standard approach the amplitude of the Markovian decay is reduced from 1 to [1 − O(α)]
which hints at the non-Markovian dynamics. This systematic offset corresponds to an
initial slip of the starting conditions for the decay. If one would alter the initial condition
according to this slippage, the purely Markovian evolution would not capture the correct
dynamics for short times. In contrast to a mere slippage of the initial condition we
have full access to the dynamics beyond the Markovian regime and therefore during the
memory time of the system.

Beyond the Markovian regime, coherent backaction effects alter the localised spin dy-
namics. The characteristic time of the non-Markovian decay is set by the thermal time
τT ∼ 1/T . The dependence on the temperature is not surprising as it is the only pa-
rameter describing the bath. The quantum correlations in the electronic environment are
restricted by the temperature and the corresponding availability of free states above the
Fermi level. Higher temperatures therefore wash out the small quantum coherent fluc-
tuations of particle-hole excitations around the Fermi energy. At short times, the non-
Markovian decay becomes temperature independent and purely logarithmic and therefore
deviates from an exponential decay. The amplitude of the non-Markovian decay is set by
the small parameter α = A2/E2

F . For a typical metal such as copper with κ = 1.27 Ks
[47] and EF ∼ eV, the value for α is tiny, α ∼ 10−10. In semiconductors such as GaAs
the coupling strength is A = 90 µeV which leads to a slightly larger α ∼ 10−7 with the
Fermi energy in the meV regime [134–136]. However, a direct measurement of the non-
Markovian decay remains challenging, though it might be possible to measure the offset
[1−O(α)] of the Markovian decay in a pump-probe experiment. A prepared state evolves
for some time before it is brought back to its initial condition. The decay curve would
be fitted to an purely exponential decay with its characteristic decay constant. Then the
offset or initial slip at t = 0 and its temperature dependence is measurable.

Motivated by the long spin decoherence times in carbon nanotube quantum dots [137]
we can make a connection to one dimensional systems. Our chosen approach to analyse
the dynamics through the pole structure in Laplace state is not restricted to the bath
chosen here. It could provide a way to investigate coherent backaction effects in stronger
correlated systems, such as coupling a localised spin to a Luttinger liquid. The decay of
correlations in a Luttinger liquid are already algebraic [138] and the coherent backaction
effects will alter this further.
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Electron cooling at low
temperatures

4

The microscopic understanding of decay and relaxation mechanisms in quantum systems
paves the way to employ dynamical effects, including those rooted in memory effects, to
manipulate a quantum state in a desired manner.

At the intersection of the field of quantum information and quantum thermodynam-
ics, the effect of quantum correlations is a vastly growing area of interest [139]. These
quantum effects can be detected using thermodynamic measurements [53, 106]. With
the realisation of single atom heat engines [54] it is possible to probe memory effects
experimentally which allows us to engineer decoherence and control the information flow
between a quantum system and its environment [140]. The intricate control of the quan-
tum state of the system itself opens up the possibility to manipulate the environment,
such as cooling the environment efficiently based on the system’s behaviour on small
scales [51]. There are many proposals and investigations which suggest that quantum
correlations lead to a modified performance of the quantum heat engines [55, 141, 142].
Specifically, non-Markovianity alters and might improve the performance of quantum
thermal machines [50, 52, 107–110, 143].

In the spirit of utilising the non-Markovian dynamics triggered by the system-bath
interaction on short times scales, in this chapter we propose a protocol to effectively cool
the environment. The cooling mechanism relies on the fast initial decay due to coherent
backaction of the electrons onto the isolated spin which was investigated in Chapter 3.
The idea is based on rapidly repeating the non-Markovian decay of an ensemble of lo-
calised spins. This driven system is out of equilibrium and we are not able to rely on a
thermodynamic description for the system as a temperature cannot be defined. There-
fore, instead of using the heat currents induced by temperature differences, we rely on the
energy transfer between the localised spin system and the electrons. Since the electronic
environment is treated as a macroscopic reservoir we can still assign a temperature to the
electrons but not to the spin system with the exception of the initial and final state. With
the proposed cooling protocol we bypass the natural bottleneck of cooling nanostructures
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via nuclear demagnetisation. Nuclear demagnetisation cooling is slow at low tempera-
tures due to the long relaxation time T1 ∼ 1/T . We show that our cooling protocol can
be more efficient than the standard approach on a specific example of a semiconducting
structure. A significant part of the work presented here are published results [87].

4.1 Cooling by nuclear magnetisation

To introduce cooling by demagnetisation we summarise the key principles and follow
the discussion of [47]. In the 1920s demagnetisation cooling was proposed by Debye and
Giauque [41, 42]. First experiments used paramagnetic salt and could reach temperatures
between 2 mK and 1 K [47]. Since the 1960s this has been entirely replaced by nuclear
spin cooling which reach temperatures well below 1 mK [144–146] and has become the
standard for cooling down to ultra-low temperatures [21, 43, 45, 46, 147, 148].

In Fig. 4.1 the cycle for demagnetisation cooling is shown. Its cooling power relies on
the magnetic disorder entropy of magnetic moments in a solid. At the initial temperature
the spin system is subjected to an external magnetic field, leading to the magnetic order
of spins. In the experimental setup the temperature is kept constant by an evaporating
helium bath which absorbs the magnetisation heat. Then the magnetic field is adia-
batically reduced. The adiabatic process keeps the entropy constant and therefore the
nuclear spin temperature decreases which leads to a temperature bias between the spins
and their environment. In turn the difference in temperature results in a cooling effect for
the surrounding electrons as the spin and the electrons system establish the equilibrium
state. Once the nuclear spin system is fully demagnetised the cooling power is used up,
i.e., cooling by demagnetisation is an one-shot method and a cycle takes typically around
ten hours [44]. In the following we describe the steps of the cooling cycle in more detail.

Starting with a pre-cooled nuclear spin system with temperature Ti, the spins are
magnetised by an external magnetic field Bi while the spin temperature is kept constant.
In Fig. 4.1 this corresponds to the path A → B. For a typical cooling agent like copper,
the initial temperature is T ∼ 10 mK in a magnetic field Bi ∼ 8 T. The heat, which is
released during the magnetisation for n moles, is given by

Q(Ti) = nTi

� Bi

0

�
∂S

∂B

�

Ti

dB. (4.1)

During this process the entropy S of the nuclear spins is reduced from its maximum value

Smax = R ln (2I + 1) (4.2)
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4.1 Cooling by nuclear magnetisation

Figure 4.1: Sketch of cooling by demagnetisation where the entropy S is shown as a function
of the spin temperature T . The spin system acting as the cooling agent is pre-cooled down to
the initial temperature Ti and magnetised in an external field Bi. The generated heat by the
magnetisation in Eq. (4.1) corresponds to the rectangle spanned by the points A, B, D and the
maximum entropy Smax During this process along A → B then entropy is reduced. Adiabatically
reducing the magnetic field to Bf (B → C) leads to a decreasing temperature until Tf is reached.
The spin system heats up along the orange curve C → A while cooling the surrounding electrons.
The cooling power of the demagnetisation process is given by the shaded orange area.

with R the universal gas constant and I is the total spin.

In the next step, along B → C, the external magnetic field is adiabatically reduced
to a final magnetic field Bf. In this process the entropy remains constant, ΔS = 0, and
therefore

S

�
Bi

Ti

�
= S

�
Bf

Tf

�
. (4.3)

The final cooling power after the demagnetisation is then

Q(Bf ) = n

� ∞

Tf

T

�
∂S

∂T

�

Bf

dT (4.4)

and corresponds to the shaded area in Fig. 4.1. The heat Q is absorbed, therefore cooling
the environment. The timescale for this cooling process is set by the spin-lattice relaxation
time T1. The Korringa relation [19] as discussed in Section 3.1.4 connects the relaxation
time with the temperature

T1T = κ (4.5)

with the Korringa constant κ. Typical values for the Korringa constants are ∼ 1 Ks for
copper, ∼ 10 Ks for silver and 0.03 Ks for platinum [47]. Taking copper as a specific
example, the relaxation time becomes very long, T1 ∼ 103 s, for an electron temperature
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of T ∼ 1 mK.
Because of these long relaxation times the thermalisation between the spin system and

the electrons is very slow. Therefore, reaching a very low temperature for the nuclear
spin system does not guarantee an equally low temperature for the reservoir electrons.
The discrepancy between the temperatures are highly dependent on the material. For
example, in rhodium the nuclear spin temperature is ∼ 100 pK while the electron tem-
perature is T ∼ 0.1 mK [144, 145]. In other bulk metals, such as platinum, the difference
in temperature are of the order of one magnitude, with a nuclear spin temperature of
T ∼ 0.3 µK and the electron temperature at T = 1.5 µK [146]. These discrepancies are
usually the result of unavoidable heat leaks that mainly affect the electrons such that the
cooling process becomes ineffective with the long T1 times and cannot compensate for the
heating. The situation to cool nanoelectronics is even more difficult because of the re-
duced thermal conductivity of semiconductors in comparison to a metal. Here the lowest
temperatures achieved are in the millikelvin regime, while the nuclear spin temperature
is T ∼ 100 µK [21, 43, 45, 46, 147, 148].

The reduced cooling efficiency due to the diverging relaxation times are a bottleneck to
reach lower electron temperatures. Since the Korringa relation is mainly a result of the
Fermi statistics, we can ask the question if there is a radically different way of bypassing
this bottleneck and in the next section we offer a concrete proposal to do this.

4.2 Manipulating the bath: Low temperature electron
cooling

As discussed above, the long relaxation times at low temperatures with T1 ∼ 1/T present
a natural bottleneck for cooling by demagnetisation. This motivates us to address the
question of whether it is possible to cool the electronic system more efficiently when using
the short time dynamics, opposed to the conventional method using the slower thermal
relaxation in the Markovian regime. In the following we will study a macroscopic ensemble
of localised spins which we assume to interact with the metal but not between themselves.
This can be an ensemble of nuclear spins or any other type of localised spins, such as in
the paramagnetic salts. Additionally, we assume that these spins are spin-1/2 for keeping
the formalism as lean as possible and a similar result holds for any other spin. The cooling
protocol will result in a pump scheme for the spin ensemble which repeatedly transfers a
small amount of heat from the electronic system into the spin system.

In an external magnetic field the system Hamiltonian HI corresponds to the Zeeman
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4.2 Manipulating the bath: Low temperature electron cooling

energy

HI =
NI�

j=1
µIgIBzIj

z , (4.6)

with µI the magnetic moment of the localised spin and its g-factor gI in an external
magnetic field Bz along the z-direction. The space index j runs over all spins. Since we
exclude direct or indirect spin-spin interactions we can treat each spin individually such
that the reduced density matrix of the whole spin system is given by the product

ρI = ρI,1 ⊗ · · · ⊗ ρI,NI
, (4.7)

with ρI,j the density matrix of spin j. Under the assumption of identical initial states
for every spin, the evolution of the full spin ensemble ρI is described by NI copies of the
evolution of a single spin. The energy current JI of the ensemble can then be defined by

JI = d

dt
Trel{HIρ(t)} (4.8)

where a current JI > 0 corresponds to an energy flow from the electronic reservoir into
the spin system. An estimate for the associated heat ΔQ which is transferred between
electron and spin system over some time t is

ΔQ(t) =
� t

0
dt�JI(t�). (4.9)

It should be emphasised that the transfer of energy and thus of heat always remains well
defined even if the spin system is out of equilibrium and thermodynamics quantities such
as the temperature cannot be defined. The energy transfer between spin system and
electronic environment associated with each nuclear spin flip is fully determined by the
longitudinal component ρz(t) of the reduced density matrix. Therefore, we have

ΔQ = NIµIgIBzI [ρz(t) − ρz(0)] , (4.10)

with the nuclear spin. The evolution of the reduced density matrix ρz(t) is given by
the full time evolution in Eq. (3.145). To utilise the quick, short time dynamics in the
non-Markovian regime we focus on the decay for times shorter than the thermal time,
t � τT , before the slow Markovian decay sets in. In this regime, the decay of longitudinal
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component ρz(t) becomes temperature independent and is given by

ρz(t) =ρ0

�
1 − 4α ln

�
ξt

�

��
. (4.11)

with α = (A/EF )2 the small expansion parameter and the high energy cutoff ξ corre-
sponding to the bandwidth. The parameter ρ0 defines the difference between the initial
and the equilibrium state

ρ0 = ρz(0) − ρeq
z . (4.12)

Using the evolution for the reduced density matrix in Eq. (4.10) leads to

ΔQ(t) = −4αQzρ0 ln
�

ξt

�

�
, (4.13)

with constant Qz = NIµIgIBzI = NIbI
z, where as previously bI

z = µIgIBz. For the spin
system to absorb energy we require ΔQ < 0 and the initial state of the spins should
minimise the Zeeman energy. Considering a magnetic field Bz > 0, the ground state of
ultra cold spins corresponds to ρz(0) ≈ −1 and therefore ΔQ < 0 as Bz(ρz(0) − ρeq

z ) < 0.
Explicitly, the constant ρ0 is given by

ρ0 = −
�

1 − tanh
�

bI
z

2πkBT

��
= −|ρ0| (4.14)

where we used the equilibrium value for the reduced density matrix as in Eq. (3.103). For
most efficient cooling, the amplitude Bz|ρ0| should be maximised. However, a large mag-
netic field leads to small ρ0 because of its dependence on the equilibrium value. Therefore,
the parameter bI

z should be of order of 2πkBT to optimise the cooling efficiency. With
these considerations the amplitude Bz|ρ0| should consequently scale with the temperature
T , Bz|ρ0| ∼ T .

The analysis of the energy current in Eq. (4.8) shows that the transferred heat ΔQ is
proportional to the small parameter α. Therefore, the cooling protocol needs to include
many repetitions to utilise the fast initial slip of the system’s decay. In Fig. 4.2 the idea of
the cooling protocol is sketched. The solid purple line shows the full decay of ρz(t) with a
long relaxation time T1. The conventional cooling method using nuclear demagnetisation
would follow this curve. At low temperatures, the relaxation is slow as T1 ∼ 1/T , and it
presents a natural bottleneck for the efficiency. The orange line depicts the decay within
a pump scheme. After a short time, the spin ensemble is re-initialised and therefore goes
through the fast initial decay repeatedly. The repeated initialisation could possibly be
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Figure 4.2: The sketch shows a visualisation of the cooling protocol: The protocol aims at trans-
porting heat out of the electron system faster than conventional cooling methods (solid purple
curve) by pumping the spins back into their initial state. The fast initial decay can repeatedly be
used for the heat transfer (solid orange line). The inset show the corresponding state of the spin
ensemble on the Bloch’s sphere. The duration of one pump cycle is given by t = Δt + τr, with
Δt � T1 and the time τr it takes for re-initialisation of the spin system.

done through resolved optical pumping of electron spins [149] or nuclear spins [150, 151],
by optical pumping of hole spins [152], or by partial measurements [153]. With each
pump cycle, a small amount of heat ΔQ according to Eq. (4.13) is transferred into the
spin system. By pumping the spin system, some additional heat might be deposited back
into the whole system, which is indicated by the small rise after each pulse along the
orange curve in Fig. 4.2. The duration of each cycle is given by Δt + τr. The time Δt is
the time during which the system undergoes its fast evolution, Δt � T1. The system is
re-initialised over the time τr, which also needs to be of a similarly short times scale. In
the inset of Fig. 4.2 the corresponding spin position is shown in the Bloch’s sphere during
one pump cycle to stress that for the system to be re-initialised we only need to correct
a small amplitude of order α.

4.2.1 Thermodynamic requirements for the pumping scheme

In the following we will investigate in which parameter region the proposed cooling proto-
col could be more efficient than conventional cooling by exploring several conditions that
we need to impose. The heat flow into the nuclear spin system and out of the electron
spin system can be estimated as

QI =NP

�
ΔQ(Δt) + QP

I

�
, (4.15)

Qel =NP (−ΔQ(Δt) + Qr) + tJQ
ext, (4.16)
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where ΔQ(Δt) is given by Eq. (4.13). The constants QP
I and Qr are introduced to

account for a possible heating due to the pulsing. For the heat balance of the electronic
system we also include a constant energy current JQ

ext over the duration t of the cooling
protocol to model external heat leaks. Using the explicit expression in Eq. (4.13) and
t = NP (Δt + τr) the heat for the electron system can be written as

Qel(t) = t

Δt + τr
(4αQzρ0 ln (ξΔt) + Qr) + tJQ

ext. (4.17)

The crucial condition such that cooling by the proposed mechanism is possible is

Qel < 0. (4.18)

From this constraint we can derive further conditions on the system parameters, such as
the optimised time Δt between two pulses. The aim is to optimise the time Δt in order
to maximise |Qel| over the duration t while ensuring that the process is faster than the
relaxation time T1. By dividing Eq. (4.17) by |4αQzρ0| and absorbing the constant into
the logarithm, the cooling condition can be cast as

qext < qcp. (4.19)

The dimensionless parameter qcp measures the efficiency of the cooling protocol and is
defined as

qcp = τ0
Δt + τr

ln
�Δt

τ0

�
. (4.20)

The influence of external heat leaks is measured by qext with

qext = τ0JQ
ext

|4αQzρ0| (4.21)

In the expression for qext and qcp, the characteristic time τ0, was introduced

τ0 = �
ξ

exp
�

Qr

|4αQzρ0|

�
. (4.22)

For the non-Markovian decay to be the dominant contribution to the dynamics, τ0 < τT ,
with the thermal time τT ∼ 1/T . This last condition further provides a bound for the
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4.2 Manipulating the bath: Low temperature electron cooling

Figure 4.3: (a) The parameter qcp is plotted as a function of Δt/τ0 (solid purple line) with the
ration τr/τ0 = 10. For an arbitrarily chosen values for the external heat leak qext, marked by
the black dashed line, cooling is possible in the purple shaded parameter regime. Above the
maximum heat leak qmax

ext (red dashed line) cooling is not possible. The blue dashed line indicates
the optimal time Δtopt for which cooling is most efficient. (b) The region for which cooling
is possible is coloured purple for different values of the ratio of τr/τ0. For the orange-shaded
parameter region, cooling is not possible. The solid blue line indicates the location of the the
optimal time Δt for given τr/τ0. Panel (a) is the plot of qcp for a cut along the white dashed line.

heat Qr introduced into the setup during each pump cycle such that

Qr < |4αQzρ0| ln
�

ξτT

�

�
. (4.23)

Note that Qzρ0 ∼ T , so the heating Qr by the re-initialisation imposes a constraint on
the lowest temperature which can be reached. In panel (a) of Fig. 4.3 the efficiency of the
cooling protocol qcp is plotted as a function of Δt/τ0. The parameter range for which the
condition in Eq. (4.19) is met and cooling is therefore possible is marked by the shaded
area. The black dashed line is a specific choice of qext, and below this cooling is no longer
possible. Naturally, there is a maximum heat leak indicated by the red dashed line qmax

ext ,
for which the condition Eq. (4.19) is never met and cooling with the proposed pumping
scheme is not possible. Maximising Eq. (4.20) with respect to the time Δt leads to an
expression for the optimal time Δt between pulses

Δtopt = τr

W
�

τr
eτ0

� , (4.24)
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where e is Euler’s number and W (z) is the Lambert W function, also know as product
logarithm. It is defined as the inverse of the function

z(W ) = WeW , (4.25)

for complex numbers z, W . The argument z = τr/eτ0 influences the optimal time Δt.
The optimal time Δt for a specific choice of the argument is shown with the dashed blue
line in Fig. 4.3(a). In panel (b) of Fig. 4.3 the parameter region where cooling is possible
is marked purple for different values for the ratio τr/τ0 as a function of Δt/τ0. For larger
external heat leaks, the parameter region for which cooling is possible shrinks. The blue
line indicates the location of the maxima which are determined by Eq. (4.24). If there
is a large amount of heat dumped into the system in a pump cycle, then, according to
Eq. (4.22), z = τr/eτ0 � 1. In this limit

W (z) ≈ z

e
, (4.26)

and therefore the optimal pumping time is of order of the characteristic time, Δt ∼ τ0.
In the opposite limit, z = τr/eτ0 � 1 and the Lambert W function can be approximated
with

W (z) ≈ ln(z) (4.27)

which leads to Δt ∼ τr. Combining these results with the constraint in Eq. (4.23) for the
maximum heat that can be absorbed by the system due to the pumping, the range of the
optimal time Δtopt is set by τr and τ0.

Finally, the number of pump cycles NP can be estimated with the heat Qel flowing
out of the electron system in Eq. (4.16). The conduction electron themselves form a
large reservoir and we can assume that the individual induced spin flips do not alter
the electronic state. Therefore, the electrons remain in an equilibrium state and we can
assign thermodynamic quantities to the electron system. Its temperature Tel is given by

Tel(t) = Tel(0) + Qel(t)
Cel

, (4.28)

where Cel is the specific heat for the electron system. Initially, before the cooling protocol
starts, we can assign a temperature TI(0) to the nuclear spin system as well. However,
as soon as the nuclear spin system undergoes repeated initialisations the definition of a
temperature is no longer meaningful as the system is out of equilibrium at all times. Here,
the initial temperature TI(0) is used as a lower bound for the final electronic temperature

82



4.2 Manipulating the bath: Low temperature electron cooling

such that

TI(0) ≈ Tel(t), (4.29)

after the duration t of the complete cooling protocol. Of course, this choice is rather
optimistic as the electron temperature might influence the cooling efficiency qcp as well
as τ0 and therefore has an impact on the lowest achievable electron temperature Tel. In
the following we assume the temperature dependence of these parameters to be weak.
Using Eq. (4.29) and replacing Qel with Eq. (4.16) in Eq. (4.28) leads

NP = Cel [Tel(0) − TI(0)]
ΔQ(Δt) − Qr − (Δt + τr)JQ

ext
(4.30)

as an estimate for the number of cycles. The largest quantity in the denominator has to
be the transferred heat ΔQ between electron and nuclear spin system. It is, according to
Eq. (4.13) proportional to α. Therefore, the cooling protocol needs to run through

NP = 1
α

(4.31)

cycles under the condition that the full duration is smaller than the relaxation time T1.
With values of α ∼ 10−6 − 10−10 this corresponds to a range of NP ∼ 106 − 1010 but
more concrete estimates for realistic systems will be provided below in Section 4.2.3.

4.2.2 Temperature dependence of ideal pulsing

Above it was assumed that the ideal time Δt is independent of the temperature T . In this
subsection we discuss briefly the temperature dependence of the time Δt, assuming that
Δt and τT are comparable. Instead of using the short-time, temperature independent
decay to find in expression for ΔQ in Eq. (4.10) we use the full decay of the reduced
density matrix from Eq. (3.145) in the limit for times t � T1

ΔQ(t) =|4αQzρ0|
�
ln (ξτT ) + ln

�
1 − e−t/τT

��
. (4.32)

Using the definition for the transferred heat for the electron system leads to

Qel(t) = t

Δt + τP

�
−|4αρ0|Qz

�
ln (ξτT ) + ln

�
1 − e−Δt/τT

��
+ Qr

�
+ tJQ

ext. (4.33)
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Figure 4.4: (a) The optimal time ΔtT
opt/τ0 is shown as a function of the thermal time τT /τ0 for

different choices of τr/τ0. Large τT correspond to low temperature T as τT ∼ 1/T , while a large
ratio τr/τ0 corresponds to less heat being dumped in the electronic system during the pumping,
assuming a constant pulsing time τr. The dashed lines indicate Δtopt for the temperature inde-
pendent treatment in the previous section. The temperature dependence of Δtopt is negligible for
some parameters (orange and light blue line) and is small for small temperature in all cases. (b)
Plot of the temperature dependent cooling efficiency qT

cp across τT /τ0 for the same choice of τr/τ0
as in (a). The dashed line indicate the optimum in the temperature independent treatment. The
latter is the maximum and is reached asymptotically in all cases.

With the requirement for cooling, i.e. Qel < 0, this leads again to a constraint

qT
ext < qT

cp. (4.34)

Similar to Eq. (4.20) and Eq. (4.21), we introduce the dimensionless parameter qT
cp which

measures the cooling efficiency

qT
cp = 1

Δt + τr

�
ln
�

τT

τ0

�
+ ln

�
1 − e−Δt/τT

��
(4.35)

and the external heat leak is captured by

qT
ext = JQ

ext
|4αQzρ0| . (4.36)

The characteristic time τ0 is defined as before in Eq. (4.22). A lower limit for Δt in the
temperature dependent case can be found by assuming an ideal situation in which the
external heat leak vanishes and qT

cp > 0. In this case, we can solve Eq. (4.35) for Δt. This
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leads to the condition

Δt > τT ln
� 1

1 − τ0/τT

�
. (4.37)

Therefore, cooling is indeed only possible if τ0 < τT , and again resulting in the requirement
for the heat Qr dumped in into the electrons due to the pulsing, as seen in Eq. (4.23). To
find the impact of the temperature through τT on the cooling efficiency qT

cp we evaluate
the optimal time ΔtT

opt, where qT
cp reaches its maximum as a function of the parameter

τT /τ0 in Fig. 4.4(a). The ratios τr/τ0 are chosen such that cases are covered where a large
amount of heat is transferred through the pumping as well as the opposite. The dashed
lines show the optimal time Δtopt according to Eq. (4.24) of the temperature independent
analysis for the corresponding choice of parameters. For a larger heat deposit during each
pump cycle smaller Δt is required while there is no temperature dependence across the
range of τT /τ0, as shown by the light blue lines. In the opposite limit (purple) the optimal
ΔtT

opt shows a temperature dependence, suggesting that a dynamically changed time
Δt between pulses is beneficial when decreasing the pump frequency while approaching
lower temperature and therefore higher τT /τ0. In panel (b) of Fig. 4.4 the maximum
efficiency qT

cp is shown for a range of τT /τ0. The dashed lines indicate the maximum qcp

according to Eq. (4.20). The growing value of the cooling efficiency for decreasing ratios
of τr/τ0 indicate, that while for smaller τr/τ0 a larger amount of heat is deposited, the
proposed scheme is more efficient in carrying out the heat with each cycle. The maximum
efficiency set by the temperature independent case is reached asymptotically with larger
deviations at small τT /τ0. The actual efficiency of the cooling protocol therefore shows
a temperature dependence for some parameters. However, as the protocol would operate
at low temperatures, the temperature dependence of the cooling efficiency and its impact
on the optimal time between pulses Δtopt is small and in many cases negligible.

4.2.3 Estimate for a semiconductor

The cooling protocol can only be efficient if it is possible to re-initialise the nuclear or
localised spin system repeatedly on a timescale that is smaller than the relaxation time
T1. Within each cycle a small amount of heat of order α is transferred. The small
parameter α = (ν0A)2 is set by the coupling constant A between nuclear and electronic
spins and the density of states ν0, which is approximately constant and proportional to
the bandwidth ξ and therefore of the order of the Fermi energy EF . The density of states
ν0 in low dimensional systems is set by the ratio of the electron spin density nel and
the nuclear or impurity spin density nI , ν0 ∼ nel/nI [154–157]. Thus, the parameter α
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Figure 4.5: Plot of the |Qel| according to Eq. (4.17) for different values of Qr (colorful lines)
where Qmax

r is set by Eq. (4.23). In comparison we show |Qel| without pumping which simply
follows an exponential set by T1 time (black solid line). The T1 is indicated by the dashed black
line. The parameter settings are: T = 0.1 mK, α = 10−8 , Δt = 0.5τT with τT = �/2πkBT ,
EF = 10−3 eV, T1 = �/4αkBT ≈ 0.6 s, and the duration of one pump cycle is Δt + τr = 2Δt with
Np = 5 · 107 ∼ 1/α.

is highly dependent on the considered system. For nuclear spins in a bulk metal, the
value is very small α ∼ 10−10 [47]. The values reaches α ∼ 10−4 for paramagnetic spins
in correlated metals [158] and can even be larger than one in magnetic semiconductors
[159, 160]. However, with our approach, values for α > 1 are not valid as we rely on the
smallness of α to determine the time evolution of the density matrix. Nonetheless, even
for α > 1 there will be coherent non-Markovian dynamics such that in principal a similar
cooling effect through the protocol should persist.

As a specific example, we consider a semiconductor with nuclear spins, such as GaAs.
The hyperfine interaction is A = 90 µeV and the Fermi energy EF is of the order of
meV [134–136]. This leads to an estimate of α ∼ (A/EF )2 = 10−8. The corresponding
relaxation time T1 is given by

T1 = �
4απkBT

(4.38)

according to calculation of the relaxation rates in Section 3.2.4. At an electron temper-
ature T ∼ 0.1 mK, the relaxation time T1 ∼ 1 s sets the maximal time for the cooling
protocol. Within the T1 time the pump cycle needs to be repeated NP ∼ 1/α such that
one cycle maximally takes Δt + τr < αT1 ∼ 10 ns. Therefore, Δt and the re-initialisation
time τr have to be of the same order, which is fast, but feasible for experimental techniques
such as optical manipulation [150, 151], optical pumping [152] or partial measurements
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[153]. Finally, the characteristic time τ0 defined in Eq. (4.22) scales with �/ξ ∼ �/EF

and is of the order of picoseconds times an exponential. The exponent Qr/|4αQzρ0|,
and importantly the heat Qr released into the system during the re-initialisation are not
too constrained such that there is some tunability to satisfy all requirements. To show
that the conditions can be met for the GaAs parameters we plot the heat |Qel| flowing
out of the electron system according to Eq. (4.17) in Fig. 4.5. The maximum number
of pump cycles is set by Nmax

P ∼ 1/α = 108 with pump cycles with each cycle taking
Δt + τr = 2Δt. Furthermore, we choose Δt = 0.5τT with τT ≈ 12 ns for a temperature
T = 0.1 mK. For this specific choice T1 ≈ 0.6s which is marked by the black dashed
line. The solid black line shows the heat |Qel| if there is no pumping. In this case Qel

is defined by Eq. (4.10) and follows an exponential. The characteristic timescale of the
exponential is given by T1 time and stems from the long time decay of the density matrix
ρz(t). The coloured lines show |Qel| for different choices of Qr as a percentage of the
maximal Qmax

r set by Eq. (4.23) where we chose ξ = EF = 1 meV. For the largest chosen
Qr = 0.92Qmax

r (orange line) the cooling protocol is not more efficient than the standard
approach. Even for slightly smaller Qr the protocol cools the electron system faster which
can be improved further by reducing Qr (light blue and purple line). The analysis shows
that the conditions on Qr are indeed not too restricting. We still need to be able to
re-initialise the spin system on short time scales. The decay which needs to be reversed
is small as it is O(α) such that the physical manipulation of the spin is not a limiting
factor but rather is limited by the achievable repetition rate.

4.3 Summary and outlook

The proposed cooling protocol aims at an efficient transport of heat out of the electronic
reservoir into a spin system. It is based on the fast, initial decay dynamics rooted in the
coherent backaction effects and relies on fast repetition of the non-Markovian dynamics
by pumping or pulsing the spin system repeatedly into their initial state. Such a pump
scheme might be able to sidestep the bottleneck of adiabatic demagnetisation cooling at
low temperature, in particular for semiconductor structures. Based on basic requirements
for the relevant thermodynamic quantities we were able to provide an estimate for the
parameter region in which the cooling protocol is efficient.

Possible future directions could include the extension of the thermodynamic treatment
to underline the non-Markovian dynamics on a fundamental thermodynamic level. This
could be done, e.g., through a description of how the entropy in the localised spin sys-
tem builds up. The latter could then be connected with the build-up of entanglement
and thus lead to the opportunity to provide an explicit microscopic connection between
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entanglement and entropy production.
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Multiple spins in a common
environment

5

The dynamical behaviour for multiple impurity spins effectively coupled through the
environment is interesting from a quantum information point of view. It has been shown
that the entanglement dynamics are affected by dissipation and non-Markovian effects
modify the behaviour further for directly coupled [39] or effectively coupled qubits [161].
In combination with exploiting non-Markovian dynamics mediated by the system-bath
coupling it has been suggested that the coherent backaction can lead to noise cancellation
[33, 34] and that memory effects play a role in error correction protocols [104].

We want to address the question if and how a localised spin and its dynamical be-
haviour is affected by the presence of an additional spin which shares the same electronic
environment. We assume no direct interaction between the spins, only the interaction
mediated by the conduction electrons. In the standard approach this corresponds to the
RKKY interaction between nuclear spins and the itinerant electrons [35–37]. Here, we
are seeking to extend this to a quantum coherent RKKY-type interaction which is time-
dependent. We expect time delays to play a role simply because of the fact that it takes
some time for an excitation in the bath to travel from one location of an impurity spin
to the next.

To capture the dynamical response of a spin system with more than one localised spin
one could in principle take the approach pursued in Chapter 3 and add additional impu-
rity spins. However, the dimension of the basis grows as 22N with N being the number
of impurity spin. For N = 2 the approach might still be feasible but treating more spins
in a common bath is not tractable analytically. The self-consistent projection operator
method introduced by Degenfeld-Schonburg and Hartmann [38] provides an elegant solu-
tion for the problem of quickly growing Hilbert space dimensions. The generalised master
equation within this approach can be seen as an extension to the Nakajima-Zwanzig equa-
tion where the reference bath state is self-consistently determined. The bath correlation
functions are updated with respect to the time-dependent bath reference state at every
time step. Additional degrees of freedom within the system only enter through a sum
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5 Multiple spins in a common environment

over all sites occupied with a localised spin.

The tradeoff is the challenge of solving a set of equations of motion describing the lo-
calised spins and the electronic bath dynamics. Formally, we can write down the equation
of motion for the conduction electrons easily, but the proliferation of the infinite number
of electronic degrees of freedom turns out to be a major challenge in this treatment. To
make the problem tractable we turn our attention towards two essential aspects. First,
we systematically reduce the number of coupled equations of motion from an infinite set
to a set of 24 coupled equations. We carefully analyse the nature of the appearing inter-
actions, correlations and fluctuations to reveal and interpret their physical significance.
With this alone many nuances of the problem can be sufficiently understood without
having to proceed to its full solution. Second, we identify and adapt a recently proposed
numerical method [162] which is suited for the further analysis. The algorithm imple-
ments the rather inexpensive interpolation scheme for numerical integration developed in
[163] and we thoroughly test it against the known analytical solution of the single spin
derived in Chapter 3. In fact, this does not only lead to a corroboration of the appli-
cability of the algorithm but also to a confirmation that the approximations made in
the analytical solution capture all the relevant physics. The corrections picked up in the
numerical integration can all be absorbed by a slight renormalisation of the parameters.

Although the last step, the final implementation of the coupled equations and their
systematic investigation, had to be sacrificed within the scope of this thesis, we can
administer the important identification of the relevant physics and the algorithmic foun-
dation.

5.1 Interaction mediated by the bath

For a single localised moment in a metallic environment the local magnetic field is mod-
ulated by the surrounding electrons giving rise to the Knight shift as described in Sec-
tion 3.1.4. The magnetic impurity induces modulations in the electron spin density [23]
which in turn can be picked up by a second impurity some distance away. The fluctu-
ations of the electron spin density effectively couple the two localised spins Ii and Ij at
the sites xi, xj with rij = |xi − xj |. One can also understand the effective coupling as
a double scattering process [16, 35]. The contact interaction between the impurity and
electron spin AIj · Sj scatters the electron from a state |k� → |k�� and the interaction
with the second impurity reverses the process |k�� → |k�. The long range interaction is
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5.2 Master equation within self-consistent projection operator approach

known as RKKY interaction [35–37] and is described by the Hamiltonian

HRKKY = 1
2
�

i,j

AijIi · Ij , (5.1)

for two impurity sites i and j. The most familiar form of the RKKY interaction is the
three dimensional real space expression

Aij = A2n
1

2π2r3
ij

�
cos (2kF rij) − sin (2kF rij)

2kF rij

�
. (5.2)

The local moments are separated by the distance rij . The coupling constant A corre-
sponds to the contact interaction strength, kF is the Fermi momentum and n the electron
density of the Fermi liquid. Eq. (5.2) shows the general characteristics of an algebraic
decay in addition to 2kF Friedel type oscillations set by the backscattering vector across
the Fermi surface. The exact power of the algebraic decay depends on the dimension d

with 1/rd
ij . In lower dimension the decay is modified [164–166], but these general char-

acteristics remain the same. Later on we will focus on a two dimensional electron gas as
the environment for the localised spin. This circumvents the special case of one spatial
dimension for which a Luttinger Liquid description is necessary while ensuring a more
tractable analytical description. Furthermore, two dimensional systems are a widely used
platform for designed nanosystems [167, 168].

5.2 Master equation within self-consistent projection
operator approach

The starting point is the generalised master equation (2.109) which was proposed in [38].
It provides an equation of motion for the system of interest, i.e., the subsystem that
contains the dynamics we are interested in while all other subsystem act as a bath for
the system. We adjust Eq. (2.109) directly to a quantum system which consists of two
localised spins coupled to the same electronic environment to access the dynamics. The
example setup, made up of the three components, is sketched in Fig. 5.1. First, we identify
the different subsystems and define the corresponding Hamiltonian. Each localised spin
Ij is described by the Zeeman term

Hj
I = bI

zIz,j . (5.3)
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5 Multiple spins in a common environment

Figure 5.1: Sketch of the system: Two localised spins share the same environment and they are
effectively coupled through the interaction with the bath. The bath itself is an itinerant electron
gas and the interaction between localised spins and the electrons is a contact spin-spin interaction.
The ripples and yellow wavy lines indicate coherent backaction effects. Our investigation focuses
on the dynamics of one of the localised spins and how it is affected by the presence of the second
one.

with bI
z = gIµIBz, where gI is the appropriate g-factor for the localised spin and its

magnetic moment µI in the uniform external field B along the z direction. The subscript
j = 1, 2 refers to the position xj of the localised spin. The electronic part is described by
the Hamiltonian

Hel =
�

kσ

�kc†
kσckσ + bel

z

Nel�

l=1
Sz,l. (5.4)

Here, �k is the energy dispersion for the electronic system with c†
kσ and ckσ being the

electron creation and annihilation operators. The second term corresponds to the Zeeman
term with bel

z = gµBBz with the electron g-factor and the Bohr magneton µB. The sum
runs over all real space positions l of Nel electrons forming the bath. The interaction
term is given as before by a contact interaction between the localised spin I at xj and
the electrons spin S

Hj
int = A

Nel�

l=1
δ(xj − xl)Ij · Sl. (5.5)
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5.2 Master equation within self-consistent projection operator approach

The full system Hamiltonian is given by the sum of Eqs. (5.3) to (5.5)

H = H
(1)
I + H

(2)
I + Hel + H

(1)
int + H

(2)
int , (5.6)

and correspondingly the system’s Liouvillian L = −i[H, ·] can be written as

L = L
(1)
I + L

(2)
I + Lel + L

(1)
int + L

(2)
int . (5.7)

We explicitly write all terms for each localised spin to emphasise that the entire considered
system consists of three subsystems and that there is no direct coupling between the
localised spins. The Zeeman term of localised spins can be eliminated by changing into
a rotating frame of reference

H → H − bI
zJz (5.8)

where Jz = �j Iz,j +�l Sl,z is the total angular momentum. The full system Hamiltonian
is then given by

H =
�

kσ

�kc†
kσckσ + bz

Nel�

l=1
Sz,l + A

�

j=1,2

Nel�

l=1
δ(xj − xl)Ij · Sl (5.9)

with bz = bel
z − bI

z.

We define the reduced density matrices corresponding to each subsystem by tracing
over the degrees of freedom of the subsystems acting as the bath. With the full density
matrix ρ of the entire quantum system, we then have for the localised spin

ρI,j(t) = Tr
✄j
{ρ(t)} (5.10)

where ✁✁j implies the trace over the electronic degrees of freedem as well as the second
impurity. Since there is no direct coupling between the localised spins, the corresponding
reduced density matrices are copies of each other. Therefore, we keep the index j to
refer to each of the spins located at xj with j = 1, 2. Strictly speaking, the definition
of the reduced density matrix for each localised spin has to also include the trace over
the the other impurity spin as in Eq. (5.10). However, in the equation of motion for the
localised spin derived below there is no direct dependence on the other impurity. The
effective interaction between the two spins comes in purely through the interaction with
the surrounding electrons. For Eq. (5.10) the trace ✁✁j therefore reduces to the only taking
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the trace over the conduction electrons

ρI,j(t) = Trel {ρ(t)} (5.11)

as tracing over the other spin within the equation of motion simplifies to the identity.
The reduced density matrix for the conduction electrons is given by tracing over both
localised spins

ρel(t) = Tr✚el {ρ(t)} = TrI {ρ(t)} . (5.12)

The corresponding time-dependent projection operators for each subsystem according to
Eq. (2.81) are defined as

P I,j
t = Tr

✄j
{·} ⊗ ρI,✄j

(t) ⊗ ρel(t) = Trel {·} ⊗ ρI,✄j
⊗ ρel(t), (5.13)

P el
t = Tr✚el(t) ⊗ ρ✚el(t) = TrI {·} ⊗ ρI,j=1(t) ⊗ ρI,j=2(t). (5.14)

Then, we state the expression for the superoperator Ct in Eq. (2.100) by inserting the
projection operators Eqs. (5.13) and (5.14)

Ct = 1 −
�

Sn

P Sn
t = 1 − P I,j=1

t − P I,j=2
t − P el

t , (5.15)

where Sn refers to the three subsystems, i.e., the two localised spins and the conduction
electrons. Now we are in a position to tailor the general equation of motion in Eq. (2.109)
to the current setup. Starting with the equation of motion for the localised spin at position
xj the only interaction is with the conduction electrons such that Eq. (2.109) reduces to

ρ̇I,j(t) = Trel
�

Lj
intρI,j(t) ⊗ ρel(t)

�
+
� t

t0
dt� Trel

�
Lj

inte
Lel(t−t�)

�
Lj

intρel(t�) ⊗ ρI,j(t�)

− ρel(t�) ⊗ Trel
�

Lj
intρel(t�) ⊗ ρI,j(t�)

�
− ρI,j(t�) ⊗ TrI

�
Lj

intρI,j(t�) ⊗ ρel(t�)
� ��

,

(5.16)

where the trace over the other localised spin reduces to the identity. Note that in the
rotating frame the unperturbed Hamiltonian corresponds to only the electronic part and
the evolution under the Liouvillian is given by L0 = Lel. In comparison to the Nakajima-
Zwanzig approach for the single spin case we find a term linear in the interaction which
was not present before due to particle conservation. In the time-dependent projection
approach also bath correlations of the form �B� are present and generally �B� �= 0 .
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5.2 Master equation within self-consistent projection operator approach

The bath operators B correspond to the electron spin operators Sz,±. The terms under
the time integral in Eq. (5.16) take into account the full history of all subsystems and
capture the correlations building up between the different parts. Here, the first two terms
with the trace over the electronic degrees of freedom will generate expectation values like
∼ �SαSβ�(t) and ∼ �Sα�(t)�Sβ�(t). Apart from the explicit time dependence of the
electron density matrix these correlators also appear in the Nakajima-Zwanzig approach.
In contrast, the last term within the time integral does not appear. It generates terms
∼ �Iα�(t)�Sβ�(t) and can be interpreted as a renormalisation of the bath expectation
value due to interaction with the system.

Reversing the situation and treating the localised spins as a bath to the electrons, we
are able to write down an equation of motion for the conduction electrons. The only
difference in comparison with the equation of motion for the localised spins of Eq. (5.16)
is which subsystem’s degrees of freedom are traced out and we have to add the term
capturing the eigendynamics. Taking the trace over the localised spins leads to

ρ̇el(t) = Lelρel(t)

+
�

j=1,2
TrI

�
Lj

intρel(t) ⊗ ρI,j(t)
�

+
�

j=1,2

� t

t0
dt� TrI

�
Lj

inte
Lel(t−t�)

�
Lj

intρI,j(t�) ⊗ ρel(t�)

− ρI,j(t�) ⊗ TrI

�
Lj

intρI,j(t�) ⊗ ρel(t�)
�

− ρel(t�) ⊗ Trel
�

Lj
intρel(t�) ⊗ ρI,j(t�)

� ��
. (5.17)

Since the conduction electrons are directly coupled to both localised spins we sum over j =
1, 2. At this point we can also see within the formalism how the effective coupling through
the conduction electrons comes in. The discussion from Eq. (5.16) applies to Eq. (5.17)
as well, we only need to insert the localised spin operators. Within the time integral the
corresponding expectation values are therefore ∼ �Iα

j Iβ
j �(t) and ∼ �Iα

j �(t)�Iβ
j �(t) for the

first two terms while the structure for the last remains the same. The expectation values
of the localised spins on different sites j do not mix which is again due to the lack of
direct coupling between them.

Eqs. (5.16) and (5.17) form a set of coupled equations of motion that we need to solve
in order to gain excess to the dynamics of the localised spins. To proceed we will choose
a particular basis for the density matrices of the impurities which leads to a matrix
representation of the different terms including Lj

int. At this point in Chapter 3 when
treating the single spin case we used the Laplace transformation to solve the equation of
motion. This is no longer possible as the integrand has a more complicated structure and
apart form the system’s density matrix also the reference bath state is time-dependent.
Furthermore, the equation of motion for the conduction electrons in Eq. (5.17) cannot be

95



5 Multiple spins in a common environment

solved because there are infinitely many degrees of freedom. Limiting the consideration
to a finite number of degrees of freedom would not do, as such an approach would not
capture the universal physics which is dominated by Fermi statistics and the existence of
a Fermi surface. Nonetheless, it could be interesting to treat finite chains with a finite
number of modes. For long enough chains however a full numerical treatment would
again require many degrees of freedom and quickly becomes impractical. In the end
we are interested in the dynamics of the localised spins. In their equation of motion
Eq. (5.16) only some correlation functions of the conduction electrons appear. Instead
of needing to solve Eq. (5.17) we need to find the equation of motion for the required
correlation functions. In the following sections we derive the equations of motion for the
different subsystems explicitly.

5.2.1 Equation of motion for the localised spins

To find an expression for Eq. (5.16) we choose a particular basis spanned by the localised
spin operators

�
I↑

j , I↓
j , I−

j , I+
j

�
for the reduced density matrices of the localised spins such

that

ρI,j = ρ↑
jI↑

j + ρ↓
jI↓

j + ρ−
j I+

j + ρ+
j I−

j , (5.18)

analogous to Eq. (3.54) in the single spin case. We can then derive an equation of
motion for each localised spin separately because their evolutions are formally decoupled,
since the coupling occurs only through the electron density matrix. The interaction
Hamiltonian can be written as

Hj
int = Aδ(xj − xl)

�
2I+

j S−
l + 2I−

j S+
l + Iz

j Sz
l

�
. (5.19)

Using the specific interaction Hamiltonian in the basis of the spin operators we can write
the equation of motion Eq. (5.16) in a matrix representation

�̇ρI,j(t) = ˆ̂M(xj , t)�ρI,j(t) (5.20)

where

�ρI,j(t) =
�
ρ↑

j , ρ↓
j , ρ−

j , ρ+
j

�T
. (5.21)
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and ˆ̂M is the 4 × 4 matrix representation of the memory kernel coupling to spin j. The
matrix ˆ̂M includes the different terms of Eq. (5.16) which we write in the form

ˆ̂M(xj , t)�ρI,j(t)

= ˆ̂Mlin(xj , t)�ρI,j(t)

+
� t

0
dt�
� ˆ̂M2nd,1(xj , t, t�) + ˆ̂M2nd,2(xj , t, t�) + ˆ̂M2nd,3(xj , t, t�)

�
�ρI,j(t�). (5.22)

The definitions for the different ˆ̂Mi follow below. As the calculation is rather lengthy,
we will only show some intermediate steps. Details for the full calculation including all
arising commutators can be found in Appendix F.1.

5.2.1.1 Linear term Mlin

The first term in Eq. (5.16) of O(A) is given by

Trel
�

Lj
intρI,j(t) ⊗ ρel(t)

�
= −i2ATrel

�
S+(xj)ρel(t)

� �
I−

j , ρj(t)
�

− i2ATrel
�
S−(xj)ρel(t)

� �
I+

j , ρj(t)
�

− iATrel {Sz(xj)ρel(t)}
�
Iz

j , ρj(t)
�

. (5.23)

Inserting Eq. (5.18) and calculating the commutators leads to a matrix representation of
the linear term acting on the density matrix �ρI,j(t)

ˆ̂Mlin(xj , t) =




0 0 −R+ R−
0 0 R+ −R−

R+ −R+ −Rz 0
−R− R− 0 Rz




, (5.24)

with the correlation functions

R+(xj , t) = −i2AeibI
zt
�
S+

j

�
el,t

, (5.25)

R−(xj , t) = −i2Ae−ibI
zt
�
S−

j

�
el,t

, (5.26)

Rz(xj , t) = −i2A
�
Sz

j

�
el,t

, (5.27)
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where we also included the phase factor due to the transformation into the rotating frame.
Furthermore, we define the angular brackets as the expectation value of any operator O

�Oj�el,t = Trel {Ojρel(t)} (5.28)

over the electronic degrees of freedom. Correspondingly,

�Oj�I,t = TrI {OjρI,j(t)} (5.29)

denotes the expectation with respect to the localised spin. The index t refers to the time
argument of the density matrix. If the spin operator itself includes a time evolution we
will write this explicitly, i.e.,

�
Sα

j (t�)
�

el,t
while

�
Sα

j

�
el,t

=
�
Sα

j (t� = 0)
�

el,t
.

5.2.1.2 O(A2): Two-point correlators M2nd,1

The first term quadratic in the interaction corresponds to the second term in Eq. (5.16).
Inserting the interaction Hamiltonian into Eq. (5.16) we need to find

� t

t0
dt� Trel

�
Lj

inte
Lel(t−t�)Lj

intρel(t�) ⊗ ρI,j(t�)
�

= −
� t

t0
dt� Trel

��
Hj

int, eLel(t−t�)
�
Hj

int, ρel(t�) ⊗ ρI,j(t�)
���

. (5.30)

This leads to the commutators between the localised spin operators and its density matrix
of the form

�
ρI,j(t�)Iα

j , Iβ
j

�
, (5.31)

with α, β = ±, z. After calculating the commutators the integrand can be written in its
matrix representation as

ˆ̂M2nd,1(xj , t, t�) =




F1 −F2 −F3 −F4

−F1 F2 F3 F4

−Fz+ + F5 F+z + F5 F− + Fz 0
−F−z + F6 Fz− + F6 0 F+ + Fz




, (5.32)

with the correlation functions

F1(xj , t, t�) = −4A2
�

e−ibI
z(t�−t)

�
S−

j (t� − t)S+
j

�
el,t� + eibI

z(t�−t)
�
S−

j S+
j (t� − t)

�
el,t�

�
,

(5.33)
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F2(xj , t, t�) = −4A2
�

eibI
z(t�−t)

�
S+

j (t� − t)S−
j

�
el,t� + e−ibI

z(t�−t)
�
S+

j S−
j (t� − t)

�
el,t�

�
,

(5.34)

F+(xj , t, t�) = −4A2e−ibI
z(t�−t)

��
S−

j (t� − t), S+
j

��
el,t� , (5.35)

F−(xj , t, t�) = −4A2eibI
z(t�−t)

��
S+

j (t� − t), S−
j

��
el,t� , (5.36)

Fz(xj , t, t�) = −2A2
��

Sz
j (t� − t), Sz

j

��
el,t� , (5.37)

F3(xj , t, t�) = −2A2eibI
z(t�−t)

��
S+

j (t� − t), Sz
j

��
el,t� , (5.38)

F4(xj , t, t�) = −2A2e−ibI
z(t�−t)

��
S−

j (t� − t), Sz
j

��
el,t� , (5.39)

F5(xj , t, t�) = −2A2eibI
z(t�−t)

��
S+

j (t� − t), Sz
j

��
el,t� , (5.40)

F6(xj , t, t�) = −2A2e−ibI
z(t�−t)

��
S−

j (t� − t), Sz
j

��
el,t� , (5.41)

Fz+(xj , t, t�) = −4A2
�
Sz

j (t� − t)S+
j

�
el,t� , (5.42)

F+z(xj , t, t�) = −4A2
�
S+

j Sz
j (t� − t)

�
el,t� , (5.43)

Fz−(xj , t, t�) = −4A2
�
Sz

j (t� − t)S−
j

�
el,t� , (5.44)

F−z(xj , t, t�) = −4A2
�
S−

j Sz
j (t� − t)

�
el,t� . (5.45)

The matrix ˆ̂M2nd,1 acts within the time integral on the localised spin density matrix
�ρI,j(t�). The diagonal 2 × 2 blocks contain the same electron spin correlation functions
as the memory kernel �Σ(s) in Eq. (3.61) for a single spin in an electronic environment.
Unlike Eq. (3.61) the correlators Fi lack time translation symmetry and as such no further
simplifications can be done. Since in the time-dependent projector setup also single
excitations such as

�
S±

j Sz
�

�= 0 the longitudinal and transverse localised spin components
are coupled.

5.2.1.3 O(A2): One-point correlators M2nd,2

The one-point correlators arise from the third term in Eq. (5.16) which is given by

−
� t

t0
dt� Trel

�
Lj

inte
Lel(t−t�)ρel(t�) ⊗ Trel

�
Lj

intρel(t�) ⊗ ρI,j(t�)
��

=
� t

t0
dt� Trel

��
Hj

int, eLel(t−t�)ρel(t�) ⊗ Trel
��

Hj
int, ρel(t�) ⊗ ρI,j(t�)

����
. (5.46)

The inner trace is identical to the trace appearing in the linear term in Eq. (5.23) while the
outer trace is given by the same bath correlation function but under the time evolution
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exp[Lel(t − t�)]. We find that the relevant commutators of the localised spins are the
same as in Eq. (5.31). Collecting the results from all commutators we obtain the matrix
representation of the integrand including the prefactor in Eq. (5.46)

ˆ̂M2nd,2(xj , t, t�) =




G1 −G1 −G2 −G3

−G1 G1 G2 G3

−G4 G4 G− + Gz 0
−G5 G5 0 G+ + Gz




, (5.47)

with the electronic response functions

G+(xj , t, t�) = 4A2e−ibI
z(t�−t)

�
S−

j (t� − t)
�

el,t�

�
S+

j

�
el,t� , (5.48)

G−(xj , t, t�) = 4A2eibI
z(t�−t)

�
S+

j (t� − t)
�

el,t�

�
S−

j

�
el,t� , (5.49)

Gz(xj , t, t�) = 4A2
�
Sz

j (t� − t)
�

el,t�

�
Sz

j

�
el,t� , (5.50)

G1(xj , t, t�) = 4A2 (G+ + G−) , (5.51)

G2(xj , t, t�) = 2A2eibI
z(t�−t)

�
S+

j (t� − t)
�

el,t�

�
Sz

j

�
el,t� , (5.52)

G3(xj , t, t�) = 2A2e−ibI
z(t�−t)

�
S−

j (t� − t)
�

el,t�

�
Sz

j

�
el,t� , (5.53)

G4(xj , t, t�) = 2A2
�
Sz

j (t� − t)
�

el,t�

�
S+

j

�
el,t� , (5.54)

G5(xj , t, t�) = 2A2
�
Sz

j (t� − t)
�

el,t�

�
S−

j

�
el,t� . (5.55)

In comparison to the single spin setup we now find the correlators Gi. Before, all Gi = 0
since we excluded any magnetisation of the conduction electrons and the bath was in its
equilibrium state.

5.2.1.4 O(A2): Renormalisation term M2nd,3

The last remaining term in Eq. (5.16) is given by

−
� t

t0
dt� Trel

�
Lj

inte
Lel(t−t�)ρI,j(t�) ⊗ TrI

�
Lj

intρI,j(t�) ⊗ ρel(t�)
��

= −
� t

t0
dt� Trel

��
Hj

int, eLel(t−t�)ρI,j(t�) ⊗ TrI,j

��
Hj

int, ρI(t�) ⊗ ρel(t�)
����

. (5.56)

The inner trace will lead to an expectation value of the localised spin which in turn renor-
malises the electronic response function. The relevant spin commutators

�
ρI,j(t�), Iα

j

�
with

α = ±, z are identical to the localised spin commutators of the linear term in Eq. (5.23).
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5.2 Master equation within self-consistent projection operator approach

Making use of Eq. (5.18) we find the matrix representation of Eq. (5.56)

ˆ̂M2nd,3(xj , t, t�) =




0 0 H1 −H2

0 0 −H1 H2

−H1 H1 H3 0
H2 −H2 0 −H3




, (5.57)

with the electron correlation functions

H1(xj , t, t�) = 4A2ρ+
j (t�)eibI

z(t�−t)
��

S+
j (t� − t), S−

j

��
el,t�

+ 2A2ρz
j (t�)eibI

z(t�−t)
��

S+
j (t� − t), Sz

j

��
el,t� , (5.58)

H2(xj , t, t�) = 4A2ρ−
j (t�)e−ibI

z(t�−t)
��

S−
j (t� − t), S+

j

��
el,t�

+ 2A2ρz
j (t�)e−ibI

z(t�−t)
��

S−
j (t� − t), Sz

j

��
el,t� , (5.59)

H3(xj , t, t�) = 2A2ρ−
j (t�)

��
Sz

j (t� − t), S+
j

��
el,t� + 2A2ρ+

j (t�)
��

Sz
j (t� − t), S−

j

��
el,t� .

(5.60)

These correlations are weighted by the different localised spin components ρα
j (t) in the

chosen basis. The components correspond to the expectation values defined by
�
Iα

j

�
I,t

= TrI

�
Iα

j ρI,j(t)
�

= Iρα
j (t), (5.61)

which is a direct consequence of Eq. (5.18).

5.2.2 Equation of motion for the conduction electrons

The equation of motion for the electrons for the considered setup is obtained by inserting
the interaction Hamiltonian of Eq. (5.19) into Eq. (5.17). As previously for the case
of the localised spin, we will calculate the different terms in the first step separately.
The structure will be similar to the different terms for the impurity Eqs. (5.23), (5.30),
(5.46) and (5.56) by swapping the spin operators and taking the trace with respect to the
localised spins. In contrast to the equation of motion for the localised spins we are not
able to simplify the appearing commutators because we cannot choose a specific basis for
the electron spin operators and we will be left with the general structure. In the second
step, we approximate the electron density matrix to find a closed equation of motion for
the relevant electron spin correlation functions.
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5 Multiple spins in a common environment

5.2.2.1 Eigendynamics and O(A) term

The first term of the right-hand side in Eq. (5.17) captures the eigendynamics of the
conduction electrons under the electronic part Hel of the Hamiltonian Eq. (5.9) with

Hel =
�

kσ

�kc†
kσckσ + bz

Nel�

l=1
Sz,l. (5.62)

At this point we make no assumptions on the specific form of the density matrix for the
electrons and therefore cannot specify the action of Lel on ρel(t) any further. The O(A)
term corresponds to the second term of Eq. (5.17). Swapping the electrons spin operators
and localised spin operators of Eq. (5.23) and adjusting the trace leads to

�

j=1,2
TrI

�
Lj

intρel(t) ⊗ ρI,j(t)
�

= −i2A
�

j=1,2

�
ρ+

j (t)
�
S−

j , ρel(t)
�

+ ρ−
j (t)

�
S+

j , ρel(t)
�

+
�
ρ↑

j (t) − ρ↓
j (t)
� �

Sz
j , ρel(t)

��
.

(5.63)

We also made use of Eq. (5.61) to replace the expectation value of the localised spin by
the corresponding component of their density matrix.

5.2.2.2 O(A2): Two-point correlators

Following the procedure outlined above, the first term of O(A2) corresponds to the third
term in Eq. (5.17) and can be written as

�

j=1,2

� t

0
dt� TrI

�
Lj

inte
(t−t�)LelLj

intρel(t�) ⊗ ρj(t�)
�

= −A2 �

j=1,2

� t

0
dt�
�

2ρ+
j (t�)

��
Sz

j , e(t−t�)LelS−
j ρel(t�)

�
−
�
e(t−t�)Lelρel(t�)S−

j , Sz
j

��

+ 2ρ+
j (t�)

��
e(t−t�)Lelρel(t�)Sz

j , S−
j

�
−
�
S−

j , e(t−t�)LelSz
j ρel(t�)

��

+ 2ρ−
j (t�)

��
e(t−t�)Lelρel(t�)S+

j , Sz
j

�
−
�
Sz

j , e(t−t�)LelS+
j ρel(t�)

��

+ 2ρ−
j (t�)

��
S+

j , e(t−t�)LelSz
j ρel(t�)

�
−
�
e(t−t�)Lelρel(t�)Sz

j , S+
j

��

+ 4
�
ρ↑

j (t�) − ρ↓
j (t�)

� ��
S−

j , e(t−t�)LelS+
j ρel(t�)

�
+
�
e(t−t�)Lelρel(t�)S−

j , S+
j

��

+
�
ρ↑

j (t�) + ρ↓
j (t�)

� ��
Sz

j , e(t−t�)LelSz
j ρel(t�)

�
+
�
e(t−t�)Lelρel(t�)Sz

j , Sz
j

�� �
. (5.64)
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Again, we used Eq. (5.61) to rewrite the expectation values
�
Iα

j Iβ
j

�
I,t� in terms of the

component of the localised spin density matrix.

5.2.2.3 O(A2): One-point correlators

The fourth term of Eq. (5.17) includes an additional trace over the localised spins and we
find the same electron spin commutators as in Eq. (5.64) but with modified prefactors

−
� t

0
dt� TrI

�
Lj

inte
(t−t�)Lelρj(t�) ⊗ TrI

�
Lj

intρel(t�) ⊗ ρj(t�)
��

= A2 �

j=1,2

� t

0
dt�
�

2ρ+
j (t�)

�
ρ↑

j (t�) − ρ↓
j (t�)

� � �
S−

j , e(t−t�)LelSz
j ρel(t�)

�

+
�
e(t−t�)Lelρel(t�)Sz

j , S−
j

�
+
�
Sz

j , e(t−t�)LelS−
j ρel(t�)

�
+
�
e(t−t�)Lelρel(t�)S−

j , Sz
j

� �

+ 2ρ−
j (t�)

�
ρ↑

j (t�) − ρ↓
j (t�)

� � �
S+

j , e(t−t�)LelSz
j ρel(t�)

�
+
�
e(t−t�)Lelρel(t�)Sz

j , S+
j

�

+
�
Sz

j , e(t−t�)LelS+
j ρel(t�)

�
+
�
e(t−t�)Lelρel(t�)S+

j , Sz
j

� �

+ 4ρ+
j (t�)ρ−

j (t�)
� �

S−
j , e(t−t�)LelS+

j ρel(t�)
�

+
�
e(t−t�)Lelρel(t�)S+

j , S−
j

�

+
�
S+

j , e(t−t�)LelS−
j ρel(t�)

�
+
�
e(t−t�)Lelρel(t�)S−

j , S+
j

� �

+
�
ρ↑

j (t�) − ρ↓
j (t�)

�2 ��
Sz

j , e(t−t�)LelSz
j ρel(t�)

�
+
�
e(t−t�)Lelρel(t�)Sz

j , Sz
j

��
. (5.65)

We find pairs of localised spin components due to the additional trace within the time
integral.

5.2.2.4 O(A2): Renormalisation term

The last term of Eq. (5.17) with the renormalisation of the expectation values of the
localised spin by the electronic contribution leads to

−
�

j=1,2

� t

0
dt� TrI

�
Lj

inte
(t−t�)Lelρel(t�) ⊗ Trel

�
Lj

intρel(t�) ⊗ ρj(t�)
��

= A2 �

j=1,2

� t

0
dt�
�

4
�
ρ↑

j (t�) − ρ↓
j (t�)

� �
S+

j

�
el,t�

�
e(t−t�)Lelρel(t�), S−

j

�

− 4
�
ρ↑

j (t�) − ρ↓
j (t�)

� �
S−

j

�
el,t�

�
e(t−t�)Lelρel(t�), S+

j

�

+ 2ρ+
j (t�)

�
S−

j

�
el,t�

�
e(t−t�)Lelρel(t�), Sz

j

�
− 2ρ+

j (t�)
�
Sz

j

�
el,t�

�
e(t−t�)Lelρel(t�), S−

j

�

+ 2ρ−
j (t�)

�
Sz

j

�
el,t�

�
e(t−t�)Lelρel(t�), S+

j

�
− 2ρ−

j (t�)
�
S+

j

�
el,t�

�
e(t−t�)Lelρel(t�), Sz

j

��
. (5.66)
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We use Eqs. (5.63) to (5.66) to formulate an equation of motion for the electron spin
expectation values.

5.2.3 Equation of motion for the electron correlation functions

The full dynamics of the conduction electrons are in theory fully captured and described
by the eigendynamics Lelρel(t) and Eqs. (5.63) to (5.66). In the physical setup considered
here, the electrons form a surrounding bath for the localised spins with many degrees of
freedom and solving for the full dynamics is not possible. In Section 5.2.1 we found the
relevant electron correlations functions that enter the equation of motion of the localised
spins. In particular, an expression for the one- and two-point response functions �Sα�el,t

and
�
Sα

j Sβ
j

�
el,t

are needed. To this end, we express the electron spin operators in terms of
the real-space creation and annihilation operators for the electrons, Ψ†

σ(xl) and Ψσ�(xl),

Sl =
�

σσ�
Ψ†

σ(xl)τσσ�Ψσ�(xl), (5.67)

at position xl with the vector τ of Pauli matrices. In momentum space we then have

Sα
l = (2π)2

N2
�

kk�

�

σσ�
ei(k−k�)xlc†

kστα
σσ�ck�σ� , (5.68)

with the fermionic creation and annihilation operators c†, c and N available momentum
states for the spin components α = z, ± where

S±
l = 1

2
�
Sx

l ± iSy
l

�
. (5.69)

Using Eq. (5.68) we rewrite the required spin expectation values in terms of the fermionic
operators which leads to

�
Sσ̄

j

�
el,t

= (2π)2

N2
�

pp�
ei(p−p�)xj

�
c†

pσcp�σ�
�

el,t
, (5.70)

�
Sσ̄

j Sγ̄
j

�
el,t

= (2π)4

N4
�

pp�

�

rr�
ei(p−p�)xj ei(r−r�)xj

�
c†

pσcp�σ�c†
rγcr�γ�

�
el,t

. (5.71)

The spin indices σ̄, γ̄ = z, ± on the left-hand side determine the spin indices σ, σ � and
γ, γ� for the fermionic operators. We will use the bar above the spin index to generally
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5.2 Master equation within self-consistent projection operator approach

indicate at tuple of indices. Specifically we have

σ̄ = + → σ = ↑, σ� = ↓,

σ̄ = − → σ = ↓, σ� = ↑
σ̄ = z → σ = σ�. (5.72)

For the z component, the difference c†
p↑cp�↑ − c†

p↓cp�↓ is implied. Applying the electron
operators Sσ̄

j or Sσ̄
j Sγ̄

j to the individual terms Eqs. (5.63) to (5.66) of Eq. (5.17) and
taking the trace with respect to the electrons would lead directly to an equation of
motion for Eqs. (5.70) and (5.71). Unfortunately, this is not possible as the right-hand
side of Eq. (5.17) involves the time evolution of the correlation function and without any
further assumption on ρel we are not able to find an equation for these specific correlators
directly. Instead, we only apply the operator c†

pσcp�σ� for all combinations of σ, σ� =↑, ↓
to Eq. (5.17). For the one-point correlator in Eq. (5.70) we need to solve

d

dt

�
c†

pσcp�σ�
�

el,t
= Trel

�
c†

pσcp�σ�
�
hrhs

�
t, t�, ρI , ρel

���
, (5.73)

where hrhs is defined as the right-hand side of Eq. (5.17). For the electron spin-spin
correlators corresponding to Eq. (5.71) the equation of motion is given by

d

dt

�
c†

pσcp�σ�c†
rγcr�γ�

�
el,t

= Trel
�

c†
pσcp�σ�c†

rγcr�γ�
�
hrhs

�
t, t�, ρI , ρel

���
. (5.74)

In a first approach we tried to solve Eqs. (5.73) and (5.74) directly. However, this led
to a large number of coupled equations of motion for each momentum state p, p�, r, r�.
Although the approach might still be feasible for a small enough many body system with
a small number of momentum states, we will not be able to address the continuum limit.

To be able to address a large environment we take a step back to analyse the physics
we want to capture. The underlying interest of looking at this problem focuses on the
effective coupling between the localised spins mediated by the conduction electrons and
its influence on the dynamics of one localised spin while also taking into account coherent
backaction effects. We are interested in the short lived, single electron spin excitations by
one of the localised spin which can then travel freely trough the electronic environment
and induce a spin flip at the other localised spin. Therefore, all the physics we are
interested in is happening at the Fermi level with an energy around the Fermi energy
EF of the electronic environment. Instead of attempting to keep track of all possible
momentum states as in Eqs. (5.73) and (5.74) and all possible excitations, we approximate
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5 Multiple spins in a common environment

the density matrix of the electrons as

ρel(t) ≈
�
1 +

�

l

�

αα�

�
Λα

α�(xl, t)Ψ†
α(xl)Ψα�(xl) + Λ̃α

α�(xl, t)Ψα�(xl)Ψ†
α(xl)

��
ρeq

el . (5.75)

The index l = 1, 2 refers to position where the excitation due to the contact interaction
with the localised spins was created. The approximation in Eq. (5.75) allows for a sin-
gle particle or hole excitation. Within this approach the electron spin fluctuations are
captured for a particle excitation by the function Λα

α�(xl, t) and by Λ̃α
α�(xl, t) for a hole ex-

citation. They can be understood as a time and spin dependent amplitudes which assign
a changing weight to the Fermi distribution function depending on the current state of
environment. All dynamics is captured by these functions and what remains later on for
the correlation functions is thus evaluated in the equilibrium distribution. In momentum
space the approximation of the electron density matrix is given by

ρel(t) ≈

1 +

�

kk�,l

�

αα�
ei(k−k�)xl

�
Λα

α�(xl, t)c†
kαck�α� + Λ̃α

α�(xl, t)ck�α�c†
kα

�

 ρeq

el . (5.76)

Since the time dependence of the electron density is picked up by the functions Λα
α�(xl, t),

Λ̃α
α�(xl, t) we are now able to immediately find an equation of motion for the full correlator

in Eq. (5.70)

(2π)2

N2
�

pp�
ei(p−p�)xj

d

dt

�
c†

pσcp�σ�
�

el,t
= Yσ̄ (t, ρI,j(t), ρel(t)) . (5.77)

The function Yσ̄ includes all contributions for the right-hand side of the equation of
motion, the eigendynamics term and Eqs. (5.63) to (5.66), after applying the operator

Sσ̄
j =

�

pp�
ei(p−p�)xj c†

pσcp�σ� , (5.78)

and taking the trace only affects the electronic degrees of freedom. In particular we have

Yσ̄(t, ρI,j , ρel) = YED(t) +
�

j,β̄

ρβ̄
j (t)Ylin(xj , t, β̄) +

�

j,β̄γ̄

� t

0
dt�
�

ρβ̄γ̄
j (t�)Y2nd,1(xj , t, t�, β̄, γ̄)

+ ρβ̄γ̄
j (t�)Y2nd,2(xj , t, t�, β̄, γ̄) + ρβ̄γ̄

j (t�)
�
Sβ̄γ̄

j

�
el,t� Y2nd,3(xj , t, t�, β̄, γ̄)

�
.

(5.79)

We use ρβ̄
j , ρβ̄γ̄

j as a shorthand for the contributions from the localised spin at position
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xj from Eqs. (5.63) to (5.66). The superscripts β̄ indicate that the correct component is
determined by the electron spin configuration β̄.

Substituting Eq. (5.76) into Eq. (5.77) will lead to a differential equation for the func-
tions Λα

α�(xl, t) and Λ̃α
α�(xl, t). Instead of coupled differential equations for all possible

momenta, we reduced the number of equations to Nj × 4 × 2 with Nj = 2 the number of
localised spins and four different combinations of the spins α, α� =↑, ↓. For each combina-
tion we find two sets of decoupled equations, one for the particle excitations Λ and one for
the hole excitations Λ̃. The different contributions Yi from Eq. (5.79) generate different
commutators for which we still require an expression. In particular, the eigendynamics
term is given by

YED(t) = −iTrel




�

pp�
ei(p−p�)xj c†

pσcp�σ�
�
H �

el, ρel(t)
�


 . (5.80)

The term linear in the interaction in Eq. (5.63) contains the commutator
�
Sβ̄

j , ρel(t)
�

and
the corresponding electronic contribution is captured by

Ylin(t, β̄) = Trel




�

pp�
ei(p−p�)xj c†

pσcp�σ�

��

nn�
ei(n−n�)xj c†

nβcn�β� , ρel(t)
�
 . (5.81)

In both second order terms in Eqs. (5.64) and (5.65) the commutators
�
Sβ̄ , e(t−t�)LelSγ̄ρel(t�)

�
and

�
e(t−t�)Lelρel(t�)Sγ̄ , Sβ̄

�
,

appear. Applying Eq. (5.78) and including the trace of the electronic degrees of freedom
leads to

Trel
�

Sσ̄
�
Sβ̄ , e(t−t�)LelSγ̄ρel(t�)

��
= Trel

��
Sσ̄(t� − t), Sβ̄(t� − t)

�
Sγ̄ρel(t�)

�
, (5.82)

Trel
�

Sσ̄
�
e(t−t�)Lelρel(t�)Sγ̄ , Sβ̄

��
= Trel

�
Sγ̄
�
Sβ̄(t� − t), Sσ̄(t� − t)

�
ρel(t�)

�
(5.83)

where we used the cyclic property of the trace to shift the time evolution. In terms of
the fermionic expectation values the contribution for the O(A2) term is defined by

Y2nd,1(t, t�, β̄, γ̄)

= eibI
z(t�−t)σ(1−δσσ� )eibI

z(t�−t)β(1−δββ� )Trel

��

rr�
ei(r−r�)xj c†

rγcr�γ�ρel(t�)
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×

�

pp�
ei(p−p�)xj c†

pσ(t� − t)cp�σ�(t� − t),
�

nn�
ei(n−n�)xj c†

nβ(t� − t)cn�β�(t� − t)



�

, (5.84)

Y2nd,2(t, t�, β̄, γ̄)

= eibI
z(t�−t)σ(1−δσσ� )eibI

z(t�−t)β(1−δββ� )Trel

�
ρel(t�)

�

rr�
ei(r−r�)xj c†

rγcr�γ�

×

�

nn�
ei(n−n�)xj c†

nβ(t� − t)cn�β�(t� − t),
�

pp�
ei(p−p�)xj c†

pσ(t� − t)cp�σ�(t� − t)



�

. (5.85)

The phase factor due to the magnetic field depends on the spin configuration of the
original electron spin operator S σ̄. The factor σ(1 − δσσ�) in the exponential determines
the phase contribution, specifically

Sσ̄ = Sz : σ = σ� → σ(1 − δσσ�) = 0, (5.86)

Sσ̄ = S+ : σ =↑, σ� =↓ → σ(1 − δσσ�) = +1, (5.87)

Sσ̄ = S− : σ =↓, σ� =↑ → σ(1 − δσσ�) = −1. (5.88)

Finally we require the expression for the last O(A2) term in Eq. (5.66) where the com-
mutators take the form

�
exp[(t − t�)Lel]ρel(t�), Sβ̄

�
. Again applying Eq. (5.78) and taking

the trace with respect to the electrons we have

Trel
�

Sσ̄
�
e(t−t�)Lelρel(t�), Sβ̄

��
= Trel

��
Sβ̄(t� − t), Sσ̄(t� − t)

�
ρel(t�)

�
. (5.89)

and we acquire the expression

Y2nd,3(t, t�, β̄, γ̄) = eibI
z(t�−t)σ(1−δσσ� )eibI

z(t�−t)β(1−δββ� )

Trel






�

nn�
ei(n−n�)xj c†

nβ(t� − t)cn�β�(t� − t),
�

pp�
ei(p−p�)xj c†

pσ(t� − t)cp�σ�(t� − t)


 ρel(t�)



 .

(5.90)

In the following subsections when deriving the expressions for all Yi explicitly we use the
superscript ‘p’ or ‘h’ to indicate if the term describes the particle or hole contribution.
Furthermore we follow the convention that the indices σ, σ �, β, β�, γ, γ� are reserved to
label the fixed components which are determined by the spin components of the rele-
vant commutators from Eqs. (5.63) to (5.66) and according to the definitions above in
Eqs. (5.80), (5.81), (5.84), (5.85) and (5.90). The sum of all those terms including their
prefactors from the electron equation of motion define the right-hand side of the differ-
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ential equation determining Λα
α�(xl, t), Λ̃α

α�(xl, t). To find a closed equation of motion for
each Λα

α�(xl, t), Λ̃α
α�(xl, t) we will use the fact that the time evolution under the action of

Lel is diagonal in the fermionic creation and annihilation operators and reduces to the
phase factor exp(±i�kt).

To deal with the expectation values of fermionic creation and annihilation operators
we use a systematic cumulant expansion [169]. Up to lowest order this corresponds to the
Wick theorem [128] and we will refer to the cumulant expansion as Wick decomposition.
We are addressing short lived fluctuations therefore we expect the lowest order to be
sufficiently accurate. Wick’s theorem itself is not valid in our case as the electron density
matrix is not quadratic when taking into account the full history [128, 170]. Using the
Wick decomposition of the expectation values also bypasses the need to find an expression
for Eq. (5.71) as every expectation value in the equation of motion for the localised spin
can be decomposed into expectation values of a single pairs of creation and annihilation
operators �c†c�. For two pairs of fermionic creation and annihilation operators the Wick
decomposition allows us to write
�
c†

pσcp�σ�c†
rγcr�γ�

�
el,eq

=
�
c†

pσcp�σ�
�

el,eq

�
c†

rγcr�γ�
�

el,eq
+
�
c†

pσcr�γ�
�

el,eq

�
cp�σ�c†

rγ

�
el,eq

,

(5.91)

and for three pairs we arrive at
�
c†

pσcp�σ�c†
rγcr�γ�c†

kαck�α�
�

el,eq

=
�
c†

pσcp�σ�
�

el,eq

�
c†

rγcr�γ�
�

el,eq

�
c†

kαck�α�
�

el,eq
+
�
c†

pσcp�σ�
�

el,eq

�
c†

rγck�α�
�

el,eq

�
cr�γ�c†

kα

�
el,eq

+
�
c†

pσcr�γ�
�

el,eq

�
cp�σ�c†

rγ

�
el,eq

�
c†

kαck�α�
�

el,eq
−
�
c†

pσcr�γ�
�

el,eq

�
cp�σ�c†

kα

�
el,eq

�
c†

rγck�α�
�

el,eq

+
�
c†

pσck�α�
�

el,eq

�
cp�σ�c†

rγ

�
el,eq

�
cr�γ�c†

kα

�
el,eq

+
�
c†

pσck�α�
�

el,eq

�
cp�σ�c†

kα

�
el,eq

�
c†

rγcr�γ�
�

el,eq
.

(5.92)

The complicated dynamical behaviour of ρel(t) is picked up by the functions Λ(xj , t),
Λ̃(xj , t). Therefore each expectation value of the number operator is taken with respect
to the equilibrium state which is given by

�
c†

pσcp�σ�
�

el,eq
= δpp�δσσ�f(�p), (5.93)

with the Fermi-Dirac distribution f(�p) = (1 + exp[�p/kBT ])−1. When inserting Eq. (5.76)
into the left-hand side of Eq. (5.77), using the Wick decomposition Eq. (5.91) and the
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relation in Eq. (5.93) we obtain for the particles

�

pp�
ei(p−p�)xj

d

dt

�
c†

pσcp�σ�
�

el,t
= 1

N2
�

pk

�

α,l=1,2
f(�p)f(�k) d

dt
Λα

α(xl, t)

+ 1
N2

�

pk

�

l=1,2
eip(xj−xl)e−ik(xj−xl)f(�p) (1 − f(�k)) d

dt
Λσ�

σ (xl, t), (5.94)

and for the holes

�

pp�
ei(p−p�)xj

d

dt

�
c†

pσcp�σ�
�

el,t
= 1

N2
�

pk

�

α,l=1,2
f(�p)f(�k) d

dt
Λ̃α

α(xl, t)

− 1
N2

�

pk

�

l=1,2
eip(xj−xl)e−ik(xj−xl)f(�p) (1 − f(�k)) d

dt
Λ̃σ�

σ (xl, t). (5.95)

The position label j corresponds the location of the localised spin and is fixed just like
the spin indices σ, σ�. In the following we derive the expressions for Eqs. (5.80), (5.81),
(5.84), (5.85) and (5.90) and further details can be found in Appendix F.2.

5.2.3.1 Eigendynamics and linear term

To derive the contribution of Lelρel(t) to the equation of motion for Λα
α� and Λ̃α

α� we
rewrite the electron Hamiltonian of Eq. (5.62) fully in terms of fermionic creation and
annihilation operators

H �
el =

�

kσ

(�k + σbz) c†
kσckσ. (5.96)

The spin index σ as prefactor of the magnetic field contribution bz should be interpreted
as the sign +1 if σ =↑ and −1 if σ =↓. Inserting Eq. (5.76) into Eq. (5.80) leads here
to the commutator between two pairs of creation and annihilation operators which will
regularly appear throughout the derivation. Generally it can be replaced by

�
c†

pσcp�σ� , c†
nβcn�β�

�
= δnp�δβσ�c†

pσcn�β� − δn�pδβ�σc†
nβcp�σ� . (5.97)
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5.2 Master equation within self-consistent projection operator approach

Using the relation Eq. (5.97) after substituting the approximation for ρel(t) in Eq. (5.80)
leads to

Y p
ED(t)

= i
�

pn

�

l=1,2
eip(xj−xl)e−in(xj−xl)f(�p) (1 − f(�n)) Λσ�

σ (xl, t)
�
�p − �n + bz

�
σ − σ��� ,

(5.98)

for the part capturing the particle excitation. For the hole contribution we obtain the
same terms with the opposite sign due to the particle-hole symmetry

Y h
ED(t)

= i
�

pn

�

l=1,2
eip(xj−xl)e−in(xj−xl)f(�p) (1 − f(�n)) Λ̃σ�

σ (xl, t)
�
�n − �p + bz

�
σ� − σ

��
.

(5.99)

To get to these results we additionally used the fact that [Hel, ρeq
el ] = 0. The linear term

of Eq. (5.81) when inserting Eq. (5.76) and again using Eq. (5.97) yields

Y p
lin(t, β̄) =

�

pn

�

l=1,2
eip(xj−xl)e−in(xj−xl)f(�p) (1 − f(�n))

�
δσ�βΛβ�

σ (xl, t) − δσβ�Λσ�
β (xl, t)

�
.

(5.100)

Similarly, the corresponding hole contribution is given by

Y h
lin(t, β̄) = −Y p

lin(t, β̄), (5.101)

where Λ is replaced by Λ̃.

5.2.3.2 O(A2): Two- and one-point correlators

The first two O(A2) terms generate the same commutators. Substituting Eq. (5.76) into
Eq. (5.84) for the particle contribution leads to

Y p
2nd,1(t, t�, β̄, γ̄) = eibI

z(t�−t)σ(1−δσσ� )eibI
z(t�−t)β(1−δββ� )

�

pp�
nn�

�

rr�
kk�

�

αα�
l=1,2

ei(p−p�)xj ei(r−r�)xj ei(n−n�)xj ei(k−k�)xlΛα
α�(xl, t�)

×
�

δp�nδσ�βei(�p−�n� )(t�−t)
�
c†

pσcn�β�c†
rγcr�γ�c†

kαck�α�
�

el,eq
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− δpn�δσβ�ei(�n−�p� )(t�−t)
�
c†

nβcp�σ�c†
rγcr�γ�c†

kαck�α�
�

el,eq

�
(5.102)

Decomposing the expectation values according to Eq. (5.92) and using the relation
Eq. (5.93) leads to

Y p
2nd,1(t, t�, β̄, γ̄)

= eibI
z(t�−t)σ(1−δσσ� )eibI

z(t�−t)β(1−δββ� )

��

prk

�

α,l=1,2
ei(�p−�r)(t�−t)f(�p)f(�k) (1 − f(�r)) Λα

α(xl, t�)
�
δσ�βδσγ�δβ�γ − δβ�σδβγ�δσ�γ

�

+
�

prk

�

l=1,2
ei(�p−�k)(t�−t)eir(xj−xl)e−ik(xj−xl)f(�p)f(�r) (1 − f(�k))

×
�
δσ�βδσγ�Λβ�

γ (xl, t�) − δβ�σδβγ�Λσ�
γ (xl, t�)

�

+
�

prk

�

l=1,2
ei(�p−�r)(t�−t)eip(xj−xl)e−ik(xj−xl)f(�p) (1 − f(�r)) (1 − f(�k))

×
�
δσ�βδβ�γΛγ�

σ (xl, t�) − δβ�σδσ�γΛγ�
β (xl, t�)

�

+
�

prk

�

l=1,2
ei(�p−�k)(t�−t)eip(xj−xl)e−ik(xj−xl)f(�p)f(�r) (1 − f(�k))

×
�
δσ�βδγγ�Λβ�

σ (xl, t�) − δβ�σδγ�γΛσ�
β (xl, t�)

� �
. (5.103)

For the hole contribution we can again make use of the particle-hole symmetry and

Y h
2nd,1(t, t�, β̄, γ̄) = −Y p

2nd,1(t, t�, β̄, γ̄) (5.104)

where Λ → Λ̃. Similarly, the second commutator and its corresponding trace in Eq. (5.85)
reads

Y p
2nd,2(t, t�, β̄, γ̄) = eibI

z(t�−t)σ(1−δσσ� )eibI
z(t�−t)β(1−δββ� )

�

pp�
nn�

�

rr�
kk�

�

αα�
l=1,2

ei(p−p�)xj ei(r−r�)xj ei(n−n�)xj ei(k−k�)xlΛα
α�(xl, t�)

×
�

δpn�δσβ�ei(�n−�p� )(t�−t)
�
c†

rγcr�γ�c†
nβcp�σ�c†

kαck�α�
�

el,eq

− δp�nδσ�βei(�p−�n� )(t�−t)
�
c†

rγcr�γ�c†
pσcn�β�c†

kαck�α�
�

el,eq

�
(5.105)
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5.2 Master equation within self-consistent projection operator approach

after inserting the approximation Eq. (5.75). Using Wick’s theorem according to Eq. (5.92)
and rewriting the expectation values in terms of the Fermi distribution as in Eq. (5.93)
we obtain

Y p
2nd,2(t, t�, β̄, γ̄)

= eibI
z(t�−t)σ(1−δσσ� )eibI

z(t�−t)β(1−δββ� )

��

prk

�

α,l=1,2
ei(�p−�r)(t�−t)f(�r)f(�k) (1 − f(�p)) Λα

α(xl, t�)
�
δσβ�δγσ�δβγ� − δβσ�δβ�γδσγ�

�

+
�

prk

�

l=1,2
ei(�p−�k)(t�−t)eip(xj−xl)e−ik(xj−xl)f(�p)f(�r) (1 − f(�k))

×
�
δσβ�δγγ�Λσ�

β (xl, t�) − δβσ�δγγ�Λβ�
σ (xl, t�)

�

+
�

prk

�

l=1,2
ei(�p−�r)(t�−t)eip(xj−xl)e−ik(xj−xl)f(�p)f(�r) (1 − f(�k))

×
�
δσβ�δγσ�Λγ�

β (xl, t�) − δβσ�δγβ�Λγ�
σ (xl, t�)

�

+
�

prk

�

l=1,2
ei(�p−�k)(t�−t)eir(xj−xl)e−ik(xj−xl)f(�r) (1 − f(�p)) (1 − f(�k))

×
�
δσβ�δβγ�Λσ�

γ (xl, t�) − δβσ�δσγ�Λβ�
γ (xl, t�)

� �
. (5.106)

Upon replacing Λ by the Λ̃ and taking the opposite signs leads to hole contribution with

Y h
2nd,2(t, t�, β̄, γ̄) = −Y p

2nd,2(t, t�, β̄, γ̄). (5.107)

5.2.3.3 O(A2): Renormalisation term

The final contribution to the equation of motion for the functions Λ, Λ̃ comes from
Eq. (5.90). Substituting Eq. (5.75) for ρel(t�) into the expression Eq. (5.90) the con-
tribution can be written as

Y p
2nd,3(t, t�, β̄, γ̄) = eibI

z(t�−t)σ(1−δσσ� )eibI
z(t�−t)β(1−δββ� )

�

pp�
nn�

�

kk�

�

αα�
l=1,2

ei(p−p�)xj ei(n−n�)xj ei(k−k�)xlΛα
α�(xl, t�)

×
�

δpn�δσβ�ei(�n−�p� )(t�−t)
�
c†

nβcp�σ�c†
kαck�α�

�
el,eq

− δp�nδσ�βei(�p−�n� )(t�−t)
�
c†

pσcn�β�c†
kαck�α�

�
el,eq

�
. (5.108)
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Utilising Eq. (5.91) and Eq. (5.93) we arrive at

Y p
2nd,3(t, t�, β̄, γ̄) = eibI

z(t�−t)σ(1−δσσ� )eibI
z(t�−t)β(1−δββ� )

�

pk

ei(�p−�k)(t−t�)eip(xj−xl)e−ik(xj−xl)f(�p) (1 − f(�k))

×
�
δσβ�Λσ�

β (xl, t�) − δβσ�Λβ�
σ (xl, t�)

�
, (5.109)

and accordingly for the hole contribution

Y h
2nd,3(t, t�, β̄, γ̄) = −Y p

2nd,3(t, t�, β̄, γ̄). (5.110)

With this last contribution we found all expressions Yi entering the equation of motion
of the electron correlation functions in Eq. (5.77).

5.2.4 Intermediate conclusion

Collecting all Yi from Eqs. (5.98), (5.100), (5.103), (5.106) and (5.109) and their cor-
responding prefactors from the electron equation of motion Eqs. (5.63) to (5.66) leads
to a closed set of equations of motion for the functions Λ, Λ̃ which capture the time-
dependent electron spin fluctuations. From the analytical result up to this point we are
able to make some observations. We can interpret the functions Λ, Λ̃ as a spin and time-
dependent weight for the Fermi distribution functions. They therefore incorporate the
small shift of the Fermi energy due to an excitation in the electronic bath. Furthermore,
we find particle-hole fluctuations identical to the single spin case discussed in Chapter 3
as we see from the combinations of f(�) (1 − f(�)) in the different terms Y . In which way
the temporal and spatial correlations enter can best be seen from the momentum integrals
of the continuum limit appearing in the equation of motion of the electronic correlations
in each Yi which we discuss below. We find purely temporal contributions encoding the
backaction of the electrons back onto the same localised spin which excited the environ-
ment to begin with. These are the same as in the single spin case. Furthermore, there
are spatial contributions which we can attribute to the effective coupling of the localised
spins through the bath and therefore identify it as an RKKY-like interaction. Lastly,
there are combinations of both temporal and spatial correlations which mix the different
localised spin sites leading to a dynamical RKKY interaction. The temporal correlations
only enter in the O(A2) terms and stem from the action of the memory kernel. Similar
to our results from the single spin case we expect that these contribution give rise to
non-Markovian dynamics in the full solution of the problem. We analyse the momentum
contributions to the spatial and temporal correlations below.
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5.2 Master equation within self-consistent projection operator approach

5.2.4.1 Continuum limit of momentum integrals

We specify the appearing momentum integrals in the different Yi and more details on
the calculation of the different integrals can be found in Appendix F.3. To evaluate the
momentum and energy integrals we consider a two dimensional Fermi gas for the con-
duction electrons. The effective interaction mediated by the electrons decays as 1/rd in
d spatial dimensions, see Section 5.1, therefore in two dimensions the spatial correlations
are more prominent than in three, and two dimensional electronic systems are an acces-
sible experimental platform. We specifically mark all vector quantities where |k| = k is
implied. Additionally, we assume a linear dispersion for the electrons

�k ∼ �k = vF (k − kF ) (5.111)

with kF and vF the Fermi momentum and the Fermi velocity respectively. Since all the
important universal physics occurs in the vicinity of the Fermi surface, the linearisation
corresponds to the wide band limit which is fulfilled for usual solid state systems. In the
second order term of Eq. (5.103) for the contribution Λα

α diagonal in the spin components
we find

It :=
�

kk�
ei(�k−�k� )(t�−t)f(�k) (1 − f(�k�)) (5.112)

and its complex conjugate in Eq. (5.106). Together those terms are the same as we
found in the Nakajima-Zwanzig master equation for the single spin case for the spin-
spin correlation function in Eq. (3.79). We solve Eq. (5.112) by integrating over the
density of states ν(�) = ν0 exp (−|�|/ξ0) and introducing the high energy cutoff ξ0 as in
Section 3.2.3, which incorporates all non-universal band structure effects. The unit cell
volume V defines ν0 = V/(2π)2. This leads to

It =
�

d�ν(�)f(�)
�

d��ν(��)
�
1 − f(��)

�

= (πkBT )2

sin2
�
πkBT

�
i(t� − t) + ξ−1

0

�� . (5.113)

Eq. (5.113) together with its complex conjugate correspond to the electron spin-spin
correlations function found in the standard Nakajima-Zwanzig approach. In the single
spin setup their short time behaviour lead to memory effects and finally non-Markovian
dynamics. In the current setup of two spins in a common environment they are further
modulated by the time-dependent amplitude Λ and Λ̃.
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The spatial modulations encoding the effective RKKY-type coupling enter through the
term

Ix :=
�

k,l=1,2
eik·(xj−xl)f(�k) (5.114)

which appears throughout the equation of motion for Λ, Λ̃ in all Yi. It reduces to a similar
sum as Eq. (5.112) if xj = xl and we denote x = xj − xl for j �= l. In the continuum
limit Eq. (5.114) reads

Ix =
�

d2k

(2π)2
eik·x

1 + e�(k−µ)/kBT

= ν0
2π

� ∞

−∞
d�

� 2π

0
dφ ei(kF +�/vF )x cos φ 1

1 + e�/kBT
(5.115)

where we write the momentum integral as an integral over the energy � using Eq. (5.111).
The integral can be evaluated making use of the residue theorem in the complex plane,
see Appendix F.3, which leads to

Ix = −2πkBTν0Re
�
i
�

n≥0

�
J0

�
kF x + i

πkBT

vF
(2n + 1)x

�

+ iH0

�
kF x + i

πkBT

vF
(2n + 1)x

���
, (5.116)

with the Bessel function Jλ(z) [131]

Jλ(z) =
�

z

2

�λ ∞�

n=0
(−1)n

�
z2

4

�n

n!Γ(λ + n + 1) , (5.117)

and the Struve function Hλ(z) [131]

Hλ(z) =
�

z

2

�λ+1 ∞�

n=0
(−1)n

�
z2

2

�2n

Γ
�
n + 3

2

�
Γ
�
λ + n + 3

2

� , (5.118)

where Γ(z) is Euler’s Gamma function. The spatial modulations in the RKKY interaction
generally come from the correlation of conduction electrons at different positions, i.e.,
�SiSj�. In our case these correlations do not exist. The spatial mixing is more subtle and
enters through the time-dependent bath reference state. Nonetheless, we find an RKKY-
like coupling with a 1/

√
x behaviour instead of 1/x2. Apart from the varied algebraic
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5.2 Master equation within self-consistent projection operator approach

decay, the expression Eq. (5.116) is similar to the expressions for the RKKY interaction
in lower spatial dimension found in the literature where Bessel functions or closely related
functions often occur [164, 165, 171].

Inserting the asymptotic form of the Bessel and Struve functions J0(z) and H0(z)

J0(z) ∼
�

2
πz

sin
�

z + π

4

�
, (5.119)

H0(z) ∼ −
�

2
πz

cos
�

z + π

4

�
, (5.120)

into Eq. (5.116) leads to

Ix ≈ −2πkBTν0Re
�
i

�
2
π

�

n≥0

�
sin
�
z̃n + π

4
�− i cos

�
z̃n + π

4
�

√
z̃n

��
(5.121)

with z̃n = kF x + iπxkBT (2n + 1)/vF . Rearranging this last expression Eq. (5.116) can
be written as

Ix ≈ −2ν0

�
kBTvF

x
e−x/xT Re

�
eikF xΦ

�
e−2x/xT ,

1
2 ,

1
2 − i

vF kF

πkBT

��
. (5.122)

where Φ(z, s, a) is Lerch’s transcendent [131, 172]

Φ(z, s, a) =
∞�

n=0

zn

(a + n)s . (5.123)

Furthermore, we introduced the thermal length scale xT = vF /πkBT . The last argument
of Φ in Eq. (5.122) is large since a = 1/2 − ivF kF /πkBT with vF kF = 2EF . In this limit
an asymptotic expansion for Φ(z, s, a) is given by [173]

Φ(z, s, a) ≈ 1
1 − z

1
as

, (5.124)

up to the lowest order in as. Using the asymptotic expansion in Eq. (5.122) and deter-
mining the real part immediately leads to

Ix ≈ 2ν0

���� kBTvF

2x
�

1 + 4k2
F x2

T

e−x/xT

�
1 − 1

tanh(x/xT )

�
cos (kF x)

≈ 2ν0kBTe−x/xT

�
1 − 1

tanh(x/xT )

� cos (kF x)√
kF x

. (5.125)
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Figure 5.2: Plot of the asymptotic behaviour of spatial correlations captured by the integral Ix

according to the expression Eq. (5.125) with kF xT = 100.

In the last line we approximated
�

1 + 4k2
F x2

T ≈ 2kF xT in the denominator of the square
root. The asymptotic behaviour Eq. (5.125) is plotted in Fig. 5.2 for kF xT = 100. Like the
RKKY interaction it is oscillatory function and the spatial correlations are exponentially
suppressed and tend to zero for x/xT ∼ 1.

Finally we find terms with mixed temporal and spatial modulations

It,x :=
�

k,l=1,2
ei�kteik·(xj−xl)f(�k), (5.126)

which reads in the continuum limit

It,x =
�

d2k

(2π)2 e−i�kt eik·x

1 + e(�k−µ)/kBT

= ν0
2π

� ∞

−∞
d�

� 2π

0
dφei�(t−iξ−1

0 ) ei(kF +�/vF )x cos φ

1 + e�/kBT
(5.127)

The high energy cutoff ξ0 = EF introduces the shortest time scale of the system we are
able to resolve with t > ξ−1

0 . For the spatial part we need to compare the length x to the
Fermi length λF = 1/kF as EF = kF vF /2. If x � λF the term in the integral involving
x is irrelevant as we assume t > ξ−1

0 to begin with. In this limit the exchange between
the localised spins is too fast to resolve. If on the other hand x � λF or even x ∼ λF

we need to distinguish between long and short times t. In the short time limit t → 0 the
spatial contribution is given by Eq. (5.125). In the limit where t + cos φx/vF > 0 we can
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directly evaluate the angular integral of Eq. (5.127) which leads to

It,x = ν0

�
d�ei�(t−iξ0)

J0
�
kF x + �

vF
x
�

1 + e�/kBT
, (5.128)

with the Bessel function J0(z). The energy integral can again be solved by using the
residue theorem and we obtain

It,x = −2πkBTν0
�

n≥0
e−πkBT (2n+1)(t−iξ−1

0 )J0

�
kF x + i

πkBT

vF
(2n + 1)x

�
. (5.129)

Again we introduce the asymptotic form of the Bessel function J0(z) of Eq. (5.119) and
similar to above we find a combination of Lerch’s transcendents

It,x = −ν0

�
kBTvF

x
e−iπkBT ξ−1

0 −t/2τT

×
�
eikF x−x/xF Φ

�
e−t/τT +i2πkBT ξ−1

0 −2x/xF ,
1
2 ,

1
2 − i

vF kF

2πkBT

�

+ ie−ikF x+x/xF Φ
�

e−t/τT +i2πkBT ξ−1
0 +2x/xF ),

1
2 ,

1
2 − i

vF kF

2πkBT

��
, (5.130)

with the thermal time τT = 1/2πkBT and the thermal length xT = vF /πkBT . The tem-
poral part of It,x is suppressed exponentially but enters the more complicated description
through the argument of Lerch’s transcendent. The spatial contribution is more involved
but it is nonetheless of a similar form as Ix in Eq. (5.125), leading again to the long range
RKKY-type behaviour.

For the range of finite times where t + cos φx/vF < 0 we are not able to find a closed
expression. But with the description of the purely spatial correlations in Eq. (5.125) and
the mixed contributions of Eq. (5.130) we have controlled access to the limiting cases for
very short times t → 0 and longer times where t + cos φx/vF > 0. In the intermediate
range the nature of the correlations does not change and therefore we can cover this range
by interpolating between the two limiting results Eq. (5.125) and Eq. (5.130).

5.3 Numerical progress

Although we have reduced the degrees of freedom relevant for the system of two localised
spins coupled to conduction electrons we are not able to solve the set of coupled equation
of motions of their respective reduced density matrices analytically. The final equation
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we need to solve is a Volterra integro-differential equation of the form

d

dt
y(t) = g(t, y(t)) +

� t

t0
dt�K(t, t�, y(t�)). (5.131)

Just as a Volterra integral equation the integro-differential version Eq. (5.131) has a
unique solution [162]. In our specific case y is the vector

y(t) =
�
ρI,j=1(t), ρI,j=2(t),Λ(t, x1), Λ̃(t, x1),Λ(t, x2), Λ̃(t, x2)

�T
. (5.132)

Here, each Λ, Λ̃ represents the tuple of all Λα
α� , Λ̃α

α� for every possible spin combination
α, α� =↑↓, specifically

Λ(t, xl) =
�
Λ↑

↑(t, xl), Λ↑
↓(t, xl), Λ↓

↑(t, xl), Λ↓
↓(t, xl)

�
. (5.133)

The exact form of the function g and the kernel K in the integrand of Eq. (5.131) are
determined by the exact form of the equation of motion for each subsystem. For the
localised spin density matrix ρI,j the function g corresponds to the O(A) term as in
Eq. (5.24). The kernel K is built from the matrices M2nd,i of electron spin correlation
functions in Eq. (5.32). For the functions Λα

α� , Λ̃α
α� we collect the contributions from the

different Yi in Eqs. (5.98), (5.100), (5.103), (5.106) and (5.109). All together a system
of 24 coupled integro-differential equations of motion needs to be solved. Although still
quite a large number of equations this is a substantial improvement over the infinite
dimensional set of equations that would need to be solved if the full bath density matrix
were to be kept.

5.3.1 Patade-Bhalekar algorithm

To solve the integro-differential Eq. (5.131) we make use of an algorithm proposed by
Patade and Bhalekar [162] and we sketch the derivation based on their paper in the
following. The first step entails the integration of Eq. (5.131) and therefore turning the
integro-differential equation into an ordinary Volterra equation

y(tn + h) = y(tn) +
� tn+h

tn

dt g(t, y(t)) +
� tn+h

tn

dt

� t

t0
dt� K(t, t�, y(t�)). (5.134)

The time t is discretised with h being the step size between two times tn and tn+1. The
value of y at the next time step is determined iteratively and we denote y(tn) = yn. Using
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the trapezoidal rule twice to evaluate the integrals in Eq. (5.134) leads to

yn+1 = yn + h

2 g(tn, yn) + h2

4 (K (tn, t0, y0) + K (tn, tn, yn) + K (tn+1, t0, y0))

+ h2

2




n−1�

i=1
K (tn, ti, yi) +

j�

i=1
K (tn+1, ti, yi)


+ h

2 g (tn+1, yn+1)

+ h2

4 K (xn+1, xn+1, yn+1) + O
�
h3
�

. (5.135)

Up to second order in the step size h this can be rewritten as [162, 163]

yn+1 = M1 + h

2 g(xt+1, M1) + h2

4 K (tn+1, tn+1, M2) (5.136)

with

M1 = yn + h

2 g(tn, yn) + h2

4 (K (tn, t0, y0) + K (tn, tn, yn) + K (tn+1, t0, y0))

+ h2

2




n−1�

i=1
K (tn, ti, yi) +

j�

i=1
K (tn+1, ti, yi)


 , (5.137)

M2 = M1 + h

2 g(tn+1, M1) + h2

4 K (tn+1, tn+1, M1) . (5.138)

Eq. (5.136) provides an algorithm to iteratively solve the integro-differential Eq. (5.131)
with an error of O(h3). The iterative scheme is very fast compared to other approaches,
to the expense that the error is O(h3). However, this is completely sufficient for our needs.
Indeed the approximations underlying the integro-differential equations are more signifi-
cant than the errors accumulated here. As long as we choose h < 1/ξ−1

0 the integration
provides accurate results for the short-time dynamics which are most interesting.

5.3.2 ODE algorithm

To be able to perform a numerical cross check we use a second approach to solve
Eq. (5.131). This algorithm relies on reducing the integro-differential equation subse-
quently to an ordinary differential equation [174, 175], therefore we will refer to this
algorithm as ODE approach in the following. The procedure’s starting point is an initial
guess which is calculated from only the first term of Eq. (5.131)

d

dt
y(0)(t) = g(t, y(t)). (5.139)
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The solution y(0) is inserted into the right-hand side of Eq. (5.131), resulting in a new
ordinary differential equation for a new guess y(1)

d

dt
y(1)(t) = g

�
t, y(0)(t)

�
+
� t

t0
dt�K

�
t, t�, y(0)(t�).

�
. (5.140)

The solution y(1) provides a better approximation to the general solution y and the step
can be iterated using the new solution y(1) instead of y(0) on the right-hand side. The
global error

Δy =
��

n

|y(i)(tn) − y(j)(tn)| (5.141)

between the two approximated solutions y(i) and y(j) for all n time steps defines a toler-
ance to decide if the algorithm is repeated. Although easy to implement the disadvantage
of the algorithm is that the kernel K has to take the form

K
�
t, t�, y(t�)

�
= k1(t, t�)k2(y(t�)). (5.142)

Depending on the structure of Eq. (5.131) this might not be possible. In fact we are able to
use the ODE procedure as a cross check for the single spin system in an equilibrium bath,
but the algorithm is not suited to find the full numerical solution for a time-dependent
bath reference state.

5.3.3 Benchmarking of the single spin case

To test the algorithm in Eq. (5.136) we study the single spin case in an equilibrium
environment in the zero-field limit and compare to the analytical results from Chapter 3.
The corresponding equation of motions reads

d

dt
ρI(t) = −

� t

0
dt�Σ(t − t�)ρI(t), (5.143)

as derived in Chapter 3. The memory kernel Σ(t − t�) and the reduced density matrix ρI

define the kernel function K in Eq. (5.131). In the zero-field limit, the longitudinal and
transverse components ρz(t) and ρ± coincide, therefore we limit the current discussion
to the z component ρz(t) = ρ↑(t) − ρ↓(t). In the basis of the localised spin operator the
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matrix representation of Eq. (5.143) is given by

d

dt

�
ρ↑(t)
ρ↓(t)

�
=
� t

0
dt� ˆ̂Σz(t − t�)

�
ρ↑(t)
ρ↓(t)

�
, (5.144)

with

ˆ̂Σz(t) =
�

F1(t) −F2(t)
−F1(t) F2(t)

�
. (5.145)

The Laplace transformations of the electron spin-spin correlation functions F1,2 were
derived in Eqs. (3.62) and (3.63) and the analytical expressions are given by Eqs. (3.97)
and (3.98). Consequently we obtain for the time domain

F1(t) = F2(t) = −2αRe [�S−(t)S+(0)�]

= −4α (πkBT )2 1 − cos (2πkBT/ξ0) cosh (2πkBTt)
(cos (2πkBT/ξ0) − cosh (2πkBTt))2 , (5.146)

by simply not performing the Laplace transformation in Eqs. (3.97) and (3.98) and setting
bz

I = 0. In Chapter 3 the parameter α = A2/E2
F was the small expansion parameter

and is set by the interaction A and the Fermi energy EF . To obtain the analytical
expressions Eqs. (3.97) and (3.98) we furthermore introduced the high energy cutoff ξ0

which set the band width of the energy band to regulate the density of states. In the
following we compare the numerical solution of Eq. (5.144) with the analytical result for
the longitudinal component ρz(t) in Eq. (3.145). In the top panel of Fig. 5.3 the numerical
results for the Patade-Bhalekar algorithm (PB-algorithm, solid purple line) and the ODE
procedure (green dotted line) are shown in comparison to the analytical solution (orange
dashed line). For the ODE algorithm we choose the global error defined in Eq. (5.141)
with Δρα = 10−6 as a numerical cutoff, and the other parameters are set to α = 0.005
and ξ0 = 200kBT . For the entire time range the numerically captured decay matches
qualitatively the analytic solution. The inset of Fig. 5.3(a) shows the short time decay
including the non-Markovian time regime, t < τT ∼ 1/T . Both numerical solutions show
an initially fast decay before it tends to an exponential at larger times matching the
behaviour of the analytical result for the decay.

However, the characteristic exponential decay constants, which correspond to the re-
laxation time T1, are different. This is a rather surprising result as the analytic result
matches the standard long time Markovian behaviour and the Korringa relation. In the
following we will investigate this discrepancy in full detail. We will see that is largely
influenced by the band structure cutoff ξ0. Hence, the discrepancy corresponds to a renor-
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5 Multiple spins in a common environment

Figure 5.3: Top panel: The full the decay of ρz(t) for α = 0.005 and ξ0 = 200kBT is shown.
The result obtained with the Patade-Bhalekar algorithm is plotted in purple, the solution for
the ODE procedure corresponds to the dotted green line and the analytical one is shown in
orange. The inset of panel (a) shows the short time behaviour and panel (b) shows the decay on
a logarithmic scale to emphasise the offset between the numerical results and analytical solution.
Panel (c) shows the difference between numerical and analytical result for different α as a function
of time scaled to the corresponding relaxation time T1 = �/4απkBT . In (d) the maximum values
from (c) are plotted against the coupling α. The black dotted line represents the linear fit
g(α) = (4.6 ± 0.1)α + (0.0027 ± 0.0007).

malisation arising from higher energies which are neglected in the analytic expansion but
which are fully captured by the numerical integration. Practically such a renormalisation
falls within the uncertainty of the density of state factor ν0 in the definition of α = A2ν2

0 so
that the analytical and numerical results are consistent. We provide a recipe to incorpo-
rate the renormalisation in a modification of α. The numerics reveal a further correction
arising from the expansion in α of the poles in Laplace space, in which we have neglected
corrections in O(α2). These are naturally included in the numerics and the analysis to
follow shows again that they can essentially be captured by a renormalisation of α. Thus,
we obtain two important results. Firstly, the analytical results of Chapter 3 are indeed
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Figure 5.4: (a) The full decay for ρz(t) obtained numerically is plotted for different values of the
cutoff ξ0 in units of the temperature T (solid lines) for the coupling α = 0.005. The analytic
solution (dashed orange line) does not visibly change for various choices of ξ. (b) The difference
between the numerical and analytical solution is shown for a selection of ξ0 values.

confirmed and the corrections do not cause any qualitative differences. Secondly, we find
that the numerical integration scheme of the Patade-Bhalekar methods provides fast and
qualitatively reliable results. To start the detailed analysis, let us consider the long time
behaviour which is shown in Fig. 5.3(b) on a logarithmic scale. Both numerically obtained
solutions coincide and the decay is slower compared to the analytical solution. In the
bottom panel of Fig. 5.3 we show the dependence on the parameter α. Panel (c) shows the
difference between the numerical solution obtained with the Patade-Bhalekar algorithm
and the analytical solution. The difference between the numerical and analytical solution
is linear in the coupling parameter α as shown in Fig. 5.3(d). The linear fit parameters
for the gradient m = 4.6 ± 0.1 and for the intercept b = 0.0027 ± 0.0007.

Keeping the coupling strength α constant, the numerical solution for the decay shows
a dependence on the high energy cutoff ξ0, especially for large values ξ0 ∼ 1000kBT . In
Fig. 5.4 the decay of ρz(t) obtained numerically using the Patade-Bhalekar algorithm
is shown for different values of the cutoff ξ0 in comparison to the analytic solution. In
panel (a) we only show two choices of ξ0 as the decay curves for ξ0 < 500kBT are not
distinguishable. To show the increasing difference between the numerical and analytical
solution, their difference is plotted on a logarithmic scale in Fig. 5.4(b). In the derivation
of the analytical solution we expanded the intermediate result in the inverse cutoff and
we only kept the terms O

�
ξ−1

0

�
. In the numerical solution in principle all orders of ξ0

are present which could lead to the large cutoff dependence.
To differentiate the effect of the cutoff ξ0 from the deviation from the analytical results

analysed in Fig. 5.3 we study the single spin decay for a tight-binding model in one spatial
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dimension. Its energy dispersion depending on the momentum k reads

�k = −2w cos(ka) − µ, (5.147)

with the chemical potential µ, the hopping amplitude w and the lattice constant a which
we set to a = 1. The spin-spin correlators F TB

1,2 for the tight-binding model are given by

F TB
1 (t) = −4α

(2π)2

L2
�

kk�,σ

ei(�k−�k� )tf(�k) (1 − f(�k�)) , (5.148)

similar to Eq. (3.79) without performing the Laplace transformation and F TB
1 (t) =

F TB
2 (t). Here, f(�k) = [1 + exp(�k/kBT )]−1 is the Fermi-Dirac distribution and L is

the system size which is set to L = 300 throughout. Calculating the electron response
functions directly from Eq. (5.148) using the energy dispersion in Eq. (5.147) removes
the need of the cutoff ξ0. To ensure that we are observing the same physics the temper-
ature T needs to be low enough such that only excitations close to the Fermi level are
possible and we do not pick up contributions from the band edges which are located at
k = 0, ±π/a. Therefore, we require T/w � 1 and we set the chemical potential µ = 0.
In this limit the band structure of the tight-binding model is linear around the Fermi
surface at k = ±π/2a and the physical behaviour is the same as in the description using
a cutoff. In Fig. 5.5 the decay of ρz(t) is plotted using the tight-binding dispersion for
the numerical solution within the Patade-Bhalekar approach. The parameters are set to
α = 0.005 and T = 0.05w in units of the hopping amplitude. Panel (a) shows the time
evolution of ρz(t). The analytical results corresponds to the dashed orange line. The
decay within the tight-binding model is displayed in light blue and we plot the result for
the cutoff dependent model for comparison for ξ0 = 200kBT . This particular value was
chosen because for ξ0 < 500kBT the decay is not altered much by the actual choice of
ξ0. The numerical tight-binding decay recovers the slower exponential decay from the ξ0

model. The short time behaviour shown in Fig. 5.5(b) again captures the fast initial de-
cay on the non-Markovian time scale before becoming exponential and therefore matches
the analytic solution qualitatively. The oscillations in the decay are a remnant of the
tight-binding with its periodic band structure.

In conclusion we find that the numerical solution of Eq. (5.145) qualitatively agrees
with the analytic solution. The algorithm proposed by Patade and Bhalekar [162] is
able to capture the decay in non-Markovian regime t < τT where the evolution is non-
exponential. For larger times we recover an exponential decay for a Markovian evolution.
The exponential decay of the numerical solution, in both the tight-binding and ξ0 model,
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Figure 5.5: (a) Decay of ρz(t) on a logarithmic scale, the numerical solution for the tight-binding
model is shown in light blue. For comparison the numerical solution for the model including the
high energy cutoff ξ0 is shown (dashed purple line). The analytical solution corresponds to the
dashed orange line. Both numerical solutions decay slower than the predicated by the analytical
solution. (b) shows the same curves as (a) in the short time regime t ∼ τT . The non-Markovian
regimes corresponds to t < τT . The evolution of ρz(t) within this interval is non-exponential. After
the fast initial decay it becomes exponential. The parameters in the plot are set to α = 0.005,
T = 0.05w and ξ0 = 200kBT .

is slower than predicted analytically. But otherwise it shows the identical Markovian
behaviour and can be matched with the analytical solution by a renormalisation of α. In
Fig. 5.6 we fit the long time numerical solution to an exponential decay to determine the
relaxation time T fit

1 . From this we obtain the renormalised coupling

α∗ = �
4πkBTT fit

1
. (5.149)

From the exponential fits to the decay of tight-binding and ξ0 model in Fig. 5.5 we find

α∗
TB = 4.48361 · 10−3 ± 2 · 10−8,

α∗
ξ0 = 4.6930 · 10−3 ± 10−7. (5.150)

as compared to α = 0.005. In Fig. 5.6 the analytic solution with the renormalised cou-
pling α∗ according to Eq. (5.150) is plotted (orange dashed line) alongside the analytical
solution (dotted black line) for the same α = 0.005 as for the numerically calculated
ρz (solid lines) for T = 0.05 and ξ0 = 200kBT . In the top panel the results for the
tight-binding model and in the bottom panel the results for the ξ0 model are depicted.
Fig. 5.6(a) and (c) show the long time behaviour on logarithmic scale. The short time
decay is plotted in Fig. 5.6(b) and (d). Using the renormalised coupling α∗ improves
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Figure 5.6: Top: The decay of ρz(t) is plotted. The solid light blue lines corresponds to the
numerically obtained decay for the tight binding model as in Fig. 5.5 with α = 0.005 and T =
0.05w. The orange line corresponds to the decay with the renormalised coupling α∗

TB = 4.48361 ·
10−3. For comparison the analytic solution for α = 0.005 is shown by the dotted black line.
(a) shows the long time decay focusing on the exponential behaviour. The short time decay is
depicted in (b). Bottom: Similar to the top panel the solid purple lines shows the decay of ρz

for the model including the cutoff ξ0 = 200kBT and α = 0.005. The dashed lines correspond to
the analytical solution. The renormalised coupling is α∗

ξ0
= 4.6930 · 10−3 and shown in orange.

(c) shows the long time evolution and (d) the short time regime. For both cases the analytical
solution with the renormalised coupling α∗ is in better agreement with the numerical solutions.

the quantitative agreement between the numerical and analytic solution for both studied
models across the entire time range. This implies that the full numerical solution indeed
renormalises the coupling strength. The choice of the cutoff ξ0 adds to this effect which
is suggested by the findings in Fig. 5.4.

To understand the discrepancy let us recall that in the derivation of the analytic solution
we analysed the pole structure in Laplace space to determine the dynamics. To locate the
poles we expanded in the small parameter α and kept the terms linear in α while higher
orders were neglected. Due to this fact we find a discrepancy between the analytical and
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numerical results with a direct α dependence, because higher orders of α are naturally
included in the numeric. After a renormalisation of the coupling strength α the numerical
results recovers the analytic one. Furthermore, the numerical analysis shows that the
Patade-Bhalekar method used to solve the integro-differential equations as in Eq. (5.131)
is suitable to obtain access to the qualitative features of the short and long dynamics.

5.4 Summary and outlook

We adapted the time-dependent projection operator approach proposed by Degenfeld-
Schonburg and Hartmann [38] to derive an equation of motion for two localised spins with
no direct coupling in the same electronic environment. Unlike the standard Nakajima-
Zwanzig equation the approach allows for a time-dependent bath reference state which is
self-consistently determined. The generalised master equation leads to coupled equations
of motion for each individual part of the considered quantum system, here two localised
spins and the conduction electrons. In order to capture the dynamics of the electrons we
approximated the electrons density matrix such that single particle or hole excitations
are allowed. This lead finally to an equation of motion for the expectation values of the
electron spin operators. The additional time dependence is captured by two amplitudes
Λα

α� , Λ̃α
α� for each spin configuration. Through the derivation we gained analytical insight

in the nature of the temporal and spatial correlations influencing the dynamics of the
localised spins. The shared environment mediates an effective RKKY-like interaction
between the impurity spins. In addition to the spatial modulations we find temporal
ones driven by the coherent backaction between the spins and the conduction electrons
which leads to a dynamical quantum coherent extension to the RKKY interaction.

In a final step and to fully solve the problem we need to determine the time-dependent
amplitudes numerically. We proposed to find the numerical solution with the Patade-
Bhalekar approach. The algorithm was tested in the set up for a single spin in an
electronic bath within the standard Nakajima-Zwanzig formulation which we compared
to the analytical results from Chapter 3. Currently, to address two spins we need to solve
24 coupled equations of motions. The number of equations scales according to 12N for N

spins which could be further reduced by taking into account the rapidly decaying spacial
correlations. The advantage of the time-dependent projection operator approach is the
straightforward procedure to add more degrees of freedom into the quantum system.
With no direct coupling between the localised spins, only the electron equation of motion
is affected by adding spins to the bath. In the actual calculation this includes an extra
term as the localised spin contribution enter through a sum.

With our work we have established the foundation to address the dynamics of an
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effectively coupled pair of localised spins. Already we identified the important temporal
and spatial correlations which will lead to the coherent backaction and the resulting non-
Markovian dynamics in this system. The full description of the, in principal, complicated
many-body problem can be reduced to a controlled set of equations which in turn can
be used as a tool for further investigations such as the implication for the entanglement
dynamics [39, 40, 161] or a direct coupling between localised spins [176].
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Conclusion and future work
6

In this work we investigated the effect of a coherent environment backaction on the
system’s dynamics. This is motivated by experimental advances to probe quantum corre-
lations in a variety of systems across different disciplines, ranging from condensed matter
to quantum information and quantum thermodynamics. The quantum systems in focus
of our study consist of a single or a pair of localised spins coupled to an electronic environ-
ment. Our key findings concern the short time dynamics of localised spin systems beyond
a purely Markovian description and how to utilise the non-Markovian spin dynamics to
manipulate the surroundings.

To access the dynamical behaviour of a single spin we derived the explicit form of a
generalised master equation based on the Nakajima-Zwanzig approach in Chapter 3 which
goes beyond the standard description for the decay of magnetic moment. The localised
spin is coupled via a contact spin-spin interaction to an itinerant electron gas. Although
the Fermi gas is non-interacting, it nevertheless resembles a correlated system because its
quantum and thermal fluctuations only depend on a small number of parameters, namely
the temperature T and the Fermi energy EF .

The exact quantum dynamics are accessible analytically via a careful analysis of the
spin’s equation of motion in Laplace space. In particular, the full time dynamics are
encoded in the specific pole structure. Analysing the nature and positions of the poles in
Laplace space allowed us to identify and separate the poles responsible for the Markovian
and the non-Markovian behaviour. Since the non-Markovian behaviour is non-exponential
an infinity of non-Markovian poles has to be considered and their contributions in the time
domain have to be summed up. We showed that this summation can be done explicitly
if we rely on an expansion in the small parameter α, which produces a result valid
within the Born approximation considered for the generalised master equation. We were
able to show analytically that on short time scales the non-Markovian dynamics driven
by the coherent backaction from the bath is dominant. For longer times, beyond the
thermal time τT ∼ 1/T , the Markovian behaviour takes over and is characterised by the
conventional relaxation time T1 and the decoherence time T2. The non-Markovian decay
at short times is logarithmic. This is a manifestation of the bosonic zero-energy particle-
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hole fluctuations of the electron bath at the Fermi level that also underlie the Fermi
edge singularity and Kondo physics. Before the decay crosses over into the exponential
Markovian decay, this logarithm causes a rapid drop corresponding to an initial slip.
If the initial conditions are altered according to the slippage the full evolution can be
described as Markovian for times longer than the system’s memory time.

The general framework of analysing the pole structure is by no means limited to the
considered Fermi gas. To probe strongly correlated systems the itinerant electron gas
could be exchanged, for instance, by a quantum critical field theory. Presumably the
simplest access to such a theory would be in the form of a Luttinger liquid. In such a
system all correlations are already algebraic with a slower decay than a Fermi gas. This
naturally modifies the location of the poles in Laplace space, adding structure beyond
the pure Matsubara-type spacing of the non-Markovian poles. A detailed analysis of the
consequences could then be used as a novel channel to gain information on the correlated
nature of this itinerant bath.

In the spirit of utilising memory effects, we proposed a cooling protocol in Chapter 4.
The application exploits the fast initial decay of the non-Markovian dynamics to cool the
electronic environment. The initial decay is driven by pure quantum effects and is largely
temperature independent and therefore the analysis of the cooling protocol pushes into the
realm of quantum thermodynamics. The amplitude of the short time dynamics is set by
the small parameter α = A2/E2

F and as a result the protocol relies on the rapid repetition
of the initial dynamics. The underlying idea is to drive an ensemble of localised spins
through a pump cycle. With each repetition a small amount of heat is transferred from
the conduction electrons into the spin system and consequently cooling the environment.
Taking advantage of the initially fast decay sidesteps the natural bottleneck of cooling via
demagnetisation. The latter method is slow at low temperatures due to the long relaxation
times T1 ∼ 1/T . The efficiency of our protocol highly depends on the value of α, which
is very small in a typical metal. Although it therefore might not be able to compete
with the standard demagnetisation cooling for a bulk metal we provided an estimate
for a semiconductor structure which are generally difficult to cool down. Considering
GaAs the cooling protocol proved robust. Even for a rather large heat deposit due to
the pumping of the localised spin system, cooling by pumping remains possible for a
wide parameter regime. Our example shows that the cooling protocol might be especially
suited to cool semiconducting structures.

In a realistic setup a single spin is not isolated and can be influenced by other localised
spins even with no direct coupling between the impurity spins. In this case the environ-
ment does not only act as a dissipation channel but can mediate an effective interaction
between the localised spins. Our main goal in Chapter 5 was to understand the effects
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of the mediated interaction between two localised spins, coupled to the same electronic
environment, on their dynamical behaviour. To study the system’s dynamics we derived
a generalised master equation using a self-consistent projection operator method. In the
derivation we identified the relevant degrees of freedom and arrived at an equation of
motion which is in fact given by a set of coupled integro-differential equations. From
these equations we were able to deduce the nuances of the dynamical response. As in
Chapter 3 the dynamics is partly driven by the temporal particle-hole fluctuations of the
electronic environment. In addition we find a spatial contribution due to the presence
of the second spin. Combining both the spatial and the temporal correlations leads to
RKKY-type interaction between the localised spins, which is mediated by the conduction
electrons. Although the full solution of this problem is so far missing, we gained a deep
physical understanding about the interplay of the fluctuations in time and space. In order
to obtain the full solution we propose an algorithm which implements an inexpensive nu-
merical integration scheme. Testing the algorithm against the known analytical solution
from Chapter 3 proved not only its efficiency but additionally confirms our analytical
solution of the single spin case.

The generalised master equation, including a time-dependent bath reference state, pro-
vides an excellent tool to address larger quantum systems with more than two spins.
Within the formalism additional system degrees of freedom enter through an extra term
in a sum rather than an increase in the number of equations. In this sense the two spin
system is a stepping stone to address the dynamics of larger many-body systems. Con-
necting back to treating strongly correlated systems one could again choose a Luttinger
liquid as an environment to probe the dynamical response in strongly correlated systems.
One would then be able to handle one or several many-body systems embedded in a
non-trivial environment with important backaction effects.
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A Time-dependent projection: Proof of identity

In the following we prove the identity

ṖQ = 0. (A1)

For simplicity the sub- and superscripts for the time-dependent projection operators are
suppressed. From the identity

P + Q = 1 (A2)

it follows immediately that

Ṗ = ∂

∂t
(1 − Q) = −Q̇. (A3)

Accordingly,

Q̇P = −ṖP and ṖQ = −Q̇Q. (A4)

From the identity PQ = 0

d

dt
(PQ) = 0 ⇐⇒ ṖQ = −Q̇P (A5)

Combining Eq. (A4) and Eq. (A5) leads to a contradiction

ṖQ = −Q̇Q = −Q̇P ⇐⇒ Q = P, (A6)

and it has to hold that

ṖQ = Q̇P = 0. (A7)
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B Laplace transform of the Nakajima Zwanzig equation

Eq. (3.44) in the main text is of the form

ḟ(t) =
� t

0
dt� K(t − t�)f(t). (B1)

The Laplace transformation of this equation is given by

sf̃(s) − f(t = 0) =
� ∞

0
dt

� t

0
dt� e−tsK(t − t�)f(t), (B2)

with the Laplace variable s ∈ C with f̃(s) the Laplace transformation of f(t). Using the
convolution theorem for integral over t� we arrive at

f̃(s) − f(t = 0) = K̃(s)f̃(s) (B3)

⇐⇒ f̃(s) =
�
s − K̃(s)

�−1
f(t = 0). (B4)

For the reduced density matrix ρI(t) and the memory kernel Σ(t − t�) we therefore have

ρ̃I(s) =
�
s1 = �Σ(s)

�−1
ρI(t = 0), (B5)

which corresponds to Eq. (3.50) The Laplace transform of the memory kernel is given by

�Σ(s) = Trel

�� ∞

0
e−tsLinte

L0(t−t�)Lintρel

�

= Trel
�

Lint (s1 + L0)−1 Lintρel
�

(B6)

which is the expression stated in Eq. (3.51).

C Matrix representation of the superoperators

C.1 Matrix representation Lint

The matrix representation of ˆ̂Lint of Eq. (3.60) is found by computing the commutator
[Hint, O] with the interaction Hamiltonian Hint

Hint = h↑I↑ + h↓I↓ + h+I− + h−I+, (C1)
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and the operator O is the localised spin basis {I↑, I↓, I−, I+}

O = o↑I↑ + o↓I↓ + o+I− + o−I+. (C2)

Note that bath operators a denoted by the lower case, upper case operators correspond
to the system operators. The matrix entries are then labelled by the combinations oαIβ

with α, β =↑, ↓, −, +. The system operator Iβ determines the column (I↑, I↓, I−, I+) and
the row (o↑, o↓.o+, o−) is determined by the bath operator oα. The system spin operators
Iβ obey the following commutation relations

[I↑, I−] = [Iz, I−] = −I− (C3)

[I↓, I−] = − [Iz, I−] = I− (C4)

[I↑, I+] = [Iz, I+] = I+ (C5)

[I↓, I+] = − [Iz, I+] = −I+. (C6)

Further we have the relations

�
I↑/↓

�2
=
�1

2 (1 ± Iz)
�2

= 1
4
�
1 ± 2Iz + (Iz)2

�

= 1
4 (21 ± 2Iz) = 1

2 (I↑ + I↓ ± I↑ ∓ I↓)

= I↑/↓, (C7)

and

I+I− = 1
4 (Ix + iIy) (Ix − iIy)

= 1
4
�
(Ix)2 + (Iy)2 + iIyIx − iIxIy

�

= 1
4 (21 + 2Iz)

= 1
4 [2 (I↑ + I↓) + 2 (I↑ − I↓)]

= I↑, (C8)

I−I+ = I↓. (C9)

With these relations all terms [Hint, O] can be calculated. In the following we evaluate
each commutator using the relations above where we treat the different terms of the
operator O separately.

1. [Hint, o↑I↑]:
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We start with the first term of Hint

[h↑I↑, o↑I↑] = h↑o↑I↑I↑ − o↑h↑I↑I↑

= [h↑, o↑] (I↑)2

= [h↑, o↑] I↑. (C10)

This is already the full o↑I↑ contribution as all other commutators from the differ-
ent Hint terms vanish. Therefore the first entry in Lint corresponding to the o↑I↑
component is given by [h↑, o↑] = L−

hz
o↑ with h↑ = hz. The second term of Hint

[h↓I↓, o↑I↑] = 0, (C11)

as [I↑, I↓] = 0 and also I↑I↓ = I↓I↑ = 0. The third term is given by

[h+I−, o↑I↑] = h+o↑I−I↑ − o↑h+I↑I−

= h+o↑ (I− + I↑I−) − o↑h+I↑I−

= h+o↑I−

= hL
+o↑I−, (C12)

because I↑I− = 0. The last term of Hint produces

[h−I+, o↑I↑] = h−o↑I+I↑ − o↑h−I↑I+

= h−o↑I↑I+ − o↑h− (I+ + I↑I+)

= −o↑h−I+

= −hR
−o↑I+. (C13)

All these commutators determine the first column of ˆ̂Lint

=⇒
�
L−

hz
, 0, hL

+, −hR
−
�

(C14)

2. H[int, o↓I↓]:
The first term

[h↑I↑, o↓I↓] = 0 (C15)
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because [I↑, I↓] = 0 and also I↑I↓ = I↓I↑ = 0. The second term of Hint is given by

[h↓I↓, o↓I↓] = h↓o↓I↓I↓ − o↓h↓I↓I↓

= [h↓, o↓] (I↓)2

= [h↓, o↓] I↓

= − [hz, o↓] I↓, (C16)

where we used hz = −h↓ as stated in the main text and [h↑, o↑] = −L−
hz

o↓. The
third term is given by

[h+I−, o↓I↓] = h+o↓I−I↓ − o↓h+I↓I−

= h+o↓I↓I− − o↓h+ (I− + I↓I−)

= −o↓h+I−

= −hR
+o↓I−. (C17)

The remaining term is

[h−I+, o↓I↓] = h−o↓I+I↓ − o↓h−I↓I+

= h−o↓ (I+ + I↓I+) − o↓h−I↓I+

= h−o↓I+

= hL
−o↓I+, (C18)

All these commutators determine the second column of ˆ̂Lint

=⇒
�
0, −L−

hz
, −hR

+, hL
−
�

(C19)

3. [Hint, o+I−]:
The first term is given by

[h↑I↑, o+I−] = h↑o+I↑I− − o+h↑I−I↑

= h↑o+I↑I− − o+h↑ (I− + I−I↑)

= −o+h↑I−

= −o+hzI− (C20)
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and the second

[h↓I↓, o+I−] = h↓o+I↓I− − o+h↓I−I↓

= h↓o+ (I− − I−I↓) − o+h↓I−I↓

= h↓o+I−

= −hzo+I−. (C21)

Combining these two terms leads to the anticommuator − {hz, o+} = −L+
hz

. The
third term of Hint

[h+I−, o+I−] = 0, (C22)

as we are dealing with a two level system and I−I− = 0. The last term results in

[h−I+, o+I−] = h−o+I+I− − o+h−I−I+

= h−o+I↑ − o+h−I↓

= hL
−o+I↑ − hR

−o+I↓ (C23)

All these commutators determine the third column of ˆ̂Lint

=⇒
�
hL

−, −hR
−, −L+

hz
, 0
�

. (C24)

4. [Hint, o−I+]:
The first term is given by

[h↑I↑, o−I+] = h↑o−I↑I+ − o−h↑I+I↑

= h↑o− (I+ − I↑I+) − o−h↑I+I↑

= h↑o+I+

= hzo+I+ (C25)

and the second

[h↓I↓, o−I+] = h↓o−I↓I+ − o−h↓I+I↓

= h↓o−I↓I+ − o+h↓ (I+ − I↓I+)

= −o−h↓I

= o−hzI+. (C26)
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Combining these two terms leads again to the anticommuator {hz, o−} = L+
hz

. The
third term leads to the contribution

[h+I−, o−I+] = h+o−I−I+ − o−h+I+I−

= h+o−I↓ − o−h+I↑

= hL
+o−I↓ − hR

+o−I↑. (C27)

And the last term is zero as I+I+ = 0. Collecting all term for this component leads
to fourth column of ˆ̂Lint

=⇒
�
−hR

+, hL
+, 0, L+

hz

�
. (C28)

Combing all components Eqs. (C14), (C19), (C24) and (C28) we arrive at the matrix
representation for the interaction Hamiltonian Lint

ˆ̂Lint =




L−
hz

0 hL
− −hR

+
0 −L−

hz
−hR

− hL
+

hL
+ −hR

+ −L+
hz

0
−hR

− hL
− 0 L+

hz




, (C29)

which corresponds to Eq. (3.60) in the main text.

C.2 Matrix representation �Σ(s)

To express the memory kernel of Eq. (3.51) in the basis of the localised spin operators
{I↑, I↓, I−, I+} we first define [64]

�
s1 + ˆ̂L0

�−1
= g̃0

el(s)1, (C30)

where the matrix representation of ˆ̂L0 is given by Eq. (3.58). Together with the matrix
representation of the interaction Liouvillian ˆ̂Lint Eq. (3.60) a straight forward matrix
multiplication leads to the matrix representation of the memory kernel in Laplace space
Eq. (3.51)

��Σ(s) =
�

M 0
0 M �

�
(C31)
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with

M =



�
L−

hz
g̃0

elL
−
hz

+ hL
−g̃0

elh
L
+ + hR

+g̃0
elh

R
−
� �

−hL
−g̃0

elh
R
+ − hR

+g̃0
elh

L
−
�

�
−hR

−g̃0
elh

L
+ − hL

+g̃0
elh

R
−
� �

L−
hz

g̃0
elL

−
hz

+ hR
−g̃0

elh
R
+ + hL

+g̃0
elh

L
−
�

 (C32)

M � =



�
hL

+g̃0
elh

L
− + hR

+g̃0
elh

R
− + L+

hz
g̃0

elL
+
hz

�
0

0
�
hR

−g̃0
elh

R
+ + hL

−g̃0
elh

L
+ + L+

hz
g̃0

elL
+
hz

�



(C33)

where �·� = Trel {·ρeq
el }. We present the steps for the first element in detail. It is given by

��Σ(s)11 = Trel
�

hL
−g̃0

elh
L
+ρeq

el + hR
+g̃0

elh
R
−ρeq

el + L−
hz

g̃0
elL

−
hz

ρeq
el

�
. (C34)

For the frist term we obtain

Trel
�

hL
−g̃0

elh
L
+ρeq

el

�
= Trel

�
hL

−[s + L0]−1hL
+ρeq

el

�

= Trel

��
dt e−ts

�
hL

−e−iH0thL
+ρeq

el eiH0t
��

= A2Trel

��
dt e−ts

�
S−e−iH0tS+eiH0tρeq

el

��

= A2
�

dt e−ts �S−(t)S+� . (C35)

In the first step we explicitly write the Laplace transform as the time integral and use

eL0t(·) = e−iH0t(·)eiH0t. (C36)

With [H0, ρeq
el ] = 0 and writing the time evolution of the electron spin operator as explicit

time dependence we arrive at the last line. Similarly the second term is given by

Trel
�

hR
+g̃0

elh
R
−ρeq

el

�
= Trel

�
hR

+[s + iL0]−1hR
−ρeq

el

�

= Trel

��
dt e−ts

�
hR

+e−iH0t
�
hR

−ρeq
el

�
eiH0t

��

= A2Trel

��
dt e−ts

�
e−H0tρeq

el S−eiH0tS+
��

= A2
�

dt e−ts �S−S+(t)� . (C37)

The last term of Eq. (C34) evaluates to

Trel
�

L−
hz

g̃0
elL

−
hz

ρeq
el

�
=Trel

��
d te−ts

�
L−

hz
eL0tL−

hz
ρeq

el

��
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=Trel

��
d te−ts

��
hz, e−iH0t [hz, ρeq

el ] eiH0t
���

=Trel

��
dt e−ts ([hz, [hz(−t), ρeq

el ]])
�

=A2
�

dt e−ts
�
Trel {SzSz(−t)ρeq

el } − Trel {Sz(−t)Szρeq
el }

− Trel {SzSz(−t)ρeq
el } + Trel {Sz(−t)Szρeq

el }
�

=0. (C38)

Eq. (C35) and is the complex conjugate of Eq. (C37) and combining both expressions we
obtain

�Σ11(s) = F1(s) = 2A2
�

dt e−tsRe
�
eibI

zt �S−(t)S+(0)�
�

(C39)

which corresponds to the spin-spin correlation function of Eq. (3.62) when we include the
phase factor due the rotating frame of reference. All other spin-spin correlators Eqs. (3.63)
to (3.66) are obtained following the same pattern by first explicitly writing the Laplace
transformation, making use of Eq. (C36) and finally utilising [H0, ρeq

el ] = 0.

D Complex contour integration of response function

D.1 Laplace transformation – Energy integral

Starting from Eq. (3.85), we show the steps leading to Eq. (3.86) in detail. We require
an expression for the energy integral in Eq. (3.85)

� ∞

−∞
d�

1
1 + eβ�

ei�(t−iξ−1
0 ) (D1)

with β the inverse temperature. Note that we need to integrate over all occupied states
� ∈ [−∞, EF ] and we choose EF = 0. Then −|�|ξ−1

0 → �ξ−1
0 . To capture all occupied

states for finite temperatures we can integrate � ∈ [−∞, ∞] as the integral is well behaved
for the upper limit due to the fast decaying Fermi function. The high energy cutoff ξ0

ensures the convergence of the integral for the lower limit. We can solve the integral in
using the residue theorem

�

C
dzg(z) = 2πi

�

zn

Reszng(zn), (D2)
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with zn the poles of the function g(z). In our case the poles are given by the zeros of the
Fermi function which sit are given by the Matsubara frequencies zn = iωn = i(2n+1)π/β.
Closing the contour in the upper half plan leads to

� ∞

−∞
d�ei�(t−iξ−1

0 )f(�) = 2πi
�

n

Reszneizn(t−iξ−1
0 ). (D3)

The residue for each poles zn is given by

Resz→zn

1
1 + eβz

= lim
z→iωn

z − iωn

1 + eβz
= lim

δ→0

δ

1 + eiωnβeβδ
= − 1

β
(D4)

If we close the complex contour of Eq. (D2) in a half circle in the upper half of the
complex plane we find

� ∞

−∞
d�ei�(t−iξ−1

0 )f(�) = −i
2π

β

�

n

e
− π

β
(2n+1)(t−iξ−1

0 )

= −2πi

β
e

− π
β

(t−iξ−1
0 )

∞�

n=0

�
e

− 2π
β

(t−iξ−1
0 )
�n

. (D5)

In the last step we find a geometric series and a closed expression for the converging
integral

� ∞

−∞
d�ei�(t−iξ−1

0 )f(�) = −2πi

β
e

− π
β

(t−iξ−1
0 ) 1

1 − e
− 2π

β
(t−iξ−1

0 )
. (D6)

Factoring out the exponential exp [−(t − iξ−1
0 )π/β] in the denominator which cancels the

corresponding factor in the nominator we can rewrite Eq. (D6) as
� ∞

−∞
d�ei�(t−iξ−1

0 )f(�) = π

β

1
i sinh

�
π
β

�
t − iξ−1

0

�� . (D7)

Using the identity i sinh(−ix) = sin(x) we arrive at
� ∞

−∞
d�ei�(t−iξ−1

0 )f(�) = −π

β

1
sin
�

π
β

�
it + ξ−1

0

�� (D8)

The square of the expression Eq. (D8) corresponds to the integrand of the Laplace trans-
form in Eq. (3.86).
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D.2 Laplace transformation – Time integral

Starting with the expression in Eq. (3.86) we want to evaluate

F (s) = −
� ∞

0
dt e−ts (πkBT )2

sin2
�
πkBT

�
it + ξ−1

0

�� . (D9)

We first make the substitution

x = πkBT (it + ξ−1
0 ) (D10)

=⇒ x(0) = πkBT ξ−1
0 and x(t → ∞) → i∞, (D11)

which leads to

F (s) = − (−iπkBT ) e−isξ−1
0

� i∞

πkBT ξ−1
0

e
i sx

πkBT

sin2 x
. (D12)

With a second substitution

z = −ix (D13)

=⇒ z(πkBT ξ−1
0 ) = −iπkBT ξ−1

0 and z(x → i∞) → ∞, (D14)

we obtain

F (s) = iπkBT e−isξ−1
0

� ∞

−iπkBtξ−1
0

dz
e

−z s
πkBT

sinh2 (z)
, (D15)

where we also made use of sin(iz) = i sinh(z). Expressing sinh in terms of exponentials
leads to

F (s) = iπkBT e−isξ−1
0

� ∞

−iπkBtξ−1
0

dz
4e−z s

πkBT

(ez (1 − e−2z))2 . (D16)

A third substitution

y = exp [−2z] (D17)

=⇒ y(−iπkBT ξ−1
0 ) = exp [i2πkBT ξ−1

0 ] and y(z → ∞) = 0 (D18)
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then leads to

F (s) = (2πkBT ) e−isξ−1
0

� exp [i2πkBT ξ−1
0 ]

0
dy

y
s

2πkBT

(1 − y)2 (D19)

and after a partial integration
� u

0
dy

ym

(1 − y)2 =
�
ym 1

1 − y

�u

0
−
� u

0
dy

mym−1

1 − y
, (D20)

we arrive at

F (s)

= 2πkBT e−isξ−1
0





�
−y

s
2πkBT

1
1 − y

�exp [i2πkBT ξ−1
0 ]

0
+
� exp [i2πkBT ξ−1

0 ]

0
dy

s

2πkBT

y
s

2πkBT

1 − y



 .

(D21)

The remaining integral is listed in [177] [Sec. 3.194.5]

� x

0
dx

xµ−1

1 + βx
= uµ

µ
2F 1(1, µ; µ + 1; −βu), (D22)

where 2F 1 is the hypergeometric function. Using Eq. (D22) for Eq. (D21) with µ =
s/2πkBT, β = −1 we obtain

F (s)

= 2πkBT e−isξ−1
0

�
− eisξ−1

0

1 − ei2πkBT ξ−1
0

+ eisξ−1
0 2F 1

�
1,

s

2πkBT
; 1 + s

2πkBT
; ei2πkBT ξ−1

0

��
.

(D23)

The hypergeometric function can be expression as the series [131]

2F 1(a, b; a + b; z)

= Γ(a + b)
Γ(a)Γ(b)

∞�

n=0

(a)n(b)n

(n!)2 [2ψ(n + 1) − ψ(a + n) − ψ(b + n) − ln (1 − z)] (1 − z)n ,

(D24)
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where Γ is Euler’s Gammafunction, ψ is the digamma function and (a)n) are the Pochham-
mer symbols for integer n. Using the series to express 2F 1 in Eq. (D23) leads to

F (s) = 2πkBT

�
− 1

1 − ei2πkBT ξ−1
0

+
Γ
�
1 + s

2πkBT

�

Γ(1)Γ
�

s
2πkBT

� ·

·
∞�

n=0

(1)n

�
s

2πkBT

�
n

(n!)2

�
ψ(n + 1) − ψ

�
s

2πkBT
+ n

�
− ln

�
1 − ei2πkBT ξ−1

0
��

�
1 − ei2πkBT ξ−1

0
�n
�

.

At this point we expand in the inverse cutoff ξ−1
0 and we replace

1
ei2πkBT ξ−1

0
≈ 1

i2πkBT ξ−1
0

− 1
2 . (D25)

Keeping only the terms up to O(ξ−1
0 ) we finally arrive at

F (s) = iξ0 − πkBT + s

�
ln
�2πkBT

iξ�

�
+ ψ

�
s

2πkBT
+ 1
��

, (D26)

where we made use of the identity Γ(b + 1)/Γ(b) = b and

ψ(z + 1) = 1
z

+ ψ(z) (D27)

=⇒ ψ

�
s

2πkBT

�
= ψ

�
s

2πkBT
+ 1
�

− 2πkBT

s
. (D28)

This last expression corresponds to Eq. (3.87) in the main text.

E Poles and residues

E.1 Markovian poles and residues

Apart from the simple pole at s = 0 for the we find further poles by solving

s − F1(s) − F2(s) = 0, (E1)

and

s − F±(s) − Fz(s) = 0, (E2)
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as stated in the main text, see Eqs. (3.104) and (3.105). Starting with Eq. (E1) we insert
the definitions for the correlation functions Eqs. (3.97) and (3.98) which leads to

s

�
1 − 2α

�
2 ln

�2πkBT

ξ�

�
+ ψ

�
1 + s + ib

2πkBT

�
+ ψ

�
1 + s − ib

2πkBT

���

= −4πkBT + α2ib

�
ψ

�
1 + s + ib

2πkBT

�
− ψ

�
1 + s − ib

2πkBT

��
, (E3)

=⇒ s̃ =
−4πkBT + α2ib

�
ψ
�
1 + s+ib

2πkBT

�
− ψ

�
1 + s−ib

2πkBT

��

1 − 4α
�

ln
�

2πkBT
ξ�

�
+ Re

�
ψ
�
1 + s+ib

2πkBT

��� , (E4)

with b = bI
z. The last line is the full solution for Eq. (E1), including higher order in α.

Within the Born-approximation we can neglect those. The Markovian pole sM
0 ≈ 0. To

this end we evaluate Eq. (E4) in the limit s → 0 and keep only terms of O(α). This leads
to

sM
0,z = −4απkBT + 2αib

�
ψ

�
1 + ib

2πkBT

�
− ψ

�
1 − ib

2πkBT

��
. (E5)

Using the identity 2Imψ(1 + ix) = −1/x + π/ tanh(πx) [131], Sec. 5.4.18, we can replace

ib

�
ψ

�
1 + ib

2πkBT

�
− ψ

�
1 − ib

2πkBT

��
= −2πkBT + b

tanh
�

b
2πkBT

� , (E6)

which leads to

sM
0,z = −2α

bI
z

tanh
�

bI
z

2πkBT

� , (E7)

for the longitudinal component ρz(t) as stated in Eq. (3.106).

To solve Eq. (E2) we insert Eqs. (3.99) to (3.101) which leads to

s

�
1 − 4α ln

�2πkBT

ξ�

�
− 2αψ

�
1 + s

2πkbT

�
− 2αψ

�
1 + s ∓ ib

2πkBT

��

= −4απkBT ∓ 2αib ln
�2πkBT

ξ�

�
∓ 2αibψ

�
1 + s ∓ i

2πkBT

�
(E8)

=⇒ s̃ =
−4απkBT ∓ 2αib

�
ln
�

2πkBT
ξ

�
+ ψ

�
1 + s∓ib

2πkBT

��

1 − 4α ln
�

2πkBT
ξ�

�
− 2αψ

�
1 + s

2πkBT

�
− 2αψ

�
1 + s∓ib

2πkBT

� . (E9)

Keeping only O(α) term the Markovian pole for the transverse components is then given
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by

sM
± = −4απkBT ∓ i2αbI

z

�
2 ln

�2πkBT

ξ�

�
+ ψ

�
1 ∓ ibI

z

2πkBT

��
, (E10)

as in Eq. (3.107).

The residue to the pole sM
z is given by

Ress→sM
z

= lim
s→sM

z

�
s − sM

z

� etsρz(t = 0)
s − F1(s) − F2(s)

= lim
s→sM

0,z

etsρz(t = 0)
�
s − sM

z

�

×
�
s − sM

0,z − s4α

�
ln
�2πkBT

ξ�

�
+ Re

�
ψ

�
1 + s + ib

2πkBT

����−1

= lim
s→sM

z

etsρz(t = 0)
�
s − sM

z

� �
1 − 4α

�
ln
�2πkBT

ξ�

�
+ Re

�
ψ

�
1 + s + ib

2πkBT

����−1

×

s − sM

z

1 − 4α
�

ln
�

2πkBT
ξ�

�
+ Re

�
ψ
�
1 + s+ib

2πkBT

���




−1

. (E11)

In the last line, the factor
�
s − sM

z

�
cancels with s − sM

z /[. . . ] because

sM
z

1 − 4α
�

ln
�

2πkBT
ξ�

�
+ Re

�
ψ
�
1 + s+ib

2πkBT

��� = sM
z + O(α). (E12)

and we obtain for the residue

Res
�
sM

z

�
= esM

z tρz(t = 0)
1 − 4α

�
ln
�

2πkBT
ξ�

�
+ Re

�
ψ
�
1 + s+ib

2πkBT

��� , (E13)

which corresponds to Eq. (3.108). Similarly, the residue for the transverse pole can
be determined. Following the exact same steps as in Eqs. (E11) and (E12) leads to
Eq. (3.109). In fact, the residues can be read off the denominator in Eq. (E9) at s = 0.

E.2 Non-Markovian residues

The residues for the non-Markovian poles are dominated by derivative of the digamma
function ψ(z) at the pole sn. Using the series expansion ψ we again only keep the relevant
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term at the corresponding pole an calculate

Res(sn) ∼
�

d

ds
(s − F1(s) − F2(s))

�−1
�����
s=sn

∼
�

d

ds
(−F1(s) − F2(s))

�−1
�����
s=sn

(E14)

where we can neglect the contribution from s as the derivative of the digamma function
is much larger. In the zero-field limit we obtain

Res(sn) ∼

 d

ds


−4α

s2

2πkBT

n
�

s
2πkBT + n

�






−1 �����
s=sn

∼


− 8α

2πkBT

s

n
�

s
2πkBT + n

� + 4α

(2πkBT )2
s2

n
�

s
2πkbT + n

�2




−1 �����
s=sn

(E15)

In the main text we derived the location of the pole sn

sn = −2πkBTn − 8απkBT. (E16)

Inserting sn into Eq. (E15) leads to

Res(sn) ∼
�
−8α

−2πkBTn + p

np
+ 4α

(−2πkBTn + p)2

np2

�−1

∼
�
2πkBT

8α

p
− 8α

n
+ (2πkBT )2 n

4α

p2 − 4πkBT
4α

p
+ 4α

n

�−1
(E17)

The dominant contribution will come from the third as it is are O(1/α) which leads to

Res(sn) ∼ 4α

n
. (E18)

The full residue, in the zero-field limit, for each non-Markovian poles is then given by

Res(sn) = 4α

n
esntρz(t = 0) (E19)

which corresponds to Eq. (3.129).

For finite field we follow the same steps and again the residue is dominated by Eq. (E14)
where we this time use the finite field expressions for the spin-spin correlation functions
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Eqs. (3.97) and (3.98) for F1,F2. This leads to

Res
�
sz

n,r

�
∼

 d

ds


−2α

(s+ibI
z)2

2πkBT

n
�

s+ibI
z

2πkBT + n
� − 2α

(s−ibI
z)2

2πkBT

n
�

s−ibI
z

2πkBT + n
�






−1 �����
s=sz

n,r

(E20)

and the location of the pole is given by

sz
n,r = −2πkBTn + pz

r , (E21)

with

pz
r = −4απkBT + r

�
(4απkBT )2 − (bI

z)2 (E22)

as stated we derived in the main text, see Eq. (3.137). Following the same steps as in
Eq. (E17) and neglecting all terms that are not O(1/α) we arrive at

Res
�
sz

n,r

�
∼
�
(2πkBT )2 2αn

(p + ibI
z)2 + (2πkBT )2 2αn

(p − ibI
z)2

�−1

∼
�
2α (2πkBT )2 n

�
1

(pz
r + ibI

z)2 + 1
(pz

r − ibI
z)2

��−1

. (E23)

Inserting pz
r leads to the full residue

Res
�
sz

n,r

�
= 2α

n
esz

n,rt


1 − r

4απkBT�
(4απkBT )2 − (bI

z)2


 (ρz(t = 0) − ρeq

z ) . (E24)

This is the expression stated in Eq. (3.138). For bI
z → 0 we recover Eq. (E18).

For the transverse component the arguments of the digamma functions are shifted

s + ibI
z → s (E25)

s − ibI
z → s ∓ ibI

z, (E26)

where ∓ refers to the sign in the definition of F± (Eqs. (3.99) and (3.100)). If we take

bI
z → bI

z/2 (E27)

s → s ∓ ibI
z/2 (E28)

the arguments of the digamma function in transverse case are given by ψ(s ∓ ibI
z/2) and

ψ(s ± ibI
z/2). Then the same calculation as for z component applies for the residue with
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the result

Res
�
s±

n,r

�
= 2α

n
es±

n,rt


1 − r

4απkBT�
(4απkBT )2 − (bI

z)2


 ρ±(t = 0), (E29)

and the pole

s±
n,r = −2πkBTn ∓ i

2bI
z + p±

r , (E30)

with

p±
r = pz

r |bI
z→bI

z/2 = −4απkBT + r
�

(4απkBT )2 − (bI
z/2)2. (E31)

F Time-dependent projection

F.1 Equation of motion for ρI,j

In the following we calculate all commutators which lead to the matrix expression ˆ̂M in
Section 5.2.1 The density matrix defined in Eq. (5.18) is given by

ρI,j = ρ↑
jI↑

j + ρ↓
jI↓

j + ρ−
j I+

j + ρ+
j I−

j . (F1)

The spin operators Iα
j obey the same relations states in Appendix C.1, in particular

Eqs. (C3) to (C7) and (C9).
The following commutators are useful as well
�
ρj(t�), I−

j

�
=
�
I↑

j , I−
j

�
ρ↑

j (t�) +
�
I↓

j , I−
j

�
ρ↓

j (t�) +
�
I−

j , I−
j

�
ρ−

j (t�) +
�
I+, j, I−

j

�
ρ+

j (t�) (F2)

= −I−
j ρ↑

j (t�) + I−
j ρ↓

j (t�) + I↑
j ρ+

j (t�) − I↓
j ρ+

j (t�), (F3)
�
ρj(t�), I+

j

�
=
�
I↑

j , I+
j

�
ρ↑

j (t�) +
�
I↓

j , I+
j

�
ρ↓

j (t�) +
�
I−

j , I+
j

�
ρ−

j (t�) +
�
I+, j, I+

j

�
ρ+

j (t�) (F4)

= I+
j ρ↑

j (t�) − I↓
j ρ↓

j (t�) − I↑
j ρ−

j (t�) + I↓
j ρ−

j (t�), (F5)
�
ρj(t�), Iz

j

�
=
�
ρj(t�), I↑

j

�
−
�
ρj(t�), I↓

j

�

= 2I−
j ρ−

j (t�) − 2I+
j ρ+

j (t�) (F6)

F.1.1 Linear term

The linear term is given by

Trel
�

Lj
intρI,j(t) ⊗ ρel(t)

�
= −i2ATrel

�
S+(xj)ρel(t)

� �
I−

j , ρj(t)
�
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− i2ATrel
�
S−(xj)ρel(t)

� �
I+

j , ρj(t)
�

− iATrel {Sz(xj)ρel(t)}
�
Iz

j , ρj(t)
�

, (F7)

which corresponds to Eq. (5.23). Using the commutator relations in Appendix C.1 and
Eqs. (F3), (F5) and (F6) we find

�
I−

j , ρj(t)
�

= I−
j ρ↑

j (t) − I−
j ρ↓

j (t) − I↑
j ρ+

j (t) + I↓
j ρ+

j (t), (F8)
�
I+

j , ρj(t)
�

= −I+
j ρ↑

j (t) + I+
j ρ↓

j (t) + I↑
j ρ−

j (t) − I↓
j ρ−

j (t), (F9)
�
Iz

j , ρj(t)
�

= −2I−
j ρ+

j (t) + 2I+jρ−
j (t). (F10)

Identifying the elements where Iα label the columns similar to Appendix C.1, we arrive
at the matrix ˆ̂Mint of Eq. (5.24).

F.1.2 O(A2): Two-point correlators

The full expression for the term defined in Eq. (5.30) found by applying the specific
interaction Liouvillian Lj

int. This leads to

M2nd,1 ∼4Trel
�
S∓(xj , t� − t)S±(xj)ρel(t�)

� �
I±

j , I∓
j ρj(t�)

�

+ 4Trel
�
S±(xj)S∓(xj , t� − t)ρel(t�)

� �
ρj(t�)I∓

j , I±
j

�

+ 2Trel
�
Sz(xj , t� − t)S±(xj)ρel(t�)

� �
Iz

j , I∓
j ρj(t�)

�

+ 2Trel
�
S±(xj)Sz(xj , t� − t)ρel(t�)

� �
ρj(t�)I∓

j , Iz
j

�

+ 2Trel
�

S+(xj , t� − t)Sz(xj)ρel(t�)
� �

I−
j , Iz

j ρj(t�)
�

+ 2Trel
�

Sz(xj)S+(xj , t� − t)ρel(t�)
� �

ρj(t�)Iz
j , I−

j

�

+ 2Trel
�
S−(xj , t� − t)Sz(xj)ρel(t�)

� �
I+

j , Iz
j ρj(t�)

�

+ 2Trel
�
Sz(xj)S−(xj , t� − t)ρel(t�)

� �
ρj(t�)Iz

j , I+
j

�

+ Trel
�
Sz(xj , t� − t)Sz(xj)ρel(t�)

� �
Iz

j , Iz
j ρj(t�)

�

+ Trel
�
Sz(xj)Sz(xj , t� − t)ρel(t�)

� �
ρj(t�)Iz

j , Iz
j

�
. (F11)

Note that we need to have both combinations for the superscripts ±. Then, the commu-
tators of the density matrix with the impurity spin operators are (dropping the spacial
index j, and often also suppressing the time dependence of ρα

j ), first for the upper sign
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in Eq. (F11)
�
I+, I−ρj(t�)

�
=
�
I+, I−

�
ρj(t�) + I−

�
I+, ρj(t�)

�

= I↑ρ↑
j − I↓ρ↑

j + I+ρ+
j (F12)

�
ρj(t�)I−, I+

�
= ρj(t�)

�
I−, I+

�
+
�
ρj(t�), I+

�
I−

= −I↑ρ↓
j + I↓ρ↓

j + I+ρ+
j (F13)

�
Iz, I−ρj(t�)

�
=
�
Iz, I−� ρj(t�) + I− �Iz, ρj(t�)

�

= −2I−ρ↑
j (F14)

�
ρj(t�)I−, Iz� = ρj(t�)

�
I−, Iz�+

�
ρj(t�), Iz� I−

= 2I−ρ↓
j . (F15)

For the bottom sign in Eq. (F11) the commutators are
�
I−, I+ρj(t�)

�
=
�
I−, I+

�
ρj(t�) + I+ �I−, ρj(t�)

�

= I↓ρ↓
j − I↑ρ↓

j + I−ρ−
j (F16)

�
ρj(t�)I+, I−

�
= ρj(t�)

�
I+, I−

�
+
�
ρj(t�), I−� I+

= I↑ρ↑
j − I↓ρ↑

j + I−ρ−
j (F17)

�
Iz, I+ρj(t�)

�
=
�
Iz, I+

�
ρj(t�) + I+ �Iz, ρj(t�)

�

= 2I+ρ↓
j (F18)

�
ρj(t�)I+, Iz

�
= ρj(t�)

�
I+, Iz

�
+
�
ρj(t�), Iz� I+

= −2I+ρ↑
j . (F19)

And the last few commutators of Eq. (F11) are given by

�
I−, Izρj(t�)

�
=
�
I−, Iz� ρj(t�) + Iz �I−, ρj(t�)

�

= I−ρ↑
j (t�) + I−ρ↓

j (t�) − I↑ρ+
j (t�) + I↓ρ+

j (t�) (F20)
�
I+, Izρj(t�)

�
=
�
I+, Iz

�
ρj(t�) + Iz

�
I+, ρj(t�)

�

= −I+ρ↑
j (t�) − I+ρ↓

j (t�) − I↑ρ−
j (t�) + I↓ρ−

j (t�) (F21)
�
ρj(t�)Iz, I−� = ρj(t�)

�
Iz, I−�+

�
ρj(t�), I−� Iz

= −I−ρ↑
j (t�) − I−ρ↓

j (t�) − I↑ρ+
j (t�) + I↓ρ+

j (t�) (F22)
�
ρj(t�)Iz, I+

�
= ρj(t�)

�
Iz, I+

�
+
�
ρj(t�), I+

�
Iz

= I+ρ↑
j (t�) + I+ρ↓

j (t�) − I↑ρ−
j (t�) + I↓ρ−

j (t�) (F23)
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�
Iz, Izρj(t�)

�
= [Iz, Iz] ρj(t�) + Iz �Iz, ρj(t�)

�

= 2I−ρ−
j + 2I+ρ+

j (F24)
�
ρj(t�)Iz, Iz� = ρj(t�) [Iz, Iz] +

�
ρj(t�), Iz� Iz

= 2I−ρ−
j + 2I+ρ+

j (F25)

Rearranging all elements according to their components (Iα determines the columns, ρβ

the rows), leads to the matrix ˆ̂M2nd,1 Eq. (5.32) in the main text.

F.1.3 O(A2): One-point correlators

The full expression for the term defined in Eq. (5.46) is given by

M2nd,2

∼ 4Trel
�
S−(xj , t� − t)ρel(t�)

�
Trel

�
S+(xj)ρel(t�)

���
I+

j , I−
j ρj(t�)

�
+
�
ρj(t�)I−

j , I+
j

��

+ 2Trel
�
Sz(xj , t� − t)ρel(t�)

�
Trel

�
S+(xj)ρel(t�)

���
Iz

j , I−
j ρj(t�)

�
+
�
ρj(t�)I−

j , Iz
j

��

+ 4Trel
�

S+(xj , t� − t)ρel(t�)
�

Trel
�
S−(xj)ρel(t�)

� ��
I−

j , I+
j ρj(t�)

�
+
�
ρj(t�)I+

j , I−
j

��

+ 2Trel
�
Sz(xj , t� − t)ρel(t�)

�
Trel

�
S−(xj)ρel(t�)

� ��
Iz

j , I+
j ρj(t�)

�
+
�
ρj(t�)I+

j , Iz
j

��

+ 2Trel
�

S+(xj , t� − t)ρel(t�)
�

Trel
�
Sz(xj)ρel(t�)

� ��
I−

j , Iz
j ρj(t�)

�
+
�
ρj(t�)Iz

j , I−
j

��

+ 2Trel
�
S−(xj , t� − t)ρel(t�)

�
Trel

�
Sz(xj)ρel(t�)

� ��
I+

j , Iz
j ρj(t�)

�
+
�
ρj(t�)Iz

j , I+
j

��

+ Trel
�
Sz(xj , t� − t)ρel(t�)

�
Trel

�
Sz(xj)ρel(t�)

� ��
Iz

j , Iz
j ρj(t�)

�
+
�
ρj(t�)Iz

j , Iz
j

��
(F26)

The relevant commutators are the same as for the two point correlators. The matrix
entries are only slightly modified prefactors due to the additional trace. In the same way
as before we can identify all entries and arrange the matrix ˆ̂M2nd,2 which is stated in
Eq. (5.47)

F.1.4 O(A2): Renormalisation term

The full expression for the term defined in Eq. (5.56) is given by

M2nd,3 ∼ 4Trel
��

S±(xj , t − t�), S∓(xj)
�
ρel(t�)

�
Trj

�
I±ρj(t�)

� �
ρj(t�), I∓

j

�

+ 2Trel
��

S±(xj , t − t�), Sz(xj)
�
ρel(t�)

�
Trj

�
Iz

j ρj(t�)
� �

ρj(t�), I∓
j

�

+ 2Trel
��

Sz(xj , t − t�), S+(xj)
�

ρel(t�)
�

Trj

�
I−

j ρj(t�)
� �

ρj(t�), Iz
j

�

+ 2Trel
��

Sz(xj , t − t�), S−(xj)
�
ρel(t�)

�
Trj

�
I+

j ρj(t�)
� �

ρj(t�), Iz
j

�
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+ Trel
��

Sz(xj , t − t�), Sz(xj)
�
ρel(t�)

�
Trj

�
Iz

j ρj(t�)
� �

ρj(t�), Iz
j

�
. (F27)

The commutators are given by Eqs. (F3), (F5) and (F6) and arranging all components a
matrix leads to ˆ̂M2nd,3 of Eq. (5.57).

F.2 Equation of motion for ρel

F.2.1 Eigendynamics and linear term

Starting from Eq. (5.80) we present more details to reach the final result of YED in
Eq. (5.98). Inserting Eq. (5.76) into Eq. (5.80) lead to

YED ∼ Trel




�

pp�
ei(p−p�)xj c†

pσcp�σ� [Hel, ρeq
el ]





+ Trel




�

pp�
ei(p−p�)xj c†

pσcp�σ�


Hel,

�

αα�,l

�

kk�
Λα

α�ei(k−k�)xlc†
kαck�α�ρeq

el







+ Trel




�

pp�
ei(p−p�)xj c†

pσcp�σ�


Hel,

�

αα�,l

�

kk�
Λ̃α

α�ei(k−k�)xlck�α�c†
kαρeq

el





 . (F28)

The first term is zero as [Hel, ρeq
el ] = 0. We will consider the the second term including

the particle contribution in more detail. Inserting Hel defined in Eq. (5.96) leads to

Y P
ED ∼ Trel




�

pp�

�

nβ

�

αα�,l

�

kk�
ei(p−p�)xj ei(k−k�)xlΛα

α�c†
pσcp�σ�

�
c†

nβcnβ , c†
kαck�α�ρeq

el

�


 . (F29)

The fermionic operators can be rearranged as follows

c†
pσcp�σ�

�
c†

nβcnβ , c†
kαck�α�ρeq

el

�
=
�
c†

pσcp�σ� , c†
nβcnβ

�
c†

kαck�α�ρeq
el . (F30)

The commutator can be replaced with Eq. (5.97). Then, decoupling the operators under
the trace according to Eq. (5.91) leads to Eq. (5.98) after making use of Eq. (5.93).

The linear term Eq. (5.81) after inserting Eq. (5.76) leads to

Ylin ∼ Trel




�

pp�
ei(p−p�)xj c†

pσcp�σ�

��

nn�
ei(n−n�)xj c†

nβcn�β� , ρeq
el

�


+ Trel




�

pp�
ei(p−p�)xj c†

pσcp�σ�


�

nn�
ei(n−n�)xj c†

nβcn�β� ,
�

αα�,l

�

kk�
ei(k−k�)xlΛα

α�c
†
kαck�α�ρeq

el
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+ Trel




�

pp�
ei(p−p�)xj c†

pσcp�σ�


�

nn�
ei(n−n�)xj c†

nβcn�β� ,
�

αα�,l

�

kk�
ei(k−k�)xlΛ̃α

α�ck�α�c†
kαρeq

el







(F31)

Again, the first term is zero. Using Eq. (F30) and Eq. (5.91) leads to Ylin Eq. (5.100) in
the main text.

F.2.2 O(A2) terms

The contribution for the the two- and one-point correlation functions consists of the
contributions from the two traces Eqs. (5.82) and (5.83). We denote

X1 = Trel
��

Sσ̄(t� − t), Sβ̄(t� − t)
�

Sγ̄ρel(t�)
�

(F32)

which corresponds to Eq. (5.82).

For Eq. (F32) we have

X1 = Trel

��

pp�

�

nn�

�

rr�
ei(�p−�p� )(t�−t)ei(�n−�n� )(t�−t)ei(p−p�)xj ei(n−n�)xj ei(r−r�)xj

×
�
c†

pσcp�σ� , c†
nβcnβ

�
c†

rγcr�γ�ρel
el

�

+ Trel

��

pp�

�

nn�

�

rr�
ei(�p−�p� )(t�−t)ei(�n−�n� )(t�−t)ei(p−p�)xj ei(n−n�)xj ei(r−r�)xj

×
�
c†

pσcp�σ� , c†
nβcnβ

�
c†

rγcr�γ�
�

αα�,l

�

kk�
ei(k−k�)xlΛα

α�c
†
kαck�α�ρel

el

�

+ Trel

��

pp�

�

nn�

�

rr�
ei(�p−�p� )(t�−t)ei(�n−�n� )(t�−t)ei(p−p�)xj ei(n−n�)xj ei(r−r�)xj

×
�
c†

pσcp�σ� , c†
nβcnβ

�
c†

rγcr�γ�
�

αα�,l

�

kk�
ei(k−k�)xlΛ̃α

α�ck�α�c†
kαρel

el

�
(F33)

where we used exp(±i�pt) for the creation and annihilation operators c†, c. Replacing the
commutator with Eq. (5.97) and using the decompositions Eqs. (5.91) and (5.92) leads
to Y2nd,1 in Eq. (5.103) and the corresponding hole contribution.

The expression for the second trace Eq. (5.83) as well as the trace for the renormalisa-
tion term Eq. (5.89) are obtained by following the same steps.
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F.3 Momentum integrals in the continuum limit

F.3.1 Temporal contribution It

The integral Eq. (5.112) in the main text corresponds to the square of the integral in
Eq. (D1) which is solved in Appendix D.1. Squaring the result Eq. (D8) immediately
leads to Eq. (5.113).

F.3.2 Spatial contribution Ix

We find a closed expression for the integral Eq. (5.115) using the residue theorem. For
the integral to converge we need to treat two different cases, x cos φ > 0 and x cos φ < 0,
and close the contour in the appropriate half of the complex plane. We therefore split
the integral Ix of Eq. (5.115) into two contributions

Ix = I+
x + I−

x , (F34)

with

I+
x = ν0

2π

� π/2

−π/2
dφ

� ∞

−∞
d�

ei(kF +�/vF )x cos φ

1 + eβ�
, (F35)

for the case x cos φ > 0 and

I−
x = ν0

2π

� 3π/2

π/2
dφ

� ∞

−∞
d�

ei(kF +�/vF )x cos φ

1 + eβ�
, (F36)

for x cos φ < 0 and β is the inverse temperature. In fact, I−
x = (I+

x )∗ because in the
interval φ ∈ [π/2, 3π/2] we have cos φ = −|cos φ|. To solve for I+

x in Eq. (F35) we
start by evaluating the energy integral. The poles of the integrand lie at the Matsubara
frequencies zn = iωn = iπ(2n + 1)/β with the residues Rezn − −1/β which was shown in
Eq. (D4). If we close the integration contour in the upper half of the complex plane the
contribution from the half circle vanishes and we are left with expression for the integral
I+

x along the real axis

I+
x = −i

ν0
β

� −π/2

π/2
dφ
�

n≥0
e

i

�
kF +i π

βvF
(2n+1)

�
x cos φ

. (F37)
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The angular integral can be expressed in terms of the Bessel function J0(z) and the Struve
function H0(z) and we obtain

I+
x = −i

ν0
β

�

n≥

�
π

�
J0

�
kF x + i

π

β
(2n + 1) x

�
+ iH0

�
kF x + i

π

β
(2n + 1) x

���
. (F38)

Then the spatial correlations are captured by Ix

Ix = I+
x +

�
I+

x

�∗
= 2ReI+

x

= 2Re


−i

ν0π

β

�

n≥0

�
J0

�
kF x + i

π

β
(2n + 1) x

�
+ iH0

�
kF x + i

π

β
(2n + 1) x

��
 ,

(F39)

which is the expression in Eq. (5.116) stated in the main text. Inserting the asymptotic
form of J0(z) and H0(z)

J0(z) ∼
�

2
πz

sin
�

z + π

4

�
, (F40)

H0(z) ∼ −
�

2
πz

cos
�

z + π

4

�
, (F41)

into Eq. (F39) leads to

Ix ≈ −2ν0π

β
Re
�
i

�
2
π

�

n≥0

�
sin
�
z̃n + π

4
�− i cos

�
z̃n + π

4
�

√
z̃n

��
, (F42)

with z̃n = kF x + iπx(2n + 1)/βvF . Rearranging this expression we obtain

Ix ≈ −2ν0π

β

�
2
π

Re


�

n≥

exp
�
iπ

4 + kF x − i πx
βvF

(2n + 1)
�

�
kF x + i πx

βvF
(2n + 1)




≈ −2ν0π

β

�
2
π

Re


eikF x+iπ/4e−πx/βvF

�

n≥0

�
e2πx/βvF

�n

�
i2 πx

βvF

�
n + 1

2 − iβvF kF
π

�


 . (F43)

In the last line we can identify the sum as a Lerch transcendent [131, 172]

Φ(z, s, a) =
∞�

n=0

zn

(a + n)s , (F44)
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and we arrive at

Ix ≈ −2ν0

�
vF

βx
e−x/xT Re

�
eikF xΦ

�
e−2x/xT ,

1
2 ,

1
2 − i

vF kF β

π

��
(F45)

with the thermal length xT = βvF /π. This results corresponds to Eq. (5.122).

F.3.3 Mixed contribution Ix,t

In contrast to the purely spatial contribution Eq. (5.115) we can directly evaluate the
angular integral of Eq. (5.127) under the assumption that vF t + x cos φ > 0 which leads
to

It,x = ν0

�
d�ei�(t−iξ0)

J0
�
kF x + �

vF
x
�

1 + e�β
. (F46)

Just as in the calculation above for I+
x we close the contour in upper half of the complex

plane to perform the energy integral. Again, the poles are determined by the Matsubara
frequencies and we obtain directly

It,x = −2πν0
β

�

n≥0
e−π(2n+1)(t−iξ−1

0 )βJ0

�
kF x + i

π

βvF
(2n + 1)x

�
, (F47)

which corresponds to the expression in Eq. (5.129). Inserting the asymptotic form for the
Bessel function Eq. (F40) we obtain

It,x ≈ −i2π
ν0
β

�
2
π

e−π(t−iξ−1
0 )/β

�

n≥0
e−2πn(t−iξ−1

0 )/β
sin
�
kF x + i π

βvF
(2n + 1) + π

4

�

�
kF x + i π

βvF
(2n + 1) x

≈ −π
ν0
β

�
2
π

e−π(t−iξ−1
0 )/β

�

n≥0

e−2πn(t−iξ−1
0 )/β

�
kF x + i π

βvF
(2n + 1) x

×
�
exp

�
ikF x − π

βvF
(2n + 1) + i

π

4

�
− exp

�
−ikF x + π

βvF
(2n + 1) − i

π

4

��
, (F48)

where we used the identity sin(z) = (exp(iz) − exp(−iz))/2i. The two terms within the
sum can be written as

e−2πn(t−iξ−1
0 )/β

�
kF x + i π

βvF
(2n + 1) x

exp
�

ikF x − π

βvF
(2n + 1) + i

π

4

�

= eikF x−πx/βvF eiπ/4
�

i2πx/βvF
Φ(e−2π(t+iξ−1

0 +x/vF )/β ,
1
2 ,

1
2 − i

βvF kF

2π
), (F49)
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and

− e−2πn(t−iξ−1
0 )/β

�
kF x + i π

βvF
(2n + 1) x

exp
�

−ikF x + π

βvF
(2n + 1) − i

π

4

�

= −e−ikF x+πx/βvF e−iπ/4
�

i2πx/βvF
Φ(e−2π(t+iξ−1

0 −x/vF )/β ,
1
2 ,

1
2 − i

βvF kF

2π
). (F50)

Replacing the sum in Eq. (F48) with the expressions Eqs. (F49) and (F50) leads to

It,x = −ν0

�
vF

βx
e−iπkBT ξ−1

0 −t/2τT

×
�
eikF x−x/xF Φ

�
e−t/τT +i2πkBT ξ−1

0 −2x/xF ,
1
2 ,

1
2 − i

vF kF

2πkBT

�

+ ie−ikF x+x/xF Φ
�

e−t/τT +i2πkBT ξ−1
0 +2x/xF ),

1
2 ,

1
2 − i

vF kF

2πkBT

��
, (F51)

where we introduced the thermal length xT and the thermal time τT = 1/2πkBT . This
last expression is the final result in Eq. (5.130).

For the case vF t + x cos φ < 0 a closed expression for Eq. (5.127) is less obvious. For
the spatial contribution we were able to split the angular integral in the contribution I +

x

and I−
x , depending on the value for cos φ. Here, this is no longer possible since we also

have contribution from the time t. Depending on the actual value for t we would need
to shift the limits of the angular integral according to regimes where vF t + x cos φ > 0 or
vF t + x cos φ < 0. Since this changes smoothly with t we cannot determine the correct
interval for the angle φ to decide in which complex half plane we need to close the contour
in order for the integral to reduce to the real axis.
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