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ABSTRACT

In this paper, we consider a producer who faces uninsurable business risks due
to incomplete spanning of asset markets over stochastic goods market
outcomes, and examine how the presence of the uninsurable business risks
affects the producer’s optimal pricing and production behaviours. Three key
(inter-related) results we find are: (1) optimal prices in goods markets comprise
‘markup’ to the extent of market power and ‘premium’ by shadow price of the
risks; (2) price inertia as we observe in data can be explained by a joint work of
risk neutralization motive and marginal cost equalization condition; (3) the
relative responsiveness of risk neutralization motive and marginal cost
equalization at optimum is central to the cyclical variation of markups,
providing a consistent explanation for procyclical and countercyclical
movements. By these results, the proposed theory of producer leaves important
implications both micro and macro, and both empirical and theoretical.
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1 Introduction

The General Motors safeguards its business against losses from a variety of natural disas-
ters but cannot do so against losses from normal business outcomes. The Gosch, a small
Greek restaurant, holds a portfolio of insurance policies alike.—It loss-proofs the business
against unprecedented flood, but exposes to unprecedented vapour of customer visits. In
this paper, we model uninsurable business risks within the otherwise standard framework
of a monopolistic producer, and examine how the presence of the uninsurable business
risks affects the producer’s optimal pricing and production behaviours.

Business risks can be related to either firm-specific or economy-wide factors that would
have negative impacts on profitability. In the present paper, business risks result in the
form of market-clearing failure which are a natural outcome of realistic transaction process
for many markets. Sellers do not adjust prices at every instant of time for various reasons.
Furthermore, they do not know for sure how much of their product will be sold. Con-
sequently, markets may not clear, and firms end up with “unwanted” inventory buildup
or temporary line shutdowns to deal with excess supplies.! Empirical evidence supports
this form of business risks. For example, Hendricks and Singhal (2009) sample the public
announcements of excess inventory holdings that appeared in the Wall Street Journal and
the Dow Jones News Service during 1990-2002, and find negative stock market reactions
to the announcements. On the other hand, we do not have complete financial contracts
that can be used to insure a priori this form of business risks. A rational producer, in
the absence of financial derivatives market for his goods market outcomes, will optimally
reflect the uninsurable business risks onto his pricing and production decisions.”

In our model, stochastic market-clearing failures arise as a consequence of the two
following assumptions: (i) uncertain demand at the time of pricing and production de-
cisions, and (ii) commitment to those decisions over some interval of time. By defining
one unit period by the length of time for which the commitment assumption (ii) holds,

we allow monopolistic producers to fully reset their prices and production plans in every

nventory may have other roles such as promoting sales (Bils and Kahn, 2000), production-smoothing
inventory creation (Blinder, 1986), and the use of collateral. This paper does not incorporate them into
the model of business risks, and focuses on the role of “unwanted” part.

2Eden (1990) enlarges the commodity space, defining goods by the sales probability in addition to
physical characteristics. Carlton (1979) considers a framework with long-term contracts where transaction
costs of using organized (spot or resale) markets to clear markets are explicitly modelled.



period. In other words, one price and one production plan jointly define piecewise one
period. As a result, the model environment is free from inter-temporal price stickiness,
while leaves open for possible market-clearing failure within period. Mapping one period
in the model to one period in the calendar time varies much across sectors and products,
and relies on the particular scope of research as well. For example, a quarter length of a
year corresponds to the common use of data frequency in the business cycle literature.?

This small modification with the two assumptions to a textbook model of monopolist
renders the nature of producer decision problem largely different. In the textbook model,
pricing and production decisions are just the other side of the coin, since the market-
clearing assumption automatically matches price to quantity on one-to-one basis given
demand curve. In contrast, with the two assumptions (i) and (ii), pricing and production
become two distinct choice instruments and counterpoint in formation of profit function.
Ez ante, pricing decision does condition demand distribution in contrast to the textbook
model, while production decision does censor the distribution of demand schedules. Having
them together, pricing decision determines the distribution of period profits at chosen level
of production, and production decision becomes sunk and leads to concave period profit
function by limiting the maximum attainable period profit at chosen price. It is their
distinct roles in formation of profit function that make risks matter in our model even
when we assume that the monopolist is risk-neutral.

Two mechanisms are identified in relation to their distinct roles. A rational producer
who maximizes expected profit takes in account all contingent wedges that would lie
between his pricing and production decisions ex ante and market outcomes ex post. In the
model, each contingency is related to two contrasting states (excess demand versus excess
supply). Profit-maximization of pricing decision neutralizes the uninsurable business risks,
one against the other, and leads to an inverse relationship between prices and quantities.
Profit-maximization of production decision equates marginal cost of production to the sum
of expected marginal revenues conditional on each demand state, and leads to a positive

relationship between prices and quantities. Suppose the monopolist wants to produce

3Bils and Klenow (2004)’s empirical work endorses this model environment reasonable and realistic:
Using data from the Bureau of Labor Statistics during 1995-97, they document that among 350 categories
of goods and services covering about 70 percent of consumer spending, half of prices last less than 4.3
months. Compared to prior studies about price stickiness, their result shows much more frequent price
changes in consumer products and services. But at the same time, the price changes seem to be far less
frequent than required to guarantee continuous market-clearing across these sectors.



more: the more he produces, the larger risk of excess supply relative to the risk of excess
demand he faces. Rebalancing the two contrasting risks requires to lower price through the
risk neutralization channel. At the same time, re-equating the two conditional expected
marginal revenues with marginal cost of production raises price to compensate for taking
a larger relative risk through the marginal cost equalization channel.*

Equipped with this new decision framework, we extend the market-power theory of the
markup towards a direction of business-risk theory. In contrast to the textbook theory
of the markup, we characterize a markup rule as a pricing kernel of business risks as
well as market power, and show that optimal price includes ‘traditional markup’ to the
extent of market power and ‘risk premium’ for compensation of potential losses related to
uninsurable market-clearing failure. Our interpretation can be contrasted to the notion of
effective cost in the literature. Greenwald and Stiglitz (1993) assume a bankruptcy cost
in financing and production decision problem faced by a risk-averse firm. However, their
interpretation of optimal price concerning the risk of business closure is confined within
a notional extension of marginal cost to include marginal bankruptcy cost, because they
assume perfect competition by which equilibrium market price must equal marginal cost
of operation.®

In addition to the level effect of business risks on the composition of markups, we also
examine their variation effect on prices and quantities. The two identified mechanisms
(the risk neutralization and the marginal cost equalization) now jointly provide a unified
framework for explanation of the well-known stylized facts over business cycles: prices vary
little, while quantities vary much (price inertia);® and markups fluctuate as output moves

up and down (counter and procyclical variation of markups).” The inertial behaviour

4Put it differently in a Bayesian decision context, if we want to induce a pla larger odd ratio,
we have to compensate him by allowing to increase the magnitude of prize he would get if he succeeds.
Greenwald and Stiglitz (1993) also captures this mechanism by assuming a scale effect; that is, the larger
scale at operation, the more costly bankruptcy.

®Similarly, Prescott (1975), Eden (1990), and Dana (1998) extend the notion of marginal cost to include
marginal cost of carrying underutilized capacity in addition to physical costs (covering marginal operating
costs).

5 A long serics of literature finds that prices and wages appear to show little responsc to shifts in demand.
See, for cardinal references, Eckstein (1972) and Carlton (1986). Stiglitz (1984) discusses about several
alternative explanations for the inertial behaviour of prices. See also Baudry et al. (2007) and references
therein for recent empirical reexaminations using large micro data sets. Baudry et al. (2007) documents
long average duration of prices {around 8 months), although individual durations of prices significantly
differ across sectors.

"Bils (1989), Warner and Barsky (1995), Chevalier, Kashyap, and Rossi (2003) and many others have
long documented evidence on the countercyclicality of markups. To the contrary, some other studies find
the degree of countercyclicality is significantly reduced or find even the opposite results. For example,



of prices relative to quantities is generated in response to changes in business risks. A
higher demand (in terms of stochastic dominance relation between the distributions of
demand schedules) implies that the probability of market-clearing failure becomes lower,
other things being equal. As a market becomes more likely to clear with a higher demand
for every given price and quantity, we find two opposite forces at work. With the risk
neutralization channel on one hand, the monopolist becomes freer to use monopolistic
market power and to increase price. With the marginal cost equalization channel on
the other hand, the monopolist feels safer with every feasible combination of his pricing
and production decisions, and tends to lower price to the extent of reduced business
risks. The two forces counteract each other on determination of optimal prices, while
optimal quantities increase through both channels. Consequently, the producer theory
of uninsurable business risks predicts price inertia, less variation in prices relative to
quantities.

This model also sheds light on the cyclical variation of markups and connects it to
the cyclical nature of uninsurable business risks.® And with changing business risks, the
model provides a unified explanation for both countercyclical and procyclical behaviours of
markups. A key condition determining whether markups are countercyclical or procyclical
is related to the degree of the relative responsiveness between the risk neutralization
channel and the marginal cost equalization channel, which is shown to be measured by
the relative size of the expected volume of sales conditional on successful market-clearing
to the one conditional on market-clearing failure. An increase in the relative size means
that the monopolist expects to see relatively higher level of sales, and will be more satisfied
about the goods market business condition. In other words, the monopolist expects that
the overall risk level of the goods market reduces along his chosen optimum path, when the
risk neutralization channel responds less than the cost equalization channel to changing

business risks. Only then, the monopolist lowers the optimal markup rate.”

Nekarda and Ramey (2010) finds that markups are either procyclical or acyclical at both the aggregate
level and the industry level in the US economy. Beccarello (1997) finds procyclical markup movements
across G-7 countries.

8Empirical evidence suggests that business risks may change over business cycles. For example,
Jaimovich and Floetotto (2008) provide evidence that the number of business closures classified by in-
dustry in the US is larger during recessions.Devereux, Head, and Lapham (1996) measure the aggregate
business failures by the number of bankruptcies reported in Dun and Bradstreet’s Record of Business Clos-
ings, and find it countercyclical. Van Nieuwerburgh and Veldkamp (2006) also document from professional
survey data, that forecast errors become smaller during booms.

In contrast to our business risk theory, much of the existing theoretical explanation about cyclical



The present paper is related to two strands of the existing literature. With respect
to theme and aim, our business-risk theory is close to Greenwald and Stiglitz (1989)’s
portfolio choice theory of pricing and production.'’ Both their work and the present paper
alm to incorporate risk factors into monopolistic pricing decision. As a theory of price
inertia, they carry out a mean-v

-averse (quadratic utility function); (2) the firms are uncertain about the consequences
of their pricing and production choices; (3) the greater change from the state in which
they are, the more the uncertainty; and (4) more uncertainty is associated with pricing
decision than with production decision. However, these assumptions are built-in in that
the combination of the assumptions (1) and (4) bears the conclusion of price inertia in
itself. The present paper derives price inertia without relying on the assumptions. So
theoretical and empirical implications that follow also differ.

With respect to baseline model environments, the present paper is closely related to
Leland (1972). He classifies a firm’s decision problem by looking at which choice variable
between price and quantity is made before the realization of demand. He considers three
cases; price, quantity, and both price and quantity. The baseline decision problem facing
the monopolist in our model are close to the last case. However, the aim and the scope
we have here differ from his. Also, Prescott (1975), Eden (1990), and Dana (1998, 1999)
share common in the assumption of decision timing; commitment to pricing and production

decisions with uncertain demand.!' However, as an explanation of price dispersion, their

behaviour markups solely resort to wax and wane of monopolistic market power. For example, markups
move up and down (1) through direct cyclical variation of demand elasticity (whose mechanism is mostly
found from the literature of market share models based on switching costs, habit formation etc. See
Stiglitz (1984); Bils (1989); Klemperer (1995); Bagwell (2004); Ravn, Schmitt-Grohe, and Uribe (2006)
among others); or (2) through timely differentials of consumer valuations in separable markets (whose
mechanism is mostly found in the literature of discriminative markup pricing including some recent works
by Nocke and Peitz (2007); Moller and Watanabe (2010)); or (3) through cyclical variation of collusion
among oligopolistic competitors (see Green and Porter (1984); Neubecker (2006) for reasons why collusion
may be procyclical, and also Rotemberg and Saloner (1986); Rotemberg and Woodford (1992); Jaimovich
and Floetotto (2008) for reasons why collusion may be countercyclical); or (4) due to the economies of
scale in shopping technologies that relatively weaken seller’s market power when shopping intensity is high
(Warner and Barsky, 1995).

Some notable exception includes Chevalier and Scharfstein (1996) who connect markup pricing to hard-
ship of external financing, and Lal and Matutes (1994); Lal and Villas-Boas (1998); Chevalier, Kashyap,
and Rossi (2003) based on the loss-leader model. Chevalier and Scharfstein (1996) claim that monopolist
raises prices to help cash flow during recessions, because then he suffers greater hardness in raising ex-
ternal funds. The loss-leader model is another markup pricing theory which does not explicitly resort to
monopolistic market powcr.—Higher demands appear associated with lower markups because of strategic
selection of high demand items at discounted prices to attract customers.

19See also CGreenwald and Stiglitz (1993).

"The recent literature with similar model environments also includes Berk, Gurler, and Levine (2007),



models concern optimal price discrimination under uncertain customer valuations. So
they allow firms to present a menu of several pairs of prices and quantities using various
rationing rules for each state of demand ordered from lowest to highest, and customers to
arrive in a sequential manner. In contrast, the present model is interested in the nature
(and the consequences) of business risks entailed in each pair of pricing and production
decisions. So the decision problem agents face, and the implications we find both differ
much from theirs.

The rest of the paper is organized as follows. Section 2 develops a model of monopolist
with uninsurable business risks. Section 3 finds optimality conditions and discusses their
economic meanings. Section 4 presents key results of the study. Section 5 makes some

concluding remarks.

2 The Business Environments

In this section, we present the model environments of a monopolist market with business
risks. To capture business risks present in goods market, we consider a simple form of
possible market-clearing failure with stochastic demand as follows: A risk-neutral monop-
olist sets price p; and produces output y; at the beginning of each period t before the
realization of demand. Period demand is unknown until the end of period. As a result of
this timing differential, the market may fail to clear at the end of period. If the current
period is the case, the producer carries forward unsold products to the next period. In

what follows, we detail the risky business environments.

2.1 Fundamentals

Demand Function Period demand d; is subject to exogenous random demand factor

x; as follows;
dt = D(ﬂjt,pt)- (1)

and Bensoussan et al. (2008), who follow a long series of operational research on the classical theme of the
newsboy inventory problem pioneered since Arrow, Harris, and Marschak (1951) and Scarf (1959). Their
studies also share common in their assumptions of demand uncertainty and commitment to production
(capacity investment) before the realization of demand. Particularly, Berk, Gurler, and Levine (2007)
develop numerical approximation technique for Bayesian updating of demand distribution when realized
demand data are censored by production (stock order) decision. Bensoussan et al. (2008) focus on the
theoretical existence of dynamic optimal feedback rules of stock orders and sales with the observation
structure of censored demand.




Random demand factor z; realizes at the end of period ¢, independent of the history of

=1 = {z1,29,--- ,2;_1}. Demand function D(-) is twice-continuously

past realizations, x
differentiable, with standard properties D, > 0, D, < 0, D, <0, and D, > 0.
Examining pricing and production behaviour with business risks, our focus of analysis
will be drawn to intertemporal stochastic dominance relation of demand distributions. To
capture stochastic shifts in demand distribution over periods, we introduce a finite number
of distribution parameters that characterize the distribution function for each period. Let
F(z;0;) denote the probability distribution function of random demand factor z; for each
period t. Here 8; is a set of time-varying parameters that characterize the distribution
function F(-) for each period. Assume that 6; realizes at the beginning of each period
t and follows an i.7.d. process given by the probability distribution function G(6;). Let
us consider a non-negative support [z, T;] with 0 < z, < T; < oco. As G is stationary,
the distribution of the supports (and thus the distribution of distribution function F’s) is

stationary.

Stock Transition Equation A risk-neutral monopolist sets price p; and produces out-
put y; at the beginning of each period t. Making pricing and production decisions, the
producer knows 6; in F'(x;6;) and thus the distribution of period demand d;. Upon the
realization of random demand factor x; at the end of period, however, the market may end
in either excess demand or excess supply. Unsold products from the current period can be
carried forward to the next period.'”> Consequently, the level of product stock available
at the beginning of the current period is the sum of output produced at the beginning of
the period plus unsold goods brought forward from the previous period.

Let s; denote the stock available at the beginning of period f. Also let n; denote
inventory holdings brought forward from period ¢t — 1;
)+

ny = (Stfl —di— >

where (s;—1 —di—1)" = s4-1 —dy—1 for s;_1 —dz—1 > 0; and (s;—1 — d¢—1)" = 0 otherwise.

Then, the stock transition equation is expressed as follows;

12 As is discussed in Section 2.2, we assume that unsatisfied demand does not roll over to the next period.



St = Y¢ + Ny (2)

Making production decision is equivalent to choosing the level of stock s, for ny = (s4-1 —

dg—1)" is known.

Profit Function Period profit is the total sales revenue minus the total cost. First, the
total sales revenue in period ¢ is the product of price and sales volume; p;{s; — (s; —d;) " }.
Next, let C(-) denote the total production cost, and H(-) the total storage cost. Both the
cost functions are twice-continuously differentiable and strictly increasing in the level of
output and of stock, respectively, with C(0) > 0 and H(0) > 0. Then the total cost in
period t is the sum of the total production cost C(y;) and the total inventory maintenance
cost H(n;). Using the stock transition equation (2), we have the total cost in period t as

C(s¢ —n¢) + H(ng). So period profit my is given by

7 = pei{se — (s¢ — dt)+} = C(st —my) — H(ny). (3)

At the beginning of period ¢, the monopolist makes pricing and production decisions

to maximize the expected present value of its profit stream,

)
ElL [ T) =E [ duesjymes ¢ | Ie| (4)

§=0
where q(; 44 ;) denotes a cumulative discount factor composed of short-term rates between
periods t and ¢t + j. E[- | Z;] is the expectations operator conditional on information
set 7, = {zt1,d"=1 nt pt, st qt, 6} available at the beginning of period t, where time
superscript ¢ denotes the history of concerning variable up to period t. We shorthand

E[ | ;] = Ei[].

Market-Clearing (Failure) Condition Given the monopolist’s pricing and produc-
tion decisions (p¢,s¢), the state of market-clearing and market-clearing failure will follow
realization of x;. Let Z; define the [owest admissible value of realized z; in order to clear
the market, for given pricing and production decisions. Conversely, since the market de-

mand is monotonically increasing in x; (i.e., D, > 0), the market will fail to clear for x;



such that

D(x¢,pr) < ¢,
———

period-tdemand
realization at zi€[z,, &)

for given (p¢,st).
So we have the threshold value Z; which divides the continuum of demand states into

market-clearing and market-clearing failure;

excess supply for x4 € [z, 34),
exact clearing for oy = Iy,
excess demand  for x; € (&, Ty].

In effect, bearing D, > 0 in mind, we can summarize these distinct states in the line with

the standard market-clearing condition;

D(Z¢,pt) = st. (5)

It is important to understand that, for known n; = (s; 1 — dy 1)", the threshold #; will
be implied by the firm’s pricing and production decisions. So, ez ante, it works like a
“point estimator” imparted by the Bayesian decision theory (for example, the minimum
expected loss estimator). In what follows, we discuss about the nature of “point decision
instruments” (pricing and production decisions) under the business environments we have

modelled so far.

2.2 The Nature of Decision Problem

Figure 1 loosely sets out a baseline decision problem facing a producer with the busi-
ness risks, and illustrates how the producer’s pricing and production decisions are related
with ex post market outcome: Pricing decision does condition demand distribution, while
production decision does censor it at chosen price. To be clear, the upper panel pictures
their distinct roles in forming expected profit under the probability distribution of demand
function. The bottom panel pictures their distinct contributions in connection with total

revenue and total cost.'® Further, it shows the two decision instruments jointly induce

131n this illustration, initial level of inventory holdings is set to zero; no = 0.
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Figure 1: A baseline decision problem facing producer with business risks
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the period profit function to be concave in the level of demand. Once pricing decision is
made, the distribution of relevant demand level is pinned down. Once production decision
is made, the total cost function turns to a fixed level of sunk cost. It is this concave profit
function that makes risk matter in our model even when the firm is risk-neutral.'*

One aspect of financial market implicitly assumed in the business environments is
incompleteness of traded assets. As seen in the bottom panel. d denotes the level of
demand that corresponds to the lowest admissible level of x for temporal market-clearing;
d = D(z,p). The shown kink at d reflects missing asset markets. Suppose that the
economy hold a complete range of assets which offers contingent claim against every state
of goods market failure. With complete asset markets, a producer would insure his main
business against excess demand (excess supply) states, and recover the market value of
lost sales opportunity (loss from unsold goods) at a premium known in advance. If this
were the case, the producer’s profit profile would turn flat over the whole range of demand
(or claimable range of demand realization, if he held partial insurance). So the exact
functional form of profit over the states of goods market relies on how complete asset
markets are. However, such financial contracts have been rarely implemented for goods
and service markets in general. A few exceptions are some futures contracts for wholesales
of utilities and commodities.

The profit profile in the bottom panel of Figure 1 has been drawn under some technical
assumption that would differ across industries: No value attaches to unwanted inventory
buildup (unsold products) and lost sales (stock-out). As we relax this assumption, the
profit function becomes less concave in its shape and so less sensitive to the risk of stochas-
tic failure of market-clearing. Unsold products in manufacturing sectors are usually carried
forward for the next period sales at certain storage costs. So the market value of inventory
stock equals the expected present value of future production costs minus storage costs,
and will decrease in the realized level of demand in the current period. Figure 2a incorpo-
rates this value into the profit function, by assuming a linear relationship between these
costs and the level of stock carried forward. On the other side, for the case of excess
demand, sellers lose sales and thus concern about the potential impact of stock-out on

their future business. If they are able to organize such lost sales in the form of advanced

M1 analogy but not by chance, the concavity of the period profit function takes after profit function in
put option trades.—The choice of production level against random demand corresponds to the choice of
strike price in writing a put option against random movement of underlying asset price.

12
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orders to be delivered in a later date, the certainty of so portioned future demand will
have information value possibly translated in terms of pecuniary unit. Figure 2b describes
the profit function modified to fit into such situation. Nevertheless, lost sales often cut the
seller’s reputation, and may undermine potential customer base and future market share
through, for example, deep habit formation mechanism. The consequences of lost sales
are as obscure as that one may find the two opposite impacts canceling out each other. In
this respect and for the virtue of simplicity, we assume zero future value of intertemporal
transfer of lost sales, while allowing intertemporal inventory buildup. Regardless of what
specific assumptions to be made about lost demand and stock roll-over, however, the con-
cavity property of profit function induced by the business risks will hold as far as market

discount factor is less than one and inventory maintenance is costly.

3 The Decision Rule

This section searches optimal pricing and production decisions under the risky business
environments. To start, we reformulate the maximization problem in a recursive way.
Given any two consecutive periods, we drop time subscript for the current period variables
and use prime (') to denote the next period variables. In particular, we will shorthand

q = q(t,1+1) and qd = q(t+1,i+2) at the current period ¢.

3.1 The Optimality Conditions

Restating the Maximization Problem A producer prices and produces to maximize

/m (x,n,0)dF(z;0) = max {/x 7(z,n)dF(z;0) + qF [/ (2’ n', 0")dF (z; 9)] } (6)

p, T

with
(i) = pD(z,p) — C(s —n) — H(n) for z € [z, ], .
ps —C(s—n) = H(n) otherwise,
n' = (s — D(z,p))", (8)
s = D(2,p), ()

14



and given n. As the selection of a price-production pair is equivalent to the selection of

price-stock pair, we define a pricing-production decision rule as follows:

Definition 1 (Optimal Pricing-Production Rule). A pricing-production decision rule (p, s)
is a function of the predetermined inventory level n and the distribution parameter ¢, apart
from the parameters for demand and technologies. An optimal pricing-pricing decision rule
(p, s) is the set of p = p(n,f) and s = s(n, ) that solves the maximization problem (6)
with (7) to (9), for given n and 6.

In the standard model of monopolist, pricing and production decisions are just the
other side of the coin because the assumption of market-clearing automatically matches
price to quantity one-to-one for a given demand curve. In contrast, when market can
stochastically clear or fail, pricing and production become two distinct instruments. A
profit-maximizing producer will not waste either side of the decision space. As discussed
in Section 2.2, he takes into account the nature of each of pricing and production decisions

and optimally combine one with the other.

The First Order Conditions Applying the Leibniz rule to the maximization problem

(6) with (7) to (9), we have the following first order conditions w.r.t. (p, s);

; / CiFm) = - / " (D(@,p) + pDy(e.p)] dF (2)

MR.P.XD MR.P.XS(cont’d)

(10)

[ (Gt = s+ Dlop) — Huls = D(w. )} Dy, p)F ()

MR.P.XS

and

Cs—n) = » [ dF()
N———— T
MC.Y
MR.Y.XD
(1)

+aB | [T{O — 5+ D) — Hols = Do)} dF(@)|

MR.Y.XS

15



where D,,, Cy, and H,, are the partial derivatives. Just to simplify notation, we drop the
distribution parameter # where no confusion arises (until we examine the impact of the
distributional changes on the optimal pricing-production decision rule). Here instead, we
attach a set of acronyms to the first order conditions to help to interpret the mathematical

terms in the language of economics;

o MR.P.XD: marginal revenue associated with excess demand state w.r.t. pricing

decision

¢ MR.P.XS: marginal revenue associated with excess supply state w.r.t. pricing deci-

sion
e MC.Y: marginal cost of production

e MR.Y.XD: marginal revenue associated with excess demand state w.r.t. production

decision

e MR.Y.XS: marginal revenue associated with excess supply state w.r.t. production

decision.

All the acronymic terms are non-negative.

The Second Order Conditions Let II° = [ II(z,n,6)dF(x;6), the maximum value

function in (6); and the notation of its partial derivatives follows the subscript-convention.

It should also hold that for a decision rule (p, s) to be optimal,
15, <0, (12)

and the determinant of the Hessian matrix

e e
HPP HPS

>0, (13)
M, T,
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where

A 2 2
I, = —%ﬂi) {p —¢B(2)} + | / [2D,(x, p) + pDyp(x, p)] dF (z)

q / {B(2) Dyp(,p) + By() Dyl,p)} dF (x),

e __; 7 _ )b — sSs—n : x xT
M = 5y @) 0B @) - Culo =) 0 [ Bu@ar() "

z

1, = [ - 22050 - aB@) +af B@ar)

>

e — TTe -
g, =1

and f(z) = dF/dz is the probability density function; and
B(z) = Cy(s' — s+ D(x,p)) — Hu(s — D(x,p)). (15)

By(z) and Bg(x) are the partial derivatives of w.r.t. p and s, respectively. That is,
By(2) = {Cyy (' ~ 5+ D(.p)) + Humr(s - D@, )} Dyl,p), and Bu(x) = ~{Cyy(s/ -
s+ D(z,p)) + Hyw (s — D(z,p))}-

The conditions (12) and (13) together with (10) and (11) are necessary and sufficient
for a local maximum. If II¢ is a strictly concave, these conditions constitute a unique
global maximum for I1¢. In what follows, we characterize these conditions and proceed to

specifications for demand function, technologies, and probability distribution.

3.2 Characterization of the Optimal Decision Rule

The Business Risks In the present model, the business risks take a form of stochastic
market-clearing and market-clearing failure. As commonly appeared in the two optimality
conditions (10) and (11), the risks are basically captured by the probability distribution
function F(z). In particular, fz dF(z) = F(&) is the probability that a market may fail
to clear (excess supply), and ff dF(z) = 1 — F(Z) the probability that a market clears

(excess demand). The two contrasting risks play important roles in forming an optimal
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pricing-production rule, as reflected in the above acronymic terms followed by either XD
or XS.

To help to read the first order conditions (10) and (11) in the language of economics,
let us facilitate the acronymic terms introduced above, and restate (10) to MR.P.XD =
MR.P.XS and (11) to MC.Y = MR.Y.XD + MR.Y.XS. As briefed in this expression,
Equation (10) states that, for a chosen level of production, the monopolist should set
price at which the two conditional responses of revenue do offset in expectations. In other
words, the pricing rule seeks to neutralize production risks by hedging one in the form
of excess supply against the other in the form of excess demand. Let us call this risk
neutralization channel a “hedge rule” for short. The hedge rule optimally spots how much
a producer should adjust prices to counteract additional risk arising when he increases
production.

Equation (11) is the standard equalization condition between marginal revenue and
marginal cost of production. It states that for a chosen price, the level of ex ante optimal
production will be found where marginal production cost equals the sum of expected
marginal revenues conditional on each state of market-clearing and market-clearing failure.
Let us call this marginal cost equalization channel a “offer rule” for short. The offer rule
optimally spots how high prices a producer will ask if he is asked to produce more and
thus to take additional risk. For a limiting case in which unsold goods are fully perishable,

the expected marginal revenue associated with excess supply becomes zero and thus the

offer rule reduces to MC.Y = MR.Y.XD.®

Forward-looking Reservation Price The two terms MR.P.XS and MP.Y.XS in (10)
and (11) and the four Hessian elements in (13) with (14) share one common factor, B(x) =
Cy(s' — s+ D(z,p)) — Hy(s — D(z,p)) in (15). B(z) is the difference between future
marginal costs of production and of inventory maintenance for each level of . In effect, it
amounts how much the producer could save tomorrow if he carries forward one additional
unit of output produced today. So we can think of the expected present value of B(z), i.e.,
qE[B(z)] = qE[Cy(s' — s+ D(x,p)) — Hy (s — D(z,p))], as a “forward-looking reservation

price” at which price the producer is indifferent between if he sells additional unit now

5This reduced form expression appears similar to the optimality condition found in the models of
Prescott (1975), Eden (1990), and Dana (1998). In particular, they express p = Cy(s — n)/{1 — F (%)},
and call the r.h.s. “marginal capacity cost”, regardless of market structure.
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and if he turns down sales now and carries forward it tomorrow.

In general, the relative size of the forward-looking reservation price to the marginal
cost depends on a full description of cost structure, existence of externalities, and so on.'®
Consider a producer who currently produces at ¢E[B(x)] > Cy(s — n). His production
motive must be two-fold; to sell and to hoard.—A fraction of output is produced for sales
today, and the rest of output is produced to hoard in expectations of higher production
cost tomorrow (e.g., cost-push inflation). If no business risks exist, production by the
latter motive (for speculative inventory accumulation) will end where the forward-looking
reservation price equals the marginal cost of production, ¢E[B(z)] = Cy(s —n), assuming
a textbook U-shaped marginal cost structure. At optimum, the marginal cost sets the
upper bound of the forward-looking reservation price. In contrast, in the presence of
business risks, the forward-looking reservation price is strictly less than the marginal cost
of production at optimum; ¢E[B(x)] < Cy(s —n).

One can also easily reason the lower bound of the forward-looking reservation price
at optimum path. At a first glance, it seems plausible that the next period storage cost
exceeds the next period production cost in expectations, and thus E[B(z)] < 0. However,
when maintenance of inventories is more expensive than producing new units in the next
period, no rational producers will carry forward any additional inventories and rather will
scrap them at some costs. So the forward-looking reservation price at optimum path must
be greater than (and at least as great as) the writing-off cost of inventories. Without
loss of generality, we assume zero scrap cost. In effect, the zero lower bound is seen as
equivalent as the case of completely perishable goods. The following result summarizes

our discussion about the forward-looking reservation price.

Lemma 1 (Forward-looking Reservation Price). Assume there are no externalities with
which inventories are more productive or more destructive. Assume zero cost of scrapping
inventories. In the present model of business risks where markets stochastically succeed

or fail to clear, the following relationship holds at any interior optimum regardless of cost

16Notable examples of externalities that make inventory holdings desirable include Ramey (1989) and
Bils and Kahn (2000). In Ramey (1989), inventories are productive because inventories are assumed to be a
production factor. Also in Bils and Kahn (2000), inventories are productive because inventories contribute
to generation of greater sales.
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structure (i.e., for any economically sensible total cost function C);
0 < ¢E[B(z)] < Cy(s —n). (16)

Proof. The zero lower bound is obvious from the assumption of zero scrap cost. As per
the upper bound, first look at the r.h.s. of (11). Note in order for (11) to hold, 0 <
MR.Y.XD < Cy(s —n) and 0 < MR.Y.XS < Cy(s —n) at any interior optimum. However,
a rational producer currently active will set price and produce where p > Cy(s —n) at
optimum ex ante. So we have that pfde(az) < Cy(s —n) < p. Finally, note that
F(z) bases on a space of measure one. Consequently, ¢F U; B(x)dF(ac)} < qE[B(z)] <
Cy(s —n) <p. O

Links to the Standard Assumptions Next, to help to read the second order condi-
tions (12) and (13) in the language of economics, let us express the first order conditions

(10) and (11) in terms of acronymic terms as follows;

1I; = MR.P.XD — MR.P.XS =0

I = -MC.Y + MR.Y.XD + MR.Y.XS =0.

Using the expressions, we can equivalently state the second order condition (12) to
MR.P.XD, — MR.P.XS, < 0
and (13) to

MR.P.XD, — MR.P.XS, MR.P.XD, — MR.P.XS,
—MC.Y, + MR.Y.XD, + MR.Y.XS, —MC.Y, +MR.Y.XD, + MR.Y XS,

> 0,

where the notation again follows the subscript-convention for partial derivatives.

Bearing in mind the acronymic expressions, we can read the baseline economic mean-
ings related to these second order conditions. First, regarding the properties for the
cross-derivatives, we already know that a producer facing stochastic market-clearing and
market-clearing failure uses pricing and production as two distinct instruments, although p

and s are related through the definition (9) of the market-clearing level of random demand
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factor. So we have MR.Y.XD,, + MR.Y XS, = MR.P.XD, — MR.P.XS;, following Young’s
theorem and the fact that MC.Y,, = 0. This is as indeed shown in the third equation from
(14). Tt says that the change in the marginal revenue of production (conditional on over-
and under-production) following an increase in price should be the same as the change
in the marginal revenue of pricing (conditional on over- and under-pricing) following an
increase in production.

Regarding the requirement for the leading principal minor of order 1, we can under-
stand (12) or MR.P.XD,, — MR.P.XS,, < 0 as a statement that, as a pricing rule deviates
from the optimum and leads to higher prices than optimal level (while holding s), the
expected marginal revenue conditional on market-clearing states decreases more than the
expected marginal revenue conditional on market-clearing failure. So this statement is
basically about the functional form of marginal revenue, and thus ultimately about the
specification of demand function. Also, we know that for (13) to hold, IIS, < 0, or
—~MC.Ys+MR.Y.XD;s +MR.Y.XS; < 0. It says that, if a production rule s (while holding
p) leads to a higher output level than optimum, the marginal cost of production lies above
the marginal revenue (the sum of the two conditional expected marginal revenues). So
this statement corresponds to the standard requirement about the position of marginal
cost relative to marginal revenue. The following result links the requirement for the lead-
ing principal minors of order 1 to the standard assumptions for demand function and

production-storage technologies.

Lemma 2 (Links to the Standard Assumptions). Assume that 2Dy(x,p) + pDpp(z,p) <
0 for any given x. Assume also that a pricing-production decision rule (p,s) leads the
marginal cost of production for the present period to be weakly increasing, and the forward-
looking reservation price to be weakly decreasing at optimum. Then, for any non-degenerate

and continuous distribution function F(z), we have that TI5,, < 0 and TIg; < 0. That is,
MR.P.XD, < MR.P.XS,, and

MR.Y.XDs + MR.Y. XS, < MC. Y.
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Proof. 1t is obvious that II7 , < 0 and IS, < 0 under the following standard assumptions

2Dy, + pDypy <0,
Cyy 20,

B, <0.
O

All the three assumptions for the above result are standard: The first assumption that
2D, +pD,, < 0 requires the schedule of marginal revenue (for any fixed level of ) derived
from period demand function to spot a downward-sloping curve over the coordinate of price
and quantity. The second assumption looks at the cost side, and requires that the marginal
cost of production for the present period is also weakly increasing at optimum. To see
economic meaning of the third assumption, recall that By(z) = —{Cyy (s’ — s+ D(x,p)) +
Hyr(s — D(x,p))}. So the assumption By < 0 is equivalent to Cyyy + Hyrypr > 0, which
means a rational producer produces where the marginal costs of production and inventory
maintenance next period weakly increase.

Although these standard assumptions made in Lemma 2 are alone neither necessary
nor sufficicut for the second order conditions (12) and (13) to hold, we have seen them to be
useful to illuminate stability properties for the present model of a producer with business
risks, as such referring back to our existing knowledge on the traditional market-clearing
producer theory. Toward further analysis of the model, we consider analytically tractable
functional specifications for preferences (demand function) and technologies (production

and inventory maintenance), with which Lemma 1 and 2 hold.

3.3 Specification of the Fundamentals

Change of Variables As the required properties are mostly about the specifications
of the demand function D(x,p) and the probability distribution F(x;6), it is clearer and
easier to characterize the existence requirement in terms of (p,#) rather than (p,s). In
effect, with the identity (9), the selection of an optimal pricing-production rule (p, s) can
be transformed to the selection of an optimal pricing-estimation pair (p, ) because s and

Z play the same decision role of censoring the probability distribution that is conditioned
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by pricing rule p. Henceforth, we focus on (p, ) as defined as follows:

Definition 2 (Change of Variables). An optimal pair of pricing p and estimator & is the
set of functions p = p(n, d) and & = &(n, #) that solves the maximization problem (6) with
(7) to (9), for given n and #. As (p,s) and (p,Z) are one-to-one interchangeable (injec-
tive mapping), we call a pricing-estimation rule a pricing-production rule interchangeably

depending on the context.

Technologies and Demand Function As mostly found in the literature, let us con-
sider the case of constant marginal cost in both production and storage technologies. This
specification enhances analytical tractability, by simplifying the functional form of the
forward-looking reservation price, ¢ E[B(x)]. Henceforth, let Cy(-) = ¢ and Hy,(-) = h,
where ¢ and h are constant within period. However, we allow them to vary over time as
technological shocks hit and/or factor prices move up an down. Given the specification
for technologies, the forward-looking reservation price turns free from realization of =, and
only subject to market discount rate ¢ and relative technological advances between pro-
duction and storage sectors: ¢E[B(x)] = qE[¢’ — h']. For conciseness, let B = E[¢’ — 1],
and thus ¢F[¢ — h'] = ¢B.

Also we consider a period demand function that is subject to a random factor x in a
multiplicative form, D(x,p) = xD(p). Here we slightly abuse the demand notation D, to
save letters, while we maintain the same functional properties for demand as previously as-
sumed in Section 2.1. With the demand function, the price elasticity of demand ¢(p) turns
free from random factor x. That is, ¢(p) = |Dp(z, p)/{D(z,p)/p}| = |Dp(p)/{D(p)/p}|. To
be consistent with the specifications for technologies and demand, we assume 0 < ¢B < ¢

and 2D, + pDp, < 0, and thus Lemma 1 and 2 hold.

The Hedge Rule and the Offer Rule Given the specification for technologies and

demand function, we can rewrite the two optimality conditions (10) and (11) as follows;

0=2D(p){1 - F(2)} + {D(p) +pDp(p) — ¢BDy(p)} T(2)F(Z),
MR.P.XD MR.P.XS
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and
c =p{l-F(&)} + ¢BF(2).
~~ —_—— ——
MC.Y MR.Y.XD MR.Y.XS
where T'(Z) the conditional mean of z truncated from above Z,

= Ex|xz<i).

In this new expression, we have substituted (9) and removed s out of the system
of equations to fully focus on the pricing-estimation rule (p,Z). A few further steps of

rearrangement lead to

the hedge rule: p {1 — e(lp) (1 + @;1(@—);’((5))})} =¢qB (17)
and
1 F(z)

the offer rule: p =

e 1@ (18)

It holds that T'(Z)F(Z) {1 — F(Z)} # 0 at an interior optimum. As discussed before,
the probability of market-clearing failure F'(#) basically captures the excess supply risk
(XS-risk), and the probability of market-clearing {1 — F(Z)} basically captures the excess
demand risk (XD-risk). Another distributional term T'(%) can be read as the expected
sales volume conditional on market-clearing failure. As will be seen in the next section,
the three distributional terms are central to the analysis of cyclical variation of prices and
quantities.

From this new look, we can see that the standard mechanism of demand and supply
basically underlies the optimal decision rules (17) and (18), respectively. Apart from the
distributional terms, the price elasticity of demand ¢(p) is an essential component in the
hedge rule (17), and the marginal cost of production c is in the offer rule (18). Holding
everything else constant, one can see a clear association between higher markup rates
and lower price elasticities of demand, and association between higher prices and higher
marginal costs of production.

This characterization is useful for inspection of the neighbourhood around where the

hedge rule and the offer rule hold at the same time. Assuming the forward-looking reser-
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vation price ¢B within the optimal boundary established in Lemma 1, we can visualize
each of the hedge rule and the offer rule over the decision coordinate (p, &).

Recall first that in the present model, a producer faces the two contrasting types of
business risks, excess demand (XD) and excess supply (XS). As discussed before, the hedge
rule basically seeks to neutralize the risks, one against the other, whereas the offer rule
equates marginal cost of production to the sum of expected marginal revenues conditional
on each state of XD and XS. By formulating a producer’s decision space in terms of choice
of prices and probabilities, we can intuitively understand how the hedge rule gives rise to
a tradeoff relationship between pricing p and optimal choice of probability F'(#), and how
the offer rule relates them in the opposite direction. Suppose that the producer is about
to produce more. It is equivalent to choose a higher odd ratio F(&)/{1 — F (&)} for every
given price. Put it differently, the more he produces, the larger risk of market-clearing
failure (XS-risk) relative to the risk of market-clearing (XD-risk). Rebalancing the two
contrasting risks requires to lower price. At the same time, the offer rule allows him to
utilize “means of pricing” to compensate for taking a larger XS-risk relative to the XD-
risk. If we want to induce the producer to produce more and confront a higher odd ratio
F(2)/{1 — F(&)}, we have to compensate him. Consequently, the producer will not offer
the same price even when the marginal cost of production is given constant, and will ask
a higher price along the offer rule.

We close this section with an quantitative example that demonstrates how this simpli-
fied system helps us to establish an optimal pricing-estimation (p, #) and then obtain the

corresponding optimal pricing-production choice (p, s).

Example 1. Let d = z(1 — p) where z is uniformly distributed over [0,u]. To have
market active, we also assume that 0 < mc < 1. Under the assumptions for demand and

distribution, (17) and (18) become

(1-4¢B) .,
S S 1
p TR (19)
—¢B
pqu+—(C qA)u, (20)
u—x

respectively. Solving the system of the simultaneous equations, one can obtain a unique

optimal pair (p, &) that satisfies the condition (16) for no speculative inventories at op-
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Figure 3: Example 1

timum. Then, the optimal stock for sales in the present period directly follows from the
definition (5). Using the stock transition equation (2), one can straightforwardly work out
the optimal production level for given the level of stock n = (s_1 —d_1)" brought forward
from the previous period.

Graphically, Equation (19) is linear and intercepted at & = 2u/(1 — ¢B) and p = 1.
Equation (20) is a rectangular hyperbola with asymptotes & = u and p = ¢B. See Figure
3. We label each equation by hedge(p) and offer(s), reminding of where each condition
has been originated from. The unique optimal decision (p, Z) is represented by the point

E at which the hedge curve mects the offer curve.

4 The Analysis of the Model

In this section, we establish three main results of the model. First, we derive an optimal
markup rule and contrast it with the standard markup rule that is derived under the
assumption of complete market-clearing. We highlight the role of uninsurable business
risks in determination of the markup rate. Second, we conduct comparative statics to

examine the optimal responses of pricing and production decisions to changing business
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risks. We show that quantities are more volatile than prices. So the present model provides
an alternative explanation of price inertia. Third, we inspect a mechanism through which
shocks to uninsurable business risks transmit to the cyclical variation of markups. We

provide conditions for procyclical or countercyclical markups.

4.1 Markup with the Business Risks

Let p denote the markup rate (the ratio of price to marginal cost) in the presence of the
business risks. Plugging (17) into (18) w.r.t. the forward-looking reservation price ¢B, we

obtain the markup formula as follows;

/,L(p, j.) = T prav 21
L R(ﬂ:) ( )
e(p)
where
R(2) = F(#) + %{1 ~F(2)). (22)

It is evident from (21) that the optimal markup rate depends critically on the distributional
terms as well as the inverse of the demand elasticity (the Lerner index), 1/e(p). If we
assume the demand elasticity is constant, we can separate the measure of monopolistic
market power from risk factors represented by R(#), and easily confirm a standard result
that markups increase in the market power. If the demand elasticity varies with the price
level, the Lerner index which measures market power will also be affected by the business
risks.

Let us look at the composition of the term R(Z). It makes a balance between the
probability of market-clearing failure F'(2) and the probability of market-clearing 1 —
F(z) times the ratio #/7'(%). In economics terms, T'(Z) can be read as the expected
volume of sales conditional on market-clearing failure, and Z as the expected volume of
sales conditional on successful market-clearing.!” So R(#) balances the two contrasting

risks over the ratio #/7(z). In this sense, we call it a “risk-balancing factor” although

1"Strictly to say, the actual unit of sales volume is not the same with the numeraire of T'(#) or &. It
is measured at the unit of market demand. However, given the multiplicative specification for demand
function, T'(£) and & are proportional to the expected volumes of sales conditional on market-clearing
failure and market-clearing, respectively, at the common rate of 1/D(p). So we measure them in the unit
of sales within economics context, which has no harm to our discussion since our concern is their relative
size /T (%).
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the producer’s risk attitude is assumed neutral. The following result connects the risk-

balancing factor to the notion of “risk premium” in the markup rate.

Proposition 1 (Risk Premium in Markup Rate). Consider a benchmark model that is
identical to the present model in all aspects other than that the producer in the benchmark
model is safequarded by the assumption of complete market-clearing. Let u, denote the
markup rate derived from the benchmark model. That is, po(p) = 1/{1 — 1/e(p)}. Let
w* and ) denote the markup rates at optimum for the present and the benchmark model,

respectively. Then, p* is greater than p) for any interior optimum. That is, p* — ul; > 0.

Proof. See Appendix. Essentially, we show that R(Z) > 1 and ¢(p) is weakly increasing in

price p. O

By definition, uninsurable risks have no spot market prices. However, the result implies
that an optimal pricing of business risks prevalent in goods markets has been already
reflected in the observed market prices of goods. Let us call u, the risk-free rate of the
markup in the sense that it is determined in the absence of business risks and solely
geared by market power. Then the difference y — p, amounts a “risk premium” that
compensates for the uninsurable business risks. In terms of the size of the markup (rather
than the rate), we have a more straightforward decomposition expression as follows: p—c =
(p — po) + (po — ¢), where p, denotes the price corresponding to the risk-free rate of the
markup p,. Here, the second factor p, — ¢ accounts for the size of the markup solely geared
by market power. And the first factor p — p, contributes to compensation for potential
losses due to possible market-clearing failure. So it is implied that everything else equals,
a producer sets higher markups and thus higher prices when he faces the uninsurable
business risks.

By implication, the business risk theory of markups indicates that the traditional view
that “the markup ratio is a good measure of market power” (Hall, 1988, pp.924-925) may
be misleading.'® As the traditional proposition tends to overestimate the true effect of
market power on determination of the markup rate, those empirical studies that are based
on the framework forwarded by Bils (1987), Hall (1988), or Rotemberg and Woodford

(1991) would contain estimation biases due to a model misspecification problem.

8Fden (1990) also provides a similar argument that the traditional measurement of market power may
be misleading.
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One most popular form of demand function used in empirical studies is the one with
constant elasticity. With the special case of a constant price elasticity of demand, ¢ > 1,
one can immediately pin down the shadow prices of the uninsurable risks from the current
theoretical framework. That is, u — p, = ¢/{e — R(Z)} — ¢/{e — 1}. In addition, for a case
in which unsold goods are fully perishable, we have ¢B = 0 and therefore R(%) = ¢F(&)
following (17) and (20). At the optimum, p = ¢/{e — eF (%)} = 1/{1 — F(2)}, and thus
the risk premium is given by p — po = 1/{1 — F(2)} —1/{1 — 1/€}.

The following example looks at a simple model with a perishable good, while allowing
the price elasticity of demand to vary along the linear demand function used in the previous

example.

Example 2. Continuing from Ezample I: Let us assume that B = 0and (s_1—d_1)T = 0.

In this case, a rational producer in the present model chooses price and output given by

1++1+8c
4

B-viTsy®
- .

p= ,and y =s =

Assuming all functional forms to be identical between the present model and the traditional
textbook market-clearing model, a producer in the benchmark model faces the following
specific demand function; d, = #,(1 — p,) with known (and exogenously given) Z,. Under
the assumption of complete market-clearing, d, = y,, the benchmark producer chooses

price and output as follows;

1+4+c¢ 1—¢).
pO:T,adeO:( )

One can easily verify that p > p,, as far as 0 < ¢ < 1 the assumption for the market to be

active for the present period. So the risk premium in terms of the markup rate is shown

as
V1+8—2c—1
= o = >0,
4c
for0<e< 1.

Although the welfare analysis is not under the scope of our current study, it would
interest readers to compare the levels of output. Given the example, let us set &, to the
mean of random variable z; i.e., £, = u/2. It is not hard to find some welfare loss in the

sense that y < y,. In brief, the rational producer prices higher and produces less when he
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boldly faces uninsurable business risks. This inefficiency is not surprising.—The producer

has no access to complete asset markets for risks prevalent in his goods market business.

4.2 Price Inertia relative to Quantity Movement

So far we have uncovered the basic link between riskiness of business and markup pricing.
We now examine whether or not the model generates price inertia relative to quantity
movements as we observe in data using the analysis of comparative statics. Again, the
hedge rule (17) and the offer rule (18) are central to our analysis of comparative statics.
The most natural form of experiments of comparative risk takes the first-order stochastic
dominance (FSD) shock. Draw 8 and €', over two consecutive periods, from the distribu-
tion of distribution parameters G(6). If {1 — F'(z;6")} > {1 — F(x;0)} for every =z, it is
said that F/ FSDs F, or r.v. ' FSDs r.v. x. Let us brief it by an “FSD shock”. This
shock is a favourable demand-side shock in stochastic terms. An FSD-deteriorating shock
is a negative demand shock. The following proposition presents an important result of
comparative analysis of business risks, and shows that the presence of uninsurable business

risks can explain the observed price inertia in data.

Proposition 2 (Price Inertia). Suppose F' FSDs F. Everything else equal (i.e., B'= B
and ¢ = ¢ and ¢’ = q), the hedge rule (17) associates every given & with a higher price (or
at least cqual price) following the FSD shock, whercas the offer condition (18) associates

every given & with a lower price (or at most equal price).
Proof. See Appendix. O

This proposition states that the hedge rule pushes up prices in response to an FSD
shock, and in contrast, the offer rule reacts to pull down. The result is price inertia. New
optimum is associated with a large movement along the dimension of & with little variation
in p, and therefore associated with a large movement in s. For schematic appreciation,
refer to Figure 4, a typical high-school exposition for the resultant force between vertical
and horizontal forces. Section 4.3 will further examine economic conditions by which we
can tell about the ultimate direction of the resultant force in the dimension of price.

To see the key economic mechanism behind Proposition 2, suppose that an FSD shock

hits the market. By definition, the probability of market-clearing 1 — F'(£) becomes larger
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Figure 4: Price Inertia relative to Quantity Movement

for every Z, and the probability of market-clearing failure F'(#) becomes smaller. Put
differently, the market becomes more likely to clear for every given production level and
for every given price, as market demand is higher on average (as implied by the FSD
relation). So the producer feels safer than before with every feasible combination of his
pricing and production decisions.'” In a sequel, as he feels safer, the producer would set a
higher price for every given production level. So reduction in the risk of market-clearing
failure tends to free up the producer in exploitation of his monopolistic market power.
This is what the first part of Proposition 2 captures through the reaction of the hedge rule
(17) following an FSD shock.

At the same time, the offer rule (18) also actively reacts to the demand shock. Clearly,
when market demand is higher, the market becomes more likely to clear for every given
output level. As a result, the producer will feel safer with his production decision, and
produce more for every given price. While the offer rule is basically identified as the
optimal production schedule, we find that the supply side actively reacts to even non-
technological demand-side shocks. Graphically, the offer curve will shift down as if there
were a positive supply shock. This is what the second part of Proposition 2 captures. The

next example takes both parts of the proposition and illustrates a case of perfect price

¥Notice that we use the term “safer” to describe the rational agent’s response to the comparative
experiment with “higher mean” In a traditional usage of terms, we do not usually associate riskiness of
events with the first moment of the event’s distribution but with the second moment. However, in the
present paper, such convention has no much relevance because the monopolist is risk-neutral in the Arrow-
Pratt measure as appeared in his objective function (4), and the importance of distribution actually arises
from the fact of asymmetric profit structure between excess supply state and excess demand state. So we
describe a “more likely to clear” market, environment for every given price as a “less risky” situation even
without taking into account the monopolist’s risk attitude.

31



inertia.

Example 3. Continuing from FExample 1: Consider the same shock environments as in
Proposition 2. That is, F/ FSDs F, and B = B’ and ¢ = ¢’ and ¢ = ¢/. Specifically, let
z’ be uniformly distributed over [0, v'] where v’ > u. Obviously, 1 — F'(2) =1 — (&/u) >
1—(&/u') =1— F(z) for every . Figure 5 illustrates the impact of the FSD shock on
pricing and production.

On the hedge side, Equation (19) from Example 7 turns to

2u’

p=1-
following the FSD shock. One can easily see that with v’ > u, the schedule associates every
#' = & with a higher price p’ > p. In other words, the hedge curve shifts up from hedge(p)
to hedge'(p) as illustrated by Figure 5a, where the relation p’ > p is represented in terms of
the markup size (denoted by mu, price minus marginal cost at a given production level):
mu’ > mu.

Ou the offer side, Equation (20) turns to

(c —gB)

p/:qB+ u/—‘%/

)

following the FSD shock. As shown in Figure 5b, the impact of the demand shock on
markups reverses. As the offer curve shifts out from offer(s) to offer’(s), every &’ = 2 is
associated with a lower price and so reduces the markup size; mu’ < mu.

Figure 5¢ summarizes the overall impact of the demand shock on pricing and produc-
tion. The shock increases production, but neither increase nor decrease price. Although
the experiment is made with simple functional forms, the economic implication is clear:

At optimum, quantities are more sensitive than prices in response to demand shocks.?"

4.3 Cyclical Variation of Markup

Our previous comparative statics of business risks implies that the ultimate direction of
optimal price depends on the relative responsiveness of the hedge and the offer, while

the optimal level of production increases in response to a favourable demand shock. But,

20Note that when replacing the constant marginal cost with an increasing schedule in production level,
the same FSD shock may lead to reduction in the markup rate.
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(a) The hedge curves and markups

p,p' oﬁ‘er’(s)

oﬁ‘er(s)

m
}mu'
C

e

0 u u X,

=

(b) The offer curves and markups
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(¢) The overall impact of demand shock

Figure 5: Example 3
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what determines their relative responsiveness? To answer this question, refer back to the
markup rule (21) with the risk-balancing factor (22). Apparently, the risk-balancing factor
R(Z) has a predictive power about the relative responsiveness of the two decision rules,
as it is present only in the hedge side.”’ Among the distributional terms that constitute
the risk-balancing factor R(%), we can see the probability of market-clearing failure F'(Z)
and the probability of market-clearing 1 — F'(#) move in the opposite direction for every &
following an FSD shock. So the predictive power of R(%#) concerning the ultimate response
of markups (and thus optimal pricing) is summarized in the conditional sales ratio T'(%)/%.
We first look at the expected volume of sales conditional on market-clearing failure alone,

and then combine it with the expected volume of sales conditional on market-clearing.

Lemma 3 (Expected Volume of Sales). Suppose F' FSDs F. Then, the expected volume

of sales conditional on market-clearing failure becomes larger,

T'(%) = T(2),

for every .
Proof. See Appendix. O

Lemma 4 (The Conditional Sales Ratio). Suppose F' FSDs F. Assume that both dis-
tributions have finite expected wvalues: E(x) < oo, and E(z') < oo. Then, the set

{(@,8) | & > & and T'(#') /&' 2 T()/2} is non-empty for any fived & € (x.7).

Proof. [Step 1]: We already know that 0 < T'(%)/2 < 1, or equivalently 0 < T(%) < &
(Z # 0) for any non-degenerate probability distribution of a non-negative random variable.
Combining the fact with Lemma 3, one can easily assure that T'(2) < T'(2) < & for all ’s.
[Step 2]: We then use the fact that 7" is monotonically increasing in & but bounded from

above by a finite value; i.e., T(Z) — 0 as & — z (the lower bound) and T'(z) — E(x) < oo

#Notice that using the definition of the risk-balancing factor (22), one can rewrite the hedge rule (17)

as follows;
L R@) | _
g {1 ) F(a&)}

This expression also clues how the risk-balancing factor is related to the price elasticity of demand in their
relative size. That is,

=

(&
(z

e(p) > >1,

!

at any interior optimum.



as & — T (the upper bound). Due to the monotonicity of 7' and the existence of finite
supremum, there must exist at least one #; > & (for fixed Zy) such that the following

condition hold around non-empty neighbourhood (=4, A),

IA

T (%, — A 15
E 1 A),and T(/\J,‘Q)>TE1—|—A)
.’L‘l—A o $1+A

O

Now we tailor the usual definition of cyclicality into the current context of optimal

pricing-estimation decision, and proceed to the third main result of this research.

Definition 3 (Cyclicality). Let u(p, 2) and p/(p’, 2') denote pre- and post-shock schedules
of markup rates, respectively. Let also p* = p(p*,2*) and p* = ¢/(p™*,2™*) denote the
optimal markup rates before and after shock, respectively. If a shock leads to {y/* <
p*and 2% > 2*} or {p” > p*and % < 2*}, then the shock will be said to cause
a countercyclical markup behaviour. If a shock leads to {y/* < p* and 2* < #*} or
{p* > p* and 2 > 2*}, then the shock will be said to cause a procyclical markup

behaviour.

Noteworthy is that the statement {p* > p* and & < #*} concerns the times when a
shock occurs in the reverse direction of stochastic dominance (such as like FSD-deteriorating
or SSD-deteriorating distributional changes). Alternating dominance of a shock (like FSD
and FSD-deteriorating) in the line with the alternating statements in Definition 3 is a suf-
ficient condition for countercyclical markups. However, this is not a necessary condition
for the usual definition of countercyclical markups, since there might exist such occasions

where output y (or stock for sales s) decreases even when both & and p(2,p) increase.

Proposition 3 (Countercyclicality). Consider the same shock environments as in Propo-
sition 2. That is, F' FSDs F, while B = B’ and ¢ = ¢ and q = ¢'. Then, every element
(%,2') pairwise taken from the set {((p, ), (p', &) | ' (', 2') < p(p, &)} is also a member

of the set
T/ A1 T P

s TO (23)
& &

{@.4)

but not vice versa.
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Proof. See Appendix. Essentially, to become a member of the set {((p, %), (p’,2)) |
W (p', &) < wu(p,2)}, it should meet the membership requirement implied by both de-
cision rules (17) and (18) (or equivalently, both the markup rule (21) and either of the
two decision rules). So the proof involves joint examination of the two key equations.
First, we derive two separate necessary conditions, each of which satisfies (17) and (18),
respectively. Next, we show that any ((p,2), (p/,2')) that satisfies both necessary con-
ditions should also satisfy the claimed ordering 7”/2' > T'/%. Finally, to show that the

reversed relationship does not necessarily hold, we use the markup rule (21) and show

that some paired element (Z,2’) belonging to the set (23) may not be found from the set

{((p,2), (P, 2")) | (P, 2) < pulp, 2)}- .

To appreciate the claimed ordering within the economics context, recall that T'(%)/#
measures the relative size of the expected volume of sales conditional on successful market-
clearing to the sales volume conditional on market-clearing failure. So the proposition
basically states that the producer would lower the optimal markup rate only when the
expected volume of sales conditional on market-clearing failure 7'(Z) increases more in
proportion than the expected volume of sales conditional on market-clearing Z. An increase
in the conditional sales ratio T'(#)/# means that the producer can expect to see relatively
higher level of sales than before. Consequently, the producer feels more satisfied with
his business condition, and expects the overall risk level of the goods market to decrease.
Only then, he lowers the markup.

One can associate this kind of risk assessment directly to the risk-balancing factor
R(Z) in (22), and will find it a sensible risk measure indeed. As seen before, R(Z) uses a
normalized weight vector, 1 versus &/T(%), to balance the two contrasting types of risks
associated with each of the two mutually exclusive events (market to clear or not) for
given choice Z. According to the formula (22), an increase in T'(2)/# and thus a fall in
& /T (z) along the optimum path leads to a fall in R(&), holding the other terms constant.
And then, according to the formula of the markup rate (21), a fall in R(Z) will lead to
a fall in the markup rate. As such, through the risk measure R(Z), the conditional sales
ratio T'(&)/& is tightly linked to pricing decision.

Another way of appreciating the proposition’s necessary condition is to notice the ex-

pressional closeness between the two definitions of T'(-) and the second-order stochastic
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dominance (SSD).?? Along the line of the literature of stochastic dominance, we define a
comparative risk relationship that can precisely capture the necessary condition in Propo-

sition 3.

Definition 4 (Normalized Conditional SSD). If (#,2') is a member of the set

{@o) B> 10

A

z z
we say that it lies in “normalized conditional SSD” (NC-SSD) relation.

Starting from the familiar notion of the SSD, we first think about ‘conditional SSD’
and define it by the relation 7"(2') > T'(Z). As the SSD relation is normally captures
stochastically less risky relationship, the notion of ‘conditional SSD’ can be employed to
capture the subset of events conditional on economic agent’s choice when r.v. 2’ becomes
less risky than r.v. x. Using the notion back to Lemma 3 in particular, we can equivalently
state that if r.v. 2/ FSDs r.v. z then every estimate 2’ = # lies in ‘conditional SSD’
relation. In the same spirit, Definition 4 refines the notion further, and introduces a notion
of ‘normalized conditional SSD’ by indicating the relation T7"(2')/2’ > T'(%)/#. Using this
notion, we can rephrase Proposition 3 in an intuitive statement as follows: The monopolist
lowers the markup only if a distributional shock leads to a ‘normalized conditional SSD’
(NC-SSD) relation at his optimum path. Remind of which risk environments the SSD
relation usually means in the literature, and then combine this rephrasing of Proposition
3 with the risk premium result of Proposition 1. Now, readers may easily grasp the intrinsic
link between business risks and markups. This finalizes our theorization of business risks
for the goods markets. The following auxiliary result employs the notion of NC-SSD to

state a sufficient condition for the procyclical markup behaviour.

Corollary (Procyclicality). Any (Z,2') that does not lie in an NC-SSD relation can be
paired from a member of the set {((Z,p), (&', p") | ' (2',p") = p(Z,p)}.

Proof. Obvious by contrapositioning of Proposition 3. O

Remark. No particular order of stochastic dominance involves in the proof of Proposition

3 and Corollary. So the result holds for any form of distributional shocks (and holds in

22Tt is said that random variable z’ second-order stochastically dominates (SSDs) z if
Jo {1 =F'(2")}da' > [ {1 — F(2)}dx for all 2.
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parallel for the reverse cases like FSD-deteriorating, and so on).

The following example serves to demonstrate Proposition 3 and Corollary, and shows
how one can use the NC-SSD relation to capture the economic consequences of changing

risk environments.

¢ where ¢ > 1. The demand function with constant

Example 4. Assume that d = zp~
price elasticity has been often used in the applied literature. Let also B = 0. This
assumption saves algebraic work without loss of generality. But this time, we replace the
zero lower bound with a positive real variable [; i.e.,  ~ U|[l,u], where 0 < | < u. Then,

we obtain

Ut ur+ (2 -1)1
Tr =
e+1

9

and
b= (u—1)(e+1) .
ew —Vu? — 12+ €2[?

where | < &* < u. We conduct comparative statics of markup pricing by changing the

parameters v and [. Notice first that any increase in either the upper bound or the lower
bound (or both) can be qualified as an FSD shock; and second that the optimal estimate
#* increases in response to either case of the distributional shock (i.e., #"* > &*). How
about the optimal responses of the markup rate? Using Proposition 3 and Corollary, we

examine the impact of the FSD shock on the optimal markup rate for each of the following

two cases: Case 1. an increase in u, Case 2. an increase in [.

For this, we first take a direct approach to the comparative statics of the markup rate.
Assuming each case of the distributional shock is infinitesimally small, we take simple

partial differentiation to the optimal markup rate.

Case 1. An infinitesimal increase in u: Let u = «l, where « > 1. Then, the current

optimal markup rate is expressible as

al —1 o—1

ale — Vo222 + 22 ae—+vaZ -1+ e

*

Verifying the sign of du*/0u is equivalent to verifying the sign of du*/d«. One can
show that du*/da > 0.
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Case 2. An infinitesimal increase in I: Let [ = au, where 0 < o < 1. Then,

U — o 1—a

ue — Vu? — a2u? + 2a2u? e — V1 —a? + 2a?

*

Verifying the sign of du* /0l is equivalent to verifying the sign of du*/da. One can
show that du*/da < 0.

In other words, for the given uniform distribution, a demand shock that increases the
upper-bound /lower-bound leads to an increase/decrease in the markup rate. So the results
contrast each other in the movement of markups, although the market demand increases

on average in both cases. Proposition 3 confirms the result:

Case 1. 2/ ~ U[l,v/] with ' > u: Check whether the optimum path (2*, 2"*) is a member
of the set {(#,2") | T'(2")/%' > T(&)/2}. We have
T+1

T(#) = ——.

Taking difference between the conditional sales ratio,

S g - = <0

T(#) T(@) ¥+ &+l (& -
& & 2/ 22 247

at optimum. So (&, ') of our interest does not belong to the set {(&,2") | T"(&') /&’ >
T(z)/z}. From Corollary above, we know that the monopolist sets a higher (at least as
equal as) rate of the markup if he cannot find an NC-SSD relation along the optimum

path. So the shock to the upper bound generates procyclical markup behaviour.

Case 2. ' ~ U[l',u], with I > I: Similarly,

- = = >0

T@) T@) &+l @+l Vi1
& = 21/ 22 24'%

at optimum. So an NC-SSD relation is found, and the shock to the lower bound leads

to countercyclical markup behaviour.

To intuitively understand why the NC-SSD relation works well in identification of the
cyclicality of markups, let us think about what distributional characters can be captured

by the notion of NC-SSD relation. Assume that | <1’ < u < u’. Both cases are with FSD
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shocks. However, Case 2 shock will locate less probability mass on both tails, relative to
Case 1 shock. With Case 2 shock, the monopolist can expect a higher level of sales volume
even when market fails to clear (i.e., “conditional”), and even in the ratio term relative to

the expected volume of sales conditional on market-clearing (i.e., “normalized”).

5 Conclusion

We introduce uninsurable business risks to the goods markets and study how their pres-
ence affects the producer’s optimal pricing and production behaviours. Business risks are
modelled in the form of stochastic market-clearing and market-clearing failure within the
otherwise standard framework of monopolist. This small modification to a textbook model
renders the nature of producer decision problem largely different, and leads pricing and
production decisions to counterpoint in formation of profit function.

We identify two mechanisms in relation to their distinct roles. Profit-maximization
with respect to pricing decision works to neutralize the uninsurable business risks. Profit-
maximization with respect to production decision works to equate marginal cost of pro-
duction to the sum of expected marginal revenues conditional on each demand state.
Equipped with this new decision framework for a monopolistic producer, we characterize
a markup rule as a pricing kernel of business risks as well as market power, and show
that optimal price includes ‘traditional markup’ to the extent of market power and ‘risk
premium’ by the shadow price of the business risks. In addition, we take the new decision
framework to provide a unified explanation for price inertia, countercyclical markups, and
procyclical markups. Central to understanding these empirical regularities is the extent
of business risks that varies across sectors and moves over business cycles.

Grounded on these results, the producer theory of business risks leaves important
implications both micro and macro, and both empirical and theoretical. First, our theory
provides clues to the nature of business cycles, consistently with the empirical evidence that
suggests the extent of business risks varies over business cycles. Although the results we
find have not been derived from a general equilibrium model by which one could establish
certain causal links between business risks and business cycles, we can still address some
important issues in macroeconomics. If the times of economic recessions are coincident

with the times when unwanted inventories build up faster and the bankruptcy rate rises
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as we observe in data, individual firms will consider the times of recessions as the times of
high business risks, and react through the two key mechanisms; the risk neutralization and
the marginal cost equalization. Our theory predicts that under the harder macroeconomic
conditions, the firms reduce output and stock but adjust little price. Consequently, we
find price inertia over business cycles as optimal choices, but not intertemporal nominal
price stickiness. It suggests that monetary policy (nominal aggregate demand shocks)
may have real effects if nominal shocks have some risk consequences to individual firm’s
business conditions.

Second, whether markups are countercyclical or procyclical at aggregate level is still
controversial, although many pioneering empirical studies have found them countercycli-
cal. Above all, the countercyclical movement of markups (either in a sector or at the
aggregate level) implies that exercise of market power is far more limited than predicted
under Chamberlinian monopolistic competition. Indeed, it is this implication of counter-
cyclical markups that has long attracted research interest in both theoretical explanation
for it and empirical reexamination against it. Our theory has constructive suggestions for
both directions: At the bottom line, exercise of market power is limited in the presence of
uninsurable business risks. As a natural consequence, markups tend to move countercycli-
cally, if business risks are larger in recessions and smaller in booms.—But, not necessarily
so. It is shown that precise cyclical behaviour of markups depends on the relative respon-
siveness of the two channels to changing business risks. However, most of the empirical
studies have maintained one common theoretical premise that markup pricing is an exer-
cise of market power in imperfectly competitive markets. As this traditional view neglects
the shadow price (firm-internal pricing) of uninsurable business risks in determination of
markups, the existing empirical models may suffer from a model misspecification problem,
and thus estimation biases.—Markup data we access may overestimate the magnitude of
market power actually at work.

Third, in micro data, we find prices rise during periods of demand peaks in some sectors
and fall in other sectors. According to the theory proposed here, the mixed evidence across
sectors is consistent with the fact that industries differ in the nature of business risks
influenced by turnover of new products, time taken from service/production planning
to completion, and industrial relations, and so on. Our theory also sheds light on the

contradicting pricing behaviours we often observe even within an industry; for example,
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advanced purchase discount (the earlier the cheaper) versus last minute sales (the later
the cheaper). Most of the existing literature focuses on the role of market power that
is endowed to a monopolist to conduct price discrimination over heterogeneous consumer
valuations when transactions are made in a sequential manner. Complementary to the
existing explanation, our theory of business risks suggests that such pricing pattern can

arise as a means of “active risk management” against market-clearing failure.
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Appendix

Proof of Proposition 1

It is sufficient to show that R(Z) > 1 and ¢(p) is weakly increasing in price p. From
(22), note that R(Z) is a linear combination of 1 and #/7'(%). And from the definition of
“truncation from above”, we also know that 0 < T'(2)/2 < 1 (and thus £/T(Z) > 1) for

any non-degenerate distribution of positive random variable x. As a result,
R(%) >1

for all #’s other than where F'(%) = 1.
Next, we show that ¢(p) is weakly increasing in p, which is a basic property of demand
function that satisfies the standard assumption 2D, (p)+pDyp(p) < 0 as we have discussed

in Lemma 2. Differentiating ¢(p) = |D,(p)/{D(p)/p}| w.r.t. p, we obtain

D(p){Dy(p) +pDyp(p)} — P{Dp(p)}*

)= T
_Dy(p) {1 _ pDy(p) prp(p)}
D(p) D(p) Dy(p) |-

By definition €(p), we can rewrite it to

»(p) = —Dp—(? {1+€(p)+ZM}.

Clearly it holds that ¢,(p) > 0 for all p, since Dp(p) < 0 and

pDpp (p)

1+e(p) + D)

> 0.

The latter follows from the fact that ¢(p) > 1 (indeed also implied by that e(p) >
R(%)/F(%) as shown in Footnote 21) and from the standard assumption that 2D,(p) +
pDpp(p) < 0 discussed in Lemma 2. The equality holds when demand function has a
constant elasticity. Consequently, ¢(p) is weakly increasing in p.

Combine the facts; R(2) > 1 and ¢,(p) > 0 for all p. It then follows that at optimum,
the markup rate with business risks strictly larger than the markup rate without business

risks. That is, p* > 7.
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Proof of Proposition 2

The first part of the following proof shows that the hedge rule (17) associates every given
% with a higher price (or at least equal price) in response to an FSD shock, and the second
part shows that the offer condition (18) associates every given & with a lower price (or at

most equal price).

1. The Hedge Rule’s Reaction: First, rewrite the hedge rule (17) as follows;

b= H1I-F@)|
AT

1 1
<

Tare | | wee )

or

o re)
TEEG) W

TELFO <) 2y
@R

Next, we will derive a contradiction by showing that the L.h.s. is greater than (or at least
equal to) one, and the r.h.s. less than one.
[Step 1] (Lh.s. > 1): Consider a measure F over the space of non-negative z, given by

F(xz) = F(xz) — F(2'). By definition (FSD), F(z) > 0 for every x. Consequently,

/j xdF(x) > 0.

By the method of integration by parts,

2F(z) — / F(x)dz > 0,
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or

Rearranging it,

Reversing the method of integration by parts, we obtain

/j xdF(z) > /r zdF' (z),

iy

which is equivalent to by definition T'(-),
T(2)F(2) > T (2)F(2).

Consequently, it holds that

since 1 — F'(2) > 1 — F (&) by definition (FSD).
[Step 2] (r.h.s. < 1): Under the supposition that p’ < p, we would see that €(p’) /e(p) <
1 since €(p) is weakly increasing in price p. Combining the two steps contradicts (24)

everywhere. So it contradicts the previous supposition, and completes proof.

2. The Offer Rule’s Reaction: Rewrite the offer rule (18) as follows;

B 1 F(%) _ c—qBF(2)
1 F@° 1 —F(ﬁc)qB O 1-F(&)
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Everything else constant, we have that for every given Z,

<pt = {cl—_qp(é

1 - F'(&) _ ¢ - qBF'(2)
g {1—F(@) = CCBR@&) }
1—F'(#) _ 1 (¢BJc)F'(2)
= { 1= F(2) ~ 1- (aBJoF(@) }

= {{1-F@)}{1-(gB/o)F(2)} = {1 - F(@)} {1 - (¢B/c)F'(2)}}

= (F(@) - F(@)}1l-(qB/c)}; =20

The last line holds jointly by definition (FSD) and by the condition of no-speculative
inventory holdings 0 < ¢B < c as discussed in Lemma 1.
Proof of Lemma 3

We know that for non-negative random variable z, the expected value equals the area

under the complementary c.d.f., 1 — F(z). That is,

/{1— )}

Refer to Wolfstetter (1999, p.341, Rule 5 and 6) for the statement. See also Ross (2007,
p.92, Exercise 46) for the proof of a discrete case. Figure 6a depicts the statement in
the current context. We also know that a first-order stochastic dominance shock between
two periods (like the one shown in Figure 6b) implies that the following inter-temporal

relationship holds in terms of expected values, (Wolfstetter, 1999, p.137, Lemma 4.1);
/{1—F’ )z > /{1— )}z = E(x).
Since {1 — F'(2)} > {1 — F(2)} for all 3’s, it should also hold that

1-Flx|z<2)>1-F(z|z<2),
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for any given £. An example of the FSD relation for a given common truncation point is

illustrated by Figure 6¢. Then, by the definition of T,

T(2)=E@ |2 <%) = /Om{l—F'(a:|3:<:f3)}d:E

v

T

/ (- F(z |2 <#)}de = Bz | ¢ < 3) = T(2).
0

Figure 6d is a graphical representation of this final statement.

Proof of Proposition 3.

[Step 1]: Select a paired element (2, ') from the set {((p, &), (p',2)) | ' (', 2") < p(p,2)}.
Each of # and 2’ must satisfy the offer condition (18). Let us tailor (18) to fit into the
definition of the markup rate by dividing both sides of (18) by ¢;

p_1-(¢B/c)F(Z)

Pt = = T )

Since (Z, ') has been paired from the set {((p, %), (p',2')) | ¢/(p/,2') < p(p, &)}, it must
satisfy the following strict inequality

1 - (¢B/9F'(&) _1-(¢B/o)F(2)
1- F'(3) 1-F(z)

or equivalently
{1 - (¢B/o)} {F'(&') - F(2)}
{1 - F (@)} {1 - F(2)}

Under the no-speculation condition derived from Lemma 1, this requires that

< 0.

F'(3') < F(2).

So

W', 2) <pp,2)} = {F(@) < F(2)}.

[Step 2]: Let us rewrite the hedge rule (17) as follows;
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and then tailor it to fit into the definition of the markup rate by dividing both sides by

me. Select a paired element (£, 2') from the set {((p, ), (p/,2")) | 1/ (', 2") < p(p,2)}. Tt

should hold that by the same token with Step 1,

gB/c < qB/c
1 71— F (@) e i 1-F()
! b ] @ {1 T F@G)

e(p') (@) (@)

After rearranging both sides, we obtain

1+ T'(&) F'(z B e(p")
N & 1-F(2) e(p)”
T(z) F(2)

p’) from the set {((p, 2), (p/, ")) |

However, since c is constant, that any paired element (p,
'), it holds that

w(p',2") < p(p, %)} implies that p’ < p. For such price pair (p,p

1+ T(%") F'(3) <1
4 & 1-F(@@)
T(z) F(%)
Consequently,
TSN A 7/ z 1 _F(:%) F/(:%,)
(W, #) < plp,2)} = {T/(:f:’) STE) - F(#) F@) }

or,
Al
X X

49



According to the necessary condition obtained in Step 2, this implies that

which in return requires

and therefore

F'(3') > F(2).

But, this final statement contradicts the necessary condition obtained in Step 1. Conse-

quently, Step 1 and 2 show together that

(40, 7) < u(p,3)} = {T/:gj/) - T;j) }

[Step 4]: Using the markup rule (21) and the risk-balancing factor (22), we can see that
)

some (&, ') belonging to the set (23) may not be extracted from the set {((p, ), (p/, ")) |

W (p,2") < p(p,&)}. First, let us rewrite (22) as follows by subtracting 1 from both sides;

A

R(3)—1= {ﬁ - 1} (1-F(#)).

Then

wG) | 1o
I R {1—F<£)}21
T(z)

From this statement, it is clear that one cannot select an element (#,’) that belongs to
the set {(z,2") | F'(#') < F(&) and T'(z")/2' > T(%)/2 and R'(2') > R(Z)}. Second,
by looking at the relationship (21) and (22), it is also clear that one cannot select an
element (Z,2") that satisfies p/(p’,2') > u(p,Z) and at the same time, belongs to the set
((2,%') | F'(#') < F(&) and T'(3")/2' > T(2)/2}.
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