Accounting for stochasticity in demographic compensation along the elevational range of an alpine plant

Marco Andrello¹*, Pierre de Villemereuil², Marta Carboni³, Delphine Busson⁴, Marie-Josée Fortin⁵, Oscar E. Gaggiotti⁶ and Irène Till-Bottraud⁷

¹ MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Sète, France. Email: marco.andrello@gmail.com. Tel: +33 4 99 57 32 16. *Corresponding author

² EPHE PSL University, Institut de Systématique, Evolution et Biodiversité, UMR 7205, CNRS, MNHN, Sorbonne Université, Paris, France. Email: pierre.devillemereuil@ephe.psl.eu

³ Dipartimento di Scienze, Università Degli Studi di Roma Tre, viale Marconi 446, 00146 Roma, Italy. Email: marta.carboni@gmx.net

⁴ Laboratoire d’Ecologie Alpine (LECA), Université Grenoble Alpes, F-38000 Grenoble, France; CNRS, LECA, F-38000 Grenoble, France. Email: delphine_busson@yahoo.fr

⁵ Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, M5S 3B2, Canada. Email: mariejosee.fortin@utoronto.ca

⁶ Scottish Oceans Institute, University of St Andrews, Fife, KY16 8LB, United Kingdom. Email: oeg@st-andrews.ac.uk

⁷ Université Clermont Auvergne, CNRS, GEOLAB, F-63000 Clermont-Ferrand, France. Email: irene.till@uca.fr
AUTHORSHIP

MA, ITB and OEG planned the study. MA, PDV and ITB carried out field work. MA, PDV, DB and MC analysed the environmental data. MA analysed the vital rates data with help from MJF. MA constructed and analysed the population dynamics model and led the writing. All authors contributed to the writing.

DATA ACCESSIBILITY

The data and R code used in this study are openly available in GitHub at https://github.com/MarcoAndrello/Stoch_Demogr_Comp_Arabis
ABSTRACT

Demographic compensation arises when vital rates change in opposite directions across populations, buffering the variation in population growth rates, and is a mechanism often invoked to explain the stability of species geographic ranges. However, studies on demographic compensation have disregarded the effects of temporal variation in vital rates and their temporal correlations, despite theoretical evidence that stochastic dynamics can affect population persistence in temporally varying environments. We carried out a seven-year-long demographic study on the perennial plant *Arabis alpina* across six populations encompassing most of its elevational range. We discovered demographic compensation in the form of negative correlations between the means of plant vital rates, but also between their temporal coefficients of variation, correlations and elasticities. Even if their contribution to demographic compensation was small, this highlights a previously overlooked, but potentially important, role of stochastic processes in stabilizing population dynamics at range margins.
One of the processes shaping population performance across species ranges is demographic compensation between different vital rates, such as recruitment, survival, growth and reproduction (Doak & Morris 2010; Villellas et al. 2015). Demographic compensation arises when different vital rates change in opposite directions across populations in response to environmental gradients, and has been proposed as a mechanism increasing the range of environments over which a species can occur and to explain the apparent stability of species range margins despite strong temporal environmental changes (Doak & Morris 2010; Sheth & Angert 2018). So far, the paradigm of demographic compensation has considered spatial differences in vital rates averaged over years, while disregarding the role of spatial differences in temporal variation of vital rates (Villellas et al. 2015). However, because temporal variation in vital rates can be higher in some parts of a species geographical range (for example, at range margins; Angert 2009; Pironon et al. 2017), population growth rates might vary across species ranges not only because of spatial variation in mean vital rates, but also in their temporal variability. Population dynamics in temporally varying environments have received much attention in ecology and conservation (Tuljapurkar 1990; Lande et al. 2003). Theory predicts that temporal variability should decrease population growth rates in both structured and unstructured populations (Lewontin & Cohen 1969; Tuljapurkar 1990) and empirical studies support these predictions (Morris et al. 2008). In addition, positive temporal covariations between vital rates can potentially amplify the effects of environmental stochasticity on population dynamics, while negative temporal covariation can buffer it (Doak et al. 2005; Jongejans et al. 2010; Compagnoni et al. 2016). For example, positive covariances between reproduction and survival rates tend to magnify the effect of variability and lead to lower population growth rates than in the case of zero or negative covariances (Jongejans et al. 2010). Finally, the elasticities of population growth rates, which measure the change in population growth rate caused by a
change in demographic parameters, determine the ultimate effects of temporal variation and vital rate
correlations on the population growth rate (Caswell 2001; Tuljapurkar et al. 2003). The interplay of these
factors is perhaps best summarized by writing the stochastic population growth rate log λs using the
small-noise approximation, as a function of the intrinsic growth rate log λd (calculated using the temporal
means of vital rates) minus a product containing temporal coefficients of variation of vital rates (CVk and
CVl), correlations between vital rates (ρkl) and vital rate elasticities (ek and el) (Tuljapurkar 1990):

\[\log \lambda_s \approx \log \lambda_d - \frac{1}{2} \sum_{k,l} CV_k CV_l \rho_{k,l} e_k e_l \]

(eq. 1)

Thus, a full picture of how population dynamics change across populations requires quantifying the
differences in how mean vital rates, their temporal variation, their correlations and the elasticities
change between populations. Such differences between populations can ultimately determine processes
of demographic compensation and can thus inform on the stability and dynamics of species ranges (Doak
& Morris 2010; Villellas et al. 2013).

Elevational ranges offer a unique opportunity to study range-wide variation in vital rates and population
dynamics at a tractable spatial scale. For plants, elevational ranges have been associated with large
differences in life-histories (Laiolo & Obeso 2017). Species living at lower elevations have often larger
sizes, higher mortality rates, shorter lifespans and higher fecundities, while species living at higher
elevations have smaller sizes, lower mortality rates, longer life spans and reduced flowering rates (Nobis
& Schweingruber 2013; Laiolo & Obeso 2017). These life-history patterns have been related to
predictions from the r-K selection theory (Pianka 1970), the metabolic theory of ecology (Brown et al.
2004) and the acquisitive and stress-tolerant strategies of functional ecology (Read et al. 2014). While
many studies have uncovered elevational patterns in plant life-histories across species, studies on
population dynamics are less common, and patterns of variation in plant population growth rates along
elevational gradients are less clear. Indeed, the few studies focusing on dynamics of herbaceous plant
populations on elevational gradients report increasing (Miller et al. 2009; Giménez-Benavides et al. 2011), decreasing (Kim & Donohue 2011; Pena-Gomez & Bustamante 2012) and stable (García-Camacho et al. 2012) patterns of population growth rates with elevation.

Here, we aimed at testing whether spatial patterns in temporal variation, temporal correlations and elasticities could be involved in demographic compensation beyond the spatial variation of average vital rates, thereby contributing to the stabilization of species elevational ranges. To this end, we carried out a population dynamics study on Arabis alpina (Brassicaceae), a broadly distributed arctic-alpine perennial herb, across most of its elevational range in the European Alps. Specifically, our goals were twofold. First, we aimed at quantifying the spatial variation of four different descriptors of stochastic population dynamics (means, coefficients of variation, correlations and elasticities of plant vital rates) across an elevational gradient. Second, we aimed at quantifying the contributions of each of the four descriptors to the stochastic population growth rate and test for demographic compensation between different descriptors.
MATERIALS AND METHODS

Model species

Arabis alpina (L., Brassicaceae) is emerging as a new model organism in plant ecology and evolutionary biology (e.g. Wang et al. 2009; de Villemereuil et al. 2018) due to its perennial life-cycle and wide elevational distribution. It occurs primarily in the subalpine and alpine belts, predominantly in open, unstable, moist sites with low vegetation cover such as glacier forelands, scree slopes, rock ledges, footpaths and small streams, often in association with calcareous soil (Lauber et al. 2018). Seedlings germinate and establish throughout the growing season, plants flower for a few weeks and produce fruits (siliques), and flowering stems eventually wilt and die (Wang et al. 2009). Seeds can persist in the soil and form a permanent seed bank (Diemer & Prock 1993; Philipp et al. 2018).

Data collection

This study was conducted in six sites spanning most of the elevational range of *A. alpina* in the European Alps using permanent plots (*Table 1*, *Figure S1*), which were visited once a year after flowering between 2008 and 2014 to record the number of stems and siliques of each individual (See *Appendix S1.1* in Supporting Information). *In-situ* germination tests were not successful, so germination rates could not be estimated locally and seed bank dynamics was disregarded in the matrix population model, but we conducted a sensitivity analysis to assess the effects of uncertainty in seed germination on the results (Nguyen et al. 2019; *Appendix S1.5, S2.2*).

Microclimatic conditions, soil chemistry and species composition of the vegetation were measured in each plot to model plant vital rates in function of environmental conditions. Temperature data loggers (iButton® Hygrochron, Maxim Integrated™) provided estimates of summer daily mean temperature (*T*\(_{\text{mean}}\)) and daily temperature range (*T*\(_{\text{range}}\); *Table 1*). Missing records (due to malfunctioning of the data-loggers) were imputed using data from nearby weather stations, resulting in ten resampled datasets.
(Appendix S1.2). Soil acidity (pH), total soil carbon and nitrogen content were determined following standard methods (Schinner et al. 1996). Abundance-dominance (Braun-Blanquet) lists of plant species were used to calculate abundance weighted means for vegetative height and specific leaf area (SLA), using values from the ANDROSACE (Thuiller et al. 2014) and the TRY (Kattge et al. 2011) databases. After performing a principal component analysis on the three soil variables and the two vegetation variables (Appendix 2.1, Figure S3, S4), we retained the first two axes to predict plant vital rates: SoilVeg_1 (explaining 52% of the variance), positively related to acidic soils with high C and N content, and SoilVeg_2 (explaining 29% of the variance), summarizing variation from slow-growing short vegetation to fast-growing tall vegetation.

Analysis

We used a five-step approach to test how four descriptors (μ: means; CV: coefficients of variation; E: elasticities; ρ: temporal correlations) of seven life-cycle components (S: survival; G^-: retrogressive growth; G^+: progressive growth; F_0: reproduction; F_1: fecundity; F_2: recruit size) contribute to demographic compensation across the elevational range of $A.\ alpina$. First, we constructed matrix population models for each site and year using statistical models predicting plant vital rates from environmental variables (Step 1). Second, we used the matrix models to calculate the seven life-cycle components, stochastic population growth rate $\log\lambda_e$ and elasticities of $\log\lambda_e$ (Step 2). Third, we tested for significant relationships between elevation and population dynamics variables (Step 3). Fourth, we performed a stochastic life-table response experiment (SLTRE) in order to decompose the differences in $\log\lambda_e$ between sites into contributions C_i^k of each life-cycle component i and each descriptor k (Step 4). Finally, we assessed demographic compensation by testing for negative and positive correlations between the SLTRE contributions C_i^k (Step 5).
Step 1. Prediction of plant vital rates

The plant vital rates used to construct the matrix population models were survival (whether the plant survives to \(t + 1 \) or not), size (the size of the plant at time \(t + 1 \), conditional on survival), reproduction (whether the plant bears siliques or not at time \(t \)), reproductive output (the number of siliques of the plant at time \(t \), conditional on reproduction) and recruit size. Plant vital rates were predicted using generalized linear mixed models (GLMMs; Zuur et al. 2009) as a function of plant size at time \(t \) (except for recruit size that, by definition, did not exist at time \(t \)), \(T_{\text{mean}}, T_{\text{range}}, \text{SoilVeg}_1 \) and \(\text{SoilVeg}_2 \) treated as fixed effects; plant size at time \(t \) and \(T_{\text{mean}} \) were also included as quadratic terms. Site, year nested within site and plot nested within site were included as random effects on the intercept and the slopes when significant. The error structure of the models was Gaussian (for log_{10}-transformed reproductive output), Bernoulli (for survival and reproduction), or negative binomial (for growth and recruit size). We accounted for uncertainty in the data using a total 2000 bootstrap samples over the ten imputed climatic datasets. For each bootstrap sample, we fitted the \(2^7=128 \) models corresponding to the combinations of the predictors, sampled one of them according to its Akaike weight (Burnham & Anderson 2002), obtained site- and year-specific predictions of vital rates (by setting predictors to their mean values over the plots of each site and year) and constructed matrix models to perform all the subsequent population dynamics analyses. Means and 95% confidence intervals for the reported results were calculated from the 2000 predicted values using the percentile method. All analyses were run in R 3.6.0 with packages lme4 1.1-21 and MuMIn 1.43.6 (Bartoń 2009; Bates et al. 2015; Appendix S1.3).

Step 2. Population dynamics analyses

We defined a matrix population model (Caswell 2001) with 50 size classes of one-stem each, which covered the range of variation in plant sizes observed in the field. The projection matrix \(A \) was the sum of the transition matrix \(P = [p_{ij}] \) and the fecundity matrix \(F = [f_{ij}] \), which were constructed using the predicted vital rates obtained in Step 1:
where \(j \) is plant size in year \(t \); \(i \) is plant size in year \(t+1 \); \(s_j \) (survival) \(g_{ij} \) (growth), \(F_{0,j} \) (reproduction), \(F_{1,j} \) (reproductive output) and \(F_{2,i} \) (recruit size) are the predicted vital rates. \(\varepsilon = 0.02 \) is a seedling establishment coefficient converting the number of fruits in one year to the number of seedling in the following year, and was set equal to the median value of the ratio of the observed number of seedlings to the number of fruits in the previous year over all plots and sites.

Life-cycle components for each site and year were calculated as averages of the predicted vital rates over size classes weighted by the stable stage distribution vector (Salguero-Gómez et al. 2016). Specifically, \(S \), \(F_0 \) and \(F_1 \) were calculated as weighted averages of the \(s_j \)'s, \(F_{0,j} \)'s and \(F_{1,j} \)'s (eq. 2), respectively. \(G^- \) represents transitions from larger to smaller size classes and was calculated as the weighted average of all the \(g_{ij} \)'s for which \(i < j \). Similarly, \(G^- \) (representing individuals not changing in size) and \(G^+ \) (representing transitions to larger size classes) were calculated as weighted averages of all the \(g_{ij} \)'s for which \(i = j \) and \(i > j \), respectively. \(F_2 \) was calculated as the mean recruit size distribution \(F_{2,i} \).

For each site, we calculated the temporal means and coefficients of variation of each life-cycle component and temporal correlations between pairs of life-cycle components (Pearson’s correlation) over years. The stochastic population growth rate \(\log \lambda_s \) was calculated via the simulation method by randomly sampling one of the year-specific matrix at each iteration (Caswell 2001, p. 396). We then calculated the elasticities of \(\log \lambda_s \) to changes in the mean and standard deviation of the stage-specific vital rates (Tuljapurkar et al. 2003). We obtained the elasticities to the mean and standard deviation of life-cycle components by summing the elasticities of the respective vital rates (Franco & Silvertown 2004; Appendix S1.4).
Step 3. Elevational patterns

We used linear regressions to test for significant relationships between elevation and population dynamics variables: mean life-cycle components, coefficients of variation of life-cycle components, and temporal correlations between life-cycle components, logλs and elasticities.

Step 4. Stochastic life-table response experiment (SLTRE)

We calculated the differences in logλs (Δ logλs(m)) between each site m and a common reference site defined by the means of vital rates over sites. The Δ logλs(m) were decomposed into the contributions C_{Xi,Xj}^k(m) of differences of each descriptor k (mean µ; coefficient of variation CV; temporal correlations ρ; elasticities e) of stage-specific vital rates x (survival s, growth g, reproduction F, reproductive output F, and recruit size F) according to the SLTRE of Davison et al. (2013; Appendix S1.6):

Δ logλs(m) ≈ Σ_i C_{Xi}^µ(m) + Σ_{i,j} C_{Xi,Xj}^{CV}(m) + Σ_{i,j} C_{Xi,Xj}^ρ(m) + Σ_{i,j} C_{Xi,Xj}^e(m) \hspace{1cm} (eq. 3)

From this decomposition, we derived the net contributions C_{l,k} of each life-cycle component l and each descriptor k by summing the C_{Xi,Xj}^k(m) according to the definition of life-cycle components given above. The total effect C_l of each life-cycle component was calculated by summing the absolute values of its contributions over the four descriptors, C_l = Σ_k |C_{l,k}|. Similarly, the total effect C_k of each descriptor was calculated by summing the absolute values of its contributions over life-cycle components, C_k = Σ_l |C_{l,k}|.

Finally, we used linear regressions to test for significant relationships between elevation and the net contributions C_{l,k}.

Step 5. Demographic compensation

To test for demographic compensation and its effectiveness in reducing the spatial variation in population growth rates, we extended the approach of Villellas et al. (2015) to all descriptors of life-cycle components. We tested for demographic compensation by testing for negative and positive Spearman
correlations between the net contributions C_l^k. The occurrence of a significantly higher number of
significant negative correlations (or a significantly lower number of significant positive correlations) than
expected by chance is indicative of demographic compensation and was tested by permuting 1000 times the C_l^k over sites. This permutation test assesses only the occurrence of demographic compensation but not its effectiveness in reducing the variance in $\log \lambda_s$ among sites, $\sigma_{\log \lambda_s}^2$. We then performed additional randomization tests where we calculated $\sigma_{\log \lambda_s}^2$ following the permutation of each net contribution C_l^k at a time (thus 28 parameters). Higher values of $\sigma_{\log \lambda_s}^2$ in the randomization indicated that the focal parameter reduced $\sigma_{\log \lambda_s}^2$ through its negative correlations; conversely, lower values for $\sigma_{\log \lambda_s}^2$ indicated that the focal parameter increased $\sigma_{\log \lambda_s}^2$ through its positive correlations. Finally, we ran a randomization test where we permuted only those C_l^k that reduced $\sigma_{\log \lambda_s}^2$: this randomization procedure eliminates as much as possible the negative correlations while preserving the important positive correlations and indicates the overall effectiveness of demographic compensation (Villellas et al. 2015).
RESULTS

Step 1. Prediction of plant vital rates

Plant size had significant effects on all vital rates (Table 2). Size and reproductive output were positively affected by SoilVeg, which was itself positively related to vegetative height and SLA of the surrounding vegetation (Appendix S2.1). Survival was positively affected by mean temperature squared (T_{mean}^2), while recruit size was negatively affected by temperature range (T_{range}). However, the models for survival and recruit size had remarkably low explanatory power (marginal $R^2 = 0.07$ and 0.04, respectively). All vital rates showed considerable spatial and temporal variation that was unexplained by our environmental variables (conditional R^2 larger than marginal R^2).

Step 2. Population dynamics analyses

On average, survival probability was $S = 0.5$ (except in GAL where $S = 0.75$), progressive growth (G^+) was larger than retrogressive growth (G^-) and stasis (G^s), reproduction was $F_0 = 0.5$, reproductive output was $F_1 = 12$ siliques and recruit size was $F_2 = 1.5$ stems (Figure 1 and S5). Coefficients of variations (CV) were mostly comprised between 0.1 and 0.6 across all life-cycle components. Over all sites and pairs of life-cycle components, we observed 21 (17%) significant negative temporal correlations and 21 (17%) significant positive temporal correlations (Figure S6).

The stochastic population growth rate $\log\lambda_s$ was negative in all sites (Table 1). One site (GAL) had higher $\log\lambda_s$ than the other sites. The largest elasticities of $\log\lambda_s$ to the temporal means of life-cycle components were associated with S, while the elasticities to G^+ were the second-largest (Figure 1). The elasticities of $\log\lambda_s$ to the standard deviation of life-cycle components were largest and negative for S, intermediate for G^+ and F_1, and smallest for G^s, F_0 and F_2.
Step 3. Elevational patterns

Mean survival (S), retrogressive growth (G⁻) and stasis (G⁺) increased significantly with elevation (Figure 1), while mean progressive growth (G⁺), reproductive output (F₁) and recruit size (F₂) decreased significantly with elevation. The CV of S, G⁻ and G⁺ decreased significantly with elevation.

While the elasticities to mean S did not change with elevation, the elasticities to mean G⁺ significantly decreased with elevation. The elasticities to the means of the other life-cycle components were much smaller and showed significant positive (G⁻ and G⁺) or negative (F₀, F₁ and F₂) relationships with elevation.

The elasticities to the standard deviation of life-cycle components did not change significantly with elevation, nor did the temporal correlations between life-cycle components.

The stochastic growth rate logλₛ did not change significantly with elevation (Figure S7).

Step 4. Stochastic life-table response experiment (SLTRE)

The SLTRE showed that all four descriptors of life-cycle components (means, coefficients of variation, temporal correlations and elasticities) contributed to differences in logλₛ between sites (Figure 2). Means had the largest total effects in all sites, but the other descriptors were not negligible and could account for up to 50% of the difference in the stochastic growth rate (Figure 2a): the largest effects were due to coefficients of variation, while elasticities and correlations had smaller effects. When looking at the total effects of each life-cycle component (Figure 2b), the largest ones were due to survival (S) and progressive growth (G⁺), while the other life-cycle components had smaller effects.

The net contributions of means and coefficients of variation of S (Cμ_S and C_SCV) increased (became more positive) with elevation, while the net contributions of mean G⁺ (Cμ_G+) decreased (became more negative) with elevation (Figure S8).
Step 5. Demographic compensation

There were 18 significant positive correlations and 22 significant negative correlations between the net contributions of life-cycle components across sites. This constitutes substantial evidence for the existence of demographic compensation according to the criterion proposed by Villellas et al. (2015), since the number of negative correlations was much higher than expected by chance (permutation test, Figure 3).

The negative correlations involved all four descriptors of population dynamics. While the correlations linking G⁻, G⁺ and G⁺ together are trivial as they emerge from the same vital process (growth), the other correlations are ecologically meaningful (Figure S9). Among these, there were significant negative correlations involving mean life-cycle components (S, G⁺, F₁ and F₂), their coefficients of variation (S), temporal correlations (S, G⁻ and G⁺) and elasticities (G⁻ and G⁺). Significant negative correlations linked together the same descriptor of different life-cycle component (e.g. mean S and mean F₁), different descriptors of the same life-cycle component (e.g. mean G⁺ and its elasticity) and different descriptors of different life-cycle components (the CV of S and the mean of G⁺, F₁ and F₂).

The parameters contributing the most to demographic compensation were mean S, mean G⁺ and mean F₁, as their permutation generally increased the variance of log₁₀ λₛ between sites, σ²₁₀ log₁₀ λₛ (Figure 4a-d).

Conversely, the permutation of the CV of S led to smaller σ²₁₀ log₁₀ λₛ, indicating that this parameter increases the variance in log₁₀ λₛ relative to what would be expected by chance; this was the result of the numerous positive correlations involving the CV of S (Figure 3). The other parameters did not change σ²₁₀ log₁₀ λₛ considerably. Randomizing only the parameters that reduced the variance in log₁₀ λₛ between sites indicated that the observed σ²₁₀ log₁₀ λₛ was 59% of the median σ²₁₀ log₁₀ λₛ expected under the hypothesis of minimal negative correlations, but not significantly smaller (p = 0.17; Figure 4e).
DISCUSSION

In this work, we studied variation in population dynamics of *A. alpina* across most of its elevational range in the European Alps (2000m). Contrary to the expectation that peripheral populations have lower demographic performance than central populations (Pironon et al. 2017), *A. alpina* showed surprisingly little variation in population growth rates logλ across its full elevational range. Conversely, most life-cycle components significantly varied with elevation. We showed that this pattern could be partly explained by demographic compensation, i.e. negative correlations between the contributions of different life-cycle components to spatial differences in logλ. In particular, compensatory effects across the elevational range did not arise only through opposite spatial patterns in mean vital rates, but also in their temporal variation, elasticities and temporal correlations. This highlights a previously overlooked, but potentially important, role of stochastic processes in offsetting mean changes in vital rates and stabilizing population dynamics at range margins. We now discuss the origin, significance and generalities of the patterns of demographic compensation observed in this study.

The origin of negative correlations between the different descriptors of life-cycle components should be searched in their patterns of variation along the elevational gradient (Figure 1). First, mean vital rates changed in opposite directions: survival (S) increased along the elevational gradient while reproductive output (F1) decreased, resulting in a negative correlation between CS and CF1 (Figure S9). However, stochastic descriptors also contributed to demographic compensation along elevation. For example, the decrease in mean progressive growth (G*), by itself, should have resulted in lower population growth rates logλ at higher elevations. However, the elasticity to mean G* also decreased with elevation and counterbalanced the negative effects of lower G*, because smaller elasticities dampen the effects of changes in life-cycle components on logλ. The CV of survival also decreased with elevation, further offsetting the negative effects of lower G*, since smaller CV have positive effects on logλ. The resulting
negative correlations between the net contributions of these parameters to \(\log \lambda \) (namely, between \(C_G^H \) and \(C_G^C \)) partly explain why population growth rates did not change with elevation despite marked elevational gradients in life-cycle components. Overall, the observed patterns are in agreement with the known higher occurrences of smaller and longer lived species and individuals at higher elevations (Nobis & Schweingruber 2013; Laiolo & Obeso 2017) and higher variability of survival at lower elevations (Angert 2009).

Such elevational patterns could be due to opposite responses of vital rates to common environmental drivers (Knops et al. 2007). The main environmental driver of variation in growth and reproductive output was SoilVeg, which summarizes variation in specific leaf area (SLA) and vegetative height (Appendix S2.1), meaning that \(A. \) alpina tends to grow larger and produce more fruits when the surrounding vegetation is composed of tall plants with large SLA. This relationship could indicate a response to high competitive pressure or a common effect of temperature, because SLA and vegetative height in plants tend to increase with temperature and decrease with elevation (Moles et al. 2014; Read et al. 2014; Rosbakh et al. 2015). In contrast, the environmental drivers of survival are not easy to identify, because the statistical model linking plant survival probability to environmental variables had very low explanatory power. These results seem corroborated by a common garden experiment using the same six populations as this study, which found that temperature was significantly associated with total fruit length (a measure of reproductive output) but not with survival (de Villemereuil et al. 2018).

Elevational patterns in survival, growth and reproductive output could also be driven by other environmental factors not considered in our analysis, such as soil phosphorus content, diversity of root microbiota or herbivore damage, all of which affect various traits of \(A. \) alpina across its range (Almario et al. 2017; Buckley et al. 2019). Negative correlations between life-cycle components could also be due to energetic trade-offs and structural constraints (Williams et al. 2015). In \(A. \) alpina, higher rates of flowering are associated with reduction of plant survival, because all stems wilt and die after setting
seeds, to the point that mutants for perpetual flowering show an annual life-cycle (Wang et al. 2009).

Slower rates of stem production and/or lower rates of flowering could thus increase the longevity of the entire plant, resulting in negative correlations between growth, reproduction and survival.

Spatial patterns in elasticity are not very documented, but increasing elasticities to survival with elevation could result from their positive correlation with longevity (Silvertown et al. 1993; Franco & Silvertown 2004) and from the positive correlation between longevity and elevation (Nobis & Schweingruber 2013). In contrast, decreasing elasticities to fecundity and growth with elevation, as found in our study, could be expected given that these elasticities correlate with SLA (Adler et al. 2014) and SLA is known to decrease with elevation (Read et al. 2014). However, within-species patterns of elasticities are also influenced by the level of environmental disturbance (Oostermeijer et al. 1996; Silvertown et al. 1996), which may not show consistent variation with elevation.

The correlations between life-cycle components involved all descriptors of population dynamics but their effectiveness for reducing the variance in logλs (σ^2 logλs) was higher in the case of mean life-cycle components. The effectiveness of a single descriptor for reducing σ^2 logλs through demographic compensation depends on the strength and number of its negative correlations relative to its positive correlations (Figure 3) and its contribution to the differences in logλs between sites, Δlogλs (Figure 2).

Only parameters making large contributions change σ^2 logλs through their correlations, decreasing it when most of their correlations are strong and negative. Mean progressive growth was the most important parameter for demographic compensation by offsetting variation in survival. Mean survival and mean reproductive output were the second most important parameters, thanks to their large contributions to Δlogλs and the negative correlation between them. Conversely, temporal correlations and elasticities showed many significant negative correlations but they were not as important for demographic compensation because the net contributions to Δlogλs were small, in line with what is observed in other
plant species (Jongejans et al. 2010; Compagnoni et al. 2016; Davison et al. 2019). Finally, the CV of survival made relatively large contributions to $\Delta \log \lambda_s$ but showed too many positive correlations that led to an increase of $\sigma^2_{\log \lambda_s}$ rather than a reduction.

Although our results are comparable to findings over multiple species in the deterministic case (Villellas et al. 2015), our study is the first assessing demographic compensation in a stochastic framework. Assessing whether the results obtained here are representative of other species will require additional studies quantifying both the contributions of all descriptors of population dynamics to $\Delta \log \lambda_s$ and their pairwise correlations. The first exercise has been done by Davison et al. (2019) on a set of 62 species, showing that more than one quarter of contributions to $\Delta \log \lambda_s$ can be attributed to the effect of coefficients of variations, elasticities and temporal correlations. However, the importance of these descriptors of population dynamics for demographic compensation remains unknown, as it depends critically on the relative number and strength of negative vs. positive correlations in which they are involved.

Even with demographic compensation, the stochastic population growth rate was negative in all sites, indicating that populations are projected to decline in size and eventually go extinct locally. However, A. alpina could persist thanks to germination from its persistent seed bank and immigration from other sites (Hastings & Botsford 2006). Its frequent occurrence in unstable sites suggests that populations could show an extinction-recolonization dynamics typical of metapopulations (Ouborg & Eriksson 2004). The inclusion of a seed bank led to higher, sometimes positive population growth rates and confirmed the existence of demographic compensation (Appendix S2.2). The effects of immigration are more difficult to study in absence of estimates of seed dispersal rates, but the strong spatial genetic structure of the populations ($F_{ST} = 0.6$, de Villemereuil et al. 2018) suggests that dispersal rates might be low. The patterns of demographic compensation revealed here could thus be different in models integrating empirical estimates of seed dormancy and germination rates and extinction-recolonization dynamics,
potentially unmasking greater importance for coefficients of variation, elasticities and temporal correlations.

So far, demographic compensation has been discussed mainly in terms of spatial variation in mean vital rates (Doak & Morris 2010; Villellas et al. 2015; Sheth & Angert 2018). Our study is the first to highlight that temporal variation, elasticities and temporal correlations can be involved in demographic compensation, even if their effect was smaller than that of means. Nonetheless, temporal variation in vital rates could become more important under future expected increasing frequencies of extreme climatic events (Meehl & Tebaldi 2004; Schär et al. 2004), such as summer heatwaves and drought, that can cause large temporal variation in vital rates (Smith 2011; Andrello et al. 2012). Assessing the importance of all descriptors of population dynamics for demographic compensation could thus provide a more complete understanding of the dynamics of elevational as well as geographical species ranges in a context of global change.
ACKNOWLEDGEMENTS

We thank Serge Aubert, Rolland Douzet and Bénédicte Poncet for helping us find the populations, Hannah Secher Frommel and Cindy Arnoldi for soil analyses, Anne Delestrade for providing the weather station data, three anonymous reviewers whose comments helped us improve the manuscript and all the people who helped us in the field (in particular Florian Alberto, Perrine Augrit, Anne-Lise Bartalucci, Justine Bisson, Jérémy Camazzola, Loïc Chalmandrier, Julie Chauvin, Lucas Hemery, Elsa Jullien, Aymeric Pilleux, Blaise Tymen and Stefan Willhoit). MA and PDV were funded by a PhD scholarship by the French Ministry of Research. This research was partially conducted at the Jardin Alpin du Lautaret, a member of the AnaEE network (Infrastructure for Analysis and Experimentation on Ecosystems), and has used plant trait values from the TRY initiative and data base (http://www.try-db.org), which is hosted, developed and maintained by J. Kattge and G. Bonisch (Max Planck Institute for Biogeochemistry, Jena, Germany), and currently supported by DIVERSITAS/Future Earth and the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig.

SUPPORTING INFORMATION

Additional Supporting Information may be downloaded via the online version of this article at Wiley Online Library (www.ecologyletters.com).
Figure 1. Elevational patterns in life-cycle components and elasticities. Elevational patterns in mean life-cycle components, coefficients of variation (CV) of life-cycle components, elasticities to means (µ) and elasticities to standard deviation (σ) of life-cycle components. Life-cycle components are survival (S), retrogressive growth (G⁻), stasis (G⁺), progressive growth (G⁺), reproduction (F₀), reproductive output (F₁) and recruit size (F₂). Dots are mean values and bars extend over 95% confidence intervals. The blue lines are fitted linear regressions between values and elevation, and the gray areas are 95% confidence intervals. Solid lines indicate significant regressions (p < 0.05). Confidence intervals and significance values were calculated by randomly sampling statistical models over 200 bootstrapped demographic datasets.

Figure 2. Stochastic life-table response experiment (SLTRE). Total effects of each descriptor (a) and life-cycle component (b) to differences in stochastic population growth rates (logλₛ) between the focal site and a reference site constructed by taking the mean of vital rates over all sites. (c) to (h), net contributions C_l^k of each descriptor k of each life-cycle component l to the difference in logλₛ. Negative and positive contributions are plotted separately. Colours indicate the descriptor (µ, means; E, elasticities; CV, coefficients of variation; ρ, temporal correlations) or the life-cycle component (S, survival; G⁻, retrogressive growth; G⁺, stasis; G⁺, progressive growth; F₀, reproduction; F₁, fecundity; F₂, recruit size).

Figure 3. Demographic compensation. Correlogram of Spearman’s correlation coefficients between the net contributions of different descriptors of life-cycle components to differences in stochastic population growth rates (logλₛ) between sites (SLTRE contributions). Negative correlations are in red, positive correlations are in blue. Boxes with thicker borders and an asterisk indicate significant correlations at $p < 0.05$. The insets show the number of observed significant positive and negative correlations (vertical
dotted lines) compared to the distribution of the number expected by chance obtained through a permutation test (histograms). See Figure 2 for definitions of descriptors and life-cycle components.

Figure 4. Effectiveness of demographic compensation. (a), variance of population growth rate \(\log \lambda \) between sites, \(\sigma^2_{\log \lambda_s} \), obtained by permuting each descriptor of each life-cycle component at a time. Dots are mean values and bars extend over 95% confidence intervals over 1000 permutations. Values higher than the observed \(\sigma^2_{\log \lambda_s} \) (horizontal dashed line) indicate that the corresponding parameter effectively reduces \(\sigma^2_{\log \lambda_s} \) through demographic compensation. (b), observed \(\sigma^2_{\log \lambda_s} \) (vertical dotted lines) compared to the distribution of \(\sigma^2_{\log \lambda_s} \) expected by chance obtained through permuting only the parameters effectively reducing it (histograms). See Figure 2 for definitions of descriptors and life-cycle components.
<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>CV</th>
<th>Elasticity μ</th>
<th>Elasticity σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survival</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retrogressive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Growth</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Progressive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reproduction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fecundity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recruit size</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Elevation (m)
FIGURE 4

(a)

(b)

$\sigma^2_{log_2}$

$\sigma^2_{log_2}$

0.00 0.04 0.08

S G G* G* F0 F1 F2
Table 1. Characteristics of the study sites.

<table>
<thead>
<tr>
<th>Site</th>
<th>BRU</th>
<th>CHA</th>
<th>VIL</th>
<th>LAU</th>
<th>GAL</th>
<th>PIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitude</td>
<td>5.61112</td>
<td>5.59267</td>
<td>5.57083</td>
<td>6.39034</td>
<td>6.40375</td>
<td>6.38426</td>
</tr>
<tr>
<td>Latitude</td>
<td>45.15065</td>
<td>45.07117</td>
<td>45.01809</td>
<td>45.02846</td>
<td>45.06049</td>
<td>45.06385</td>
</tr>
<tr>
<td>Elevation (m)</td>
<td>930</td>
<td>1480</td>
<td>1980</td>
<td>2090</td>
<td>2590</td>
<td>2930</td>
</tr>
<tr>
<td>Aspect</td>
<td>South</td>
<td>North</td>
<td>South</td>
<td>North</td>
<td>North</td>
<td>South</td>
</tr>
<tr>
<td>Habitat</td>
<td>Calcareous scree</td>
<td>Calcareous grassland, scree</td>
<td>Calcareous scree</td>
<td>Schists, torrent</td>
<td>Calcareous scree</td>
<td>Schistose scree</td>
</tr>
<tr>
<td>Initial N</td>
<td>46</td>
<td>145</td>
<td>104</td>
<td>90</td>
<td>110</td>
<td>50</td>
</tr>
<tr>
<td>Number of plots</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

\[T_{\text{mean}} \begin{pmatrix} 14.7 (12.8, 17.5) \\ 15.7 (12.9, 18.2) \\ 12.9 (9.3, 17.5) \\ 10.4 (8.0, 12.1) \\ 7.7 (5.3, 10.3) \\ 9.1 (5.9, 12.1) \end{pmatrix} \]

\[T_{\text{range}} \begin{pmatrix} 11 (6.0, 18.6) \\ 16.9 (11.5, 21.9) \\ 15.9 (9.7, 36.1) \\ 6.3 (3.1, 9.6) \\ 8.1 (5.8, 13.3) \\ 16.3 (11.8, 23.2) \end{pmatrix} \]

\[\log\lambda_s \begin{pmatrix} -0.4 (-0.5, -0.2) \\ -0.3 (-0.5, -0.2) \\ -0.5 (-0.6, -0.4) \\ -0.5 (-0.8, -0.3) \\ -0.2 (-0.2, -0.1) \\ -0.5 (-0.8, -0.3) \end{pmatrix} \]

\(N \), number of individuals. Daily mean temperature \((T_{\text{mean}}) \) and daily temperature range \((T_{\text{range}}) \) were measured with \textit{in-situ} data-loggers. Values are means and (minimum and maximum) over plots and years \textit{for the month of July}. Means and 95% confidence interval for the stochastic population growth rate \((\log\lambda_s) \) were calculated by randomly sampling the values calculated using matrix populations models constructed using predicted vital rates from 200 bootstrapped demographic datasets and 10 resampled imputed datasets. The \(N \) per site per year is shown in \textit{Figure S2}.

Table 2. Statistical analysis of plant vital rates.

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Survival mean</th>
<th>95% CI</th>
<th>Growth mean</th>
<th>95% CI</th>
<th>Reproduction mean</th>
<th>95% CI</th>
<th>Reproductive output mean</th>
<th>95% CI</th>
<th>Recruit size mean</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed effects</td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>0.50 (0.31, 0.72)</td>
<td>1.35 (1.24, 1.44)</td>
<td>0.75 (0.35, 1.26)</td>
<td>1.05 (0.99, 1.10)</td>
<td>-0.76 (-1.11, -0.50)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SoilVeg 1</td>
<td>-0.27 (-0.69, 0.19)</td>
<td>0.17 (-0.18, 0.35)</td>
<td>0.10 (-0.36, 0.77)</td>
<td>0.03 (-0.06, 0.15)</td>
<td>0.57 (-0.16, 1.07)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SoilVeg 2</td>
<td>-0.29 (-0.77, 0.05)</td>
<td>0.17 (0.03, 0.38)</td>
<td>0.14 (-0.26, 0.69)</td>
<td>0.10 (0.01, 0.18)</td>
<td>-0.04 (-0.80, 0.49)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant size</td>
<td>0.79 (0.47, 1.09)</td>
<td>1.26 (1.09, 1.43)</td>
<td>3.78 (3.04, 4.61)</td>
<td>0.58 (0.49, 0.69)</td>
<td>-0.76 (-1.11, -0.50)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Plant size)^2</td>
<td>-0.56 (-0.88, -0.3)</td>
<td>-0.71 (-0.87, -0.57)</td>
<td>-1.37 (-2.21, -0.74)</td>
<td>-0.26 (-0.37, -0.18)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tmean</td>
<td>-3.52 (-5.08, 0.22)</td>
<td>0.35 (-0.24, 1.75)</td>
<td>0.04 (-2.34, 2.53)</td>
<td>-0.06 (-0.58, 0.41)</td>
<td>0.55 (-2.47, 3.33)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Tmean)^2</td>
<td>3.37 (0.17, 5.04)</td>
<td>-0.51 (-1.76, 0.16)</td>
<td>-0.13 (-2.66, 2.24)</td>
<td>-0.02 (-0.42, 0.52)</td>
<td>0.52 (-2.67, 3.20)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trange</td>
<td>-0.40 (-0.95, 0.05)</td>
<td>0.01 (-0.23, 0.25)</td>
<td>0.33 (-0.10, 1.19)</td>
<td>0.11 (0.00, 0.20)</td>
<td>-0.63 (-1.78, -0.07)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Random effects</td>
<td></td>
</tr>
<tr>
<td>Site (Intercept)</td>
<td>0.00 (0.00, 0.55)</td>
<td>0.08 (0.00, 0.55)</td>
<td>0.00 (0.00, 0.72)</td>
<td>0.12 (0.00, 0.23)</td>
<td>0.00 (0.00, 0.40)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year (Intercept)</td>
<td>0.51 (0.22, 0.86)</td>
<td>0.41 (0.33, 0.50)</td>
<td>1.09 (0.84, 1.40)</td>
<td>0.15 (0.11, 0.19)</td>
<td>0.00 (0.00, 0.70)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year (SoilVeg 2)</td>
<td>1.27 (0.82, 1.83)</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year (Intercept * SoilVeg 2)</td>
<td>0.15 (-0.48, 0.98)</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plot (Intercept)</td>
<td>- - - -</td>
<td>1.28 (0.87, 1.88)</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plot (Plant size)</td>
<td>- - - -</td>
<td>1.52 (0.85, 2.56)</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plot (Intercept * Plant size)</td>
<td>- - - -</td>
<td>0.95 (0.74, 1.00)</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residual</td>
<td>- -</td>
<td>1.62 (1.39, 1.89)</td>
<td>- -</td>
<td>0.36 (0.34, 0.38)</td>
<td>2.61 (0.86, 13436)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marginal R^2</td>
<td>0.07 (0.03, 0.12)</td>
<td>0.25 (0.2, 0.31)</td>
<td>0.46 (0.38, 0.56)</td>
<td>0.44 (0.36, 0.53)</td>
<td>0.04 (0.00, 0.10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conditional R^2</td>
<td>0.41 (0.29, 0.56)</td>
<td>0.36 (0.3, 0.49)</td>
<td>0.80 (0.69, 0.88)</td>
<td>0.57 (0.51, 0.64)</td>
<td>0.05 (0.02, 0.18)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
For each of the five vital rates, the table reports the standardized coefficients of fixed effect, the standard deviation of random effects (intercepts and slopes), the correlations between random intercept and slopes and marginal and conditional R^2 (Nakagawa *et al.* 2017). Only the random effects that were retained after model selection on the random structure are shown. Means and 95% confidence intervals were calculated by randomly sampling statistical models over 200 bootstrapped demographic datasets and 10 resampled imputed datasets. The predictors whose confidence intervals do not overlap with zero are in **bold**.