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Abstract

High-latitude areas are experiencing rapid change: we therefore need a better
understanding of the processes controlling soil erosion in these environments. We used a
spatiotemporal approach to investigate soil erosion in Svalbardstunga, Iceland (66° N, 15°
W), a degraded rangeland. We used three complementary datasets: 1) high-resolution UAV
imagery collected from 12 sites (total area ~0.75 km?); 2) historical imagery of the same
sites; and 3) a simple, spatially-explicit cellular automata model. Sites were located along a
gradient of increasing altitude and distance from the sea, and varied in erosion severity (5-
47% eroded). We found that there was no simple relationship between location along the
environmental gradient and the spatial characteristics of erosion. Patch-size frequency
distributions lacked a characteristic scale of variation, but followed a power-law distribution
on five of the 12 sites. Present total eroded area is poorly related to current, site-scale levels
of environmental stress, but the number of small erosion patches did reflect site-level
stress. Small (< 25 m?) erosion patches clustered near large patches. The model results
suggested that the large-scale patterns observed likely arise from strong, local interactions,
which mean that erosion spreads from degraded areas. Our findings suggest that
contemporary erosion patterns reflect historical stresses, as well as current environmental
conditions. The importance of abiotic processes to the growth of large erosion patches and
their relative insensitivity to current environmental conditions makes it likely that the total
eroded area will continue to increase, despite a warming climate and reducing levels of
grazing pressure.
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Main text
Introduction

Soil erosion is a global phenomenon that results in the long-term loss of ecosystem services
(Lal, 2014). Climate change and anthropogenic pressures, notably over-grazing, are two key
stressors, and the impact of these factors on erosion has been extensively studied in low-
and mid-latitude locations. However, high-latitude regions are also susceptible to soil
erosion (Grosse et al., 2011; Hilton et al., 2015; Heindel et al., 2015). It is therefore vital to
understand the processes behind soil erosion in these environments in order to mitigate
against future soil degradation and loss.

High-latitude environments are disproportionately affected by climate change: mean
temperatures in these regions increased by about 1°C per decade in the period 1980-2010
(significantly above the global increase), and precipitation regimes (especially the depth and
duration of snow cover) are also changing (IPCC, 2013). Climate change exacerbates soil
erosion (Amundson et al., 2015) and can also lead to enhanced anthropogenic stress, as
previously marginal habitats become viable for agriculture and human habitation (IPCC,
2014). In contrast to the trend in mid- to low-latitudes, it is possible that climate change will
lead to a reduction in stress in high-latitude areas, and a slowing/reversal of current erosion
(e.g. Tape et al., 2011). However, the precise impacts of global change on high-latitude soil
erosion are poorly understood. Thus, the overall aim of this study is to understand the
interaction of geomorphological and biological processes driving soil erosion in a high-
latitude environment, through an analysis of landscape-scale spatial patterns.

The study of spatial patterns in ecosystems, and vegetation cover in particular, has a long
history (see, e.g., Watt, 1947). This research is motivated by the desire to uncover the
underlying processes that drive spatial patterning. Exogenous controls on the spatial
patterning of vegetation at a landscape scale (e.g., variation in slope, aspect, geology, etc.)
are well understood (Fortin & Dale, 2005). However, endogenous biological processes can
also lead to the emergence of patterned vegetation cover, even where exogenous controls
are spatially homogeneous (‘self-organised patchiness’: Rietkirk et al., 2004). Landscape-
scale studies of spatial pattern need to acknowledge both endogenous and exogenous
factors, as well as their interaction via biophysical feedbacks.

Spatial patterns in the landscape have been used as an indicator of the underlying resilience
of an ecosystem, and — contentiously — an early warning signal of abrupt transitions
between alternative stable states (e.g., the transition from a vegetated to eroded
landscape: Kéfi et al., 2007). Previous studies have used an array of different spatial metrics
to assess proximity to abrupt ecological transitions, although experimental studies (in
particular those from high-latitude habitats) are rare (Kéfi et al., 2014; Scheffer et al., 2001).
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An influential study by Kéfi et al. (2007) found that vegetation patch sizes followed a power-
law distribution under low stress (grazing pressure) conditions. They attributed this to
strong, positive biological interactions (facilitation) operating over short distance scales.
Under increased grazing pressure, facilitative interactions broke down, the proportion of
large vegetation patches decreased, and the patch size distribution diverged from a power-
law relationship. Kéfi et al. (2007) therefore proposed that patch size distribution could be
used as an early warning signal for abrupt transitions. Their findings have been the source of
debate (see, e.g., Meloni et al., 2017) and the precise mechanisms underlying power-law
distributions in patch sizes remain obscure. However, whatever the underlying processes,
there is evidence that the spatial configuration of vegetated and unvegetated terrain has
the potential to reveal information about the key biophysical processes. We applied this
approach in this study of soil erosion in northeastern Iceland.

Large parts of Iceland are characterised by landscape-scale patchworks of eroded and non-
eroded areas (Figure 1b). We have a good understanding of the long-term, large-scale
progression of soil erosion in Iceland, which has been driven by a combination of climatic
deterioration, volcanic activity and over-grazing (Arnalds, 2005; Streeter et al., 2015).
Iceland’s andosols are friable, free-draining and easily eroded; once vegetation cover is
removed the underlying sediment is vulnerable to erosion, and is often completely
removed, exposing the underlying bedrock or glacial lag deposits. The substrates created by
soil erosion are extremely difficult for plants to colonise, and, once initiated, erosion
patches may persist with minimal vegetation cover for centuries (Arnalds, 2005). This
suggests the existence of biophysical feedbacks that create hysteresis in the system.

Whilst the large-scale factors that drive soil erosion in Iceland are well known, we still don’t
fully understand how the landscape-scale pattern emerges. Qualitative models of erosion
patch initiation and growth have been proposed. For example, Olafsdéttir & Gudmundsson
(2002) presented a conceptual model where random breaks in vegetation cover become
erosion patches, which expand due to geomorphological processes (notably cryoturbation
and aeolian action). The distinctive spatial pattern of the eroded areas (Figure 1b) emerges
as erosion fronts propagate and patches merge (Dugmore et al., 2009). However, these
models remain largely untested, and this limits our ability to predict the impact of future
environmental change. Recent climatic amelioration and reductions in grazing intensity
might be expected to reduce the rate and intensity of erosion. However, it has proved
difficult to stop/reverse erosion, even when grazing is completely excluded (Barrio et al.,
2018). To better understand why erosion has continued and to predict the response of
these landscapes to future environmental change quantitative models of erosion patch
initiation and growth are required.

We conducted a spatiotemporal study of erosion patches on a site in northeastern Iceland.
As our primary concern was the progression of erosion, we inverted the normal approach of
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surveying vegetation patches, and focussed on the spatial structure of areas where
vegetation was absent (i.e., erosion patches). Based on previous studies, we postulated
that:

1) The erosion patches were the result of biophysical interactions, i.e., biological
processes (plant growth, regeneration and colonisation) that maintain soil cover and
geomorphological processes (erosion by wind and water) that promote soil loss. The
relative balance of these factors would determine the initiation and development of
the patches and, by extension, their spatial characteristics.

2) As environmental stress increases, biological processes become less influential, and
geomorphological processes more influential.

3) Soil erosion is initiated by random, small-scale disturbances that rupture the
vegetation cover. Incipient erosion patches either grow, or ‘heal’ (become re-
vegetated), according to prevailing environmental conditions.

4) Environmental stress in vegetated areas increases with proximity to existing erosion
patches (due to exposure to drought stress, wind, etc.), although this is likely to be a
short-range effect (a few metres, at most).

To study the impact of environmental stress on the spatial patterning of the erosion
patches, we selected sites arranged along a gradient of climatic stress (expressed in terms of
altitude/distance from sea).

We hypothesised that:

H1: The number and proportional coverage of erosion patches would increase with
altitude/distance from the sea as climatic conditions became more stressful.

H2: The patch size distribution would vary with altitude/distance from the sea. On
low/proximal sites, climatic stress would be lower, erosion patches would ‘heal’ more
readily and large patches would be under-represented (a truncated power-law
distribution). On high/distal sites, the increasing stress would lead to patch growth and
coalescence, resulting in an over-representation of large patches.

H3: Erosion patches would be clustered in space as a) the initiation of new patches is more
likely near existing patches and b) new patches that form near existing ones are less
likely to become revegetated. Therefore, even though the notional start of erosion may
be spatially random, feedbacks eventually lead to a clustering of erosion features.

Materials and Methods

To address the spatiotemporal nature of soil erosion, and the potential impacts of changing
ecological stress in the future, our analysis combined three distinct datasets. First, we
analysed the current spatial structure of the extant erosion patches, using high-resolution
remote sensing data. Secondly, we compared our findings to historical imagery. Finally, to
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illuminate the long-term development of an eroded landscape and the effect of increasing
stress, we also formulated a simple spatial model of patch initiation, growth and
persistence.

Study area

This work was undertaken in 12 study sides (labelled A-L in Figure 1a) located in an area
known as Svalbardstunga, northeastern Iceland. As far as possible we selected sites which
had low relative relief, homogenous vegetation cover, and a similar hydrology. The 12 sites
surveyed were arranged along a north-south transect and ranged in elevation from 11 m to
223 m asl, and from 0.2 km to 14.3 km from the coast (Table 1). The total proportion of
eroded area ranged from 5-47 % and the median area eroded was 25%.

The nearest climate station is on the coast at Raufarhofn, located 28-38 km to the north-
west of the study sites. During 1949-2008 the mean annual temperature was 2.5 °C and the
mean annual precipitation 680 mm (Vedurstofa islands, 2019). The trend in recent times
(1980-2008) has been for increasing mean annual temperature, from around 2 °Cin the
early 1980s to 3 °C by the mid-2000s. There is an expected environmental gradient (i.e.
increasing global-scale stress) between the sites, due to the generally increasing altitude
and distance from the sea from north to south along the transect. Additional climate
variables such as snow cover and wind exposure, and their interaction with grazing, will vary
between sites. However, the overall pattern of increased levels of stress at higher altitude
and greater distance from the sea sites is likely to remain the same. Further details on the
climate gradient are provided in the supplementary text.

All the sites were located within unfenced rangeland areas, shared by local farms. During
the grazing season (typically May-September) sheep move freely across these rangelands.
Nationally sheep numbers in Iceland have declined since a peak in the late 1970s, and by the
mid 1990s the numbers were about half what they were in 1980. From the mid-1990s
numbers have been relatively stable (Marteinsdéttir et al., 2017). At the farm Svalbard
(Figure 1a) sheep numbers have been more-or-less constant for the period 1980-present.

The vegetation on the study sites was dominated by low-growing shrubs, notably bog
bilberry (Vaccinium uliginosum), crowberry (Empetrum nigrum) and dwarf willow (Salix
herbacea). Patches of dwarf birch (Betula nana) up to about 60 cm high were present at
some of the sites. Soils in the area are classified as a patchwork of brown andosols, which
dominate nearer the coast, and histosols, which tend to be found more frequently inland
(Arnalds, 2015). Both soil types are derived from mainly volcanic material and are sensitive
to disturbance. Further details on the vegetation cover, soils and past land use is in the
supplementary text.
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Even though there are no areas of permafrost within the study area, the high water
retention properties of the soil, coupled with intense freeze-thaw cycles, mean that
cryoturbation is common. In vegetated areas this cryoturbation is expressed through the
occurrence of earth-hummocks (Icelandic: thufur) — low, dome-shaped, elliptical mounds
separated by a network of depressions, elongating into mounded stripes where the slope
was steeper (Figure 1c). Thufur were abundant at all the study sites.

UAYV image survey

The typical spread of individual plants on our sites (and therefore the likely size of the
smallest erosion patches) is 10-60 cm (Kristinsson, 2010), so images with a pixel size of > 50
cm cannot capture the smallest erosion patches. To ensure that we captured the smallest
likely scale of patterning we used unmanned-aerial vehicles (UAVs) to take images in the
study area. During August 2017 we used two UAVs to collect high resolution images (~2
cm/pixel) at the 12 sites. Details of the UAVs and the flight conditions are shown in Table S1.
Flight plans were programmed using Map Pilot (v 3.1.4) software, which ensured that
adjacent images had a 75% overlap. Each site was surveyed within a period of 20 mins so
that light conditions were consistent. At each site we took one set of images in RGB and one
set of images with a modified RGB camera which used a filter to capture RG and a near-
infrared (NIR) band. The RG-NIR images allowed us to calculate a relative normalised
difference vegetation index (NDVI) map for each site using the NDVI formula (e.g. Pettorelli
et al., 2005). Although using a modified RG-NIR camera is not a substitute for using a full
multi-spectral sensor to make NDVI measurements (especially in situations where absolute
measurements are required, e.g., to observe changes over a growing season), initial tests
indicated the modified camera was capable of reliably distinguishing between areas with
growing vegetation and those with no vegetation cover. Capturing both RGB and RG-NIR
images allowed cross checking of the classification based on RG-NIR images.

Individual images were merged together to create an orthomosaic. An area of 250 X 250 m
(0.0625 km?) was then extracted for each study site. We only had enough suitable images at
site A to extract an area of 240 x 240 m. Each orthomosaic was then downscaled to 5 cm
pixel resolution using bicubic interpolation. Elevation data were generated by clippinga 2 m
resolution DEM (the ArcticDEM, v3.0, Porter et al., 2018) to the site boundaries.

Image classification and patch identification

We used ImageJ (v.2.0) to manipulate the UAV data. We used the R and NIR bands from the
RG-NIR images to calculate an NDVI value for each pixel on each site. We then used the
NDVI values to classify the land surface into vegetated and unvegetated areas. We used the
RGB images and ground truthing to determine an individual NDVI threshold for each site.
This was done by manually selecting a minimum of 14 pixels in each cover category at each
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site and using this information to determine the best threshold value of NDVI to distinguish
vegetated and non-vegetated pixels. In one instance, comparison with the corresponding
RGB image found that this approach had failed to separate between true unvegetated areas
and large patches of lichen cover. This site was excluded from the analysis. To test the
accuracy of our classification we randomly sampled 100 pixels at each site and cross
checked the pixel classification against a manual classification based on the corresponding
RGB image. Globally the accuracy of pixel classification was 94%. After pixel classification
individual erosion patches were identified and labelled using an implementation of 1-pass
connected components labelling in R (function ConnCompLabel from the SDMTools Package
v1.1).

Statistical analysis of patch-size distribution

The patch size distributions were estimated using cumulative probability distribution
function (CDF). This describes the probability that an erosion patch has a size (a m?) equal to
or greater than a determined area, P (Patch > a). CDF was selected over other approaches
such as probability density function, as it has been shown to be more sensitive to capturing
changes in pattern fragmentation (Moreno-de las Heras et al., 2011). We did not bin values,
as this has been shown to affect the conclusions drawn from the data (Meloni et al., 2017).

We compared two different models which described the empirical distribution of the patch
sizes: 1) a power-law (PL) and 2) log-normal (LN) distribution. These were fitted to the CDF
data using the R Package poweRlaw (v 0.7), based on the principles outlined in Clauset et al.
(2009). To determine if the PL model was a good description of the data we used a
goodness-of-fit test with a boot-strapping (100 iterations) (Clauset et al., 2009). To compare
the PL model with the LN model we used Vuong’s test, which calculates a likelihood ratio as
well as calculates a p-value for the figure (Clauset et al., 2009).

Analysis of erosion patch location

We investigated the spatial structure of the erosion patch centroids by a) calculating site —
level indices of dispersion (also known as variance-mean ratios) and b) conducting point-
pattern analysis (Ripley’s L -function). The index of dispersion, ID, is a simple, global statistic
that expresses the ratio of the variance to the mean (Dale, 1999). If the erosion patch
centroids are randomly distributed, the observations follow a Poisson distribution; in this
case, the mean is equal to the variance and ID approximates unity. If the patches have a
clumped (aggregated) distribution, the variance is high, and ID is > 1. We calculated ID by
dividing each site into a grid of 625 10 m x 10 m cells, enumerating the number of patch
centroids in each cell, and calculating the mean and variance of these counts.
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We used point-pattern analysis of the erosion patch centroids to investigate structure at
different spatial scales. To do this, we calculated Ripley’s L-function for each site, using the
spatstat package running in R (Baddeley et al., 2015). Briefly, the L -function compares the
expected and observed number of erosion patches at different spatial scales (in this case, O-
50 m). Distributions exhibiting complete spatial randomness (CSR) produce L -function
values to zero. Over-dispersed (segregated) distributions produce negative values and
under-dispersed (aggregated) distributions positive values. The significance of the L-
function was calculated using Monte Carlo techniques, using 99 iterations on random data
of the same density (Haase, 1995; Fortin and Dale, 2005).

To understand if the location of small patches was affected by proximity to the edge of large
patches, we conducted the following analysis. We defined large patches as those over 25
m?2. This size was selected based on field observations that erosion patches of this size and
larger were likely to have no remaining sediment cover over at least part of the patch area
and therefore were likely to persist. This dataset allowed us to calculate the distance from
the centroid of each small (< 25 m?) erosion patch to the nearest edge of a large erosion
patch. The distance from the edge of a large erosion patch to the centroid of a small erosion
patch was then calculated for each patch at each site, and the median distance calculated
for each site. We then performed a bootstrap analysis on the actual distances of patch
centroids from patch edge 1000 times, in order to calculate the standard error of the
median distance estimate. In addition, we generated a null dataset for each site in the
following way. At each site, for areas outside large erosion patches, the distance of all pixel
outside of a large erosion patch to the edge of the nearest large patch was calculated using
the Proximity function in QGIS (v3.4). From this null dataset we sampled the same number
of pixels as there were small erosion patches at each site. To determine the robustness of
the null median distance estimate we sampled each site 1000 times, and then calculated the
median distance for each iteration and the standard error for the whole dataset.

Aerial photo analysis

To understand long term changes at our sites we used greyscale aerial photographs of
Svalbardstunga. Images cover the study area from flights in July 1980 and August 1991
(Table S2). The image resolution was ~ 0.56 m/pixel for the 1991 images and ~0.73 m/pixel
for the 1980 images. We cropped the photographs to the site boundaries. In the aerial
photographs eroded areas appear lighter in tone and vegetated areas darker (Figure S1).
After cropping, images were resized to 333 x 333 pixels (a resolution of 0.75 m/ pixel) and
thresholded using ImagelJ (Schindelin et al., 2012). This process was effective at capturing
larger eroded areas, but could not resolve the numerous, small eroded areas we observed in
the UAV imagery, and was sensitive to variations in the lighting and level of contrast within
each image. The total non-vegetated (we assume eroded) area for each site was calculated
from the thresholded image. Due to the inability of this method to pick up smaller eroded
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areas the total eroded area calculated from the aerial photographs is likely to be an
underestimate of the true figure. After classification, the eroded area from 1980 and 1991
was compared to the eroded area in the 2017 UAV survey.

Erosion modelling

In order to a) see if we could replicate the spatial characteristics of the eroded landscapes,
using a small number of parameters and b) to assess the impact of changing ecological
stress on soil erosion, we created a simple cellular automata model of erosion in NetLogo (v
6.1.0; Wilensky, 1999). Further details on the model can be found in the supplementary
text. The model had one type of entity: square cells arranged in a 200 x 200 grid. Each cell
had one state variable: its land cover status. Land cover could be either vegetated or
eroded.

The initial state of the model was entirely vegetated, as it is assumed that most lowland
landscapes in Iceland were fully vegetated before settlement. At each time step the
probability (Pe) of a vegetated cell changing to an eroded state is calculated. The probability
is a combination of the global-scale erosion probability Peg, which is the same for all cells
regardless of location, and the local-scale erosion probability Pe;, which varies depending on
the status of the eight cells adjacent to that cell (Moore neighbourhood). Based on our
knowledge of how erosion proceeds in Iceland, we assumed that once more than half of
adjacent cells had become eroded, erosion in the target cell becomes likely.

The probability of revegetation (P,) is a combination of the global-scale probability Pyg,
which is the same for all cells regardless of location, and the local-scale probability P,;, which
varies depending on the status of the eight cells adjacent to the target cell (Moore
neighbourhood). Both the literature on Icelandic soil erosion and our own observations
suggest that recolonization of bare sediment is difficult (Arnalds, 2015). The presence of
adjacent vegetated areas increases the chances of success by providing seed sources, lateral
regrowth, and through plant facilitation effects (Bertness and Callaway, 1994; Callaway et
al., 2002), but we suspect that likelihood of revegetation is lower than that of erosion. This
is reflected in our default parameter values (Table S3).

We tested if we could replicate our empirical observations using simple model parameters.
We did this by conducting model runs until the proportion of eroded terrain reached 0.05-
0.55 under the following scenarios: a null model, with no spatial interactions, and the model
described above. We then compared the model outputs against empirical datasets. We
assessed 1) the range of patch sizes generated by the model at each overall level of eroded
area and 2) if model runs created outputs with patch-size distributions which could be
described by a PL model, where the scaling-exponent § < 2 and the p-value from a
bootstrapping implementation of a goodness-of-fit test 2 0.05. We also used the model to
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establish how the total eroded area changed through time. We did this by simulating the
progression of erosion from fully vegetated to 0.95 proportion eroded 15 times, using the
parameters stipulated in Table S3.

To assess the model sensitivity to transient periods of increased global (site-level) stress we
simulated two scenarios. The first scenario had a constant low level of global-scale stress
(Peg = 0.002) and 3000 time-steps. The second scenario had a variable level of global-scale
stress: Peg was 0.002 for time-steps 0-200, increased to 0.004 for time-steps 201-500, and
decreased to 0.002 for time-steps 501-3000. Both scenarios were replicated 20 times.

Results
Remote sensing of erosion patches

The results of the land surface classification are presented in Figure 2. The number of
erosion patches identified at each site was between 8206 and 50268. The total number of
patches at each site was positively correlated with distance from the sea (R? = 0.43, p = 0.01,
Figure 3b) but not increasing altitude (R?> = 0.21, p = 0.07, Figure 3a).

There was no correlation between the total eroded area at each site and increasing distance
from the coast (R?> =-0.01, p = 0.36) or altitude (R? = -0.06, p= 0.57) (Figure 3, c-d). The total
number of patches identified at each site and the total area eroded were uncorrelated
(Figure S2).

Erosion patch sizes

The size of eroded patches found at the sites varied greatly, from 0.0025 — 20,732 m?, with
the largest individual patch found at the most eroded site (site D). The largest individual
patch accounted for 33% of its total site area. All sites exhibited a wide range of patch sizes,
although there was a notable difference between individual sites, with the smallest range
found at site A (five orders of magnitude) and the largest at site D (seven orders of
magnitude).

The patch-size CDF (Figure 4) showed some variation between sites. Sites A and B displayed
CDF distributions which declined relatively slowly up to 1 m?, before declining more steeply.
Other sites had a fairly even CDF decline up to patch-sizes of 10-50 m?. Above this patch-size
range the CDF declined more slowly and became more variable. The PL scaling exponent [3
ranged from 1.78 to 2.27, with 7 out of the 12 sites having a scaling-value 3 < 2 for a power-
law model fitted for the values above xmin (Table 2). The patch-size distributions from five
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sites (A, B, D, H and 1) had a p-value > 0.05, consistent with a PL distribution. When the PL
models were compared with a LN model using Vuong’s test, all sites had a p-value > 0.05,
i.e., a log-normal model could not be ruled out. The PL and LN models were both generally
poor at capturing the largest patches observed at all the sites, however, in most cases the
LN model appeared worse at capturing the large patches than the PL model (Figure 4).

The PL scaling-value of 3, and the p-value for the PL, had no relationship to the level of
erosion observed — both the least eroded site (A) and the most eroded site (D) could be
described by a power-law relationship. Neither the value of the scaling-exponent, nor the PL
p-value varied predictably with location along our environmental gradient.

Large patches were extremely important at determining the overall area of erosion at each
site. On average, large patches (> 25 m?) made up 86% of the eroded area across all sites.
The number of large patches at each site ranged between 10-30. As the eroded proportion
of each site increased, the contribution of large patches to the overall area eroded
increased from less than 50% to over 97% (Figure 5).

-3 Location of erosion patches

Erosion patch centroids were more highly aggregated in space than we would expect from
random distributions. Indices of dispersion for the sites ranged between 12-86, indicating
high levels of aggregation (Table S4). Calculation of Ripley’s L-function demonstrated the
significant aggregation of patch centroids applied across all spatial scales analysed (0-50 m:
refer to Figure S3 for a typical figure). Small erosion patches tended to be close to the edge
of large erosion patches: for 11 of the 12 sites, the median distance between small patch
centroids and large patch boundary was less than anticipated value under the null model
(Figure 6). Across all the sites, on average, half of all small erosion patches occurred within
3.5 m of the edge of a large erosion patch, whereas the median distance for any pixel from
the edge of a large erosion patch was 7.9 m.

3.2 Aerial photo analysis

The majority of large erosion patches observed in 2017 were already present in 1980 and
1991, and had a similar shape in 1980 as in 2017 (Figure S1). Over the period 1980-1991,
seven sites exhibited a small (1-5%) increase in the total area eroded, two sites showed no
change, and three sites underwent a small decline (2-4%). In 2017, 10 of the 12 sites had
experienced increases in the area eroded of between 2-13%, compared to 1980 (Figure 7).
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3.3 Model scenarios

Our model outputs were better than the null model at replicating the formation of large
patches, even at relatively low proportions of the total area eroded.

For 43% of model simulations the CDF had PL like distributions (where 8 < 2 and p > 0.05),
particularly at 0.15 eroded and above (e.g., Figure 8, Table 3). This contrasts with the null
model simulations, where fewer (19%) of the models runs had PL like distributions, all these
occurring at > 0.35 area eroded, and the range of patch sizes was low at sites where < 0.45
area was eroded (Table 3).

Simulating the transition from a fully vegetated landscape to a 95% eroded landscape with
constant model parameters showed that the rate of erosion varied. Initially (i.e., between
0.05-0.15 eroded) the rate of increase in the eroded area was rather slow. The rate
increased once the eroded area reached 0.15, and remained steady from 0.15 to 0.9
eroded, slowing just before the end of the simulation (Figure 9a).

We also used the model to explore the long-term impact of short periods of high global-
scale stress on landscape development. Short periods of increased global-scale stress had a
long-term impact on the progression of erosion. When global-scale level stress is below
0.003 the total eroded area remained below 0.1, regardless of scenario length (Figure 9b,
Figure S4). When there was a period of high global-scale stress the eroded area increased
rapidly (Figure 9b). However, after global-level stress returned to levels which previously
had resulted in no increase in eroded area through time, the total eroded area continued to
increase steadily (Figure 9b).

4. Discussion

This is, to our knowledge, the first high-resolution, quantitative spatial analysis of erosion
patterning in Iceland. We were interested in what governs the patterning of erosion, and
how erosion might progress in the future. Previous studies of landscape patterns have
focussed on vegetation patches as their unit of interest (e.g., Moreno-de las Heras et al.,
2011). These studies have frequently been in dryland regions, where vegetation patches
occur within a matrix of exposed soil. This is not typically the case for our sites (or Iceland
more generally). We know from past studies and palaeoenvironmental evidence that the
patterns in Icelandic vegetation cover arise through the propagation of one uniform state
(eroded) into an existing uniform state (vegetated), a progression that has been
characterised qualitatively (Arnalds, 2015). Our sites span 53-95% vegetation cover, so
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might be more usefully characterised as eroded patches within an intervening remnant
vegetation cover.

Our results show that the spatial distribution of erosion patches is highly structured and that
the patch-size distribution suggests scale-invariance, although for most sites we cannot say
conclusively that they follow a power-law distribution. This evidence, alongside model
results, implies that the patterns are a result of endogenous, short-range feedbacks, and
that exogenous factors (such as global-scale site stress) are relatively unimportant in
governing erosion patterns. However, exogenous factors probably do control the rate of
erosion progression and erosion patch initiation.

Erosion cover and global-scale environmental stress

We hypothesised that at inland/higher altitude sites both the proportion of eroded area and
number of erosion patches would increase (hypothesis H1). Contrary to our expectation, we
found the proportion of eroded area did not vary predictably along the environmental
gradient. It is likely this discrepancy is because the overall level of eroded terrain is strongly
determined by large erosion patches, and that these patches are not in equilibrium with
contemporary conditions.

It is possible that large erosion patches, which dominate the total area of erosion at each
site, were initiated decades or centuries ago. Analysis of aerial photographs that predate
our UAV survey by 37 years suggested that large erosion patches are long-lasting and
relatively static features of the landscape. Geomorphological evidence from the south of
Iceland suggests that large erosion patches may persist for centuries (Dugmore and Erskine,
1994). We know that, whilst some erosion occurred before the settlement of Iceland, it
increased rapidly after humans arrived 1,100 years ago and was probably at its peak in the
early 20%" century (Streeter et al., 2015). National sheep numbers (and therefore grazing
stress) were also higher for about half of the time during the period 1850-1977 than at
present (Arnalds and Barkarson, 2003) - likely leading to high rates of patch formation. In
which case, there may be a legacy effect, i.e., the proportion of eroded terrain reflects the
time since the establishment of large erosion patches. Additionally, rather than reflecting
contemporary levels of environmental stress, the total area eroded could reflect historic
differences in stress along our transect. For instance, grazing pressure could have varied
markedly between sites in the past if they were subject to different land management
regimes.

The number of erosion patches increased along the environmental gradient (i.e., patch
number increased with global-scale stress). Contrary to our expectations, the number of
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patches did not decline with increasing area eroded (decreasing the area in which small
patches could be found) (Figure S2). This is probably because highly eroded sites had more
large erosion patches, each with a large ‘apron’ of small erosion patches around their
perimeter. This effect probably compensated for the declining available area for small
patches to be located on the more eroded sites. Most patches were small, and likely to be
more dynamic than their larger counterparts (i.e., they are able to form and ‘heal’ much
more rapidly). Patch number is therefore more likely to reflect current conditions than total
eroded area. Whilst small patches are relatively unimportant in terms of total eroded area,
they contribute towards the active growth of large erosion patches (by coalescence) and
have the potential to become large patches themselves. We note that patch totals were
skewed towards the smallest patches, and these were the patches likely to have the largest
uncertainty in the remote sensing process. Additional work is needed to determine how
quickly small erosion patches respond to changing environmental stress. Nevertheless, the
number of small erosion patches (<1 m?) was relatively easy to determine using UAVs, and
could be a useful indicator of site-level stress.

Patch-size distributions

One of our aims was to establish which category of patterning best described erosion on our
sites, and to see if the pattern varied along our environmental gradient (hypothesis H2).
Previous studies have identified two main categories of vegetation pattern, with contrasting
patch size distributions. Firstly, regular or periodic patterns (Rietkerk and van de Koppel,
2008), and secondly scale invariant patterns, which lack a characteristic scale (Scanlon et al.,
2007; Kéfi et al., 2007). In the past, the two patterns were thought to arise from the
operation of qualitatively different processes. Regular vegetation patterns were generally
attributed to the operation of endogenous, scale-dependent feedbacks (SDF) that resulted
in self-organisation and the emergence of large-scale patterns from small-scale processes
(e.g., facilitation or resource concentration). Scale-invariant patterns in landscapes may
occur for a variety of reasons. Most simply, on any 2D grid very large patches could occur by
chance - without any spatial interactions - when the total area eroded is near the
percolation threshold of 0.59 (Stauffer et. al, 1994). Scale-invariant patterns are also
attributed to the operation of exogenous environmental factors, e.g., underlying landscape
heterogeneity, fire regimes or grazing regimes (Lovett et al., 2005). However, there is
growing evidence that scale-free patterns can arise from endogenous, self-organising
processes, including local-facilitation (e.g., Scanlon et al., 2007, Kéfi et al., 2007, von
Hardenberg et al., 2010; Zhao et al., 2019). Our study suggests that eroded rangelands in
Iceland are an example of a scale-invariant pattern, one that arises from endogenous, self-
organising processes.
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The range of patch-sizes observed at our sites was large (up to seven orders of magnitude)
across all levels of erosion cover. Furthermore patch size distributions at five sites had a PL
distribution. Although not all the patch-size distributions could be reasonably characterised
by power-laws, we suggest that erosion patches lack a characteristic scale, and the patch
size distribution could be described as scale-invariant. The persistence of scale-invariant
erosion patterns across a wide range of erosion covers (5-47%) suggested that these
patches did not form by chance. Our model results support this assertion. Null models at
low levels of overall erosion cover showed a small range of patch sizes and CDF distributions
that were far from a PL. The most likely explanation for the patterns of erosion observed is
positive local-feedbacks in the biotic and abiotic dimensions of erosion and revegetation.

Most of the empirical examples of local-scale feedback proposed have focused on biotic
positive feedbacks (e.g., the moderation of stressful microclimates by vegetation growth). In
terms of erosion patches, the interaction of abiotic and biotic processes is likely to be
important. In Iceland, erosion fronts often proceed laterally across the landscape (Arnalds,
2015) — sites adjacent to eroded areas are more likely to be eroded in the future. Plants
near eroded areas will be under greater stress due to a decline in facilitation effects and
reductions in soil moisture. There are also abiotic factors. In Iceland the boundaries
between eroded and non-eroded areas are often defined by erosion escarpments (Icelandic:
rofabard) (Arnalds, 2000). At these boundaries local-scale physical processes, particularly
the erosion of sediment by wind and water, result in the lateral movement of erosion fronts
across the landscape (Arnalds, 2000). Together, these processes provide a strong local-scale
positive feedback for soil erosion, which is likely to be responsible for the generation of the
distinctive erosion patterns we observed. This is supported by our erosion model which
generated outputs with a large range of patch sizes and power-law type distributions (Table
3) qualitatively similar to our empirical datasets (Figure 8).

All our sites had more very large patches than would be expected under a PL distribution
(Figure 4). However, our model outputs did not produce such large erosion patches. One
explanation is that there is a difference in patch-persistence related to patch size. Large
patches are more likely to persist and grow, whereas smaller patches may go through cycles
of growth and collapse. Differences in patch persistence with erosion patch size were
probably related to differences in surface cover of the area within patches. Large erosion
patches are likely to be eroded down to underlying bedrock or glacial lag deposits;
recolonization of these areas by plants is unlikely. In contrast, small erosion patches are
characterised by exposed soil/sediment. Consequently, there is a chance that they will ‘heal’
(be recolonised by vegetation). As they become larger (and deeper) the sediment cover
disappears, decreasing the likelihood of healing. The longer the erosion patch exists, the
more likely it is to lose all its sediment, persist and grow larger. To test this, future modelling
work should investigate a more sophisticated way of addressing patch persistence, perhaps
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by incorporating two states of eroded ground cover (bare substrate and exposed soil), with
differing likelihoods of recolonisation.

In an influential paper, Kéfi et al (2007) argued that deviations from power-law patch size
distributions may provide warnings for abrupt transitions and provide information about the
ecological resilience of a site. These findings have been disputed (e.g., Maestre and
Escudero, 2009). However, if they are applicable, they could provide an important metric for
understanding landscape resilience. The main finding of Kéfi et al (2007) is that large
vegetation patches fragment in stressed locations, leading to a truncation of the power-law
relationship. When considering erosion patches, we might expect the opposite effect in
stressed environments, i.e., an increasing over-abundance of very large patches with
increased stress (hypothesis H2). However, we did not observe a consistent change in patch-
size distribution along our environmental gradient: the persistence of large-patches and the
fact that their size may be unrelated to contemporary environmental conditions suggests
that deviations from a PL distribution in this environment are unlikely to provide meaningful
information on site resilience. Our patch-size distribution results support the idea that there
is no single scaling law of ecosystem structure (c.f. Maestre and Escudero, 2009), and
highlight the importance of site-specific understandings of ecosystem functioning.

Erosion-patch locations and mechanisms of patch growth

We hypothesised that erosion patches would cluster in space (hypothesis H3). Our data
supported this position. One explanation is that aggregation reflects underlying site
heterogeneity. We know that relatively small changes in topography can affect plant
growth, reproduction and survival, particularly when environmental conditions are stressful
(Billings, 1987). Topographic variation on our sites was limited. Furthermore, the high level
of erosion patch aggregation we observed, combined with our model results, suggested that
the spatial pattern of the erosion patches is mainly a result of endogenous erosion
feedbacks, especially localised disturbance processes. Small patches mostly occurred in
clusters. However, isolated patches do exist, and may play an important role in the creation
of large, stable erosion patches. In our model, small erosion patches had a small probability
of forming, and were randomly distributed in space. In a random spatial process, some
erosion events will naturally occur close to each other. This increases the local stress level,
making it more likely that other patches will form nearby, and that existing patches will
enlarge. If there are sufficient patches nearby, and if these patches persist, it is likely that
they will coalesce. This observation is also supported by model results, which demonstrated
how in times of increased global-scale stress, the enhanced generation of randomly placed
erosion spots makes the initiation of more persistent and larger erosion spots more likely
(Figure 9b).
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Our data also point to an additional mechanism which clusters patches together. Small
erosion patches are much more likely to be found near to the edge of larger erosion
patches. One explanation for this is a stress gradient that exists close to the boundaries of
large patches. Increased stress close to the margins of large patches mean that small
patches preferentially form in this zone, and once formed, are less likely to heal. These
patches then grow, coalesce and extend the margins of the large patch that initiated their
formation. The stress gradient may be related to moisture availability. Large patches are big
(and old) enough to have eroded sediment down to bedrock, lowering the local water table
and increasing moisture stress. Measurements of near-surface soil moisture we have made
on another site in Iceland suggest moisture availability is reduced in a zone extending ~1 m
from the edge of an erosion patch (Figure S5). The redeposition of eroded sediment close to
the erosion patch margin could also cause stress by burial and abrasion (Streeter and
Dugmore, 2013). Both factors are likely to be short-range (not more than a few metres).

Implications for the future of eroded landscapes in Iceland

It is likely that temperature and grazing pressure are the main global-scale stressors found
in our study area. Our observations suggest that erosion patch formation is sensitive to
temperature, with more patches formed at higher altitude and further inland sites.
However, we did not find that the total eroded area reflects current global-scale stress
levels. If we wish to understand how these landscapes will respond to future environmental
changes at the site level, we need a better understanding of the relative importance of local
feedbacks and global-scale stressors.

Our finding that erosion patterns are predominately the result of distance-weighted
feedbacks (i.e., disturbance takes place near to already disturbed sites, recovery more likely
near existing vegetation), rather than density-independent global-scale site stressors has
implications for the probable future trajectory of Icelandic soil erosion. By themselves,
positive local feedbacks would tend to lead to one state predominating over the other. For
instance, if erosion feedbacks are stronger than vegetation feedbacks, then sites will tend to
become almost fully eroded over time. We observed this in our model: where the local-
feedbacks were stronger than the site-level metrics, the model either stayed almost entirely
vegetated, or becomes almost entirely eroded. Scanlon et al. (2007) found patch-size
power-law relationships which were stable over a wide range of vegetation cover levels.
They attributed this to the interaction of local effects and the global-scale impact of rainfall.

The importance of abiotic processes in the growth of erosion patches, and their relative
insensitivity to global-scale environmental conditions once they are initiated, suggests that
the eroded areas may well continue to expand, despite an amelioration in site level
environmental stress. Large patches, once they reach a sufficient size, will continue to grow,
more or less independent of external environmental conditions. We observed this

This article is protected by copyright. All rights reserved.



phenomenon in our model results (Figure 9b): once erosion had become established to a
certain level, it increased in area independent of the global-scale stress levels. This finding is
supported by observations in Iceland that erosion has been difficult to stop or reverse, even
when grazing has been completely removed (Barrio et al., 2018; Marteinsdottir et al., 2017).
It has been suggested that there is a threshold in the proportion of eroded land, beyond
which erosion becomes very difficult to stop (Thorsson, 2008; Barrio et al., 2018). A
tentative threshold level of 35% has been proposed, based on a single Icelandic site
(Thorsson, 2008). Our model results suggest a somewhat lower threshold of ~15%, but
further empirical data and modelling work is required to provide more robust estimates of
the threshold level, and to understand its variability between sites. However, completely
eroded sites are rare in northeastern Iceland, despite the fact that erosion was probably
initiated centuries ago. This either suggests that 1) the area eroded increases extremely
slowly or 2) sites are responsive at some level to global-scale site stressors. Our
observations from aerial photographs suggest that landscape change is very slow in this
area. Together, these findings suggest that there is an ‘erosion debt’, and the total area
eroded will probably increase regardless of management, and a reduction in overall levels of
landscape stress.
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Tables

Table 1 — Characteristics of the study sites.

Site Latitude of | Longitude of | Elevation | Distance from | Proportion Area

Nam | site centre site centre (m asl) coast (km) Eroded (%) | Surveyed

e (m?)
A 66.21579 -15.63137 11-20 0.6 5.6 57600
B 66.20333 -15.64174 64-81 2 22.8 62500
C 66.17448 -15.72192 61-75 5.7 19.2 62500
D 66.15898 -15.75408 56-71 7.1 47.3 62500
E 66.1545 -15.75761 67-79 7.4 38.7 62500
F 66.14428 -15.7808 73-84 9.8 25.0 62500
G 66.13736 -15.78105 85-106 10.5 22.9 62500
H 66.13242 -15.79344 103-125 11.2 14.9 62500
I 66.12847 -15.7999 130-154 11.7 32.9 62500
J 66.1127 -15.76951 160-184 12.9 26.2 62500
K 66.10716 -15.77083 192-208 13.5 30.0 62500
L 66.09961 -15.77415 207-223 14.3 24.0 62500
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Table 2. Summary of scaling parameters and statistics for PL models fitted to erosion patch-
size CDFs. Statistically significant results indicated in bold. Positive likelihood ratio values
indicate that the PL model is favoured over the LN model.

Power-law Log-normal
Site B Xmin pt Likelihood ratio p
A 2.27 1.50 0.51 0.11 0.91
B 1.96 2.16 0.24 0.12 0.90
C 1.82 0.08 0.07 0.41 0.68
D 1.86 0.09 0.13 0.28 0.78
E 1.84 0.07 0.01 0.49 0.62
F 1.81 0.25 0.02 0.23 0.82
G 2.01 0.13 0.00 0.44 0.66
H 2.10 1.12 0.92 0.15 0.88
I 2.01 1.01 0.78 0.15 0.88
J 1.78 0.13 0.00 0.35 0.73
K 1.93 0.13 0.00 0.37 0.71
L 2.04 0.13 0.00 0.51 0.61

t Statistical significance for PL models is denoted when p > 0.05 (see Clauset et al., 2009)
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Table 3 — Ability of the random null model and the erosion model to produce PL type
distributions, based on 100 model runs.

Random null model Erosion model
Proportion | B<2 | p>0.05 | Both Mean largest | <2 | p20.05 | Both Mean largest
eroded true | patch size (m?) true | patch size (m?)
0.05 0 6 0 0.2 0 43 0 0.5
0.15 0 40 0 0.8 80 59 39 18.9
0.25 0 60 0 2.6 81 48 30 49.9
0.35 35 40 1 21.2 85 62 47 104.7
0.45 41 95 41 663.4 90 78 68 217.9
0.55 87 71 71 873.7 94 78 72 450.9

This article is protected by copyright. All rights reserved.




o ﬁ 735000 740000 745000
|

Hjalmarvik @ A

‘Svalbaré B ‘

7348800
%Baegiss Sirlll

jiﬁ%ﬂitle is protéc y
A : / / I\

copyri
\







b)
G 50000 A G
(7]
2
S 40000+
S
. H . L . c Ve |
. S H
K g 30000 -
(0]
—
(@]
g 20000
= €
C o ] ¢ g C E E *
°®e E ° (14
B B b
. 10000 1 A
50 100 150 200 0 5 10
elevation (m) distance from coast (km)
C) d)
05 A D
D
. 0.41 E
o E o
() ()
© b © I.
g J K. g 031
F F
S . y . 5 .
..E [} . G L ..E B [ ] [ ] G
8 B, S 027 .
o C H 9] C
[ ] [ ]
o o H
0.1
A
0.0
106 1 1.5 opyright. Alolightb TCSCT vcdé 1-0

elevation (m) distance from coast (km)



1072 10° 1@"his artiqi?“is prOic;S’f’ed by q@yright-l@l right&i)éserved(;‘z 10° 10° 10*
a, patch area (m2)



3

soyoled

pro.portion e.roded



50

T

<
yored ufll

pa wolj

site



./ x/ ./ .’ ﬁ 2 .’
N AR w ! I n
N PO |
N AR ! iR
\ » \ __ 1\
N AT 1 |
N NERRARY 1
\ Ny 4#. ! [
I
\ N v 1\
\ /// y d/ A
N AR \ ~ 1
A AT BN
\ \ N
\ WA o
\ _/za__ff 1
/./ [} A b b
N \ / ’
A Y
\ A
// /o Vi /
LSRN} \\\
N
R\

@ papola als J& uoniodol

2010 2017

2000
year

1990

980

G
il ri ;';'Lt

D
A

This agicles practed b

—o— K
s reserved.

pyright.
F

B .
y copyrig

L

o—

C -



i T S
R e, s

b
et

it e g

107t 1

10721

probability patch = a

10731

T o S T b
CEa T ) 107

107" 10° 10"
a, patch area (mz)

107°°

107* 1

10715

10721

probability patch = a

10—2.5 -

1073+

B=1.63

This article is protected by copyright. All righireserved. 10° 10"

a, patch area (mz)




°
@
g
c
e
=
S
o
Q
o
S
S

1000 2000 3000
time steps

o
S

123
o 8
o g
o %3
c 8
- =~ 9
f—
o =
s
L
Q_0

' 1000 2000 3000
time steps

This u pr%g@%ppbcoﬁrigﬁﬁhXﬁn}igg?ssfc'eserved.

---+ variable stress




	Title: Assessing spatial patterns of soil erosion in a high-latitude rangeland
	Abstract
	1. Introduction

	2. Materials and Methods
	2.1 Study area
	2.2 UAV image survey
	2.3 Image classification and patch identification
	2.4 Statistical analysis of patch-size distribution
	2.5 Analysis of erosion patch location
	2.6 Aerial photo analysis
	2.7 Erosion modelling

	3. Results
	3.1 Remote sensing of erosion patches
	3.2 Erosion patch sizes
	3.3 Location of erosion patches
	3.2 Aerial photo analysis
	3.3 Model scenarios

	4. Discussion
	4.1 Erosion cover and global-scale environmental stress
	4.2 Patch-size distributions
	4.3 Erosion-patch locations and mechanisms of patch growth
	4.4 Implications for the future of eroded landscapes in Iceland
	Acknowledgements

	References
	Binder1.pdf
	LDR_3585_Figure 1
	LDR_3585_Figure 2
	LDR_3585_Figure 3
	LDR_3585_Figure 4
	LDR_3585_Figure 5
	LDR_3585_Figure 6
	LDR_3585_Figure 7
	LDR_3585_Figure 8
	LDR_3585_Figure 9




