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Abstract

Our knowledge of ecological stability is built on assumptions of scale. These

assumptions limit our ability to reach a generalizable and mechanistic under-

standing of stability under global environmental change. Moving towards a

multiscale approach—across space, time and environment—will allow us to

better understand the intrinsic (e.g., demographic) and extrinsic (environmen-

tal) drivers of ecological stability. In this perspective, we review multiple

sources of variation responsible for shaping ecological dynamics, and how

scale affects our observation of these dynamics through its confounding effect

on drivers of variation in ecosystems. We discuss the effect of temporal scale

when combining empirical dynamic modeling with high-resolution population

time series to consider the time-varying nature of multispecies interaction net-

works, highlighting interspecific interactions as an intrinsic driver of commu-

nity dynamics. Next, we examine energy landscape analysis as a method for

inferring stability and transience during community assembly and its interac-

tion with spatial scale, emphasizing the intrinsic role of compositional variabil-

ity in assembly dynamics. We then examine population dynamics at species'

range margins and show how considering the interaction between spatial and

temporal environmental heterogeneity, an extrinsic driver of population

dynamics, can facilitate a nuanced understanding of population expansions,

range shifts, and species invasions. Finally, we discuss broadly how the sources

of intrinsic and extrinsic variation interact with each other and with

spatiotemporal scale to shape ecological dynamics. Better recognition of the

scale-dependent nature of the relationship between drivers of variation and

ecological dynamics will be invaluable to illuminate the dynamics influencing

ecological stability across scales.
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1 | ECOLOGICAL STABILITY
ACROSS SCALES

Ecological stability (Table 1) considers how ecosystems
resist or recover from environmental change
(Domínguez-García et al., 2019; Donohue et al., 2013;
Hillebrand et al., 2018; Holling, 1973). Understanding the
drivers of ecological stability is then key to predicting
how communities and ecosystems respond to disturbance
(Holling, 1973; Pimm, 1984). Yet, the concept of stability
is complex and multidimensional, requiring clear

definition to be of value as a quantitative tool
(Domínguez-García et al., 2019; Kéfi et al., 2019). There
exists a long history of measuring ecological stability in
the temporal domain (MacArthur, 1955; Pimm, 1984),
either using time series data to quantify the temporal var-
iability of some measure of interest (e.g., Tilman
et al., 2006), or by measuring an ecological response to a
specific perturbation (e.g., Solé & Montoya, 2001;
Figure 1a). However, perturbations have both a spatial
and temporal signature which influences ecological
responses (Pinek et al., 2020; Ryo et al., 2019; Waldock

TABLE 1 Glossary of key terms

Community network structure The composition of pairwise interspecific interactions in a community; i.e., the graph
representing structure of interactions between species in a community.

Community state The composition of species in a community at a given point in time. Alternative stable states
represent stable coexistence of multiple community states under the same environmental
conditions (Fukami, 2015). Attractive basins represent domains in state space in which all
initial conditions will tend towards an equilibrium state (Walker et al., 2004).

Compositional variability Variability in community composition through time (i.e., community state) and/or space.

Demographic stochasticity The probabilistic dynamics (in time and/or space) of vital rates (e.g., births, deaths) of
individuals underpinning population growth rates (Neubert & Caswell, 2000).

Ecological stability A multidimensional concept typified either as a measure of variability in time and/or space
(e.g., Tilman et al., 2006) or as the response to a perturbation, quantified as resistance,
resilience, recovery etc. (Domínguez-García et al., 2019). To operationalize the stability
concept, it is important to clarify the stability dimension(s) of interest (Donohue et al., 2013).

Empirical dynamic modeling A data-driven framework to model nonlinear dynamic systems from time series data. It is
equation-free and captures system dynamics and relationships from the attractor
manifold reconstructed by taking time-lag coordinates of the observed variables (see
Deyle et al., 2016).

Energy landscape analysis A method to determine the likelihood of a given (community) state. The method assigns an
energy value to each state, where states with low energy are taken with a large probability
during stepwise state transitions, e.g., community assembly (Watanabe et al., 2014).

Environmental variability Variability in the environment through time or space. Includes the dynamics of this
variability (environmental stochasticity/noise) and the range of environmental conditions
experienced over a given spatial and/or temporal scale (environmental heterogeneity).

Extrinsic driver Drivers of ecological dynamics external to the biological component of the system (e.g.,
environmental stochasticity).

Interaction variability Variability in pairwise or multi-species interspecific interactions through time and/or space.
This variability could include variation in the identity, strength, density-dependence,
asymmetry etc. of interactions determining community network structure.

Intrinsic driver Drivers of ecological dynamics within the biological component of the system (e.g.,
demographic stochasticity, community network structure, interaction density-dependence).

Metacommunity A set of local communities linked by dispersal of multiple potentially interacting species
(Leibold et al., 2004).

Spatial/temporal (sampling) extent The total area of observation encompassing all observation units in space or time (Viana &
Chase, 2019).
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et al., 2018; Zelnik et al., 2018), and communities may
respond heterogeneously in space. The increasing fre-
quency and intensity of such disturbances in the
Anthropocene justify continued efforts by ecologists to
quantify temporal stability across a range of scales
(Jacquet & Altermatt, 2020, Newman, 2019, Wolkovich
et al., 2014; Figure 1b). Here, we discuss the conse-
quences of scale—the spatial or temporal window size of
a sampling unit or sampling extent (Table 1)—in studies
of ecological stability and dynamics, and highlight
nascent methods with the potential to better integrate
scale into stability research.

Existing models in community ecology have inte-
grated spatial context, including dispersal and environ-
mental heterogeneity, instigating the development of
metacommunity theory (Hubbell, 2001, Leibold
et al., 2004, Vellend, 2016; Table 1). This framework is
still being refined, with recent models aiming to encom-
pass multiple concepts and processes across different spa-
tial and temporal scales (Thompson et al., 2020). Such
models spurred an extensive discourse contrasting selec-
tion and niche versus neutrality in ecological

communities (e.g., Legendre et al., 2009; Mori, 2018). Yet,
the mechanisms by which such metacommunity pro-
cesses influence community structure in systems with
high spatial complexity or intricate temporal dynamics
are still poorly understood. Recent technical advances
such as remote sensing (e.g., Bush et al., 2017) and eco-
logical data synthesis (e.g., Dornelas et al., 2018), in com-
bination with metacommunity theory (Thompson
et al., 2020; Vellend, 2016), should allow us to untie inter-
linked processes that shape metacommunity dynamics.
Interactions between processes, including between selec-
tion and dispersal (Mouquet & Loreau, 2002, 2003), and
dispersal and drift (Ron et al., 2018), are increasingly bet-
ter studied, as is the link between biodiversity and stabil-
ity in the metacommunity context (Wang et al., 2019;
Wang & Loreau, 2016). Furthermore, the interaction
between various ecological processes and dispersal hinges
on the specific environmental conditions and spatial
scale considered, thereby shaping biodiversity patterns
and ecological responses idiosyncratically (Mori, 2018;
Ratcliffe et al., 2016). This means environmental
context—one source of extrinsic variation—is

FIGURE 1 A scale-dependent understanding of ecological stability. (a) Ecological stability can be measured with multiple metrics using

a range of ecological variables (including measures of biodiversity, ecosystem functioning, or ecosystem service supply). Variability (1) is

often measured as the coefficient of variation of a variable in time or space (Tilman et al., 2006); resistance (2) is the degree to which a

variable of interest is altered in response to a perturbation (dashed line) (Pimm, 1984); recovery time (3) and recovery rate (engineering

resilience) (4) are the time (or space) taken for a value to reach some threshold and the rate of return to this threshold, respectively

(e.g., Barnthouse, 2004). There are many more dimensions of stability including persistence and asymptotic stability each with specific

definitions and formulations (Domínguez-García et al., 2019; Donohue et al., 2013). (b) When considering the environment in which

ecological communities are embedded, the spatial (x-axis) and temporal (y-axis) scale of measurements influences the form of the

environment–time (or space) relationship, which in turn results in scale-dependent extrinsic (environmental) variation (inset plots).

(c) Environment is thus a function of both time and space (x-axis) and the complexity of this environment (including our scale-dependent

consideration of extrinsic variation) can hinder our ability to understand how such environments influence ecological stability (different

lines) [Color figure can be viewed at wileyonlinelibrary.com]
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unavoidably coupled with the processes shaping commu-
nity stability through their interaction with spatial scale
(Chase, 2003, Gonzalez et al., 2020, Loreau et al., 2003;
Figure 1b,c). Studies of community dynamics and the
processes that shape them must therefore seek to reveal
dynamics at the spatial scale of interest.

Identification of the dominant processes driving eco-
logical dynamics is key for modeling and prediction. The
dominant processes shaping population or community
dynamics depend explicitly on the spatial scale considered
and on environmental context, including the temporal sig-
nal of environmental conditions (Pinek et al., 2020; Villa
Martín et al., 2019; Zelnik et al., 2018). Patterns of biodi-
versity change in ecological systems are also scale depen-
dent (Chase et al., 2019). Thus, spatial and temporal
dynamics and their drivers interact to produce a complex
stability landscape in space and time. However, work to-
date has mostly focused on a single or few spatiotemporal
scales (Kéfi et al., 2019; Waldock et al., 2018), demanding
increased focus on and knowledge about how scale inter-
acts with the processes shaping ecological communities
(Gonzalez et al., 2020, McGill et al., 2015; Figure 1b).

Here, we discuss metrics and emerging tools in studies
of ecological stability from theoretical and empirical per-
spectives, with a particular focus on temporal and spatial
context. Our aim is not to provide a novel framework for
considering ecological dynamics in light of spatiotemporal
scale, but rather we highlight recent methodological
advances with the potential to better integrate scale into
studies of ecological stability and dynamics. Particularly,
we describe conditions under which spatial or temporal
scale may influence our understanding of various intrinsic
(interaction variability, compositional variability) and
extrinsic (environmental variability) drivers (Table 1) of
ecological dynamics, and some methodological consider-
ations using recent case-studies at different levels of eco-
logical organization. We describe methods by focusing on
the main source(s) of variability being imposed on ecologi-
cal communities, which often depend on spatiotemporal
scale. We consider first how variation in interspecific inter-
actions (an intrinsic driver of community dynamics) are a
function of time and provide some suggestions for apply-
ing empirical dynamic modeling to ecological time series.
Next we move from pairwise interspecific interactions to
consider the entire suite of species in a metacommunity,
focusing on how spatial scale influences compositional
variability as an intrinsic driver of assembly dynamics. We
then move to the determinants of species' ranges at a
global scale by discussing how population expansions,
adaption and species invasions may be driven by the fluc-
tuating nature of (extrinsic) environmental conditions.
Finally, we touch on how these sources of intrinsic and
extrinsic variation interact to collectively shape population,

community and ecosystem dynamics, and how scale-
dependence might propagate across levels of ecological
organization to influence our understanding of how global
change influences ecological dynamics and stability.

2 | COMMUNITY DYNAMICS:
INTERSPECIFIC INTERACTION
VARIABILITY

Studies of ecological stability typically focus on aggregated
variables at the community level (Kéfi et al., 2019). At this
level of organization, interspecific interactions are a princi-
ple driver of community dynamics and stability. Pairwise
interactions (e.g., predator–prey) have long been a focus of
population ecologists (e.g., Berryman, 1992). However, in
nature, species do not simply interact in pairs. Rather, spe-
cies' population dynamics are influenced by densities of
various other species, including their prey, predators, com-
petitors and mutualistic partners, as their vital rates are
affected by those interacting species. An ecological com-
munity can therefore be viewed as a community network of
interspecific interactions, in which a change in one popula-
tion leads to cascading changes in other populations. Com-
munity network structure (Table 1) can be quantified as the
number of other species a given species interacts with
(i.e., degree distribution, Newman, 2003), or based on
motifs or modules, each of which is a subset of a network
with a small number of interactions and species arranged
in a specific way, to reveal indirect interspecific interac-
tions (Amarasekare, 2008; Simmons et al., 2019). Commu-
nity network structure defines the nature of interactions
within the community by determining the paths through
which interspecific effects are transmitted. Network struc-
ture, therefore, has the potential to influence dynamics
and stability at the community level (Higashi &
Nakajima, 1995; Yeakel et al., 2020).

Community network structure has been a major
research theme in recent decades, particularly when con-
sidering the relationship between network complexity and
ecological stability. May (1972) predicted that a commu-
nity with more species or more interactions, that is, a more
complex community, has less chance to be stable (in terms
of reproducible periodic oscillations of the populations
therein). How complex community networks arise and
persist has since been a major theme of theoretical ecol-
ogy, and many factors are candidates for stabilizing com-
plex community networks, including weak interactions
(McCann et al., 1998), flexibility in interactions arising
from adaptation (Kondoh, 2003), nestedness (Thébault &
Fontaine, 2010), mixtures of antagonistic and mutualistic
interactions (Mougi & Kondoh, 2012), meta-community
structure (Mougi & Kondoh, 2016) and redundancy
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among species effects on environmental conditions (ecosys-
tem engineering, Yeakel et al., 2020). Moreover, these net-
work properties and their relationship with community
dynamics are likely influenced by spatial and temporal
scale. For example, the presence, directionality or strength
of interactions between species vary through time—
particularly across species' life-stages (Yang &
Rudolf, 2010) or during community assembly (Yeakel
et al., 2020)—which leads to time dependence in network
structure (Deyle et al., 2016; Moreno-Mateos et al., 2020).

It remains a challenge to empirically test the hypothe-
sis that community network structure itself can be a
determinant of community dynamics and stability. There
are several fundamental difficulties in performing such
empirical tests. The first is in identifying the interspecific
interactions necessary to build a community network.
Presence of an interspecific interaction between Species X
and Species Y is defined by the fact that the density of
Species X affects the population dynamics of Species Y.
However, these cases are hard to examine in nature.
Even with the continued rise in field experiments manip-
ulating community composition, the fully resolved com-
munity network in which species are embedded is rarely
available (Pringle & Hutchinson, 2020). That is, it is still
difficult to identify all pairwise combinations of interspe-
cific interactions in a natural community. Empirically
tracking the dynamics of many-species systems involves
considerable effort. Even if monitoring the population
dynamics of many species, it is not straightforward to iso-
late community stability—which intrinsically arises from
the full suite of interspecific interactions between all spe-
cies in a community—from variability caused by environ-
mental noise (Table 1). A further difficulty is in
identifying causation in the link between structure and
dynamics. Even with success in identifying interaction
network structure and tracking community dynamics,
how best can the two be related?

The minimalist approach (Ushio et al., 2018) is a
framework recently proposed to overcome such difficul-
ties, enabling the empirical study of community network
structure and dynamics via empirical dynamic modeling
(Table 1). Empirical dynamic modeling can be used to pre-
dict temporal change in community network structure
using time series of multispecies abundance data. The
method assumes that system dynamics are deterministic
while randomness arises from chaotic behavior of
nonlinear dynamics. What enables the minimalist
approach is a model that allows interactions to be inferred
from available time series data (Chang et al., 2017). Time
series have rich information about the processes that drive
community dynamics. For example, several authors have
applied Takens' embedding theorem and related state
space reconstruction theories (Deyle & Sugihara, 2011;

Takens, 1981) in various ways, such as in determining
causal relationships between variables (Sugihara
et al., 2012), forecasting (Sugihara & May, 1990), quantify-
ing temporally varying interaction strengths (Deyle
et al., 2016) and for evaluating the stability of community
trajectories (Ushio et al., 2018). By combining time series
data and appropriate modeling methods, one can infer
interspecific interactions, their signs and strengths, and
even evaluate the dynamical consequences of community
structure using only observational data from the field.
Empirical dynamic modeling also has the potential to
reveal higher-order interactions, where an interaction
between two species is moderated by the presence of a
third (Bairey et al., 2016), because information encoded in
this unobserved driver is embedded in the observed time
series (Takens, 1981, but see Blanchet et al., 2020).

Ushio et al. (2018) recently used the minimalist
approach to determine the structure of large community
networks based on 12 years of fortnightly coastal fish
data. In this study, the analysis of a multi-species obser-
vational time series allowed detection of 14 interspecific
interactions, of which some were positive and others neg-
ative. Quantification of interaction strengths revealed the
temporally varying nature of interspecific interactions;
some interactions fluctuated between positive and nega-
tive values over time. The authors not only found that
temporally varying interspecific interactions produced
temporally fluctuating local Lyapunov stability (therein
termed dynamic stability, Ushio et al., 2018), but also pro-
vided empirical evidence that community network com-
plexity is important for community stability. More
specifically, higher species diversity led to a dominance
of weak interactions, which in turn stabilized community
dynamics (Ushio et al., 2018). Critically, Ushio et al.
(2018) provide evidence of the potential for empirical
dynamic modeling to successfully link complexity and
stability in a causal framework using only field data.

Interspecific interactions, community network struc-
ture and stability all depend on the spatial or temporal
scale of observation. Population dynamics which are each
unstable over short temporal scales (e.g., monthly) can
give rise to stable dynamics at another temporal scale
(yearly). Similarly, unstable dynamics at local spatial
scales can be stable when considering a regional scale, as
suggested by classical meta-population theory and exten-
sions of the theory across levels of organization
(e.g., Hanski, 1998; Wang & Loreau, 2014, 2016). Given
the scale-dependent nature of ecological dynamics, the
minimalist approach has several desirable characteristics
for the study of community structure and stability; inter-
actions and their long-term changes that actually drive
dynamics at the spatiotemporal scale of choice can be
identified because time series of interspecific interactions
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are inferred from observed short-term (transient) interac-
tions (multi-species abundance time series). That being
said, when using empirical dynamic modeling to under-
stand community network complexity, it is imperative
that species' time series be sampled at a temporal scale
that matches that of the underlying mechanisms of inter-
est (e.g., dispersal vs. birth rate); it is not enough simply
to select an appropriate temporal scale for a target spe-
cies' life history or a system's disturbance regime, as the
mechanisms behind community dynamics and both the
properties of and responses to disturbance vary with tem-
poral scale (Wolkovich et al., 2014). Short time series
have little power to reveal meaningful dynamics, because
this method requires time series to be several times lon-
ger than the system return time, that is, the time taken to
return to a local attractor (Munch et al., 2019). This led to
the suggestion that time series longer than 30 data points
are most appropriate for use in empirical dynamic model-
ing, as this length reduces prediction error significantly
(Chang et al., 2017; Munch et al., 2019; Sugihara
et al., 2012), although this suggestion remains naïve to
specific disturbance regimes. Conversely, long time series
may violate the model's assumption of stationarity
(Munch et al., 2019). System dynamics themselves are
also inherently scale-dependent, meaning that analyses
at different temporal scales can produce different results
(Chang et al., 2017), and that larger sampling intervals
have the potential to miss relevant dynamics leading to
apparent indeterminism (Munch et al., 2019). Finer reso-
lution sampling intervals have the advantage of accurate
detection of transient ecological interactions, while also
increasing cross-map skill (coherence) as time series
length increases (Sugihara et al., 2012). A key open ques-
tion remains how empirical dynamic modeling can be
applied and integrated across scales to capture the
dynamics of species with vastly different life histories.

It is clear, then, that temporal scale plays a critical
role in the variation in pairwise interspecific interactions,
and the consequences of this variation for community
network dynamics and stability. Thinking next about the
composition of ecological communities rather than inter-
specific interactions therein, spatial scale is a key driver
of compositional variability and thus the intrinsic dynam-
ics and stability of community assembly.

3 | COMMUNITY ASSEMBLY
DYNAMICS: COMPOSITIONAL
VARIABILITY

The next level up is composed of networks of interacting
communities or metacommunities. At this level of organi-
zation, a key driver of stability is the dynamic interaction

between the composition of species in a community (here-
after a community state, Table 1) and habitat types in differ-
ent patches. Metacommunity models often focus on patch
dynamics which arise from shifts in the balance of local
extinction and (re)colonization and result in a stable
regional species pool (Leibold et al., 2004). Because of
patch dynamics, community composition may pass
through transient states as community assembly progresses
(Mori et al., 2018). This results in sites harboring communi-
ties of different developmental stages at a given point in
time. A stable state may no longer be perceived as a perma-
nent endpoint, but instead may represent a dynamic equi-
librium recognized in cycling community states.

Transition between community states is ultimately
constrained by various ecological processes (Chase, 2003;
Götzenberger et al., 2012; Vellend, 2010; Weiher
et al., 2011; Wisz et al., 2013), including biotic interac-
tions, with all their aforementioned scale-dependencies
and interaction variability (e.g., Warren et al., 2003;
Table 1). These processes can lead to historical contin-
gency, such as alternative stable states (Fukami, 2015),
where the order and timing of species migration and
extinction influence the composition (e.g., Drake, 1991)
and function (Fukami et al., 2010; Jiang et al., 2011) of
ecological communities. Scale plays a role here too; the
contribution of stochasticity in ecological processes
(births, deaths, dispersal, i.e., demographic stochasticity,
Table 1) becomes stronger in smaller populations and
often decreases at larger spatial scales (Chase, 2014;
Legendre et al., 2009), whereas at the community level,
biotic interactions primarily operate at smaller spatial
scales (Gotelli et al., 2010; Wisz et al., 2013).

Typical approaches to understanding species co-
occurrences, such as joint species distribution models
(Tikhonov et al., 2017), do not directly describe dynamic
relationships between different community states
(Baselga & Araújo, 2009; Elith & Leathwick, 2009;
Norberg et al., 2019). These approaches cannot then be
applied as models for community assembly dynamics.
Dynamical models, such as differential equations, are
able to describe shifts in community state based on the
changes in species abundance (Gravel et al., 2011). How-
ever, it is often difficult to develop fully mechanistic
models for multi-species communities from abundance
time series. To overcome these difficulties, it is possible
to integrate a pairwise maximum entropy model (i.e., a
Markov network, Araújo et al., 2011, Harris, 2016) with
energy landscape analysis (Wales et al., 1998, Watanabe
et al., 2014; Table 1, Figure 2).

Briefly, consider the probabilities of observing differ-
ent community states, which describe how often a spe-
cific combination of species is observed and are adjacent
to other states, that is, differing in the presence–absence
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status of a single species. Community assembly is then
assumed to proceed in a stepwise manner through this
network of possible states. With this network of possible
community states and their frequencies—plus abiotic vari-
ables if available—an energy landscape can be calculated
where energy represents the probability of observing a
given community state in nature; states with lower energy
have a greater probability of being realized (Watanabe
et al., 2014). The form of the energy landscape can then
provide systematic understanding of the developmental
pathways that constrain natural community assembly.
Applied to ecology, the method starts with community
data including observations on the occurrence of species
in a set of temporal and/or spatial samples (Figure 2a),
converted to a presence–absence community matrix
(Figure 2b). Using this matrix, a pairwise maximum
entropy model is then produced, which estimates the
probability with which a given community state is realized
(Figure 2c), and energy landscape analysis can be applied
on the product of this model (Figure 2d). This process
identifies possible stable states and tipping points and can
be used to form a disconnectivity graph summarizing

hierarchical relationships between the stable states and
possible tipping points, defining an attractive basin of sta-
ble states (Table 1). It also allows emulation of community
dynamics constrained on the energy landscape. This
method considers only the consequence of species extinc-
tions or migrations in local communities, that is, changes
in presence–absence of species. Hence it ignores popula-
tion dynamics and approximates the continuous state
space as a network of all possible community states. By
discarding detailed descriptions of population dynamics,
this approach offers a practical way to study community
assembly dynamics from observational data. As this
method uses species occurrence data to infer an energy
landscape instead of directly estimating ecological
interactions—though the imprint of ecological interactions
is included in the pairwise maximum entropy model—
researchers can avoid the issue that species co-occurrence
may not inform ecological interactions (Blanchet
et al., 2020), since the pairwise maximum entropy model
is treated as an approximate model of governing dynamics
(e.g., population dynamics) rather than a predictive func-
tion as in the case of machine learning.

FIGURE 2 Energy landscape analysis of community assembly pathways. (a) Appropriate datasets for energy landscape analysis include

occurrence of species in local communities sampled from multiple sites and/or timepoints, possibly accompanied by values representing

local abiotic environment (explicit abiotic factors). Colors and sizes of ellipses represent differences in local environmental conditions.

(b) The dataset is converted to matrices of presence/absence (black/white) status, and explicit abiotic factors (if available) (colors show

values of abiotic factors). (c) These matrices are used to fit parameters in a pairwise maximum entropy model. (d) The fitted model specifies

an energy landscape network with nodes representing community states and links representing transitions between community states. The

energy landscape analysis acknowledges: (i) the stable states (purple/yellow nodes) and tipping points (green node), (ii) a disconnectivity

graph as the summary of hierarchical relationships between the stable states and tipping points, (iii) attractive basin(s) of stable states

(purple/yellow nodes indicate attractive basins of the two stable states). (iv) We are also able to emulate assembly dynamics constrained on

the energy landscape. Figure adapted from Suzuki et al. (2020) [Color figure can be viewed at wileyonlinelibrary.com]
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Given how spatial scale interacts with the drivers of
community assembly (e.g., Chase, 2014), the results of
energy landscape analysis should be interpreted in light
of the spatial scale of both the sampling unit and total
sampling extent (Viana & Chase, 2019). If sampling units
are at an appropriate spatial or temporal scale for a driv-
ing process of interest to operate, single or multiple
attractive basins may be observed (Figure 3). However, if
the sampling units are too small or too large, these basins
may be less distinct, even if the interaction between spe-
cies is strong. Moreover, explicit consideration of spatial
extent in studies of energy landscape analysis can disen-
tangle the drivers of community assembly across scales.
If the spatial extent of observations is large and the effect
of environmental heterogeneity significant, by choosing a
relevant environmental parameter (or appropriately
reducing multiple parameters into a single dimension),
the shift of stable community states can be unfolded with
respect to the parameter. One could then explore whether
the model's explanation is consistent with our process-
based understanding of community assembly dynamics
(Figure 3). The results of energy landscape analysis across
spatial scales should reveal that under a small spatial
extent, compositional variability (Table 1) stems from

both local biotic interactions and stochastic processes,
but at a larger spatial extent, compositional variability
depends more on environmental conditions including
habitat connectivity. Consequently, energy landscape
analysis potentially offers a practical way to understand
the drivers of community dynamics across spatial scales.
In principle, this approach could also be applied across
temporal scales to reveal temporal contingencies in com-
munity assembly drivers (Mouquet et al., 2003). Such an
approach would complement existing methods proposed
to assess the relative importance of the ecological pro-
cesses that drive community assembly (D'Amen
et al., 2018; Legendre et al., 2009; Mertes & Jetz, 2018;
Meynard et al., 2013).

While the outcome of methods described in this
section can reflect environmental variation, the focus of
such methods is on understanding how community state
changes dynamically. In the next section, we shift our
focus to methods for revealing the processes through
which environmental variability contributes to community
assembly through single species population dynamics.

4 | POPULATION DYNAMICS:
ENVIRONMENTAL VARIABILITY

Community assembly is driven by a collective of multiple
species' population establishments and dynamics, but the
interaction between spatiotemporal scale and dynamics is
just as relevant when considering each species in isolation.
Just as community assembly can be driven by intrinsic
characteristics of the community, populations are governed
by their intrinsic demographic rates (e.g., births, deaths,
dispersal). We have so far overlooked a key driver of
dynamics and stability across multiple levels of biological
organization: environmental variability (Table 1). At the
global scale, this extrinsic variation has the ability to shape
species' distributions since virtually all mobile species can
move towards suitable exogenous conditions, thereby
expanding their range. Range expansions into new envi-
ronments are often a consequence of environmental
change. Global environmental change is rearranging spe-
cies distributions through population expansions, contrac-
tions and poleward shifts (Chen et al., 2011; Parmesan
et al., 1999). Such population changes can occur either as a
direct result of individual-level actions (e.g., migrating to
more suitable environmental conditions) or as a conse-
quence of human-mediated dispersal which can introduce
species to otherwise unreachable habitats.

Predicting the stability of ecosystems undergoing range
expansions and continuous population rearrangements is
a challenge, not only because of the difficulty in inferring
causation, but also because the study of range expansions

FIGURE 3 Relationship between the spatial extent of

observation and the stable state diagram resulting from energy

landscape analysis. (Top) When a larger spatial extent is

considered, a larger potential range of abiotic conditions is captured

(colors). In turn, a larger range of community states can be

observed on the energy landscape. (Bottom) This corresponds to a

stable state diagram representing a more comprehensive range of

attractive basins under different abiotic conditions. The black lines

in the figure represent the position of the stable state in the energy

landscape for the abiotic conditions represented by the horizontal

axis [Color figure can be viewed at wileyonlinelibrary.com]
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must generally consider large spatiotemporal scales. Until
recently, large-scale spatial and temporal data on popula-
tion diversity and abundance were scarce and often inac-
curate, but the continued improvement of global
collaborative networks (e.g., BioTIME, Dornelas
et al., 2018) facilitates a deeper understanding of the cau-
ses and consequences of population rearrangements.

When considering the factors underpinning popula-
tion dynamics, scale-dependencies are pervasive. For
example, spatiotemporal scale affects the demographic
processes influencing dynamics at the population level.
Likewise, extrinsic factors such as environmental suit-
ability vary as a function of spatiotemporal scale to fur-
ther moderate population dynamics. The larger the
sampling scale considered, the greater the likelihood of
detecting environmental variation in space or time
(Wiens, 1989). Consequently, environmental change is
characterized not only by its mean and variance, but by
the dynamics of its variance in space and time (its
stochasticity, Shoemaker et al., 2019; Table 1), its rate of
change (Pinek et al., 2020) and its velocity, which com-
prises both the spatial and temporal dimensions of envi-
ronmental variation (Burrows et al., 2014). These
heterogeneities affect both deterministic and stochastic
processes influencing ecological populations (Shoemaker
et al., 2019; Waldock et al., 2018) and thus, greater effort
should be made to incorporate such heterogeneities into
ecological theory and experiments.

Another factor contributing to range expansions is the
diversity of the expanding population. Although expansion
mechanisms of phenotypically diverse populations are well
explored (Barto�n et al., 2012; Fu et al., 2018; Keller &
Segel, 1971; Neubert & Caswell, 2000), there has been little
emphasis on the potential impact of spatial or temporal
environmental heterogeneities on such mechanisms.
Recently, Villa Martín et al. (2019) considered how environ-
mental heterogeneity can modify the success of population
range expansions. In particular, they considered a popula-
tion front for which expansion velocity depends on environ-
mental conditions that vary in time or space at different
frequencies. Under infrequent environmental variation,
phenotypically diverse populations expanded faster than
homogeneous populations for a wide range of environmen-
tal conditions. However, under frequent environmental var-
iation, homogeneous populations expanded faster than did
populations with higher phenotypic diversity. Moreover,
they found that diversity had a stronger effect on expansion
velocity under spatial rather than temporal environmental
heterogeneity (Villa Martín et al., 2019).

Environmental heterogeneity, and its structure in
space and time, emerges as a critical determinant of pop-
ulation expansions. Temporal and spatial environmental
variability in combination cause nontrivial effects on the

success of population expansions. For example, slow
expansions through unfavorable environments will have
either stronger or weaker effects on expansion velocity
depending on the temporal fluctuations of the environ-
ment therein (Villa Martín et al., 2019). To better relate
environmental conditions to population dynamics and
subsequently to ecological stability, it is necessary to
recast the multiple dimensions of environmental change
as a single disturbance framework (Jacquet &
Altermatt, 2020; Newman, 2019; Pinek et al., 2020; Shoe-
maker et al., 2019; Zelnik et al., 2018). In considering
more realistic environmental conditions and their inter-
action with population dynamics in this way, predictions
are likely to be of greater utility (Shoemaker et al., 2019).
For example, the temporal and spatial distribution of spe-
cies at a given location can be revealed through integra-
tion of environmental fluctuations based on observed or
projected climate data. While this is straightforward in
principle, the majority of experiments manipulating cli-
mate variables misrepresent local climate projections
(Korell et al., 2019). Despite this mismatch, the potential
of locally informed environmental variables in experi-
ments and simulations is clear (e.g., Fry et al., 2013).

Finer resolution population dynamics can also enable
predictions of greater potential accuracy. Specifically, indi-
vidual based models—in which each individual is charac-
terized by a different phenotype—can predict whether
particular species or phenotypes will succeed in esta-
blishing in new habitats. In this case, both the initial loca-
tion of individuals in space, and initial environmental
conditions will dramatically affect establishment success.
Individuals or populations at their range margins have a
greater probability of invading new habitats (Hallatschek
& Nelson, 2008; Waters et al., 2013). However, the success-
ful establishment of individuals at the invasion front
hinges on both initial environmental conditions and the
temporal dynamics of the environment, particularly when
fitness depends on environmental conditions (leaving
aside phenotypic evolution, see Kubisch et al., 2014,
Norberg et al., 2012). Both spatial and temporal scale can
be clearly integrated into studies of range dynamics to bet-
ter understand the consequences of spatiotemporal scale
for range shifts and contractions in light of environmental
suitability (e.g., Keith et al., 2008; Sarmento Cabral et al.,
2013), and for expansion velocity in the expanding popula-
tion. The likelihood of successful population expansion
differs across spatiotemporal scales for a given population
(Villa Martín et al., 2019). At small scales, for which envi-
ronmental change is less observable, homogeneous
populations are predicted to be more successful. However,
when considering a larger spatial or temporal extent, phe-
notypic heterogeneity will improve the performance of an
invading population, since diverse phenotypes have a
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greater range of responses to environmental conditions
and so buffer populations against environmental change
(Elmqvist et al., 2003). Outstanding questions then are to
what degree enlarging the spatial (or temporal) extent of
the study increases the advantageousness of population
heterogeneity, and whether there is a clear threshold in
scale beyond which phenotypic heterogeneity clearly out-
performs homogeneous populations as a strategy for inva-
sion success. Clearly, disentangling the causes and
consequences of species invasions and population expan-
sions or contractions involves considering spatiotemporal
scale as well as the intrinsic and extrinsic mechanisms
governing population dynamics.

5 | INTERACTING SCALE-
DEPENDENCIES ACROSS LEVELS
OF ORGANIZATION

Thus far, we have discussed the sources of variation in eco-
logical dynamics (both intrinsic and extrinsic) in isolation,
and some pathways through which spatial or temporal

scale can influence understanding of these dynamics
(Figure 4). Yet these sources of variation do not act in isola-
tion to generate the dynamics inherent to natural systems.
In reality, intrinsic and extrinsic drivers of variation act in
concert across levels of ecological organization (Leibold
et al., 2004). For example, studies of deterministic commu-
nity assembly recognize that the non-neutral processes
structuring ecological communities include both biotic and
abiotic factors (Gravel et al., 2011; Vellend, 2016). The spa-
tial scale of consideration then feeds back to influence the
primary mechanism structuring communities. For exam-
ple, environmental constraints on functional and phyloge-
netic diversity of island birds may be relaxed on larger
islands (Ross et al., 2019), and biotic homogenization may
be more detectable at larger spatial scales when consider-
ing biodiversity change (Chase et al., 2019). Sources of vari-
ation at one organizational level also can propagate across
other levels. For example, the intrinsic demographic pro-
cesses acting on a metacommunity hub or connector spe-
cies can modulate metacommunity structure (Toju
et al., 2017). However, the paucity of studies investigating
ecological dynamics or stability at more than a single scale

FIGURE 4 Overview of our discussion. Figure illustrating the methods and sources of variation we discussed with respect to ecological

stability and dynamics. Different colored circles represent different species. At small spatial scales, interaction variability is an intrinsic

source of variation affecting community network structure. Considering larger spatial scales, compositional variability is an intrinsic source

of variation influencing community assembly. At macroecological scales, species' ranges are influenced by demographic stochasticity

(intrinsic variation) and its interaction with environmental variability (extrinsic variation) in space and/or time. We discussed how temporal

scale influences community network structure inferred through empirical dynamic modeling, how spatial scale influences community

assembly dynamics measured via energy landscape analysis and how both time and space influence species' ranges through environmental

heterogeneity. In the final section, we discuss how these sources of variation may interact with each other and with spatiotemporal scale to

add further complexity to our understanding of ecological stability and dynamics [Color figure can be viewed at wileyonlinelibrary.com]
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or organizational level makes it difficult to resolve the
interdependencies of ecological dynamics on sources of
variation across levels of organization (Kéfi et al., 2019).

Better integration of extrinsic variables into models of
intrinsic sources of variation may allow us to tease apart
the effects of environmental from intrinsic factors
governing population or community dynamics (Bocedi
et al., 2014; Harfoot et al., 2014; Pagel & Schurr, 2012). The
approaches described above are each amenable to the inclu-
sion of multiple sources of variation. For example, when
reconstructing the state space of interspecific interactions
using empirical dynamic modeling, the dynamics of these
interactions are affected not only by intrinsic changes to the
abundance of each species, but also by the environmental
conditions in which these interactions are embedded.
Munch et al. (2019) discuss how the state space reconstruc-
tion may be influenced by both direct and indirect effects
on the species, and provide some guidance on interpreting
results in light of this. Considering community assembly
pathways, energy landscape analysis can explicitly model
environmental conditions when defining the site-by-species
community matrix, assigning a value representing local
environmental conditions at each site (Figure 2). The analy-
sis then produces a separate matrix of explicit abiotic factors
and models the relationship between the environment and
a given community state (Figure 3). Perhaps the approach
with the clearest potential for considering multiple sources
of variation is to explicitly define model parameters includ-
ing demographic rates and environmental suitability in
population models as in Villa Martín et al. (2019). Such
models can elegantly consider the multiple sources of
intrinsic and extrinsic variation responsible for shaping
population dynamics at species' range margins (Bocedi
et al., 2014; Pagel & Schurr, 2012; Singer et al., 2016).

Disturbances are inherently scale dependent (Pinek
et al., 2020; Ryo et al., 2019; Zelnik et al., 2018). Yet,
responses to disturbance are also a function of the spatial or
temporal scale of consideration (Chase et al., 2019; Jacquet &
Altermatt, 2020; Moreno-Mateos et al., 2020; Waldock
et al., 2018). Accordingly, scale underpins our understand-
ing of the responses of ecological communities to distur-
bance, including apprehension of dynamics and stability
across levels of ecological organization. Increasing recogni-
tion of the scale-dependent nature of most, if not all, studies
of ecological dynamics and stability will be critical
(Gonzalez et al., 2020), particularly since there is presently
little we can do to negate the impact of scale in empirical
studies. When considering scaling in ecology, ecosystems
are mostly assumed to be in equilibrium, but this may be
the exception rather than the rule (Newman, 2019). Non-
equilibrium dynamics add another layer of complexity to
the consideration of ecological systems, as ongoing alter-
ations to disturbance regimes are systematically driving

biodiversity change across the globe (McGill et al., 2015;
Newman, 2019; Wolkovich et al., 2014). Given that our
understanding of ecological stability is built on assumptions
of scale, it is then imperative that we better recognize and
begin to account for scale-dependence in the observation of
ecological dynamics and stability under global environmen-
tal change. Doing so will facilitate informed decisions about
conservation policy and the successful management of
nature's contributions to people.
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