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Abstract. Video data are widely collected in ecological studies, but manual annotation is a challenging
and time-consuming task, and has become a bottleneck for scientific research. Classification models based
on convolutional neural networks (CNNs) have proved successful in annotating images, but few applica-
tions have extended these to video classification. We demonstrate an approach that combines a standard
CNN summarizing each video frame with a recurrent neural network (RNN) that models the temporal
component of video. The approach is illustrated using two datasets: one collected by static video cameras
detecting seal activity inside coastal salmon nets and another collected by animal-borne cameras deployed
on African penguins, used to classify behavior. The combined RNN-CNN led to a relative improvement in
test set classification accuracy over an image-only model of 25% for penguins (80% to 85%), and substan-
tially improved classification precision or recall for four of six behavior classes (12–17%). Image-only and
video models classified seal activity with very similar accuracy (88 and 89%), and no seal visits were
missed entirely by either model. Temporal patterns related to movement provide valuable information
about animal behavior, and classifiers benefit from including these explicitly. We recommend the inclusion
of temporal information whenever manual inspection suggests that movement is predictive of class mem-
bership.
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INTRODUCTION

Technological advances in quality, size, battery
life, and storage capacity have enabled video
cameras to record more data at better quality on
a broader variety of animals, becoming small
enough to deploy on numerous animal species
(Takahashi et al. 2004, Rutz and Troscianko 2013)

and on drones (Anderson and Gaston 2013, Cru-
zan et al. 2016), as well as in more conventional
fixed locations. Footage captured using video
cameras needs to be annotated for use in scien-
tific research, a currently labor-intensive process
often involving highly trained scientists manu-
ally annotating the content of videos frame by
frame. Even with dedicated annotation software,
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this presents a major bottleneck for scientific
research based on these data, necessitating the
development of computer-assisted approaches
(Weinstein 2015, Schneider et al. 2019).

Video classification is a challenging modeling
problem, with the challenges of image classifica-
tion amplified because the same sources of natu-
ral visual variation occur not only between
videos but also within videos as objects move
around and change poses, scales, illuminations,
and backgrounds during the course of a single
video. The video camera itself can move around
during recording, introducing additional varia-
tion, particularly in environments where cameras
move due to wind or water movement, or
because cameras are attached to animals moving
around their environment. The temporal compo-
nent of video also presents significant modeling
challenges not only because it dramatically
increases the size of video data but also because
the relevant visual features required to classify a
video can span several frames with no single
frame containing enough information on its own.
The pixels of an image representing objects are
not only correlated spatially to form visual object
features in a single frame but also correlated
through time.

Like image classification, traditional com-
puter-based approaches to video classification
have primarily used feature engineering algo-
rithms that create input variables based on pre-
determined traits. The main limitations of these
approaches arise from their need to know how to
represent input features in advance—this
requires substantial knowledge of the study spe-
cies, and hinders generalization across species
and environmental contexts (Schneider et al.
2019).

Deep neural networks (DNNs, LeCun et al.
2015, Goodfellow et al. 2016) are highly flexible
machine learning models that use stacked non-
linear combinations of inputs, trained using gra-
dient descent with backpropagation, that learn
feature representations relevant to provided
labeled data, thus no longer requiring feature
engineering. DNNs have been successfully used
to tackle many challenging perceptual problems
involving image, video, audio, or text, where
hand-designing input feature representations are
nontrivial (Liu et al. 2016).

A convolutional neural network (CNN, Good-
fellow et al. 2016, ch. 9) is a specialized kind of
DNN architecture that takes advantage of the
characteristics of image data to learn hierarchies
of local features that are invariant to common
translation operations like shifting, stretching,
and rotation. This reduces the number of
required parameters while leaving enough repre-
sentational power to achieve human-level perfor-
mance on image classification and other tasks
involving data that have a regular grid-like
topology of locally correlated hierarchical fea-
tures (Schneider et al. 2019). CNNs typically
involve a stacked sequence of convolutional lay-
ers—traversing the network, and the output of
each of these layers can be thought of as an
increasingly complex summary or “encoding” of
the input image as a one-dimensional numeric
vector. Beyond their use in classifying entire
images, they form the basis for related tasks such
as detecting objects of interest within images
(Ren et al. 2016, Tian et al. 2019) and object track-
ing, which extends single-frame object detection
to track an object of interest across multiple
frames (Danelljan et al. 2017, Li et al. 2018, Yang
et al. 2019).
CNNs have found numerous, and increasing,

applications in ecological studies (Weinstein
2018a, Christin et al. 2019), where image classifi-
cation has been used for species identification
(Zhang et al. 2016, Gomez Villa et al. 2017, Wein-
stein 2018b), count surveys (Borowicz et al. 2018,
Torney et al. 2019, Gray et al. 2019b), individual
animal re-identification (Schneider et al. 2019),
and morphometric measurement (Gray et al.
2019a). Applications to video classification, how-
ever, remain rare. Trinh et al. (2016) combined
neural network architectures to detect birds fly-
ing into wind turbines from sequences of input
frames, and Beery et al. (2020) combined an
object detection model with two attention-based
modules that capture short- and long-term
dependencies between frames, focussing on sta-
tic-camera applications such as camera traps.
Otherwise, most studies have either classified
frames in isolation (Siddiqui et al. 2018) or used
previous frames primarily to improve the dis-
crimination of the focal animal from background
scenery, using motion-detection algorithms
(Zhang et al. 2016, Weinstein 2018b).
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There are three approaches to using DNNs
for video classification beyond treating the
problem as an image classification task by
modeling frames independently. The simplest
approach concatenates the vector encodings
obtained from each of a sequence of input
images to predict the class of the last image in
the sequence; images in the input sequence are
considered to be independent. The second
approach uses the sequence of vector encod-
ings produced from the sequence of input
images as input to a second model—a recur-
rent neural network (RNN), a specialized archi-
tecture often used to process sequential data
involving a temporal component (Donahue
et al. 2014, Trinh et al. 2016). Finally, CNNs
can be directly modified to incorporate motion
information in videos by extending their con-
volution from two spatial dimensions (width
and height) to three spatio-temporal dimen-
sions (width, height, and time), parameters of
which are jointly estimated (Tran et al. 2015).

In this paper, we have used these approaches
to perform frame-by-frame annotation of two
video datasets. The first was taken from a fixed
underwater camera placed inside nets at a sal-
mon trap net fishery in Scotland, for the purpose
of detecting seal visits to salmon nets and ulti-
mately reducing conflict between fisheries and
seals. Here, the task was to replicate manual
annotations indicating whether a seal was pre-
sent in a frame, based on that and preceding
frames. The second dataset was collected by ani-
mal-borne cameras deployed on African pen-
guins in South Africa. Here, the purpose was to
replicate manual annotations allocating each
frame to one of six pre-defined classes covering
diving and surface behavior exhibited by the
birds. The first of these applications can also be
addressed by object tracking methods, but the
second cannot, and to the best of our knowledge,
this is the first time DNNs have been applied to
annotate animal-borne video. For each dataset,
our primary goal was to develop classifiers that
could assist manual annotation by identifying
temporal regions of interest in the video, and to
evaluate whether incorporating the temporal
component of video brings any improvement in
classification accuracy, relative to an image-only
benchmark.

MATERIALS AND METHODS

Data
Seals.—An underwater video system was used

to study seal behavior at a salmon trap net fish-
ery in northeast Scotland in 2015 as part of a pro-
gram of research aimed at reducing conflict
between fisheries and seals. Cameras were
placed inside static coastal nets to monitor seals
as they moved in and out of nets to depredate
salmon. There was no artificial lighting and so
the cameras recorded during hours of daylight.
The labeled component of the dataset consisted

of six video recordings of approximately 140 min
each, converted into images at 4fps. A total of 152
instances in which a seal entered the net were
observed by manual inspection, and entry and
exit times for each of these recorded
(Appendix S1: Fig. S1). Visits lasted between 2s
and 59s, with an average duration of 13.5s. Seals
were not visible in frame for the entire duration of
a visit, so all images between the start and end
times of a recorded visit were manually inspected
and labeled as containing a seal or not. After pro-
cessing, there were 4419 images containing a seal.
While the vast majority of footage does not con-
tain a seal in frame, we restricted the number of
absence images to 7809, roughly twice the number
of seal images, to avoid a large class imbalance
(Schneider et al. 2020). Absence images were col-
lected by randomly sampling segments of video
from the remainder of the video. Images from
four videos were used to train models (3826 seal,
6949 no seal), while images from each of the
remaining two videos were used as validation
(407 seal, 973 no seal) and test (192 seal, 111 no
seal) datasets, respectively.
Penguins.—Animal-borne video recorders (AVR)

were deployed on breeding African penguins
attending small chicks at Stony Point, South
Africa, between 2015 and 2016 (McInnes et al.
2017). The AVRs were tube-shaped, and together
with the casing weighed 100 g with dimensions
104 9 26 9 28 mm. Devices were attached to the
lower backs of the penguins with strips of water-
proof tape during the evening preceding an
anticipated foraging trip. AVRs were pro-
grammed to divide the battery life into two
recording bins of approximately 30 min each, at
sunset and midday to reflect potential temporal

 v www.esajournals.org 3 March 2021 v Volume 12(3) v Article e03384

EMERGING TECHNOLOGIES CONWAY ETAL.



differences in diving behavior. Recorders were
retrieved when the bird returned to the colony,
either on the same day that the bird was at sea
and after the bird had time to provision its
chicks, between 16:00 and 20:00, or the following
morning if the bird could not be located the pre-
vious day.

The labeled component of the dataset con-
sisted of 12 video recordings of approximately 30
min each, again converted into images at 4fps.
These were manually classified into five diving
behaviors (subsurface diving [less than 1 m];
shallow diving [1–5 m]; and the descent, bottom,
and ascent phases of deep dives) and one surface
behavior (searching, see Appendix S1: Fig. S2). A
total of 52,722 images were obtained, with
substantial imbalance between behaviors
(Appendix S1: Table S1). Images from nine
videos were used to train models (41,958 images,
see Appendix S1: Table S1 for distribution over
behaviors), while images from the remaining
videos were used as validation (two videos, 7168
images) and test (one video, 3596 images) data-
sets, respectively.

Neural networks
We consider four broad classes of models, of

increasing complexity. The first ignores the tem-
poral aspect of video data and attempts to clas-
sify each image independently using a standard
CNN-based approach. Pre-trained CNNs
(VGG16, ResNet50, Inception v3, and Inception-
ResNet v2) were truncated at the final convolu-
tional layer—the output of this intermediate
layer summarizes or “encodes” an image in a
one-dimensional vector. Up to three dense layers
were added to the truncated network, and a new
output layer added for the (seal or penguin) clas-
sification task. The second model used the same
approach, but classified an image by first con-
catenating the vector encoding obtained from the
truncated layer for that image with similar vec-
tors obtained for the previous F�1 images. This
concatenated vector, which summarizes a set of
F consecutive images rather than (as in the first
model) just a single image, was then passed these
to subsequent dense layers as before. The third
model was the spatial-then-temporal model
described in the introduction (Donahue et al.
2014). To classify a single image, it took the vec-
tor encodings from the last F images (including

the current image), as in the previous model, but
instead of concatenating the encodings it passed
these as input to a recurrent neural network,
which combined these temporally (Fig. 1). We
used two pre-trained CNNs to encode frames
(ResnNet50, VGG16) and three different recur-
rent units (long short-term memory [LSTM], Sim-
pleRNN, and gated recurrent units [GRU]). One
key step was to pre-compute the frame vector
encodings from the pre-trained CNN models so
that these did not have to be re-computed in each
RNN model. A single training epoch for the
mixed long-term recurrent convolutional net-
work (LRCN, Donahue et al. 2014) architecture
with a VGG encoder took approximately 15 min
without pre-computation but only 3 seconds
with pre-computed features (because most of the
computation time was spent in the CNN part of
LRCN). The final model jointly modeled spatial
and temporal aspects using a 3-dimensional
CNN that convolves simultaneously over both
spatial and temporal features (Tran et al. 2015).
Because convolutions occur simultaneously over
space and time, the 3-D CNN cannot leverage
pre-computation, and generators had to be used
to stream the data from disk to avoid out-of-
memory problems. Despite various attempts at
optimization, a single model took approximately
3 d to converge on a single GPU, and returned
substantially worse accuracy than even an
image-only model. We therefore do not report on
these results further.
We chose model hyperparameters using a grid

search over the number of nodes in each of the
three dense layers in Models 1 and 2 (32, 64, 96,
. . ., 512), the dropout rate (0, 0.1, 0.2, . . ., 0.5),
and the length of the sequence of images used in
Models 2 and 3 (1, 3, 5, 7, 9, . . ., 31). Following
Krizhevsky et al. (2012), each model’s weights for
dense and recurrent layers were initialized using
the Xavier initialization and each model was
trained in three rounds of 20 epochs with an
early stopping patience of five epochs using the
Adam optimizer. The learning rate was initially
set to 0.001 and reduced by a factor of 10
between training rounds, and max pooling was
used. Models were evaluated based on test set
accuracy (proportion of all predictions that were
correct), precision (proportion of positive predic-
tions that were correct), and recall (proportion of
positive examples correctly predicted). For the
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seals dataset, seal presence is a natural choice for
the positive class. Optimal thresholds for con-
verting predicted probabilities into binary classi-
fications were those that maximized the F1 score,
a function of precision and recall, in the

validation dataset (0.47, 0.44, 0.46, 0.79 for the
models in Table 1, respectively). For the multi-
class penguins dataset, images were allocated
into the class with the highest predicted proba-
bility, precision and recall were obtained for each

Fig. 1. A “spatial-then-temporal” neural network for frame-by-frame video classification. To predict the class
of a frame (Frame 5), a pre-trained, truncated CNN (e.g., ResNet50) is used to summarize or “encode” each of a
sequence of images (here, the last five frames) as one-dimensional numeric vectors. The sequence of vector
encodings is then used as input in a recurrent neural network (RNN), here shown using two SimpleRNN layers.
The RNN outputs predicted probabilities that the behavior in the final frame is of type i = 1, . . ., 6.
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class, and overall precision and recall were calcu-
lated as an average of these, weighted by sample
size. Models were implemented using the Ten-
sorFlow library with Keras. Training and testing
were done on a three separate Linux virtual
machine instances running on Google Cloud
Platform, each with eight Nvidia Tesla K80
graphics processing units (GPUs), 160 GB of
RAM and 32 CPU cores. Code and analysis
scripts are available online at https://github.com/
alxcnwy/Deep-Neural-Networks-for-Video-Cla
ssification. A subset of seal and penguin video
recordings, manual annotations, and results has
been stored on Zenodo: https://doi.org/10.5281/
zenodo.3842040.

RESULTS

A video component did not bring meaningful
benefits in detecting seals, with both image-only
and video models accurately classifying 88% and
89% of images in the test set, although both pre-
cision and recall were marginally higher in video
models (Table 1). Most incorrect classifications
occurred at the beginning and end of visits, as
the seal was entering or exiting the field of view
and where only a small part of the seal may be in

view (Fig. 2). All 152 seal visits across training,
validation, and test sets were detected by either
model.
Including temporal information in video data,

in the form of spatial-then-temporal models,
improved the accuracy of penguin behavior clas-
sifications from 80.5% (image-only benchmark)
to 85.4%, a 25% relative reduction in classifica-
tion error (Table 1), and improved both precision
and recall. Models concatenating frame encod-
ings occupied an intermediate position between
full video and image-only models. Classification
accuracy improved for most penguin behavior
types (Appendix S1: Table S2), but particularly
for descent and bottom dive phases (precision
increasing by 17% and 14%), and for shallow and
subsurface dives (recall increasing by 12% and
13%). Image-only models tended to misclassify
bottom dives as descent dives, and mistook parts
of the ascending and descending dive phases for
shallow dives. To some extent, this reflects fuzzy
boundaries between behavioral classes, but tem-
poral information resolved some of these mis-
classifications (Fig. 3). Search activity, the sole
surface behavior and also the most prevalent
class, was almost perfectly discriminated.
Preferred LRCN models for seal detection

achieved a degree of parsimony by using a rela-
tively short sequence of frames, and in exchange
used relatively complex pre-trained CNN
(ResNet50) and RNN (LSTM) architectures
(Appendix S1: Table S3). In contrast, equivalent
preferred models for penguin behavior classifica-
tion used longer sequences of frames, but simpler
CNN (VGG16) and, sometimes, RNN (Sim-
pleRNN) architectures (Appendix S1: Table S4).
Both applications selected a relatively large num-
ber of nodes in the final hidden layers.

DISCUSSION

Although images are more commonly used in
ecological research and are easier to work with
(Swinnen et al. 2014), movement information
contained in video provides richer insight into
animal behavior and taking this into account
can improve the identification of animals and
their behaviors (Trinh et al. 2016). We found that
for a relatively simple task—detecting seal activ-
ity in an image—an image-only CNN was ade-
quate, and incorporating temporal information

Table 1. Classification accuracy for three best video
models and best image model. Including temporal
information in the form of an LRCN led to very mar-
ginal improvement in the easier seal detection task,
but gave a 25% relative improvement in the ability
to discriminate penguin behaviors, largely due to
improved performance at the start and end of
behaviors (Fig. 3). Further details on the architec-
tures and run times of these models are given in
Appendix S1: Tables S3 and S4.

Architecture LRCN LRCN LRCN IMAGE

Seal detection model
Accuracy (%, Test) 89.4 89.2 89.1 88.1
Precision (%, Test) 100 98.8 99.4 99.4
Recall (%, Test) 83.9 84.4 83.9 81.8
Accuracy (%, Validation) 96.5 96.0 95.9 94.5
Accuracy (%, Train) 95.5 95.4 95.5 95.2

Penguin behavior classifier
Accuracy (%, Test) 85.4 84.0 84.2 80.5
Precision (%, Test) 85.4 84.0 84.2 80.5
Recall (%, Test) 87.6 87.6 85.5 82.8
Accuracy (%, Validation) 82.6 82.4 81.0 81.5
Accuracy (%, Train) 90.0 88.9 94.4 88.7
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did not meaningfully improve out-of-sample
performance, even for those difficult cases in
which a seal enters or exits the field of view. For
a more difficult task of inferring penguin behav-
ior from animal-borne cameras, using a video
model led to substantial reduction in classifica-
tion error over an image-only model and was
particularly useful in disentangling certain kinds
of diving behavior. In both applications, accu-
racy is not sufficient for full automation of the
tasks, but can facilitate manual processes by
partially labeling the data—identifying those
classes that can be accurately discriminated and
pointing the researcher to segments requiring
closer inspection. Our datasets were relatively
small, consisting of 6–12 h of labeled footage,
and the ability of the models to generalize to
new environments is unclear, but even in those
classes where absolute performance was moder-
ate, video models outperformed image-only
models. Improvements are likely to be larger
with larger datasets.

Practically, researchers wanting to construct a
model for the frame-by-frame annotation of

video have to follow a number of steps: manu-
ally labeling a subset of the data; converting the
video into images; allocating these images
between training, validation, and test sets; choos-
ing appropriate neural network architectures
and estimating the parameters of those models;
selecting a preferred model and using it to pro-
cess the unlabeled portion of the data; and link-
ing frame-by-frame predictions to the broader
research objectives for which the classifier was
developed.
Video data are manually annotated by record-

ing the start and end times of events whose
boundaries may be difficult to distinguish pre-
cisely. Poorly separated classes can reduce classi-
fication accuracy, and preprocessing steps for
image classification sometimes remove ambigu-
ous images to improve class separability. Video
models, however, use a sequence of frames t,
t�1, . . ., t�F to predict the class of frame t, and
removing ambiguous images makes the time dif-
ference between adjacent images variable. While
it is possible that removing ambiguous examples
may improve accuracy more than maintaining

Fig. 2. Predicted probabilities of seal activity in salmon nets, with misclassifications plotted as crosses.
Observed and predicted classes are plotted above the probabilities, using the same notation. Apart from one false
negative (segment 2, frames 22–108), all incorrect classifications are at the beginning and end of visits, where only
a small part of the seal may be in view. All visits are clearly identified.
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constant time difference between images, this is
likely to be case-specific, and not generally rec-
ommended. Rather, the presence of ambiguous
images places an effective upper limit on the
accuracy that can be achieved, which may or
may not impact on broader research objectives.
For seal visits, for example, the detection of a seal
presence is more important than identifying the
exact time of entry. The first and last few frames
of a visit often contain only a tiny sliver of seal
or, because the times are approximate, no seal at
all. These frames reduce classification accuracy
but have very little bearing on the practical use-
fulness of the classifier.

Video data are converted to images at a user-
specified frame rate, with the recording equip-
ment setting an upper bound. A higher frame
rate increases the number of images available to
train models, which is always beneficial as long
as there are meaningful differences between adja-
cent images. It is important to randomly allocate
contiguous sequences of frames, that is, video
sequences, to training, validation, and test

datasets, rather than randomly allocating the
frames themselves. Doing the latter breaks apart
sequences, losing potentially valuable informa-
tion, and also means that very similar images
occur in both training and test sets. We also rec-
ommend assessing whether the video in the test
dataset has the same environmental conditions
as video used to train the model (e.g., if a ran-
dom segment of each file is used to test). If so,
the ability of the model to generalize to new
environments may be overestimated.
When building an LRCN, key choices are what

frame rate and sequence length to use. These fac-
tors are study-specific, and the chosen frame rate
need not be the same as the frame rate used to
convert video to frames (Yue-Hei Ng et al. 2015).
Higher frame rates allow for fine-scale changes
in movement to be captured, but the same num-
ber of frames covers a shorter time interval.
Increasing sequence length requires more param-
eters, increasing the chances of overfitting and
requiring more data. Which of the two—looking
back further in time or capturing fine-scale

Fig. 3. Predicted probabilities for penguin behavior classes, with misclassifications plotted as crosses.
Observed and predicted classes are plotted above the probabilities, using the same notation. Image-only models
tend to misclassify bottom dives as descent dives (frames 350–390), and ascending and descending dive phases
as shallow dives (frames 90–110 and 260–280). Video models resolve some of these errors. They also smooth tran-
sitions between behaviors (frames 260–280), better identify periods where classification uncertainty is high
(frames 570–620, 750–850) and where alternate interpretations are possible (frames 570–620).
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movement—benefits classification accuracy more
will be study-specific. These factors can be inves-
tigated by searching over possible frame rate/
length pairs, but this quickly becomes computa-
tionally expensive. Our applications have rela-
tively little labeled data and so we fixed the
frame rate to one that would allow broad differ-
ences in behavior, observed over a few seconds,
with 5 < F < 10. Pre-trained CNNs offer a parsi-
monious way of summarizing images in a form
that can be passed on the second-stage RNN
(Donahue et al. 2014). Our best seal model com-
bined a relatively complex CNN and RNN with
a short frame sequence, whereas the best pen-
guin model had a simple CNN and RNN, but
used a longer sequence of frames. Since model
complexity is primarily achieved through more
parameters, this balance reflects the familiar goal
of reducing validation error through model par-
simony. Frame rate and sequence length can be
chosen via standard hyperparameter selection
practices, for example, grid search, or by first
selecting a frame rate that is relatively low but
still able to capture the desired transitions in
behavior or class membership, and then to select
the sequence length that optimizes performance
on a validation dataset.

Our models allow new video footage to be clas-
sified on a frame-by-frame basis, with some
expected degree of accuracy. Linking this back
into research objectives is the final step in the pro-
cess. The seal classifier is intended to be used as a
detection system. Even with a frame-specific false-
negative rate of 10%, no visits were missed
entirely. An alarm system, triggered by N pre-
dicted presences in a sequence of M frames, is
easily established, with N and M determined by
balancing costs of false positives and negatives.
Graphical displays such as Fig. 3 convey this
information in an easily digested way. Higher
error rates prevent the use of the penguin behav-
ior classifier for the purpose it was intended for—
replicating a human observer and calculating
energy budgets—because certain classes of behav-
ior are poorly identified. However, surface and
diving behaviors were discriminated with almost
no error, and deep and shallow/subsurface dives
were also well differentiated. These distinctions
hold practical value and also limit the amount of
manual labeling that must be done.

Deep learning holds enormous promise for
automating the labeling of video data, a process
that looks increasingly unsustainable with man-
ual methods. Case studies such as the ones
reported here play an important role in reporting
successes and failures, and developing and dis-
seminating best practices. Classification of eco-
logical data is difficult. Limited time and other
resources, remote locations, and rare or difficult-
to-detect target species, serve to decrease sample
sizes at the same time that variable background
environments increase the necessary sample
sizes for good classification. In these contexts,
full automation is perhaps, for the time being,
unrealistic. Facilitating the process of manually
annotating video datasets is both valuable and
achievable. Video data have the great advantage
that large datasets, in terms of numbers of
images, are often collected relatively quickly.
This offers exciting opportunities for developing
and testing deep learning approaches. Our study
suggests that many applications may benefit
from incorporating temporal information in
video, where the goal remains to predict the class
to which a particular frame or image belongs. We
expect these models to be widely used and devel-
oped in the near future.
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