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A B S T R A C T   

Fitness apps, such as Strava, are a growing source of data for mapping bicycling ridership, due to 
large samples and high resolution. To overcome bias introduced by data generated from only 
fitness app users, researchers build statistical models that predict total bicycling by integrating 
Strava data with official counts and geographic data. However, studies conducted on single cities 
provide limited insight on best practices for modeling bicycling with Strava as generalizability is 
difficult to assess. Our goal is to develop a generalized approach to modeling bicycling ridership 
using Strava data. In doing so we enable detailed mapping that is more inclusive of all bicyclists 
and will support more equitable decision-making across cities. We used Strava data, official 
counts, and geographic data to model Average Annual Daily Bicycling (AADB) in five cities: 
Boulder, Ottawa, Phoenix, San Francisco, and Victoria. Using a machine learning approach, 
LASSO, we identify variables important for predicting ridership in all cities, and independently in 
each city. Using the LASSO-selected variables as predictors in Poisson regression, we built 
generalized and city-specific models and compared accuracy. Our results indicate generalized 
prediction of bicycling ridership on a road segment in concert with Strava data should include the 
following variables: number of Strava riders, percentage of Strava trips categorized as 
commuting, bicycling safety, and income. Inclusion of city-specific variables increased model 
performance, as the R2 for generalized and city-specific models ranged from 0.08–0.80 and 
0.68–0.92, respectively. However, model accuracy was influenced most by the official count data 
used for model training. For best results, official count data should capture diverse street con-
ditions, including low ridership areas. Counts collected continuously over a long time period, 
rather than at peak periods, may also improve modeling. Modeling bicycling from Strava and 
geographic data enables mapping of bicycling ridership that is more inclusive of all bicyclists and 
better able to support decision-making.   
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1. Introduction 

In North America, growing awareness of health, environmental, and economic benefits of active transportation have led to an 
unprecedented commitment to pro-bicycling policies, including improved safety (Pucher et al., 2010) and investment in bicycling 
infrastructure (Dill, 2009; Garrard et al., 2008). However, lack of high-quality data on bicycling ridership is stalling research and 
evidence based pro-bicycling decision making (Broach et al., 2012). 

While cities invest significantly in vehicle count programs, most cities have only a handful of locations where bicycle counts are 
monitored electronically and/or rely on periodic volunteer manual count programs to capture bicycling ridership levels (Hyde-Wright 
et al., 2014). Lack of bicycling volume data is a substantive barrier to safety studies, which require exposure data (Miranda-Moreno 
et al., 2011; Vanparijs et al., 2015). There is limited knowledge among practitioners on how bicycling volume flows throughout a city. 
More research is needed in order to understand where investments are most needed and identify locations that lack baseline data for 
monitoring change associated with new policy or infrastructure. 

The proliferation of fitness apps to track individual bicycling has led to the creation of large and complex datasets that document 
bicycle ridership patterns. Strava is the most popular of these fitness apps, capturing over 822 million activities globally in 2019 
(Strava.com). Cities worldwide are accessing Strava data to better understand ridership patterns. Although Strava is clearly ‘big data’, 
this source is only a sample of bicycling ridership, biased toward people who use the Strava app. Strava users are disproportionately 
young adults (25–35 years in age) and male (Roy et al., 2019). Women, children, older adults, and low-income bicyclists are under 
sampled by Strava data. 

Researchers are developing models to overcome the sampling bias in Strava data (Chen et al., 2020; Garber et al., 2019; Jestico 
et al., 2016; Roy et al., 2019). By integrating Strava data with multiple data sources it is possible to generate maps of predicted total 
bicycling volume that are more representative of all ages and abilities of bicyclists. However, most studies (Chen et al., 2020; Jestico 
et al., 2016) are done on single cities and build models based on data availability. While individual models can optimize accuracy for a 
specific city, a generalized model offers an approach for bias correcting data from many cities and may provide a good starting point for 
understanding the general relationships between all ridership and Strava sampled ridership. As well, the generalized model can act as a 
baseline from which to compare models optimized for specific cities. Such a comparative approach provides insight into how factors 
impacting bicycling cultures vary by city. Development of a generalized approach to bias correcting crowdsourced bicycling data is 
timely as platforms such as Strava Metro have begun promoting open data policies resulting in data becoming more accessible for 
research and planning purposes. Increased data availability necessitates supporting bias correction more broadly, with generalized 
approaches and a better understanding of how to optimize model performance. Studies on single cities provide limited generalizable 
insights on best practices for modeling bicycling with Strava data. 

Our goal is to develop a generalized approach to modeling bicycling ridership using Strava data and compare the performance of 
generalized and city specific models in order to develop recommendations for how to optimize accuracy of models across cities. For this 
purpose, we use Strava data, official bicycle counts, and geographic data to model Average Annual Daily Bicycling (AADB) in five 
cities: Boulder, Ottawa, Phoenix, San Francisco, and Victoria. These cities reflect a range of climates (i.e., temperate to extreme), sizes, 
topographies (i.e., flat to hilly) and bicycling cultures (i.e., few bicyclists to many bicyclists). Using a machine learning variable se-
lection technique called Least Absolute Shrinkage and Selection Operation (LASSO) (Tibshirani 1996), we identify variables important 
for prediction in all cities and independently in each city. Using the LASSO-selected variables as predictors in Poisson regression we 
build generalized and city-specific models and compare accuracy. Our basic modeling approach is informed by the concept that the 
proportion of total ridership sampled by Strava ridership will vary with different infrastructure characteristics (Sun et al., 2017), and 
that variability can be captured by built environment (Hochmair et al., 2019) and socio-economic characteristics (Conrow et al., 2018). 
Modeling bicycling ridership by integrating Strava data with official counts and geographic data enables detailed mapping that is more 
inclusive of all bicyclists and better able to support decision making and social equity (Ilieva and McPhearson, 2018). 

2. Material and methods 

2.1. Study area 

Our study includes five North American cities of varying sizes, demographic and socio-economic characteristics, as well as 
accessibility to varied bicycle infrastructure (Table 1). Boulder, CO has a high mode share of bicycling (9.9%) and more than 300 miles 
of bicycling facilities (City of Boulder, 2019). Ottawa, ON has the fewest Strava users and hot summer and cold winter conditions. 
Phoenix, AZ has a hot desert climate and is one of the fastest-growing metropolitan areas in the USA, with only 0.48 miles of bicycle 
facilities (Cynecki and Lee, 2014) and <1% mode share of bicycling ridership. San Francisco, CA has a temperate climate, hilly 
topography (Table 1), and the greatest number of Strava users. Finally, Victoria, BC has mild temperatures and the highest percentage 
(6.6%) of the population that bicycles to work in Canada (Statistics Canada, 2017). 

2.2. Data 

We used street segment counts of bicyclists from Strava Metro (Table 1), official counts of bicyclists (Table 1), and variables that 
quantified the people, neighborhoods, and characteristics of streets (Table 2). 

We obtained official count data from local governments in each city (Fig. 1), and these demonstrate a range of approaches taken by 
local governments. In Boulder and San Francisco, we used continuous data from permanent counters that report number of bicyclists 
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Table 1 
Summary of the climate & demographic characteristics of each city.  

City Region Population 
* 

Annual 
Temperature ** 

Mode*** share of 
bicycling 

Strava 
ridership 

Year Strava data 
collected 

Total no. of 
official counts 

Temporal Resolution of 
official counts 

Data collection 
mechanism 

Min Max 

Boulder Colorado, USA 326,078 3.2 ◦C 18.5 ◦C 8.9% Medium 2017 15 1 min Permanent counters 
Ottawa Ontario, Canada 934,243 1.9 ◦C 11.4 ◦C 2.6% Smallest 2016 1066 8 hrs Video counters 
Phoenix Arizona, USA 4,857,962 17.4 ◦C 30.4 ◦C 0.8% Medium 2016 37 Daily Video counters 
San Francisco California, USA 884,363 7 ◦C 21 ◦C 3.9% Largest 2017 47 1 min Permanent counters 
Greater Victoria British Columbia, 

Canada 
235,689 5.6 ◦C 14.4 ◦C 6.6% Small 2016 71 Peak periods Manual counts 

Sources: 
* Population data were obtained from US census Bureau ACS 2015–2017 for US cities and Statistics Canada for Canadian cities. 
** Temperature data for US cities were gathered from the National Climate Data Center hosted by NOAA and for Canadian cities from Environment Canada Climate Normals 1981–2010. 
*** Mode share of bicycling was gathered separately for each city in collaboration with the transportation authorities and Statistics Canada for Canadian cities. 
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Table 2 
Sources of all datasets and variables used in the generalized and city-specific models across all 5 cities.  

Category Variables Data Source Data availability Reference 

Ridership Official counts DoT officials of each city All cities Griffin and Jiao (2015) and Jestico et al. (2016) 
Number of Strava Riders Strava ridership GIS shapefile from 

DoT of each city 
% Strava trips that are 
commute 

Strava ridership GIS shapefile from 
DoT of each city 

Safety and 
Design 

Bicycle crash 
density 

Official crash data from DoT in each 
city. Crowdsourced crash reports 
from BikeMaps.org 

All cities Hauer (1995), Ferster et al. (2017), Sallis et al. 
(2012), Winters et al. (2010), Saelens et al. 
(2003), Moudon et al., (2005), Sanders et al. 
(2017), Hankey et al. (2012) Average traffic speed 

limit 
OpenStreetMap.org 

AADT DoT officials of Boulder and Phoenix, 
MioVision Scout video counters in 
Ottawa. 

Boulder, Ottawa, 
Phoenix. (For All 
Streets) 

Bicycling comfort and 
safety levels** 

Ottawa Bicycling Network shapefile Ottawa 

Number of traffic lanes San Francisco DoT and Digital Road 
Atlas in British Columbia, and road 
network shapefile in Ottawa 

Ottawa, San 
Francisco, Greater 
Victoria 

Street type British Columbia Digital Road Atlas 
and OpenStreetMap in, San 
Francisco 

San Francisco, 
Greater Victoria 

Bicycling infrastructure 
type 

San Francisco DoT and bicycling 
network shapefiles from Canadian 
cities 

San Francisco, 
Ottawa, Greater 
Victoria 

City suggested route 
with no bicycling 
infrastructure 

Bicycling network shapefile Ottawa Ottawa  

% Trucks crossing 
intersections 

MioVision Scout video counters in 
Ottawa 

Number of pedestrians at 
intersections 

MioVision Scout video counters in 
Ottawa 

Land Use* Distance to green spaces Open Data Portal of the DoT in each 
city 

All cities  Roy et al. (2019), Noland et al. (2011), Pikora 
et al.(2003), Griswold et al.(2011) 

Distance to residential 
areas  

Open Data Portal of the DoT in each 
city 

Distance to commercial 
areas 

Open Data Portal of the DoT in each 
city 

Distance to bike parking San Francisco Open Data Portal San Francisco 
Distance to educational 
institutions 

San Francisco Open Data Portal, 
British Columbia Open Data 
Catalogue 

San Francisco, 
Greater Victoria 

Distance to sea shore San Francisco Open Data Portal San Francisco 
Distance to trailheads Boulder County Open Data Portal Boulder 
Distance to water bodies OpenStreetMap Ottawa 

Demographics % Population with at 
least college education 

US Census Bureau 2015–17, 
Statistics Canada 2016 Census 

All cities Winters et al. (2010), Noland et al. (2011), 
Cervero et al. (2009), Sallis et al. (2013), 
Hankey et al. (2012) % Population with at 

least high school 
education 

US Census Bureau 2015–17, 
Statistics Canada 2016 Census 

% White Population US Census Bureau 2015–17, 
Statistics Canada 2016 Census 

% Female population US Census Bureau 2015–17, 
Statistics Canada 2016 Census 

Median age US Census Bureau 2015–17, 
Statistics Canada 2016 Census 

Population density US Census Bureau 2015–17, 
Statistics Canada 2016 Census 

% Veterans US Census Bureau 2015–17, 
Statistics Canada 2016 Census 

Boulder, San 
Francisco 

% Male bicyclists US Census Bureau 2015–17, 
Statistics Canada 2016 Census 

San Francisco, 
Greater Victoria 

Socio 
Economic  

Median household 
income 

US Census Bureau 2015–17, 
Statistics Canada 2016 Census 

All cities Griswold et al. (2011), Strauss et al. (2013), 
Sallis et al. (2009) 

Crime density Crime data portal in Boulder Boulder 
Unemployment rate Statistics Canada 2016 Census Ottawa 

Topography Slope of the street DEM provided by city officials Broach et al. (2012) and Hood et al. (2011) 

(continued on next page) 
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each minute. Though Boulder official counts had dense temporal coverage, they lacked spatial coverage as all 15 counters were closely 
spaced mostly in and around the core downtown area (Fig. 1a). In contrast, San Francisco had more plentiful official counts recorded 
by 47 counters that were more evenly spread throughout the city. In Ottawa, MioVision Scout video counters were used to collect data 
for 8-hour periods at over 1000 locations. Ottawa’s counts were spread across the city but were only collected for one or two days per 
year at each location during peak commute hours (Fig. 1b). Phoenix video counters were used for one-week periods and included 
locations from outside the city (Fig. 1c), which increases the range of built environment conditions represented in the data. In Victoria, 
all count data (71 observations across 54 different locations) were collected manually by volunteer counters and included spatial 

Table 2 (continued ) 

Category Variables Data Source Data availability Reference 

Boulder, Ottawa, San 
Francisco, Greater 
Victoria 

Climate Counts conducted in 
winter months 

Temperature inferred by Canadian 
climate normals 

Ottawa Spencer et al. (2013) 

***The description about how each variable was calculated and operationalized is listed in Supplementary Table S1. 
* Distance variables were calculated in ArcGIS as Euclidean distances in US feet from a street segment to the nearest polygon of a particular land use 

type (Eg: residential are, commercial area, green space etc.). 
** The comfort classification was derived using Can-BICS (Winters and Zanotto, 2019). 

Fig. 1. Maps showing spatial distribution of all official count locations in all 5 cities.  
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locations beyond the core (Fig. 1e). Counts were limited to peak hours (7–9 am and 3–6 pm) for three weekdays in May and October. 
Strava Metro is a data product generated from GPS data recorded using the Strava fitness app. Data are provided at street level and 

bicycle counts are reported for street geometries with one-minute temporal resolution. The raw counts are rolled up to the nearest hour 
in Strava Metro. The street network used by Strava is from OpenStreetMap (OpenStreetMap contributors, 2019). Strava data are re-
ported for two spatial units: nodes (points), which represent intersections or terminals of street segments, and edges (lines), which 
represent lengths of roads or trails. To enable integration with manual counts, we used street segment counts for Boulder, Phoenix, San 
Francisco, and Victoria, and intersection counts for Ottawa. 

For each street segment or node Strava variables include: number of bicycle activities, representing unique bicycle trips made by 
Strava users; number of total bicyclists, representing unique Strava users, and type of trip (commute/ non-commute or recreational), 
representing activities for transportation purposes determining whether a bicyclist is a commuter or not. The commute category is the 
result of a proprietary trip classification model that Strava has developed. In Strava’s data model, “commuting” refers to all non-leisure 
trips. Strava reports the model to have 85% accuracy (Rodrigo Davis per comm., Dec 17, 2019). Strava data also includes a city-wide 
summary on gender and age of Strava users. 

The Strava counts were matched at the street-segment level to the official counts using the method proposed by Roy et al. (2019). 
We performed an additional sanity test on the aggregated Strava data at all locations where we had official counts, to check whether 
the Strava counts exceeded the official bicyclist counts. In complex intersections it is possible that official counts only include bicyclists 
moving through specific lanes, while Strava counts include ridership in all directions. This occurs in very few locations (e.g., two 
locations in the Phoenix data). Any locations where Strava counts exceeded official counts were eliminated prior to our LASSO and 
Poisson regression analysis to ensure the model was representative. 

To account for bias in the crowdsourced Strava data, we included geographical covariates that represent bicycling safety, road 
design, land-use, demographics, socio-economics, topography, and climate (Table 2). Bicycle crash density is a function of exposure (i. 
e. the number of bicycle trips) (Hauer, 1995), and crowdsourced bicycle crash density also relates to rates of digital participation 
(Ferster et al., 2017). In addition, features of the built environment such as increased intersection density and traffic calmed streets are 
related to higher bicycling trips (Winters et al., 2010). Higher rates of bicycling have been associated with parks and playgrounds 
(Noland et al., 2011) and demonstrate how land use can be used to predict ridership (Roy et al., 2019). Previous research on the 
demographics of who bicycles can also be used to predict ridership. For example, Sallis et al. (2013) found young, educated white 
males were more likely to ride bicycles. Slope has been found to be important in route choice for utilitarian bicycling (Broach et al., 
2012) and climate has been shown to impact the decision to bicycle (Spencer et al., 2013). 

We attributed official count locations with Strava data and all geographic covariates. Both Strava and official counts were rep-
resented at multiple temporal scales ranging from fine (daily) to coarse (annual) resolutions. For uniform interpretation of all ridership 
models, the response variable in the generalized and city-specific models was called Annual Average Daily Bicycling (AADB). However, 
in Ottawa “daily” referred to the 8 h of data collection, while in Victoria AADB represented peak daily volumes. 

2.3. Analysis 

As a preliminary step to identifying the bias-adjustment factors, we assessed how well Strava data alone explain the variation in 
overall bicycle ridership. In order to quantify the total number of bicyclists represented by a single Strava bicyclist, we used an or-
dinary least squares regression with Strava data as the only independent variable to predict AADB in each city separately (Table 3). 
Following this we then used variable selection (discussed in Section 2.3.1) to identify specific bias-adjustment factors in each city. 

2.3.1. Identifying bias-adjustment factors for each city using LASSO 
For each city we identified variables that are important predictors of ridership. Using a machine learning variable selection 

technique called Least Absolute Shrinkage and Selection Operation (LASSO) (Tibshirani 1996), we measured variable multicollinearity 
using variance inflation factor and selected variables that explain the maximum variance in the total bicycling ridership. LASSO re-
duces the number of variables by reducing the sum of the absolute value of their regression coefficients to be less than a fixed value, 
which forces coefficients of certain variables to be set to zero, effectively resulting in a simpler model that does not include those 
variables. A tuning parameter ‘α’ determined the optimal number of uncorrelated adjustment factors that explain maximum variance 
in the outcome. 

Variables used in the LASSO were based on data availability and a city’s geography and bicycling culture. Variables considered for 
each city are listed in Table 2. After applying a 10-fold cross-validation, LASSO returned the most important adjustment factors specific 

Table 3 
Annual Average Daily Bicycling (AADB) for each city represented by 1 Strava bicyclist. We use the regression coefficient of an Ordinary Least Squares 
(OLS) regression between Strava counts and official counts (AADB) to derive this value.  

City Year Strava data collected Total no. of official count observations retained +AADB ~ 1 Strava rider (OLS) 

Boulder 2017 15 271 
Ottawa 2016 1058 41 
Phoenix 2016 35 53 
San Francisco 2017 47 109 
Greater Victoria 2016 71 55  
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to each city. We ranked LASSO selected variables using a score function and chose all variables with a score above 0.2 to include in the 
models. We tested the sensitivity of the score function and found that a threshold of 0.2 resulted in reasonable regression fits without 
overfitting. 

2.3.2. Modeling bicycling ridership and assessing accuracy 
Using the unique set of variables identified through LASSO (referred to as “adjustment factors” herein) we fit a pair of Poisson 

regression models on a log scale for each of the five cities, resulting in a total of ten different models. The first model in each city, which 
we call the generalized model, used the variables that were consistently important in all of the cities as the predictors of bicycling 
ridership. The second model in each city, which we call the city-specific model, included the variables in the generalized model along 
with all additional variables identified by the LASSO as predictors of bicycling ridership in that particular city. In both models, we used 
the AADB count from the official counts as our response variable. Considering that Strava counts may have an endogeneity problem, 
we constructed a system of equations for each model and tested the endogeneity by Hausman test. The tests showed Strava counts are 
not an endogenous variable for all cities except Ottawa (Table 4). Hence, we estimated the models in all cities except Ottawa by OLS 
but estimated the models in Ottawa by instrumental variables estimation. The instrumental variables are number of Strava bicyclists 
and number of Strava bicycling activities in the previous year. 

The high temporal resolution of Strava data make it possible to map the number of bicyclists at any temporal resolution. While we 
could map every minute throughout a year, such detailed resolution is generally not practical, and average values by day, month, or 
year tend to be more useful. However, daily and monthly temporal resolution maps can be difficult to make because it requires all 
official counts to be taken during that same time. In other words, to make a map of average ridership in September, all the official 
counts must be collected in September. In reality, official counts are usually collected a few times per year or throughout the year 
making annual average ridership most appropriate. 

Owing to lack of sufficient ground truth, we used all the locations in each city for training as well as testing our model. We used a k- 
fold cross-validation technique to split the entire dataset into 10 folds and trained the model. Once an optimal fit was achieved, we 
calculated the in-sample accuracy determined by the coefficient of determination of an OLS regression between the true AADB and 
predicted AADB. 

We calculated the prediction error as the absolute difference between actual AADB and predicted AADB separately for both 
generalized and city-specific models in each city. Additionally, we generated a cumulative error distribution and reported prediction 
error for 25%, 50%, 75%, and 99% of the segments in each city. 

3. Results 

At 1209 official count locations in five cities we compared the Strava sample of ridership and all ridership. Based on how the OLS 
model would change if Strava sampled ridership was increased by one bicyclist, a single Strava bicyclist represents between 41 and 271 
total bicyclists (Table 3). Strava sampled the highest proportion of total bicycling in Ottawa, where, on average, one Strava sample 
bicyclist represented 41 officially counted bicyclists, and the lowest proportion of bicycling in Boulder, where, on average, one Strava 
sample bicyclist represented 271 officially counted bicyclists (Table 3). 

3.1. Lasso variable selection 

In Fig. 2 we show results of the LASSO and indicate the strength of each variable for prediction. The normalized color scale on the 
right of Fig. 2 indicates a variable’s predictive strength with darker colors showing more important variables. Variables that did not 
have a score above 0.2 in any city were not shown. Of note, the number of Strava bicyclists was amongst the most important predictor 
variable in all five cities. Other variables that were consistently important were the percentage of Strava bicyclists commuting, the 
percentage of the general population who are female, bicycle crash density, and median household income. 

3.2. Generalized model fit 

The in-sample accuracy for the models in each city ranged from 0.08 to 0.80 (Fig. 3), when the generalized model was applied. 

Table 4 
Hausman tests of the generalized model and the city-specific model.   

Generalized model  

Boulder Ottawa Phoenix San Francisco Greater Victoria 

Hausman test 0.09 20.01 0.01 0.76 0.21 
p-value 0.76 0 0.92 0.38 0.65   

City-specific model  

Boulder Ottawa Phoenix San Francisco Greater Victoria 

Hausman test 0.12 11.3 0.33 0.00 1.00 
p-value 0.7253 0.0008 0.567 0.9593 0.3181  
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Table 7 shows how well ridership was predicted, by calculating the difference between observed and modeled bicycling ridership 
levels. For example, with the generalized model, Boulder had 25% of streets predicted to within ±46 AADB, 50% predicted to within 
±101 AADB, 75% of streets predicted to within ±120 AADB, and 99% of streets predicted to within ±428 AADB. When we compared 
accuracy of the generalized model across all cities, Victoria and Phoenix were the most accurate and San Francisco and Boulder the 
least accurate (Fig. 4). 

Fig. 2. Normalized LASSO ranks for all variables used in city-specific model.  

Fig. 3. In-sample fit of predicted AADB using generalized model.  
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3.3. City-specific model fit 

City-specific variables were also identified from the LASSO variable selection and reflected topography, weather, and socio- 
economic characteristics of streets. As expected, the AIC fits were better (smaller values indicate greater information content) in 
the models dedicated to each city compared to the generalized model for that city. We see that the AIC for Boulder improved from 
1238.42 (Table 5) to 434.26 (Table 6) when we applied the city-specific model. Similarly, for Victoria, Phoenix, and San Francisco the 
AIC improves from 1214, 753, and 4864 (Table 5) to 748, 493, and 1739 (Table 6) respectively, when we chose the city-specific model 
over the generalized model. For Ottawa the AIC reduced from 100,546 (Table 5) to 58,624 (Table 6); the AIC was typically higher for 
Ottawa due to a large number of observations. 

In terms of variable importance, for Boulder and San Francisco the slope of the street segment accounted for the overall variation in 
bicycle ridership from geographic factors for the city-specific models, whereas for Phoenix it was proximity to green spaces (Table 6). 
Other factors such as topography, job density class, and suggested route with no bicycle infrastructure were occasionally predictors. 
Distance to commercial areas, distance to water bodies, distance to trailheads, and percentage population with at least college edu-
cation were never selected by LASSO for any of the cities and do not need to be included in models. 

The city-specific models showed a large improvement in accuracy for 99% of the predicted segments for all five cities. The error 
margins were reduced the most for Ottawa bicyclists from ±1287 to ±558 (Table 7). However, for 75% of the predicted segments 
Boulder and San Francisco had the largest reduction in error margins (33 and 50 bicyclists, respectively) (Table 7). 

3.4. Model accuracy comparisons for generalized and city-specific models 

The in-sample accuracy for city-specific models ranged from 0.68 to 0.92, indicating a better fit compared to the generalized model 
(Fig. 5). The fit was lowest for Ottawa and highest for Victoria. Prediction accuracy was determined by calculating the difference 
between observed and modeled bicycling (Table 7). When we considered the prediction accuracy for 75% of the segments in each city 
(Table 7), we found that Boulder, Ottawa, Phoenix, San Francisco, and Victoria showed an overall increase in accuracy for the city- 
specific models compared to the generalized models as the errors were reduced by ±33, ±15, ±10, ±50, and ±11 bicyclists, 
respectively. Predicted values were closest to observed values for Victoria with error margins as low as ±10 bicyclists for 25% of the 

Fig. 4. Accuracy comparison of bias-corrected AADB using generalized model.  

Table 5 
Poisson Regression coefficients of the generalized model. Note: All the coefficients are exponentiated. Values less than 1 indicate a decrease in 
AADB by a percentage (1-coefficient) * 100 and those above 1 indicate an increase by a percentage (coefficient-1) * 100.   

Dependent Variable: AADB  

Boulder Ottawa Phoenix San Francisco Greater Victoria  
(1) (2) (3) (4) (5) 

Median household income 1.00*** 0.89*** 1.03*** 2.61*** 9.69** 

Bicycle crash density 1.34*** 1.14*** 1.05*** 1.05*** 1.08*** 

No. Strava riders 1.00*** 1.07*** 1.11*** 1.02*** 1.14*** 

% Strava trips that are commutes 0.95*** 1.17*** 1.18*** 0.43*** 0.97*** 

Observations 15 1058 35 53 54 
Log Likelihood − 614.2 − 50268.11 − 371.56 − 2427.2 − 602.14 
AIC 1238.42 100546.2 753.11 4864.41 1214.29  

Note:     **p < 0.05; ***p < 0.01  
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segments and ±91 for 99% of the segments. For Ottawa the predictions had the most error with the largest error margin of ±558 for 
99% of the segments, which we explain in the discussion relates to the temporal extent of official data. 

The cumulative error distribution plots in Fig. 4 and Fig. 6 highlight that the generalized model, as well as the city-specific models, 
were most accurate for Victoria and Phoenix. The least accurate predictions for both models were found for Boulder and San Francisco 
(Fig. 4; Fig. 6). As expected, there was a reduction in the error margins for all cities (Table 7) when we added city-specific variables. 

4. Discussion 

For North American cities aiming to map overall bicycle ridership, Strava is a promising data source that is continuous over space 
and time. Researchers have demonstrated that by integrating Strava data with official counts and GIS covariates it is possible to map 
bicycling ridership (Jestico et al., 2016; Roy et al., 2019). However, from studies using Strava data from individual cities it is difficult to 
determine best practices for extending modeling to other cities or for implementing models on regions or multiple cities simulta-
neously. A strength of this research is the ability to build hypotheses on why variation in prediction performance occurs. By observing 
how predictive accuracy was influenced by modeling inputs and approaches, we build suggestions for best approaches to modeling of 
bicycle volumes with Strava data for a range of available data. 

Table 6 
Poisson Regression coefficients of city-specific model.    

Dependent Variable: AADB   

Boulder Ottawa Phoenix San 
Francisco 

Greater 
Victoria   

(1) (2) (3) (4) (5) 

Category Variables 
Ridership No. Strava riders 1.01*** 1.05*** 1.10*** 1.02*** 1.11*** 

% Strava trips that are commutes 0.90*** 1.16*** 1.17*** 0.72*** 1.15***  

Safety and 
Design 

Bicycle crash density 1.11***  1.02*** 1.84*** 0.04 
Average traffic speed limit   0.90*** 0.73*** 0.89*** 

AADT  0.98***    

Bicycling comfort and safety level (High or Medium)  1.29***    

Number of traffic Lanes (1)    2.10***  

Number of traffic lanes (2)     0.67*** 

Number of traffic lanes (3)     0.67*** 

Number of traffic lanes (4)     0.55*** 

Street type (Main)    1.67***  

Bicycle infrastructure type (Protected / off-street bike lane)    1.23***  

Bicycle infrastructure type (Painted bike lane with no physical 
protection)    

1.56*** 0.92*** 

Bicycle infrastructure type (Signed bike route)    2.22*** 1.11*** 

City suggested route with no bicycle infrastructure  1.45***    

% Trucks crossing intersections  0.63***    

No. of pedestrians at intersection  1.00***     

Land Use Distance to green spaces   0.72*** 0.36*** 0.65*** 

Distance to residential areas   1.10***   

Distance to bike parking    0.34***  

Distance to educational institutions     0.83*** 

Distance to sea shore    0.97***   

Demographics % Population with at least high school degree    1.00*** 0.99*** 

% White population 0.99***    1.04*** 

% Female population 0.73***   1.17*** 0.57*** 

Median age    0.71*** 1.09*** 

Population density  1.04***    

% Veterans    1.36***  

% Male bicyclists  1.58***  1.65*** 0.94***  

Socio Economic Median household income  0.93*** 0.99*** 0.99*** 0.97*** 

Crime density near bike count location 1.21**     
Unemployment rate  0.88***     

Topography Slope of each street segment 0.65*** 0.83***  0.90*** 1.43***  

Climate Counts conducted in winter months (True)  0.48***     

Observations 15 1058 35 53 54  
Log Likelihood − 209.13 − 29297.07 − 237.89 − 850.89 − 355.22  
AIC 434.26 58624.15 493.78 1739.78 748.44   

Note: *p < 0.1; **p < 0.05; ***p < 0.01  
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Recommendation 1. Variables to always use 

When building a generalized model, we recommend always including the following four variables: 1) number of Strava bicyclists; 
2) the percentage of Strava bicyclists commuting; 3) bicycle crash density; and 4) median household income. Income data are typically 

Table 7 
Model error comparison between generalized model and city-specific model.  

City n – official data % Segments predicted Error margins of predicted AADB Summary of predicted AADB 

Generalized City-specific Generalized City-specific 

Median IQR* Median IQR* 

Boulder 15 25% 
50% 
75% 
99% 

±46 
±101 
±120 
±428 

±46 
±63 
±87 
±272 

301 84 240 131.5 

Ottawa 1058 25% 
50% 
75% 
99% 

±17 
±32 
±62 
±1287 

±8 
±20 
±47 
±558 

50 55 36 70 

Phoenix 35 25% 
50% 
75% 
99% 

±10 
±18 
±32 
±116 

±8 
±15 
±22 
±74 

54 28 57 50 

San Francisco 47 25% 
50% 
75% 
99% 

±46 
±113 
±160 
±794 

±20 
±42 
±110 
±352 

207 182 183 394 

Greater Victoria 71 25% 
50% 
75% 
99% 

±12 
±20 
±40 
±122 

±10 
±21 
±29 
±91 

61 45 56 73  

* IQR – Inter-Quartile Range. 

Fig. 5. In-sample fit of predicted AADB using city-specific model.  
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available from the census, while bicycling safety data may be acquired from police, insurance companies, or Departments of Trans-
portation. New sources of bicycling safety data, such as those being generated from the crowdsourcing project BikeMaps.org (Nelson 
et al., 2015), can also enhance data by filling in official reporting gaps. 

Income and safety are key variables that have been identified as critical to bicycling ridership as they influence who has access to 
bicycling. While lower income individuals are often required to bicycle or walk in unsafe road conditions (Noland et al. 2013; Yu, 
2014), in some cities, higher bicycling levels have been associated with higher incomes (Fuller and Winters, 2017). It is not uncommon 
in North America for access to safe bicycling, either low volume streets or bicycling infrastructure, to be associated with higher income 
neighborhoods (Braun et al., 2019). Finally, research has shown that concerns about safety are the number one barrier to increased 
bicycling (Porter et al., 2020) and how safe a road is will impact who will bicycle there and how often it is selected as part of a bicycling 
route. 

Recommendation 2 – Variables to use when available 

As one might expect, the city-specific models, which included more nuanced data, also had better accuracy. It is interesting that 
variables important in all cities represent the people on bicycles or road safety. No land use, topography, or climate characteristics 
were universally selected; however, these variables can become important for specific cities. For example, topography is a useful 
predictor in San Francisco where there are many hills and seems to be in agreement with previous studies (Hood et al., 2011; Menghini 
et al., 2009) that found slope of the terrain to be an important predictor of ridership. Variables that were predictive for at least two to 
four cities include: distance to residential areas (Roy et al., 2019), distance to commercial areas, and city designated route (with no 
infrastructure) supporting previous work that availability of bicycle infrastructure affects ridership in general (Dill and Carr, 2003). 

Recommendation 3. It is all about official counts 

The models’ accuracy was heavily influenced by the number of official count locations and how representative the official counts 
are of the full range of conditions on the bicycling network. In fact, the nature of official count data seems to be more important than 
adding additional predictor variables into a city-specific model. As evidence, consider Victoria and Phoenix, which, regardless of the 
model inputs, had the best predictions of all bicyclists (Table 7). That the model performance was similarly high in Victoria and 
Phoenix is interesting given the differences in climates, number of Strava users, and mode share of bicycling. In both cities official 
counts were collected by regional governments, which mean that streets outside the downtown core were surveyed and therefore 
represent more diverse conditions. In San Francisco, which had much lower accuracy, official counts only covered the core downtown 
area. 

Typically, official count programs favor high ridership streets, but moderate and low ridership streets are critical for model pre-
diction. Recently, our team developed an approach to using Strava data to stratify locations for official counts to enhance represen-
tativeness for modeling (Brum-Bastos et al., 2019). But, as with any modeling it is not possible to predict outside the range of 
conditions that the model is trained on. If the model is only built for high bicycling streets or for high income areas, it is likely to 
perform poorly in other locations. Therefore, a holistic sampling strategy in terms of placing bicycle counters is of utmost importance. 

It is also important to note that official data were collected for peak periods in Victoria and so the official counts were taken during 
specific conditions, when ridership is high. In contrast, daily data collected in Phoenix has more variability representing low and high 
ridership times. The difference shows the challenges of predicting lower ridership. In a sense, the high accuracy of Victoria is biased 
due to the focus on small windows of time with high ridership, even though it captures bicyclists who are commuters and may be less 
biased towards Strava riders. 

The duration of official counts may be more important than the number of counters. Ottawa is a typical example. Although Ottawa 

Fig. 6. Accuracy comparison of bias-corrected AADB using city-specific model.  
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had over 1000 counts, it suffered from a weak in-sample fit (Figs. 3 and 5). In Ottawa, counts were mostly measured for short time 
periods and sampling was designed for motorized traffic (Table 1). Ottawa has a limited (n = 12) set of permanent bicycle counters that 
collect temporally continuous data, however, they represented a very narrow set of geographic conditions with high ridership. Another 
issue with short duration counts is that prediction at finer time periods will be hampered due to missing data. Strava data are recorded 
every minute. Here we predict AADB, but with continuous official counts, like those available from eco-counters, it would be possible 
to use Strava for prediction of ridership by season or even daily. 

A final recommendation on official count programs is to use screenlines instead of intersection counts. This was a clear learning 
from the massive data formatting effort required to preprocess official counts from the range of formats across cities. Intersection 
counts are more difficult to integrate with Strava, as traffic flows includes multiple directions of travels and turns. 

Recommendation 4. Avoid overselling results 

It is important to remember that the ridership volume generated by statistical integration of official bicycle counts, Strava data, and 
GIS data are a modeled representation of average conditions. The best use of these data should be as categories of bicycling volume. If 
predicted ridership estimates are represented as categories of ridership (i.e., from low to very high ridership) the data can be used with 
greater confidence. Categorical ridership maps, that are continuous across a city, offer huge advantages over more traditional datasets 
that capture only a few locations. Many applications that benefit from city wide data do not need precise values everywhere. By 
representing data with maps showing low to high ridership categories we do not run risk of overselling precision and create data that 
are more accurate. Furthermore, we caution that users avoid interpreting small variances in number of total average annual daily 
ridership as meaningful, especially on street segments with lower ridership. The values in Table 7 that show the range of error 
associated with prediction are a good guide for determining appropriate categories. 

5. Conclusions 

In North American cities it is possible to use Strava data as an input to mapping all bicycle ridership. When predicting all bicycling 
ridership with Strava data we suggest including variables on income and bicycling safety. If available, additional covariate data, which 
represent geographic and socioeconomic conditions of a specific city, can be included. The biggest factor that will impact prediction 
accuracy is how the official counts are collected. It is critical that official counts are taken at the range of bicycling conditions across the 
bicycling network, including low ridership areas. Temporally continuous counts and screenline counts can also be beneficial in 
improving accuracy. Finally, while models predict values with the precision of a single bicyclist, modeled results should perhaps be 
communicated categorically: such as low, medium, and high ridership. Strava is a biased sample of ridership, but it is continuous in 
space and time and integration of GIS data in a statistical model enables Strava to be used to map spatial variation in all ages and 
abilities of bicycling. By mapping spatial variation in all bicycling throughout these five cities we have information that better informs 
inclusive and healthy transportation solutions. 
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