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Abstract

In linear optics, the concept of a mode or eigenmode is well established. Of-

ten these modes correspond to a set of fields that are mutually orthogonal with

intensity profiles that are invariant as they propagate through a given optical

system. More generally, using an eigenmode decomposition, one can define a

set of orthogonal modes with respect to an optical measure given that is linear

in the intensity of the fields or Hermitian in the fields themselves. However,

if the intensity of the light is sufficiently large, the dipole response of an opti-

cal medium includes nonlinear terms that cause the eigenmode decomposition

to break down. In this work, we introduce the eigenmode decomposition in

the presence of these nonlinear source terms by introducing small perturbation

fields whose interaction is mediated by some high-intensity background field.

Unlike the eigenmodes of linear optics, these novel modes correspond to a set of

orthogonal fields that are, in general, distributed across multiple wavelengths.

Here, we study the definition and interaction of these eigenmodes for classical

electromagnetic fields and multiphoton fields. In the context of classical fields,

with our eigenmodes established, we highlight the influence of the high-intensity

background field on the symmetry of the eigenmodes. At the multiphoton level,

we show that the description of multiphoton fields is simplified by using the

propagation eigenmodes while remaining equivalent to the standard approach.
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4.8 Unitary scattering operator Ŝ for LG10 background represented with the false

colour map shown in figure 1.3. The labels Hn correspond to the n-photon

number Hilbert space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.9 Unitary scattering operator Ŝb for LG10 background represented with the

false colour map shown in figure 1.3. The labels Hn correspond to the n-

photon number Hilbert space. . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.10 Propagation eigenmodes in the output plane for a LG10 background field

with components (a) F2,k(r2)e−i`2,kφ and (b) F3,k(r2)e−i`3,kφ. . . . . . . . . 127

vii



Chapter 1

Introduction and Motivation

1.1 Introduction

In the physical sciences, the concept and use of a mode (or eigenmode) decomposition is

well established and has been used to solve many problems. In the domain of optics, decom-

posing fields into eigenmodes has been used to describe light propagating in laser cavities

[1], photonic crystals [2], optical fibres and waveguides [3]. Often, these modes correspond

to a set of fields with unique transverse profiles, are mutually orthogonal and propagate

independently of one another as they evolve through the optical system. For example, the

eigenmodes of a waveguide or optical fibre have an invariant field profile that is subject only

to a change in phase while propagating. In a resonator or microdisk structure, however,

the eigenmodes are reproduced after a full round trip of the cavity. More generally, going

beyond the propagation properties of light, one can define a set of orthogonal eigenmodes

with respect to any optical measure that is linear in field intensity or quadratic/Hermitian

in the fields using the method of Optical Eigenmodes [4, 5, 6, 7]. Prominent examples of

such measures include the energy density, optical angular momentum and intensity of the

electromagnetic field. The optical eigenmodes can be thought of as a classical analogue

to the states of quantum mechanics that correspond to the set of measurable configura-

tions of a given system: each with a certain probability of being measured or occupied.

Much like the propagation eigenmodes of free space and waveguides, the optical eigenmode

method exploits the linearity of Maxwell’s equations [8, 9, 10]. Thus, if the intensity of

the incident light is large, the dipole response of a given optical medium includes higher-

order nonlinearities. In this so-called nonlinear regime, the superposition of two solutions

of the propagation equations is not itself a solution and, as a consequence, the method of

eigenmode decomposition and optical eigenmodes breaks down.
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In this work, we restore the principle of linear superposition to systems with second-

order, intensity-dependent, nonlinearities by considering the interaction of perturbation

fields that are small in comparison to a high-intensity background field. In the simplest

cases, this is identical to that of the non-depleting pump approximation commonly used

in nonlinear optics and quantum optics. By introducing these perturbation fields, one can

reintroduce the concept of eigenmodes to intensity-dependent optical systems. Unlike the

fields in linear optics, however, the perturbation fields will interact with one another via

a high-intensity background field resulting in eigenmodes which have coupled components

oscillating at different frequencies. These eigenmodes again correspond to a set of mutually

orthogonal fields that do not interact with one another as they evolve - even though they

have components that will, in general, interact. The introduction of these eigenmodes,

along with their interaction and propagation properties, is the subject of the third chapter

of this thesis and is the first result of the work herein.

In general, the propagation of light through linear optical systems is fully characterised by

a scattering matrix [11]. This is also the case for our perturbation fields as they propagate

through a nonlinear crystal. Indeed, the interaction of these fields can be thought of as a

multiwavelength beamsplitter. In the context of quantum optics, the same scattering matrix

defines the input-output relationship of creation and annihilation operators associated with

the perturbation fields. In the quantum case, however, the field amplitudes are interpreted

as probability amplitudes [12]. If the perturbation fields are at the multiphoton or single-

photon level, then we can describe the evolution of the associated photon number states or

Fock states. Indeed, by quantising the perturbation fields, they become operators which

act on the Fock states depending on an effective Hamiltonian derived from the classical

scattering matrix. This is the subject of Chapter 4 and is the second result of this work.

The purpose of the present chapter is two-fold. First, we introduce the basic propagation

properties of light and all of the transverse structured fields that we use throughout the thesis

before, in section 1.4, introducing the method of optical eigenmodes. Second, we briefly

review the current state of research associated with the use of an eigenmode decomposition

in nonlinear systems: discussed in section 1.4.3. Consequently, the present chapter acts as

an introduction to the theoretical methods used throughout the thesis and as a motivation

for the work herein. Finally, a detailed outline of the thesis is given at the end of the

chapter.
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1.2 Propagation of Light

In the context of classical physics, light is described as electromagnetic waves that are rep-

resented in three dimensions as vector fields, F(r, t) where r = (x, y, z). In linear, dielectric,

homogeneous, isotropic materials with no free currents or charges, these monochromatic

fields are solutions of the wave equation(
∇2 − 1

c2

∂2

∂t2

)
F(r, t) = 0, (1.1)

where c is the material-dependent phase velocity, and F(r, t) may correspond to either

the electric or magnetic component of the electromagnetic field. This wave equation is

separable and has a solution which is written as the product of a space-dependent and

time-dependent function as F(r, t) = A(r)T (t). Upon inputting this separable form into

Eq. 1.1 we obtain an equation describing the spatial variation and an equation describing

the temporal variation of the field as:(
d2

dt2
+ k2c2

)
T (t) =

(
d2

dt2
+ ω2

)
T (t) = 0, (1.2)

(
∇2 + k2

)
A(r) = 0, (1.3)

where k is a separation variable called the wavevector defined as k = ω/c, and ω is the

angular frequency of the field related to the frequency as ω = 2πf . The solution of the

temporal equation, Eq. 1.2, is found to be T (t) = exp (±iωt).

For the spatial part of the solution, and throughout the thesis, we are concerned with

the propagation of monochromatic, collimated laser light that does not significantly diverge

from the optical axis. Fields that exhibit this kind of behaviour are said to be within

the small-angle or paraxial approximation [13]. This approximation is valid here as we

consider laser light propagating through optical systems with beam widths larger than

the wavelength. Moreover, throughout the thesis, we utilise field profiles derived from a

paraxial wave equation. We do not consider small apertures, lenses or large changes in

refractive index that might cause these paraxial beams to significantly diverge from the

optical axis [14, 15].

Within the paraxial approximation, where the direction of propagation is along the z-axis,

the spatial dependence, with some polarisation vector p̂, is written

A(r) = u(r)eikzp̂, (1.4)
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where we assume that the scalar field amplitude u(r) varies slowly as a function of z com-

pared to its wavelength such that

| ∂
2

∂z2
u(r)| � k| ∂

∂z
u(r)|, (1.5)

and, as we are within the paraxial approximation

| ∂
2

∂z2
u(r)| � |∇2u(r)|. (1.6)

Substituting Eq. 1.4 into Eq 1.3 and accounting for the above approximations we arrive

at the so-called paraxial equation [16] which for the original complex field amplitude is of

the form (
∇2
T + 2ik

∂

∂z

)
A(r) = 0. (1.7)

As with the temporal equation, the paraxial equation permits plane wave solutions in

which the field amplitude is uniformly distributed across an infinite plane. However, the

paraxial equation has more interesting solutions with non-uniform transverse field shapes

that will be introduced in the following sections. In deriving these solutions and throughout

this work, we consider fields with constant polarisation and neglect the vector character of

the electromagnetic fields by solving the scalar paraxial equation,(
∇2
T + 2ik

∂

∂z

)
A(r) = 0, (1.8)

where ∇2
T is the scalar transverse Laplacian operator and A(r) is a scalar field.

1.3 Structured Beam Shapes

In this section, we introduce the eigenmodes of free space within the paraxial approxima-

tion. Unlike finite systems with well-defined boundary conditions, the solutions of free space

satisfy all possible symmetries - for example rectangular and circular symmetry. There-

fore, we introduce both the Hermite-Gaussian and Laguerre-Gaussian representation of free

space eigenmodes in sections 1.3.2 and 1.3.3, respectively. Throughout the thesis, we use

these solutions to decompose our fields to define eigenmodes of systems in which multiple

monochromatic fields interact with one another. Additionally, in section 1.3.4, we introduce

the eigenmodes of a finite rectangular waveguide which allow us to better understand the

propagation properties of the eigenmodes in such systems.
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1.3.1 Fundamental Gaussian Beam

In free space or a homogeneous optical medium, the intensity profile of light will, in general,

change in shape during propagation. However, there exist solutions of the scalar paraxial

equation that exhibit consistency in their complex field profile as they propagate. These

solutions are often called the modes or eigenmodes of an optical system and constitute a set

of mutually orthogonal, non-interfering fields. Indeed, for a field decomposed into a set of

such solutions, E(r) =
∑

j Ej(r) =
∑

j Ej(x, y, z), we have, for all z, the following condition∫∫
E∗j (x, y, z)Ek(x, y, z) dx dy = δj,k. (1.9)

One set of solutions of the paraxial wave equation, satisfying the above condition, are

plane waves with wavefronts that are infinite planes normal to the direction of propagation.

These plane waves, however, do not resemble the transverse profile of a collimated beam of

light in practice. Although not physical, the plane waves can act as a basis on which we

can decompose any reasonable field distribution as [16]

E0(x, y, z) =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

E (kx, ky, kz)e
i(kxx+kyy+kzz) dkx dky dkz, (1.10)

where E (kx, ky, kz) is a complex field amplitude distributed across Fourier space [13]. To

determine the form of the spatial field profile given by Eq. 1.10 we begin with a Gaussian

ansatz of the form

E0(x, y, z) = A0 e
ik(x2+y2)

2q(z) eip(z), (1.11)

which, when substituted into the paraxial equation, gives expressions for the functions p(z)

and q(z). Indeed, for q(z) we find

1

q(z)
=

1

z +
z2
R
z

+
i

zR + z2

zR

, (1.12)

where zR is the distance over which the width of the beam waist, w0, increases by a factor

of two. By introducing the wavefront curvature, R(z) = z +
z2
R
z2 , and beamwidth, w(z) =

w0

√
1 + z2

z2
R

, we find

eip(z) =
w0

w(z)
e−iψ(z), (1.13)

where ψ(z) = arctan
(
z
zR

)
is known as the Gouy phase. Including the above functions, this

field profile is known as the fundamental mode of the paraxial equation often denoted the

Gaussian mode. Named after German mathematician and physicist Carl Friedrich Gauss.
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1.3.2 Hermite Gaussian Beams

In deriving the fundamental Gaussian mode, we assumed that the field profile has the same

symmetry along the x and y axes. In general, however, the field may have different sym-

metries with respect to x and y. Therefore, we introduce an ansatz of the form A0h(x)g(y)

in order to derive higher-order Gaussian modes with more interesting field profiles. Indeed,

inputting this ansatz into the paraxial wave equation, we find

En,m(x, y, z) = A0
w0

w(z)
Hn

(√
2x

w(z)

)
Hm

(√
2y

w(z)

)
e
ik(x2+y2)

2q(z) eip(z)e−i(n+m+1)ψ(z), (1.14)

where the indices n = 0, 1, . . . , nmax and m = 0, 1, . . . ,mmax determine the shape of the

mode and n + m = N is the order of the mode. The functions Hk(τ) are the so-called

physicists Hermite polynomials [17] defined as

Hk(τ) = (−1)keτ
2 dk

dτk
e−τ

2
. (1.15)

If the polynomial index k is even (odd) the polynomial itself is also even (odd) and

in the case that n = m = 0 we find the fundamental mode defined in section 1.3.1. The

intensity profiles of the first 20 Hermite-Gaussian modes are represented in figure 1.1 where

the indices n and m correspond to the order of the Hermite polynomial, Eq. 1.15, along the

x and y axes, respectively. In the figure, the indices start at n = m = 0 in the top left panel

with n increasing from left to right and m increasing from top to bottom where n = m = 3

in the bottom right panel. Like the plane waves, these Hermite-Gaussian (HG) modes

form a complete orthogonal basis such that any monochromatic field can be described as a

superposition of these modes akin to the plane wave decomposition, Eq. 1.10, used to define

them.

1.3.3 Laguerre-Gaussian Beams

If our optical waveguide or cavity is of circular symmetry, the Hermite-Gaussian modes will

no longer be supported. However, by transforming Eq. 1.8 to cylindrical coordinates,

(x, y, z)→ (r, φ, z) ,

the solutions of the equation are found, by separation of variables, to take the following

form

E`,p(r, φ, z) = A0
w0

w(z)

(√
2r

w(z)

)`
L`p

(
2r2

w(z)2

)
e
− r2

w(z)2 e
ikr2

2R(z)2 e−iψ(z)ei`φ, (1.16)
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Figure 1.1: Intensity profiles of Hermite-Gaussian modes with hue representing intensity
and colour representing phase. The false colour map is represented in figure 1.3. The indices
(n,m) go from (0, 0) top left to (3, 3) bottom right where n increases from left to right and
m from top to bottom.

where ` = −`max, . . . ,−1, 0, 1, . . . , `max and p = 0, 1, . . . , pmax; the order of the mode is

2p+ |`| = N . The functions L`p(τ) are the generalised Laguerre polynomials [17] which are

defined using the Rodrigues formula [18] as

L`p(τ) =
τ−`eτ

p!

dp

dτp
(e−ττ `+p). (1.17)

The index ` corresponds to the number of helical wavefronts of the mode often called the

orbital angular momentum [19] and the index p is the radial index corresponding to the

order of the Laguerre polynomial. Indeed, like the indices n and m used to characterise

the Hermite-Gaussian modes along the Cartesian axes, the indices ` and p characterise
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Figure 1.2: Intensity profiles of Laguerre-Gaussian modes represented on the phase map,
figure 1.3. The indices (`, p) go from (0, 0) top left to (3, 3) bottom right where ` increases
from left to right and p from top to bottom.

Figure 1.3: False colour map to represent complex field profiles with hue showing intensity,
|Eτ |2, and colour showing phase, φ.
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Figure 1.4: Schematic of a rectangular waveguide.

the angular and radial components of the Laguerre-Gaussian (LG) modes. Furthermore,

these LG modes, shown in figure 1.2, form another complete orthogonal set similar to the

Hermite-Gaussian modes. In both cases, one can write each basis set in terms of the other

as:

LG`,p =
∞∑
n=0

∞∑
m=0

(
HGn,m

∫
x

∫
y

HG∗n,mLG`,p dx dy

)
, (1.18)

HGn,m =

∞∑
`=−∞

∞∑
p=0

(
LG`,p

∫
x

∫
y

LG∗`,pHGn,m dx dy

)
, (1.19)

where HGn,m and LG`,p are of the form of Eq. 1.14 and 1.16 and the overlap integrals∫
x

∫
y

HG∗n,mLG`,p dx dy =

∫
x

∫
y

(
LG∗`,pHGn,m

)∗
dx dy

take the values 
img

(
N+`

2 , N−`2 ,m
)

: 2p+ |`| = n+m

0 : 2p+ |`| 6= n+m

with N = n+m = 2p+ |`| and

g(n′,m′,m) =

√
(n′ +m′ −m)!m!

2n′+m′n′!m′!

1

m!

dm
′

dtm′
[(1− t)m′(1 + t)n

′
]|t=0. (1.20)

Note, the indices of the HG and LG modes are related as `(n,m) = n−m and p(n,m) =

min(n,m). The linear transformations between these mode sets correspond to a rotation of

the initial representation and thus defines the same Hilbert space.

1.3.4 Rectangular Waveguides

Within finite systems, such as waveguides or cavities, the Hermite-Gaussian and Laguerre-

Gaussian modes lose their orthogonality. Here, we consider a rectangular waveguide with
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perfectly reflecting walls and maintain the direction of propagation to be along the z-axis.

The fields propagating in this waveguide are vector fields of the form

E = E(x, y)e±iβz, (1.21)

where β is the propagation wavenumber [20]. The fields in the waveguide evolve according

to Maxwell’s equations:

∇ ·E = 0, (1.22)

∇ ·B = 0, (1.23)

∇×E = −∂tB, (1.24)

∇×B = ε
c2
∂tE, (1.25)

where E and B represent electric and magnetic fields and ε is the relative permittivity of

the dielectric material in the waveguide. If we are interested in the transverse magnetic

(TM) modes where E = (Ex, Ey, Ez) and B = (Bx, By, 0) one can find, for the component

of the electric field propagating along the waveguide, the following equation

∂2
xEz(x, y) + ∂2

yEz(x, y) + (k2n2
1 − β2)Ez(x, y) (1.26)

= ∂2
xEz(x, y) + ∂2

yEz(x, y) + k2
cEz(x, y) = 0,

where k2
c = k2n2

1 − β2 and n1 =
√
ε is the refractive index of the material. The solution of

Eq. 1.26 is separable along the transverse coordinates as Ez(x, y) = F (x)G(y) with:

F (x) = Asin(kxx− φ), (1.27)

G(y) = Bsin(kyy − ψ), (1.28)

where A and B are amplitudes of the field components. If we impose the boundary

conditions F (−a) = F (a) = 0 and G(−b) = G(b) = 0, see figure 1.4, we find that the values

of the wavevectors kx and ky are:

kx =
nπ

2a
, ky =

mπ

2b
. (1.29)

Similarly, for φ and ψ, we find:

φ =
nπ

2
, ψ =

mπ

2
, (1.30)

where the indices n and m are introduced as the boundary conditions of the waveguide

permit standing wave solutions with an integer number of oscillations n and m along the x

and y axes, respectively. These indices are similar to those of the Hermite-Gaussian modes

in section 1.3.2 except where the fundamental mode is defined for n = m = 1.
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Figure 1.5: Intensity profiles of TM modes represented on the false colour map in figure 1.3.
The indices (n,m) go from (1, 1) top left to (4, 4) bottom right where n increases from left
to right and m from top to bottom.

Using the above coefficients, we define the cut-off wavevector for a given mode, TMnm,

propagating in the waveguide as

kc,nm =
√
k2n2

1 − β2 (1.31)

=

√(nπ
2a

)2
+
(mπ

2b

)2
,

where the cut-off frequency is fc,nm = ωc,nm/2π with ωc,nm = ckc,nm. This cut-off acts

as a lower limit for propagation modes in the waveguide. Indeed, if the frequency, fc,nm,

of a given field is less than the operating frequency of the waveguide it corresponds to a

propagating mode; otherwise, it is a non-propagating or evanescent field. If we recombine
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our fields F (x) and G(y) the TM modes of the waveguide are defined as

Enm(x, y) = E0 sin
(nπ

2a
x− nπ

2

)
sin
(mπ

2b
y −mπ

2

)
, (1.32)

where E0 is the amplitude at the input, and the fields form an orthogonal basis satisfying

the condition ∫ a

−a

∫ b

−b
E∗nm(x, y, z)En′m′(x, y, z) dx dy = δnn′δmm′ (1.33)

for all z, where the amplitude is normalised as
∫ a
−a
∫ b
−b |E0|2 dx dy = 1. Note, as the evanes-

cent fields cannot be normalised as described above, we only consider the propagating modes

in this work. In doing so, we neglect any coupling between the evanescent fields that might

generate modes that will propagate along the waveguide.

Unlike the derivation of the Hermite and Laguerre Gaussian modes introduced in the

previous section, the TM modes are not derived as solutions of the paraxial equation.

However, if we choose the propagation wavenumber as β = kc,nm/2 then one can show that

the TMnm modes are solutions of(
∇2
T + 2ikc,nm

∂

∂z

)
E(x, y, z) = 0. (1.34)

The intensity profiles for the first 20 TM propagating modes are represented in figure

1.5. These modes, along with the Hermite and Laguerre Gaussian modes, will be used

throughout the thesis as bases on which we decompose our fields.

1.4 Theory of Optical Eigenmodes

The method of Optical Eigenmodes (OEi) allows one to find eigenmodes of any Hermitian

optical measure in a mathematically rigorous manner. Much like the propagating modes

introduced in section 1.3, the optical eigenmodes correspond to orthogonal solutions of

Maxwell’s equations. However, these eigenmodes are defined with respect to a physical

observable and are thus characteristic of a particular measure of the electromagnetic field.

In this section, we outline the fundamental theoretical considerations that lead one to the

optical eigenmodes. In addition, we review the current state of affairs concerning the use

of an eigenmode decomposition in nonlinear optics and note that if the intensity of the

incident beam is large enough to induce nonlinear effects, the decomposition breaks down.

Using a high-intensity background field, however, we can linearise these systems and define

propagation and optical eigenmodes as described above. Unlike linear optics, the systems we

consider here include terms that allow for the interaction of fields at different wavelengths.

Introducing the optical eigenmodes to these systems is the first result of this thesis and,
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therefore, this section acts as an introduction to optical eigenmodes and as motivation for

the work presented.

1.4.1 Lorentz Reciprocity and Conservation of Interference

Following [7] it has been shown that for fields to be independent for a given optical

measure, they must be eigenfunctions of an associated Hermitian operator. In this short

section, we introduce these Hermitian operators from the perspective of reciprocity relations

and Noether’s theorem. We begin with Maxwell’s equations in a linear, homogeneous

dielectric material with no free currents or charges as:

∇ · εE = 0,

∇ · µH = 0, (1.35)

∇×E = −µ∂tH,

∇×H = ε∂tE,

where E and H = 1
µB represent electric and magnetic fields, and µ and ε are the relative

permeability and permittivity of the dielectric material. The energy density and momentum

associated with the electromagnetic field F = (E,H) is expressed as:

E(F ) = 1
2 (εE∗ ·E + µH∗ ·H) ,

S(F ) = 1
2 (E∗ ×H + E×H∗) , (1.36)

where S(F ) is the energy flux of the electromagnetic field also denoted the Poynting vector.

The local conservation of energy and momentum in free space is represented with the

continuity equation

∇ · S(F ) + ∂tE(F ) = 0, (1.37)

which simply states that the energy density of a region of dielectric material changes only if

some energy has passed out with or entered the local region in question. This is analogous

to the local conservation of charge where the energy density takes the role of the charge

density and the Poynting vector of the current density [21].

Consider a superposition of fields F = F1 + F2 which are both solutions of Maxwell’s

equations, Eq. 1.35. Substituting this superposed field into the continuity relation results

in four relations. One for F1 and F2 of the form of Eq. 1.37 and interference terms of the

form:

E12(F1, F2) = 1
2 (εE∗1 ·E2 + µH∗1 ·H2) ,

S12(F1, F2) = 1
2 (E∗1 ×H2 + E2 ×H∗1) , (1.38)
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where the fields Ei and Hi come from Fi = (Ei,Hi) and the relations for E21(F1, F2)

and S21(F1, F2) are given by taking the complex conjugate of E12(F1, F2) and S12(F1, F2),

respectively. In order for the total local energy density to be conserved for all possible

superpositions, F = F1 ± F2 and F = F1 ± iF2, the interference terms will satisfy the

continuity relation,

∇ · S12(F1, F2) + ∂tE12(F1, F2) = 0, (1.39)

which describes the conservation of interference between the two fields F1 and F2. If one

now considers a linear transformation, O, that leaves Maxwell’s equations invariant then

the transformed field, OF , is also a solution of Eq. 1.35 with interference terms E12(F,OF )

and S12(F,OF ). According to Noether’s theorem [22], these continuous symmetries are

associated with conserved quantities. These conserved quantities, for a given symmetry O,

are written:

〈E12(F )〉O =

∫
E12(F,OF ) d3r, (1.40)

〈S12(F )〉O =

∫
S12(F,OF ) d3r. (1.41)

The simplest example of a transformation that leaves Maxwell’s equation invariant is the

identity operator, I, which is associated with the conservation of energy density, 〈E12(F )〉I.
For a field decomposition of the form, F =

∑
j Fj the individual elements Fj are independent

of one another only if the total energy density is the sum of individual energy densities.

Consequently, for all linear transformations, O, that leave Maxwell’s equations invariant

the fields Fj must satisfy the condition

〈E12(F )〉O =

〈
E12

∑
j

Fj

〉
O

=
∑
j

〈E12(Fj)〉O , (1.42)

to be independent of the other fields in the decomposition. For the above condition to

be satisfied the field is decomposed onto the eigenfunctions associated with the Hermitian

operator O. This is expressed mathematically as

〈E12(F )〉O =
∑
j

λj〈E12(Fj)〉O , (1.43)

where Fj is an eigenfunction of the Hermitian form given by Eq. 1.40 and λj are the as-

sociated eigenvalues. As already mentioned, the simplest transformation leaving Maxwell’s

equations invariant is the identity, O = I, corresponding to the energy density. Another

example used in this work is the invariance of Maxwell’s equations with respect to rotations
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about a fixed point - generating the orbital angular momentum of the field. Indeed, in

systems with circular or rotational symmetry as described in section 1.3.3 the fields are

eigenfunctions of the operator O = i∂φ where φ is the azimuthal angle. The energy density

and momentum, in this case, are given as:

E12(F, i∂φF ) = i
2 (εE∗ · ∂φE + µH∗ · ∂φH) ,

S12(F, i∂φF ) = i
2 (E∗ × ∂φH + ∂φE×H∗) . (1.44)

In summary, by imposing the condition for independent fields, expressed in Eq. 1.42, one

can introduce the time-dependent energy density operator and orbital angular momentum

operator in the context of electromagnetic fields. Furthermore, given any symmetry that

leaves Maxwell’s equations invariant, one can introduce an associated Hermitian operator:

the eigenvectors of which define the optical eigenmodes of the measure [4].

1.4.2 Optical Eigenmodes

Here, we consider an input scalar electric field E(r1) that evolves through an optical system

giving the field F (r2) at the output plane as depicted in figure 1.6. Note, here we use F (r2)

to denote an electric field. This should not be confused with the electromagnetic fields

used in the previous section. As we are concerned with finite optical systems, our fields

are defined within some region defined by our detector. The fields that are incident on this

region can be described by decomposing the field at the input plane as

E(r1) =

N∑
j=1

ajEj(r1), (1.45)

where the fields Ej(r1) form a basis with respect to our finite system and are orthogonal.

That is, they satisfy the condition∫∫
E∗j (r1)Ek(r1) dx1 dy1 = δj,k. (1.46)

Assuming the optical system is constructed with linear elements the corresponding output

field is

F (r2) =
N∑
j=1

ajFj(r2), (1.47)

where the complex coefficients aj are the same as those in Eq. 1.45. Consider now a region of

detection Ω in the output plane that measures some physical quantity Θ represented by the

operator O. This measurement is expressed mathematically with the following Hermitian

form

Θ =

∫
Ω
F ∗(r2)OF (r2) dΩ =

N∑
j,k

(∫
Ω
a∗jF

∗
j (r2)OFk(r2)ak dΩ

)
= a†Ma, (1.48)
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Figure 1.6: Linear optical system in which the field F (r2) incident on the output plane is
dependent on the input field E(r1) and the optics of the set-up.

where the elements of the matrix M correspond to the cross interaction of all of the probe

fields, Mjk =
∫

Ω F
∗
j (r2)OFk(r2) dΩ, and the vectors a contain the complex coefficients

and their conjugates, a = (a1, a2 . . . aN )T and a† = (a∗1, a
∗
2 . . . a

∗
N ). Diagonalising the cross-

interaction matrix, we define the optical eigenmodes at the input and output plane as:

Ek(r1) =
N∑
j=1

vkjEj(r1), (1.49)

Fk(r2) =
N∑
j=1

vkjFj(r2), (1.50)

where vkj are the elements of the kth eigenvector, vk, of the matrix M and λk is the

associated eigenvalue. Regardless of the physical quantity in question, the matrix M is

Hermitian by definition. Consequently, it will have a spectrum of real eigenvalues with an

associated set of orthogonal eigenvectors. These eigenvectors define the optical eigenmodes

as in Eq. 1.49, and the corresponding eigenvalue is the magnitude of the physical quantity

that would be measured for that eigenmode.

In summary, the Optical Eigenmodes allows one to find system-dependent eigenmodes

in a mathematically precise manner. These eigenmodes generalise the concept of non-

interacting fields to a broader scope of structured optical illuminations and light-matter

interactions that go beyond the propagation properties of light. It is one of the main topics

of this thesis to introduce this method in the context of nonlinear systems with the use of

small perturbation fields. As a result, it is instructive to review the current state of affairs

with respect to use of the eigenmode decomposition in nonlinear optics.
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1.4.3 Eigenmode Decomposition in Nonlinear Systems

In the domain of nonlinear optics, the description of the propagation of electromagnetic

fields is mathematically more involved than in the linear regime. Therefore, the tools

for describing fields in nonlinear systems are not as well developed as in linear optics.

This is due to the interaction of intense optical fields that generate light at frequencies

different from that of the initial input field(s) [8]. Moreover, the fields generated by nonlinear

interactions will interact with the input field(s), resulting in a non-trivial link between

the input and output in which the principle of superposition is no longer applicable. As

a consequence, the method of optical eigenmodes introduced in section 1.4.2 cannot be

directly applied to nonlinear systems. Nevertheless, the eigenmode decomposition has been

used in the context of nonlinear optics. Indeed, eigenmodes have been used to describe the

nonlinear propagation of light in photonic crystals and have also been used to model the

third-order nonlinear Kerr effect [23, 24] and second harmonic generation [25]. Similarly,

Fourier modal methods, also known as rigorous coupled-wave theory, have been established

for modelling second harmonic generation [26] and Kerr like nonlinearities [27] in layered

periodic structures. In addition, boundary element methods have been used in this capacity.

These methods are suited towards the modelling of nonlinear scattering effects of nano-

particles [28] and clusters of nanoparticles [29].

Another area of research in which the concept of eigenmodes and nonlinear effects are

brought together is in the study and development of optical fibres for communication sys-

tems. The propagation of light in optical fibres is in practice a nonlinear process; however,

much of the global communications systems involving optical fibres are designed with lin-

earity as an approximation [20, 30]. Yet, chromatic dispersion and the fibre Kerr effect

negatively impact the performance of modern fibre optic systems. Usually, these effects

can be minimised by using compensation techniques, but, as the demand for information

transmission increases, the capacity of fibre systems are approaching their theoretical lim-

its [31, 32]. An alternative approach to linear transmission is to use the nonlinear effects

to model and design fibre optic systems rather than compensating for them. This shift

in paradigm requires a description of transmission from truly nonlinear channels and, con-

sequently, requires knowledge of the nonlinear eigenmodes (usable degrees of freedom) on

which information can be encoded. The existing methods concerned with nonlinear trans-

mission employ the Nonlinear Fourier Transform (NFT) [33] which is an analogue of the

standard Fourier transform. The NFT allows one to address dispersion and nonlinearities

in a way similar to how the FT deals with chromatic dispersion in linear propagation, i.e., in

Fourier space. However, in the case of the NFT, this is done in a nonlinear spectral domain
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that is essentially an analogue of conventional Fourier space. Information can be encoded

directly onto this nonlinear spectrum by using the associated nonlinear propagation modes.

One approach used to find these modes is to use the discrete part of the nonlinear spectrum

that contains eigenvalues that signify the existence of optical solitons [34]. Solitons have

the propagation invariance required for encoding and transmission and are not disturbed by

the Kerr effect. Using the solitonic eigenvalues in this way to transmit information in the

discrete part of the spectra is known as ‘eigenvalue communications’ and is detailed in [35].

There also exist methods that exploit the continuous part of the nonlinear spectrum [36, 37].

The encoded information can be directly mapped on to the continuous part of the nonlinear

spectrum using an inverse NFT. This method is called Nonlinear Inverse Synthesis and has

received a lot of attention in nonlinear fibre systems [38].

All of the above methods introduce the concept of eigenmodes into the nonlinear regime

but in most cases only maintain some of the advantages of the optical eigenmodes described

in section 1.4.2 while others remain somewhat underdeveloped areas of research. It is,

therefore, the first result of this thesis to introduce eigenmodes and optical eigenmodes

to nonlinear systems. Similar to much of the research outlined above, we consider field

propagation within the paraxial approximation and the non-depleting pump approximation.

Our concern here, however, is not just with the propagation properties of the eigenmodes

of fields coupled by a nonlinear crystal. We also consider the symmetry of the transverse

field profiles that define these orthogonal eigenmodes and the symmetry of the eigenmodes

with respect to the optical measures introduced in section 1.4.1. Furthermore, much of the

research outlined above is concerned with the interaction and propagation of classical fields.

In this thesis, we extend our discussion to fields at the single-photon and multiphoton level.

1.5 Outline of the Thesis

In this thesis, we introduce the method of optical eigenmodes to systems with intensity-

dependent interaction terms. In particular, we consider the second-order nonlinear effects

sum-frequency generation and parametric down-conversion. This is done by introducing

perturbation fields to the nonlinear system such that one can restore the principle of lin-

ear superposition and, therefore, utilise an eigenmode decomposition. With these optical

eigenmodes defined, we consider perturbation fields that are at the multiphoton level and

analyse the quantum behaviour of the Fock states associated with these fields.
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In Chapter 2, we outline all relevant theoretical considerations concerned with the field

of nonlinear optics. In particular, we describe the basics of nonlinear light-matter inter-

actions and, in section 2.2.2, derive the equations of evolution for fields propagating in a

second-order nonlinear crystal. In section 2.2.3 and 2.2.4, we discuss the phase-matching

conditions of the propagating fields and the symmetries of the second-order susceptibility

tensor. Finally, in section 2.3, we introduce perturbation fields that propagate with each

of the fields in three-wave mixing. From the resulting equations, we highlight two distinct

effects which can be described in the context of the perturbation fields. Namely, sum-

frequency generation and parametric down-conversion. This chapter concludes with a brief

analysis of these two nonlinear effects.

In Chapter 3, the method of optical eigenmodes is introduced independently for both

sum-frequency generation and parametric down-conversion. Indeed, in section 3.2.1, the

mathematical formalism for optical eigenmodes in the context of sum-frequency genera-

tion is discussed in detail. In section 3.3.1, we discuss the computational set-up used in

the thesis, followed by some numerical examples in sections 3.3.2 and 3.3.3. For the nu-

merical examples, we first consider bulk nonlinear material that exhibits rectangular and

circular symmetry. The symmetry and degeneracy associated with the optical eigenmodes

for both rectangular and circular systems are also discussed in the respective sections. In

section 3.4.1, we introduce optical eigenmodes for finite optical systems in the form of

waveguides. Again, we consider systems with rectangular and circular geometry. The prop-

agation eigenmodes in these waveguides are introduced and discussed in section 3.4.4. In

section 3.5.1, we present the formalism of optical eigenmodes for the equations for para-

metric down-conversion and consider numerical examples. Finally, at the end of Chapter 3,

in section 3.8, we outline the set of commuting operators that allow one to uniquely label

optical eigenmodes for circular and rectangular systems for both sum-frequency generation

and parametric down-conversion.

Chapter 4 is concerned with the quantum behaviour of single-photon or Fock states in

the context of our three-wave mixing effects. In all of the previous chapters, we considered

classical fields and their evolution. Consequently, this chapter begins with an introductory

section where we discuss the basic principles of quantum optics that are pertinent in un-

derstanding the rest of the chapter. Indeed, in section 4.2, we introduce the equations of

evolution for quantum states of light in both the Schrödinger and Heisenberg pictures. In

the same section, we briefly discuss expanding the Optical Eigenmode (OEi) method to

the domain of quantum optics via the second quantisation of the electromagnetic field. To
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conclude this section, we introduce the creation and annihilation operators of the quan-

tised fields and the photon number or Fock state representation of the associated quantum

system. In section 4.3.1, we consider the behaviour of Fock states in sum-frequency genera-

tion. In particular, we outline the derivation of an effective Hamiltonian using results from

group theory. Following this, we introduce the propagation eigenmodes defined in the pre-

vious chapter to simplify the quantum behaviour of the system, followed by some numerical

examples. In section 4.4.1, we turn our attention to the case of parametric down-conversion.

Finally, in Chapter 5, we conclude the thesis with a summary and discussion of any

conclusions thereof before outlining potential research avenues to expand upon the material

herein.
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Chapter 2

Introduction to Nonlinear Optics

2.1 Introduction

The field of nonlinear optics is relatively young when compared to the study of the linear

effects of light. The origin of the field of nonlinear optics closely coincides with the invention

of the laser in the 1960s [39]. Before this time, light sources used in experiments were not

intense enough to induce nonlinear optical effects. Even with the coherent, focused light

produced by lasers, the detection of nonlinear signals still proved a challenge in the early

experimental work related to the subject. Indeed, in the paper that first reported the

observation of the second harmonic [40], the signal was so small that the printing press

mistook it for an ink blemish and omitted it from the published article. In the years

proceeding this seminal paper much of the theoretical foundations of nonlinear optics was

established in several articles that form the introductory chapters in many books on the

subject [8, 9, 10, 41, 42, 43]. Although not observed in everyday life, nonlinear effects

have proved very useful in many areas of science and engineering. Indeed, many tunable

lasers make use of frequency mixing and harmonic generation to create coherent radiation

across the electromagnetic spectrum. Furthermore, these tunable light sources and optical

nonlinearities have been utilised in various spectroscopic scenarios [44, 45, 46, 47, 48]. From

a more fundamental perspective, nonlinear effects remain the most useful source to generate

entangled photon pairs [49, 50, 51].

In this work, we are concerned with eigenmodes in the context of nonlinear optical sys-

tems within the non-depleting pump approximation. In this chapter, we outline all of

the theoretical considerations used throughout the thesis associated with nonlinear optics.

Indeed, in section 2.2, we introduce the physical intuition and mathematical form of nonlin-

ear interactions. In particular, we consider second-order nonlinearities giving rise to effects

like second-harmonic generation and sum/difference-frequency generation and introduce the
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coupled partial differential wave equations that describe how the fields in these effects evolve.

In sections 2.2.3 and 2.2.4, we outline the phase matching of second-order nonlinear inter-

actions and the crystal symmetry that allow the simplification of the third-rank tensor that

links the Cartesian components of the fields. Also, in section 2.3, we introduce the concept

of low-intensity perturbation fields that interact with one another via a non-depleting high-

intensity background field. In this non-depleting pump approximation, we describe briefly

the two effects that we are mainly concerned with here, namely, sum-frequency generation

and parametric down-conversion.

In practice, sum-frequency generation has proved a very useful effect in the physical

sciences. In the first instance, by combining two lower frequency signals, one can generate

collimated beams at wavelengths not otherwise accessible with a single source [52, 53, 54, 55].

Further, the use of sum-frequency generation in spectroscopy has proved to be a powerful

technique for probing material surfaces and interfaces between different materials [56, 57].

This technique has also found use in the field of atmospheric chemistry due to the im-

portance of understanding chemical reactions at air-liquid interfaces [58]. Furthermore,

sum-frequency generation has been used in various single-photon scenarios [59, 60, 61].

Parametric down-conversion is an important effect in the context of quantum optics and

single-photon experiments. This is due to the potential for generating entangled photon

pairs [62, 63, 64] and single photons [65, 66]. Consequently, parametric down-conversion

has proved of great importance in the study of quantum information experiments [67],

nanophotonics [68, 69], quantum cryptography [70] and experiments for testing Bell’s in-

equalities [71, 72, 73]. Moreover, due to the high degree of spatial correlations between the

photons generated by parametric down-conversion, these photon pairs can be utilised in

the context of quantum imaging techniques [74, 75]. Due to the connection with quantum

optics, the theoretical and experimental study of these effects still provides fertile ground

for interesting scientific research.

2.2 Wave Description of Nonlinear Optics

2.2.1 Nonlinear Optical Interactions

To understand the interaction of light with matter, we consider the dipole response of the

atoms in the material in which the field propagates. Indeed, consider a single atom in a

dielectric material, the overall charge of which is neutral. If an electromagnetic field is

incident on this atom, the electric component of the field will cause a small separation

between the positively charged nucleus and negatively charged electron cloud generating an
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oscillating dipole moment. The magnetic field will similarly disturb the positively charged

particles in the atoms; however, this is negligible when compared to the influence of the

electric component of the field. Therefore, we neglect the influence of the magnetic field:

this is known as the electric dipole approximation [9]. After being excited, the oscillating

dipole created by the electric field will radiate light in a characteristic dipole pattern at the

frequency of the incident field [76, 77]: this is commonly denoted Rayleigh scattering. If

the light incident on the dielectric material has sufficient intensity, it will induce a nonlinear

response and stimulate the generation of frequency components different from that of the

input field.

In classical optics, we are concerned with the evolution and interaction of electromagnetic

fields in macroscopic materials made up of a large number of atoms. Consequently, we

characterise the response of the material with respect to the density of dipole moments or

polarisation, P (r, t), of the material. If this bulk electric polarisation has nonlinear terms

that are small compared to the linear term, it can be written as a series expansion with

respect to a scalar electric field as [8]

P (r, t) ≈ ε0

(
χ(1) E(r, t) + χ(2) E(r, t)2 + χ(3) E(r, t)3 + ...+ χ(N) E(r, t)N

)
(2.1)

= P (1)(r, t) + P (2)(r, t) + P (3)(r, t) + ...+ P (N)(r, t),

where χ(1) corresponds to the linear electric susceptibility, and the higher-order terms cor-

respond to the second, third and N th order susceptibility of the material. As the above

expression indicates, the susceptibility is a dimensionless coefficient that describes the de-

gree of polarisation of a given material in response to an incident electric field. Note, we

have assumed that the nonlinear material is lossless and dispersionless such that suscep-

tibility in the polarisation expansion depends on the instantaneous electric field strength.

The first term in the above expansion encompasses all of the effects of linear optics. The

higher-order terms describe various kinds of nonlinear effects. The first nonlinear term of

interest, and the one we are concerned within this work, is the second-order nonlinearity

characterised by the susceptibility tensor χ(2).

The simplest example of a second-order nonlinear interaction is second harmonic gen-

eration. If we consider a monochromatic field of the form E(r, t) = E0(r) e−iωt + c.c.

with complex amplitude, E0(r), at the input, then the resulting second-order nonlinear

polarisation is of the form

P (2)(r, t) = 2ε0χ
(2)|E0(r)|2 + ε0χ

(2)(E0(r)2e−2iωt + c.c) (2.2)
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and is made up of a zero-frequency D.C. term and a contribution at twice the input fre-

quency, 2ω. The generation of this second harmonic corresponds to a double excitation

from the field at frequency ω resulting in a dipole oscillating at 2ω, which will emit elec-

tromagnetic radiation. In macroscopic materials, we have a large number of dipoles and,

therefore, the interactions described above will occur a great number of times as the fields

propagate through the crystal. Thus, the relative phases of the oscillating dipoles should

be such that the emitting radiation interferes constructively creating a detectable signal.

This point is discussed in more detail in section 2.2.1.

More generally, one can consider an input field made up of two distinct frequency com-

ponents, i.e., E(r, t) = E1(r) e−iω1t + E2(r) e−iω2t + c.c. The second-order polarisation in

this instance is of the form

P (2)(r, t) =ε0χ
(2)
(
E1(r)2e−2iω1t + E2(r)2e−2iω2t + 2E1(r)E2(r)e−i(ω1+ω2)t (2.3)

+ 2E1(r)E∗2(r)e−i(ω1−ω2)t + c.c
)

+ 2ε0χ
(2)
(
|E1(r)|2 + |E2(r)|2

)
.

Similar to the nonlinear polarisation waves for a single monochromatic field in Eq 2.2, we

find a D.C. term and a contribution at the second harmonic. In addition to these terms,

however, we find dipoles oscillating at the sum, ω1 +ω2, and difference, ω1−ω2, of the two

input frequencies. These components are denoted the sum and difference-frequency waves.

Another important process, especially in the context of quantum optics, occurs when we

consider the annihilation of a photon at the sum ω3 (= ω1 + ω2). In Eq. 2.3 we observed that

if a photon at ω1 and ω2 are absorbed by a dipole then a photon at their sum, ω3 = ω1 +ω2,

can be generated under suitable conditions. Thus, if we consider an input photon at ω3,

the reverse interaction is possible and results in the emission of two photons: one at ω1

and one at ω2. This process - known as parametric down-conversion - is prominent in

quantum optics and is a powerful source of generating single photons and entangled photon

pairs [78, 79, 80, 81]. This effect can be understood in the context of the energy-level

diagrams in figure 2.1. Indeed, if we take a field of the form E(r, t) = E1(r) e−iω1t +

E3(r) e−iω3t + c.c. at the input of the nonlinear crystal then the difference term ω3 − ω1

will stimulate the transition generating the field at ω2. Similarly, the ω3 and ω2 fields have

a difference-frequency term that will stimulate the generation of the ω1 field. Thus, the ω1

field acts to amplify the ω2 field and vice versa. This process is discussed in more details

in section 2.3.3.
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(a) (b)

Figure 2.1: Energy-level diagrams for (a) sum-frequency generation and (b) parametric
down-conversion. As we are off-resonance, the horizontal lines correspond to unobservable,
short-lived, virtual states.

Note, the classical description of the polarisation presented here permits a single reso-

nant frequency for each atom and is only suitable for cases where all of the incident field

components have a frequency smaller than the lowest electronic resonance of the nonlinear

material. For a complete treatment, one must consider a quantum description of the po-

larisation that permits more than one resonant frequency for each atom. This introduces

additional terms to the higher-order polarisation corresponding to cases in which the atoms

can simultaneously exhibit single-photon and two-photon excitations [8, 9, 43].

2.2.2 Wave Equations of Nonlinear Optics

If the incident light is of sufficient intensity to induce nonlinear effects, this will change the

form of the equations describing the evolution of the fields. As a consequence, the paraxial

equation introduced in section 1.2 is no longer valid as it only describes propagation in the

linear approximation. Consider an input field made up of frequency components of the form

E(r, t) =
∑

τ Eτ (r)e−iωτ t + c.c. Each of the complex components Eτ (r)e−iωτ t of this field

exist in a different Hilbert space as

E∗τ (r)Eσ(r)

∫
ei(ωτ−ωσ)t dt = 2πδ(ωτ − ωσ)E∗τ (r)Eσ(r), (2.4)

where δ(ωτ − ωσ) is the Dirac delta function. Therefore, each of these complex field com-

ponents will satisfy a frequency-dependent wave equation. These wave equations are of the
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form

∇2Eτ (r) +
ω2
τ

c2
ε(1)(ωτ )Eτ (r) = − ω2

τ

ε0c2
PNL
τ (r), (2.5)

where the relative permittivity ε(1)(ωτ ) is related to the refractive index as ε(1)(ωτ ) ≈
n2
τ and PNL

τ (r) = P
(2)
τ (r) + P

(3)
τ (r) + ... + P

(N)
τ (r) is the nonlinear polarisation where

PNL
τ (r, t) = PNL

τ (r)e−iωτ t. If we consider a field with three components at the input, we

have three equations; each of which describes the evolution of a field oscillating at one of

the frequencies. Indeed, if we consider a field propagating along the positive z-axis, the

field at the input is written

E(r, t) = E1(r)ei(k1z−ω1t) + E2(r)ei(k2z−ω2t) + E3(r)ei(k3z−ω3t) + c.c., (2.6)

where kτ = (nτωτ )/c and we choose the frequencies such that ω3 = ω2+ω1 with ω2 > ω1 > 0.

If we truncate the polarisation up to the second-order effects in which P (N≥3)(r)� P (2)(r)

then the terms in PNL(r) will be those ∝ E(r)2. Indeed, if we consider first the polarisation

waves that will contribute to the field at ω3, we are left with a single contribution of the form

PNL
3 (r) = 2ε0χ

(2)E1(r)E2(r)ei(k1+k2)z. Hence, within the paraxial approximation discussed

in section 1.2, we can write the equation of evolution for this field as(
∇2
T + 2ik3

∂

∂z

)
E3(r) = −χ3E1(r)E2(r)ei∆kz, (2.7)

where χ3 = (2χ(2)ω3)/(n3c) and ∆k = k1 + k2 − k3 is the phase mismatch. This is a

paraxial wave equation in nonlinear optics and when compared to Eq. 1.8 is distinct due

to the source term on the right-hand side. Consequently, if E1(r) and E2(r) are zero or we

are in free space, i.e. χ(2) = 0, the equation describes a monochromatic field propagating

according to the paraxial equation of section 1.2.

Following the same process as above, for the fields E1(r) and E2(r), we find a set of

coupled equations describing three-wave mixing in second-order nonlinear materials:(
∇2
T + 2ik2

∂

∂z

)
E2(r) = −χ2E

∗
1(r)E3(r)e−i∆kz, (2.8)

(
∇2
T + 2ik1

∂

∂z

)
E1(r) = −χ1E

∗
2(r)E3(r)e−i∆kz, (2.9)

in which χτ = (χ(2)ωτ )/(2nτ c). These three equations collectively describe all three-wave

mixing processes in nonlinear materials and are the main equations used in work presented

here. Equations for higher-order nonlinearities can be easily found in the same manner

by including more terms in the polarisation expansion in Eq. 2.1. For this work, how-

ever, we assume that P (3)(r, t) to P (N)(r, t) are negligible compared to the second-order

nonlinearities, P (2)(r, t).
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(a) (b)

Figure 2.2: Condition for perfect phase matching for (a) collinear propagating and (b)
non-collinear propagating field for k1 < k2.

2.2.3 Phase Matching

The phase mismatch in Eqs. 2.7 to 2.9 is an expression of the momentum conservation

associated with the second-order nonlinear effects represented in figure 2.1. In a macroscopic

material, we have many dipoles that may contribute to the propagating fields in the form of

polarisation waves resulting from the terms in P (2)(r, t). Each of these polarisation waves

will have some phase that will determine if they interfere constructively with the propagating

fields. The efficiency of this constructive interference is determined by the phase matching,

∆k. In three-wave mixing, one could consider the following field incident on the material

E(r, t) = E1(r)ei(k1.r−ω1t) + E2(r)ei(k2.r−ω2t) + c.c., (2.10)

where kj = (kj,x, kj,y, kj,z)
>, r = (x, y, z)> and > denotes the transpose. Substituting this

field into the second-order polarisation, we have the following elements

P (2)(r, t) = ε0

(
· · ·+ 2χ(2)E1(r)E2(r)e−iω3tei(k1+k2).r + . . .

)
(2.11)

contributing to the propagating fields where we maintain the condition ω3 = ω1 + ω2. For

the polarisation field to generate a useful signal the phase-matching condition

k1 + k2 = k3 (2.12)

should be approximately satisfied such that the polarisation wave amplitude in Eq. 2.11

has a phase that allows it to constructively interfere with the field E3(r)ei(k3.r−ω3t). This is

equivalent to maximising the interaction term in Eq. 2.7, which generates the field at ω3.

The condition for phase matching is illustrated in figure 2.2 for non-collinear and collinear

propagating fields.
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In practice, this phase matching is achieved by taking advantage of the birefringence of

a given material. Indeed, in birefringent materials, the refractive index experienced by a

field is dependent on its polarisation with respect to particular crystal axes [82]. In uniaxial

materials, light incident on the material is subject to either the ordinary refractive index,

no(ω) = nx(ω) = ny(ω), or the extraordinary refractive index, ne(ω) = nz(ω). For three-

wave mixing the largest frequency - in this case, ω3 - is often chosen to be polarised along the

direction with the lowest refractive index. The crystal axis with the lowest refractive index

depends if the material is positive uniaxial, ne(ω) > no(ω), or negative uniaxial, no(ω) >

ne(ω). In both of these crystal types, there are two permutations for the polarisation of

the lower frequency fields, denoted type I and type II phase matching. Indeed, for positive

uniaxial crystals, these phase-matching conditions are:

Type I : no3ω3 = ne2ω2 + ne1ω1, (2.13)

Type II : no3ω3 = ne2ω2 + no1ω1, (2.14)

and for negative uniaxial crystals we have:

Type I : ne3ω3 = no2ω2 + no1ω1, (2.15)

Type II : ne3ω3 = no2ω2 + ne1ω1, (2.16)

where neτ and noτ are the refractive index for a field of frequency ωτ along the extraordinary

and ordinary axis, respectively. In order to phase match the crystal, ∆k should be as close

to zero as possible where ∆k = 0 is known as perfect phase matching. In uniaxial crystals,

this can be achieved by taking advantage of the angular dependence of birefringent materials

using the relation
1

ne (φ)2 =
sin2 (φ)

n2
e

+
cos2 (φ)

n2
o

, (2.17)

where the angle φ is the angle between the wavevector, k, and the optical axis with ne =

ne(π/2) and no = ne(0). This angle is adjusted to find the appropriate ne(φ) to satisfy

∆k ≈ 0. However, this equation is not guaranteed to give a physically meaningful azimuthal

angle in which case, if the material birefringence is temperature-dependent, one can fix the

orientation of the beams incident on the crystal and vary the temperature to achieve phase

matching [83, 84, 85]. Alternatively, one can achieve phase matching by using a material

made up of multiple layers that periodically reverses the crystals optical axis. This technique

is known as quasi-phase-matching [86, 87, 88, 89].
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2.2.4 Permutation Symmetry

In deriving the coupled wave equations in section 2.2.2, we introduced the susceptibility,

χ(2), for second-order nonlinear effects. However, these nonlinear equations were introduced

in the context of scalar fields, and we thus neglected the tensor character of the susceptibility.

In this section, we briefly describe how we reduce the second-order susceptibility tensor to a

matrix which can then be reduced to a single coefficient, as described in section 3.3.1. Each

of the vector fields in three-wave mixing has three Cartesian components Ei(ωτ ), Ej(ωτ )

and Ek(ωτ ); the susceptibility tensor describes all possible interactions between these field

components. Indeed, if we consider the polarisation wave Pi(ωn + ωm) generated by the

interaction of the fields E(ωn) and E(ωm), we have

Pi(ωn + ωm) = ε0

∑
j,k

∑
n,m

χ
(2)
ijk(ωn + ωm, ωn, ωm)Ej(ωn)Ek(ωm), (2.18)

where the sum over n,m is taken such that each frequency can vary but their sum, ωn +

ωm, is fixed. Note, we initially consider a nonlinear material with dispersion; therefore,

the polarisation and nonlinear susceptibility take an explicit frequency dependence. If

we consider a general three-wave mixing process with fields at frequencies, ω1, ω2 and

ω3 = ω1 + ω2 then to describe the polarisation we require the following six tensors:

χ
(2)
ijk(ω3, ω1, ω2), χ

(2)
ijk(ω3, ω2, ω1), χ

(2)
ijk(ω2, ω3,−ω1),

χ
(2)
ijk(ω3,−ω1, ω2), χ

(2)
ijk(ω1, ω3,−ω2), χ

(2)
ijk(ω1,−ω2, ω3) (2.19)

and their conjugates in which all of the frequencies are exchanged with their negative.

Each of these susceptibility tensors are of dimensions 3 × 3 × 3 and are made up of 27

components. Fortunately, there are several symmetries associated with nonlinear crystals

that reduce the number of non-zero terms and simplify the analysis of the interactions.

Indeed, we can reduce the number of terms since any a measured field is real and, therefore,

the positive and negative frequency components are related as:

Ei(ωτ ) = E∗i (−ωτ ), (2.20)

Ej(ωτ ) = E∗j (−ωτ ),

Ek(ωτ ) = E∗k(−ωτ ).

Consequently, the polarisation has the following properties:

Pi(ω3 = ω1 + ω2) = P ∗i (−ω3 = −ω2 − ω1), (2.21)

Pj(ω3 = ω1 + ω2) = P ∗j (−ω3 = −ω2 − ω1),

Pk(ω3 = ω1 + ω2) = P ∗k (−ω3 = −ω2 − ω1)

29



and we only need to consider the six tensors in Eq. 2.19 or their complex conjugates to

describe the nonlinear interaction. We can further simplify due to the commutative nature

of the product Ej(ω1)Ek(ω2). Indeed, if an atom is first excited by a field oscillating at

ω1 and then by a field at ω2 the resulting dipole is no different from an oscillating dipole

created by the excitation of a field at ω2 preceding a field at ω1. This is known as intrinsic

permutation symmetry and is written in terms of the susceptibility tensors as

χ
(2)
ijk(ω3, ω2, ω1) = χ

(2)
ikj(ω3, ω1, ω2). (2.22)

Intrinsic permutation symmetry can be extended such that any of the indices, (i, j, k),

can be freely permuted given the corresponding frequency components are appropriately

interchanged as

χ
(2)
ijk(ω3, ω2, ω1) = χ

(2)
kij(ω1, ω3,−ω2) = χ

(2)
jki(ω2,−ω1, ω3). (2.23)

This is known as full-permutation or Kleinmann symmetry [42] and reduces the number

of coefficients required to describe an interaction to a 3 × 6 matrix with 18 terms. This

symmetry can be understood as an assumption that the response of the nonlinear material

is instantaneous and independent of the order of the frequency components; allowing the

indices to be freely permuted. In practice, depending on the crystal symmetry group, many

of these coefficients are zero: simplifying the analysis further [8, 41, 42]. Combining all

permutation symmetries and assuming a lossless media the polarisation P(ω3) is

Pi(ω3)
Pj(ω3)
Pk(ω3)

 = 2ε0

χ11 χ12 χ13 χ14 χ15 χ16

χ21 χ22 χ23 χ24 χ25 χ26

χ31 χ32 χ33 χ34 χ35 χ36




Ei(ω1)Ei(ω2)
Ej(ω1)Ej(ω2)
Ek(ω1)Ek(ω2)

Ej(ω1)Ek(ω2) + Ek(ω1)Ej(ω2)
Ek(ω1)Ei(ω2) + Ei(ω1)Ek(ω2)
Ei(ω1)Ej(ω2) + Ej(ω1)Ei(ω2)

 ,

(2.24)

where we have introduced contracted suffix notation for the elements χijk = χip according

to table 2.1.

jk: 11 22 33 23,32 31,13 21,12

p: 1 2 3 4 5 6

Table 2.1: Contacted suffix notation for uniaxial media [41]

2.2.5 Manley-Rowe Relations

Systems that exhibit full permutation symmetry are lossless, and in an optical system with

no loss, the total intensity or energy density will be conserved. In three-wave mixing the
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total intensity is defined as the sum of intensities of the fields propagating in the system as

I =
∑
τ

1

2
nτ ε0c

∞∫∫
−∞

E∗τ (r)Eτ (r) dx dy. (2.25)

The variation of this intensity along the direction of propagation is

d

dz
I =

∑
τ

1

2
nτε0c

∞∫∫
−∞

d

dz
(E∗τ (r)Eτ (r)) dx dy

=
∑
τ

1

2
nτε0c

∞∫∫
−∞

(
E∗τ (r)

d

dz
Eτ (r) + Eτ (r)

d

dz
E∗τ (r)

)
dx dy. (2.26)

With the equations of propagation defined in section 2.2.2, we find for the field E1(r) the

following variation in intensity

d

dz
I1 =

1

2
n1ε0c

∞∫∫
−∞

(
E∗1(r)

d

dz
E1(r) + E1(r)

d

dz
E∗1(r)

)
dx dy (2.27)

= iε0χ
(2)ω1

∞∫∫
−∞

(
E∗1(r)E∗2(r)E3(r)e−i∆kz − E1(r)E2(r)E∗3(r)ei∆kz

)
dx dy,

where
∞∫∫

−∞

E∗τ (r)∇2
TEτ (r) dx dy =

∞∫∫
−∞

Eτ (r)∇2
TE
∗
τ (r) dx dy. (2.28)

Similarly, for the fields E2(r) and E3(r), we have

d

dz
I2 =

1

2
n2ε0c

∞∫∫
−∞

(
E∗2(r)

d

dz
E2(r) + E2(r)

d

dz
E∗2(r)

)
dx dy (2.29)

= iε0χ
(2)ω2

∞∫∫
−∞

(
E∗1(r)E∗2(r)E3(r)e−i∆kz − E1(r)E2(r)E∗3(r)ei∆kz

)
dx dy,

and

d

dz
I3 =

1

2
n3ε0c

∞∫∫
−∞

(
E∗3(r)

d

dz
E3(r) + E3(r)

d

dz
E∗3(r)

)
dx dy (2.30)

= iε0χ
(2)ω3

∞∫∫
−∞

(
E1(r)E2(r)E∗3(r)ei∆kz − E∗1(r)E∗2(r)E3(r)e−i∆kz

)
dx dy.
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Using the above equations, we can show that the variation of the total intensity with

respect to the direction of propagation is conserved as

d

dz
I = iε0χ

(2) (ω3 − ω2 − ω1)

∞∫∫
−∞

(
E1(r)E2(r)E∗3(r)e−i∆kz − c.c.

)
dx dy = 0, (2.31)

when we have the relation ω3 = ω1 +ω2. Using Eq. 2.27, 2.29 and 2.30, the conservation of

intensity can be restated in the following way

d

dz

(
I1

ω1

)
=

d

dz

(
I2

ω2

)
= − d

dz

(
I3

ω3

)
, (2.32)

which are known as the Manley-Rowe relations [8, 41]. These relations show that the

creation rate of photons with energy ~ω1 and ~ω2 is equal to the rate of the annihilation of

photons at energy ~ω3 in a lossless medium. Thus, although the derivation presented here is

purely classical, it offers insight into the quantum interpretation of nonlinear interactions [9].

2.3 Small Perturbation Fields

Owing to the nonlinear polarisation waves in three-wave mixing the method of optical

eigenmodes introduced in section 1.4 is no longer valid. In this section, we introduce small

perturbation fields to the nonlinear equations to restore the principle of superposition and

reintroduce the concept of eigenmode decomposition to intensity-dependent optical systems.

We begin with the full nonlinear equations for three-wave mixing:

−i ∂
∂z
E1(r) =

1

2k1
∇2
TE1(r) + χ1E

∗
2(r)E3(r)e−i∆kz, (2.33)

−i ∂
∂z
E2(r) =

1

2k2
∇2
TE2(r) + χ2E

∗
1(r)E3(r)e−i∆kz, (2.34)

−i ∂
∂z
E3(r) =

1

2k3
∇2
TE3(r) + χ3E1(r)E2(r)ei∆kz, (2.35)

where χτ = χ(2)ωτ
2nτ c

and ∆k = k1+k2−k3 is the phase mismatch, as discussed in section 2.2.3.

In a linear system if we have two fields which we label Eτ,p(r) and Eτ,b(r) that both satisfy

the equations of propagation and have the same wavevectors and frequency then their

superposition, Eτ,p(r) + Eτ,b(r), is also a solution. If we input the superposition into the

nonlinear equations we find:

− i ∂
∂z

(E1,b(r) + E1,p(r)) =
1

2k1
∇2
T (E1,b(r) + E1,p(r)) (2.36)

+ χ1

(
E∗2,b(r)E3,b(r) + E∗2,b(r)E3,p(r) + E∗2,p(r)E3,b(r) + E∗2,p(r)E3,p(r)

)
e−i∆kz,
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Figure 2.3: Energy-level diagram where vertical dashed lines correspond to small pertur-
bation fields, Eτ,p(r), and the solid lines denote the background fields, Eτ,b(r). As we are
off-resonance, the horizontal lines correspond to unobservable, short-lived, virtual states.

− i ∂
∂z

(E2,b(r) + E2,p(r)) =
1

2k2
∇2
T (E2,b(r) + E2,p(r)) (2.37)

+ χ3

(
E∗1,b(r)E3,b(r) + E∗1,b(r)E3,p(r) + E∗1,p(r)E3,b(r) + E∗1,p(r)E3,p(r)

)
e−i∆kz,

− i ∂
∂z

(E3,b(r) + E3,p(r)) =
1

2k3
∇2
T (E3,b(r) + E3,p(r)) (2.38)

+ χ3

(
E1,b(r)E2,b(r) + E1,b(r)E2,p(r) + E1,p(r)E2,b(r) + E1,p(r)E2,p(r)

)
ei∆kz.

As expected, the superposition is not a solution of the nonlinear equations due to the

mixing terms between the two fields. With this mixing, it is not clear how to separate the

above equations for each of the fields in the superposition. In order to progress beyond

this issue, we change the physical meaning of the solutions in the superposition. Indeed,

we assume that the fields Eτ,b(r) are high-intensity background fields and that the fields

Eτ,p(r) correspond to low-intensity “perturbation” fields. Furthermore, we assume that

these perturbation fields are sufficiently small with respect to the background fields such
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that |Eτ,p(r)| � |Eτ,b(r)| and, consequently, the terms that are quadratic in Eτ,p(r) are

neglected. In this approximation Eq. 2.36, for example, is

− i ∂
∂z

(E1,b(r) + E1,p(r)) =
1

2k1
∇2
T (E1,b(r) + E1,p(r)) (2.39)

+ χ1

(
E∗2,b(r)E3,b(r) + E∗2,p(r)E3,b(r) + E∗2,b(r)E3,p(r)

)
e−i∆kz,

which, for a thin slice of material, is written in terms of finite differences as

E1,b(x, y,∆z) + E1,p(x, y,∆z)

= E1,b(x, y, 0) + E1,p(x, y, 0) +
i∆z

2k1
∇2
T

(
E1,b(x, y, 0) + E1,p(x, y, 0)

)
(2.40)

+ iχ1

(
E∗2,b(x, y, 0)E3,b(x, y, 0) + E∗2,p(x, y, 0)E3,b(x, y, 0) + E∗2,b(x, y, 0)E3,p(x, y, 0)

)
∆z,

where ∆z is the thickness of the slice of the nonlinear material. As we assume that the

background field is large in field strength compared to the perturbation fields, we have∫∫
|E1,b(x, y, 0)| dxdy �

∫∫
|E1,p(x, y, 0)| dxdy,

and ∫∫
|E1,b(x, y,∆z)| dxdy �

∫∫
|E1,p(x, y,∆z)| dxdy,

from which the conditions:∫∫
|χ1E

∗
2,b(x, y, 0)E3,b(x, y, 0)∆z| dxdy �

∫∫
|χ1E

∗
2,p(x, y, 0)E3,b(x, y, 0)∆z| dxdy,∫∫

|χ1E
∗
2,b(x, y, 0)E3,b(x, y, 0)∆z| dxdy �

∫∫
|χ1E

∗
2,b(x, y, 0)E3,p(x, y, 0)∆z| dxdy,

follow. A consequence of the above inequalities is that any interaction between the high-

intensity background fields and the perturbation fields will disturb the small perturbations

significantly but will influence the background fields a negligible amount. Hence, any in-

teraction between the background and perturbation fields creates photons only in the fields

Eτ,p(r). If the above conditions are satisfied for each slice of a bulk nonlinear crystal, then

we can factor Eqs. 2.36 to 2.38 into the following set of equations:

− i ∂
∂z
E1,b(r) =

1

2k1
∇2
TE1,b(r) + χ1E

∗
2,b(r)E3,b(r)e−i∆kz, (2.41)

− i ∂
∂z
E2,b(r) =

1

2k2
∇2
TE2,b(r) + χ2E

∗
1,b(r)E3,b(r)e−i∆kz, (2.42)

− i ∂
∂z
E3,b(r) =

1

2k3
∇2
TE3,b(r) + χ3E1,b(r)E2,b(r)ei∆kz, (2.43)

− i ∂
∂z
E1,p(r) =

1

2k1
∇2
TE1,p(r) + χ1

(
E∗2,b(r)E3,p(r) + E∗2,p(r)E3,b(r)

)
e−i∆kz, (2.44)

− i ∂
∂z
E2,p(r) =

1

2k2
∇2
TE2,p(r) + χ2

(
E∗1,b(r)E3,p(r) + E∗1,p(r)E3,b(r)

)
e−i∆kz, (2.45)

− i ∂
∂z
E3,p(r) =

1

2k3
∇2
TE3,p(r) + χ3 (E1,b(r)E2,p(r) + E1,p(r)E2,b(r)) ei∆kz. (2.46)
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The first three of these equations are identical to the three-wave mixing equations de-

scribed in section 2.2.2. The latter three equations, however, describe the evolution of the

low-intensity perturbation fields that, although linear, depend on background fields whose

evolution is nonlinear. Vitally, due to the linearity of these equations, we can reintroduce

the method of optical eigenmodes to the perturbation fields. The energy-level diagrams of

all of the interactions associated with these fields are illustrated in figure 2.3.

2.3.1 Energy Conservation of Perturbation Fields

In section 2.2.5, we outlined the Manley-Rowe relations that expressed the conservation of

intensity for three-wave mixing processes. In a similar manner, it is instructive to check the

conservation of intensity of the system with the low-intensity perturbation fields. In this

case, the total system intensity is defined as

I =
∑
τ

1

2
nτε0c

∞∫∫
−∞

(E∗τ,b(r)Eτ,b(r) +E∗τ,b(r)Eτ,p(r) +E∗τ,p(r)Eτ,b(r) +E∗τ,p(r)Eτ,p(r)) dx dy.

(2.47)

As mentioned in section 2.3, we assume the perturbations are sufficiently small such that

|Eτ,p(r)| � |Eτ,b(r)| and the terms that are quadratic in Eτ,p(r) are negligible. The first

term in the total intensity, Eq. 2.47, involves only the background fields and corresponds

to three-wave mixing with conserved intensity as described in section 2.2.5. The variation

of the total intensity can hence be written as

d

dz
I =

∑
τ

1

2
nτε0c

∞∫∫
−∞

(
E∗τ,b(r)

d

dz
Eτ,p(r) + Eτ,p(r)

d

dz
E∗τ,b(r) (2.48)

+ E∗τ,p(r)
d

dz
Eτ,b(r) + Eτ,b(r)

d

dz
E∗τ,p(r)

)
dx dy.

Using Eqs. 2.41 to 2.46 and their conjugates we find:

d

dz
I1 =

1

2
iε0χ

(2)ω1

∞∫∫
−∞

(E∗1,b(r)E∗2,b(r)E3,p(r)e−i∆kz + E∗1,b(r)E∗2,p(r)E3,b(r)e−i∆kz (2.49)

+ E∗1,p(r)E∗2,b(r)E3,b(r)e−i∆kz − c.c.) dx dy,

d

dz
I2 =

1

2
iε0χ

(2)ω2

∞∫∫
−∞

(E∗1,b(r)E∗2,b(r)E3,p(r)e−i∆kz + E∗1,b(r)E∗2,p(r)E3,b(r)e−i∆kz (2.50)

+ E∗1,p(r)E∗2,b(r)E3,b(r)e−i∆kz − c.c.) dx dy,
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d

dz
I3 =

1

2
iε0χ

(2)ω3

∞∫∫
−∞

(E1,b(r)E2,b(r)E∗3,p(r)ei∆kz + E1,b(r)E2,p(r)E∗3,b(r)ei∆kz (2.51)

+ E1,p(r)E2,b(r)E∗3,b(r)ei∆kz − c.c.) dx dy.

As the Laplacian operator is Hermitian upon integration over infinite bounds, as in

Eq. 2.28, these terms cancel out in the above expressions. With these relations, we can

show that the total intensity is conserved as

d

dz
I =

1

2
iε0χ

(2)(ω3 − ω2 − ω1)

∞∫∫
−∞

(E∗1,b(r)E∗2,b(r)E3,p(r)e−i∆kz (2.52)

+ E∗1,p(r)E∗2,b(r)E3,b(r)e−i∆kz + E∗1,b(r)E∗2,p(r)E3,b(r)e−i∆kz − c.c.) dx dy = 0,

where we have assumed full permutation symmetry, see section 2.2.4, such that χ(2) is the

same for all three equations and that ω3 = ω1 + ω2. From a physical perspective, this is

a reasonable result as we are in a lossless system, and thus there is no mechanism for the

system to lose or gain energy.

2.3.2 Sum-Frequency Generation

In section 2.3, we described the evolution of fields that are dependent on some nonlinear

interacting background fields. As illustrated in figure 2.3, these equations give rise to a

number of interactions between low-intensity perturbation fields and the background. If we

assume now that our input is a high-intensity field of frequency ω1 with a weaker input at

ω2, then these fields will interact to generate a polarisation wave at ω3. Indeed, if we have

E2,b(r) = E3,b(r) = 0 then Eqs. 2.41 to 2.46 simplify to the following set of equations:

− i ∂
∂z
E1,b(r) =

1

2k1
∇2
TE1,b(r), (2.53)

− i ∂
∂z
E2,p(r) =

1

2k2
∇2
TE2,p(r) + χ2E

∗
1,b(r)E3,p(r), (2.54)

− i ∂
∂z
E3,p(r) =

1

2k3
∇2
TE3,p(r) + χ3E1,b(r)E2,p(r), (2.55)

which describe the interaction of two fields mediated by a high-intensity background field

which we denote E1,b(r) and, for simplicity, we have assumed perfect phase matching in

which ∆k = k1 + k2 − k3 = 0. If we had at the input no signal on the field E3,p(r) the

interaction between E1,b(r) and E2,p(r) would generate a signal at the sum-frequency, ω3.

Hence, throughout the rest of the thesis, we refer to this set of equations as those describing

sum-frequency generation.
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In their current form the equations for sum-frequency generation, Eqs. 2.53 to 2.55, are

difficult to solve analytically. However, if we are only interested in the variation of intensity

associated with each field and not the transverse field profiles, then one can describe the

evolution of the fields in 1D as:

d

dz
E2,p(z) = iχ2E

∗
1,bE3,p(z), (2.56)

d

dz
E3,p(z) = iχ3E1,bE2,p(z), (2.57)

where the background field is constant with respect to the propagation direction. If we take

the second derivative of Eqs. 2.56 and 2.57 we find:

d2

dz2
E2,p(z) = iχ2E

∗
1,b

d

dz
E3,p(z) = −κ2E2,p(z), (2.58)

d2

dz2
E3,p(z) = iχ3E1,b

d

dz
E2,p(z) = −κ2E3,p(z), (2.59)

where κ2 = χ2χ3|E1,b|2. The general solution for E2,p(z) is

E2,p(z) = C1 sin(κz) + C2cos(κz). (2.60)

Inputting this solution into Eq. 2.56 we find

E3,p(z) = − i

χ2E∗1,b

d

dz
E2,p(z) = − iκ

χ2E∗1,b
[C1 cos(κz)− C2 sin(κz)] . (2.61)

If we assume that we have no signal at ω3 at the input then C1 = 0 and C2 = E2,p(0)

giving the following:

E2,p(z) = E2,p(0) cos(κz), (2.62)

E3,p(z) =
iκ

χ2E∗1,b
E2,p(0) sin(κz) =

i
√
χ3|E1,b|√
χ2E∗1,b

E2,p(0) sin(κz). (2.63)

In general, E1,b is complex and in polar form is written E∗1,b = |E1,b|e−iφ1 such that

|E1,b|/E∗1,b = eiφ1 and

E3,p(z) =
i
√
χ3√
χ2

E2,p(0) sin(κz)eiφ1 . (2.64)

Figure 2.4 gives an example of how these solutions evolve through a nonlinear material.

It is clear from the figure that the total intensity with respect to the small perturbation

fields E3,p(z) and E2,p(z) is not conserved. Indeed, if at some moment we have more energy

in the field E3,p(z) than in E2,p(z) then the intensity is more than if we had E2,p(z) with

more energy than E3,p(z) as ~ω3 > ~ω2. We can check this analytically as

I = E∗2,p(z)E2,p(z) + E∗3,p(z)E3,p(z) (2.65)

= |E2,p(0)|2 cos(κz)2 +
χ3

χ2
|E2,p(0)|2sin(κz)2

= |E2,p(0)|2
(

cos(κz)2 +
ω3n2

ω2n3
sin(κz)2

)
.
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Figure 2.4: Variation of the intensity of fields E3,p(z) and E2,p(z) for sum-frequency gener-
ation in arb. units.

Evidently, the only condition in which the above intensity is conserved is if the two

frequencies are degenerate, i.e. ω2 = ω3. In the context of sum-frequency generation, this

is only possible in the trivial case where the non-depleted background field is a D.C. field

with ω1 = 0.

2.3.3 Parametric Down-Conversion

If we assume now that the background field E3,b(r) is non-depleting with E1,b(r) = E2,b(r) =

0 and ∆k = 0 then our set of propagation equations are:

− i ∂
∂z
E3,b(r) =

1

2k3
∇2
TE3,b(r), (2.66)

− i ∂
∂z
E1,p(r) =

1

2k1
∇2
TE1,p(r) + χ1E

∗
2,p(r)E3,b(r), (2.67)

− i ∂
∂z
E2,p(r) =

1

2k2
∇2
TE2,p(r) + χ2E

∗
1,p(r)E3,b(r). (2.68)

As with the previous section, one can develop insight into these equations by considering

the intensity variation of the two fields E1,p(z) and E2,p(z). Again, we consider the 1D

evolution of the complex amplitudes with a constant background giving the equations:

− i d
dz
E1,p(z) = χ1E

∗
2,p(z)E3,b, (2.69)

− i d
dz
E2,p(z) = χ2E

∗
1,p(z)E3,b, (2.70)
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(a) (b)

Figure 2.5: Energy-level diagrams for (a) sum-frequency generation and (b) parametric
down-conversion. As we are off-resonance, the horizontal lines correspond to unobservable,
short-lived, virtual states.

which we refer to collectively as describing the effect of parametric down-conversion. Again,

we take the second derivative of the equations and find:

d2

dz2
E1,p(z) = iχ1E3,b

d

dz
E∗2,p(z) = κ2E1,p(z), (2.71)

d2

dz2
E2,p(z) = iχ2E3,b

d

dz
E∗1,p(z) = κ2E2,p(z), (2.72)

with κ2 = χ1χ2|E3,b|2. The general solution of the first of these equations is

E1,p(z) = C1 sinh(κz) + C2cosh(κz). (2.73)

If we assume we have E2,p(0) = 0 and E1,p(0) is arbitrary then we have for E1,p(z) a

solution of the form

E1,p(z) = E1,p(0) cosh(κz). (2.74)

Moreover, from Eq. 2.69, we can write E2,p(z) with respect to E1,p(z) as

E2,p(z) =
iκ

χ1E∗3,b
E1,p(0) sinh(κz) = i

√
χ2|E3,b|√
χ1E∗3,b

E1,p(0) sinh(κz). (2.75)

The background field is, in general complex, and in polar form, is written E∗3,b =

|E3,b|e−iφ3 such that |E3,b|/E∗3,b = eiφ3 . Hence the solutions are now written as:

E1,p(z) = E1,p(0) cosh(κz), E2,p(z) = i

√
χ2√
χ1
E1,p(0) sinh(κz)eiφ3 . (2.76)
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Figure 2.6: Variation of the intensity of the fields E2,p(z) and E1,p(z) in arb. units.

Figure 2.6 shows the behaviour of these solutions, which are not oscillatory like the

solutions for sum-frequency generation shown in figure 2.4. Indeed, in parametric down-

conversion, there is an exponential growth of the perturbation fields when κz � 1. From

a physical point of view, we can understand the distinction between the two effects with

respect to the energy level diagrams in figure 2.5. In the case of sum-frequency generation,

the polarisation wave oscillating at ω3 is generated by an interaction with the field at ω2

and the background field at ω1. In the case of parametric down-conversion, however, the

field at ω3 decays into radiation that contributes to both of the low-intensity perturbation

fields. This leads to exponential growth, as illustrated in figure 2.6. In this case, it is clear

that the intensity is not conserved which can be seen mathematically as

I = E∗1,p(z)E1,p(z) + E∗2,p(z)E2,p(z) (2.77)

= |E1,p(0)|2 cosh(κz)2 +
χ2

χ1
|E1,p(0)|2 sinh(κz)2

= |E1,p(0)|2
(

cosh(κz)2 +
ω2n1

ω1n2
sinh(κz)2

)
.

The two sets of equations describing sum-frequency generation and parametric down-

conversion correspond to the simplest cases of the evolution of the perturbation fields de-

scribed by Eqs. 2.41 to 2.46. In these simplified cases, the number of interaction terms

is minimised such that the symmetries associated with the interactions can be easily un-

derstood. Furthermore, by considering sum-frequency generation and parametric down-

conversion, we are describing effects that are commonly used and well understood in the

field of nonlinear optics [8, 9, 10].
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2.4 Conclusions

In this chapter, we have introduced the background associated with nonlinear optics that

is relevant to the work herein. We first outlined how high-intensity light can lead to optical

nonlinearities in the context of oscillating dipoles. With these optical nonlinearities, we can

derive a set of coupled partial differential equations that describe how fields with certain

phase-matching conditions will evolve. In particular, we considered second-order nonlinear

systems from which effects like sum-frequency generation and parametric down-conversion

arise: known collectively as three-wave mixing. Due to the nonlinearity of the equations

describing three-wave mixing, the eigenmode decomposition conventionally used in linear

optics is no longer valid. However, as described in section 2.3, we can introduce low-intensity

perturbation fields which, given the intensity is small enough, evolve according to a set of

coupled partial differential equations that are linear. Therefore, we can reintroduce the

principle of superposition with respect to these low-intensity fields and again utilise an

eigendecomposition to describe the system. Unlike the linear systems discussed in the first

chapter, however, the perturbation fields interact with each other resulting in a non-trivial

relationship between fields at the input and output. Indeed, the equations we introduce for

these fields, although linear, are characteristic of a nonlinear background interaction. In

the simplest cases, where the initial conditions result in a single high-intensity background

field, we recover the two well-known second-order nonlinear effects known as parametric

down-conversion and sum-frequency generation.
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Chapter 3

Eigenmodes of Interacting Fields
in Three-Wave Mixing

3.1 Introduction

In the previous chapter, we saw how the introduction of low-intensity perturbation fields

into nonlinear systems allows one to reestablish the principle of linear superposition and,

consequently, the concept of eigenmodes. In particular, we highlighted two simplified cases

of the mixing of two low-intensity fields corresponding to sum-frequency generation and

parametric down-conversion. In this chapter, we introduce the method of eigenmode de-

composition to both of these effects. Unlike the eigenmodes of linear optics, these novel

modes correspond to a set of orthogonal beams distributed across multiple wavelengths.

With these eigenmodes defined, we highlight the influence of the high-intensity background

field on the form of the modes by considering various examples in systems with circular

and rectangular symmetry. In these examples, we are primarily concerned with the optical

eigenmodes with respect to the total intensity of the fields incident on some region of de-

tection and the propagation eigenmodes of the systems. Finally, in the last section of the

chapter, we discuss the symmetry and degeneracy associated with the optical eigenmodes

for systems with circular and rectangular geometry.

As discussed in section 1.4.3, the use of an eigenmode decomposition has been utilised in

various nonlinear systems. In all of these cases, however, the main concern of the research

was with the propagation eigenmodes. As outlined in section 1.4, the optical eigenmodes

allow one to define a set of mutually orthogonal fields with respect to any Hermitian optical

measure. Consequently, by introducing the method of optical eigenmodes to the perturba-

tion fields, defined in section 2.3, we are expanding the domain of light-matter interactions

in which we have fields of different wavelengths interacting with one another - a behaviour

not observed in conventional linear systems. Furthermore, due to the low intensity of the
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perturbation fields, the systems we discuss in this chapter are well suited to going towards

the single or multiphoton level.

3.2 Sum-Frequency Generation

In the previous chapter, in section 2.3, we introduced a set of equations describing the

propagation of small perturbation fields in the presence of a non-depleting pump field. In

the simplest case of a single background field, we observed two distinct nonlinear effects. In

this section, we are concerned with sum-frequency generation [90]. Indeed, in section 3.2.1,

we introduce the method of optical eigenmodes to this effect before highlighting the char-

acteristic properties of these eigenmodes with numerical examples in sections 3.3.2 and

3.4.3. Later in the chapter, in section 3.4.4, we discuss the propagation eigenmodes of sum-

frequency generation, which we subsequently utilise in the final chapter when considering

the quantum behaviour of three-wave mixing systems.

3.2.1 Optical Eigenmodes in Sum-Frequency Generation

The equations for sum-frequency generation are, as shown in section 2.3, of the form:

− i ∂
∂z
Eb(r) =

1

2k1
∇2
TEb(r), (3.1)

− i ∂
∂z
E2(r) =

1

2k2
∇2
TE2(r) + χ2E

∗
b (r)E3(r)e−i∆kz, (3.2)

− i ∂
∂z
E3(r) =

1

2k3
∇2
TE3(r) + χ3Eb(r)E2(r)ei∆kz, (3.3)

where E1,b(r) = Eb(r) is our high-intensity pump field and, for notational simplicity, we

have dropped the p subscript for the perturbation fields. As discussed in section 2.3, we

have the frequency relation ω3 = ω1+ω2 with ω2 > ω1 > 0. We decompose the perturbation

fields at the input plane as

Eτ (r1) =

N∑
j=1

aτ,jEτ,j(r1), (3.4)

where the basis elements, Eτ,j(r1), form an orthogonal basis at the input of the nonlinear

material satisfying the following condition∫∫∫
E∗τ,j(r1)Eσ,k(r1)e−i(ωσ−ωτ )t dx1dy1dt = 2πδ(ωτ − ωσ)δjk. (3.5)

We choose this as our condition for orthogonality as three-wave mixing conserves the total

intensity and, thus, conserves the above inner product. As observed in section 2.3.2 and

2.3.3, the local intensity of the perturbation fields is not always conserved, however, this

product is suitable for sum-frequency generation after a simple transformation of the field
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Figure 3.1: Optical system in which the field F (r2) incident on the output plane is dependent
on the input field E(r1) and the χ(2) nonlinear material.

variables; discussed in more detail in sections 3.4.1 and 4.3.1. Issues do arise when we

consider parametric down-conversion as there is no simple transformation that conserves

the above inner product, as shown in sections 3.6 and 4.4.1. In all cases, this condition

for orthogonal fields is satisfied at the input of the nonlinear crystal. However, due to the

interaction term in the equations of evolution, the modes will interact in a manner such

that Eq. 3.5 is not satisfied for z > 0. Indeed, with the above basis decomposition, Eq. 3.4,

acting as our initial conditions, the equations for sum-frequency generation are written:

− i ∂
∂z
E2,j(r) =

1

2k2
∇2
TE2,j(r) +

N∑
k=1

χ2E
∗
b (r)E3,k(r)e−i∆kz, (3.6)

− i ∂
∂z
E3,j(r) =

1

2k3
∇2
TE3,j(r) +

N∑
k=1

χ3Eb(r)E2,k(r)ei∆kz. (3.7)

As we are not interested in the mode decomposition of the background field the interac-

tion terms that would normally correspond to the tensor product (Eb,1(r) + · · ·+ Eb,N (r))⊗
(Eτ,1(r) + · · ·+ Eτ,N (r)) reduces to the product Eb(r) (Eτ,1(r) + · · ·+ Eτ,N (r)). After prop-

agating through the second-order nonlinear material, the field decomposition at the output

plane is

Fτ (r2) =

N∑
j=1

aτ,jFτ,j(r2), (3.8)

where the coefficients aτ,j are the same as those in the initial decomposition due to the

linearity of the coupled wave equations. In the output plane, see figure 3.1, we define the
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Hermitian form of some observable Θ related to the operator O in a region of interest Ω as

Θ =
∑
τ

N∑
j,k

a∗τ,jaτ,k

(∫
Ω
F ∗τ,j(r2)OFτ,k(r2)dΩ

)
= a†Oa, (3.9)

where the eigenvectors of the matrix O define the optical eigenmodes of the measure in

question. A simple example of an optical measurement is the total intensity of the fields.

In the context of sum-frequency generation the total intensity at the output plane for some

region of detection, Ω, is defined as

I =
∑
τ

N∑
j,k

a∗τ,jaτ,k

(∫
Ω

1

2
nτε0c F

∗
τ,j(r2)Fτ,k(r2)dΩ

)
= a†Ma. (3.10)

Similar to section 1.4.2, the elements of the Hermitian matrix M correspond to the cross-

interaction of all of the probe fields. The vectors a and a† contain complex coefficients and

their conjugates,

a = (aτ,1, . . . , aτ,N , aσ,1, . . . , aσ,N )> (3.11)

and

a† =
(
a∗τ,1, . . . , a

∗
τ,N , a

∗
σ,1, . . . , a

∗
σ,N

)
, (3.12)

where N is the number of independent basis elements in the field decomposition given by

Eq. 3.4. Unlike the intensity operator for linear optics, defined in section 1.4.2, here we

have two fields contributing to the total intensity. With this, we can split the measure into

two distinct contributions to the total intensity, each with its own Hermitian form,

I =

N∑
j,k

∫
Ω

(
1

2
n2ε0c a

∗
2,ja2,kF

∗
2,j(r2)F2,k(r2) +

1

2
n3ε0c a

∗
3,ja3,kF

∗
3,j(r2)F3,k(r2)

)
dΩ

= a†2M2a2 + a†3M3a3

= a†Ma. (3.13)

By writing the intensity in this way, we can consider the intensity of the fields at ω2 or

ω3 independent of the other field. However, the interaction of the perturbation fields will

influence these frequency-dependent measurements. Collectively, these Hermitian forms

make up the total intensity which does not distinguish between the wavelengths. If we

consider the total intensity, one can diagonalise the cross-interaction matrix and define the

components of the optical eigenmodes at the output and input as:

Fτ,k(r2) =

N∑
j=1

vkjFτ,j(r2), (3.14)
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Eτ,k(r1) =

N∑
j=1

vkjEτ,j(r1), (3.15)

where vkj are the elements of the kth eigenvector of M associated with the eigenvalue λk.

For each of these optical eigenmodes, the total intensity in the region of detection is given

by ∑
τ

∫
Ω

1

2
nτε0c F∗τ,j(r2)Fτ,k(r2) dΩ = δjkλj , (3.16)

where Fτ,k(r2) is the component of the kth eigenmode, Eq. 3.89, oscillating at the frequency

ωτ .

Due to the interaction between the perturbation fields, the optical eigenmodes introduced

here are, in general, distributed across both wavelengths. Consequently, as the eigenmodes

propagate, there will be an interaction between the components that define them. Nev-

ertheless, as the eigenmodes correspond to an orthogonal set, there will be no interaction

between the eigenmodes themselves. Furthermore, as the interaction of the fields is medi-

ated by the background field, Eb(r), the symmetry and interaction of the eigenmodes will

be characteristic of the symmetry of the background. It is these properties that distinguish

our low-intensity perturbation eigenmodes from the eigenmodes of linear optics defined in

section 1.4.2.

3.3 Numerical Examples

In this section, we outline various numerical examples of the intensity optical eigenmodes

for sum-frequency generation. In all of the numerical examples here, we have used the

computer software Mathematica [91], and all of the nonlinear crystal optics parameters

were calculated using the free software SNLO and references therein [92]. We first consider

the intensity eigenmodes of a bulk nonlinear material with the fields decomposed into a set

of Hermite-Gaussian and Laguerre-Gaussian modes as introduced in sections 1.3.2 and 1.2,

respectively.

3.3.1 System Set-up

As we are in the non-depleting pump regime, discussed in section 2.3, we must ensure

that the field intensities associated with the perturbation and background fields satisfy the

approximation from a numerical perspective. In the case of sum-frequency generation, this

approximation is not as limiting as it is for parametric down-conversion as the sum-frequency

solutions are oscillatory; therefore, there is no exponential gain or loss associated with the

interacting fields. Nevertheless, the background should still be large in intensity compared
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to the small perturbation fields to satisfy the non-depleting pump approximation. In the

examples highlighted in this chapter, we will consider background fields that are 104 Vm−1

larger than the perturbation fields. As we define intensity as

Iτ =

∫∫
1

2
nτε0cE

∗
τ (r)Eτ (r) dx dy, (3.17)

there will be an intensity difference of 1012 Wm−2 between the background and perturbation

fields. In the case of sum-frequency generation, a couple of orders of magnitude in the

difference in intensity between the pump and perturbation fields is sufficient to satisfy the

non-depleted pump approximation due to the oscillatory nature of the solutions. The only

additional constraint is that the background field must be of sufficient strength to induce

optical nonlinearities in the crystal [8, 9].

In addition to the field intensity, we must consider the crystal optics of our numerical

set-up. In the examples that follow, we consider the uniaxial crystal Potassium Dihydrogen

Phosphate (KH2PO4) that is in the 2m symmetry point group. KH2PO4 or KDP is a non-

centrosymmetric crystal that permits a non-zero χ(2) and has a high damage threshold [93].

Vitally, this crystal is suitable for sum-frequency generation, as shown in [94, 95, 96]. A fur-

ther benefit of using KDP is that there are only three non-zero elements in the susceptibility

tensor, χ14 = χ25 and χ36 [10]. Indeed, the expression given by Eq. 2.24 becomes

Pi(ω3)
Pj(ω3)
Pk(ω3)

 = 2ε0

0 0 0 χ14 0 0
0 0 0 0 χ14 0
0 0 0 0 0 χ36




Ei(ω1)Ei(ω2)
Ej(ω1)Ej(ω2)
Ek(ω1)Ek(ω2)

Ej(ω1)Ek(ω2) + Ek(ω1)Ej(ω2)
Ek(ω1)Ei(ω2) + Ei(ω1)Ek(ω2)
Ei(ω1)Ej(ω2) + Ej(ω1)Ei(ω2)

 . (3.18)

As outlined in section 2.2.3, in uniaxial crystals, it is common for the high-frequency field

to be polarised along the axis with the highest refractive index. In the case of KDP, which

is a negative uniaxial crystal, we assume the field at ω3 is polarised along the extraordinary

axis denoted e in figure 3.2. Moreover, if we assume we have type I phase matching, see

section 2.2.3, then the fields at ω1 and ω2 are polarised along the ordinary axis which

is denoted o in the figure. As the fields E(ωτ ) are polarised in the x-y plane, we have

Ek(ωτ ) = 0, and the above matrix equation can be simplified to

Pk(ω3) = 2ε0χ36 [Ei(ω1)Ej(ω2) + Ej(ω1)Ei(ω2)] . (3.19)
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Figure 3.2: Type I phase matching for KDP crystal where k1 and k2 are the wavevectors
of the fields E1(r) and E2(r), which are polarised along the ordinary axis in the x-y plane,
denoted by o. The polarisation perpendicular to kτ and o corresponds to the extraordinary
axis and is denoted by e.

From the diagram, figure 3.2, one can see that the Cartesian components, Ei(ωτ ) and

Ej(ωτ ), of the fields propagating in the direction of kτ are:

Ei(ωτ ) = Eτ (r) sin (φ) , (3.20)

Ej(ωτ ) = Eτ (r) cos (φ) , (3.21)

where φ is the azimuthal angle between the k-vector and the x-axis and Eτ (r) is a transverse

amplitude of the fields. The polarisation along the direction of the optical axis is therefore

Pk(ω3) = 4ε0χ36E1(r)E2(r) sin(φ) cos(φ) = 2ε0χ36E1(r)E2(r) sin(2φ). (3.22)

If the angle between the direction of propagation and the optical axis is θ then the

polarisation wave that contributes along k3(= k1 + k2) is P (ω3) = Pk(ω3) sin(θ) such that

P (ω3) = 2ε0χ36E1(r)E2(r) sin(θ), (3.23)
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where φ = π/4. If we assume the crystal has full permutation symmetry, described in

section 2.2.4, then the other polarisation waves are written:

P (ω2) = 2ε0χ36E
∗
1(r)E3(r) sin(θ), (3.24)

P (ω1) = 2ε0χ36E
∗
2(r)E3(r) sin(θ), (3.25)

with χ36 = 0.558 pm/V and for the wavelengths, λ1 = 1064, λ2 = 740 and λ3 = 436.5 nm

we have the refractive indices no1 = 1.525, no2 = 1.527 and ne3 = 1.537 which gives an angle

θ = 41.9◦ at a temperature of 293 K [92].

3.3.2 Rectangular Symmetry

In this section, we decompose our fields into the Hermite-Gaussian modes of free space

outlined in section 1.3.2. As discussed, these fields are orthogonal to each other as they

propagate from the source to the input of the KDP crystal. As these fields propagate

through the nonlinear material, they interact with one another and lose their orthogonality

due to the coupling terms in the equations of propagation. Consequently, the orthogonal

eigenmodes defined at the output of the nonlinear crystal are distinct from those of con-

ventional linear systems that were discussed in section 1.4. In this section, we consider the

intensity optical eigenmodes as an example to illustrate the difference between the eigen-

modes of linear optics and the eigenmodes of our perturbation fields. In particular, by

considering background fields with different symmetries, we observe how the background

influences the eigenmodes.

To calculate the eigenmodes, we consider a basis set of 36 Hermite-Gaussian modes for

all n and m truncated up to the maximal index n + m ≤ 7. As we have two distinct

fields, which we can decompose onto this basis, we have a total of 72 elements that are

orthogonal to one another at the input of the nonlinear crystal. Additionally, we calculate

the output fields using the split-step method, outlined in Appendix A, decomposed onto a

discrete 42 × 42 grid. As a first example, we consider a HG00 background field, as shown

in figure 3.3 (a). Figure 3.4 illustrates the field profiles of the first 20 intensity eigenmodes

ordered with respect to their eigenvalues from top left to bottom right. In this example,

the background field is rotationally symmetric about its origin and, consequently, the eigen-

modes also exhibit this symmetry. Moreover, as this rotational symmetry is not broken by

the intensity operator, we observe degeneracy in the eigenvalues shown in figure 3.7 (a).
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(a) (b)

(c) (d)

Figure 3.3: Hermite-Gaussian background fields with indices (a) (n,m) = (0, 0), (b)
(n,m) = (0, 1) and (c) (n,m) = (1, 1) represented on false colour map (d) where colour
denotes phase and hue denotes intensity.

In general, the Hermite-Gaussian intensity profiles are invariant with respect to some

spatial translation or reflection of the x-y plane, Vx or Vy, defined as:

Vx :

xy
z

→
−xy
z

 , (3.26)

Vy :

xy
z

→
 x
−y
z

 . (3.27)

If these symmetries are not probed, it will lead to degenerate eigenmodes as has been

observed with the HG00 example. We can categorise all of the operations that leave the
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(a)

(b)

Figure 3.4: The first 20 intensity optical eigenmodes for an HG00 background with compo-
nents (a) F2,k(r2) and (b) F3,k(r2). The eigenmodes are ordered from the top left to the
bottom right in descending intensity. First row: Modes 1 to 5 and second row: Modes 6 to
10 etc. Note, corresponding components in (a) and (b) define a single optical eigenmode.
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(a)

(b)

Figure 3.5: The first 20 intensity optical eigenmodes for a HG10 background with compo-
nents (a) F2,k(r2) and (b) F3,k(r2). The eigenmodes are ordered from the top left to the
bottom right in descending intensity represented on the false colour map in figure 3.3 (d).
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(a)

(b)

Figure 3.6: The first 20 intensity optical eigenmodes for a HG11 background with compo-
nents (a) F2,k(r2) and (b) F3,k(r2) represented on the false colour map in figure 3.3 (d).
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(a) (b)

(c)

Figure 3.7: Eigenvalues for the first 20 intensity optical eigenmodes with (a) HG00, (b) HG10

and (c) HG11 background field.

HGnm modes invariant according to the indices n and m as:
VxVy : for n = m
Vx : for n 6= m with odd n and even m
Vy : for n 6= m with odd m and even n

As we are considering the optical eigenmodes of the intensity operator we are not breaking

or probing any of the above symmetries and, therefore, we observe degenerate subspaces in

which the associated eigenmodes transform into their degenerate counterparts with respect

to a spatial reflection. Furthermore, we observe that all of the degenerate subspaces are two-

fold degenerate, i.e., they consist of two eigenmodes with the same intensity eigenvalue. This

can be attributed to using the same HG mode decomposition for both of the perturbation

fields. Although each decomposition exists in a different frequency space, the field profiles

that define them are the same and, thus, in the context of transverse field profiles, we have

a two-fold degeneracy.

As a secondary example, we consider a HG10 background field that is symmetric for

the operator Vy. Unlike the HG00 background field, HG10 is symmetric with respect to
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discrete reflections as opposed to continuous rotations. This discrete symmetry, like the

previous example, leads to a number of two-fold degenerate eigenspaces. This is observed

in the eigenmodes shown in figure 3.5, where the corresponding eigenvalues are shown in

figure 3.7 (b). Lastly, if we consider the background field HG11, represented in figure 3.3 (c),

we note that this field is symmetric about the spatial reflections Vx, Vy and VxVy. The first

20 intensity eigenmodes with this background field are illustrated in figure 3.6. As with

the previous examples, we see the eigenmodes adopt the discrete symmetry associated with

the background, and we observe some degeneracy in the intensity Hilbert space which is

highlighted in the eigenvalues shown in figure 3.7 (c). Note, as described in section 2.3.2,

the solutions of sum-frequency generation are oscillatory. Due to this behaviour, we may

find accidental degeneracy in which two degenerate subspaces have the same intensity at

certain points in the nonlinear crystal. This is most apparent in figure 3.7 (c)

3.3.3 Circular Symmetry

As described in the first chapter, the Laguerre-Gaussian (LG) modes correspond to a su-

perposition of HG modes. Consequently, by truncating the Hilbert space with respect to

the maximal index 2p + |`| ≤ 7, we can probe the same Hilbert space used in the previ-

ous section in terms of LG modes. We are interested in the LG modes as, unlike the HG

basis set, these modes have helical wavefronts characterised by optical angular momentum,

` [19]. This orbital angular momentum represents a clear way to relate the symmetries of

the eigenmodes to that of the background field.

(a) (b)

Figure 3.8: Discrete Laguerre-Gaussian background fields on 42 × 42 grid with indices (a)
(`, p) = (0, 0) and (b) (`, p) = (1, 0) represented on false colour map figure 3.3 (d).
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As with the previous section, we find a scattering matrix, as outlined in Appendix A,

for each of the background fields and probe our system with 36 Laguerre-Gaussian modes

on a discrete 42 × 42 grid. The LG modes at the input plane are of the form E(r1) =∑
j Eτ,j(r1) exp (−i`τ,jφ) where Eτ,j(r1) are as shown in Eq. 1.16, less the angular depen-

dence which we have accounted for explicitly here. The equations evolving these LG modes

are:

− i ∂
∂z
Eb(r, z) =

1

2k1

(
∇2
r +

1

r
∇r −

`2b
r2

)
Eb(r, z), (3.28)

−i ∂
∂z
E2,j(r, z) =

1

2k2

(
∇2
r +

1

r
∇r −

`22,j
r2

)
E2,j(r, z) (3.29)

+
N∑
k=1

χ2E
∗
b (r, z)E3,k(r, z)e

−i∆kzei(`b+`2,j−`3,k)φ,

−i ∂
∂z
E3,j(r, z) =

1

2k3

(
∇2
r +

1

r
∇r −

`23
r2

)
E3,j(r, z) (3.30)

+
N∑
k=1

χ3Eb(r, z)E2,k(r, z)e
i∆kzei(`3,j−`2,k−`b)φ,

giving the fields Fτ (r2) =
∑

j Fτ,j(r2) exp (−i`τ,jφ) at the output plane of the system.

As a first example, we consider the background field shown in figure 3.8 (a) where `b =

0. In this case, the conservation of OAM reduces to the simple relation `3 = `2. This

conservation is observed in the intensity optical eigenmodes of the system - the first 20 of

which are represented in figure 3.9. With no angular momentum on the background field,

the eigenmodes take on the symmetry of the eigenmodes in figure 3.4. This is unsurprising

as the background field in both cases is the same and, as shown in section 1.3.3, the Hermite-

Gaussian and Laguerre-Gaussian basis span the same Hilbert subspace if truncated up to

the same maximal index.

As a secondary example, we consider a background field with `b = +1, as shown in

figure 3.8 (b). In this case, the conservation rule for the OAM becomes `3 = `2 + 1. In the

previous example, with `b = 0, each element within the set `2 is transformed into an element

in `3 by interacting with the background field. For a background field with non-zero OAM,

however, this is not necessarily the case. Indeed, consider a background field with `b = +1

interacting with a perturbation field at, for example, `2,k = 7. The field from this interaction

will have OAM `3,j = `2,k + 1 = 8 which is beyond the initially considered basis. Therefore,
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(a)

(b)

Figure 3.9: The first 20 intensity optical eigenmodes for a LG00 background with com-
ponents (a) F2,k(r2)e−i`2,kφ and (b) F3,k(r2)e−i`3,kφ represented on the false colour map
in figure 3.3 (d). The eigenmodes are ordered from the top left to the bottom right in
descending intensity. First row: Modes 1 to 5 and second row: Modes 6 to 10 etc.
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(a)

(b)

Figure 3.10: The first 20 intensity optical eigenmodes for a LG10 background with com-
ponents (a) F2,k(r2)e−i`2,kφ and (b) F3,k(r2)e−i`3,kφ represented on the false colour map in
figure 3.3 (d).
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(a) (b)

Figure 3.11: Intensity eigenvalues for the first 20 optical eigenmodes with (a) LG00 and
(b) LG10 background field shown in figures 3.9 and 3.10, respectively.

considering the two basis sets `2 = {−7, . . . , 0, . . . , 7} and `3 = {−7, . . . , 0, . . . , 7}, we can

use the relations `2 = `3 − 1 and `3 = `2 + 1 to find the following sets:

`′2 = {−8, . . . , 0, . . . , 6},

`′3 = {−6, . . . , 0, . . . , 8}.

These new basis pairs, `2, `
′
3 and `′2, `3, each corresponds to sets that are closed with respect

to an interaction with the background field when `b = +1. That is, all elements in `2 or `3

are mapped to a single component in the set `′3 or `′2 via an interaction with the background.

Note, the choice of which basis to shift in the manner described above is somewhat arbitrary.

Indeed, if we choose `2 = {−7, . . . , 0, . . . , 7} then we have for the other field the set `
′
3 as

defined above. If, however, we choose `3 = {−7, . . . , 0, . . . , 7} then for the other field we

would have to use `′2. In the examples presented here, we choose the basis set `2 and `′3. If

we now include the radial index pτ , we have the following conditions for our sets:

2p2 + |`2| ≤ 7, (3.31)

2p3 + |`′3| ≤ 8, (3.32)

where `′3 = `2 + 1, as shown above. More generally, for a background field with OAM, `b,

we have:

2p2 + |`2| ≤ 7, (3.33)

2p3 + |`′3| ≤ 7 + `b, (3.34)

where `′3 = `2 + `b; this is discussed further in section 3.8.
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In the first example here, we observed symmetry similar to the eigenmodes found in the

first example of section 3.3.2. In this example, we have `b = +1, which can be written in

terms of Hermite-Gaussian modes as

LG10 =
1√
2

(HG10 − i HG01) .

Consequently, we observe different symmetries in the optical eigenmodes to that of

section 3.3.2, even though the two are related. The first 20 intensity optical eigenmodes

are represented for this example in figure 3.10, with their corresponding eigenvalues shown

in figure 3.11 (b). In these modes, we observe that the OAM conservation rule is satisfied

for all of the eigenmode components. Like the Hermite-Gaussian examples, we observe a

number of two-fold degenerate subspaces. In the Laguerre-Gaussian basis, this degeneracy

is due to rotational symmetry not probed by the intensity measure of the fields. Indeed, if

we consider the intensity of output eigenmodes with components Fτ,k(r2)e−i`τ,kφ we have

λk =
∑
τ

∫
1

2
nτε0c F∗τ,k(r2)Fτ,k(r2)ei`τ,kφe−i`τ,kφ dφ dr2 (3.35)

=
∑
τ

∫
1

2
nτε0c F∗τ,k(r2)Fτ,k(r2) dφ dr2 (3.36)

which is independent of the orbital angular momentum of the fields. Consequently, eigen-

modes with the same total OAM, `2,k + `3,k, may result in degenerate intensity states.

Indeed, if the eigenmode at the output has components F2,k(r2)e−i`2,kφ and F3,k(r2)e−i`3,kφ

then the intensity is invariant with respect to the transformations `2,k → `3,k and `3,k → `2,k

which leads to, in some cases, a two-fold degeneracy. The lifting of this degeneracy and the

definition of the OAM operators for sum-frequency generation are discussed in more details

in section 3.8.

3.4 Eigenmodes in Waveguides

In the previous sections, we showed some examples of intensity optical eigenmodes in bulk

nonlinear material with basis sets constructed of Hermite-Gaussian and Laguerre-Gaussian

modes. In this section, we will outline the definition of eigenmodes in optical waveguides

with circular and rectangular symmetry. In particular, in section 3.4.1, we derive a 1D co-

efficient form of the equations of evolution that leads to a simple scattering matrix relation.

Moreover, with this coefficient form, we have an analytical description of the interaction

between the basis elements as they propagate. Indeed, in sections 3.4.2 and 3.4.3, we derive

expressions that describe the coupling of the modes introduced in section 1.3.4 and 1.3.3,

respectively. Lastly, in section 3.4.4, we utilise the scattering matrix in order to define the

propagation eigenmodes of this system.
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3.4.1 Coefficient Form

Again, we begin with the set of equations describing sum-frequency generation:

− i ∂
∂z
Eb(r) =

1

2k1
∇2
TEb(r), (3.37)

− i ∂
∂z
E2(r) =

1

2k2
∇2
TE2(r) + χ2E

∗
b (r)E3(r)e−i∆kz, (3.38)

− i ∂
∂z
E3(r) =

1

2k3
∇2
TE3(r) + χ3Eb(r)E2(r)ei∆kz. (3.39)

In the previous section, it was this set of equations that we used to evolve the fields

and calculate the optical eigenmodes. In a waveguide, however, we can assume that the

propagation modes defined in section 1.3.4 and 1.3.3 are stationary, non-diffracting solutions

of the system such that we can expand the fields at the input plane as

Eτ (r1) =
N∑
j=1

Eτ,j(r1) =
N∑
j=1

aτ,j(0)fτ,j(x1, y1) =
N∑
j=1

aτ,j(0)fτ,j(x, y), (3.40)

where the fields fτ,j(x, y) are the propagating modes of the waveguide that describe a Hilbert

space of orthogonal elements with∫∫∫
f∗τ,j(x, y)fσ,k(x, y)e−i(ωσ−ωτ )t dx dy dt = 2πδ(ωτ − ωσ)δjk. (3.41)

The coefficients in the above field expansion evolve according to the following set of

equations:

−i∂za2,j(z) =

N∑
k=1

υ2,jka2,k(z) + χ2gjk(z)a3,k(z), (3.42)

−i∂za3,j(z) =
N∑
k=1

υ3,jka3,k(z) + χ3g
∗
kj(z)a2,k(z), (3.43)

with the matrices:

υτ,jk =

∫∫
1

2kτ
f∗τ,j(x, y)∇2

T fτ,k(x, y) dx dy, (3.44)

gjk(z) =

∫∫
E∗b (r)f∗2,j(x, y)f3,k(x, y)e−i∆kz dx dy, (3.45)

where the field Eb(r) is a solution of Eq. 3.37 and the matrices υjk and gjk(z) describe a

linear phase term and background dependent interaction term. These equations give fields

at the output plane of the form

Fτ (r2) =

N∑
j=1

Fτ,j(r2) =

N∑
j=1

aτ,j(z2)fτ,j(x2, y2) =

N∑
j=1

aτ,j(z2)fτ,j(x, y), (3.46)
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where z2 is the distance between the input and output plane, see figure 3.1, which have

the same transverse dimensions due to the fixed basis elements fτ,j(x1, y1) = fτ,j(x2, y2) =

fτ,j(x, y). Using the above set of equations, one can define the input-output relation with

a scattering matrix as (
a′2,k
a′3,k

)
= S

(
a2,k

a3,k

)
, (3.47)

where

aτ,k = (aτ,1, . . . , aτ,k)
> = (aτ,1(0), . . . , aτ,k(0))>

are the field amplitudes of the modes at the input plane and

a′τ,k =
(
a′τ,1, . . . , a

′
τ,k

)>
= (aτ,1(z2), . . . , aτ,k(z2))>

are the amplitudes of the corresponding output modes and S = exp
(∫
z iP(z)dz

)
where

P(z) =

(
υ2,jk χ2gjk(z)

χ3g
∗
kj(z) υ3,jk

)
. (3.48)

As the equations are now in 1D, the evolution of the coefficients does not require any

involved computational methods like the split-step method outlined in Appendix A. More-

over, due to the simplicity of the coefficient form, we can gain some intuition with respect

to the interaction of the fields and the propagation properties of the eigenmodes which we

define at the output and input as:

Fτ,k(r2) =
N∑
j=1

vkjFτ,j(r2) =
N∑
j=1

vkja
′
τ,jfτ,j(x, y), (3.49)

Eτ,k(r1) =

N∑
j=1

vkjEτ,j(r1) =

N∑
j=1

vkjaτ,jfτ,j(x, y), (3.50)

where vkj are the elements of the kth eigenvector of a Hermitian matrix associated with the

eigenvalue λk.

3.4.2 Rectangular Waveguide

We take as a first example, a rectangular nonlinear waveguide with the same boundary

conditions as described in section 1.3.4. The basis elements for this waveguide are of the

form

fnm(x, y) = sin
(nπ

2b
x− nπ

2

)
sin
(mπ

2c
y −mπ

2

)
, (3.51)

where b and c correspond to the transverse lengths of the waveguide shown in figure 3.12.

If we assume our basis to be fixed, as in section 3.4.1, then we can describe the dynamics
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Figure 3.12: Schematic of a rectangular waveguide with a nonlinear, χ(2), material embedded
along its length.

of the system by evolving the coefficients ατ,j(z). The link between the coefficients and the

fields is given by

Eτ (r) =
N∑
j=1

ατ,j(z)fτ,j(x, y), (3.52)

where we label the modes with index pair {ni,mi} with a single index j for simplicity. In

coefficient space, the equations of motion are of the form of Eq. 3.42 with matrices υτ,jk

and gjk(z) corresponding to a propagation or phase term and the mixing of the fields,

respectively. A benefit of using a basis set of the form in Eq. 3.51 is that the elements of

both of these matrices have a simple analytical form. Indeed, with fields that are normalised

in intensity, 1
2nτεc

∫∫
f∗τ,j(x, y)fτ,k(x, y) = δjk, we find the matrix elements of υjk as

υτ,jk = −(bmj + cnj)
2π2

4bc
δnj ,nkδmj ,mk . (3.53)

In the case of the interaction matrix, we can write the general form of its elements by

assuming the background is also a mode of the form of Eq. 3.51. Indeed, we find

gjk(z) =
ζn (1± cos (njπ) cos (nkπ))

(n4
j + (n2

k − n2
b)

2 − 2n2
j (n

2
k + n2

b))π
2

ζm (1± cos (mjπ) cos (mkπ))

(m4
j + (m2

k −m2
b)

2 − 2m2
j (m

2
k +m2

b))
e−i∆kz,

(3.54)

in which ζn = 4bnbnjnk and ζm = 4cmbmjmk. The numbers nb and mb corresponds to the

background field indices, and when they are odd (even), the numerator takes on a positive

(negative) sign. With this interaction matrix, we can explicitly see the interaction between

the basis field elements. Indeed, if we take, for example, the fundamental background field

with nb = mb = 1 then the terms

(1 + cos(njπ)cos(nkπ))
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and

(1 + cos(mjπ)cos(mkπ))

are non-zero only when the numbers nj , nk and mj , mk are both even or both odd. All

of these symmetries are shown, for the background fields in figure 3.13, in the scattering

matrices of figure 3.14.

To calculate the intensity optical eigenmodes, we again consider a basis set of 36 fields

truncated with respect to n+m ≤ 7. In addition, we use the same system set up as outlined

in section 3.3.1 with the assumption that all wavelengths and fields in the decomposition

are above the cut-off of the waveguide. As a first example, we take the background field

to be of the form of the fundamental TM mode with nb = mb = 1. The first 20 opti-

cal eigenmodes for this background are shown in figure 3.15. Perhaps unsurprisingly, the

symmetry of the eigenmodes follows that of the Hermite-Gaussian modes shown in sec-

tion 3.3.2. Again, similar to the HG modes, we observe degeneracy in the eigenvalues, as

illustrated in figure 3.17 (a). This is to be expected given the discrete symmetries of the

TM modes is similar to the HG modes as described in section 3.3.2. This degeneracy is also

observed for other TM background fields. Indeed, figure 3.16 shows the eigenmodes for a

background field with nb = 2 and mb = 1 with the corresponding eigenvalues represented

in figure 3.17 (b). Again, in both of these examples, we see the influence of the background

field on the symmetry of the eigenmodes.

3.4.3 Circular Waveguide

If we consider a waveguide that exhibits circular symmetry, the system is solved using the

Laguerre-Gaussian modes introduced in section 1.3.3. In a similar way to the rectangular

waveguide, we can expand the fields as described in section 3.4.1 where we have the matrices:

υτ,jk =

∫∫
1

2kτ
f∗τ,j(r)

(
∇2
r +

1

r
∇r −

`2τ,k
r2

)
fτ,k(r) e

−i(`τ,j−`τ,k)φ dφ dr, (3.55)

gjk(z) =

∫∫
E∗b (r, z)f∗2,j(r)f3,k(r)e

−i(`3,k−`2,j−`b)φe−i∆kz dφ dr, (3.56)

where `τ,j is the OAM of the jth mode of frequency ωτ . Unlike the rectangular waveguide,

these matrices do not have simple analytical form, but the symmetry of the interactions

can be understood from the perspective of the conservation of orbital angular momentum.

As the Laguerre-Gaussian modes are separable in the variables (r, φ) we can take just the

angular part of the interaction integral. Indeed, the integral along the azimuthal angle, φ,

for arbitrary `τ,k is ∫ 2π

0
e−i(`3,k−`2,j−`b)φ dφ = 2πδ`3,k,`2,k+`1,k , (3.57)
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(a) (b) (c)

(d)

Figure 3.13: TM modes with indices (a) (n,m) = (1, 1), (b) (n,m) = (1, 2) and (c) (n,m) =
(2, 2) represented on false colour map (d) where colour denotes phase and hue denotes
intensity.

(a) (b)

Figure 3.14: Scattering matrix, S, for (a) TM11 and (b) TM22 background fields shown in
figure 3.13 represented on the false colour map in figure 3.13 (d) where (n,m)τ = (nτ ,mτ ).
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(a)

(b)

Figure 3.15: Intensity optical eigenmodes for a TM11 background with components (a)
F2,k(r2) and (b) F3,k(r2) represented on the false colour map in figure 3.13 (d).
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(a)

(b)

Figure 3.16: Intensity optical eigenmodes for a TM12 background with components (a)
F2,k(r2) and (b) F3,k(r2) represented map in figure 3.13 (d).
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(a) (b)

Figure 3.17: Eigenvalues optical eigenmodes with (a) TM11 and (b) TM12 background field.

(a) (b)

(c)

Figure 3.18: LG modes with indices (a) (`, p) = (0, 0), (b) (`, p) = (1, 0) and (c) (`, p) =
(−1, 0).
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(a) (b)

(c)

Figure 3.19: Scattering matrix, S, for LG background fields shown in figure 3.18 represented
on the false colour map in figure 3.13 (d) with indices (`, p)τ = (`τ , pτ ).

neglecting any constants of integration. The above integral shows that interactions between

two perturbation fields and the background will only occur if the orbital angular momentum

of the given interaction is conserved. The matrix elements of υτ,jk can be shown to have

similar behaviour where the dependence on the azimuthal angle is written∫ 2π

0
e−i(`τ,j−`τ,k)φ dφ = 2πδ`τ,j ,`τ,k , (3.58)

which is non-zero if `τ,j = `τ,k. This is illustrated in figure 3.19, which shows the scattering

matrix for multiple background fields which are displayed in figure 3.18.
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(a) (b)

Figure 3.20: Eigenvalues optical eigenmodes with (a) LG00 and (b) LG10 background field.

To calculate the optical eigenmodes, we consider the same probe space as chosen in

section 3.3.3. Namely, a basis of 36 LG modes on each of the perturbation fields truncated

with respect to 2p + |`| ≤ 7. As with previous examples, we show the first 20 intensity

optical eigenmodes for the background fields in figure 3.18 (a) and (c). Again, similar to

section 3.3.3, in the case of `b = +1, we truncate the basis for each of the fields such

that they are closed with respect to the interaction with the background, i.e., we take

`2 = {−7, . . . , 7} and `3 = {−6, . . . , 8}. As shown, from the interaction matrix, the only

fields that interact are those that satisfy a selection rule which is reflected in the optical

eigenmodes. Moreover, similar to the eigenmodes of bulk material shown in section 3.3.3,

there are additional symmetries associated with the system that are not probed by the

intensity operator. The degeneracy in this example arises from the same arguments made

in section 3.3.3. Thus, we do not restate them here.

3.4.4 Propagation Eigenmodes

Hitherto, in this chapter, we have not yet discussed the propagation eigenmodes in a three-

wave mixing scenario. We have already introduced the optical eigenmodes at the input and

the output of a given optical system. However, we have said nothing about the behaviour

of the eigenmodes as they evolve through the system. Using the coefficient form introduced

in section 3.4.1, we define propagation eigenmodes that explicitly describe the evolution of

the interacting fields through the nonlinear waveguide. One can develop some intuition for

these propagation eigenmodes by assuming we have a single mode propagating in each of

the wavelengths such that the matrices υτ,jk and gjk(z) reduce to the coefficients υτ and

g(z). Similarly, the coefficient space in the single-mode case will consist of two elements,

a2(z) and a3(z). The equations of propagation, in this case, reduce to the following form

− i∂z
(
a2(z)
a3(z)

)
= P(z)

(
a2(z)
a3(z)

)
=

(
υ2 χ2g(z)

χ3g
∗(z) υ3

)(
a2(z)
a3(z)

)
. (3.59)
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(a)

(b)

Figure 3.21: Intensity optical eigenmodes for a LG00 background with components (a)
F2,k(r2)e−i`2,kφ and (b) F3,k(r2)e−i`3,kφ represented map in figure 3.13 (d).
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(a)

(b)

Figure 3.22: Intensity optical eigenmodes for a LG10 background with components (a)
F2,k(r2)e−i`2,kφ and (b) F3,k(r2)e−i`3,kφ represented map in figure 3.13 (d).
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Note, the matrix P(z) is not Hermitian due to the non-symmetric interaction strengths

associated with the fields, that is, χ2 6= χ3 with χτ = χ(2)ωτ
nτ c

. As the matrix is not Hermitian,

the evolution of the field coefficients is not unitary, and the total energy density is not

conserved. However, by transforming the fields, one can define a unitary matrix in the

context of modified field variables - discussed in detail in section 4.3.1. Indeed, we make

the transformations:

α2(z) =
1
√
χ3
a2(z), (3.60)

α3(z) =
1
√
χ2
a3(z), (3.61)

such that the evolution of the modified field coefficients is

− i∂z
(
α2(z)
α3(z)

)
= P′(z)

(
α2(z)
α3(z)

)
=

(
υ2 g(z)
g∗(z) υ3

)(
α2(z)
α3(z)

)
, (3.62)

where the matrix P′(z) is Hermitian, and the evolution is, consequently, unitary. The

transformations introduced in Eq. 3.60 and 3.61 normalise each of the coefficients with

respect to the coupling strength of the other field such that the energy density which we

define as
∑

τ ατ (z)∗ατ (z) is conserved. This conservation follows directly from the unitarity

of the scattering matrix S = exp
(∫
iP′(z) dz

)
. Indeed, for a Hermitian matrix with the

property P′(z) = P
′†(z) we have

S†S = exp

(∫
z
iP′(z)dz

)
exp

(∫
z
−iP′†(z)dz

)
= exp

(∫
z
iP′(z)dz

)
exp

(∫
z
−iP′(z)dz

)
= I, (3.63)

where I is the identity matrix of the same dimensions as S.

To illustrate the coupling between the fields, we consider stationary solutions of the matrix

P′(z). That is eigenfunctions of the operator −i∂z whose transverse structure is invariant

with respect to the direction of propagation. Note, these solutions only exist in systems with

translation invariance where ∂zP
′(z) = 0 which is what we observe when the background

field is z-independent, that is, ∂zg(z) = 0. As a consequence of this translation invariance,

field profiles that are eigenfunctions of the operator −i∂z are found by diagonalising the

following matrix

P′ =

(
υ2 g
g∗ υ3

)
, (3.64)

where

− i∂z
(
a2(z)
a3(z)

)
= P′

(
a2(z)
a3(z)

)
. (3.65)
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The full solution of Eq. 3.65 is found to be of the form(
α2(z)
α3(z)

)
= eiδzW(z)

(
α2(0)
α3(0)

)
(3.66)

where the matrix W(z) is

W(z) =

(
µcos (µz) + iυsin (µz) igsin (µz)

igsin (µz) µcos (µz)− iυsin (µz)

)
(3.67)

and, for a crystal of length L, is related to the scattering matrix as S = eiδzW(z)|z=L.

Note, in the matrix W(z) we have made use of the following substitutions:

υ =
(υ2 − υ3)

2
, (3.68)

δ =
(υ2 + υ3)

2
, (3.69)

and

µ =
√
|g|2 + υ2. (3.70)

The argument µ in the trigonometric functions in the solution is always real regardless

of the gain associated with the background field, g. Therefore, the solutions always exhibit

oscillatory behaviour while interacting with one another. This is unsurprising as it is the

same behaviour of the solutions found in section 2.3.2, where we considered sum-frequency

generation in 1D. In this simplified case, where we have a single mode on each field, the

eigenvalues of the matrix P′ are of the form

λk = δ ± µ (3.71)

with corresponding eigenvectors given by vk = (υ ± µ, g∗)>. As discussed in section 3.2.1,

the components of these eigenmodes will interact with one another due to the off-diagonal

interaction terms in the scattering matrix. This interaction is dependent on the overlap

with the background field given by the coefficient g which, for a stationary background

field, is given by

g =

∫∫
E∗b (x, y)f∗2 (x, y)f3(x, y) dx dy. (3.72)

Thus, we observe from the above expression that the coupling strength of any two modes

will be dependent on their overlap with the background field: a property that we observed

in all of the intensity eigenmodes introduced in previous sections. Note, the operator −i∂z
acts to generate linear translations in the positive z-direction corresponding to momentum

or energy transfer. The Hermiticity of this momentum operator follows from the Hermiticity

of the matrix P′, and by summing the eigenvalues of the matrix,
∑

k λk = 2δ = υ2 + υ3, we
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(a)

(b)

Figure 3.23: Propagation eigenmodes for a TM11 background with components (a) F2,k(r2)
and (b) F3,k(r2).

find that the total linear momentum or energy density is conserved. Indeed, at the input of

the thin slice of nonlinear material, we have no interaction between the fields. Therefore,

if we set g = 0 in the matrix P′, we find that the sum of the eigenvalues is also equal to

υ2 +υ3. This result is unsurprising as we are in a lossless system in which the energy density

is conserved.

This intuition can be extended to the multimode case in which we have more than one

element in the decomposition for the interacting fields where Eq. 3.65 is now

− i∂z
(
a2,j(z)
a3,j(z)

)
=

(
υ2,jk gjk
g∗kj υ3,jk

)(
a2,k(z)
a3,k(z)

)
= Q

(
a2,k(z)
a3,k(z)

)
. (3.73)

Although one cannot derive a precise analytical form of the eigenvalues and eigenvectors

in this context, the behaviour of the eigenmodes in a multimode system is equivalent to

the single-mode case. Indeed, the eigenmodes are orthogonal to one another and have
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Figure 3.24: Eigenvalues λk for the propagation eigenmodes shown in figure 3.23.

some propagating term and coupling with the background field that is characteristic of that

particular combination of fields. Indeed, we can make the transformation:

βk(z) = U† (α2,k(z), α3,k(z))
> ,

where U† is made up of the eigenvectors of the matrix Q = UΛU†, such that the equations

of propagation are

βk(z) = eiλkzβk(0), (3.74)

where the eigenvalues λk correspond to the non-zero elements of the diagonal matrix Λ. If

we take, for example, a rectangular waveguide with the same basis set as used in section 3.4.2

then the first 10 propagation modes for a TM11 background field are as shown in figure 3.23.

The corresponding eigenvalues are illustrated in the bar chart in figure 3.24. As expected,

the eigenvalues behave like that of the single-mode case, that is, of the form of Eq. 3.71

with the sum
∑

k λk ≈ 0.

Although we do not have a precise analytical form for the eigenmodes in the multimode

case; one can, from the full solution given by Eq. 3.67, find the following single-mode

eigenvalues for a nonlinear crystal of length L

λk = eiδL
(
µ cos(µL)±

√
− (υ2 + |g|2) sin(µL)2

)
, (3.75)

with corresponding eigenvectors

vk =
(
−υ sin(µL)± i

√
− (υ2 + |g|2) sin(µL)2, g∗ sin(µL)

)>
. (3.76)
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The eigenvalues, much like those for the non-diffracting fields described above, have

a phase term independent of the background and an interaction term that depends on

Eb(x, y) with the coefficient g∗. These eigenmodes are sinusoidal like functions that interact

with a background field and oscillate between some minimum value at the input and some

maximum value at the interaction length of the nonlinear crystal [8, 9]. If the argument

µL = nπ then sin(µL) = 0 and the low-intensity fields will be decoupled, resulting in

degenerate eigenmodes. Similarly, when µL = nπ/2, the eigenvalues are complex, and the

background field has a maximal coupling with the perturbation fields. This interaction is

similar to that described above in which the fields are eigenfunctions of the operator −i∂z.
Certainly, if we consider the fields propagating through a thin slice of nonlinear material,

they will behave approximately like the stationary eigenmodes. Indeed, if the thin slice is

of length ε � L the eigenvectors given in Eq. 3.76 reduce to the eigenvectors associated

with the eigenvalues in Eq. 3.71. Moreover, for a crystal of length L, one can calculate the

evolution of the fields by concatenating n = εL thin slices of nonlinear material in which

the fields are approximately invariant with respect to the direction of propagation.

3.5 Parametric Down-Conversion

Parametric down-conversion, much like sum-frequency generation discussed in the previous

section, has proved a useful effect in the physical sciences. In this section, we are concerned

with introducing optical eigenmodes to this effect in the same manner as done for sum-

frequency generation in section 3.2.1. Note, although the introduction of optical eigenmodes

in this context is formally very similar to that of sum-frequency generation, we begin the

section by defining the optical eigenmodes for parametric down-conversion. Following this,

we take some examples of optical eigenmodes in waveguides, where the distinction between

down-conversion and sum-frequency generation is most apparent. Finally, at the end of the

section, we discuss the propagation eigenmodes.

3.5.1 Optical Eigenmodes in Parametric Down-Conversion

We begin with the equations:

− i ∂
∂z
E1(r) =

1

2k1
∇2
TE1(r) + χ1E

∗
2(r)Eb(r)e−i∆kz, (3.77)

− i ∂
∂z
E2(r) =

1

2k2
∇2
TE2(r) + χ2E

∗
1(r)Eb(r)e−i∆kz, (3.78)

− i ∂
∂z
Eb(r) =

1

2k3
∇2
TEb(r), (3.79)
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where E3,b(r) = Eb(r) corresponds to the high-intensity pump field oscillating at ω3. Notice,

unlike the equations for sum-frequency generation the above are conjugate linear. That is,

the field E1(r) is dependent on E∗2(r) and similarly, E2(r) is dependent on E∗1(r). Again,

we decompose the fields in the input plane as

Eτ (r1) =

N∑
j=1

aτ,jEτ,j(r1). (3.80)

The fields Eτ,j(r1) form an orthogonal basis at the input of the nonlinear material,∫∫∫
E∗τ,j(r1)Eσ,k(r1)e−i(ωσ−ωτ )t dx1 dy1 dt = 2πδ(ωτ − ωσ)δjk, (3.81)

and evolve according to the equations:

− i ∂
∂z
E1,j(r) =

1

2k1
∇2
TE1,j(r) +

N∑
k=1

χ1E
∗
2,k(r)Eb(r)e−i∆kz, (3.82)

− i ∂
∂z
E2,j(r) =

1

2k2
∇2
TE2,j(r) +

N∑
k=1

χ2E
∗
1,k(r)Eb(r)e−i∆kz, (3.83)

resulting in the following decomposition at the output plane

Fτ (r2) =

N∑
j=1

aτ,jFτ,j(r2). (3.84)

As a proof of concept, we introduce the intensity of the small perturbation fields at the

output as

I =
∑
τ

N∑
j,k

a∗τ,jaτ,k

(∫
Ω

1

2
nτ ε0c F

∗
τ,j(r2)Fτ,k(r2)dΩ

)
= a†Ma, (3.85)

where Ω is some region of interest in the output plane and the vectors a contain complex

coefficients and their conjugates

a = (aτ,1, . . . , aτ,N , aσ,1, . . . , aσ,N )T (3.86)

and

a† =
(
a∗τ,1, . . . , a

∗
τ,N , a

∗
σ,1, . . . , a

∗
σ,N

)
(3.87)

and N is the number of independent basis elements in Eq. 3.80. We can write the total

intensity as the sum of two distinct components as

I =

N∑
j,k

∫
Ω

(
1

2
n1ε0c a

∗
1,ja1,kF

∗
1,j(r2)F1,k(r2) +

1

2
n2ε0c a

∗
2,ja2,kF

∗
2,j(r2)F2,k(r2)

)
dΩ

= a†1M1a1 + a†2M2a2

= a†Ma. (3.88)
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By diagonalising the cross-interaction matrix we define the optical eigenmodes at the

output and input as:

Fτ,k(r2) =

N∑
j=1

vkjFτ,j(r2), (3.89)

Eτ,k(r1) =
N∑
j=1

vkjEτ,j(r1), (3.90)

where vkj are the elements of the kth eigenvector of M associated with the eigenvalue λk.

Although mathematically similar to the formalism outlined in section 3.2.1, there is a

distinction between the optical eigenmodes of sum-frequency generation and parametric

down-conversion. The most notable distinction is the conjugate linearity of Eq. 3.77 and

3.78. However, when we consider an optical measure, this conjugate linearity is not ap-

parent due to the Hermicity of the related operators. This does, however, have interesting

implications when considering the propagation modes of the system and can be problematic

when we go towards the single-photon level - discussed in more detail in section 4.4.1.

3.6 Optical Eigenmodes in Waveguides

In the context of an optical waveguide, the system is best solved in terms of the 1D co-

efficients as done in section 3.4.1. If we assume, as in section 3.4.1, that the propagation

modes defined in section 1.3.4 and 1.3.3 form our basis, the link between the coefficients

and the fields is given by

Eτ (r) =

N∑
j=1

aτ,j(z)fτ,j(x, y), (3.91)

where fτ,j(x, y) describe a Hilbert space with orthogonal basis elements,∫∫∫
f∗τ,j(x, y)fσ,k(x, y)e−i(ωσ−ωτ )t dx dy dt = 2πδ(ωτ − ωσ)δjk. (3.92)

If we input this field expansion into the equations for parametric down-conversion we

have:

−i∂za1,j(z) =

N∑
k=1

υ1,jka1,k(z) + χ2gjk(z)a
∗
2,k(z), (3.93)

−i∂za2,j(z) =

N∑
k=1

υ2,jka2,k(z) + χ3gkj(z)a
∗
1,k(z), (3.94)

with the matrices

υτ,jk =

∫∫
1

2kτ
f∗τ,j(x, y)∇2

T fτ,k(x, y) dx dy, (3.95)
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and

gjk(z) =

∫∫
f∗1,j(x, y)f∗2,k(x, y)Eb(x, y, z)e

−i∆kz dx dy, (3.96)

where ∆k = kb + k2 − k3 is the phase mismatch. Due to the conjugate linearity of the

equations, the scattering matrix mixes the coefficients and their conjugates. Consequently,

we have 
a′1,k
a′2,k
a∗
′

1,k

a∗
′

2,k

 = S


a1,k

a2,k

a∗1,k
a∗2,k

 (3.97)

where aτ,k are the field amplitudes of the modes at the input and a′τ,k are the amplitudes

of the corresponding output modes and S = exp
(∫
z iP(z)dz

)
with

P(z) =


υ1,jk 0 0 χ1gjk(z)

0 υ2,jk χ2gkj(z) 0
0 −χ1g

∗
jk(z) −υ1,jk 0

−χ2g
∗
kj(z) 0 0 −υ2,jk

 . (3.98)

The above matrix can be reordered and made block-diagonal with respect to the pairs(
a1,k, a

∗
2,k

)
and

(
a∗1,k, a2,k

)
with

− i∂z

(
a′1,k
a∗
′

2,k

)
=

(
υ1,jk χ1gjk(z)

−χ2g
∗
kj(z) −υ2,jk

)(
a1,k

a∗2,k

)
(3.99)

and

− i∂z

(
a∗
′

1,k

a
′
2,k

)
=

(
−υ1,jk −χ1g

∗
kj(z)

χ2gkj(z) υ2,jk

)(
a∗1,k
a2,k

)
, (3.100)

where one of the above gives the full solution of the system as
(
a1,k, a

∗
2,k

)∗
=
(
a∗1,k, a2,k

)
.

The eigenmodes, in this case, are defined at the output and input planes as in Eq. 3.49 and

3.50, respectively.

3.7 Numerical Examples

In this section, we show some examples of optical eigenmodes in the context of parametric

down-conversion using the same set up as in section 3.3.1. As the symmetry associated with

the optical eigenmodes follows the arguments of section 3.3.2 and 3.3.3, we do not include

examples of eigenmodes in a bulk material. Indeed, in order to highlight the distinction

between the two effects, we consider the case of optical waveguides in which the differences

between the two sets of equations can be analysed from a theoretical perspective.
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3.7.1 Rectangular Waveguide

In this section, we consider some numerical examples of the intensity optical eigenmodes

in waveguides for parametric down-conversion. In the first instance, we consider a rectan-

gular waveguide with perfectly reflecting walls, as described in section 1.3.4. Our fields are

decomposed in Hilbert space with basis elements of the following form

fnm(x, y) = sin
(nπ

2b
x− nπ

2

)
sin
(mπ

2c
y −mπ

2

)
, (3.101)

where b and c correspond to the transverse dimensions of the waveguide. Due to the reality

of the basis fields at the input, the matrix elements υτ,ij are identical to that of section 3.4.2,

i.e.,

υτ,jk = −(bmj + cnj)
2π2

4bc
δnj ,nkδmj ,mk . (3.102)

Similarly, the interaction terms, gjk(z), will also be the same as derived for the sum-

frequency generation case,

gjk(z) =
ζn (1± cos (njπ) cos (nkπ))

(n4
j + (n2

k − n2
b)

2 − 2n2
j (n

2
k + n2

b))π
2

ζm (1± cos (mjπ) cos (mkπ))

(m4
j + (m2

k −m2
b)

2 − 2m2
j (m

2
k +m2

b))
e−i∆kz,

(3.103)

with ζn = 4bnbnjnk and ζm = 4cmbmjmk. Again, the numbers nb and mb correspond to the

background field indices, which determines the sign of the matrix element. Although the

interaction and phase term matrices are the same as in section 3.4.2, the scattering matrices

couple different modes due to the conjugate linearity of the system. Indeed, this feature

of the effect is what leads to an overall gain in the intensity of the perturbation fields as

they propagate through the material. The symmetry of the intensity eigenmodes, therefore,

can be easily understood with respect to the overall gain of their components. This gain is

determined by the exchange of energy from the background field, and the eigenmodes that

overlap most with the background will interfere more than those with only a small overlap.

This is observed in the eigenmodes presented in figure 3.25, where we consider a TM mode

basis truncated at n+m ≤ 7 with a TM11 background field. The corresponding eigenvalues

are shown in figure 3.26.

3.7.2 Circular Waveguide

As illustrated in section 3.4.3, systems with circular symmetry are best solved with the

Laguerre-Gaussian modes introduced in section 1.3.3. Much like the rectangular waveguide,

the results for the equations for parametric down-conversion are similar to those presented

for sum-frequency generation in the previous section. Indeed, given the same set of basis

elements the matrix υτ,jk is identical for both sets of equations. The integral for the matrix
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(a)

(b)

Figure 3.25: SPDC intensity optical eigenmodes for a TM11 background with components
(a) F1,k(r2) and (b) F2,k(r2) represented map in figure 3.13 (d).
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Figure 3.26: Eigenvalues for the intensity optical eigenmodes shown in figure 3.25.

gjk(z) is slightly different, however, resulting in different selection rules for interactions.

This is unsurprising as the background field is oscillating at a different frequency. For

gjk(z) in a Laguerre-Gaussian basis with fields of the form of Eq. 1.16 we have

gjk(z) =

∫∫
f∗1,j(r)f

∗
2,k(r)Eb(r, z)e

−i(`b−`2,k−`1,j)φe−i∆kz drdφ. (3.104)

If we consider the interaction of two of the basis elements, we can evaluate the integral

along the azimuthal angle, φ, as,∫ 2π

0
e−i(`b−`2−`1)φ dφ = 2πδ`b,`2+`1 , (3.105)

neglecting any constants of integration. Therefore, interactions of fields that obey the

selection rule `b = `2+`1 will exchange energy between one another. Similar to section 3.4.3,

the selection rules for the OAM of the fields are observed in the field profiles of the intensity

optical eigenmodes. To illustrate this, we consider a finite basis of Laguerre-Gaussian modes

truncated with respect to the maximal index 2p + |`| ≤ 7. In this section, we consider

a single example in which the background field has vortex charge `b = +1. Therefore,

to ensure the basis for the two perturbation fields is closed with respect to interaction

with the background, we choose the basis to be `2 = {−6, . . . , 8} such that we can have

`1 = {−7, . . . , 7} and satisfy the relation `1 + `2 = `b for all the elements. A more detailed

discussion of this basis shift is outlined in section 3.3.3. The first 20 intensity optical

eigenmodes for a background field with `b = +1 are shown in figure 3.27. In all cases, we

observe the selection rules for the orbital angular momentum.

3.7.3 Propagation Eigenmodes

Similar to section 3.4.4, we can develop some intuition with respect to the propagation

eigenmodes of parametric down-conversion by considering the case where we have a single
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(a)

(b)

Figure 3.27: SPDC intensity optical eigenmodes for a LG10 background field with compo-
nents (a) F1,k(r2)e−i`1,kφ and (b) F2,k(r2)e−i`2,kφ.
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mode propagating on each of the fields. In this simplified case the matrices υτ,jk and gjk(z)

reduce to single coefficients υτ and g(z) such that

− i∂z
(
a1(z)
a∗2(z)

)
=

(
υ1 χ1g(z)

−χ2g
∗(z) −υ2

)(
a1(z)
a∗2(z)

)
. (3.106)

In general, the above matrix is not Hermitian, as was the case in section 3.4.4, however,

with the following transformations:

α1(z) =
1
√
χ2
a1(z) (3.107)

and

α2(z) =
1
√
χ1
a2(z) (3.108)

the matrix is pseudo or quasi-Hermitian [97, 98, 99, 100]. The evolution of the coefficients

ατ (z) is

− i∂z
(
α1(z)
α∗2(z)

)
= P(z)

(
α1(z)
α∗2(z)

)
=

(
υ1 g(z)

−g∗(z) −υ2

)(
α1(z)
α∗2(z)

)
, (3.109)

which for a translation-invariant system where ∂zg(z) = 0, has the solution (α1(z), α∗2(z))> =

eiδzW(z) (α1(0), α∗2(0))>, where the matrix

W(z) =

(
µcos (µz) + iυsin (µz) igsin (µz)

−ig∗sin (µz) µcos (µz)− iυsin (µz)

)
(3.110)

is related to the scattering matrix as S = eiδzW(z)|z=L. The solution with respect to the

variables (a∗1(z), a2(z))> is found by taking the complex conjugate of the above solution,

i.e., (a∗1(z), a2(z))> = e−iδzW∗(z) (a∗1(0), a2(0))>. Note, we have simplified the form of

these solutions by making use of the following substitutions:

υ =
(υ1 + υ2)

2
, (3.111)

δ =
(υ1 − υ2)

2
, (3.112)

and

µ =
√
υ2 − |g|2. (3.113)

The last of these substitutions describes two distinct regions in which the behaviour of the

solution is different. Indeed, if υ > |g|, then the argument in the sinusoidal functions is real,

and the fields will behave in an oscillatory manner like that of sum-frequency generation as

discussed in section 3.4.4. If, however, υ < |g| then µ will be complex and the sinusoidal

functions become hyperbolic, leading to exponential growth. This is the same behaviour
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(a)

(b)

Figure 3.28: Propagation eigenmodes for a TM11 background with components (a) F2,k(r2)
and (b) F3,k(r2).

observed in section 2.3.3 and is due to the pump or background field continuously transfer-

ring energy to the perturbation fields without depleting. This exponential behaviour is also

manifest in the eigenvalues, which for the single-mode case with a stationary background

field, take the form

λk = δ ± µ, (3.114)

with associated eigenvectors vk = (−υ ± µ, g∗)> which evolve as eiλkz. Observing the

form of the eigenvalues, we note that as |g| increases µ → 0, and the eigenvalues become

degenerate. Furthermore, if υ < |g|, µ is imaginary and one of the eigenvalues acquires a

positive imaginary part - leading to exponential decay - while the other acquires a negative

imaginary part - leading to exponential growth.
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Figure 3.29: Eigenvalues λk for the propagation eigenmodes shown in figure 3.28

Again, the multimode case exhibits the same behaviour as the single-mode case. However,

in general, these eigenmodes are not orthogonal to one another as P(z) is only symmetric

if g(z)� υ. Thus, for a system with translation invariance, we have the matrix

P =

(
0 gjk
−g∗kj 0

)
, (3.115)

which is skew or anti-Hermitian with P† = −P. In this approximation, the matrix does

have a set of orthogonal eigenvectors with purely imaginary eigenvalues. For example, if we

take the basis used in section 3.7.1, we find the eigenmodes illustrated in figure 3.28 with

their corresponding imaginary eigenvalues shown in figure 3.29. Note, these are for a TM00

background field.

The definition of the eigenvalues in Eq. 3.114 suggests that, for large µ, the gain of one

of the eigenmodes will be large. As µ is dependent on the coefficient g, a high degree of

overlap with the background field will result in large gain for the eigenmode. Similarly, the

eigenmodes that overlap to a lesser extent with the background field will have a smaller g

value and lower gain. We observe this behaviour with the eigenmodes presented here where

the magnitude of the imaginary part of the eigenvalue is directly related to the gain of the

eigenmode. This can be observed explicit when we consider the z-dependent eigenmodes.

Indeed, using Eq. 3.110, we find, for a crystal of length L, eigenvalues of the form

λk = eiδL
(
µ cos(µL)±

√
(−υ2 + |g|2) sin(µL)2

)
, (3.116)

with corresponding eigenvectors

vk =
(
υ sin(µL)± i

√
(−υ2 + |g|2) sin(µL)2, g sin(µL)

)>
. (3.117)
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Again we see a change in behaviour where if υ > |g| then µ is real and the evolution is

periodic and when υ < |g| the coefficient µ is imaginary, and the trigonometric functions

become hyperbolic. Similar to the non-diffracting case, these eigenmodes will not be or-

thogonal to one another unless we have the condition that |g| � υ. In this case, the matrix

W(z) reduces to the following form

W(z) = e−iδz

(
cosh

(√
g∗
√
gz
)

i
√
g√
g∗

sinh
(√
g∗
√
gz
)

−i
√
g∗√
g sinh

(√
g∗
√
gz
)

cosh
(√
g∗
√
gz
) )

(3.118)

such that the full solution is Hermitian,(
α1(z)
α∗2(z)

)
=

(
cosh

(√
g∗
√
gz
)

i
√
g√
g∗

sinh
(√
g∗
√
gz
)

−i
√
g∗√
g sinh

(√
g∗
√
gz
)

cosh
(√
g∗
√
gz
) )(

α1(0)
α∗2(0)

)
, (3.119)

and, for a crystal of length L, has real eigenvalues

λk = cosh
(√

g∗
√
gL
)
± sinh

(√
g∗
√
gL
)

= exp
(
±
√
g∗
√
gL
)

(3.120)

with corresponding orthogonal eigenvectors vk =
(
±i√g,

√
g∗
)>

.

Note, the approximation that |g| � υ is compatible with our perturbation fields and

high-intensity background. Indeed, the term υ corresponds to a propagating phase term

of the perturbation fields and is dependent on the field strength of these fields: which for

fields of low intensity is small. The term g, however, is dependent on the field strength of

the perturbation fields and the background. If the background field is sufficiently intense,

it will overcome the propagation term of the perturbation fields, and the approximation

|g| � υ will be valid. If the approximation is valid, then this section will clearly define the

propagation properties of the optical eigenmodes shown in the previous sections. That is,

the fields will propagate independent of one another and, depending on their overlap and

phase with respect to the background field, will exhibit gain or loss as they evolve. It is

noteworthy, that this approximation is also true for the propagation eigenmodes outlined in

section 3.4.4, however, as we did not require it to define orthogonal propagating eigenvectors

it is left as a special case of the general theory outlined therein.

3.8 Degeneracy and Commuting Operators

In section 1.4.1, we introduced the operators corresponding to physical observables in the

context of classical electromagnetic fields. The eigenvectors of these operators define the

eigenmodes of the associated measure and are an orthogonal set of fields characteristic of a

given optical system. Depending on the symmetry of the system, however, the eigenmodes
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may not be unique with respect to a particular observable. Indeed, the eigenvectors may

share eigenvalues as observed in the intensity eigenmodes introduced throughout this chap-

ter. To deal with the degeneracy associated with these eigenmodes, one must break some

intrinsic symmetry of the system. This symmetry breaking can be achieved through the use

of a secondary observable. For example, one may have eigenmodes that are degenerate in

intensity but have distinct orbital angular momentum. To label the intensity eigenmodes

with respect to their orbital angular momentum, or indeed any other observable, they must

also be eigenvectors of the associated operator. That is, the operators must commute with

one another. More generally, to fully characterise the eigenmodes of a system in this manner

requires a complete set of pair-wise commuting operators. In this work, we have observed

a two-fold degeneracy and, therefore, the complete set of commuting operators consists of

two elements. This set of operators highlight the symmetry of the equations of evolution

of both sum-frequency generation and parametric down-conversion and allow us to lift the

degeneracy found in the intensity eigenmodes.

3.8.1 Pairwise Commutation of Operators

Consider two operators, O1 and O2, that correspond to two distinct physical observables.

Each of the operators has a set of eigenfunctions or eigenmodes which satisfy the property

OτFj = OjFj , (3.121)

where Fj is an eigenmode of the operator Oτ and Oj is the associated eigenvalue. If the

eigenmode on which we project happens to exist in a degenerate subspace, then more

information is required to uniquely determine the measured state of the system. If we first

consider a measurement with respect to O1, we are projecting onto some Hilbert space

characteristic of the operator. In order for the eigenmodes in this Hilbert space to be

additive for O2, we require

O2O1F1 = O2 (O1F1) = O1O2F1 = O1O2F1, (3.122)

which states that the field F1 is an eigenmode of both O1 and O2. If we consider instead

that we have projected onto the basis associated with O2, then we have a similar relation,

O1O2F2 = O1 (O2F2) = O2O1F2 = O2O1F2, (3.123)

that is only true if F2 is an eigenmode of both of the operators. Satisfying one of the above

conditions will automatically fulfil the other which suggests that F1 = F2 = F. Subtracting

Eq. 3.123 from Eq. 3.122 we find

(O1O2 − O2O1)F = (O1O2 −O2O1)F = 0, (3.124)

89



from which we can define the commutator

[O1,O2] = O1O2 − O2O1. (3.125)

If the above commutator is zero, then it is clear that the operators will share an eigen-

space and the physical observables can be used to uniquely label the optical eigenmodes

of a given system. In the context of the optical eigenmodes introduced in the previous

sections of this chapter, we observed a number of degenerate eigenspaces. Moreover, we

noted that this degeneracy was due to some symmetry of the system that was not broken

by the intensity operator. In the next section, we discuss the symmetry that causes this

degeneracy in rectangular and circular waveguides and how the introduction of a second

commuting operator allows us to uniquely label these degenerate eigenmodes.

3.8.2 Discrete Symmetries

As already discussed, when introducing the intensity eigenmodes, any degeneracy can be

attributed to some symmetry or invariance that has not been probed by the intensity

operator. In the example of the rectangular waveguide in section 3.4.2 and the Hermite-

Gaussian modes in section 3.3.2, we observed degenerate eigenmodes which have even or

odd field profiles with respect to reflections in the transverse plane, i.e., Vx : x → −x and

Vy : y → −y.

3.8.2.1 Example

(a) (b)

Figure 3.30: Degenerate eigenmodes for a TM12 background with components (a) F2,k(r2)
and (b) F3,k(r2) in the output plane where k = 1, 2 from left to right.

If we take, for example, a TM12 background field, as in section 3.4.3, we find eigenmodes

that exist in a two-fold degenerate subspace, as shown in figure 3.30. Each of these eigen-

modes is made up of two distinct field components as F2,k(r2) and F3,k(r2) where the total
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(a) (b)

Figure 3.31: Degenerate eigenmodes in figure 3.30 after transformation by Vx.

intensity eigenvalue in the output plane is the sum of the intensity of these components as

λk = λ2,k+λ3,k =

∫∫
1

2
n2ε0c F∗2,k(r2)F2,k(r2) dx2 dy2+

∫∫
1

2
n3ε0c F∗3,k(r2)F3,k(r2) dx2 dy2,

(3.126)

where for two degenerate eigenmodes λ1 = λ2, λ2,1 = λ2,2 and λ3,1 = λ3,2. In this example,

the TM12 background field is odd with respect to the operator Vx and even with respect to

Vy. Consequently, the eigenmodes themselves are invariant for Vy but not invariant for a

reflection about the x-axis. Indeed, the eigenmodes transform as:

VxF2,1(r2) = −F2,1(r2), VxF3,1(r2) = F3,1(r2) (3.127)

VxF2,2(r2) = F2,2(r2), VxF3,2(r2) = −F3,2(r2), (3.128)

as illustrated in figure 3.31. As the intensity operator commutes with Vx and Vy, the

operators share an eigenspace. Indeed, the eigenvalues for Vx are found by projecting onto

the initial eigenmodes and integrating over the output plane as

ξj =

∫∫ (
F∗2,k(r2)VxF2,k(r2) + F∗3,k(r2)VxF3,k(r2)

)
dx2 dy2, (3.129)

which for the two eigenmodes in figure 3.30 is evaluated using the properties given in

Eqs. 3.127 and 3.128 giving

ξ1 =

∫∫ (
−F∗2,1(r2)F2,1(r2) + F∗3,1(r2)F3,1(r2)

)
dx2 dy2 =

2λ3,1

n3ε0c
− 2λ2,1

n2ε0c
, (3.130)

and

ξ2 =

∫∫ (
F∗2,2(r2)F2,2(r2)− F∗3,2(r2)F3,2(r2)

)
dx2 dy2 =

2λ2,2

n2ε0c
− 2λ3,2

n3ε0c
, (3.131)

where, as λ2,1 = λ2,2 and λ3,1 = λ3,2, we have ξ1 = −ξ2. Consequently, the eigenmodes

are not degenerate when acted on by the operator Vx. This process can be repeated with

all of the degenerate subspaces in section 3.3.2 and 3.4.3. Assuming the degenerate sub-

space consists only of two eigenmodes the result given by Eq. 3.130 and 3.131 is the same

regardless of the background field where the spatial translation breaks the symmetry of the

background field.
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3.8.3 Optical Angular Momentum

In sections 3.3.3, 3.4.3 and 3.7.2, we introduced the optical eigenmodes of the intensity

operator in a basis whose elements exhibited circular symmetry. For these eigenmodes, we

observed a two-fold degeneracy that was attributed to the orbital angular momentum, `τ ,

of the fields. As discussed in section 3.8.2, we can lift this system degeneracy by probing

or breaking the symmetry that causes it. For this section, we drop the notation `b, used

in sections 3.3.3, 3.4.3 and 3.7.2, to denote the background field as we discuss both sum-

frequency generation and parametric down-conversion. Instead, we maintain the numerical

indices to distinguish between the fields and their orbital angular momentum.

In section 1.4.1, we introduced the orbital angular momentum operator in the context of

classical fields where the transformed field, i∂φEτ (r, φ, z), is itself a solution of Maxwell’s

equations. Given we have some fields Eτ (r, z)e−i`τφ that are solutions of our equations for

sum-frequency generation, we can check if the transformed field is itself a solution. Assuming

the fields are of the form of the Laguerre-Gaussian modes used in both sections 3.3.3 and

3.4.3 the equations for sum-frequency generation, with a single mode on each field, are:

− i∂zE2(r, z)e−i`2φ =
1

2k2
∇2

(r,φ)E2(r, z)e−i`2φ + χ2E1(r, z)∗E3(r, z) e−i(`3−`1)φe−i∆kz,

(3.132)

− i∂zE3(r, z)e−i`3φ =
1

2k3
∇2

(r,φ)E3(r, z)e−i`3φ+χ3E1(r, z)E2(r, z) e−i(`1+`2)φei∆kz, (3.133)

where ∇2
(r,φ) =

(
∇2
r + 1

r∇r + 1
r2∇2

φ

)
is the transverse Laplacian operator in cylindrical

coordinates. If we now input the transformed fields i∂φEτ (r, z)e−i`τφ into the equations we

find:

− i∂zE2(r, z)e−i`2φ =
1

2k2
∇2

(r,φ)E2(r, z)e−i`2φ +
`3
`2
χ2E1(r, z)∗E3(r, z) e−i(`3−`1)φe−i∆kz,

(3.134)

− i∂zE3(r, z)e−i`3φ =
1

2k3
∇2

(r,φ)E3(r, z)e−i`3φ +
`2
`3
χ3E1(r, z)E2(r, z) e−i(`1+`2)φei∆kz,

(3.135)

which are only the same as the original equations when `3 = `2, that is when `1 = 0.

However, if we do not have `1 = 0 the orbital angular momentum satisfies the relation

`3 = `2 + `1. In section 3.4.3, we showed that fields interact if and only if the OAM is

conserved. Therefore, we can rewrite the equations as:

−i∂zE2(r, z)e−i`2φ =
1

2k2
∇2

(r,φ)E2(r, z)e−i`2φ +
`2 + `1
`2

χ2E1(r, z)∗E3(r, z) e−i(`3−`1)φe−i∆kz

(3.136)
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−i∂zE3(r, z)e−i`3φ =
1

2k3
∇2

(r,φ)E3(r, z)e−i`3φ +
`3 − `1
`3

χ3E1(r, z)E2(r, z) e−i(`1+`2)φei∆kz

(3.137)

From the interaction term in the above equations, we note that the OAM operator

needs to be corrected for the background field in the instances when `1 6= 0. In sec-

tions 3.3.3 and 3.4.3, when we considered a non-zero background OAM, we shifted the basis

for E3(r, z)e−i`3φ such that all of the interactions were closed with respect to the selection

rule `3 = `2 + `1. Therefore, the interaction of any of the elements will not excite higher-

order outwith the considered basis. We can write the conserved quantities in the form of

the following set of operators:

E2(r, z)e−i`2φ → (i∂φ + γ)E2(r, z)e−i`2φ, (3.138)

E3(r, z)e−i`3φ → (i∂φ + (γ − `1))E3(r, z)e−i`3φ, (3.139)

where γ is a free parameter which reflects the multiple ways in which the asymmetry between

the two basis sets can be introduced. In both section 3.3.3 and 3.4.3, when we considered

a background field with `1 = +1, we shifted the `3 basis elements by +1. However, we

could have just as easily shifted the `2 elements by −1 and achieve a closed set. More

generally, one could shift the `3 or `2 basis elements by an arbitrary amount as long as

there is a one to one correspondence between the two basis sets after interacting with the

background. Following the same arguments presented above for the equations describing

parametric down-conversion, we can derive a similar set of transformations:

E1(r, z)e−i`1φ → (i∂φ + γ)E1(r, z)e−i`1φ, (3.140)

E∗2(r, z)ei`2φ → (i∂φ + (γ − `3))E∗2(r, z)ei`2φ. (3.141)

These transformations are the same as those for the sum-frequency generation equation

as they are derived from the same selection rule, i.e., `3 = `2 + `1. Certainly, as we are

transforming the conjugate fields E∗2(r, z)ei`2φ where `2 → −`2 we observe that under this

transformation, the OAM selection rule is similar to that of sum-frequency generation.

Similar to the operators in Eq. 3.138 and 3.139 when we have a non-zero background

OAM, we have two choices to ensure the basis set is closed with respect to all possible

interactions. If for example, we have `3 = +1, then we can shift the `2 basis elements by +1

or, alternatively, shift the `1 elements by −1. Consequently, if we choose the appropriate

set of basis elements for the two interacting fields the orbital angular momentum will be

conserved and with the OAM operator, we can uniquely label the optical eigenmodes.
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(a) (b)

Figure 3.32: Degenerate eigenmodes for a LG00 background with components
(a) F2,k(r2)e−i`2,kφ and (b) F3,k(r2)e−i`3,kφ in the output plane where k = 1, 2 from left
to right.

3.8.3.1 Example

If we take, for example, the simple case for sum-frequency generation where the back-

ground OAM is `1 = 0 we observed degeneracy in the eigenmodes shown in figure 3.32

where `3,k = `2,k = ±1. In this case the orbital angular momentum of the eigenmodes is

Lk =

∫∫
F∗2,k(r2)ei`2,kφi∂φF2,k(r2)e−i`2,kφ + F∗3,k(r2)ei`3,kφi∂φF3,k(r2)e−i`3,kφ dφ dr2

=

∫∫
`2,kF∗2,k(r2)F2,k(r2) + `3,jF∗3,k(r2)F3,k(r2) dφ dr2, (3.142)

where `τ,k is the OAM of the kth eigenmode component oscillating at ωτ and the free

parameter is chosen to be γ = `1 = 0. In the eigenmodes in figure 3.32 we have `2,1 = `3,1 = 1

and `2,2 = `3,2 = −1 such that we have:

L1 =

∫∫ (
F∗2,1(r2)F2,1(r2) + F∗3,1(r2)F3,1(r2)

)
dφ dr2 =

2λ2,1

n2ε0c
+

2λ3,1

n3ε0c
, (3.143)

L2 =

∫∫ (
−F∗2,2(r2)F2,2(r2)− F∗3,2(r2)F3,2(r2)

)
dφ dr2 = − 2λ2,2

n2ε0c
− 2λ3,2

n3ε0c
, (3.144)

where as λ2,1 = λ2,2 and λ3,1 = λ3,2 we have L1 = −L2. This result is true in general for

all of the degenerate subspaces in section 3.3.2 and 3.4.3 for `1 = 0 where the eigenvalues

λk are scaled by the total angular momentum of the fields. This kind of behaviour is also

true for examples where `1 6= 0. Indeed, if we consider the eigenmodes of sum-frequency

generation with `1 = +1 as presented in section 3.4.3 we found degenerate eigenmodes with

orbital angular momentum `2 = 0, `2 = −1 and `3 = 1, `3 = 0. Note, in each case we

observe that `3,k = `2,k + 1. If we choose γ = `1 we have the following operators:

F2,k(r2)e−i`2,kφ → (i∂φ + `1)F2,k(r2)e−i`2,kφ, (3.145)

F3,k(r2)e−i`3,kφ → i∂φF3,k(r2)e−i`3,kφ, (3.146)
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acting on the optical eigenmodes. Indeed, the angular momentum of each of the eigenmodes

is

L1 =

∫∫
F∗2,1(r2)ei`2,1φ

(
i∂φF2,1(r2)e−i`2,1φ + F2,1(r2)e−i`2,1φ

)
(3.147)

+ F∗3,1(r2)ei`3,1φi∂φF3,1(r2)e−i`3,1φ dφ dr2

=

∫∫
F∗2,1(r2)F2,1(r2) + F∗3,1(r2)F3,1(r2) dφ dr2 =

2λ2,1

n2ε0c
+

2λ3,1

n3ε0c
,

L2 =

∫∫
F∗2,2(r2)ei`2,2φ

(
i∂φF2,2(r2)e−i`2,1φ + F2,2(r2)e−i`2,1φ

)
(3.148)

+ F∗3,2(r2)ei`3,2φi∂φF3,2(r2)e−i`3,2φ dφ dr2

=

∫∫
−F∗2,2(r2)F2,2(r2) + F∗2,2(r2)F2,2(r2) dφ dr2 = 0.

Note, in the second of the two examples, the total angular momentum is zero. This is be-

cause, for a non-zero OAM background field, the operator acting on the fields F2,k(r2)e−i`2,kφ

behaves like a conventional orbital angular momentum operator, i∂φ, in a frame of refer-

ence rotating with `1 = +1. Therefore, if we have `2,k = −1, as we do in the example

presented above, the total angular momentum with respect to the operator Eq. 3.145 is

zero. In both examples, we observe that by accounting for the orbital angular momentum

of the eigenmodes, they are no longer degenerate and can be uniquely labelled with respect

to their angular momentum. This can be repeated for any degenerate subspaces in the

intensity eigenmodes shown in the previous sections, for the sake of brevity; however, we

only consider the two examples presented above.

3.9 Conclusion

In this chapter, we have introduced optical eigenmodes in the context of three-wave mixing

within the non-depleting pump approximation. In linear optical systems, the optical eigen-

modes define a set of orthogonal, non-interacting fields characteristic of the measure of a

physical observable in some region of detection. The eigenmodes we define here, however,

although orthogonal to one another, have components that interact due to the presence

of a second-order nonlinear crystal. Indeed, although we are within the non-depleting

pump approximation, the equations of evolution have an intensity dependence that leads

to non-trivial eigenmodes distributed across multiple frequencies. The interaction of these

low-intensity perturbation fields is determined by a high-intensity pump field and, therefore,

the eigenmodes themselves are characteristic of that particular background.
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In the context of three-wave mixing, we described two distinct effects in the form of sum-

frequency generation and parametric down-conversion and their associated symmetries. In

particular, we highlight the symmetry of the eigenmodes with respect to the choice of back-

ground field and how they are linked to the initial field decomposition considered. Indeed,

through several numerical examples, we highlighted the distributed nature of the eigenmodes

in bulk nonlinear material and optical waveguides. In the case of optical waveguides, we also

discussed the propagation eigenmodes for sum-frequency generation and parametric down-

conversion and highlighted the symmetries of the interactions between the low-intensity

fields from an analytical perspective. We concluded the chapter by discussing degeneracy

in the eigenvalue spectrum of the intensity optical eigenmodes and break the symmetry

with the use of another operator that commutes with the intensity measure.
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Chapter 4

Multiphoton Propagation
Eigenmodes in Three-Wave Mixing

4.1 Introduction

In general, the asymptotic propagation of light through a linear optical system is fully

characterised by a scattering matrix [11]. The same is true for sum-frequency generation

and parametric down-conversion in the non-depleting pump approximation introduced in

section 2.3. In the context of quantum optics, this scattering matrix also characterises the

input-output relation of bosonic creation and annihilation operators of the corresponding

classical fields where the field amplitudes are interpreted as probability amplitudes [12]. The

quantum description of these optical systems has been studied extensively in recent years

owing to their close link to the study of quantum computing, information and communica-

tion [101, 102, 103]. Further, the effective Hamiltonian describing the evolution of quantum

states in optical networks can be derived directly from the classical scattering matrix that

characterises the system [104, 105]. In this chapter, we study three-wave mixing in the

context of a linear optical network in which two low-intensity perturbation fields interact

as they propagate. This interaction is mediated through the high-intensity pump field and

a second-order nonlinear material. By quantising the perturbation fields, we introduce a

unitary scattering operator that describes the evolution of single-photon or Fock states,

introduced in section 4.2.3, as they propagate: establishing a link between the classical

fields discussed in previous chapters and single-photon states. With this link, we study

the influence of the propagation eigenmodes on the quantum behaviour of sum-frequency

generation and parametric down-conversion.

97



4.2 Quantum Description of Light

In this section, we introduce the theoretical considerations that we require for describing

electromagnetic fields in the context of quantum mechanics. In particular, in section 4.2.1,

we briefly discuss the Schrödinger picture of quantum mechanics and the evolution of states

before introducing Heisenberg’s time-dependent operator picture. We then introduce the

operator solution of the quantum harmonic oscillator that gives rise to the raising and

lowering or creation and annihilation operators. After this, we briefly outline how the

creation and annihilation operator representation is applied to quantise the electromagnetic

field. Using this quantisation procedure, we are in a position to describe not just the state

of the system - described by the Heisenberg and Schrödinger pictures - but the number of

quanta in a particular state. To conclude this section, we briefly outline the method of

optical eigenmodes in the context of quantum operators.

4.2.1 The Wavefunction and the Schrödinger & Heisenberg Pictures

Like electromagnetic fields in optics, the fundamental object of quantum mechanics is the

wavefunction, commonly denoted Ψ(r, t). This wavefunction is a mathematical description

of the physical state, at time t, of some quantum particle or system and encodes knowledge

of the particle or system that can be accessed via a measurement. If the position-space

wavefunction is interpreted in this way, then it is often normalised to satisfy the following

condition ∫
V

Ψ∗(r, t)Ψ(r, t) dV = 1, (4.1)

where dV is some three-dimensional region of space. If the above condition is satisfied, then

the sum of all probabilities distributed across space is equal to one. Note, in momentum-

space, the inner product is defined for the functions Ψ(p, t) in a similar manner [106, 107].

The position-space normalisation condition was historically introduced to make sense of the

so-called statistical interpretation of the wavefunction [108, 109]. The equation that defines

the time evolution of the wavefunction was first proposed by Schrödinger and is a partial

differential equation of the form

i~
∂

∂t
Ψ(r, t) = ĤΨ(r, t), (4.2)

where the notation ˆ denotes a quantum operator and Ĥ is the Hamiltonian that, when

independent of time, evolves the wavefunction as

Ψ(r, t) = e−
i
~ ĤtΨ(r, 0). (4.3)
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For a single particle with linear momentum p̂ = −i~∇ the Hamiltonian can be written

in the form

Ĥ =
p̂2

2m
+ V̂ (r) = − ~2

2m
∇2 + V̂ (r), (4.4)

where m is the mass of the particle and V̂ (r) is a potential function. Similar to the solution

for the evolution of classical fields, introduced in section 1.2, we can separate the wave-

function as Ψ(r, t) = ψ(r)Θ(t) such that

Θ(t) = exp

(
−iĤt

~

)
(4.5)

and we are left with the time-independent Schrödinger equation

Ĥψ(r) = − ~2

2m
∇2ψ(r) + V̂ (r)ψ(r) = Eψ(r), (4.6)

where the separation variable E corresponds to the energy of the state ψ(r). Note, the

time-independent Schrödinger equation is linear and so if given two solutions ψ1(r) and

ψ2(r) their superposition, ψ1(r)+ψ2(r), is itself a solution. Thus, the solutions of the time-

independent Schrödinger equation are the eigenfunctions of the Hamiltonian operator where

the associated eigenvalue is the energy of that state. As the Hamiltonian Ĥ is Hermitian,

these eigenfunctions are orthogonal to one another with the inner product∫
ψ∗τ (r)ψσ(r) d3r = δ(τ − σ) (4.7)

where δ(τ − σ) is the Dirac delta function. These properties are shared with the optical

eigenmodes discussed in section 1.4.1 and 1.4.2, which are themselves orthogonal with eigen-

values associated with some physical observable. Indeed, the optical eigenmodes correspond

to a classical analogue of the eigenfunctions discussed here, where the classical fields obey

Maxwell’s equations and the evolution of the wavefunction is determined by Schrödinger’s

equation.

In the Schrödinger picture, discussed above, the wavefunctions take on an explicit time

dependence and evolve according to Eq. 4.2. According to the Heisenberg picture, how-

ever, one can instead describe the dynamics of a system by endowing the operators with

explicit time dependence, i.e. Ô(t). The Heisenberg picture is therefore distinct from the

Schrödinger picture where the operators are fixed in time, and the wavefunctions evolve.

Indeed, consider some observable Ô, the measurement of this observable is expressed in

Dirac notation as

O = 〈Ψ(r, t)| Ô |Ψ(r, t)〉 , (4.8)
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where 〈Ψ(r, t)| Ô |Ψ(r, t)〉 =
∫

Ψ∗(r, t)ÔΨ(r, t) dr, which is formally similar to the Hermitian

operators discussed in section 1.4.1 except here we have quantum wavefunctions in place of

classical fields. Using the evolution of the states given by Eq. 4.3, the above relation can

be written with respect to the input state |Ψ(r, 0)〉 as

O = 〈Ψ(r, 0)|
(
e
i
~ ĤtÔe−

i
~ Ĥt
)
|Ψ(r, 0)〉 = 〈Ψ(r, 0)| Ô(t) |Ψ(r, 0)〉 , (4.9)

where the operators take on the time dependence and the wavefunctions are stationary

states: this is analogous to the coefficient form introduced in section 3.4.1. Taking the time

derivative of the operator Ô(t) returns the following differential equation

d ˆO(t)

dt
=
i

~
[Ĥ, ˆO(t)] +

∂ ˆO(t)

∂t
, (4.10)

which is commonly known as Heisenberg’s equation of motion. Given the system is quan-

tised using the Born-Jordan rule [110, 111], the Heisenberg and Schrödinger pictures are

equivalent to one another [112, 113]. Throughout the rest of this chapter, we will utilise

both of these representations to derive an effective Hamiltonian and associated scattering

operator that describes the quantum behaviour of both sum-frequency generation and para-

metric down-conversion. Note, there is an intermediate representation of the Heisenberg

and Schrödinger pictures known as the interaction picture [22, 114]. However, in this work,

we do not utilise the interaction picture as we make use of fixed basis states as described

in sections 3.4.3 and 3.7.2.

4.2.2 Creation & Annihilation Operators

In this section, we discuss second quantisation in which the harmonic oscillator itself is

described in terms of operators. In particular, we introduce the creation and annihilation

operators which raise and lower the energy of the harmonic oscillator. As opposed to being

concerned with which state a given bosonic particle occupies, i.e. first quantisation, we are

concerned with how many bosons occupy a given state: known as second quantisation. With

these operators and the photon number states, which we will introduce in section 4.2.3, one

has a formalism to describe quantum systems in the context of a field decomposition. Indeed,

although we introduce the creation and annihilation operators with respect to the harmonic

oscillator one can show that these same operators arise when quantising electromagnetic

fields [114, 115, 116].
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The mathematical form of the creation and annihilation operators are found from the

operator solution of the quantum harmonic oscillator. The total energy of a 1D harmonic

oscillator is given by the Hamiltonian

Ĥ = T̂ + V̂ =
p̂2
x

2m
+

1

2
mω2x̂2, (4.11)

where T̂ corresponds to the kinetic energy, V̂ to the potential energy and the mass is defined

as the ratio between average velocity and average momentum as illustrated with Ehrenfest’s

theorem,

m
d〈x̂〉
dt

= 〈p̂x〉. (4.12)

This Hamiltonian can be factorised with the use of the ladder operators defined with the

canonical observables x̂ and p̂x as:

â =
1√

2m~
(mωx̂+ ip̂x) , (4.13)

â† =
1√

2m~
(mωx̂− ip̂x) , (4.14)

where m is the same mass as above, and the position and momentum have commutation

relation [x̂, p̂x] = i~ which gives [â, â†] = ââ†− â†â = 1. Using the creation and annihilation

operators and their commutator, the Hamiltonian can be expressed as

Ĥ = ~ω
(
â†â+

1

2

)
. (4.15)

With this Hamiltonian, we can calculate the commutation relations [Ĥ, â†] = ~ωâ† and

[Ĥ, â] = −~ωâ. Using these commutation relations and Heisenberg’s equation, we write the

time dependence of these operators as:

â(t) = â(0)eiωt, (4.16)

â†(t) = â†(0)e−iωt. (4.17)

Operating on a state, Ψn, with Ĥâ† we find

Ĥâ†Ψn = (~ω + En) â†Ψn. (4.18)

Similarly, for Ĥâ, we have

ĤâΨn = (−~ω + En) âΨn, (4.19)

which shows that âΨn and â†Ψn are eigenfunctions of the Hamiltonian of a harmonic os-

cillator with energy En − ~ω and En + ~ω, respectively. So by applying the operator â to

the wavefunction, the energy is lowered by ~ω and by applying â† the energy is raised by

the same factor. Therefore, the operators â† and â are known as the raising and lowering

or the creation and annihilation operators.
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Given the wave nature of the electromagnetic field, it is perhaps unsurprising that one can

quantise light with the harmonic oscillator. To show the equivalence between the harmonic

oscillator and the electromagnetic field we start with the classical free field Hamiltonian

HEM =

∫
V

1

2

(
ε0E

∗E +
1

µ0
B∗B

)
dV, (4.20)

where V corresponds to the volume of an empty cavity in which the field is enclosed. If we

take the simple case of a monochromatic, linearly polarised electric field propagating along

the z-axis we have

Ex(z, t) = E0 sin(kz) sin(ωt) (4.21)

with the corresponding magnetic field

Bx(z, t) =
E0

c
cos(kz) cos(ωt). (4.22)

Integrating these fields over the cavity volume, assuming we have a standing wave with

nodes at z = 0 and z = zmax, the Hamiltonian is rewritten as

HEM =
V

4

(
ε0|E0|2 sin2(ωt) +

|E0|2

µ0c2
cos2(ωt)

)
(4.23)

whereby introducing the two operators

q̂ =

√
ε0V

2ω2
E0 sin(ωt) (4.24)

and

p̂ =

√
ε0V

2
E0 cos(ωt) (4.25)

can be written in a form reminiscent of the harmonic oscillator as

HEM =
1

2

(
p̂2 + ω2q̂2

)
, (4.26)

where p̂ and q̂ act like the position and momentum of the electromagnetic field. Indeed,

the above Hamiltonian can be made identical to the harmonic oscillator with the following

substitutions:

q̂ =
√
mx̂, (4.27)

p̂ =
1√
m
p̂x, (4.28)

which gives the commutator [q̂, p̂] = i~. We can recast our creation and annihilation oper-

ators in terms of the electromagnetic field operators p̂ and q̂ as:

â =
1√
2~ω

(ωq̂ + ip̂) , (4.29)
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â† =
1√
2~ω

(ωq̂ − ip̂) , (4.30)

which allow us to write the Hamiltonian Eq. 4.26 in the operator form

ĤEM =
1

2
~ω
(
â†â+

1

2

)
, (4.31)

which is identical to Eq. 4.15. With this, we observe that the quantisation of the quantum

harmonic oscillator can be directly applied to electromagnetic fields. Furthermore, the

above demonstration represents a simple example of so-called canonical quantisation where

a classical theory is quantised by defining field and conjugate momenta operators that have

the same algebraic structure as Eqs. 4.13 and 4.14.

4.2.3 Number State Representation

If the states Ψn are defined as eigenstates of the number operator n̂ = â†â we have

n̂Ψn = nΨn, (4.32)

where n is the total number of quanta in the state. We denote these states as the Fock

states and represent them in Dirac notation with the kets |n〉. The raising and lowering

operators â† and â act to increase and decrease the total number of photons in terms of

these kets as:

â† |n〉 =
√
n+ 1 |n+ 1〉 , (4.33)

â |n〉 =
√
n |n− 1〉 , (4.34)

and

â |0〉 = |0〉 , (4.35)

where the Fock states form an orthonormal basis with 〈n′|n〉 = δn′,n. The first of the above

properties suggests that the number states can be described as the successive application

of the creation operator in the following manner

|n〉 =
1√
n!

(â†)n |0〉 , (4.36)

where n! represents the factorial of the number n and the state |0〉 corresponds to the ground

state in which no quanta of light are in an excited state. The total number of photons in a

system can be found by applying the operator n̂ = â†â,

â†â |n〉 =
√
nâ† |n− 1〉 =

√
n
√

(n− 1) + 1 |n〉 = n |n〉 , (4.37)

showing that the number states are indeed eigenstates of the number operator. If we consider

a system with more than one oscillator the operators âτ,j corresponds to the creation and
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annihilation operators with properties described by Eq. 4.33 and 4.34. Indeed, for some

basis decomposition, the number states become |n1〉 ⊗ · · · ⊗ |nm〉 = |n1, . . . , nm〉 where

m is the total number of orthogonal basis elements. The commutation relations for these

creation and annihilation operators are[
âj , â

†
k

]
= δjk, (4.38)

where the operators âj and â†j act to decrease or increase the number of photons in jth

mode within some basis decomposition with the following relations:

âj |n1, . . . , nj , . . . , nm〉

=
√
nj |n1, . . . , nj − 1, . . . , nm〉 , (4.39)

â†j |n1, . . . , nj , . . . , nm〉

=
√
nj + 1 |n1, . . . , nj + 1, . . . , nm〉 , (4.40)

and

âj |0, . . . , 0, . . . , 0〉 = |0, . . . , 0, . . . , 0〉 .

The total number of photons in the jth mode is found using the operator n̂j = â†j âj , and

the total number of photons in the decomposition is given by the sum
∑

j n̂j =
∑

j â
†
j âj .

4.2.4 Optical Eigenmodes for Quantum Operators

With the creation and annihilation operators defined in the previous section, one can quan-

tise the optical eigenmodes in which the coefficients in section 1.4.1 and 1.4.2 are considered

quantum operators. In the context of classical systems, we have two pictures in which we

can evolve the fields as in sections 3.3.2 and 3.3.3 or evolve the coefficients as described

in section 3.4.1. These two representations can be thought of as classical analogues to the

Schrödinger and Heisenberg pictures of quantum mechanics introduced in section 4.2.1. The

link between these two representations is in the field decomposition

Eτ (r) =

N∑
j=1

aτ,j(z)fτ,j(x, y), (4.41)

where N is the number of elements in the basis and the fields fτ,j(x, y) describe an orthog-

onal Hilbert space satisfying∫∫∫
1

2π
f∗τ,j(x, y)fσ,k(x, y)e−i(ωσ−ωτ )t dx dy dt = δ(ωτ − ωσ)δjk. (4.42)
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To quantise this system, we promote the coefficients to operators as:

aτ,j → âτ,j ,

a∗τ,j → â†τ,j , (4.43)

with the canonical commutation relations[
âτ,j , â

†
σ,k

]
= âτ,j â

†
σ,k − â

†
σ,kâτ,j = δjkδτσ. (4.44)

In analogy with the operators described in section 1.4 an observable in quantum me-

chanics is described by a Hermitian measure, m̂, which, in a finite basis, corresponds to a

Hermitian matrix. This measure can be written in the form m̂ = â†Mâ where the coeffi-

cient vectors are promoted to creation and annihilation operators as described above. As

M is Hermitian, it has a set of orthogonal eigenvectors each with a real eigenvalue asso-

ciated with it - corresponding to the physical observable being measured. In the context

of the statistical interpretation of quantum mechanics, however, these eigenvectors take on

additional significance [117]. Indeed, the eigenvectors correspond to orthogonal states of

the observable, m̂, where the act of measurement projects the system onto one particular

eigenstate. The probability of measuring each eigenstate is given by the associated eigen-

value. Within this formalism, it would be possible to describe the optical eigenmodes for

three-wave mixing in a quantum context by quantising the system as described here. In

the following sections, however, we restrict our discussion to the propagation eigenmodes

for three-wave mixing and their influence on the Fock state representation of the system.

4.3 Multiphoton Sum-Frequency Generation

In this section, we introduce the effective Hamiltonian describing the quantum behaviour

of sum-frequency generation at the multiphoton level. In going towards this multiphoton

level, we introduce, in section 4.3.1, modified field variables that normalise the coupling

between the low-intensity fields where the conserving quantity associated with the system

is the photon flux. In section 4.3.2.2, we introduce the effective Hamiltonian method that

allows one to describe the quantum behaviour of our system. In sections 4.3.3 and 4.3.4, we

consider the effective Hamiltonian for the single-mode and multimode case of sum-frequency

generation. In each of these cases, we study the influence of the eigenmode decomposition

of the scattering matrix on the quantum behaviour of the system. We conclude this section

with some numerical examples to illustrate the theory previously outlined.
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4.3.1 Sum-Frequency Generation Modified Field Variables

In this section, we describe the equations for sum-frequency generation with respect to

modified field variables. Indeed, when discussing quantum states, it is useful to describe the

system in terms of photon number or photon flux, i.e. photons m−2 s−1. In the context of

the nonlinear equations introduced in Chapter 2, we can do this by normalising the mixing

term in a manner similar to that shown in section 3.4.1. We start with the set of coupled

equations:

−i∂zEb(x, y, z) =
1

2k1
∇2Eb(x, y, z), (4.45)

−i∂zE2(x, y, z) =
1

2k2
∇2 E2(x, y, z) + χ2E

∗
b (x, y, z)E3(x, y, z)e−i∆kz, (4.46)

−i∂zE3(x, y, z) =
1

2k3
∇2 E3(x, y, z) + χ3Eb(x, y, z)E2(x, y, z)ei∆kz, (4.47)

where ∆k = kb + k2 − k3 is the wave vector mismatch and E2(x, y, z) and E3(x, y, z) are

monochromatic electric fields oscillating at ω2 and ω3, respectively. The field Eb(x, y, z) is

a high-intensity, non-depleting pump oscillating with frequency ω1 = ω3−ω2 which evolves

independently of the fields Eτ (x, y, z). The interaction strength is given by χτ = χ(2)ωτ
nτ c

where χ(2) is the second-order susceptibility of the system. We can expand the fields as

Eτ (x, y, z) =

N∑
j=1

√
ωτ
nτ
aτ,j(z)fτ,j(x, y), (4.48)

where the functions fτ,j(x, y) form an orthonormal basis with∫∫∫
1

2π
e−i(ωσ−ωτ )t

√
ωτ
nτ

√
ωσ
nσ
f∗τ,j(x, y)fσ,k(x, y) dx dy dt = δ(ωτ − ωσ)δjk. (4.49)

If we input our expansion into Eqs. 4.46 and 4.47 we derive our equations of evolution in

a coefficient form:

∂za2,j(z) =
N∑
k=1

iυ2,jka2,k(z) + igjk(z)a3,k(z),

(4.50)

∂za3,j(z) =

N∑
k=1

iυ3,jka3,k(z) + ig∗kj(z)a2,k(z),

with the matrices:

υτ,jk =

∫∫
1

2kτ
f∗τ,j(x, y)∇2

T fτ,k(x, y) dx dy, (4.51)
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gjk(z) = χ

∫∫
E∗b (x, y, z)f∗2,j(x, y)f3,k(x, y)e−i∆kz dx dy, (4.52)

where χ = χ(2)

c

√
ω2ω3
n2n3

. The matrix υτ,jk is a Hermitian phase term with υτ,jk = υ∗τ,kj and

gjk(z) describes the interaction of the modes mediated by the non-depleting background

field, Eb(x, y, z). The evolution of the coefficients given by Eqs. 4.50 are written in terms

of a scattering matrix as (
a′2,k
a′3,k

)
= S

(
a2,k

a3,k

)
, (4.53)

where aτ,k are the field amplitudes of the modes at the input plane and a′τ,k are the am-

plitudes of the corresponding output modes with the scattering matrix defined as S =

exp
(∫
z iP(z)dz

)
where

P(z) =

(
υ2,jk gjk(z)
g∗kj(z) υ3,jk

)
. (4.54)

The matrix gjk(z) is not Hermitian in general; however, the matrix P(z) is Hermitian i.e.

P(z) = P(z)†. As a consequence of this Hermiticity, the scattering matrix is unitary

S†S = exp

(∫
z
iP(z)dz

)
exp

(∫
z
−iP(z)†dz

)
= exp

(∫
z
iP(z)dz

)
exp

(∫
z
−iP(z)dz

)
= I, (4.55)

where I is the identity matrix of the same dimensions as S. From a physical perspective,

the unitarity of the scattering matrix is an expression of the conservation of the quantity

Φ =
∑
τ

Iτ

~ωτ
=
∑
τ

nτ cε0

2~ωτ
E∗τ (x, y, z)Eτ (x, y, z)

=
∑
τ,j

cε0

2~
a∗τ,j(z)aτ,j(z)f

∗
τ,j(x, y, z)fτ,j(x, y, z), (4.56)

where Iτ = 1
2nτε0cE

∗
τ (x, y, z)Eτ (x, y, z) is the intensity of the field and Φ has units propor-

tional to the photon flux - that is, photons per unit area per unit time. If we now quantise

this system by promoting the coefficients to operators as

aτ,j → âτ,j

and

a∗τ,j → â†τ,j

the scattering matrix in terms of the annihilation operators introduced in section 4.2.3 is(
â′2,k
â′3,k

)
= S

(
â2,k

â3,k

)
, (4.57)

where the unitarity of the system leads to the interpretation that the photon number,∑
τ,j â

†
τ,j âτ,j , is conserved, where âτ,j is the annihilation operator of the jth mode with

frequency ωτ .
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(a) (b)

Figure 4.1: Energy-level diagrams for (a) sum frequency and (b) parametric down-
conversion. As we are off-resonance, the horizontal lines correspond to unobservable, short-
lived, virtual states.

Consider the interaction depicted in figure 4.1, where a photon at ω1 and ω2 are anni-

hilated or absorbed by a dipole, and the result is a photon at ω3. From this interaction,

we observe that the number of photons in the background field and perturbation field os-

cillating at ω2 will decrease while increasing the number of photons in the field at ω3.

Similarly, to generate photons at ω2 requires the annihilation of a photon at ω3, which will

also increase the number of photons in the background field. In the non-depleted pump

approximation, however, we are not concerned with the photons transferred to and from

the background field and the annihilation of a photon on one of the perturbation fields

is always accompanied by the creation of photons in the other, conserving the number of

photons.

4.3.2 Effective Hamiltonian Method

For linear systems made up of simple optical instruments, the transformation of input field

amplitudes to output field amplitudes is fully described by a scattering matrix [118]. Of

particular interest here, it has been shown that the effective Hamiltonian describing the

evolution of quantum states in optical systems can be derived directly from the classi-

cal scattering matrix that characterises the system [104, 105]. The effective Hamiltonian

method relies on well-known results from group theory which we discuss in section 4.3.2.1.

We then introduce, in section 4.3.2.2, the effective Hamiltonian method for unitary scat-
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tering matrices like that of sum-frequency generation shown in section 4.3.1. Indeed, we

derive an effective Hamiltonian for sum-frequency generation in the single-mode case and

introduce eigenmode operators in the context of the propagation eigenmodes introduced

in the previous chapter. We also consider, in section 4.3.4, the multimode case and show

that the description of multiphoton fields using the propagation eigenmodes simplifies the

Fock state quantum behaviour of the system while remaining equivalent to the standard

approach.

4.3.2.1 Group Theory

In section 3.3.2, we characterised the rotational symmetries of the field profiles of Hermite-

Gaussian modes that lead to degenerate eigenmodes. Similarly, in section 3.8, we discussed

how to lift the degeneracy of such eigenmodes by breaking these symmetries with discrete or

continuous rotations. These discrete sets of symmetries are best understood in the context

of group theory. Indeed, a group is a closed set of transformations that are composable and

have an inverse [119]. Take, for example, the discrete spatial reflections, Vx and Vy, that we

used to lift the degeneracy in the eigenmodes of section 3.4.2. These transformations are

composable as taking the product, VxVy, defines a third transformation that acts as

VxVy :

xy
z

→
−x−y
z

 . (4.58)

Also, by applying any of the spatial reflections Vx or Vy to the above relation, then we

undo the initial transformation, which suggests that V −1
x = Vx and V −1

y = Vy. This set

of two spatial transformations describes a subgroup of the abelian or commutative group

denoted Z2 [120]. For this group a function, ψ, is either even or odd under the spatial

translations in the group such that Vxψ = ψ or Vxψ = −ψ and similarly for Vy. The group

can consequently be described with the two-element set, Z2 ≡ {−1,+1}, which is used to

define the parity and time-reversal symmetry of physical systems [121, 122, 123].

The group of spatial reflections or parity operators is an example of a discrete group.

However, as outlined in section 3.4.3 systems can also be symmetric under continuous

transformations of the x-y plane. If we consider a vector, r = (x, y), in the 2D plane, the

matrix describing a counterclockwise rotation at an angle, φ, is

R(φ) =

(
cos(φ) −sin(φ)
sin(φ) cos(φ)

)
, (4.59)

which for angles φ ∈ [0, 2π) defines the special orthogonal group SO(2). For all R(φ) the

transformation is completely characterised by the angle φ. Groups that are characterised
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by one or more continuous variables are known as Lie groups [124]: named after Norwegian

mathematician Sophus Lie. The concept of Lie groups leads directly to another important

idea in physics, namely, infinitesimal generators. The generators of elements in a Lie group

correspond to the derivatives of the elements with respect to the parameters that charac-

terise the group. Moreover, the generator of a Lie group is the simplest representation of

the group from which all its elements can be derived [119, 120, 124]. For example, if we

take the derivative of R(φ) with respect to φ evaluated at φ = 0, we find

dR(φ)

dφ
|φ=0 =

(
0 −1
1 0

)
, (4.60)

which generates infinitesimal rotations in the counterclockwise direction. One can see that,

up to a factor of i, the orbital angular momentum operators introduced in section 3.8 are

generators of infinitesimal rotations in 2D space.

In general, a group will have N elements whose infinitesimal generator(s) form a vector

space that, if closed under commutation, is called the Lie algebra of the associated Lie

group. So the generator given by Eq. 4.60 is a member of the Lie algebra associated with

the group R(φ). An example of a group with more than one generator are rotations in 3D

space which are defined by the three matrices:

Rx(φ) =

1 0 0
0 cos(φ) − sin(φ)
0 sin(φ) cos(φ)

 , (4.61)

Ry(φ) =

 cos(φ) 0 sin(φ)
0 1 0

− sin(φ) 0 cos(φ)

 , (4.62)

and

Rz(φ) =

cos(φ) − sin(φ) 0
sin(φ) cos(φ) 0

0 0 1

 , (4.63)

with corresponding generators:

Lx =

0 0 0
0 0 −1
0 1 0

 , Ly =

 0 0 1
0 0 0
−1 0 0

 , Lz =

0 −1 0
1 0 0
0 0 0

 , (4.64)

that describe rotations about the x, y and z axes, respectively. One can check the commu-

tators of the three generators and find the relations:

[Lx, Ly] = Lz, [Ly, Lz] = Lx, [Lz, Lx] = Ly. (4.65)
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Figure 4.2: The commutative link between the Lie groups U(m) and U(M) and their
associated Lie algebras.

These commutation relations show that the commutator of two of the generators gives

another generator from the same group. Thus, this set of generators is closed under commu-

tation and correspond to a Lie algebra. This algebra is often denoted so(3) and is related to

the special orthogonal group SO(3) which is a subgroup of the orthogonal group, O(3), with

the additional constraint that the elements have a unit determinant. The link between a Lie

algebra and its group can be made explicit by defining the exponential map exp : g → G.

Consider a small rotation about the z-axis at an angle ε � 1. Given this angle is suffi-

ciently small the matrix Rz(ε) will be perturbed only a small amount from Rz(0) and can

be expanded as

Rz(ε) ≈ Rz(0) + ε
dRz
dφ
|φ=0 = I + εLz, (4.66)

where I is the identity matrix. To describe a rotation of φ, we then iterate through the

small angle ε a total of n times, where n = φ/ε, as

Rz(φ) = lim
n→∞

(
I +

φLz
n

)n
= eφLz , (4.67)

where we have utilised

lim
n→∞

(
I +

X

n

)n
= eX

in which X is some generator [120]. This result allows one to recover the Lie group from its

algebra and is central to the effective Hamiltonian method that will be introduced in the

next section. One can check the group properties, i.e. that the elements are composable

and have an inverse, using the properties of the exponential function. A mapping between

a Lie group and its associated algebra while conserving the properties, e.g. commutator, of

the group is a homomorphism [119].
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4.3.2.2 Effective Hamiltonian

In the case of sum-frequency generation, we showed that the total number of photons is

conserved and that the associated scattering matrix is unitary and belongs to the unitary

group U(n). In the context of quantum mechanics, the evolution of states is described by

the Schrödinger equation

|ψout〉 = Ŝ |ψin〉 , (4.68)

where the matrix Ŝ also belongs to a unitary group which we denote U(N). According

to Heisenberg’s picture as discussed in section 4.2.1, the output states can also be found

by evolving time-dependent operators as Â′ = Ŝ†ÂŜ where the operators Â are the anni-

hilation operators of our quantised perturbation fields with Â = (â1, . . . , âm)>. Note, to

simplify the notation in the labelling of these operators we have dropped the index τ that

distinguishes between the two wavelengths such that

(â1, . . . , âm) = (â2,1, . . . , â2,m2 , â3,1, . . . , â3,m3) , (4.69)

where m2+m3 = m in which the numbers m3 and m2 are the number of modes in the decom-

position, Eq. 4.109, for each field. Using the scattering matrix introduced in section 4.3.1,

we can write the corresponding output operators as

Â′ = SÂ. (4.70)

The annihilation operators, as described in section 4.2.3, are associated with each of

the modes that propagate through the system. From a physical perspective, if we were to

consider a small number of photons that are coupled to particular perturbation fields, then

the interaction of the photon states depends on the mixing of the fields to which they are

coupled. Consequently, for the scattering operator Ŝ to describe the quantum behaviour of

the system, it should agree with the classical mode transformation as

SÂ = Ŝ†ÂŜ. (4.71)

From the perspective of group theory, this suggests that one can define a homomorphism,

which we denote ζ, between the groups U(n) and U(N). The derivative of ζ forms a map,

dζ, that allows one to move to and from the associated Lie algebras, u(n) and u(N) [101].

As briefly outlined in section 4.3.2.1, the Lie algebra is - for an abelian group - a vector space

of generators of a given Lie group that is closed under commutation. Moreover, we noted

that the Lie group could be recovered from its associated algebra via the exponential map.

In the context of the scattering operator, the exponential map is written Ŝ = exp
(
iĤeff%

)
.
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Note, as the scattering operator characterises the link between the input and output, the

variable % corresponds to the fractional depth of the optical system. As we are not interested

in fractional depths, % is set to unity such that the scattering operator is defined as Ŝ =

exp
(
iĤeff

)
. Similarly, the scattering matrix, S can be expressed with the exponential map

as S = exp(iH) where the differential map, dζ, allows one to write an effective Hamiltonian,

Ĥeff , in terms of the matrix H as illustrated in figure 4.2. The differential map, dζ, between

u(N) and u(n) can be expressed with the so-called Jordan-Schwinger map [125]

Ĥeff =
(
â†1, . . . , â

†
m

)
H

 â1
...
âm

 = Â†HÂ, (4.72)

where the Hermiticity of Ĥeff follows from the Hermiticity of H. Within the nonlinear

crystal, there is an intermediate interaction in which the atoms in the material are excited

before decaying back to their initial state by the emission of photons. As a result, Ĥeff is

not a true Hamiltonian but an effective Hamiltonian [126]. This approach is equivalent to

the one presented for photon conserving systems described by unitary scattering matrices as

described in [105]. However, this method can be expanded to more general optical systems

that include mechanisms for gain and loss [104, 127].

4.3.3 Single-Mode Case

If we take the case where we have a single mode propagating in each of the perturbation

fields, described by Eqs. 4.50, with a stationary background field ∂zg(z) = 0. Then the

scattering matrix, S, for an optical device of unit length can be written

S = eiδ
(
µcos (µ) + iυsin (µ) igsin (µ)

ig∗sin (µ) µcos (µ)− iυsin (µ)

)
, (4.73)

where the coefficients υ and δ are the same as those defined in section 3.4.4 with

µ =
√
|g|2 + υ2.

The scattering matrix is related to the Hermitian matrix H by the exponential map S =

exp (iH) with

H =

(
υ2 g
g∗ υ3

)
, (4.74)

from which we can derive the effective Hamiltonian,

Ĥeff = υ2â
†
2â2 + υ3â

†
3â3 + g∗â†2â3 + gâ†3â2, (4.75)

that describes the quantum behaviour of the operators associated with the quantised per-

turbation fields with Ŝ = eiĤeff satisfying Eq. 4.68. Moreover, using the Hamiltonian in
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Heisenberg’s equation will, up to a factor of ~, return the equations of evolution described

by Eq. 4.50 for the single-mode case. This Hamiltonian, much like the equations of evo-

lution, is made up of phase terms and mixing terms between the mode operators. Of

particular note, the mixing terms in the Hamiltonian show that the creation or annihilation

of a photon in one perturbation field is always accompanied by the annihilation or creation

of a photon in the other - conserving the number of photons.

If we take, for example, a system with a single photon then we have three possible

Fock states including the vacuum as |n2, n3〉 ∈ {|0, 0〉 , |1, 0〉 , |0, 1〉}. The creation and

annihilation operators are consequently 3× 3 matrices of the form:

â2 =

 0 1 0
0 0 0
0 0 0

 , â3 =

 0 0 1
0 0 0
0 0 0

 (4.76)

and

â†2 =

 0 0 0
1 0 0
0 0 0

 , â†3 =

 0 0 0
0 0 0
1 0 0

 , (4.77)

with the usual raising and lowering properties discussed in section 4.2.3 acting on the states

|n2, n3〉. The Hamiltonian Eq. 4.75 in its matrix form is then

Ĥeff =

 0 0 0
0 υ2 g
0 g∗ υ3

 , (4.78)

such that the scattering operator, Ŝ, is written

Ŝ =

1 0 0
0 eiδ (µcos (µ) + iυsin (µ)) ieiδgsin (µ)
0 ieiδg∗ sin (µ) eiδ (µcos (µ)− iυsin (µ))

 , (4.79)

in which the 2 × 2 block in the bottom right of the matrix operator is equal to the initial

scattering matrix, S. We thus observe, that in the case of unitary systems consisting of

a single photon, the scattering operator Ŝ reduces to the classical scattering matrix. This

result indicates the significance of the fields to which the single-photon states are coupled.

Indeed, if one was to prepare a photon in the state |1, 0〉 which we can represent as the

vector (0, 1, 0)> then the state at the output is

|ψout〉 = eiδ (µcos (µ) + iυsin (µ)) |1, 0〉+ ieiδg∗ sin (µ) |0, 1〉 , (4.80)

which is made up of two components: one that gives the probability of the photon remaining

in the first mode and the other the probability of being measured in the second mode. From

a classical perspective, the terms in front of the kets are amplitudes and determine how much
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energy the mode at ω2 transfers to the mode at ω3. At the single-photon level, however,

the terms preceding the states, |n2, n3〉, correspond to probability amplitudes for a single

photon to remain in the initial mode or to interact with the material and the background

field and create a photon in the other mode. The distinction between these two perspectives

comes from the fact one can predict the amount of energy transferred between the modes

as the classical limit of the probability amplitude, but one cannot say with certainty how

a single photon will behave as it propagates. Indeed, if we prepare a photon in the state

|1, 0〉 we can only predict with a certain probability if that photon will be measured in |1, 0〉
or |0, 1〉 at the output, as described by Eq. 4.80. Note, this behaviour is an effect of second

quantisation and not sum-frequency generation. The values of the amplitudes are, however,

dependent on the interaction of the fields in the nonlinear crystal.

In section 3.4.4, we introduced the eigenmodes of propagation for the scattering matrix

similar to that of Eq. 4.73. These eigenmodes correspond to a distributed set of fields with

components oscillating in both of the perturbation fields and are orthogonal to one another

as they propagate. As shown in Eq. 4.55, the scattering matrix is unitary and therefore can

be represented using an eigendecomposition of the form

S = UDU†, (4.81)

where U corresponds to a unitary eigenvector matrix whose columns are the eigenvectors

of the scattering matrix. For the single-mode case, this eigenvector matrix is

U =

υ + i csc(µ)
√
− (|g|2 + υ2) sin(µ)2 g∗

g∗ υ − i csc(µ)
√
− (|g|2 + υ2) sin(µ)2

 , (4.82)

with csc(µ) = sin(µ)−1, U†U = UU† = I and I is a 2 × 2 identity matrix. The matrix D

contains the eigenvalues associated with the eigenvectors in U and has the form

D =

µ cos(µ)−
√
− (|g|2 + υ2) sin(µ)2 0

0 µ cos(µ) +
√
− (|g|2 + υ2) sin(µ)2

 . (4.83)

Using this eigendecomposition, we can introduce a scattering matrix for the eigenmodes.

Indeed, if we consider the transformation of the annihilation modes defined by Eq. 4.81

which we now write as (
â′2
â′3

)
= UDU†

(
â2

â3

)
, (4.84)

then we can define a scattering matrix for the eigenmode operators which we define at the

input as:

b̂2 = υâ2 − i csc(µ)

√
− (|g|2 + υ2) sin(µ)2â2 + gâ3, (4.85)
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b̂3 = υâ3 + i csc(µ)

√
− (|g|2 + υ2) sin(µ)2â3 + gâ2, (4.86)

and similarly for the output where âτ is replaced with â′τ in the above expressions. Like the

original operators, âτ , the eigenmode operators, b̂τ , have bosonic commutation relations,

[b̂τ , b̂
†
σ] = δτσ. By rearranging Eq. 4.84 as

U†
(
â′2
â′3

)
= DU†

(
â2

â3

)
, (4.87)

it becomes clear that the scattering matrix that maps the eigenmode operators from the

input to the output is (
b̂′2
b̂′3

)
= D

(
b̂2
b̂3

)
, (4.88)

where the eigenvalue matrix D, which now acts as a scattering matrix for the eigenmode

operators, is diagonal as there is no mixing between the fields associated with the operators.

With this new scattering matrix, we can derive an effective Hamiltonian that describes the

behaviour of single photons coupled to the propagation eigenmodes. Following the method

outlined in section 4.3.2.2, where the scattering matrix for the eigenmode operators is

replaced by the eigenvalue matrix D, we find the following effective Hamiltonian

Ĥb,eff = −i ln

(
µ cos(µ) +

√
− (|g|2 + υ2) sin(µ)2

)
b̂†2b̂2 (4.89)

−i ln

(
µ cos(µ)−

√
− (|g|2 + υ2) sin(µ)2

)
b̂†3b̂3, (4.90)

in which there is no mixing between the eigenmode operators b̂τ and the system is therefore

decoupled. If we consider a system with a single photon, then the creation and annihilation

operators b̂τ and b̂†τ are the same as those defined in Eq. 4.77 and 4.76. The scattering

matrix in this case is

Ŝb =


1 0 0

0 µ cos(µ)−
√
− (|g|2 + υ2) sin(µ)2 0

0 0 µ cos(µ) +
√
− (|g|2 + υ2) sin(µ)2

 , (4.91)

where we have introduced the subscript b to describe the transformation associated with

the b̂ operators. If we consider the state |m1,m2〉 = |1, 0〉 at the input - where mk denotes

the number of photons in the kth eigenmode - then the output state will also be measured

as |1, 0〉 with probability 1. The same is true for any eigenmode Fock state, |m1,m2〉.
Therefore, by transforming the classical fields into an eigenmodes basis, the evolution of the

Fock states is decoupled such that the states |m1,m2〉 are eigenstates of the system. As with

the scattering matrix Ŝ the 2× 2 block in the bottom right of Ŝb is equal to the scattering
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matrix which, in the context of the eigenmode operators, is D. This simple single-mode case

illustrates how the eigenmode representation of the classical scattering matrix simplifies the

evolution of the Fock states. This can be extended to the case where we have multiple

modes propagating on each of the fields.

4.3.4 Multimode Case

If we have multiple independent modes propagating on each of the wavelengths, then the

scattering matrix linking the annihilation operators of the output modes Â′ to the annihi-

lation operators of the input modes Â as

Â′ = SÂ, (4.92)

with Â and Â′ defined as Â = (â1, . . . , âm)> and Â′ = (â′1, . . . , â
′
m)>, where the symbol >

denotes the transpose of the vectors and m = m2 +m3 is the total number of modes in the

decomposition. The Fock states, in this case, are written

|ψ〉 = |n2,1, . . . , n2,m2 , n3,1, . . . , n3,m3〉 = |n1, . . . , nm〉 ,

where nj is the total number of photons in the jth mode. The states, |n1, . . . , nm〉, written

in terms of the creation operators are

|n1, . . . , nm〉 =
m∏
k=1

(
â†nkk√
nk!

)
|0, . . . , 0〉 , (4.93)

which evolve to the output plane as

Ŝ |n1, . . . , nm〉 =
m∏
k=1

1√
nk!

 m∑
j=1

S∗kj â
†
j

nk

|0, . . . , 0〉 , (4.94)

highlighting the link between the evolution of the photon states, |n1, . . . , nm〉, and the

evolution of the classical fields to which the photons are coupled. This is most apparent

when the system consists of a single photon such that Eq. 4.94 is now written

Ŝ |0, . . . , nk = 1, . . . , 0〉 =

 m∑
j=1

S∗kj â
†
j

 |0, . . . , 0〉 , (4.95)

where the input states on the left-hand side will have zero photons on all of the modes

except the kth mode. Regardless of the number of independent modes in the system, the

scattering matrix is still unitary and the decomposition Eq. 4.81 is still valid. Indeed, the

eigenmode operators in this instance are at the input and output defined as

B̂ = U†Â, (4.96)
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B̂′ = U†Â′, (4.97)

where U is the m×m eigenvector matrix. As with the vector Â, we define

B̂ =
(
b̂1, . . . , b̂m

)>
,

as the annihilation operator for the eigenmodes at the input with elements

b̂k =

m∑
j=1

U∗jkâj . (4.98)

Similarly, we define B̂′ =
(
b̂′1, . . . , b̂

′
m

)>
as the operator associated with the output eigen-

modes. Using this, we can introduce a new scattering matrix for the eigenmode operators

starting with Eq. 4.92 which we rewrite as

Â′ =
(
UDU†

)
Â, (4.99)

which can then be rearranged to give

U†Â′ =
(
DU†

)
Â (4.100)

and using the transformation defined in Eqs. 4.96 and 4.97 the input-output relationship is

simplified in the same way as the single-mode case as

B̂′ = DB̂. (4.101)

The eigenmodes operators introduced in Eq. 4.98 have bosonic commutation relations[
b̂j , b̂

†
k

]
= b̂j b̂

†
k − b̂

†
k b̂j = δjk.

These operators decouple the state evolution as described in Eq. 4.101 as D is a diagonal

matrix with elements |Djj | = 1. Therefore, by transforming the classical fields into an

eigenmode representation, the Fock states associated with the eigenmodes correspond eigen-

states of the quantum system unlike the states given by Eq. 4.94, which are distributed

across the Fock state basis. In short, using the eigenmode decomposition, we replace the

Fock state coupling by classical field coupling. Indeed, if we make use of the transformations

described in Eq. 4.96 the evolution of the Fock states in the eigenmode basis is written

Ŝb |n1, . . . , nm〉inb =

m∏
k=1

1√
nk!

 m∑
j=1

Djk b̂
†
k

nk

|0, .., 0〉

=
m∏
k=1

Dnk
kk

1√
nk!

b̂†nkk |0, .., 0〉 , (4.102)
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where the subscript | 〉b is introduced for states in the eigenmode basis, and Ŝb is the

scattering operator derived from the diagonal scattering matrix D. This scattering operator

Ŝb is diagonal, which we can show explicitly by substituting the input states,

|n1, . . . , nm〉inb =

m∏
k=1

1√
nk!

b̂†nkk |0, . . . , 0〉 , (4.103)

into Eq. 4.102 such that the matrix elements of the scattering operator become

〈
n′1, . . . , n

′
m

∣∣in
b
Ŝb |n1, . . . , nm〉inb =

m∏
k=1

Dnk
kk . (4.104)

Given the link between Â and B̂, we can write the states with respect to either of the

operators in either of the associated Fock spaces

|n1, . . . , nm〉inb =

m∏
k=1

1√
nk!

b̂†nkk |0, . . . , 0〉

=
m∏
k=1

1√
nk!

 m∑
j=1

Ukj â
†
j

nk

|0, . . . , 0〉 , (4.105)

where the vacuum state is the same for both representations. This expression gives us a

direct way to transform between both representations in the context of Fock states and

ensures the photon states correspond to the same physical states regardless of how they

are represented. However, the propagation eigenmodes greatly simplify the evolution of

Fock states. From the perspective of quantum field theory [22, 114] one can imagine the

perturbation fields with their transverse structure as states that the single photons can

occupy. Indeed, the same can be said for the propagation eigenmodes. However, in the

case of the eigenmodes, the photons will remain coupled to the same state as it evolves

through the system. It is, therefore, useful to consider not only the evolution of single or

multiphoton states and how they evolve but also the fields to which they are coupled.

4.3.4.1 Numerical Examples

As a numerical example, we consider the set-up described in section 3.3.1. Namely, we

have a KDP nonlinear crystal with χ
(2)
eff = 0.558 pm/V for perturbation fields of wavelength

λ2 = 740 and λ3 = 436.5 nm with the background field at wavelength λb = 1064 nm.

Further, to simplify the model, we consider the case of type I perfect phase matching,

∆k = 0, in which the fields at λb and λ2 are polarised along the ordinary axis of the crystal,

and the field at λ3 is polarised along the extraordinary axis. For the example shown here,

the background field considered, Eb(x, y, z), has a beam waist wb = 20λb, and average power

of 10 nW which is equivalent to 1010 photons s−1. Therefore, the background field will not
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Figure 4.3: Scattering matrix for LG00 background field represented with the false colour
map shown in figure 1.3 with indices (`, p)τ = (`τ , pτ ).

be perturbed by the presence of the other two fields. From an experimental context, one

could detect single photons by using suitable notch filters allowing one to investigate each

frequency component of the mode by attenuating the other component and the background.

For example, we can choose a finite basis set of Laguerre-Gaussian modes on which to

decompose the low-intensity perturbation fields. To visualise the results, we truncate the

Hilbert space defined by the Laguerre-Gaussian modes to a maximal index of 2p + |`| ≤ 3

and, in this case, we consider a background field with `b = 0. The classical scattering matrix

in this basis is illustrated in figure 4.3, which we observe to have a block-diagonal structure.

This is due to the selection rules associated with the OAM of the fields, `3 − `2 = `b,

which for a background field with `b = 0 reduces to `2 = `3. This selection rule remains

true for all radial indices, illustrated in the 4 × 4 blocks in figure 4.3. This scattering

matrix defines a scattering operator, as outlined in section 4.3.4, shown in figure 4.4. The

scattering operator is shown up to a maximum total photon number of Nmax = 2 where the
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Figure 4.4: Unitary scattering operator Ŝ for LG00 background represented with the false
colour map shown in figure 1.3. The labels Hn correspond to the n-photon number Hilbert
space.

matrix blocks highlighted with the grid lines correspond to the n-photon Hilbert spaces. As

shown in Eq. 4.55 and 4.56, the number of photons is conserved, and therefore there are no

amplification or loss mechanisms in the optical system. Consequently, the n-photon Hilbert

spaces do not interact with one another, hence their block structure. Each of these total

photon number blocks is further block-diagonal due to the symmetries associated with the

OAM, as illustrated in figure 4.3. Additionally, due to the non-interacting nature of the

photon Hilbert spaces, a scattering operator calculated to higher photon number, Nmax,

will leave the matrix shown in figure 4.4 unchanged. The truncation of the Fock state basis

requires one to use truncated creation and annihilation operators and the details on how

we construct these operators is described in Appendix B.

121



(a)

(b)

Figure 4.5: Propagation eigenmodes in the output plane for a LG00 background field with
components (a) F2,k(r2)e−i`2,kφ and (b) F3,k(r2)e−i`3,kφ.
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Figure 4.6: Unitary scattering operator Ŝb for LG00 background represented with the false
colour map shown in figure 1.3. The labels Hn correspond to the n-photon number Hilbert
space.

Utilising the decomposition of the scattering matrix, as described in section 4.3.4, we

can introduce the propagation eigenmodes of the scattering matrix, shown in figure 4.5.

The scattering matrix transforming these eigenmodes from the input to the output is the

diagonal eigenvalue matrix D. From this scattering matrix, we can derive a scattering

operator, Ŝb, describing the evolution of the Fock states with respect to the propagation

eigenmodes. This is represented in figure 4.6, and like the scattering matrix from which

it is derived, is diagonal. Therefore, by utilising the eigenmode transformation defined in,

Eq. 4.96, the Fock states associated with the eigenmodes of S will evolve as eigenstates of

the quantum system. Consequently, in this eigenmode basis, a single photon coupled to one

of the eigenmodes will remain coupled to that eigenmode as it evolves through the nonlinear
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Figure 4.7: Scattering matrix for LG10 background field represented with the false colour
map shown in figure 1.3 with indices (`, p)τ = (`τ , pτ ).

material.

As a secondary example, we consider a background field with OAM `b = +1 with a basis

of Laguerre-Gaussian modes truncated to some maximal index. However, as highlighted in

section 3.3.3, choosing the same basis as used in the example for `b = 0 will not be complete

with respect to the conservation rule `3 = `2 + `b. Indeed, if we consider the field with

OAM `2 = 3 interacting with a background which has `b = +1 then the field resulting from

this interaction would have OAM `3 = +4: which is out with the truncated basis for the

previous example. Therefore, in order to keep all possible interactions closed with respect

to the basis, we truncate the basis elements as described in section 3.3.3.

The scattering matrix for this example is shown in figure 4.7. Again, the matrix is

block-diagonal due to the conservation associated with the orbital angular momentum of

the fields, i.e. `3 − `2 = `b. Similar to the example presented above the scattering matrix
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Figure 4.8: Unitary scattering operator Ŝ for LG10 background represented with the false
colour map shown in figure 1.3. The labels Hn correspond to the n-photon number Hilbert
space.

contains all of the symmetry associated with the system and is the same as the associated

scattering operator if the system consists only of a single photon, i.e. when Nmax = 1. This

is indeed observed in the scattering operator for this example, which is depicted in figure 4.8.

By changing the OAM of the background and truncating the basis fields appropriately, the

eigenmodes of the scattering matrix encode all of the symmetry in the system. Consequently,

if we diagonalise the scattering matrix as described in section 4.3.4, we find a diagonal,

unitary scattering operator, Ŝb, that acts on the Fock states, as shown in figure 4.9. Thus,

the eigenmode Fock states are eigenstates of the system in the context of the classical

propagation eigenmodes of the scattering matrix, which are shown in figure 4.10.
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Figure 4.9: Unitary scattering operator Ŝb for LG10 background represented with the false
colour map shown in figure 1.3. The labels Hn correspond to the n-photon number Hilbert
space.

4.4 Multiphoton Parametric Down-Conversion

In this section, we turn our attention to the quantum behaviour of Fock states in the

context of parametric down-conversion. As shown in Chapter 2, the effects of parametric

down-conversion and sum-frequency generation are closely related. In the approximation

where the pump field is non-depleting, these effects describe, as discussed in section 2.3,

two interacting fields with rather different behaviour. Indeed, in the case of sum-frequency

generation, the interacting fields transfer energy between one another in an oscillatory

manner. In contrast, parametric down-conversion shows the fields to be exponentially in-

creasing in energy density. Consequently, the scattering matrix defined for sum-frequency
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(a)

(b)

Figure 4.10: Propagation eigenmodes in the output plane for a LG10 background field with
components (a) F2,k(r2)e−i`2,kφ and (b) F3,k(r2)e−i`3,kφ.
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generation, in section 3.4.4, is unitary and that which describes down-conversion, defined

in section 3.7.3, is not. Therefore, the method for deriving an effective Hamiltonian as

outlined in section 4.3.2.2 is not valid for the case of parametric down-conversion. In this

section, we outline how to introduce an effective Hamiltonian in the context of parametric

down-conversion. As in section 4.3.1, we first describe the system with modified field vari-

ables that have units of photon flux and quantise the system by promoting field amplitudes

to creation and annihilation operators. As an example, we consider the single-mode case

introduced in section 3.7.3 and use it to highlight the incompatibility of the conditions

required to define orthogonal eigenmodes of the scattering matrix and those required to

preserve the canonical commutation relations of bosonic operators.

4.4.1 Parametric Down-Conversion Modified Field Variables

Following the same procedure outlined in section 4.3.1, we find the following closed set

of equations in the context of modified field variables:

−i∂za1,j(z) =
N∑
k=1

υ1,jka1,k(z) + gjk(z)a
∗
2,k(z), (4.106)

i∂za
∗
2,j(z) =

N∑
k=1

υ2,jka
∗
2,k(z) + g∗kj(z)a1,k(z),

with the matrices

υτ,jk =

∫∫
1

2kτ
f∗τ,j(x, y)∇2

T fτ,k(x, y) dx dy, (4.107)

and

gjk(z) = χ

∫∫
f∗1,j(x, y)f∗2,k(x, y)Eb(x, y, z)e

−i∆kz dx dy, (4.108)

where again we have χ = χ(2)

c

√
ω1ω2
n1n2

as the interaction strength and χ(2) is the second-

order nonlinear susceptibility of the propagating material. The coefficients in Eqs. 4.106

are related to the transverse field profiles via the expansion

Eτ (x, y, z) =

N∑
j=1

√
ωτ
nτ
aτ,j(z)fτ,j(x, y). (4.109)

where again the functions
√
ωτ/nτfτ,j(x, y) form an orthonormal basis satisfying the fol-

lowing condition∫∫∫
1

2π
e−i(ωσ−ωτ )t

√
ωτ
nτ

√
ωσ
nσ
f∗τ,j(x, y)fσ,k(x, y) dx dy dt = δ(ωτ − ωσ)δjk. (4.110)
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The evolution of the coefficients given by Eqs. 4.106 are written in terms of a scattering

matrix as (
a′1,k
a∗
′

2,k

)
= S

(
a1,k

a∗2,k

)
, (4.111)

where aτ,k are the field amplitudes of the modes at the input plane and a′τ,k are the ampli-

tudes of the corresponding output modes and S = exp
(∫
z iP(z)dz

)
with

P(z) =

(
υ1,jk gjk(z)
−g∗kj(z) −υ2,jk

)
. (4.112)

If we now quantise this system by promoting the coefficients to operators as, aτ,j → âτ,j

and a∗τ,j → â†τ,j the scattering matrix in terms of the creation and annihilation operators is(
â′1,k
â
′†
2,k

)
= S

(
â1,k

â†2,k

)
, (4.113)

wherein the case of parametric down-conversion, there is mixing between creation and

annihilation operators not observed for sum-frequency generation.

4.4.2 Effective Hamiltonian for Parametric Down-Conversion

As the matrix P(z) is not Hermitian, the scattering matrix S is not unitary but quasi-

unitary [100]. As shown in [104], scattering matrices that are quasi-unitary can be trans-

formed into a unitary space by introducing an appropriate metric [128, 129]. Indeed, if

we transform P(z) into a Hermitian form, then the unitarity of the scattering matrix will

follow. As shown in the previous section the P(z) matrix for parametric down-conversion

is of the form

P(z) =

(
υ1,jk gjk(z)
−g∗kj(z) −υ2,jk

)
, (4.114)

where P(z) 6= P(z)†. If we simplify this and assume that the gain is sufficiently high such

that υτ,jk � gjk(z) then we are left with a skew-Hermitian or anti-Hermitian matrix of the

form

Q(z) =

(
0 gjk(z)

−g∗kj(z) 0

)
, (4.115)

in which Q(z) = −Q(z)†. As discussed in sections 3.6, this system does not conserve

energy density due to exponential gain of the low-intensity perturbation fields. Therefore,

the photon number is not conserved such that a suitable quantum description of the effect

cannot follow from the method in section 4.3.2.2, which is valid for unitary scattering

matrices.
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In order to find the quantum behaviour of this system, we require a transformation that

modifies the inner product space such that the matrix ηQ(z) defines an exponential map

that is unitary with respect to the metric operator η, which we assume to be real. In

particular, we require

e(iηQ(z))†e(iηQ(z)) = e(−iQ(z)†η+iηQ(z)) = I

which is satisfied if Q(z)†η − ηQ(z) = 0. We can re-write this condition as the following

Q(z)† = ηQ(z)η−1, (4.116)

where to map the matrix Q(z) to a Hermitian form we need to find the metric operator

η. In general, finding this metric can be a difficult problem to solve, as highlighted in [130,

131, 132, 133]. However, in this instance, using Q(z) we have the relation

Q(z)†
(
η11 η12

η21 η22

)
=

(
η11 η12

η21 η22

)
Q(z), (4.117)

that, upon inputting Eq. 4.115, we find the following set of matrix equations:

gjk(z)η21 − g∗jk(z)η12 = 0 (4.118)

gjk(z)η11 + gjk(z)η22 = 0 (4.119)

g∗jk(z)η11 + g∗jk(z)η22 = 0 (4.120)

gjk(z)η12 − g∗jk(z)η21 = 0 (4.121)

which gives η12 = η21 = 0 and η11 = −η22. Although we have not yet chosen the form of η,

using the Hermitian matrix

H = ηQ(z)

we can find an effective Hamiltonian in the same manner as shown in section 4.3.2.2 that

describes the quantum behaviour of the system.

4.4.3 Single-Mode Case

If we consider, as a first example, the case in which we have a single mode propagating on

each of the wavelengths with a stationary background field then the matrices gjk(z) and

η11 reduce to single coefficients which we denote g and ϑ, respectively. Consequently, the

matrix H in the previous section, where υτ,jk � gjk(z), reduces to a 2 × 2 form. With

this single-mode Hermitian matrix, we can use the Jordan-Schwinger map introduced in

section 4.3.2.2 to find an effective Hamiltonian of the form

Ĥeff = ϑ
(
gâ†1â

†
2 + g∗â1â2

)
. (4.122)
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Notice, the term inside the bracket is Hermitian so ϑ must be real; for the purposes of this

section, we choose ϑ = 1. The above Hamiltonian can be checked by inputting it into the

Heisenberg equation introduced in section 4.2.1 where one will derive the original scattering

matrix relation Eq. 4.113 where S = exp
(∫
z iQ(z)dz

)
. Therefore, the following equality

S

(
â1

â†2

)
= Ŝ†

(
â1

â†2

)
Ŝ, (4.123)

where Ŝ = exp
(
iĤeff

)
, is satisfied. Consequently, the effective Hamiltonian does indeed de-

scribe the quantum behaviour of parametric down-conversion in the context of the effective

Hamiltonian method. From a physical perspective, the metric η is related to symmetries

of the equations of evolution via the matrix Q(z). In particular, if the eigenvalues of the

quasi-Hermitian matrix are real or come in conjugate pairs, the metric can be attributed

to the parity-time symmetry of the system [134, 135, 136, 137]. For the purposes of this

work, we are only concerned with the result that the Hamiltonian describes the quantum

behaviour of the system in a manner that links it to the initially defined scattering matrix.

The same can also be done when the approximation υτ,jk � gjk(z) is not valid. However,

as outlined in section 3.7.3, this simplification allows us to define orthogonal propagation

eigenmodes.

4.4.4 Eigenmode Operators and Bogoliubov Transformation

In section 4.3.3, we showed that in the single-mode case for sum-frequency generation,

we can diagonalise the scattering matrix to define eigenmode operators that subsequently

diagonalise the quantum operator. The scattering matrix associated with the single-mode

case here, as shown in section 3.6, is of the form

S =

(
cosh

(√
g∗
√
gz
)

i
√
g√
g∗

sinh
(√
g∗
√
gz
)

−i
√
g∗√
g sinh

(√
g∗
√
gz
)

cosh
(√
g∗
√
gz
) )

, (4.124)

and is Hermitian with S = S†. As the scattering matrix is Hermitian, it is unitary diago-

nalisable as

S = UDU†, (4.125)

where U is a unitary matrix made up of the eigenvectors of S and the matrix D is diag-

onal and consists of real, positive eigenvalues. In section 4.3.3, we found that the unitary

eigenvector matrix defined a set of eigenmode operators subject to bosonic commutation

relations. In the most general case, the unitary matrix U can be written

U =

(
A B

−eiθB∗ eiθA∗

)
, (4.126)
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where |A|2 + |B|2 = 1 and the determinant is det(U) = eiθ. This matrix gives rise to the

following eigenmode operators:

b̂1 = A∗â2 − e−iθBâ3, (4.127)

b̂2 = B∗â2 + e−iθAâ3, (4.128)

d̂1 = A∗â1 − e−iθBâ†2, (4.129)

d̂2 = B∗â1 + e−iθAâ†2, (4.130)

where the operators b̂τ are for sum-frequency generation and d̂τ describe parametric down-

conversion. The above are related to the âτ operators as(
b̂1
b̂2

)
= U†

(
â2

â3

)
(4.131)

and (
d̂1

d̂†2

)
= U†

(
â1

â†2

)
. (4.132)

In order for the eigenmode operators to be interpreted as bosonic creation and annihi-

lation operators, they should have the same canonical commutation relations as defined in

section 4.2.2. Indeed, here we find for the operators b̂τ[
b̂τ , b̂

†
σ

]
= δτ,σ, (4.133)

and for the d̂τ operators [
d̂τ , d̂

†
σ

]
=
(
|A|2 − |B|2

) [
âτ , â

†
σ

]
. (4.134)

As already discussed in section 4.3.3, the eigenmode operators for sum-frequency gener-

ation have bosonic commutation relations. Therefore, they can be interpreted as creation

and annihilation operators acting on underlying, orthogonal, classical fields: this was the

result of the previous section. As for the case of parametric down-conversion, we observe

that we cannot define orthogonal eigenmodes of the scattering matrix while conserving the

algebraic relations. Certainly, the condition for the commutation relations Eq. 4.134 to be

bosonic contradict the conditions imposed on the unitary eigenvector matrix. Indeed, one

can define eigenmode operators, for our two-mode system, that satisfy the commutation

relations in the form of a Bogoliubov transformation [138]:

q̂1 = uâ1 + vâ†2, (4.135)

q̂†2 = uâ†2 + vâ1, (4.136)

132



where |u|2 − |v|2 = 1. With these eigenmode operators, we can interpret them as a set

of creation and annihilation operators. However, the Bogoliubov transformation is not

unitary but is instead symplectic [139, 140, 141]. The defining property of a symplectic

transformation is the following

M†ΩM = Ω (4.137)

where Ω is of the form

Ω =

(
0 1
−1 0

)
.

If we write M in terms of the Bogoliubov operator coefficients in Eq. 4.135 and 4.136

M =

(
u v
v u

)
(4.138)

then we have the following conditions for M to be complex symplectic:

u∗v − uv∗ = 0, (4.139)

vu∗ − v∗u = 0, (4.140)

u∗u− vv∗ = 1. (4.141)

These conditions are required for the operators to have bosonic commutation relations.

Thus, in order to have appropriate commutation relations and orthogonal fields, one needs to

find a decomposition of the scattering matrix, as done in section 4.3.1, that is simultaneously

unitary and symplectic. Indeed, the symplectic matrix M is only unitary if the inverse M−1

is identical to the Hermitian conjugate M† such that M−1M = M†M = I. Which is only

true if we have u and v satisfying:

u∗v + uv∗ = 0, (4.142)

vu∗ + v∗u = 0, (4.143)

u∗u+ v∗v = 1, (4.144)

which is in contradiction with the conditions required to preserve the commutation algebra

in Eq. 4.139 to 4.141. So, we find that by simply decomposing the scattering matrix

for parametric down-conversion we do not preserve the canonical commutation algebra

of bosonic creation and annihilation operators. If we choose suitable operators that do

perverse the commutation relations, we observe that the classical fields that these eigenmode

operators act on are not orthogonal to one another. Therefore, we cannot, in terms of a

unitary decomposition, define a set of bosonic operators corresponding to the propagation

eigenmodes in the context of parametric down-conversion.
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To conclude this section, we remark that the link between the classical field representa-

tion and the quantum states in the context of parametric down-conversion is not as elegant

as observed for sum-frequency generation. Indeed, we have shown that it is not trivial to

maintain the canonical commutation relation algebra and the orthogonality of the underly-

ing classical fields and that this cannot be achieved with a unitary eigendecomposition of

the scattering matrix. It is possible that this issue can be remedied by modifying the inner

product space with a different metric [100, 130, 131]. However, this metric is required to

map to a Hermitian effective Hamiltonian from our classical scattering matrix to constitute

a valid quantum description of the system. Therefore, to progress, one would need to define

an inner product space with the symplectic symmetry that renders the bosonic operators

orthogonal in a classical context and also allow for unitary evolution in a quantum picture.

4.5 Conclusion

In this chapter, we have considered the quantum behaviour of sum-frequency genera-

tion by the introduction of an effective Hamiltonian. Indeed, using a high-intensity, non-

depleting background field, we linearise the equations describing three-wave mixing in non-

linear materials. In this linearised system, the transformation of input mode amplitudes to

the output amplitudes is fully characterised by a scattering matrix. In the context of quan-

tum optics, this scattering matrix also describes the input-output relation of the creation

and annihilation operators. Using the Jordan-Schwinger map, we define a unitary operator

that describes the quantum behaviour of the system that is dependent on the initial classical

scattering matrix. In the non-depleting pump approximation, we have restored the princi-

ple of linear superposition to the nonlinear system allowing us to define a set of orthogonal

propagation eigenmodes. These eigenmodes differ from the general modes used in linear

optics as they describe a set of orthogonal fields that are distributed across multiple wave-

lengths. Utilising these eigenmodes as a representation for our low-intensity perturbation

fields allows us to define a scattering matrix that decouples the evolution of the associated

quantum states. Initially, we consider the case where we have a single mode propagating

on each of the wavelengths before generalising to the multimode case and showing some

numerical examples.

In addition, we consider the quantum description associated with parametric down-

conversion. Unlike sum-frequency generation, the scattering matrix for down conversion

mixes the creation and annihilation operators. Therefore, in order to derive a suitable ef-

fective Hamiltonian that is Hermitian and preserves the canonical commutation relation
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algebra, we introduced the metric operator η. We then considered the effective Hamilto-

nian for the single-mode case for parametric down-conversion and introduced the eigenmode

operators using the eigenmode decomposition of the scattering matrix. However, we ob-

served that a unitary decomposition could not preserve the canonical commutation relations

required to interpret the eigenmodes as bosonic creation and annihilation operators. More-

over, given a decomposition that does preserve the commutation algebra, we find that the

underlying classical fields are not orthogonal to one another. Future work exploring the fun-

damental physical and mathematical link between classical fields and quantum states for

parametric down-conversion would provide further insight into the work presented herein.
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Chapter 5

Concluding Remarks

In this thesis, we have discussed the eigenmodes of three-wave mixing for classical low-

intensity perturbation fields and in the context of multiphoton states. Here we provide a

summary of the work presented, set it in the context of other work in the field, and finally

suggest potential future research.

Using a high-intensity background field, we reintroduce the principle of superposition to

optical systems constructed with nonlinear materials. In particular, we consider systems

with second-order, χ(2), nonlinearities which include effects like sum-frequency generation

and parametric down-conversion. In both of these effects, the background field mediates

the interaction between two low-intensity fields that we denote perturbation fields. As the

principle of superposition has been restored to the equations of propagation describing three-

wave mixing, the eigenmode decomposition used for conventional linear optical systems is

applicable. Unlike optical systems constructed by purely linear components, the perturba-

tion fields interact with one another via the high-intensity background field, and therefore,

the associated eigenmode decomposition is distributed across multiple wavelengths. These

novel eigenmodes remain orthogonal to one another and propagate independent of each

other, however, the components of which the eigenmodes are constructed interact through-

out the nonlinear material. With these eigenmodes, we highlight the influence that the

symmetry of the complex background field has on the Hilbert space at the output plane

of different optical systems. Indeed, by decomposing the background field, we find a char-

acteristic Hilbert space for each basis element, assuming they are non-depleting. The field

profiles, and consequently the physical observables, associated with the eigenmodes are thus

dependent on the choice of the background field. The propagation properties of these eigen-

modes are also dependent on the choice of background field and are analysed for waveguide

structures with circular and rectangular symmetry.
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Future work associated with the classical eigenmode decomposition in terms of three-

wave mixing could go beyond the approximations used here. Indeed, the non-depleting

pump approximation allowed us to reintroduce the principle of superposition to our system

and utilise the eigenmode decomposition. Lifting this approximation, however, is not so

trivial. In the first instance, the mechanism for probing the system would no longer be

linear but quadratic such that the interaction of two fields with a given wavelength would

excite higher-order modes in the third wavelength. From a mathematical perspective, the

vector product in the mixing term of the fields used in this work would become a tensor

product with multilinear properties. Therefore, a multilinear probing mechanism should be

implemented to define the components of a rank-3 tensor which would take the place of the

scattering matrices used in this work. This is a non-trivial exercise given that the number

of orthogonal modes is not conserved in nonlinear systems and as such a basis set cannot

be appropriately truncated, i.e., we cannot choose a basis that is closed with respect to the

interaction. From this perspective, the eigenmodes discussed in this work correspond to a

first-order approximation of the full nonlinear eigendecomposition. Further research in this

direction would provide insight not just into the concept of additive fields in the context

of nonlinear systems but also offer new decomposition techniques for higher-order tensors.

Moreover, the optical eigenmodes introduced in section 1.49 when defined for fully nonlinear

systems would provide a method for optimising all-optical set-ups and offer insight into the

representation of the fields when the number of degrees of freedom is not conserved.

In this thesis, we have also explored the eigenmode decomposition for sum-frequency

generation at a single or multiphoton level. In our linearised system, the transformation

of input mode amplitudes to the output amplitudes is fully characterised by a scattering

matrix. In the context of quantum optics, this scattering matrix also describes the input-

output relation of the creation and annihilation operators. For sum-frequency generation,

using the unitary Hermitian homomorphism, we can define a unitary operator that satisfies

Schrödinger’s equation and hence describes the quantum behaviour of the system. Using

the distributed eigenmodes as a basis for our fields, we define a new scattering matrix and

observe that the evolution of the quantum photon states is decoupled. In particular, in a

Fock state basis, the photon number states associated with these eigenmodes correspond

to eigenstates of the quantum system. In addition, we briefly discuss the quantum descrip-

tion associated with parametric down-conversion and show that one cannot simultaneously

preserve the canonical commutation relation algebra and the unitarity required to define

orthogonal propagation eigenmodes. Indeed, we observe that defining a set of eigenmode

operators with a Bogoliubov transformation is associated with a set of classical fields that
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are not orthogonal and similarly, by decomposing the Hermitian scattering matrix we define

a set of orthogonal eigenmodes that do not have bosonic relations. This is due to the sym-

plectic nature of the commutation relations being at odds with the unitarity of the complex

eigenvector matrix that allow us to define orthogonal propagation eigenmodes.

Future work on the quantum behaviour of the three-wave mixing effects could study the

fundamental physical relationship between classical fields and quantum states in the context

of parametric down-conversion. Indeed, in the last chapter of the thesis, we briefly outlined

some of the stumbling blocks that make this link more complicated than sum-frequency

generation. The difference between the two effects is, in the first instance, that the scattering

matrix for down-conversion is quasi-unitary and not unitary. Therefore, the correspondence

between classical field amplitude and probability amplitude is not as elegant as observed

for sum-frequency generation. This is due to the fact that parametric down-conversion

mixes the creation and annihilation operators, making the Fock state representation more

complicated than that of sum-frequency generation. Given that parametric down-conversion

is the most common source for generating entangled photons, the results of this work would

be interesting. Further future work could also be concerned with the full treatment of

optical eigenmodes in the context of quantum operators, as done in section 4.2.4, for three-

wave mixing. Indeed, in the final chapter of the thesis, we limited our discussion to the

propagation eigenmodes of three-wave mixing and did not discuss any optical measurement

process. The propagation eigenmodes correspond to a set of mutually orthogonal solutions

of the equations of evolution; however, unlike the optical eigenmodes, they are not associated

with any physical observable or measure.
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Appendix A

Split-Step Method

In calculating the optical eigenmodes in a given system, the more degrees of freedom one

can excite, the better. If our basis is large, however, the computational intensity quickly

becomes too large for the Mathematica’s built-in numerical integration, NDSolve, to manage

in a reasonable time with suitable accuracy. Consequently, for calculations in bulk material,

we introduce the split-step method for solving the partial differential equations of three-

wave mixing [8, 9, 10]. We start by considering the evolution of the perturbation fields in

sum-frequency generation,

− i∂zE2(r) =
1

2k2
∇2
TE2(r) + χ2E

∗
b (r)E3(r), (A.1)

− i∂zE3(r) =
1

2k3
∇2
TE3(r) + χ3Eb(r)E2(r), (A.2)

which we can rewrite in an operator form as

− i∂zE(r) = L ·E(r) + C ·E(r), (A.3)

where E(r) = (E2(r), E3(r))> and,

L =

( 1
2k2
∇2
T 0

0 1
2k3
∇2
T

)
, (A.4)

and

C =

(
0 χ2E

∗
b (r)

χ3Eb(r) 0

)
, (A.5)

describe the diffraction of the fields and the nonlinear interaction. If we take a small step,

∆z, along the direction of propagation, then we can consider the solution of each of the

parts of Eq. A.3. In the linear term, there is no interaction between the two fields such that

each field can be treated independently with

−i∂zEτ (r) =
1

2kτ
∇2
TEτ (r). (A.6)
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These equations are simplified greatly by utilising the fast Fourier transform [13] as

− i∂zẼτ(r) =
k2
τ,x + k2

τ,y

2k1
Ẽτ (r), (A.7)

where Ẽτ (r) = F [Eτ (r)] is the field in Fourier space and F denotes the Fourier transform.

In Fourier space, it is trivial to find the solution

Ẽτ (x, y, z) = Ẽτ (x, y, 0) exp

(
i
k2
τ,x + k2

τ,y

2k1
z

)
, (A.8)

which for each small discrete step, ∆z, is written

Ẽτ (x, y, z + ∆z) = Ẽτ (x, y, z) exp

(
i
k2
τ,x + k2

τ,y

2k1
∆z

)
. (A.9)

The linear step is found in terms of the initial field by taking the inverse Fourier trans-

form, F [Ẽτ (x, y, z)], of the above solution. If we recombine these solutions, we can write

the solution in terms of the vector E(r) as

E(x, y, z + ∆z) = F−1[RF [E(x, y, z)]], (A.10)

where E(x, y, z + ∆z) = (E2(x, y, z + ∆z), E3(x, y, z + ∆z))> and the matrix R is a diag-

onal matrix with elements exp
(
i
k2
τ,x+k2

τ,y

2k1
∆z
)

. Although this derivation starts from the

perturbation fields, this linear term is also used to propagate the background field.

We can now solve for the interaction terms associated with the perturbation fields. Unlike

the linear term, the matrix C, has off-diagonal elements such that we have to solve the full

equation which, in our simplified vector form, is

− i∂zE(r) = C ·E(r), (A.11)

with the solution

E(x, y, z) = E(x, y, 0) exp (iCz) . (A.12)

Again, if we are considering finite discrete steps, this solution is written

E(x, y, z + ∆z) = E(x, y, z) exp (iC∆z) . (A.13)

With the solution to the linear part of the equation and the interaction part, we can

propagate the fields one full step as

E(x, y, z + ∆z) = F−1[RF [E(x, y, z)]] · exp (iC∆z) , (A.14)

which describes an approximate solution to the initial partial differential equations. Here we

have defined the solution such that the linear operator acts first followed by the interaction

terms. This is noteworthy because, in general, the two operators do not commute with one

another. However, if the step size is small enough, the error associated with treating them

as commuting operators is ∝ ∆z2.
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Suppose we decompose our fields in the x-y plane onto a discrete grid of N×N pixels, then

the operators acting on our fields in Eq. A.14 are finite matrix operators. This is apparent

for the interaction term, C, due to its dependence on the background field. For the linear

term, the continuous Fourier transform now takes its discrete form, and the matrix R has

wavevectors kx and ky specified for each point on the grid. Given all of the operators are

matrices, we can write a discrete step, ∆z, in terms of a single operator

E(x, y,∆z) = [
(
FD ·R ·F−1

D

)
.exp(iC∆z)] ·E(x, y, 0) = P(∆z) ·E(x, y, 0), (A.15)

where the operators FD and F−1
D are the 2D discrete Fourier and inverse Fourier transforms,

respectively. To propagate through the whole optical system requires a number of small

steps like that of Eq. A.15. If we have a total of N steps, then the length of the material is

zmax = N∆z, and we have

E(x, y,N∆z) = P(N∆z) ·E(x, y, (N − 1)∆z). (A.16)

Using Eq. A.15, we know how the fields evolve dependent on the previous step. Con-

sequently, we can concatenate all of the matrices describing a discrete step such that the

solution at the output can be explicitly written in terms of the input field

E(x, y, zmax) = [P(N∆z) ·P((N − 1)∆z) . . .P(∆z)] ·E(x, y, 0) = Ω ·E(x, y, 0). (A.17)

Or more simply we have

Eout = Ω ·Ein. (A.18)

So by using the split-step method, we can not only write an approximate analytical

solution to the partial differential equations but also define a scattering matrix that charac-

terises the whole optical system dependent on the background field, Eb(r). Moreover, the

input-output relation does not require one to choose a basis in order to define it. All that

is required is for a background field to be defined across the whole domain of propagation.
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Appendix B

Numerical Implementation of
Creation and Annihilation
Operators

In this section, we outline the numerical considerations not included in the main text. In

section 4.3.4.1, we outlined an example of a truncated basis of OAM fields in a circular

waveguide. In this example, the Fock state space was also truncated with respect to some

maximum total photon number, Nmax. As a consequence, we also truncate the creation and

annihilation operators such that they are closed operations in our finite Fock state space.

If we have an input state, |n2, n3〉, then the â2 and â3 operators should satisfy the following

properties:

â2 |n2, n3〉 =
√
n2 |n2 − 1, n3〉 ,

â3 |n2, n3〉 =
√
n3 |n2, n3 − 1〉 , (B.1)

If we write the output state as, |n′2, n′3〉, then using the above properties, we can write

the matrix elements of the annihilation operators as:〈
n′2, n

′
3

∣∣ â2 |n2, n3〉 =
√
n2δn2−1,n′2

δn3,n′3
,〈

n′2, n
′
3

∣∣ â3 |n2, n3〉 =
√
n3δn3−1,n′3

δn2,n′2
. (B.2)

If we take for example two modes with the maximum photon number, Nmax = 2, we have

the Fock state basis elements,

|n2, n3〉 ∈ {|0, 0〉 , |1, 0〉 , |0, 1〉 , |2, 0〉 , |1, 1〉 , |0, 2〉}. (B.3)

In order to calculate the effective Hamiltonian, however, we use creation and annihilation

operators calculated up to Nmax + 1 with the following basis elements

|n2, n3〉ext ∈ {|0, 0〉 , |1, 0〉 , |0, 1〉 , |2, 0〉 , |1, 1〉 , |0, 2〉 , |3, 0〉 , |2, 1〉 , |1, 2〉 , |0, 3〉}. (B.4)
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In this case, the annihilation operators are of the form

â2 =



0 1 0 0 0 0 0 0 0 0

0 0 0
√

2 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0
√

3 0 0 0

0 0 0 0 0 0 0
√

2 0 0
0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


, (B.5)

â3 =



0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0
√

2 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0
√

2 0

0 0 0 0 0 0 0 0 0
√

3

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


. (B.6)

We use these operators to calculate the effective Hamiltonian and scattering operator so

to account for states with N = 3 that might contribute to states with N = 2. Indeed, take,

for example, the state |3, 0〉 that is not in the truncated basis, however, â2 |3, 0〉 =
√

2 |2, 0〉,
is an element of the basis. With the correct Hamiltonian calculated, we then truncate to

the appropriate dimensions to agree with the basis at Nmax = 2. We calculate all of these

matrices and the numerical examples with Mathematica computer software [91].
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