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Abstract

Subdirect products are special types of subalgebras of direct products. The

purpose of this thesis is to initiate a study of combinatorial properties of

subdirect products and fiber products of semigroups and monoids, motivated

by the previous work on free groups, and some recent advances in general

algebra.

In Chapter 1, we outline the necessary preliminary definitions and results,

including elements of algebraic semigroup theory, formal language theory,

automata theory and universal algebra.

In Chapter 2, we consider the number of subsemigroups and subdirect prod-

ucts of N×N up to isomorphism. We obtain uncountably many such objects,

and characterise the finite semigroups S for which N × S has uncountably

many subsemigroups and subdirect products up to isomorphism.

In Chapter 3, we consider particular finite generating sets for subdirect prod-

ucts of free semigroups introduced as “sets of letter pairs”. We classify and

count these sets which generate subdirect and fiber products, and discuss

their abundance.

In Chapter 4, we consider finite generation and presentation for fiber products

of free semigroups and monoids over finite fibers. We give a characterisation

for finite generation of the fiber product of two free monoids over a finite

fiber, and show that this implies finite presentation. We show that the fiber

product of two free semigroups over a finite fiber is never finitely generated,

and obtain necessary conditions on an infinite fiber for finite generation.
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In Chapter 5, we consider the problem of finite generation for fiber products

of free semigroups and monoids over a free fiber. We construct two-tape au-

tomata which we use to determine the language of indecomposable elements

of the fiber product, which algorithmically decides when they are finitely

generated.

Finally in Chapter 6, we summarise our findings, providing some further

questions based on the results of the thesis.
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Chapter 1

Introduction and preliminaries

In its operational form, the algebraic theory of semigroups is in part the

developing abstraction of the algebraic theory of groups. The latter theory

has of course been well studied and researched as early as the late 18th cen-

tury. Whereas elements of group theory have formalised the notions of sym-

metries for mathematical objects, semigroup theory attempts to formalise

notions of partial symmetries and transformations of those objects. A par-

ticularly notable example of this is the Wagner-Preston theorem ([16, The-

orem 5.1.7]), which states that any inverse semigroup (called “generalised”

groups, by Wagner [29]) is embeddable in a symmetric inverse semigroup

(a “generalised” symmetric group). The symmetric inverse semigroup is a

structure of partial symmetries (see [16, Theorem 5.1.5]), and so the Wagner-

Preston theorem gives the partial symmetry analogue to Cayley’s theorem

for groups.

Though the origins of the theory of semigroups can be traced back to the early

twentieth century in the papers of Dickson [11] and de Séguier [10], it has

been argued that its research beginnings can be attributed with Sushkevich

[28] in the late 1920s, and the celebrated paper of Rees [25] in 1940. This

makes it a relatively recent and modern study in the history of Algebra,

and Mathematics in general. In this author’s opinion, the theory benefits

from its youth with a metaphorical continent of roads untravelled. Though it
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comprises many interesting open problems in its own right, it further provides

many theoretical techniques and insights into other algebraic studies, such as

group theory. Moreover, it has seen practical application via the related study

of theoretical computer science, which is another relatively recent field. One

closely linked brethren theory to that of semigroup theory is the study of finite

automata and formal languages. This study encompasses the theoretical

formalisation of algorithmic decision making machines, such as finite state

automata, transducers, and Turing machines. There is a plethora of practical

computing application in this field, though its formulisation lends itself to the

study of pure semigroup theory particularly well. Strings of characters can

be viewed as abstract semigroup products of elements referred to as letters,

and vice versa. These products can be viewed as words over the alphabet of

the possible characters for a string. The set of all such words form languages,

which can be recognised by the machinery of automata, which can decide if a

given word is in a language or not. As such, problems of deciding properties of

semigroup elements have been formulated as decision problems in the theory

of automata.

Though this work comprises many elements of the pure and applied studies

outlined above, it is primarily motivated from the perspective of pure semi-

group theory. Its nature then will be to investigate, develop, and advance

theoretical concepts of semigroup theory from the metaphorically aforemen-

tioned roads less travelled. In this work, that road will be the theory of

subdirect products of semigroups. Heuristically, in the more general theory

of universal algebra, subdirect products are special types of subalgebras of

direct products of algebras. Each direct factor can in some way be embedded

into the subdirect product, making the factors of the subdirect product“full”

in some sense. As substructures of direct products, subdirect products in a

way generalise the algebraic construction of direct products. However, we

will consider being a subdirect product more of a property of an algebra,

rather than a construction.

In the latter half of the 20th century, subdirect products have been notably

studied in the algebraic theory of groups. Some studies have taken a com-

2



binatorial approach, such as in the work of McKenzie [20]. Particularly in

this work, the number of subdirect products (up to isomorphism) of a count-

able power of a finite group G is found to be countable precisely when G

is abelian. In a similar question of countability, Bridson & Miller find un-

countably many subdirect products of two free groups up to isomorphism

[3, Corollary B]. In addition to this, they (as well as other authors such as

Baumslag & Roseblade [2] and Mikhăılova [21]) focus on classical questions

relating to finitary properties (those which hold for all finite groups) of sub-

direct products. Namely, questions such as “when are subdirect products

of groups finitely generated, finitely presented, when do they have decidable

membership problem?” amongst others are asked and answered.

It has been a common trend in the relevant literature to provide examples of

subdirect products of groups with particular combinations of finitary proper-

ties. Notably, Mikhăılova [21] uses subdirect products of two free groups to

provide examples of finitely generated groups with undecidable membership

problem. Further, Bridson & Miller give subdirect products which are not

finitely generated [3, Example 3], and Grunewald gives subdirect products

which are finitely generated but not finitely presented [13, Proposition B].

We remark that all of this work utilises subdirect products of free groups in

particular.

A way of constructing such examples of subdirect products is via fiber prod-

ucts, also known as pullbacks in the theory of categories. Fiber products are

constructed from two (or more) group epimorphisms onto some common im-

age. Elements of the domain groups are paired together when their images

coincide (or placed in a n-tuple when there are n epimorphisms), and the

resulting structure (using the multiplication from the direct product) gives

a subdirect product. For groups, fiber products and subdirect products are

one and the same; every subdirect product of groups is constructible in this

way. This is a consequence of a lemma of Goursat [14, Theorem 5.5.1], but

more generally can be derived by a lemma of Flesicher (given in [4, Lemma

10.1]). Fleischer’s lemma states that a subdirect product is a fiber product if

and only if the kernels of the projection maps onto each coordinate commute
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as algebraic congruences. As a consequence, subdirect products and fiber

products coincide in given varieties of algebras (which are special classes of

algebras) precisely when the congruences on those varieties commute. This is

the case for the variety of groups, but not for those of semigroups, monoids,

and other algebraic structures.

Recently, Mayr & Ruškuc [19] have explored subdirect products and fiber

products from the viewpoint of universal algebra, with a particular emphasis

on finitary properties. Within this work, they give an example of a subdirect

product of monoids which is not finitely generated [19, Example 7.1], and an

example of a fiber product of monoids which is finitely presented but with

non-finitely presented factors [19, Example 7.3]. These examples in particular

utilise free monoids, in comparison to the work of Bridson & Miller. Further

works involving subdirect products of semigroups have been provided by

Chrislock & Tamura [5] (with focus on products involving rectangular bands),

Nambooripad & Veeramony [23] (for regular semigroups), Mitsch [22] (for

E-inversive semigroups), amongst others. These works all have specialised

their focus. A more general treatment of the theory of subdirect products

of semigroups, leading on from the free group works of the aforementioned

authors, has yet to be undertaken in the literature.

The purpose of this thesis is to initiate a study of subdirect products and fiber

products of free semigroups and monoids, motivated by the work for subdi-

rect products of free groups aforementioned. Our primary aims will be to

place particular emphasis on finitary properties such as finite generation and

presentation, though we will begin by exploring combinatorial questions of

isomorphism, motivated by Bridson & Miller [3]. We will argue the narrative

that finitely generated subdirect products of free semigroups and monoids

are easily found, yet fiber products of free semigroups and monoids are not

easily finitely generated, if at all. This will highlight the difference in nature

between fiber products and subdirect products for semigroups.

In the rest of Chapter 1, we introduce the planned structure of this thesis,

and outline the necessary preliminary definitions and results needed. We will
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begin by covering the introductory concepts of semigroup theory utilised in

this work. Such concepts include semigroup isomorphisms, quotients, con-

gruences, Green’s relations, finite generation for semigroups and semigroup

presentations. We will also introduce the theory of formal language and au-

tomata, which will play an intrinsic role in our discussion of deciding finite

generation later in the thesis. Finally, alongside direct products, we will

formalise the definitions of subdirect products and fiber products for semi-

groups. This will be accompanied by a spotlight on some of the examples

from group theory outlined above, and the more general concepts and results

from subdirect products in universal algebra, such as Flesicher’s lemma.

In Chapter 2, we begin our study of subdirect products of free semigroups

with a combinatorial review of subdirect products involving the free mono-

genic semigroup, N. Motivated by Bridson & Miller [3], our main aim will be

to show that the direct product N×N contains uncountably many subsemi-

groups up to isomorphism, of which uncountably many are subdirect prod-

ucts. We will accomplish this by constructing families of finitely generated

subdirect products using 3-separating sets, which we introduce and define. As

a corollary to this, we more generally highlight that the direct product of two

semigroups, each with elements of infinite order, has uncountably many sub-

semigroups up to isomorphism. We give analogous results for the finite direct

power Nk, and further consider the number of non-isomorphic subsemigroups

and subdirect products of N×S, where S is a finite semigroup. In particular,

we show that N × S has countably many non-isomorphic semigroups if and

only if S is completely regular, and has countably many non-isomorphic sub-

direct products if and only if every element of S has a relative left or right

identity.

In Chapter 3, we begin our considerations of subdirect products and fiber

products of free semigroups of rank higher than one, transitioning into ques-

tions of finite generation. We lead from the combinatorial motivations of

Chapter 2, outlining our aim to count the number of particular finite subsets

(introduced as sets of letter pairs) generating subdirect products and fiber

products of two free semigroups. In particular, given finite alphabets A and

5



B, we determine the number of subsets of A×B generating subdirect prod-

ucts of A+×B+, and fiber products of A+×B+ as separate results. We give

some analytic assessment of these results, in particular arguing that the ratio

of subsets of A×A generating subdirect products of A+ ×A+ approaches 1

as |A| grows. We contrast this by arguing that the ratio of subsets of A×A
generating fiber products of A+ × A+ approaches 0 as |A| grows. We hence

comment on the difference in nature between generating fiber products of

free semigroups and subdirect products of free semigroups to conclude the

chapter.

In Chapter 4, we transition to questions of finite generation and presenta-

tion for fiber products of semigroups and monoids. In paticular, we aim to

characterise finite generation for the fiber products of two free monoids over

a finite fiber, and separately for the fiber products of two free semigroups

over a finite fiber. In the latter case, we show that no such fiber products

are finitely generated, but completely characterise the former case. We do

this by showing that the given epimorphisms of the fiber product map every

element of the free monoid alphabet to the same element of the fiber, which

must be a cyclic group. In particular for this case, we show that finite gener-

ation implies finite presentation for fiber products of free monoids over finite

fibers, by directly finding presentations for them. Returning to the case for

fiber products of free semigroups, we consider necessary conditions on the

fiber for them to be finitely generated. Namely, we show the fibers must be

infinite, finitely generated, J -trivial, idempotent free semigroups. We con-

clude the chapter by showing that these conditions, though restrictive, are

not sufficient for finite generation, using the examples of free commutative

semigroups.

In Chapter 5, we lead from the findings of Chapter 4 by initiating a technical

study for deciding finite generation for fiber products of free semigroups and

monoids. We begin by noting that such fiber products are finitely generated

precisely when they contain finitely many indecomposable elements. We

then introduce the machinery of two-tape automata from formal language

theory, in order to attempt to recognise the language of these indecomposable
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elements. Specifically, for a fiber product of two free monoids over a free fiber,

we construct an associated two-tape automaton which recognises a language

in bijection with the indecomposable elements of the fiber product. We

then give sufficient and necessary conditions for finite generation of the fiber

product, in terms of finding cycles within the associated automaton. We

show as a corollary that the problem of finite generation for fiber products

of free monoids over free fibers is decidable. Finally, we give the analogous

results to those previously described in the chapter, for fiber products of free

semigroups over free fibers.

We conclude the thesis in Chapter 6, with a brief discussion summarising

our findings. We give particular attention to some further questions relat-

ing to material in this thesis, and argue that they provide many fruitful

points of continuation for the study of subdirect products of semigroups and

monoids.

1.1 Conventions and structure

This thesis has been divided into chapters and sections. Theorems, lem-

mas, corollaries etc have been numbered as x.y.z, where x is the chapter

of the result, y is the section number relative to that chapter, and z is the

order of the result within the section. The ends of proofs, examples, and

definitions/notation will be indicated by the symbols �, 4 and � respec-

tively.

The reader is assumed to have a basic knowledge of group theory at the

undergraduate level. Throughout, we will by convention refer to the natural

numbers N as the set {1, 2, 3, . . . } not containing zero. The set {0, 1, 2, 3, . . . }
will be denoted by N0. Whereas other authors may use the term countable to

strictly mean countably infinite (that is, the cardinality of a set in bijection

with N), we will use the term countable to mean either countably infinite, or

finite.

For the purposes of composition the usual convention in semigroup theory is
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to write maps to the right of the argument. However as composition of maps

does not appear as a main feature of this thesis, maps will be written on the

left of the argument by convention (e.g.. f(x)). Wherever composition does

feature however, we will use the convention that

(f ◦ g)(x) = g(f(x)),

so maps are indeed composed from left to right as read.

1.2 Semigroups, monoids and homomorphisms

In this section, we introduce the necessary concepts and definitions from the

algebraic theory of semigroups used in this work. However, we begin by

recalling a couple of brief definitions from the theory of universal algebra,

namely those of an algebra and a variety. A comprehensive study of these

concepts may be found in [4].

Definition 1.2.1. An algebra is a set A together with a collection of n-ary

operations on A (maps taking n elements of A as inputs, to a single output

of A).

The type of an algebra is an ordered sequence of the natural numbers n

comprising the n-ary operations on A. This ordering is usually from largest

to smallest. �

Definition 1.2.2. A variety of algebras is a class of algebras of the same

type, which is closed under taking subalgebras, direct products, and homo-

morphic images. �

Example 1.2.3. A group G comes equipped with the binary operation of

multiplication, the unary operation of inversion, and the nullary operation

which quantifies the existence of the identity. Hence a group can be described

as an algebra of type (2, 1, 0).

As any subgroup of a group is a group, the direct product of two groups is

a group, and the group homomorphic image of any group is again a group,

8



then the class of groups forms a variety. 4

We now begin with the basic definitions and results required from the theory

of semigroups. We kindly refer the reader to sources such as [16], [8], and

[15] for further comprehensive studies.

Definition 1.2.4. A semigroup is a pair (S, ·), where S is a non-empty set,

and · : S × S → S is a binary operation that is also associative, meaning for

all s, t, u ∈ S,

s · (t · u) = (s · t) · u. �

Where the context of the operation is clearly understood, we will speak of

the semigroup S only by referring to its set. We will also omit the symbol

·, and instead write st for s · t, which we will call the product of s and

t. We will further talk about the operation as the multiplication of S. The

multiplicative notation allows us to consider powers of elements sn for n ∈ N,

without amiguity of meaning. When S is finite, we can use a multiplication

table to descibe the multiplication of S, similarly to finite groups.

Examples 1.2.5. • The set {0, 1} together with the usual multiplication

of real numbers forms a finite semigroup;

• The natural numbers N together with addition form a semigroup;

• The natural numbers N together with subtraction does not form a semi-

group, as 1− (2− 3) = 2, but (1− 2)− 3 = −4. 4

As all groups have an associative binary operation, then every group is of

course a semigroup. Every group also has an identity element, and hence is

also a monoid, which we now define.

Definition 1.2.6. A monoid is a semigroup M containing an identity 1 ∈M ,

meaning for all m ∈M ,

1m = m1 = m. �

It is a short exercise to see that identities in monoids are unique, hence we
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will always refer to the identity of M .

Examples 1.2.7. • The finite semigroup ({0, 1},×) is also a finite monoid,

with 1 being the identity;

• (N,+) does not form a monoid, but N0 with addition does, taking 0 to be

the identity;

• Every group is a monoid (and so every group is also a semigroup). 4

The identity 1 of a monoid M has the property that 12 = 1. The identity

need not be the only element with this property however, as seen in the

following definition and examples.

Definition 1.2.8. An idempotent of a semigroup S is an element e ∈ S such

that e2 = e. The set of all idempotents of a semigroup S will be denoted by

E(S). A semigroup is said to be idempotent-free if E(S) = ∅. �

Idempotents hence also satisfy en+1 = en for all n ∈ N.

Examples 1.2.9. • (N,+) has no idempotents, as n + n = 2n, which is

strictly larger than n;

• (N0,+) has one idempotent 0, as 0 + 0 = 0;

• Both elements of ({0, 1},×) are idempotents, as 02 = 0 and 12 = 1. 4

We next see that idempotents always exist in finite semigroups.

Lemma 1.2.10. Let S be a semigroup, and let s ∈ S. If S is finite, then

there is some k ∈ N such that sk is idempotent. In particular, E(S) 6= ∅.

Proof. Let s ∈ S, and consider the set of all powers of s, given by

T = {s, s2, s3, . . . }. As S is finite, then T must also be finite, and hence

there must exist some m ∈ N such that T = {s, s2, s3, . . . , sm}. In particular,

considering the element sm+1, then there must be some n ∈ {1, 2, . . . ,m}
such that sm+1 = sn.
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If m = 1, then s2 = s, and s is idempotent and the result follows. Otherwise,

as m+ 1 > n, we can write m+ 1 = n+ l for some l ∈ N. As

sn = sm+1 = sn+l, (1.1)

then by repeatedly multiplying (1.1) by sl, it follows that sn = sn+jl for all

j ∈ N. In particular then,

sn = sn+nl = sn(l+1). (1.2)

If l = 1, then sn = s2n = (sn)2, and so sn is idempotent. Otherwise, l > 1,

and we can multiply both sides of (1.2) by sn(l−1), to get

snsn(l−1) = sn(l+1)sn(l−1)

⇒ sn+nl−n = snl+n+nl−n

⇒ snl = s2nl

⇒ snl = (snl)2.

Hence snl is idempotent, and the result follows.

As seen in the following result, a finite group can be realised as a finite

monoid with a unique idempotent.

Lemma 1.2.11. A finite monoid M is a group if and only if M has a unique

idempotent.

Proof. (⇒) If M is a group with an idempotent m, then m2 = m, implying

m = 1. Hence the identity is the unique idempotent of M .

(⇐) Suppose M is not a group. Then there exists some m ∈ M with no

inverse. As M is finite, there are two distinct powers of m which are equal,

i.e. mp = mq for some p, q ∈ N with p 6= q. Assume without loss of generality

that p > q so that p− q ∈ N. In particular, as

mp = mp−q+q = mp−qmq = mp−qmp = mp+(p−q),
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then p can be chosen large enough so we can further assume without loss of

generality that p > 2q, so that p− 2q ∈ N. Hence

(mp−q)2 = m2p−2q = mp−2qmp = mp−2qmq = mp−q,

and thus mp−q is an idempotent. Further, mp−q cannot be the identity of M ,

as m is assumed to have no inverse. Hence M has more than one idempotent.

In the next definition, we note that the property of commutativity in abelian

groups is formalised for semigroups as well.

Definition 1.2.12. A semigroup S is said to be commutative if st = ts for

all s, t ∈ S. �

Of course, when S is a group, we will still say that S is “abelian” rather than

commutative.

Examples 1.2.13. • (N,+) is a commutative semigroup;

• ({0, 1},×) is a commutative semigroup;

• Define ? on N by m ? n = m for all m,n ∈ N. Then

m ? (n ? o) = m ? n = m = m ? (n ? o),

and hence (N, ?) is a semigroup. However, it is not commutative, as 1?2 = 1,

but 2 ? 1 = 2. 4

Given a group G, one can ask about the smaller substructures contained

within it; often, we ask about its subgroups. In this thesis, we will place em-

phasis on studying the substructures of a semigroup, for the same reasons as

one does for groups. Hence we give the following definitions of subsemigroups

and submonoids.

Definition 1.2.14. A subsemigroup of a semigroup S is a subset T ⊆ S

such that T is closed under the multiplication of S. That is, for all s, t ∈ T ,
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st ∈ T . We will use the notation T ≤ S to indicate that T is a subsemigroup

of S.

Similarly, a submonoid of a monoid M (with identity 1 ∈ M) is a subsemi-

group N ⊆M such that 1 ∈ N . �

Examples 1.2.15. • N is a subsemigroup of N0, as N is closed under

addition;

• {0} is a submonoid of N0, as 0 + 0 = 0; 4

A notable example of subsemigroups are ideals of semigroups, which we define

after giving the following notation.

Notation 1.2.16. For a semigroup S, and subsets X, Y ⊆ S, define

XY = {xy ∈ S : x ∈ X, y ∈ Y }.

When X (or Y ) is a singleton set {a} for some a ∈ S, we will write aY (or

Xa) instead of {a}Y (or X{a}). �

With this notation, for X, Y, Z ⊆ S subsets of a semigroup S, we note

that

(XY )Z = {tz ∈ S : t ∈ XY, z ∈ Z}

= {(xy)z ∈ S : x ∈ X, y ∈ Y, z ∈ Z}

= {x(yz) ∈ S : x ∈ X, y ∈ Y, z ∈ Z}

= {xt ∈ S : x ∈ X, t ∈ Y Z}

= X(Y Z).

Hence the power set P(S) becomes a semigroup with the above notation.

We now define ideals of semigroups using this notation.

Definition 1.2.17. A left ideal of a semigroup S is a non-empty subset I ⊆ S

such that SI ⊆ I. Similarly, a right ideal is a non-empty subset I ⊆ S such

that IS ⊆ I. Finally, an ideal of a semigroup S is a non-empty subset I ⊆ S

which is both a left and right ideal of S. �
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Noting that I2 ⊆ SI and I2 ⊆ IS, then we see that all ideals are also

subsemigroups.

Examples 1.2.18. • Take the subset I = {x ∈ N : x ≥ 2020} of (N,+).

Let m ∈ N, and x ∈ I. Then x + m ≥ 2020, and hence x + m ∈ I. Thus

as x and m were arbitrarily chosen, it follows that IN ⊆ I, and hence I is a

right ideal. Moreover as x+m = m+ x, then I is also a left ideal, and thus

an ideal of N;

• Let ? be the operation on N defined in Examples 1.2.13, and take I ⊆ N
any non-empty subset, such that I 6= N. Then for any m ∈ N and x ∈ I, it

follows that

x ? m = x ∈ I,

and hence as m,x were arbitrary, then IN ⊆ I and so I is a right ideal of N.

As I 6= N, take any m ∈ N \ I. Then for all x ∈ I,

m ? x = m 6∈ I,

and hence NI 6⊆ I, so I is not a left ideal. Hence only left ideal of (N, ?) is

N itself, and thus N is also the only two-sided ideal. 4

We now focus on constructing particular principal ideals of a semigroup S

from a given element a ∈ S. These ideals will become relevant when we

define Green’s relations later in Section 1.4.

Definition 1.2.19. Let S be a semigroup, and let a ∈ S. Define the following

subsets of S:

Sa := {sa : s ∈ S},

aS := {as : s ∈ S},

SaS := {sat : s, t ∈ S}.

Note that these definitions respect the notation given in Notation 1.2.16.
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Further, let 1 be a symbol not already belonging to S. Define the set

S1 =

S if S is a monoid,

S ∪ {1} otherwise.

Then extending the multiplication of S to S ∪ {1} by defining

s1 = s, 1s = s, 11 = 1

for all s ∈ S, S1 is a monoid, and is called the monoid obtained from S by

adjoining an identity if necessary. It is an exercise left to the reader to see

that

S1a = Sa ∪ {a},

aS1 = aS ∪ {a},

S1aS1 = SaS ∪ aS ∪ Sa ∪ {a}. �

Definition 1.2.20. Let S be a semigroup, and let a ∈ S. The set S1a is

called the principal left ideal generated by a.

Similarly, the set aS1 is called the principal right ideal generated by a, and

the set S1aS1 is called the principal two-sided ideal generated by a. �

Examples 1.2.21. • The subset I = {x ∈ N : x ≥ 2020} of N from

Examples 1.2.18 is an ideal of S = N. We can consider the set S1 by adjoining

the symbol 0 to N (as N already contains a symbol 1). In this way, S1 is

exactly the set N0.

Letting a = 2020, then

aS1 = {a+m : m ∈ N0} = {2020 +m : m ∈ N0}.

Every element of x ∈ aS1 is such that x ≥ 2020, and moreover any x ≥ 2020

has some m ∈ N0 such that x = 2020+m. Therefore aS1 = I, and hence I is

a principal right ideal of S, generated by 2020. It is also a principal left ideal

(noting that addition is commutative), and is hence a principal two-sided
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ideal as well.

The above argument also holds for any a ∈ N, and hence the principal left,

right, and two-sided ideals generated by a are given by

S1a = aS1 = S1aS1 = {x ∈ N : x ≥ a}.

• Let (N, ?) be the semigroup from Examples 1.2.18. We saw that any non-

empty subset of S = N was a right ideal. As in the previous example, S1 can

be taken as the set N0. For all a ∈ N, we have that

aS1 = {a ? m : m ∈ N0},

but a ?m = a for all m ∈ N0. Hence aS1 = {a}, and so any singleton subset

is a principal right ideal generated by its single element. We also saw that

the only left and two-sided ideal of (N, ?) is N itself, and so every principal

left ideal S1a and every principal two-sided ideal S1aS1 must be equal to

N. 4

We will return to these principal ideals in Section 1.4. We now move from

discussing substructures of semigroups to maps that preserve structure. In

group theory, recall that a group homomorphism is a mapping between two

groups which respects the multiplication and inversion of the groups. This

notion also generalises to semigroup homomorphisms, as seen in the next

definition.

Definition 1.2.22. For two semigroups S and T , a semigroup homomor-

phism is a function ϕ : S → T respecting the multiplication of each semi-

group. That is, for all s, t ∈ S,

ϕ(st) = ϕ(s)ϕ(t).

If S and T are two monoids with identities 1S and 1T respectively, then a

monoid homomorphism is a function ϕ : S → T satisfying the above, with
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the added condition that

ϕ(1S) = 1T .

A surjective homomorphism will be called an epimorphism, an injective ho-

momorphism will be called a monomorphism, and a bijective homomorphism

will be called an isomorphism.

When there is an isomorphism between semigroups S and T , we will say that

S and T are isomorphic, and write S ∼= T . �

Examples 1.2.23. • Let ϕ : N → N0 be given by ϕ(n) = n for all n ∈ N
(the natural inclusion map). Then ϕ is a semigroup homomorphism, which

is injective but not surjective, as there is no n ∈ N such that ϕ(n) = 0;

• Conversely, there are no homomorphisms from N0 to N, for any such ho-

momorphism ϕ would have to satisfy

ϕ(0) = ϕ(0 + 0) = 2ϕ(0),

which is impossible for ϕ(0) a natural number;

• Let S be the semigroup ({a, b}, ?) with multiplication table

? a b

a a a

b b b

.

Define π : S → {0, 1} by π(a) = 0, and π(b) = 1. Then π is a bijection, but

as

π(ba) = π(b) = 1, π(b)π(a) = 0 · 1 = 0,

then π is not an isomorphism, as π(ba) 6= π(b)π(a). 4

A semigroup homomorphism ϕ between monoids M and N need not be a

monoid homomorphism, as ϕ does not have to map 1M to 1N . However, the

following lemma shows that semigroup epimorphisms between monoids are

also monoid homomorphisms.

Lemma 1.2.24. Let M and N be monoids, and let ϕ : M → N be a semi-
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group homomorphism. If ϕ is surjective, then ϕ is a monoid homomorphism.

Proof. For any n ∈ N , there exists some m ∈ M such that ϕ(m) = n by

surjectivity of ϕ. Then

ϕ(1M)n = ϕ(1M)ϕ(m) = ϕ(1Mm) = ϕ(m) = n,

and a similar proof shows that nϕ(1M) = n. Hence we have shown that

ϕ(1M) is an identity for N .

As the identity of N is unique, it must be that ϕ(1M) = 1N , and hence ϕ is

a monoid homomorphism.

1.3 Relations, congruences, quotients of semigroups &

monoids

Given semigroup elements s and t, we can ask if they are somehow abstractly

related to each other. The study of particular relations on semigroups called

congruences are of particular interest, which we will define in this section.

We first remind the reader of equivalence relations in the following definition.

Definition 1.3.1. A binary relation on a set X is a subset of X × X. An

equivalence relation ∼ on a set X is a subset

∼⊆ X ×X satisfying the following properties:

(R) Reflexivity: For all x ∈ X, (x, x) ∈∼;

(S) Symmetry: If (x, y) ∈∼, then (y, x) ∈∼;

(T) Transitivity: If (x, y) ∈∼ and (y, z) ∈∼, then (x, z) ∈∼.

The ∼-equivalence class of an element x ∈ X is the set

[x]∼ = {y ∈ X : (x, y) ∈∼}.

The quotient set of S by ∼ is the set X/ ∼ of all ∼-equivalence classes of X,
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given by

X/ ∼= {[x]∼ ∈ P(X) : x ∈ X}. �

We will often write x ∼ y to mean (x, y) ∈∼, and say that x is “∼-related”

to y. This motivates the occasional use of notation such as “=” and “≡” as

subsets.

Examples 1.3.2. • The subset ∆ = {(x, x) : x ∈ X} of X × X is an

equivalence relation on any set X, called the equality relation on X;

• The subset ∇ = X ×X is an equivalence relation on any set X, called the

universal relation on X;

• The subset ≡2 = {(x, y) ∈ N×N : x ≡ y (mod 2)} is an equivalence relation

on N;

• If X is a set of people, then the subset

∼= {(x, y) ∈ X ×X : x and y have the same birthday}

is an equivalence relation on that set of people. 4

Given two equivalence relations σ and ρ on the same set X, we can define

their composition as follows.

Definition 1.3.3. Let σ, ρ be two equivalence relations on a set X. Then

the composition of σ and ρ is the relation denoted σ ◦ ρ on X, defined by

(x, y) ∈ σ ◦ ρ⇔ ∃ z ∈ X such that (x, z) ∈ σ, (z, y) ∈ ρ. �

Lemma 1.3.4. Let σ, ρ be two equivalence relations on a set X. If

σ ◦ ρ = ρ ◦ σ, then σ ◦ ρ is an equivalence relation on X.

Proof. Firstly, as σ and ρ are reflexive relations, then (x, x) ∈ σ and (x, x) ∈ ρ
for all x ∈ X, and hence (x, x) ∈ σ ◦ ρ, so that σ ◦ ρ is reflexive.

Secondly, suppose (x, y) ∈ σ ◦ ρ. Then there exists some z ∈ X such that

(x, z) ∈ σ and (z, y) ∈ ρ. As σ, ρ are symmetric, then (y, z) ∈ ρ, and
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(z, x) ∈ σ. Hence (y, x) ∈ ρ ◦ σ = σ ◦ ρ, and σ ◦ ρ is symmetric.

Finally, suppose that (x, y) ∈ σ ◦ ρ, and (y, z) ∈ σ ◦ ρ. Then there exist

s, t ∈ X such that

(x, s) ∈ σ, (s, y) ∈ ρ, (y, t) ∈ σ, (t, z) ∈ ρ.

In particular, (s, t) ∈ ρ ◦ σ = σ ◦ ρ by definition, hence there exists some

u ∈ X such that (s, u) ∈ σ, (u, t) ∈ ρ.

It now follows that (x, u) ∈ σ by transitivity, and (u, z) ∈ ρ again by transi-

tivity. Hence (x, z) ∈ σ ◦ ρ, and σ ◦ ρ is transitive, giving the result.

Equivalence relations on semigroups that also respect the multiplication of

the semigroup are of special concern, and will be called congruences in the

following definition.

Definition 1.3.5. For a semigroup S, a congruence on S is an equivalence

relation σ on S such that

(s, t) ∈ σ and (u, v) ∈ σ ⇒ (su, tv) ∈ σ.

In this way, σ is said to be compatible with the multiplication of S. �

Examples 1.3.6. • The equality relation ∆ = {(s, s) ∈ S × S} from Ex-

amples 1.3.2 is an equivalence relation on any semigroup S, and moreover if

(s, s) ∈ ∆, and (t, t) ∈ ∆, then (st, st) ∈ ∆. Hence the equality relation is a

congruence on any semigroup S;

• Similarly, the universal relation∇ = S×S is a congruence on any semigroup

S, as (s, t) ∈ ∇ and (u, v) ∈ ∇ imply that s, t, u, v ∈ S, and hence su, tv ∈ S,

so that (st, uv) ∈ ∇;

• The equivalence relation ≡2 = {(x, y) ∈ N × N : x ≡ y (mod 2)} is a

congruence, as if (x, y), (m,n) ∈ 2N, then x ≡ y (mod 2), z ≡ t (mod 2), and

hence xz ≡ yt (mod 2). Hence (xz, yt) ∈≡2. 4

We next note a sufficient condition for the composition of two congruences
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to be a congruence.

Lemma 1.3.7. Let σ, ρ be two congruences on a semigroup S. If σ◦ρ = ρ◦σ,

then σ ◦ ρ is a congruence on S.

Proof. That σ ◦ ρ is an equivalence relation is given by Lemma 1.3.4. Let

(s, t) ∈ σ ◦ ρ and (u, v) ∈ σ ◦ ρ. Then there exist x, y ∈ S such that

(s, x) ∈ σ. (x, t) ∈ ρ, (u, y) ∈ σ, (y, v) ∈ ρ.

As σ and ρ are congruences on S, then it follows that (su, xy) ∈ σ, and

(xy, tv) ∈ ρ. Hence (su, tv) ∈ σ ◦ ρ, and thus σ ◦ ρ is a congruence on S.

For a semigroup S, any subset X of S×S is contained in some congruence on

S (S×S is itself a congruence). Hence we give the following definition.

Definition 1.3.8. For a binary relation R on S, the congruence generated

by R is the smallest congruence on S containing R (or equivalently, the

intersection of all congruences on S containing R). We will denote this

congruence by R]. �

Given a congruence σ on a semigroup S, we are able to give the quotient set

S/σ an algebraic structure, similarly to how quotients of groups by normal

subgroups are obtained.

Lemma 1.3.9. Let S be a semigroup, and let σ be a congruence on S. Then

the quotient set

S/σ = {[s]σ : s ∈ S},

together with the operation · : S/σ → S/σ defined

[s]σ · [t]σ = [st]σ

is a semigroup. �

Definition 1.3.10. For a semigroup S and a congruence σ on S, the quotient
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set S/σ together with the operation · : S/σ → S/σ defined

[s]σ · [t]σ = [st]σ

is called the quotient semigroup of S by σ. �

For a monoid M with identity 1, and for a congruence σ on M , the quotient

semigroup M/σ is actually a monoid. The identity is [1]σ, as

[1]σ · [m]σ = [1m]σ = [m]σ

and similarly [m]σ · [1]σ = [m]σ for all m ∈ M . Hence we will refer to M/σ

as the quotient monoid of M by σ.

Having defined quotient semigroups, there is a natural semigroup analogy

to the first isomorphism theorem for groups, which we state in the following

result.

Theorem 1.3.11 (First isomorphism theorem). Let S and T be semigroups,

and let ϕ : S → T be a semigroup homomorphism. Then

kerϕ := {(s, t) ∈ S × S : ϕ(s) = ϕ(t)}

is a congruence on S,

imϕ := {t ∈ T : t = ϕ(s) for some s ∈ S}

is a subsemigroup of T , and

S/kerϕ ∼= imϕ. �

1.4 Green’s relations on semigroups and monoids

Particularly notable examples of relations on a semigroup are Green’s re-

lations, which give us a way of understanding the ideal substructures of a

semigroup. We now define Green’s relations L,R,H and J on any semigroup

S.
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Definition 1.4.1. Recall the definitions of the principal ideals generated by

an element a of a semigroup S from Definition 1.2.20 and Definition 1.2.19.

Then Green’s relations L,R,H, and J on a semigroup S are the binary

relations defined as follows.

(a, b) ∈ L ⇔S1a = S1b,

(a, b) ∈ R ⇔ aS1 = bS1,

(a, b) ∈ H ⇔ (a, b) ∈ L ∩R,

(a, b) ∈ J ⇔S1aS1 = S1bS1.

It is a brief exercise to show that L,R,H and J are equivalence relations on

S. Hence the L,R,H and J -classes of an element a ∈ S will be denoted by

La, Ra, Ha and Ja, respectively. Note that

Ha = La ∩Ra, Ha ⊆ La, Ha ⊆ Ra, La ⊆ Ja, Ra ⊆ Ja. �

Definition 1.4.2. For K any of Green’s relations L,R,H or J , a semigroup

S is said to be K-trivial if K is equal to the equality relation ∆. �

Examples 1.4.3. • For a ∈ N, we saw in Examples 1.2.21 that the principal

left, right, and two sided ideals of (N,+) generated by a were given by

S1a = aS1 = S1aS1 = {x ∈ N : x ≥ a}.

Denoting the set {x ∈ N : x ≥ a} by Ia, we note that Ia = Ib ⇔ a = b. That

is, (a, b) ∈ K ⇒ a = b, where K is any of Green’s relations L,R,H or J .

Hence it follows that L,R,H and J on S are all equal to the equality relation

∆ = {(s, s) : s ∈ S},

and so (N,+) is L-trivial, R-trivial, H-trivial and J -trivial.

• For (N, ?) given in Examples 1.2.13, we saw in Examples 1.2.21 that for

all a ∈ N, the principal left ideal S1a of S = N is equal to N. Hence for all
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a, b ∈ S, S1a = S1b, and so L is the universal relation

∇ = S × S.

We also saw that for a ∈ S, every principal two-sided ideal S1aS1 of N is

also equal to N, and hence similarly to L, we find that Green’s relation J on

(N, ?) is the universal relation ∇.

Finally, we saw that for a ∈ S, every principal right ideal aS1 was equal to

the singleton set {a}. Hence aS1 = bS1 if and only if a = b, and so R is the

equality relation

∆ = {(s, s) : s ∈ S}.

As H ⊆ R, it follows that Green’s relation H on (N, ?) is also the equality

relation ∆. Thus (N, ?) is R-trivial and H-trivial. 4

The set of L-classes of S correspond to the principal left ideals of S, the

set of R-classes correspond to the principal right ideals, and the J -classes

correspond to the principal two-sided ideals. In this way, Green’s relations

tell us about the ideal substructures contained within the semigroup S, hence

their importance.

We now derive some facts about these relations that will be needed for later

results of this thesis.

We begin by giving an alternate but equivalent way of viewing L,R and J
in terms of the multiplication of a semigroup S in the following lemma.

Lemma 1.4.4. Let S be a semigroup, and let a, b ∈ S. Then

(i) (a, b) ∈ L ⇔ (∃x, y ∈ S1)(a = xb)(b = ya);

(ii) (a, b) ∈ R ⇔ (∃x, y ∈ S1)(a = bx)(b = ay);

(iii) (a, b) ∈ J ⇔ (∃x, y, u, v ∈ S1)(a = xby)(b = uav).

Proof. (i) (⇒) Let (a, b) ∈ L, so that S1a = S1b. As a = 1a ∈ S1a, then

a ∈ S1b. Hence there exists some x ∈ S1 such that a = xb. Similarly, as

b = 1b ∈ S1b, then b ∈ S1a and so there exists some y ∈ S1 such that b = ya.
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(⇐) Let a, b ∈ S, and let x, y ∈ S1 be such that a = xb and b = ya. Then as

x ∈ S1, it follows that a = xb ∈ S1b. Letting s ∈ S1, then

sa = s(xb) = (sx)b ∈ S1b,

and hence as s was arbitrarily chosen, we have shown that S1a ⊆ S1b. Con-

versely, as y ∈ S1, then b = ya ∈ S1a. Again, letting s ∈ S1, then

sb = s(ya) = (sy)a ∈ S1a,

and thus S1b ⊆ S1a. Hence S1a = S1b, and so (a, b) ∈ L.

(ii) The proof is similar to that of (i) by left/right symmetry.

(iii) (⇒) Let (a, b) ∈ J , so that S1aS1 = S1bS1. Then a = 1a1 ∈ S1aS1,

and hence a ∈ S1bS1. Thus there exists some x, y ∈ S1 such that a = xby.

The proof that b = uav for some u, v ∈ S1 is similar.

(⇐) For a, b ∈ S, suppose there exists x, y, u, v ∈ S1 satisfying a = xby,

b = uav. Then for s, t ∈ S1, we have

sat = s(xby)t = (sx)b(yt) ∈ S1bS1,

and hence as s, t were arbitrarily chosen, then S1aS1 ⊆ S1bS1. The proof

for the converse, that S1bS1 ⊆ S1aS1 is similar, and hence S1aS1 = S1bS1,

meaning (a, b) ∈ J .

The following result, commonly known as Green’s lemma, gives two mutu-

ally inverse bijections between the R-classes of two L-related elements of a

semigroup S. The proof is omitted, as a comprehensive version is given by

Howie [16, Lemma 2.2.1].

Lemma 1.4.5 (Green’s lemma [16, Lemma 2.2.1]). Let S be a semigroup,

let a, b ∈ S be such that (a, b) ∈ L, and let x, y ∈ S1 be such that

a = xb, b = ya.
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For t ∈ S, define the left translation map λt by

λt : S → S := λt(s) = ts.

Then the restriction λy|Ra is a bijection from Ra onto Rb, and the restriction

λx|Rb is a bijection from Rb onto Ra, as

λy|Ra ◦ λx|Rb = idRa ,

λx|Rb ◦ λy|Ra = idRb ,

where idRa and idRb are the identity maps on Ra and Rb, respectively.

Moreover, if u ∈ Ra, then (u, (λy|Ra)(u)) ∈ L, and if v ∈ Rb, then

(v, (λx|Rb)(v)) ∈ L. �

There is a natural dual to Green’s lemma (which is also referred to as “Green’s

lemma”), which gives two mutually inverse bijections between the L-classes

of two R-related elements S (see [16, Lemma 2.2.2]).

Green’s lemmas are important structural results in their own right: they tell

us that the L (or R) classes of R (or L) related elements are of the same

cardinality. They are also used in the proof of Green’s theorem, which gives us

a characterisation of when an H-class of a semigroup is actually a subgroup.

We now state this theorem without proof below, again referring the reader

to Howie [16, Theorem 2.2.5].

Theorem 1.4.6 (Green’s theorem [16, Theorem 2.2.5]). Let S be a semi-

group, and let H be a H-class of S. Then either H2 ∩ H = ∅, or H2 = H

and H is a subgroup of S. �

We obtain the following useful result, as a corollary of Green’s theorem,

which relates the idempotents of a semigroup to its subgroups.

Corollary 1.4.7. If S is a semigroup, and e ∈ E(S) is an idempotent, then

He is a subgroup of S.

Proof. As e is idempotent, then e2 = e, and hence H2
e ∩ He 6= ∅. Hence by
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Green’s theorem, He is a subgroup of S.

1.5 Formal language theory, automata, free semigroups

& monoids

An area of overlap with that of semigroup theory and universal algebra is the

theory of formal languages in theoretical computer science. Many problems

in semigroup theory can be formulated as algorithmic problems of decision,

such as the word problem in group theory for example. That is, given a

finite set of information, one asks whether there exists an algorithm taking

this information, and deciding a yes or no output for a given question.

Very simple such algorithms can be given with the machinery of automata,

which (in general) take a formal word and either accept or reject it. The set

of these accepted words form a language, which can be described (as we will

define shortly) as a subset of a free monoid over a given alphabet.

Free semigroups and monoids in particular will be ubiquitous in this thesis.

Moreover, we will later be considering decision problems for semigroups,

such as the word problem, membership problem and the finite generation

problem (defined in Section 1.6). Hence in this section, we will introduce the

nomenclature just described, as used in this work. For a more comprehensive

study on these concepts, we refer the reader to [24].

We begin in the theory of lanuages, with the following definition.

Definition 1.5.1. An alphabet is simply a set A = {a1, a2, . . . }, typically

consisting of symbols and characters (though A can be any set). A letter is

an element of the alphabet A.

A word w over the alphabet A is a finite sequence of letters of A, typically

written consecutively in the format

w = ai1ai2ai3 . . . aim .

When the context of A is clear, we will simply refer to w as a word. The i-th
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letter of w is the i-th element of the sequence describing w. It is denoted by

|w|i.

If a ∈ A, and w is a word over A, then the a-count of w is the number of

times a occurs in the sequence describing w. This is denoted by |w|a.

The length of a word w is the number of letters in it, or equivalently, the

length of the sequence describing it. The length of a word w will be denoted

|w|.

The empty word εA over A is the empty sequence of letters, or equivalently,

the word over A consisting of no letters. By convention, the empty word has

length 0. When the context of A is clear, we will simply write ε to denote

the empty word. �

By convention, if a letter a ∈ A appears n times consecutively in a word w

over A, we will often write an rather than

aaa . . . a︸ ︷︷ ︸
n times

.

For example, the word baab over the alphabet A = {a, b} would be written

as ba2b.

Definition 1.5.2. The set of all non-empty words over A will be denoted

by A+, and the set of all words over A will be denoted by A∗. Note that

A∗ = A+ ∪ {ε}. The concatenation of two words u = a1a2 . . . an ∈ A+ and

v = b1b2 . . . bm ∈ A+ (where a1, . . . , am, b1, . . . , bn ∈ A) is the word w = uv

over A, where uv is the concatenation of u and v as sequences. That is,

w = a1a2 . . . anb1b2 . . . bm.

The set A+ with the operation of concatenation of words is verifiably a semi-

group, and is hence called the free semigroup on A. If A is a finite set, the

free semigroup A+ will be said to have rank |A|.

Similarly, A∗ with the operation of concatenation is a monoid with identity
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ε, when adopting the convention that

εw = wε = w

for all w ∈ A∗. A∗ will be called the free monoid over A. �

Definition 1.5.3. Let A be an alphabet, and let w ∈ A∗ be a word. Then a

prefix of w is a word u ∈ A∗ such that there exists v ∈ A∗ with

w = uv,

where uv is the concatenation of u with v. Note that the empty word and

the word w itself are always prefixes of any word w. We will use the notation

u ≤p w to mean that u is a prefix of w.

Similarly, a suffix of w is a word v ∈ A∗ such that there exists u ∈ A∗ with

w = uv.

Again, note that the empty word and the word w itself are always suffixes of

any word w. We will use the notation v ≤s w to mean v is a suffix of w.

A proper prefix u of w is a prefix u which is not equal to the whole word w

itself, or the empty word. We will write u <p w in this case. Similarly, a

proper suffix v of w is a suffix which is not equal to w or the empty word. In

this case, we will write v <s w. �

Definition 1.5.4. Let u be a prefix of a word w, so that uv = w for some

suffix v of w. Then the word w stripped of the prefix u is the word v such

that uv = w. Similarly, for a suffix v of w, the word w stripped of the suffix

v is the word u such that uv = w.

We denote the word w stripped of prefix u by u−1w. Similarly, we denote

the word w stripped of suffix v by wv−1. �

Examples 1.5.5. • 01001110 01001001 01001011 is a word over the alpha-

bet {0, 1, }, of length 26;
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• ABBA is a word of length 4 over the two letter alphabet {A,B}, Waterloo

is a word of length 8 over the alphabet {a, e, l, o, r, t,W}. Both are words

over the alphabet {a, e, l, o, r, t,W,A,B}. The W -count of Waterloo is 1,

but the o-count of Waterloo is 2.

• Water is a prefix of Waterloo, whereas loo is a suffix. Both are proper.

• (Water)−1(Waterloo) = loo, and (Waterloo)(loo)−1 = Water. 4

1.6 Generating and presenting semigroups and monoids

Of course, not every subset of a semigroup is a subsemigroup. However, for

a semigroup S and a subset X ⊆ S which is non-empty, there is always

a subsemigroup of S containing X (S itself would do). In this section, we

discuss how to generate subsemigroups from a given subset of a semigroup.

We will discuss related concepts such as indecomposability for semigroups,

finite generation, and finish with the theory of semigroup and monoid pre-

sentations.

To begin, we have already noted that for any non-empty subset X of a

semigroup S, there exists a subsemigroup of S containing X. Hence the

intersection of all subsemigroups of S that contain X is non-empty, and it

is a short exercise to see that this intersection is also a subsemigroup of S.

Hence we make the following definition.

Definition 1.6.1. For a semigroup S and a subset X ⊆ S, the subsemigroup

generated by X is the intersection of all subsemigroups of S containing X.

The subsemigroup generated by X will be denoted 〈X〉, and X will be called

a semigroup generating set for 〈X〉.

Equivalently, 〈X〉 is the smallest subsemigroup of S containing X, and can

equivalently be defined as the set of all finite products of elements in X. The

elements of X will be called the generators of 〈X〉. �

By convention, we will write 〈x〉 instead of 〈{x}〉, whenX = {x} is a singleton

set. We note that every instance of the word semigroup can be replaced in
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the above definition by monoid to obtain the definition for the submonoid

generated by X.

In this instance, the identity element 1 is not required to be in a monoid

generating set X for 〈X〉, as 〈X〉 is a submonoid and hence contains 1.

Examples 1.6.2. • Let X = {1} be the singleton subset of N. Then as

1 ∈ 〈X〉 and 〈X〉 is a subsemigroup of (N,+), it must follow that

n = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

∈ 〈X〉

for all n ∈ N. Hence N ⊆ 〈X〉, and it follows that N = 〈X〉. Hence {1} is a

semigroup generating set for N;

• By the same reasoning, {1} is a monoid generating set for (N0,+);

• Let X be any non-empty subset of N, and consider the semigroup (N, ?),
where ? : N → N is defined by m ? n = m for all m,n ∈ N. As 〈X〉 can be

considered as the set of all finite products of elements of X, then as

n1 ? n2 ? · · · ? nk = n1

for any finite product of elements n1, n2, . . . , nk ∈ X, it follows that 〈X〉 ⊆ X.

As X ⊆ 〈X〉 by definition, it follows that X = 〈X〉, and hence in particular

any non-empty subset X of N is a subsemigroup of (N, ?). 4

We now give a definition of the order of a semigroup element, noting that

this definition generalises the concept of the order of a group element.

Definition 1.6.3. An element x of a semigroup S is said to have finite order

if 〈x〉 is finite. Otherwise, x is said to have infinite order.

The order of an element x (of finite order) is the size of 〈x〉. �

In the next definition, we distinguish the specific case where there exists a

singleton generating set for a semigroup (such as N for example).
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Definition 1.6.4. Let S be a semigroup. If there exists x ∈ S such that

〈x〉 = {x, x2, x3, . . . } = S,

then S will be called a monogenic semigroup. �

Given a generating set X for a semigroup S, and an element s ∈ S, then s

can certainly be written as a finite product of the elements of X. If s = xy,

then we will say that s can be decomposed into the product of x and y.

However not all elements will have this property (for example, 1 ∈ N cannot

be written as the sum of two natural numbers). Hence we give the following

definition to distinguish these elements.

Definition 1.6.5. Let S be a semigroup, let X ⊆ S be any non-empty

subset, and let s ∈ S. If there exist two elements x, y ∈ 〈X〉 such that

s = xy,

then s will be called decomposable over X. That is, s ∈ 〈X〉2.

Otherwise, s is said to be indecomposable over X. When X = S, we will also

say that s is either a (semigroup) decomposable or (semigroup) indecompos-

able element of S, respectively. �

Of course, if S is a monoid, then any element of S is a semigroup decompos-

able element, but it might be that a given element is only trivially decom-

posable into a product involving the identity. We thus distinguish monoid

indecomposability in the following definition.

Definition 1.6.6. Let M be a monoid with identity 1, and let m ∈ M . If

there exist x, y ∈M \ {1}, such that

m = xy,

then m will be called a (monoid) decomposable element of M . Otherwise, m

will be called a (monoid) indecomposable element of M . �
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Examples 1.6.7. • In (N,+), the only indecomposable element is 1, as any

other element n ∈ N can be written as the sum of 1 and n− 1;

• In the monoid (N0,+), every element is decomposable in the semigroup

sense, but 1 is the only indecomposable element in the monoid sense for the

same reasoning as above;

• In the monoid ({0, 1},×), 0 is decomposable in both the semigroup and

monoid sense as 0 = 02, but 1 is decomposable in the semigroup sense and

indecomposable in the monoid sense, as 1 = 12. 4

We will next see that given a generating set X for a semigroup S, that X

must contain every semigroup indecomposable element of S.

Lemma 1.6.8. If X is any semigroup generating set for a semigroup S, then

X contains the set of semigroup indecomposable elements of S.

Proof. Let s ∈ S be a semigroup indecomposable element of S. Then as

S = 〈X〉, s can be written as a finite product of elements of X. There

cannot exist a decomposition

s = x1x2 . . . xn

of s into a product of n elements of X where n ≥ 2, as this contradicts

indecomposability of S.

Hence it must be that s is an element of X, and hence the set of all inde-

composable elements of S is contained within X.

We now will see that images of generating sets under epimorphisms are also

generating sets, as in the following pair of lemmas.

Lemma 1.6.9. Let M,N be monoids, let X ⊆ M be a monoid generating

set for M , and let ϕ : M → N be a monoid epimorphism. Then ϕ(X) is a

monoid generating set for N .

Proof. Firstly, as ϕ is surjective, then every n ∈ N \ {1N} has some
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m ∈ M \ {1M} such that n = ϕ(m). Moreover, as any m ∈ M \ {1M}
can be written as a finite product m = x1x2 . . . xp of letters xi from X,

then it follows that every n ∈ N \ {1N} can be written as a finite product

n = ϕ(x1)ϕ(x2) . . . ϕ(xp) of images ϕ(xi) of letters xi from X. Hence ϕ(X)

is a monoid generating set for N .

Lemma 1.6.10. Let S, T be semigroups, let X ⊆ S be a semigroup generat-

ing set for S, and let ϕ : S → T be a semigroup epimorphism. Then ϕ(X)

is a semigroup generating set for T .

Proof. The proof is the same as for Lemma 1.6.9, replacing instances of the

word monoid for semigroup, and ignoring instances of identities.

We next note that indecomposable elements of a semigroup S are preserved

under isomorphism.

Lemma 1.6.11. Let S, T be isomorphic semigroups, let ϕ : S → T be a

semigroup isomorphism between them, and let I(S) and I(T ) be the set of

semigroup indecomposable elements of S and T respectively. Then

ϕ(I(S)) = I(T ).

Proof. Let s ∈ S be a semigroup indecomposable element of S. Suppose for

a contradiction that ϕ(s) is a semigroup decomposable element of T . Then

there exist x, y ∈ T such that

ϕ(s) = xy.

As ϕ is an isomorphism, then it is surjective in particular. Hence there exist

u, v ∈ S such that x = ϕ(u) and y = ϕ(v), and hence

ϕ(s) = ϕ(u)ϕ(v) = ϕ(uv).

As ϕ is injective, then s = uv. This is a contradiction, as now s is semigroup

decomposable in S. Thus ϕ(s) ∈ I(T ), and hence as s ∈ I(S) was chosen
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arbitrarily, we have ϕ(I(S)) ⊆ I(T ). The reverse inclusion follows from the

same argument by applying the inverse of ϕ, and hence the result follows.

We now return to concepts relating to generating sets for semigroups. As a

group may be described as finitely generated, so too can a semigroup or a

monoid, as we see in the following definition.

Definition 1.6.12. A semigroup S is said to finitely generated as a semigroup

if there is a finite subset X ⊆ S such that S = 〈X〉. In this instance, S will

be called a finitely generated semigroup.

Similarly, a monoid M is said to be finitely generated as a monoid if there

is a finite subset X ⊆ M such that M = 〈X〉, where 〈X〉 is the submonoid

generated by X. �

Note that finitely generated groups are finitely generated as monoids, and

finitely generated monoids are finitely generated as semigroups.

Examples 1.6.13. • (N,+) is finitely generated as a semigroup by the set

{1}, as we saw in Examples 1.6.2;

• Similarly, (N0,+) is finitely generated as a monoid, again by {1};

• (N, ?) from Examples 1.6.2 is not finitely generated as a semigroup, as

X = 〈X〉 for all non-empty X ⊆ N. Hence to satisfy 〈X〉 = N, it must be

that X = N, which is infinite. 4

Every finite semigroup and monoid is of course finitely generated, by taking

the whole semigroup or monoid itself as a generating set. Any property which

holds for any finite semigroup, such as being finitely generated, will be called

a finitary property.

One such related finitary property is that of being finitely presented, which

is commonly studied in group theory. We now introduce the theory of semi-

group presentations in order to define finitely presented semigroups.

Recall Definition 1.5.2, which defined the free semigroup and free monoid

over a set A. A more abstract definition of what it means for a semigroup
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to be free can be given, as in the following.

Definition 1.6.14. Given a set A, a semigroup S is said to be free over

A if there exists a mapping α : A → S, such that for any semigroup T

and mapping ϕ : A → T , there exists a unique semigroup homomorphism

ψ : S → T such that ϕ = α ◦ ψ. That is, the following diagram commutes.

A S

T

ϕ

α

ψ

�

Of course, replacing the word semigroup in the above definition by monoid

gives an abstract definition of what it means for a monoid to be free. Sim-

ilarly, replacing all instances of the word semigroup by commutative semi-

group above gives the definition of what it means for a commutative semi-

group to be “free commutative”.

We now qualify that the free semigroups and free monoids defined in Defini-

tion 1.5.2 are indeed free over their respective sets.

Lemma 1.6.15. For any alphabet A, the free semigroup A+ is free over A.

Similarly, the free monoid A∗ is free over A.

Proof. Let A be a set. Take the mapping α : A → A+ as the inclusion

mapping, defined by α(a) = a for all a ∈ A. Suppose that ϕ is any mapping

from A to any semigroup T . Define ψ : A+ → T by

ψ(a1a2 . . . an) = ϕ(a1)ϕ(a2) . . . ϕ(am).

Then ψ is a semigroup homomorphism, for if u = a1a2 . . . am ∈ A+ and

v = b1b2 . . . bn ∈ A+, then

ψ(uv) = ψ(a1a2 . . . amb1b2 . . . bn)

= ϕ(a1)ϕ(a2) . . . ϕ(am)ϕ(b1)ϕ(b2) . . . ϕ(bn)

= ψ(a1a2 . . . am)ψ(b1b2 . . . bn)
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= ψ(u)ψ(v).

Letting a ∈ A be any element, then

ϕ(a) = ψ(a) = ψ(α(a)) = (α ◦ ψ)(a),

and hence ϕ = α ◦ψ. If ψ′ : A+ → T is any other semigroup homomorphism

such that ϕ = α ◦ ψ′, then α ◦ ψ′ = α ◦ ψ. But for all a ∈ A, as

(α ◦ ψ)(a) = ψ(α(a)) = ψ(a),

then α ◦ ψ = ψ. Similarly, α ◦ ψ′ = ψ′, and hence it follows that ψ = ψ′.

Thus ψ is the unique semigroup homomorphism such that ϕ = α ◦ψ. Hence

A+ is free over A.

The case showing the free monoid A∗ is free over A is the same as A+, taking

instead T to be any monoid M with identity 1M , and the map ψ : A∗ → M

to be given by

ψ : A∗ →M := ψ(u) =

ϕ(a1)ϕ(a2) . . . ϕ(am) if u = a1a2 . . . am ∈ A+

1M if u = ε.

As an important consequence of the abstract definition of freeness, we obtain

the following lemma.

Lemma 1.6.16. Let S be a semigroup, let X be a set, and let ϕ : X → S

be a mapping such that ϕ(X) is a generating set for S. Then there exists a

semigroup epimorphism ψ : X+ → S.

Proof. Define ψ : X+ → S by

ψ(x1x2 . . . xn) = ϕ(x1)ϕ(x2) . . . ϕ(xn)

Then ψ is a semigroup homomorphism, for if u = x1x2 . . . xm ∈ X+ and
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v = y1y2 . . . yn ∈ X+, then

ψ(uv) = ψ(x1x2 . . . xmy1y2 . . . yn)

= ϕ(x1)ϕ(x2) . . . ϕ(xm)ϕ(y1)ϕ(y2) . . . ϕ(yn)

= ψ(x1x2 . . . xm)ψ(y1y2 . . . yn)

= ψ(u)ψ(v).

Further, as ϕ(X) is a generating set for S, then for any s ∈ S, there exist

x1, x2, . . . , xm ∈ X such that

s = ϕ(x1)ϕ(x2) . . . ϕ(xm) = ψ(x1x2 . . . xm),

and hence ψ is surjective.

We now are ready to define a semigroup presentation, which precisely for-

malises quotients of free semigroups by congruences.

Definition 1.6.17. Let S be a semigroup. If X is a set, and R is a binary

relation on X+ such that S ∼= 〈X : R〉, where

〈X : R〉 = X+/R],

then we say that 〈X : R〉 is a semigroup presentation for S. �

Any semigroup S has a generating set (as S = 〈S〉), and hence by

Lemma 1.6.16, we can always find a generating set X and epimorphism

ψ : X+ → S. By the first isomorphism theorem (Theorem 1.3.11), S is

isomorphic to the quotient X+/kerψ. Hence every semigroup is isomorphic

to the quotient of a free semigroup by a congruence.

Moreover, taking R = kerψ, as kerψ is a congruence, then R] = kerψ. Hence

every semigroup has a semigroup presentation.

Of course, wherever we have used the word semigroup, there is an analogy

for monoids. Hence we also give the following definition.

Definition 1.6.18. Let M be a monoid. If X is a set, and R is a binary
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relation on X+ such that M ∼= 〈X : R〉, where

〈X : R〉 = X∗/R],

then we say that 〈X : R〉 is a monoid presentation for M . �

By convention, ifX = {x1, x2, . . . xm}, andR = {(u1, v1), (u2, v2), . . . , (un, vn)}
are finite sets, we will often write

〈X : R〉 = 〈x1, x2, . . . , xm : u1 = v1, u2 = v2, . . . , un = vn〉

for semigroup and monoid presentations, in a slight absuse of notation.

Example 1.6.19. Let X = {x}, and take R = ∅. Then R is trivially a

binary relation on X+. We claim that R] = ∆, the equality relation on X+.

Firstly, ∆ is a congruence on X+, as seen in Examples 1.3.6, and it con-

tains R = ∅. Hence as R] is the smallest congruence on X+ containing R,

then R] ⊆ ∆. Conversely, as ∆ = {(w,w) : w ∈ X+}, then any element

(w,w) ∈ ∆ is also an element of R], as R] is a reflexive relation. Hence

∆ ⊆ R], and we have shown our claim. Thus

〈x : ∅〉 = X+/∆,

which is isomorphic to {x}+ by the isomorphism ϕ : {x}+ → {x}+/∆ defined

ϕ(xk) = [xk]∆.

Moreover, {x}+ is isomorphic to N under addition, by the isomorphism

ψ : {x}+ → N defined ψ(xk) = k. Hence N has semigroup presentation

〈x : ∅〉. 4

We now define finitely presented semigroups and monoids, as follows.

Definition 1.6.20. For a semigroup S, if there exists a finite set X and a

finite binary relation R on X+ such that

S ∼= 〈X : R〉,
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then S will be called finitely presented as a semigroup, with finite semigroup

presentation 〈X : R〉.

Similarly, for a monoid M , if there exists a finite set X and a finite binary

relation R on X∗ such that

M ∼= 〈X : R〉,

then M will be called finitely presented as a monoid, with finite monoid

presentation 〈X : R〉. �

We finish this section by introducing decision problems that are related to

the concepts of generation. The first decision problem we will describe is the

word problem for a semigroup, defined below.

Definition 1.6.21. Given a semigroup S and X ⊆ S a finite semigroup

generating set for S, the word problem of S with respect to X is given by

WP(S,X) = {(u, v) ∈ X+ ×X+ : u =S v},

where u =S v if u and v represent the same element in S when written as

words over the generating set X.

The word problem of S is said to be decidable with respect to X if there exists

an algorithm taking S, a finite generating set X ⊆ S and any

(u, v) ∈ X+ × X+ as inputs which determines whether or not

(u, v) ∈WP(S,X). �

Examples 1.6.22. • The free semigroup A+ over A has decidable word

problem with respect to A, simply by taking two words in u, v ∈ A+ and

reading them. If |u| 6= |v|, then u 6= v. Otherwise, check if the first letter of

u and v are equal, if not, then u 6= v. Otherwise, check if the second letter of

u and v are equal, and so on. If all letters have been checked and are equal,

then u = v;

• Any finite semigroup S has decidable word problem. Given any generating

set X of S, and two words u, v ∈ X+, there are only finitely many possibilities

40



for what u and v can equal in the semigroup S, hence an exhaustive algorithm

checking all the possibilities is viable. 4

A more general version of the word problem can be given, by asking if two

words over a finite generating set are equal in a subsemigroup of a given

semigroup. Hence we define the membership problem as follows.

Definition 1.6.23. Given a finitely generated semigroup S, a finitely gen-

erated subsemigroup T of S and a generating set X for S, the membership

problem of T in S is the set of words over X which represent an element

in T , when considered as a product of generators in X.

The membership problem is said to be decidable if there is an algorithm

taking S,X and a finite subset Y of X∗ generating T , which decides whether

or not a word w over X represents an element in 〈Y 〉. �

The final decision problem of consideration in this thesis will be the finite

generation problem, which asks if a given collection of semigroups or monoids

are finitely generated, as in the following definition.

Definition 1.6.24. Given a collection C of semigroups (or monoids) Si, each

of which can be somehow described by a finite set of data, it is said to have

decidable finite generation problem if there exists an algorithm taking the

finite set of data, and determining whether or not each Si is generated by

some finite subset Xi of Si. �

1.7 Direct products, subdirect products and fiber prod-

ucts

In this section, we focus on the definitions which make up the main subject

of study of this thesis, namely subdirect products and fiber products. We

begin with an overview of the definitions in terms of semigroups, alongside

examples. We then introduce a number of important results such as Fleis-

cher’s lemma, and its associated corollaries. Finally, we highlight some of

the motivating examples of subdirect products of groups that we introduced
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in this chapter, in greater specificity.

We begin by recalling the direct product structure for groups, which we now

define for semigroups.

Definition 1.7.1. Given two semigroups S and T , the direct product of S

with T is the Cartesian product

S × T = {(s, t) : s ∈ S, t ∈ T},

together with pointwise multiplication

(s, t)(u, v) = (su, tv),

where su is a product in S, and tv is a product in T . In this way, S × T is

a semigroup. S and T are called factors of the direct product. The maps

defined by

πS : S × T → S := (s, t) 7→ s,

πT : S × T → T := (s, t) 7→ t.

are known as the projection maps onto S and T , respectively. �

When S and T are both monoids or both groups, then S × T is a monoid or

a group. Of course, we can also define a finite direct product of n semigroups

to be the set of all n-tuples with pointwise multiplication. We outline the

specific case when the factors are all the same in the following definition.

Definition 1.7.2. Let S be a semigroup. For k ∈ N, the finite direct power

Sk is the k-fold Cartesian product

Sk = S × S × · · · × S︸ ︷︷ ︸
k times

,

together with the pointwise operation

(s1, s2, . . . sk)(t1, t2, . . . , tk) = (s1t1, s2t2, . . . , sktk).
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In this way, Sk is a semigroup. �

Finitary properties have been well studied for direct product of groups. For

such results classifying finite generation and finite presentation for direct

products of semigroups, we refer the reader to the work of Robertson, Ruškuc

& Wiegold [26], and the later work of Araújo & Ruškuc [1].

We now give a more general property of semigroups that includes the direct

product, by thinking about its substructures. This is the definition of a

subdirect product, which is ubiquitous throughout this thesis.

Definition 1.7.3. Let S and T be two semigroups. A subdirect product

of S with T (sometimes referred to as a subdirect product of S × T ) is a

subsemigroup U of the direct product S × T , such that the projection maps

defined

πS : U → S := (s, t) 7→ s,

πT : U → T := (s, t) 7→ t

are surjections. In this case, we will write U ≤sd S × T . �

Again, we can define a subdirect product of a finite number of n semigroups

as a subsemigroup of the direct product of those n semigroups, where each

projection mapping onto the i-th factor is a surjection.

Examples 1.7.4. • The direct product S × T itself is a subdirect product

of semigroups S and T , as every element of S appears in some first coordi-

nate, and every element of T appears in some second coordinate. Hence the

projection maps onto S and T are surjections;

• The semigroup given by ∆S := {(s, s) : s ∈ S} is a subdirect product of

a semigroup S with itself, as every element of S appears in some first and

second coordinate. ∆S is known as the diagonal subdirect product;

• Let F be the group with presentation〈
x, y | [xy−1, x−1yx] = [xy−1, x−2yx2] = 1

〉
.
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Then 〈(x, y−1), (y, x), (x−1, x−1), (y−1, y)〉 is a subdirect product of F with

itself, as every generator of F appears in some first and second coordinate of

a generating pair. 4

We will think of being a subdirect product as more of a property of a semi-

group rather than a direct construction. A particular type of constructible

subdirect product is a fiber product of semigroups, which we now define.

Definition 1.7.5. Given semigroups S, T, U and epimorphisms ϕ : S → U ,

ψ : T → U , the fiber product of S and T with respect to ϕ, ψ is the set

Π(ϕ, ψ) := {(s, t) ∈ S × T : ϕ(s) = ψ(t)}

with multiplication inherited from S×T . U is called the fiber, or fiber quotient

of Π(ϕ, ψ). If V is a subdirect product of S×T which is also a fiber product,

we will write V ≤fp S × T . �

We now qualify in the following lemma that fiber products are indeed exam-

ples of subdirect products.

Lemma 1.7.6. For semigroups S, T, U and epimorphisms ϕ : S → U ,

ψ : T → U , Π(ϕ, ψ) is a subdirect product of S × T .

Proof. If (s, t), (s′, t′) ∈ Π(ϕ, ψ), then (s, t)(s′, t′) = (ss′, tt′) ∈ Π(ϕ, ψ), as

ϕ(ss′) = ϕ(s)ϕ(s′) = ψ(t)ψ(t′) = ψ(tt′),

and hence Π(ϕ, ψ) is a subsemigroup of S × T . Moreover, for any s ∈ S, as

ϕ(s) ∈ U and ψ is surjective, there exists some t ∈ T such that ϕ(s) = ψ(t),

and hence (s, t) ∈ Π(ϕ, ψ). Similarly, for any t ∈ T , as ϕ is surjective, there

exists some s ∈ S such that ψ(t) = ϕ(s), and hence (s, t) ∈ Π(ϕ, ψ). Thus

the projection maps

πS : Π(ϕ, ψ)→ S := (s, t) 7→ s,

πT : Π(ϕ, ψ)→ T := (s, t) 7→ t.

are surjections, and Π(ϕ, ψ) is a subdirect product of S × T .
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Examples 1.7.7. • For semigroup S and T , the direct product S × T is a

fiber product. We take U to be the trivial group {1}, ϕ to be the constant

map given by

ϕ : S → U := ϕ(s) = 1,

and similarly ψ to be the constant map given by

ψ : T → U := ψ(t) = 1.

• For a semigroup S, the diagonal subdirect product ∆S = {(s, s) : s ∈ S} is

a fiber product. We take U = S, ϕ : S → S to be the identity mapping (so

that ϕ(s) = s), and ψ = ϕ. Then ϕ(s) = ψ(t)⇔ s = t. 4

Our previous comments relating to being able to define direct and subdirect

products for n semigroups still apply for fiber products. We now state an

important result relating subdirect products to fiber products, known as

Fleischer’s lemma.

Lemma 1.7.8 (Fleischer’s lemma, [4, Lemma 10.1]). Let S, T, U be semi-

groups, and let U ≤sd S × T . For the projection maps

πS : U → S := (s, t) 7→ s,

πT : U → T := (s, t) 7→ t,

denote by σ the congruence kerπS on U , and denote by ρ the congruence

kerπT on U . Then U is a fiber product of S with T if and only if

σ ◦ ρ = ρ ◦ σ.

Proof. (⇒) If U is a fiber product of S with T , then there exist epimorphisms

ϕ : S → V , ψ : T → V onto a common image V , such that

U = {(s, t) ∈ S × T : ϕ(s) = ψ(t)}.

Let ((s1, t1), (s2, t2)) ∈ σ ◦ ρ. Then there exists (s3, t3) ∈ U such that

((s1, t1), (s3, t3)) ∈ σ, ((s3, t3), (s2, t2)) ∈ ρ.

45



By the definitions of σ and ρ, it must be that s1 = s3, and t3 = t2. Hence

(s1, t2) ∈ U , and thus ϕ(s1) = ψ(t2). As (s1, t1) ∈ U and (s2, t2) ∈ U , it

follows that

ϕ(s2) = ψ(t2) = ϕ(s1) = ψ(t1),

and hence (s2, t1) ∈ U also. As

((s1, t1), (s2, t1)) ∈ ρ, ((s2, t1), (s2, t2)) ∈ σ,

then ((s1, t1), (s2, t2)) ∈ ρ ◦ σ. As ((s1, t1), (s2, t2)) was an arbitrary element

of σ ◦ ρ, then we have shown that σ ◦ ρ ⊆ ρ ◦σ. The reverse inclusion follows

by a symmetric argument, and hence

σ ◦ ρ = ρ ◦ σ.

(⇐) If σ ◦ ρ = ρ ◦ σ, then σ ◦ ρ is a congruence by Lemma 1.3.7. Let

ι : U → U/(σ ◦ ρ) be the natural quotient mapping ι(u, v) = [(u, v)]σ◦ρ. As

σ ⊆ σ ◦ ρ, there is a natural epimorphism from U/σ to U/(σ ◦ ρ) given by

π : U/σ → U/(σ ◦ ρ) := [(u, v)]σ 7→ [(u, v)]σ◦ρ.

As U is a subdirect product, then S ∼= U/σ by the first isomorphism theorem.

Hence there exists an epimorphism ϕ : S → U/(σ◦ρ) with ι = πS◦ϕ (recalling

that our convention is to compose from left to right). A similar proof shows

that there also exists an epimorphism ψ : T → U/(σ ◦ ρ) with ι = πT ◦ ψ.

We have the following commuting diagram.

U T

S U/(σ ◦ ρ)

πT

πS
ι

ψ

ϕ

We claim that

U = {(u, v) ∈ S × T : ϕ(u) = ψ(v)}

If (u, v) ∈ U , then ι(u, v) = (πS ◦ ϕ)(u, v) = ϕ(u), and

ι(u, v) = (πT ◦ ψ)(u, v) = ψ(v). Hence ϕ(u) = ψ(v).
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Conversely, if (u, v) ∈ S×T is such that ϕ(u) = ψ(v), then as U is a subdirect

product of S with T , there exist s ∈ S and t ∈ T such that (u, t) ∈ U and

(s, v) ∈ U . Now

ι(u, t) = (πS ◦ ϕ)(u, v) = ϕ(u) = ψ(v) = (πT ◦ ψ)(s, v) = ι(s, v),

and hence ((u, t), (s, v)) ∈ σ ◦ ρ. Hence there must exist (x, y) ∈ U such that

((u, t), (x, y)) ∈ σ and ((x, y), (s, v)) ∈ ρ. This implies however that x = u

and y = v, and hence (u, v) ∈ U . Thus we have shown that

U = {(u, v) ∈ S × T : ϕ(u) = ψ(v)},

and U is a fiber product.

In varieties of algebras for which the composition of congruences is a com-

mutative operation (such as in groups, where congruences are equivalent to

normal subgroups), then fiber products and subdirect products are one and

the same as a consequence of Fleischer’s lemma. Such varieties are called

congruence permutable. The varieties of semigroups and monoids are not

congruence permutable however, as semigroup and monoid congruences do

not commute under composition in general.

For the rest of this section, we outline some of the previous results (sans

proof) in the theory of subdirect products for groups that we motivate this

thesis with, as discussed in the introduction. These all notably involve sub-

direct products of free groups.

The first result we highlight is a corollary of Bridson & Miller [3], which finds

uncountably many non-isomorphic subdirect products of two free groups.

Theorem 1.7.9 ([3, Corollary B]). Let F1 and F2 be non-abelian free groups.

Then there are uncountably many subdirect products G of F1×F2, with non-

isomorphic first cohomology groups (with associated G-module Z). �

As a consequence of this result, as two isomorphic groups have isomorphic

first cohomology groups, then F1 × F2 contains uncountably many non-
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isomorphic subdirect products. This gives a generalisation of the work of

Baumslag & Roseblade [2] on direct products of free groups of rank two,

which we highlight below.

Theorem 1.7.10 ([2, Theorem 1]). There are uncountably many

non-isomorphic subgroups of the direct product of two free groups of rank

two. �

In particular, the authors prove this using subdirect products of two free

groups of rank two. These results in part motivate our study of the number

of non-isomorphic subdirect products of two free monogenic semigroups in

Chapter 2.

Turning now to examples involving finitary properties, we first note that

many finitary properties of groups are preserved under taking the direct

product. That is, the statement

G×H has property P if and only if G and H have property P

is satisfied for P being the properties of being finitely generated, finitely pre-

sented, residually finite, amongst others. It is also satisfied for many other

interesting non-finitary properties, such as nilpotency. Further generalisa-

tions of such statements for direct products of semigroups are considered by

Robertson, Ruškuc & Wiegold [26, Theorem 2.1, Theorem 8.3] in the cases of

finite generation and finite presentation respectively, and by Gray & Ruškuc

[12, Theorem 2] in the case of residual finiteness.

This is not necessarily the case for subdirect products however. In the work

of Bridson & Miller, an example is given showing that finite presentation

of direct product factors cannot guarantee finite generation of a subdirect

product of those factors. We present this example for motivation, without

proof, referring the reader to [3, Example 3] for further detail.

Example 1.7.11 ([3, Example 3]). Let A = 〈a1, a2 : ∅〉 and B = 〈b1, b2 : ∅〉
be two free groups of rank 2, and let

Q = 〈c1, c2 : q1(c), q2(c), . . . 〉
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be any two-generated group which is not finitely presented. Let ϕ : A → Q

and ψ : B → Q be the unique epimorphisms extending the maps defined by

ϕ(ai) = ci and ψ(bi) = ci. The fiber product Π(ϕ, ψ) of A×B is not finitely

generated. 4

Further, Grunewald [13] has classified when subdirect products of free groups

are finitely presented. This was reproved later by Baumslag & Roseblade [2,

Theorem 2], with the following generalisation.

Theorem 1.7.12 ([2, Theorem 2]). Every finitely presented subgroup of a

direct product of two free groups is a finite extension of a direct product of

two free groups of finite rank. �

Not every finitely generated subdirect product of two free groups has this

property, and hence there exist finitely generated subdirect products which

are not finitely presented.

On a similar note, a final example we mention is due to Mikhăılova [21]. In

this work a set of defining relations is given for a group which is a finitely

generated subdirect product of two free groups, but has undecidable word

problem. This is yet another example involving subdirect products of free

groups, that motivate our study in this thesis of subdirect products of free

semigroups and monoids.
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Chapter 2

Subdirect products involving the free

monogenic semigroup

As we saw in Chapter 1, Baumslag & Roseblade showed that the direct

product of two free groups can have uncountably many subgroups up to iso-

morphism (Theorem 1.7.10), which was then extended to subdirect products

of non-abelian free groups by Bridson & Miller (Theorem 1.7.9). This il-

lustrates some of the sub-structural complexity that the direct product can

create (and in particular, the fiber product construction for groups).

Notably, their result used the direct product of two free groups of rank at

least 2, and we recall from Section 1.7 that some examples of those subgroups

can be non-finitely generated, finitely generated whilst not being finitely pre-

sented, and being finitely generated whilst having the membership problem

being undecidable. In particular, we indicated that these examples include

subdirect products, which perhaps gives us motivation to believe that sub-

direct products involving free semigroups can provide further instances of

interesting and erratic structural behaviour.

By way of contrast, however, subgroups and subdirect products of the direct

product of two free groups of rank 1 (that is, the free cyclic group Z under

addition) do not exhibit this same behaviour. The group Z×Z is the unique

(up to isomorphism) free abelian group of rank two, and hence every non-
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trivial subgroup of Z × Z is free abelian, and of rank less than or equal to

two (this is illustrated and proved in [18]). Hence its non-trivial subgroups

are isomorphic to either Z, or Z× Z.

As a corollary, every subgroup of Z × Z is therefore finitely presented and

has decidable membership problem, and of course there are only countably

many of them up to isomorphism. That every subgroup of Z is isomorphic

to either the trivial subgroup or Z itself is a major contributing factor for

these resulting “well-behaved” properties.

By way of comparison, the corresponding free monogenic object in the variety

of semigroups is isomorphic to the natural numbers N under the operation of

addition. Similarly to Z, its subsemigroups are well understood due to the

following result of Sit & Siu [27].

Theorem 2.0.1 (Sit & Siu, [27]). Every subsemigroup M of N is of the form

M = X ∪ Y , where X ⊆ {1, . . . , N}, and Y = {m ∈ N : m ≥ N, d | m} for

some d,N ∈ N.

As with Z and Z × Z, the subsemigroups (and hence subdirect products)

of N are all finitely presented and there are only countably many of them

up to isomorphism. It is for these reasons and those outlined above that

we investigate the subdirect products and subsemigroups of N × N in this

chapter.

Reflecting on the work of Baumslag & Roseblade [2], and Bridson & Miller

[3] on free groups of rank at least two, our main aim for this chapter will be

to prove that N×N in fact has uncountably many subsemigroups and subdi-

rect products up to isomorphism in Section 2.1, and derive related corollaries

about semigroups with elements of infinite order such as Nk in Section 2.3.

We will go on to investigate subsemigroups and subdirect products of N to-

gether with a finite semigroup in Sections 2.2 and 2.4 respectively; classifying

for which finite semigroups S there are uncountably many subsemigroups and

subdirect products of N× S.

We note that this chapter is largely based on the paper [7], cowritten by the
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author.

2.1 Subsemigroups of N× N

In this section, we will see that the direct product N× N contains uncount-

ably many subsemigroups up to isomorphism, and we will further derive a

corollary about the number of subsemigroups up to isomorphism of the di-

rect product of two infinite semigroups. Later, in Section 2.3, we will draw

parallel results on the number of non-isomorphic subdirect powers of N.

We begin by adopting notation for the purposes of this section.

Notation 2.1.1. Given a non-empty subset M ⊆ N, we will define XM to

be the subset {1} ×M of N× N, and SM to be the subsemigroup of N× N
generated by the set XM . �

We comment that (m,n) ∈ SM if and only if n can be written as the sum of

exactly m (not necessarily distinct) numbers from M .

Examples 2.1.2. (a). Let M = {1}. Then XM consists of the single pair

(1, 1), and hence SM = 〈(1, 1)〉 = {(n, n) : n ∈ N}. In this case, SM is

isomorphic to N, via the natural mapping (m,m) 7→ m.

(b). Let N = {1, 2}. Then XN = {(1, 1), (1, 2)}, and

SN = {(m+ n,m+ 2n) : m,n ∈ N0} \ {(0, 0)}. 4

In fact, we will see that SN from Examples 2.1.2 (b) is isomorphic to the free

commutative semigroup of rank 2, as the following result documents.

Lemma 2.1.3. SM is a free commutative semigroup if and only if |M | ≤ 2.

Proof. If |M | = 1, then M = {m} for some m ∈ N. Hence

SM = 〈(1,m)〉 = {(n, nm) : n ∈ N}.

Then the mapping ϕ : SM → N := (n, nm) 7→ n is clearly bijective, and
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ϕ((n, nm)+(p, pm)) = ϕ((n+p, (n+p)m)) = n+p = ϕ((n, nm))+ϕ((p, pm)),

and hence is an isomorphism from SM to the free commutative monogenic

semigroup.

If |M | = 2, let M = {m1,m2}. It suffices to show that any given relation in

SM is trivial. As a given relation in SM can be viewed as an equivalence of

two non-zero sums of elements from XM , then it is of the form

p(1,m1) + q(1,m2) = r(1,m1) + s(1,m2) (2.1)

for some p, q, r, s ∈ N0 (not all zero). Simplifying and equating components,

we obtain the relations

p+ q = r + s,

pm1 + qm2 = rm1 + sm2,

which are equivalent to the integer equations

p− r = s− q,

(p− r)m1 = (s− q)m2.

As m1 6= m2 by assumption, to avoid contradiction it must be that

p − r = s − q = 0, and hence p = r, q = s and the relation given in (2.1) is

trivial. Hence SM is a free commutative semigroup, with rank 2.

If |M | ≥ 3, let m1,m2,m3 ∈M be any three distinct naturals. Then

m2(1,m1) +m3(1,m2) +m1(1,m3) =

m3(1,m1) +m1(1,m2) +m2(1,m3) (2.2)

is a non-trivial relation between the generators XM , and hence SM cannot

be free commutative.

As a consequence of the preceding result, there are only two non-isomorphic

semigroups in the family {SM : M ⊂ N, |M | ≤ 2}, and hence for the rest
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of the chapter we will only consider the semigroups SM where |M | ≥ 3. We

will also utilise the relation (2.2) later when discussing 3-element subsets.

We will largely consider their possible isomorphisms by the images of their

indecomposable elements, which we now describe.

Lemma 2.1.4. The indecomposable elements of SM are exactly the elements

of XM .

Proof. If an element (p, q) ∈ SM has p > 1, then (p, q) is necessarily a sum

of p elements of XM by construction of SM , and is decomposable. Hence

the indecomposable elements must be contained within XM , as these are the

only elements of SM with first component equal to 1.

Conversely, as the elements of XM have first coordinate equal to 1, then they

are indecomposable in N× N, and hence indecomposable in SM .

For two 3-element subsets M = {m1,m2,m3}, N = {n1, n2, n3} of N, any

isomorphism from SM to SN must map XM to XN by Lemma 1.6.11. Hence

without loss of generality, we can fix the labelling of M and N such that a

given isomorphism ϕ : SM → SN satisfies ϕ(1,mi) = (1, ni) for

i = 1, 2, 3.

We now use this fact in the next result to classify when two 3-element subsets

M,N ⊆ N give rise to isomorphic semigroups SM and SN .

Lemma 2.1.5. Let M = {m1,m2,m3}, N = {n1, n2, n3} be two 3-element

subsets of N. Then there is an isomorphism ϕ : SM → SN satisfying

ϕ(1,mi) = (1, ni) (i = 1, 2, 3), if and only if

n2(m3 −m1) = n1(m3 −m2) + n3(m2 −m1). (2.3)

Proof. (⇒) Suppose that SM ∼= SN via the isomorphism ϕ. As noted in

Lemma 2.1.3 equation (2.2), the relation

m2(1,m1) +m3(1,m2) +m1(1,m3) = m3(1,m1) +m1(1,m2) +m2(1,m3)
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holds in SM . Applying ϕ to the left hand side of this relation, we see that

ϕ(m2(1,m1) +m3(1,m2) +m1(1,m3))

=m2ϕ(1,m1) +m3ϕ(1,m2) +m1ϕ(1,m3)

=m2(1, n1) +m3(1, n2) +m1(1, n3). (2.4)

Similarly, applying ϕ to the right hand side of (2.2) gives

ϕ(m3(1,m1) +m1(1,m2) +m2(1,m3))

=m3ϕ(1,m1) +m1ϕ(1,m2) +m2ϕ(1,m3)

=m3(1, n1) +m1(1, n2) +m2(1, n3). (2.5)

Simplifying (2.4) and (2.5) and equating second components gives the equa-

tion

m2n1 +m3n2 +m1n3 = m3n1 +m1n2 +m2n3,

from which (2.3) is obtained after factorisation of n1, n2 and n3.

(⇐) Assume that (2.3) holds. As any element x ∈ SM can be written as a

linear combination of elements from XM , let

x = α1(1,m1) + α2(1,m2) + α3(1,m3) ∈ SM

be such a combination, for some α1, α2, α3 ∈ N0, not all zero. Define the

mapping ϕ : SM → SN on such a linear combination by

ϕ(x) := α1(1, n1) + α2(1, n2) + α3(1, n3).

As the factors α1, α2, α3 are not necessarily uniquely determined by x as seen

in (2.2), we first show that ϕ is well defined. To this end, suppose αi, βi ∈ N0

(not all zero, i = 1, 2, 3) are such that

α1(1,m1) + α2(1,m2) + α3(1,m3) = β1(1,m1) + β2(1,m2) + β3(1,m3).

55



Let γi = αi − βi. Noting that (2.3) is equivalent to the relation

n1(m2 −m3) + n2(m3 −m1) + n3(m1 −m2) = 0, (2.6)

then ∑3
i=1 αi(1,mi) =

∑3
i=1 βi(1,mi)

⇒
∑3

i=1 αi =
∑3

i=1 βi and
∑3

i=1 αimi =
∑3

i=1 βimi

⇒
∑3

i=1 γi = 0 and
∑3

i=1 γimi = 0

⇒ γ2m2 = −γ1m2 − γ3m2, γ2m2 = −γ1m1 − γ3m3,

γ1m1 = −γ2m1 − γ3m1 and γ1m1 = −γ2m2 − γ3m3

⇒
∑3

i=1 γi = 0, γ1(m1 −m2) = γ3(m2 −m3)

and γ2(m1 −m2) = γ3(m3 −m1)

⇒
∑3

i=1 γi = 0 and
∑3

i=1 γini(m1 −m2) = γ3(0) = 0 (by (2.6))

⇒
∑3

i=1 γi = 0 and
∑3

i=1 γini = 0 (as m1 −m2 6= 0)

⇒
∑3

i=1 αi =
∑3

i=1 βi and
∑3

i=1 αini =
∑3

i=1 βini

⇒
∑3

i=1 αi(1, ni) =
∑3

i=1 βi(1, ni).

It follows that ϕ is well defined, as now

ϕ
( 3∑
i=1

αi(1,mi)
)

=
3∑
i=1

αi(1, ni) =
3∑
i=1

βi(1, ni) = ϕ
( 3∑
i=1

βi(1,mi)
)
.

Moreover, noting that (2.6) is equivalent to

m1(n2 − n3) +m2(n3 − n1) +m3(n1 − n2) = 0, (2.7)

by rearrangement, then swapping the roles of m and n, and the roles (2.6)

and (2.7) in the above series of implications also shows that ϕ is injective.

That it is a homomorphism and surjective follows directly from definition,

and thus ϕ is an isomorphism between SM and SN .

Examples 2.1.6. (a). Let M = {1, 2, 3}, N = {2, 4, 6}. We expect SM and

SN to be isomorphic, as N = 2M . Indeed, as 4(3− 1) = 2(3− 2) + 6(2− 1),
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then setting mi = i and ni = 2i for i = 1, 2, 3 gives

n2(m3 −m1) = n1(m3 −m2) + n3(m2 −m1).

Hence by Lemma 2.1.5, SM and SN are isomorphic, with isomorphism ϕ

satisfying ϕ(1, i) = (1, 2i) for i = 1, 2, 3.

(b). Let mi = i for i = 1, 2, 3, n1 = 2, n2 = 1, n3 = 3, and let

M = {m1,m2,m3}, N = {n1, n2, n3}. We will show that SM and SN are

isomorphic, but the attempt at constructing a homomorphism ϕ : SM → SN

satisfying

ϕ(1, 1) = (1, 2), ϕ(1, 2) = (1, 1), ϕ(1, 3) = (1, 3)

does not give an isomorphism. Indeed, note that ϕ is not even well-defined,

as

2(1, 1) + 3(1, 2) + (1, 3) = (6, 11) = 3(1, 1) + (1, 2) + 2(1, 3),

but

ϕ(2(1, 1) + 3(1, 2) + (1, 3)) = 2(1, 2) + 3(1, 1) + (1, 3) = (6, 10),

and

ϕ(3(1, 1) + (1, 2) + 2(1, 3)) = 3(1, 2) + (1, 1) + 2(1, 3) = (6, 13).

This is verified by Lemma 2.1.5, as 1(3− 1) 6= 2(3− 2) + 3(2− 1). However,

SM and SN are clearly isomorphic, as M = N . An example of a non-trivial

isomorphism between SM and SN is ψ : SM → SN satisfying

ψ(1, 1) = (1, 3), ψ(1, 2) = (1, 2), ψ(1, 3) = (1, 1),

as 2(3− 1) = 3(3− 2) + 1(2− 1).

(c). Let M = {1, 2, 3}, N = {1, 2, 100}. Suppose there were a labelling of M

and N such that (2.3) holds. If n1 = 100, then as (2.3) is equivalent to the

condition

n1(m2 −m3) = n2(m1 −m3) + n3(m2 −m1),
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then it follows from the triangle inequality that

100|m2 −m3| ≤ n2|m1 −m3|+ n3|m2 −m1|.

But the differences |mi−mj| are at most 2, and hence it can be quickly verified

that right hand side of this inequality is at most 5, which is a contradiction.

Hence n1 6= 100. The same contradiction is obtained using (2.3) supposing

n2 = 100, and a similar contradiction can be obtained from rearranging (2.3)

supposing that n3 = 100. Hence there is no labelling of M and N such that

(2.3) holds, and hence SM cannot be isomorphic to SN . 4

Lemma 2.1.5 and the relation (2.3) will be our main tools in obtaining un-

countably many pairwise non-isomorphic semigroups SM , and hence motivate

the following definition.

Definition 2.1.7. A subset M ⊆ N will be called 3-separating if |M | ≥ 3,

and additionally, for any two triples (m1,m2,m3) and (n1, n2, n3) of distinct

elements from M , the following holds:

n2(m3 −m1) =n1(m3 −m2) + n3(m2 −m1)

⇔ (m1,m2,m3) = (n1, n2, n3).
(C1)

�

Examples 2.1.8. (a). The set M = {1, 2, 3} is not 3-separating, as

2(3− 1) = 3(3− 2) + 1(2− 1),

but (1, 2, 3) 6= (3, 2, 1).

(b). For the set {2, 3, 5}, the possible triples of distinct elements are

(2, 3, 5), (2, 5, 3), (3, 2, 5), (3, 5, 2), (5, 2, 3), (5, 3, 2).

A direct calculation of all possibilities (which we omit for brevity) verifies

that the only pairs of triples (m1,m2,m3) and (n1, n2, n3) satisfying condition

(2.3) are precisely those with mi = ni, for i = 1, 2, 3, and hence {2, 3, 5} is a
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3-separating set. 4

We now focus on extending such examples of finite 3-separating sets to infinite

3-separating sets. This will aid us in constructing infinite semigroups SM

for which any pair of 3-generated subsemigroups are non-isomorphic, as a

consequence of Lemma 2.1.5. Our approach will be inductive, and we begin

by deriving a condition on pairs of elements from 3-separating sets which

guarantees that the induction holds.

Lemma 2.1.9. Let M be a 3-separating set. Then for any two pairs (m1,m2),

(n1, n2) of distinct elements from M , the following condition holds:

m1 −m2 = n1 − n2 ⇔ (m1,m2) = (n1, n2). (C2)

Proof. We prove the contrapositive. Suppose that there exist two pairs

(m1,m2), (n1, n2) of distinct elements from M with (m1,m2) 6= (n1, n2),

but

m1 −m2 = n1 − n2. (2.8)

It follows that m1 6= n1, as otherwise (2.8) gives that m2 = n2. Similarly,

m2 6= n2. This leaves the following three cases: either m1 = n2; m2 = n1; or

{m1,m2, n1, n2} is a set of four distinct naturals. In each case, we show that

M is not 3-separating:

Case 1: m1 = n2. In this instance m2 6= n1, for otherwise

m1 − m2 = n2 − n1 = n1 − n2, and hence n1 = n2 which is a contradic-

tion. Thus the two triples (n1,m1,m2) and (m2,m1, n1) are non-equal and

consist of distinct elements from M . We will further show that they satisfy

the left hand side of condition (C1).

Letting d = m1 − n1, then it also follows from (2.8) that d = m2 − m1,

and hence the triples (n1,m1,m2) and (m2,m1, n1) may be re-expressed as

(n1, n1 + d, n1 + 2d) and (n1 + 2d, n1 + d, n1) respectively. Thus considering

(C1), we have

m2(m2 −m1) + n1(m1 − n1)
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= (n1 + 2d)(n1 + 2d− n1 − d) + n1(n1 + d− n1)

= (n1 + 2d)d+ dn1

= 2d2 + 2dn1

= (n1 + d)(n1 + 2d− n1)

=m1(m2 − n1),

and hence the two non-equal triples (n1,m1,m2) and (m2,m1, n1) violate

(C1), and M is not 3-separating.

Case 2: m2 = n1. This case can be handled identically to Case 1, reversing

the roles of the indices 1 and 2.

Case 3: {m1,m2, n1, n2} is a set of four distinct naturals. We claim that the

two triples (n2, n1,m2) and (m1,m2, n1) of distinct elements of M satisfy the

left hand side of (C1).

Let d = m1−m2 = n1−n2. Then the two triples (n2, n1,m2) and (m1,m2, n1)

can be re-expressed as (n2, n2 + d,m1 − d) and (m1,m1 − d, n2 + d). Thus

considering (C1), we have

(m1 − d)(m1 − d− n2)

=m2
1 − 2dm1 + d2 − n2m1 + dn2

=m1(m1 − d− (n2 + d)) + (n2 + d)(n2 + d− n2)

and hence the two non-equal triples (n2, n1,m2) and (m1,m2, n1) violate

(C1), and M is not 3-separating.

We remark that any subset N (with |N | ≥ 3) of a 3-separating set M is

3-separating. Hence constructing a countably infinite 3-separating set will

yield uncountably many 3-separating subsets. To start this construction, we

next show that finite 3-separating sets can be added to, whilst keeping the

3-separating property.

Lemma 2.1.10. If M is a 3-separating finite set, then there exists x ∈ N\M
such that M ∪ {x} is also 3-separating.
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Proof. If M ∪ {x} is not 3-separating for some x ∈ N \M , we will show that

there are only finitely many such possibilities for x. This will complete the

proof of the lemma, as we are still left with infinitely many choices of x to

pick from N \M so that M ∪ {x} is 3-separating.

As M ∪ {x} is assumed to not be a 3-separating set, there exists a pair

of triples (m1,m2,m3), (n1, n2, n3) of distinct elements from M ∪ {x} with

(m1,m2,m3) 6= (n1, n2, n3), but

n2(m3 −m1) = n1(m3 −m2) + n3(m2 −m1). (2.9)

At least one of the mi, ni is equal to x as M is 3-separating. At most one of

the mi can be equal to x, and at most one of the nj can be equal to x, giving

us the following three possible cases:

Case 1: Exactly one of m1,m2,m3, n1, n2, n3 is equal to x. In this instance,

(2.9) can be regarded as a linear equation in x with non-zero coefficient.

Hence for a given choice of the mi, ni which are not equal to x, there is at

most one such x such that (2.9) holds. As there are only finitely many choices

for the five of m1,m2,m3, n1, n2, n3 which are not equal to x, there are only

finitely many such x violating (2.9).

Case 2: mi = nj = x for some distinct i, j ∈ {1, 2, 3}. In this instance, (2.9)

can be rearranged into a quadratic equation of x, in particular with non-zero

quadratic coefficient. There will be at most two solutions for x for any choice

of the four of m1,m2,m3, n1, n2, n3 which are not equal to x, and hence again

there are only finitely many such x violating (2.9).

Case 3: mi = ni = x for some i = 1, 2, 3. As in Case 1, (2.9) can be

rearranged into a linear equation in x, with the coefficient of x being of the

form mj − mk + nk − nj for j, k ∈ {1, 2, 3} \ {i}. If this coefficient were

zero, then mj−mk = nj−nk, and hence as mj,mk, nj, nk are elements of M

which is 3-separating, then (mj,mk) = (nj, nk) by Lemma 2.1.9. But then

ml = nl for each l = 1, 2, 3 which contradicts the choice of (m1,m2,m3) and

(n1, n2, n3).
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Hence again in this instance, (2.9) can be regarded as a linear equation in

x with non-zero coefficient, there will be at most one solution for x for any

choice of the four of m1,m2,m3, n1, n2, n3 which are not equal to x, and thus

only finitely many x violate (2.9).

We now construct an infinite 3-separating set in the following corollary.

Corollary 2.1.11. There exists an infinite 3-separating set M∞.

Proof. Let M1 be any finite 3-separating set (such as in Examples 2.1.8 (b)).

By Lemma 2.1.10, there exists an x1 ∈ N \M1 such that M2 = M1 ∪ {x1} is

3-separating.

Continuing iteratively, we obtain an infinite strictly ascending chain

M1 ⊂M2 ⊂M3 ⊂ . . .

of finite 3-separating sets. Letting M∞ =
⋃
i∈NMi, we claim that M∞ is 3-

separating. Suppose for a contradiction that M∞ is not 3-separating. Then

there would exist two non-equal triples (m1,m2,m3) and (n1, n2, n3) of dis-

tinct elements from M∞ violating (C1). However, any finite subset of M∞

is contained within some Mi, and hence {m1,m2,m3, n1, n2, n3} is contained

within some Mi which is 3-separating, contradicting the choice of triples.

Hence M∞ is an infinite 3-separating.

The existence of M∞ from Corollary 2.1.11 is enough to prove the main

theorem of this section, which we now present.

Theorem 2.1.12. There are uncountably many pairwise non-isomorphic

subsemigroups of N× N.

Proof. Let M∞ be an infinite 3-separating set, such as in Corollary 2.1.11.

We claim that any two semigroups in the collection

C = {SM : M ⊆M∞, |M | ≥ 3} (2.10)

62



are non-isomorphic. Suppose for a contradiction that SM and SN were iso-

morphic, with M,N ⊆ M∞, |M |, |N | ≥ 3, but M 6= N , via isomorphism

ϕ : SM → SN .

Without loss of generality, we can assume that M \ N is non-empty, and

hence we can choose some m1 ∈ M \ N . Let m2,m3 be any other distinct

elements from M .

The elements (1,mi) for i = 1, 2, 3 belong to XM , and are thus indecompos-

able in SM by Lemma 2.1.4. As the images of (1,mi) must be indecomposable

in SN by Lemma 1.6.11, and the indecomposables of SN are the set XN , then

each (1,mi) must be mapped to (1, ni) for some ni ∈ N , where i = 1, 2, 3.

Hence the subsemigroups

〈(1,m1), (1,m2), (1,m3)〉 ≤ SM ,

〈(1, n1), (1, n2), (1, n3)〉 ≤ SN

are isomorphic via the restriction of ϕ to X{m1,m2,m3}. But by Lemma 2.1.5,

n2(m3 −m1) = n1(m3 −m2) + n3(m2 −m1).

As M∞ is 3-separating, it must be that (m1,m2,m3) = (n1, n2, n3) by (C1).

However this is a contradiction, as m1 = n1 ∈ N , but m1 was chosen to be in

M \N . Hence SM 6∼= SN if M 6= N . As there are uncountably many subsets

of M∞, the result of the theorem follows.

As N is an infinite monogenic semigroup, we can obtain the following corol-

lary about the number of subsemigroups of the product of two infinite semi-

groups.

Corollary 2.1.13. If S and T are infinite semigroups, each containing an

element of infinite order, then the direct product of S and T contains un-

countably many pairwise non-isomorphic subsemigroups.

Proof. Let s ∈ S, t ∈ T be elements of infinite order. Then as 〈x〉 ∼= 〈y〉 ∼= N,

it follows that S×T contains the subsemigroup 〈x〉×〈y〉, which is isomorphic
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to N × N. As N × N contains uncountably many pairwise non-isomorphic

subsemigroups by Theorem 2.1.12, so too does S × T .

As the final result of this section, we note that Theorem 2.1.12 can be gen-

eralised to finite direct powers Nk.

Theorem 2.1.14. For k ≥ 2, the direct power Nk contains uncountably

many pairwise non-isomorphic subsemigroups.

Proof. Let M∞ be an infinite 3-separating set, such as in Corollary 2.1.11.

Then for any M ⊆ M∞ with |M | ≥ 3, define the set

YM = {(1, . . . , 1,m) : m ∈ M}, and the subsemigroup TM = 〈YM〉 ≤ Nk.

Then the map

ϕ : TM → SM := (n, . . . , n, p) 7→ (n, p)

is verifiably an isomorphism between TM and SM , and hence the result follows

from Corollary 2.1.11.

2.2 Subsemigroups of direct products of N with a finite

semigroup

In the previous section, we saw that although N has only countably many

subsemigroups up to isomorphism, finite direct powers of N (in particular,

N×N) have uncountably many. It is also the case for two finite semigroups

S, T that the direct product S×T has only finitely many subsemigroups up

to isomorphism (as |S×T | = |S|× |T |). It is perhaps natural to then ask the

same question for direct products involving N that are somehow “inbetween”

N and N× N.

In this section, we aim to answer that question directly, characterising for

which finite semigroups S does N × S have countably many subsemigroups

up to isomorphism. Later in Section 2.4, we will give an accompanying result

on the number of non-isomorphic subdirect products.

We begin this section by dealing with the case where S is a finite group, in
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the following lemma.

Lemma 2.2.1. Let G be a finite group. Then every subsemigroup of N×G
is finitely generated, and hence N×G has countably many subsemigroups.

Proof. We will provide a generating set for any such T ≤ N×G. Let m ∈ N
be fixed so that (m, 1G) ∈ T , which exists as G is a finite group, and any

(n, g) ∈ T is such that the second coordinate of (n, g)|g| is 1G. For all n ∈ N,

we define the set

Gn := {g ∈ G : (n, g) ∈ T}.

Then given any n ∈ N and g ∈ Gn, it follows that

(n+m, g) = (n, g)(m, 1G) ∈ T,

and thus g ∈ Gn+m. Hence as Gn ⊆ Gn+m for all n ∈ N, we obtain an

ascending chain

Gn ⊆ Gn+m ⊆ Gn+2m ⊆ . . .

which must eventually stabilise (meaning there exists some i ∈ N with

Gn+im = Gn+jm for all j ≥ i), as G is finite. Hence the sequence (Gi)i∈N is

such that there exists j0 ∈ N with Gj = Gj+m for all j ≥ j0. Fix such a j0.

We will show that T is generated by the set

X =
⋃

1≤n<j0+m

({n} ×Gn),

which is finite.

Firstly, as X ⊆ T by construction, then the semigroup generated by X is

contained in T (that is, 〈X〉 ⊆ T ). It remains to show that every element of

T can be written as a product of elements of X (i.e. T ⊆ 〈X〉), and we will

proceed by induction on n.

To this end, let (n, g) ∈ T . If n < j0 +m, then clearly (n, g) ∈ X. Otherwise,

assume for the inductive hypothesis that any (p, h) ∈ T with p < n is also

in 〈X〉. If n ≥ j0 + m, then by assumption as g ∈ Gn, and furthermore as
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n−m ≥ j0 it follows that Gn = Gn−m, so that g ∈ Gn−m. By the inductive

hypothesis, it is assumed that (n−m, g) ∈ 〈X〉, and hence

(n−m, g)(m, 1G) = (n, g) ∈ 〈X〉,

completing that proof that T is finitely generated by X. Moreover, N × G
has only countably many finite subsets, and hence as any subsemigroup T

is finitely generated, there are at most countably many subsemigroups of

N×G.

This result will play an important role in determining the number of sub-

semigroups of N× S, and hence we now discuss the case where S is a union

of groups. Such a semigroup is called completely regular, as in the following

definition.

Definition 2.2.2. A semigroup S is said to be completely regular if there

exists a family of subgroups {Gi : i ∈ I} of S, such that

S =
⋃
i∈I

Gi.

That is, S is a union of groups. �

We now give an equivalent formulation of complete regularity in terms Green’s

H relation, using Corollary 1.4.7 from Chapter 1.

Lemma 2.2.3. A semigroup S is completely regular if and only if every

H-class of S is a group.

Proof. (⇐) If every H-class of S is a group, then noting that S is the union

of its H-classes Hs for s ∈ S (as Hs certainly contains s), then S is a union

of groups and hence is completely regular.

(⇒) Let S be completely regular, and let s ∈ S be arbitrary. As S is a union

of groups, then s lies in some subgroup Gi of S. If e is the identity of Gi,

then there exists s′ ∈ Gi such that ss′ = e = s′s.

Moreover, as se = s = es, then by Lemma 1.4.4, it follows that (s, e) ∈ L and

66



(s, e) ∈ R, and hence (s, e) ∈ H. Thus as Hs = He, and e is an idempotent,

then by Corollary 1.4.7 it follows that Hs is a group. As s ∈ S was chosen

arbitrarily, and the set {Hs : s ∈ S} covers every H-class of S, then the

result follows.

We now give the main theorem of this section, which says the property of

complete regularity of S determines the number of subsemigroups of N× S.

Theorem 2.2.4. The following are equivalent for a finite semigroup S:

(i) N× S has only countably many subsemigroups;

(ii) N×S has only countably many pairwise non-isomorphic subsemigroups;

(iii) S is completely regular.

Proof. That (i) ⇒ (ii) is immediate.

(ii)⇒ (iii) We will prove the contrapositive. Suppose S is not completely reg-

ular. Then there exists aH-class H of S which is not a group by Lemma 2.2.3.

Fix some x ∈ H. Then as S is finite, x has some idempotent power by

Lemma 1.2.10, i.e. xk = x2k for some k ∈ N. It must be that k > 1,

for otherwise x is an idempotent in H, which would then be a group by

Corollary 1.4.7.

Moreover, we claim that

x 6= xi (2.11)

for any i ≥ 2. Suppose to the contrary, that x = xi for some i > 1. In

particular, i can be chosen so that i > k, as x = xi
p

for all p ∈ N. Thus

x = xi = xkxi−k = xi−kxk.

As k > 1, and xk = xxk−1 = xk−1x, then by Lemma 1.4.4, it now follows

that x and xk are both L-related and R-related in S, and hence H-related.

But then H = Hx = Hxk contains the idempotent xk, and hence H would be

a group; a contradiction. Thus we have shown (2.11).
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Define for M ⊆ N \ {1} the subsemigroup

TM := 〈(1, xk), (m,x) : m ∈M〉 ≤ N× S.

Then the generators of TM are all indecomposable in TM , as 1 is indecompos-

able in N and x is indecomposable in its monogenic subsemigroup 〈x〉 ≤ S,

for otherwise x = xixj = xi+j for some i, j ∈ N, contradicting (2.11).

We will show for M,N ⊆ N \ {1} with M 6= N that TM 6∼= TN . Suppose to

the contrary, and let ϕ : TM → TN be an isomorphism. It can be assumed

without loss of generality that M \ N is non-empty, hence let m̂ ∈ M \ N .

As xk is idempotent, for all m ∈M we have

(1, xk)mk = (mk, (xk)mk) = (mk, xk) = (m,x)k,

and hence

ϕ((1, xk)mk) = ϕ((m,x)k)

⇔ (ϕ(1, xk))mk = (ϕ(m,x))k. (2.12)

Applying the projection map π1 : TN → N := (n, xi) 7→ n to (2.12) and

dividing by k, for all m ∈M we obtain that

mπ1ϕ(1, xk) = π1ϕ(m,x), (2.13)

and hence as m > 1 it follows that π1ϕ(1, xk) < π1ϕ(m,x). In particular,

π1ϕ(m,x) > 1 and thus ϕ(m,x) 6= (1, xk) for all m ∈ M . As (1, xk) is an

indecomposable element of TN it must be mapped onto by an indecomposable

element of TM , and hence it must be that ϕ(1, xk) = (1, xk). But then by

(2.13), it follows that m = π1ϕ(m,x) for all m ∈ M , and in particular that

m̂ = π1ϕ(m̂, x) ∈ N which is a contradiction.

Hence for M,N ⊆ N \ {1}, M 6= N implies that TM 6∼= TN . As there are

uncountably many subsets of N \ {1}, there are uncountably many pairwise

non-isomorphic subsemigroups TM of N× S as required.
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(iii)⇒ (i) If S is completely regular, then it is a union of groups by definition,

and in particular every H-class Hs (where s ∈ S) is a group (as a subgroup

G of S with identity e is contained in the H-class He, which is a subgroup

by Theorem 1.4.6). As

N× S = N×
(⋃
s∈S

Hs

)
=
⋃
s∈S

(N×Hs),

then N×S is a finite union of semigroups N×Hs, which are pairwise disjoint.

As Hs is a group for all s ∈ S, then N × Hs has only countably many sub-

semigroups by Lemma 2.2.1. Hence it follows that N×S has only countably

many subsemigroups, as required.

We finish the section with some examples of finite semigroups illustrating

Theorem 2.2.4

Examples 2.2.5. We will consider how many subsemigroups of N×S there

are up to isomorphism, for all of the two element semigroups S up to iso-

morphism. Namely, they are

• The two element cyclic group Z2 under addition modulo 2;

• The two element semilattice {0, 1} under multiplication of real num-

bers;

• The two element zero semigroup {x, 0}, with multiplication defined

st = 0 for all s, t ∈ {x, 0};

• The two element left zero semigroup {a, b}, with multiplication defined

st = s for all s, t ∈ {a, b};

• The two element right zero semigroup {c, d}, with multiplication de-

fined st = t for all s, t ∈ {c, d}.

For S = Z2, there are only countably many subsemigroups of N × S by

Theorem 2.2.4, as Z2 is a group, and hence a completely regular semigroup.

For S = {0, 1} under multiplication, as 02 = 0 and 12 = 1, then both {0} and

{1} form trivial subgroups of S, and hence as S = {0}∪{1}, it is completely
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regular. Hence N × S has countably many subsemigroups in this case. This

is also exactly the same for S = {a, b} (as a2 = a, b2 = b) and S = {c, d}.

The last case to consider is S = {x, 0}. There can be no s ∈ S such that

sx = xs = x, as st = 0 for all s, t ∈ S. Hence x cannot lie in a subgroup of

S, and S is not the union of groups. Thus N×{x, 0} has uncountably many

non-isomorphic subsemigroups. By the proof of Theorem 2.2.4, the family of

subsemigroups {TM : M ⊆ N \ {1}} where TM is given by

TM = 〈(1, 0), (m,x) : m ∈M〉 = {(n, 0), (m,x) : n ∈ N,m ∈M}

is an example of uncountably many non-isomorphic subsemigroups of

N× {x, 0}. 4

2.3 Subdirect powers of N

In this section, we strengthen the statement of Theorem 2.1.12 and show

that of the uncountably many pairwise non-isomorphic subsemigroups of

N× N, uncountably many of them (up to isomorphism) are subdirect prod-

ucts. We extend this statement to the finite direct power Nk as in Theo-

rem 2.1.14.

For the purposes of this section, we again adopt Notation 2.1.1. We begin

by classifying when the semigroups SM are subdirect products.

Lemma 2.3.1. SM is a subdirect product of N× N if and only if 1 ∈M .

Proof. If SM is a subdirect product, then there exists some n ∈ N such that

(n, 1) ∈ SM . As 1 is indecomposable in N, then (n, 1) is indecomposable in

SM , and hence belongs to XM by Lemma 2.1.4, and so n = 1 and 1 ∈M .

Conversely, if 1 ∈M , then the element (1, 1) ∈ SM . Hence for all n ∈ N, the

element (1, 1)n = (n, n) ∈ SM . Thus the projection maps from SM onto each

coordinate are surjections onto N, and SM is a subdirect product.

As we saw in Theorem 2.1.12, we obtained uncountably many pairwise non-
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isomorphic subsemigroups SM of N × N by taking subsets M of an infinite

3-separating set. Given Lemma 2.3.1, we next establish the existence of

an infinite 3-separating set which we will use to obtain uncountably many

pairwise non-isomorphic subdirect products in a similar fashion.

Lemma 2.3.2. There exists an infinite 3-separating set M∞, with 1 ∈M .

Proof. The proof is the same as for Corollary 2.1.11, taking M1 to be any

finite 3-separating set containing 1, such as {1, 2, 4}.

We now give the analogy to Theorem 2.1.14, with a focus on subdirect prod-

ucts in the following theorem.

Theorem 2.3.3. There are uncountably many non-isomorphic subdirect prod-

ucts of Nk for k ≥ 2.

Proof. Let M∞ be an infinite 3-separating set containing 1, whose existence

is established in Lemma 2.3.2. For k = 2, the collection

C ′ = {SM : M ⊆M∞, |M | ≥ 3, 1 ∈M}

is an uncountable subset of the collection C established in (2.10) from The-

orem 2.1.12. The proof that SM and SN are non-isomorphic for M 6= N

follows exactly as in the proof of Theorem 2.1.12, and the proof that each

SM ∈ C ′ is a subdirect product follows from Lemma 2.3.1.

For k > 2, for a subset M ⊆ M∞ with |M | ≥ 3 and 1 ∈ M , let

YM := {(1, . . . , 1,m) : m ∈ M}, and take TM := 〈YM〉 ≤ Nk. The map-

ping

ϕ : TM → SM := (n, . . . , n, p) 7→ (n, p)

is verifiably an isomorphism between TM and SM , and that there are uncount-

ably many such TM up to isomorphism hence follows from the case where

k = 2. That each TM is a subdirect product of Nk follows as (1, . . . , 1) ∈ TM ,

and hence (n, . . . , n) ∈ TM for all n ∈ N.
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We note that in contrast to the examples stemming from the theorem of

Baumslag & Roseblade given in Theorem 1.7.12, that every finitely gener-

ated commutative semigroup is finitely presented. This is a result of Rédei,

which is proved in Clifford & Preston’s monograph [9, Theorem 9.28]. Hence

there are no examples of subsemigroups or subdirect products of Nk which are

finitely generated, but not finitely presented. Moreover, there are no exam-

ples of finitely generated subdirect products with undecidable membership

problem either. Every finitely generated subdirect product of Nk has decid-

able membership problem, as any k-tuple (n1, . . . nk) can be decomposed into

at most N generators where N is the largest of the ni, and hence there are

only finitely many possible products to check.

2.4 Subdirect products of N with a finite semigroup

In this section, we conclude the chapter by providing a subdirect product

analogue for Theorem 2.2.4. Specifically, we will classify the finite semi-

groups S for which N × S has only countably many subdirect products up

to isomorphism. We end the section and the chapter with some examples of

subdirect products of N× S which are not finitely generated.

We begin by stating and proving the main result of the section.

Theorem 2.4.1. The following are equivalent for a finite semigroup S:

(i) N× S has only countably many subdirect products;

(ii) N×S has only countably many pairwise non-isomorphic subdirect prod-

ucts;

(iii) For every s ∈ S, there exists some t ∈ S such that at least one of ts = s

or st = s holds.

Proof. The implication (i) ⇒ (ii) is immediate.

(ii) ⇒ (iii) We will prove the contrapositive. Let s ∈ S be such that

st 6= s and ts 6= s for all t ∈ S, (2.14)
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and fix such an s.

Suppose for a contradiction that there were some u, t ∈ S such that ust = s.

Then unstn = s for all n ∈ N. But as S is a finite semigroup, u has some

idempotent power (i.e. uj = u2j for some j ∈ N). Hence

s = u2jst2j = ujst2j = stj

which contradicts (2.14). Hence we have just shown that (2.14) implies

ust 6= s for all u, t ∈ S. (2.15)

As S is finite, then s has some idempotent power sk = s2k for some k ∈ N
by Lemma 1.2.10, and in particular it must be that k > 1 by (2.14). Fixing

such a k, we define for M ⊆ N \
(
2N ∪ {1}

)
the semigroup

TM :=
〈
(1, sk), (2, t), (m, s) : t ∈ S \ {s, sk}, m ∈M

〉
≤ N× S.

Then TM is a subdirect product as (1, sk)n = (n, skn) ∈ TM for all n ∈ N and

hence projection onto the first coordinate is surjective, and moreover every

element of S appears as a second coordinate of one of the generators for TM ,

so that projection onto the second coordinate is also surjective.

Next we will show that all the generators of TM are indecomposable in TM .

Firstly, as 1 is indecomposable in N, then (1, sk) is indecomposable in TM .

Secondly, with the given generating set, we can see that the only decompos-

able element in TM of the form (2, t) is (1, sk)2 = (2, sk), which has already

been excluded from the set of generators, and hence (2, t) for t ∈ S \ {s, sk}
is indecomposable.

Finally, suppose for a contradiction that a generator of the form (m, s) were

expressible as a non-trivial product of generators. Then such a product

cannot include a generator of the form (1, sk) or (n, s) for n ∈ M \ {m} by

(2.14) and (2.15). But such a product can also not consist only of elements

of the form (2, t) because m is odd, and hence (m, s) is indecomposable for

all m ∈M . Thus the generators of TM are indecomposable elements.
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We will now show that if M 6= N , then TM 6∼= TN . Suppose for a contradiction

that ϕ : TM → TN were an isomorphism. Without loss of generality, we may

assume M \N is non-empty.

For all m ∈M , as sk is idempotent, then

(1, sk)mk = (mk, (sk)mk) = (mk, sk) = (m, s)k,

and hence

ϕ((1, sk)mk) = ϕ((m, s)k)

⇔ (ϕ(1, sk))mk = (ϕ(m, s))k. (2.16)

Applying the first coordinate projection map π1 : TN → N to (2.16) and

dividing by k gives

m · π1ϕ(1, sk) = π1ϕ(m, s) for all m ∈M, (2.17)

and thus it follows that π1ϕ(1, sk) < π1ϕ(m, s) for all m ∈M .

As (1, sk) is an indecomposable element of TM , then the image ϕ(1, sk) must

be an indecomposable element of TN , and thus π1ϕ(1, sk) ∈ {1, 2} ∪N . We

will in fact show that

π1ϕ(1, sk) = 1. (2.18)

Having shown this, by (2.17), it follows that m = π1ϕ(m, s) for all m ∈ M .

As ϕ(m, s) is indecomposable in TN and hence a generator, then it must be

that m ∈ N for all m ∈ M , and thus M ⊆ N . But this will be enough

to obtain a contradiction, as M \ N was supposed to be non-empty, thus

contradicting the assumption of isomorphism.

To show (2.18), we will consider each of the cases for π1ϕ(1, sk). First,

suppose for a contradiction that π1ϕ(1, sk) = 2. Then for any m ∈ M ,

π1ϕ(m, s) = 2m by (2.17). But ϕ(m, s) is an indecomposable element of

TN , and hence π1ϕ(m, s) ∈ {1, 2} ∪ N . As N ⊆ N \ (2N ∪ {1}), then N

consists of only odd numbers, and so it must be that π1ϕ(m, s) = 2. This

is a contradiction, as then m = 1 by (2.17) which implies 1 = m ∈ M , but
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M ⊆ N \ (2N ∪ {1}).

The second case to consider for a contradiction is π1ϕ(1, sk) ∈ N . As

π1ϕ(1, sk) < π1ϕ(m, s) for all m ∈ M by (2.17), then π1ϕ(m, s) > 2 for

every m ∈ M . Considering the images of the generators of TM not of the

form (2, t), it follows that

ϕ
({

(1, sk)
}
∪
{

(m, s) : m ∈M
})
⊆
{

(n, s) : n ∈ N
}
. (2.19)

As ϕ is an isomorphism, and the generators of both TM and TN are indecom-

posable, then the generators of the form (2, t) in TN alongside the generator

(1, sk) must be mapped onto by generators of TM . Hence by (2.19), we would

have to have

ϕ
({

(2, t) : t ∈ S \ {s, sk}
})
⊇
{

(1, sk)
}
∪
{

(2, t) : t ∈ S \ {s, sk}
}
,

which is impossible, as the left hand set has |S| − 2 elements, but the right

hand set has |S| − 1 elements. This completes the proof of (2.18), and hence

the contradiction that TM and TN are isomorphic for M 6= N .

Hence we have shown that
{
TM : M ⊆ N \ (2N ∪ {1})

}
is an uncountable

collection of pairwise non-isomorphic subdirect products of N× S.

(iii) ⇒ (i) We will prove that every subdirect product T ≤ N× S is finitely

generated, which will be sufficient as there are only countably many possible

finite generating sets.

For every n ∈ N, define the set

Sn := {s ∈ S : (n, s) ∈ T}.

As T is subdirect, then any s ∈ S belongs to some Sn. Hence for every

s ∈ S, choose ms ∈ N such that (ms, s) ∈ T , and let m be the least common

multiple of all of the ms.

We will show that

Sn ⊆ Sn+m for all n ∈ N. (2.20)
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Suppose s ∈ Sn, so that (n, s) ∈ T . By assumption, there exists some t ∈ S
such that either st = s or ts = s, and in particular it follows that either

tis = s or sti = s for all i ∈ N. As m is the least common multiple of all ms,

then m = lmt for some l ∈ N, and we have

(n+m, s) = (n, s)(mt, t)
l ∈ T

if st = s, and

(n+m, s) = (mt, t)
l(n, s) ∈ T

if ts = s. In either case, s ∈ Sn+m as required.

Hence every n ∈ N gives rise to an infinite ascending chain

Sn ⊆ Sn+m ⊆ Sn+2m ⊆ . . .

of subsets of S, which must eventually stabilise (meaning there exists some

i ∈ N with Sn+im = Sn+jm for all j ≥ i) because S is finite. Considering the

sequence (Si)i∈N, then there must exist j0 ∈ N such that

Sj = Sj+m for all j ≥ j0. (2.21)

We will show that T is generated by the finite set X, where

X :=
⋃

1≤n<j0+m

{n} × Sn. (2.22)

As X is a subset of T by construction, then the subsemigroup generated by

X is contained in T . Conversely, let (n, s) ∈ T . We will prove by induction

on n that (n, s) can be written as a product of elements from X.

Firstly, if n < j0 + m then the element (n, s) already belongs to X, and

there is nothing to show. Otherwise, suppose for the inductive hypothesis

that any (p, s′) ∈ T with p < n can be written as a product of elements

from X. As n ≥ j0 + m, then n−m ≥ j0, and hence Sn−m = Sn by (2.21).

Hence (n −m, s) ∈ T , and thus by the inductive hypothesis (n −m, s) can

be written as a product of elements from X.
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Recall that there exists t ∈ S with st = s or ts = s (implying either sti = s

or tis = s for all i ∈ N), and that we can express m as m = lmt for some

l ∈ N. As mt ≤ m < j0 +m, then (mt, t) ∈ X, and so we have

(n, s) = (n−m, s)(mt, t)
l

if st = s, and
(n, s) = (mt, t)

l(n−m, s)

if ts = s. In either case, we have expressed (n, s) as a product of elements

from X. This completes the proof of finite generation of T , and hence of

(iii) ⇒ (i).

We conclude the chapter with some examples of finite semigroups illustrating

Theorem 2.4.1, in comparison with Examples 2.2.5.

Examples 2.4.2. For every two element semigroup S up to isomorphism, we

will consider the number of subdirect products of N× S up to isomorphism.

Firstly, as we saw in Examples 2.2.5, N × S has only countably many sub-

semigroups up to isomorphism for S being the two element cyclic group, the

two element semilattice, the two element left zero semigroup and the two ele-

ment right zero semigroup. Hence as subdirect products are subsemigroups,

then there can also only be countably many subdirect products of N× S up

to isomorphism.

The only other case to consider is S = {x, 0}, the two element zero semigroup.

As st = 0 for all s, t ∈ {x, 0}, however, there can be no t ∈ {x, 0} such that

either xt = x or tx = x. Hence by Theorem 2.4.1, N × S has uncountably

many subdirect products up to isomorphism.

As in the proof of Theorem 2.4.1, for any subset M ⊆ N \ (2N∪ {1}), define

TM = 〈(1, 0), (m,x) : m ∈M〉 ≤ N× N.

Then the collection C = {TM : M ⊆ N \ (2N ∪ {1})} is an example of

an uncountable collection of pairwise non-isomorphic subdirect products of

N× {x, 0}. 4
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Chapter 3

Counting finitely generated subdirect

products and fiber products of free

semigroups

In Chapter 2, we motivated our study of subdirect products involving the

free monogenic semigroup by the prior results and examples involving free

groups outlined in Chapter 1 (in particular [2], [3], [13], [21]). As we saw

in Chapter 2, it is perhaps surprising that the number of non-isomorphic

subdirect products involving the free monogenic semigroup is uncountable.

This gives some indication that even relatively basic infinite semigroups such

as the free semigroups of finite rank can provide interesting and perhaps

unexpected substructural behaviour.

As we noted in Chapter 1, every subdirect product of two groups arises

as a fiber product of the two groups, and more generally this holds true

for congruence permutable algebras due to Fleischer (Lemma 1.7.8). The

varieties of semigroups and monoids are not congruence permutable however,

and hence asking a question for both fiber products and subdirect products

may result in inequivalent answers.

It will be an aim of Chapter 4 to discuss sufficient and necessary properties for

finite generation of fiber products of free semigroups and free monoids. Hence

in this chapter as a precursor, we wish to begin a combinatorial discussion
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into how many such subdirect products there are, and how many of those

are fiber products, similar to the aims of Chapter 2.

Hence leading on from the motivations of Chapter 2, we begin in Section 3.1

where we will define sets of “letter pairs”, which can be used to naturally

generate subdirect products of finitely generated semigroups. We then calcu-

late the number of such sets of letter pairs that finitely generate a subdirect

product of two free semigroups of finite rank.

In Section 3.2, we mirror the motivations and results of Section 3.1, and

calculate the number of sets of letter pairs which also turn out to generate

fiber products of two free semigroups of finite rank.

In Section 3.3, we finish the chapter by analytically discussing the proportion

of sets of letter pairs which generate the subdirect products from Section 3.1,

within the power set all possible sets of letter pairs, and comment on their

abundancy. Further, we analytically discuss the proportion which also gener-

ate fiber products, within the sets of pairs that generate subdirect products,

and comment on their sparsity.

We note that the contents of this chapter are largely based on the results in

Section 6 of the paper [6], written by the author.

3.1 Sets of letter pairs generating subdirect products

of free semigroups

In order to facilitate the investigation we outlined at the beginning of the

chapter, we will adopt the following notation and definitions throughout.

Notation 3.1.1. For this chapter, A and B will be finite alphabets. A subset

X of A×B will be called a set of letter pairs.

As sets of letter pairs are also subsets of A+ × B+, we can consider the

subsemigroups of A+×B+ that they generate. Hence for a given set of letter
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pairs X, the maps

πA+ : 〈X〉 → A+ := (u, v) 7→ u,

πB+ : 〈X〉 → B+ := (u, v) 7→ v

will be projections onto the first and second coordinates respectively. The

relations λ and µ will be the compositions

λ = ker πA+ ◦ kerπB+ ,

µ = ker πB+ ◦ kerπA+ ,

recalling that the congruences kerπA+ and ker πB+ are defined

kerπA+ = {((u, v), (u′, v′)) ∈ 〈X〉 × 〈X〉 : u = u′},

kerπB+ = {((u, v), (u′, v′)) ∈ 〈X〉 × 〈X〉 : v = v′}.

Finally, for a natural number m, we will use the notation m for the set

{1, . . . ,m}. �

One intuitive way to generate a subdirect product of A+×B+ is by choosing

a set of letter pairs X such that πA(X) = A and πB(X) = B. In this way,

we ensure that every a ∈ A is paired in X with some b ∈ B and vice versa.

It follows that 〈X〉 is a subdirect product of A+ × B+, as every u ∈ A+ is

paired in 〈X〉 with some v ∈ B+ of the same length, and vice versa.

Conversely, if a set of letter pairs X generates a subdirect product of A+×B+,

then for any a ∈ A, there is some v ∈ B+ such that (a, v) ∈ 〈X〉. As a is an

indecomposable element of A+, then it must be that (a, v) ∈ X. Hence as a

was arbitrary, then πA(X) = A. A similar argument shows that πB(X) = B,

and hence we have proved the following.

Lemma 3.1.2. Let X be a set of letter pairs. Then 〈X〉 is a subdirect product

of A+ ×B+ if and only if πA(X) = A and πB(X) = B. �

We now illustrate this construction, with examples of sets of letter pairs that

generate subdirect products of A+ ×B+.
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Examples 3.1.3. (a) Let A = B = {a, b}, and X = {(a, a), (b, b)}. Then

〈X〉 = {(u, u) : u ∈ A+} is a subdirect product of A+ × B+, which in

particular is isomorphic to A+.

(b) Let A = B = {a, b}, and X = {(a, a), (b, b), (b, a)}. Because the only pair

in X with an a as the first coordinate is (a, a), then any pair (u, v) ∈ 〈X〉
can have a as the i-th letter of u only if a is also the i-th letter of v. Then

recalling the notation m = {1, . . . ,m}, we can see

〈X〉 = {(u, v) ∈ A+ ×B+ : (|u| = |v|)(∀i ∈ |u|)(|u|i = a⇒ |v|i = a)},

which is a subdirect product of A+ ×B+. 4

Not all sets of letter pairs will yield a subdirect product of A+×B+, however,

and not every subdirect product is generated by letter pairs. A natural

question is to ask how many sets of letter pairs generate subdirect products

of A+ × B+. We now give the main result of this section, which gives an

expression for the number of sets of letter pairs generating subdirect products

of A+ ×B+.

Lemma 3.1.4. Let A, B be finite alphabets, and further let

S(A×B) := {X ⊆ A×B : 〈X〉 ≤sd A
+ ×B+}.

Then

|S(A×B)| =
|A|−1∑
k=0

(−1)k
(
|A|
k

)
(2|A|−k − 1)|B|. (3.1)

Proof. As A,B are finite, let A = {a1, . . . am}, and B = {b1, . . . bn}. We

will proceed by constructing a bijection between S(A × B) and the set

Mm,n({0, 1}) of m × n binary matrices with no zero rows or columns, and

count the latter.

We define the mapping

f : S(A×B)→Mm,n({0, 1}) := X 7→MX ,
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where

(MX)i,j =

1 if (ai, bj) ∈ X,

0 otherwise.

We first verify that f is indeed a function. Recalling the notation

m = {1, . . . ,m}, any set X ∈ S(A × B) has for each i ∈ m some ji ∈ n

such that (ai, bji) ∈ X, as 〈X〉 is subdirect. Similarly, for each j ∈ n, there

is some ij ∈m with (aij , bj) ∈ X. The image of any X ∈ S(A×B) therefore

has no zero rows or columns by the above argument, and is hence an element

of Mm,n({0, 1}).

Moreover, f is well defined and injective by construction. We will further

show that f is surjective, and thus a bijection.

Let M ∈Mm,n({0, 1}). Consider the set

X = {(ai, bj) ∈ A×B : i ∈m, j ∈ n, (M)i,j = 1}.

Then we claim X ∈ S(A×B). As M has no zero rows, every i-th row of M

has some ji ∈ n such that (M)i,ji = 1. Hence (ai, bji) ∈ X for all i ∈m, and

thus πA(X) = A.

Similarly, as M has no zero columns, every j-th column of M has some

ij ∈ m such that (M)ij ,j = 1. Hence (aij , bj) ∈ X for all j ∈ n, and thus

πB(X) = B, proving the claim.

Moreover f(X) = M by construction, and we have hence shown that f is a

bijection. We now calculate |Mm,n({0, 1})|, which will be sufficient to prove

the lemma.

We proceed by an inclusion-exclusion argument. For any i ∈ m, let Ai

denote the set of binary m × n matrices with no zero columns, whose i-th

row is a zero row. For a subset I ⊆m, let

AI =
⋂
i∈I

Ai.

By the inclusion-exclusion principle, as |Mm,n({0, 1})| is precisely the num-
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ber of matrices with no zero columns that do not belong to any Ai (as they

can have no zero rows), then

|Mm,n({0, 1})| =
∑
I⊆m

(−1)|I||AI |.

AI is the set of m× n binary matrices with no zero columns, whose i-th row

is a zero row for each i ∈ I.

For a subset I ⊆ m and a matrix M ∈ AI , entries in a given column of M

which are not also in any of the zero rows corresponding to I can take two

possible values. Excluding the singular case where all of these values are 0

(as we must exclude the zero column), then there are 2m−|I| − 1 possibilities

for a fixed column of M . As there are n columns, then this gives (2m−|I|−1)n

choices for M , and so |AI | = (2m−|I| − 1)n. Hence

|Mm,n({0, 1})| =
∑
I⊆m

(−1)|I|(2m−|I| − 1)n.

Noting that as the summands depend only on |I| which varies from 0 to m,

and there are
(
m
|I|

)
possible subsets of size |I|, then we have

|Mm,n({0, 1})| =
m∑
|I|=0

(−1)|I|
(
m

|I|

)
(2m−|I| − 1)n.

Changing summation index to k and noting that the k = m summand is

equal to zero, then we have shown that

|Mm,n({0, 1})| =
m−1∑
k=0

(−1)k
(
m

k

)
(2m−k − 1)n.

We have now shown (3.1), as m = |A|, n = |B|, and

|Mm,n({0, 1})| = |S(A×B)|, thus completing the proof of the lemma.
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3.2 Sets of letter pairs generating fiber products of free

semigroups

In this section, we now ask how many sets of letter pairs generate fiber

products of A+ × B+. We briefly recount Fleischer’s lemma for the reader,

which characterises when a subdirect product is a fiber product.

Lemma 1.7.8 (Fleischer’s lemma, [4, Lemma 10.1]). Let S, T, U be semi-

groups, and let U ≤sd S × T . For the projection maps

πS : U → S := (s, t) 7→ s,

πT : U → T := (s, t) 7→ t,

denote by σ the congruence kerπS on U , and denote by ρ the congruence

kerπT on U . Then U is a fiber product of S with T if and only if

σ ◦ ρ = ρ ◦ σ.

Recalling Notation 3.1.1, this is equivalent to λ = µ. We now use this lemma

in the following examples.

Examples 3.2.1. (a) We saw in Examples 3.1.3 (a) that for A = B = {a, b},
the subsemigroup

〈X〉 = {(u, u) : u ∈ A+}

of A+ × B+ is a subdirect product generated by the set of letter pairs

X = {(a, a), (b, b)}. Recalling Notation 3.1.1, for two elements

(u, u), (v, v) ∈ 〈X〉 we have

((u, u), (v, v)) ∈ λ⇔ (u, v) ∈ 〈X〉

⇔ u = v

⇔ (v, u) ∈ 〈X〉

⇔ ((u, u), (v, v)) ∈ µ.

Hence λ = µ, and 〈X〉 is a fiber product of A+ ×B+ by Fleischer’s lemma.
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(b) Recalling Examples 3.1.3 (b), we saw that for A = B = {a, b}, the

subsemigroup

〈X〉 = {(u, v) ∈ A+ ×B+ : (|u| = |v|)(∀i ∈ |u|)(|u|i = a⇒ |v|i = a)},

is a subdirect product of A+ × B+ generated by the set of letter pairs

X = {(a, a), (b, b), (b, a)}. Recalling Notation 3.1.1, we have

((a, a), (b, b)) ∈ µ, as

((a, a), (b, b)) ∈ µ⇔ (b, a) ∈ 〈X〉,

but ((a, a), (b, b)) 6∈ λ, as

((a, a), (b, b)) ∈ λ⇔ (a, b) ∈ 〈X〉.

Hence as λ 6= µ, then 〈X〉 is not a fibered product of A+×B+ by Fleischer’s

lemma. 4

We will shortly establish a bijection between the sets of letter pairs gen-

erating fiber products of A+ × B+, and a certain set of binary |A| × |B|
matrices. In order to do this, we first remind the reader of the definition of

a submatrix.

Definition 3.2.2. Let m × n matrix M with entries aij for i ∈ m, j ∈ n.

A submatrix M ′ of M is an |I| × |J | matrix with entries aij for i ∈ I, j ∈ J ,

where I is some non-empty subset of m, and J is some non-empty subset of

n. �

We now establish the aformentioned bijection in the following result.

Lemma 3.2.3. Let A,B be finite alphabets, and further let

F(A×B) = {X ⊆ A×B : 〈X〉 ≤fp A
+ ×B+}.

Then F(A×B) is in bijection with the setM∗
|A|,|B|({0, 1}) of |A|×|B| binary
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matrices with no zero rows and columns, that do not contain any of(
0 1

1 1

)
,

(
1 0

1 1

)
,

(
1 1

0 1

)
,

(
1 1

1 0

)
(3.2)

as submatrices.

Proof. Let A = {a1, . . . , am}, B = {b1, . . . , bm}.

Define the mapping

f : F(A×B)→M∗
m,n({0, 1}) := X 7→MX ,

where

(MX)i,j =

1 if (ai, bj) ∈ X,

0 otherwise.

We will first verify that f is a function with codomain M∗
m,n({0, 1}). As in

the proof of Lemma 3.1.4, the image of every set X ∈ F(A × B) certainly

has no zero rows or columns, as 〈X〉 is subdirect. Moreover, suppose for a

contradiction that the image of some X ∈ F(A×B) contains the submatrix(
0 1

1 1

)
.

Then by the definition of f , there exist indices i1, i2 ∈m and j1, j2 ∈ n where

(ai1 , bj1) 6∈ X, but (ai1 , bj2), (ai2 , bj1), (ai2 , bj2) ∈ X. Recalling Notation 3.1.1,

it follows that ((ai1 , bj2), (ai2 , bj1)) ∈ µ as

((ai1 , bj2), (ai2 , bj1)) ∈ µ⇔ (ai2 , bj2) ∈ X,

but ((ai1 , bj2), (ai2 , bj1)) 6∈ λ, as

((ai1 , bj2), (ai2 , bj1)) ∈ λ⇔ (ai1 , bj1) ∈ X.

This is a contradiction of Fleischer’s lemma, as 〈X〉 ≤fp A+ × B+, but

λ 6= µ. Similar contradictions will be obtained supposing the image of some

X ∈ F(A × B) contains any other submatrix from (3.2), and hence f is a
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function with codomain M∗
m,n({0, 1}).

Again f is well-defined and injective by construction, hence it remains to

show that f is surjective. For a matrix M ∈M∗
i,j({0, 1}), let

X = {(ai, bj) ∈ A×B : i ∈m, j ∈ n, (M)i,j = 1}.

Then we claim 〈X〉 is a fiber product of A+ × B+, and hence that

X ∈ F(A × B). The argument that X is a subdirect product follows ex-

actly as in the proof of Lemma 3.1.4. Assume for a contradiction that

〈X〉 is not a fiber product. By Fleischer’s lemma, there exist two pairs

(u, v), (u′, v′) ∈ 〈X〉 such that either

((u, v), (u′, v′)) ∈ λ and ((u, v), (u′, v′)) 6∈ µ,

or vice versa. Note for two pairs (u, v), (u′, v′) ∈ 〈X〉 that

((u, v), (u′, v′)) ∈ λ⇔ (u, v′) ∈ 〈X〉

⇔ ∀i ∈ |u|, (|u|i, |v′|i) ∈ X

⇔ ∀i ∈ |u|, ((|u|i, |v|i), (|u′|i, |v′|i)) ∈ λ,

and a similar proof also gives that

((u, v), (u′, v′)) ∈ µ⇔ ∀i ∈ |u|, ((|u|i, |v|i), (|u′|i, |v′|i)) ∈ µ.

Hence there are two pairs (ai1 , bj1), (ai2 , bj2) ∈ X with either

((ai1 , bj1), (ai2 , bj2)) ∈ λ and ((ai1 , bj1), (ai2 , bj2)) 6∈ µ,

or vice versa. Thus either

(ai1 , bj2) ∈ X and (ai2 , bj1) 6∈ X,

or vice versa. In either case, it must be that i1 6= i2 and j1 6= j2 to avoid

contradiction, and hence the matrix entries (M)i1,j1 , (M)i1,j2 , (M)i2,j1 and

(M)i2,j2 form the corners of a 2 × 2 submatrix M ′ of M . But now as ex-
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actly three of (ai1 , bj1), (ai2 , bj2), (ai1 , bj2), (ai2 , bj1) are in X, M ′ must be a

submatrix from (3.2), which is a contradiction of choice of M .

Hence 〈X〉 is a fiber product, and thus X ∈ F(A × B). By construction,

f(X) = M , and thus we conclude the proof that f is surjective, and hence a

bijection.

As a corollary of this result, we will count the number of sets of letter pairs

that generate fiber products of A+×B+. We first give a necessary definition

used in the proof of this result, which utilises the proof of [17, Theorem 3.1].

As such, note that we now drop Notation 3.1.1, so that our proof coincides

with the notation of [17, Theorem 3.1].

Definition 3.2.4. For k ∈ N, a permutation σ of length k is a length k string

over the alphabet k, containing each element of k exactly once. The set of all

permutations of length k is denoted Sk. For example, 3214 is a permutation

in S4.

Given a pemutation σ of length k, the i-th letter of σ is the i-th element of

the string. This is denoted |σ|i. For example, |3214|3 = 1. �

We now give the main result of the section.

Corollary 3.2.5. Let A,B be finite alphabets, and further let

F(A×B) = {X ⊆ A×B : 〈X〉 ≤fp A
+ ×B+}.

Then

|F(A×B)| =
min{|A|,|B|}∑

k=1

k!S2(|A|, k)S2(|B|, k), (3.3)

where S2(n, k) is the Stirling number of the second kind.

Proof. As Lemma 3.2.3 establishes a bijection between F(A×B) and the set

M∗
|A|,|B|({0, 1}) of |A| × |B| binary matrices with no zero rows and columns
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that do not contain any of(
0 1

1 1

)
,

(
1 0

1 1

)
,

(
1 1

0 1

)
,

(
1 1

1 0

)

as submatrices, then it suffices to calculate |M∗
|A|,|B|({0, 1})|. We will utilise

and follow the proof of [17, Theorem 3.1], which calculates the number of

|A| × |B| binary matrices with no submatrices from (3.2) to be

min{|A|,|B|}∑
k=0

k!S2(|A|+ 1, k + 1)S2(|B|+ 1, k + 1).

We will establish a bijection betweenM∗
|A|×|B|({0, 1}) and the set of all triples

(µ, ν, σ) where µ, ν and σ are as follows for some 1 ≤ k ≤ min{|A|, |B|}:

(i) µ, ν are set partitions of |A| and |B| respectively into k subsets;

(ii) σ is a permutation of length k (recalling Definition 3.2.4).

As the authors of [17, Theorem 3.1] comment, any matrixM ∈M∗
|A|×|B|({0, 1})

can be transformed via row and column exchanges into a block diagonal,

|A| × |B| matrix of the form

[1] [0] · · · [0] [0′]

[0] [1] · · · [0] [0′]
...

...
. . .

...
...

[0] [0] · · · [1] [0′]

[0′] [0′] · · · [0′] [0′]


where [1] is a block of ones, [0] is a block of zeros, and [0′] is either a block

of zeros or empty. For any |A| × |B| binary matrix with no submatrices

from (3.2), after this transformation, the diagonal consists of blocks of ones,

except possibly the last block which could be a block of zeros. As M has no

zero rows and columns however, this is not a possibility. Hence any matrix

M ∈M∗
|A|×|B|({0, 1}) can be transformed via row and column exchanges into
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a |A| × |B| block diagonal matrix of the form
[1] [0] · · · [0]

[0] [1] · · · [0]
...

...
. . .

...

[0] [0] · · · [1]

 .

Having originally labelled the rows and columns of M by 1 to |A| and 1

to |B| respectively in the natural way, we can track the resulting effects of

the row and column operations, and then associate the [1] blocks with the

permuted row and column labels as in [17, Theorem 3.1]. We then obtain two

set partitions µ = {C1, . . . , Ck} and ν = {D1, . . . , Dk}, where the subsets of

µ are ordered by the largest element, and likewise for ν.

Moreover, in exactly the same way as [17, Theorem 3.1], we also obtain a

length k permutation σ from this process, where σ is defined by

|σ|i = j ⇔ Ci and Dj form a [1]-block.

This hence associates a unique triple (µ, ν, σ) to any givenM ∈M∗
|A|,|B|({0, 1}).

Conversely, given a triple (µ, ν, σ) where µ = {C1, . . . , Ck} is ordered by the

largest element of each subset, ν = {D1, . . . , Dk} likewise, and σ is a length

k permutation, then we can define the matrix M where

(M)i,j =

1 if (i, j) ∈ Cl ×D|σ|l for some l ∈ k,

0 otherwise.

Suppose for a contradiction that (M)i,j contains the submatrix(
0 1

1 1

)
.

Then there are indices i1, i2 ∈ |A|, j1, j2 ∈ |B| such that

(i2, j1) ∈ Cp ×D|σ|p for some p ∈ k, (3.4)

(i1, j2) ∈ Cq ×D|σ|q for some q ∈ k, (3.5)
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(i2, j2) ∈ Cr ×D|σ|r for some r ∈ k, (3.6)

but

(i1, j1) 6∈ Cl ×D|σ|l for any l ∈ k. (3.7)

As µ is a partition, then it must follow that p = r from (3.4) and (3.6).

Similarly as ν is a partition and σ is a permutation, then it must also follow

that q = r from (3.5) and (3.6), and so p = q = r. But then as i1 ∈ Cp and

j1 ∈ D|σ|p by (3.5) and (3.4), then (i1, j1) ∈ Cp × D|σ|p , which contradicts

(3.7).

Similar contradictions will be obtained assuming that (M)i,j contains any

of the other submatrices from (3.2). Moreover, as any i ∈ |A| belongs

to some Cl as µ is a partition, then there is an index j ∈ |B| such that

(i, j) ∈ Cl ×D|σ|l . Hence M has no zero rows by construction. Similarly, M

has no zero columns, and hence M ∈M∗
|A|,|B|({0, 1}) as required.

This completes the proof that M∗
|A|,|B|({0, 1}) is in bijection with the set of

all described triples (µ, ν, σ). There are S2(|A|, k) partitions of |A| into k

subsets, S2(|B|, k) partitions of |B| into k subsets, and k! permutations of

length k. As k can be at most min{|A|, |B|}, then we have proved (3.3).

3.3 Proportion of sets of letter pairs generating sub-

direct products and fiber products

In this section, we want to use the results obtained in Lemma 3.1.4 to consider

the proportion of sets of letter pairs that generate subdirect products of

A+ × B+, within the power set of sets of all letter pairs, when allowing

|A| and |B| to grow arbitrarily large, but be equal to each other. That is,

determining

lim
|A|,|B|→∞

|S(A×B)|
|P(A×B)|

with |A| = |B|. We hence consider the proportion of all generating sets of

letter pairs which give a subdirect product of A+ × A+, letting |A| grow

in a limit. We now introduce the next result to comment that there are
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an abundance of sets of letter pairs X ∈ P(A × A) which give subdirect

products.

Proposition 3.3.1. For a given finite alphabet A = {a1, . . . , am}, let

S(A× A) := {X ⊆ A× A : 〈X〉 ≤sd A
+ × A+}.

Then

lim
|A|→∞

|S(A× A)|
|P(A× A)|

= 1. (3.8)

Proof. Clearly as S(A× A) ⊆ P(A× A), then

|S(A× A)|
|P(A× A)|

≤ 1.

We will now utilise Lemma 3.1.4 to obtain a lower bound for the above

ratio, and show that the limit of this lower bound is 1, proving (3.8) by the

sandwich theorem. Recall that in Lemma 3.1.4, we found that

|S(A×B)| =
|A|−1∑
k=0

(−1)k
(
|A|
k

)
(2|A|−k − 1)|B|. (3.9)

As we will let |A| grow arbitrarily large in the limit, we can assume |A| > 2

without loss of generality. Hence considering |S(A×A)|, the sum of the first

two terms (k = 0 and k = 1) from (3.9) is precisely

(2|A| − 1)|A| − |A|(2|A|−1 − 1)|A|.

For the remaining terms (k ≥ 2) in (3.1), we note that the sequence

(xk)
|A|−1
k=2 where xk :=

(
|A|
k

)
(2|A|−k − 1)|A|

is strictly decreasing, as

xi
xi+1

=
i+ 1

|A| − i

(
2 +

1

2|A|−(i+1) − 1

)|A|
>

2|A|

|A|
> 1
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for i ∈ {2, . . . , |A| − 2}. Hence

|A|−1∑
k=2

(−1)k
(
|A|
k

)
(2|A|−k − 1)|A| ≥ 0,

and thus

(2|A| − 1)|A| − |A|(2|A|−1 − 1)|A| < |S(A× A)|. (3.10)

Hence as (
1− 1

2|A|

)|A|
− |A|

2|A|
=

(2|A| − 1)|A| − |A|(2|A|−1)|A|

2|A|2

≤ (2|A| − 1)|A| − |A|(2|A|−1 − 1)|A|

2|A|2
,

then combining the above and (3.10) gives(
1− 1

2|A|

)|A|
− |A|

2|A|
≤ |S(A× A)|
|P(A× A)|

≤ 1.

We will have completed the proof of the proposition having shown

lim
|A|→∞

((
1− 1

2|A|

)|A|
− |A|

2|A|

)
= lim
|A|→∞

(
1− 1

2|A|

)|A|
= 1,

which is equivalent to showing

lim
|A|→∞

log

(
1− 1

2|A|

)|A|
= 0. (3.11)

As the limit in (3.11) is equivalent to

lim
|A|→∞

log
(
1− 2−|A|

)
|A|−1

,

then using L’Hôpital’s rule gives

lim
|A|→∞

log
(
1− 2−|A|

)
|A|−1

= lim
|A|→∞

2−|A|log(2)

−|A|−2(1− 2−|A|)

= lim
|A|→∞

−|A|2

2|A|
· log(2)

(1− 2−|A|)
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which is zero, as |A|2 grows asymptotically slower than 2|A|, hence proving

(3.11) and thus the proposition.

Similarly to Proposition 3.3.1, we now consider the proportion of sets of

letter pairs X ∈ S(A × B) that also generate fiber products of A+ × B+,

allowing |A| and |B| to grow arbitrarily large, but be equal to each other. In

the following result, even though generating sets for subdirect products are

abundant, we will see that the same is not true for fiber products.

In particular, we now show in the final result of the chapter that almost no

sets of letter pairs generate fiber products of A+ ×A+, letting |A| and grow

in a limit.

Proposition 3.3.2. For a given finite alphabet A = {a1, . . . , am}, let

S(A× A) := {X ⊆ A× A : 〈X〉 ≤sd A
+ × A+},

and let

F(A× A) = {X ⊆ A× A : 〈X〉 ≤fp A
+ × A+}.

Then

lim
|A|→∞

|F(A× A)|
|S(A× A)|

= 0. (3.12)

Proof. By Corollary 3.2.5,

|F(A× A)| =
|A|∑
k=1

k!S2(|A|, k)2 (3.13)

where S2(|A|, k) is the Stirling number of the second kind. The number of

ways to partition the set |A| into k non-empty unlabelled blocks is less than

the number of ways to assign the elements of |A| into k possibly empty

unlabelled blocks. There are S2(|A|, k) ways to achieve the former, and k|A|

k!

ways to achieve the latter. Hence

|F(A× A)| ≤
|A|∑
k=1

k!

(
k|A|

k!

)2

≤
|A|∑
k=1

k2|A| ≤ |A| · |A|2|A| ≤ |A|3|A|. (3.14)

94



Now utilising Proposition 3.3.1 and (3.14), we have

0 ≤ lim
|A|→∞

|F(A× A)|
|S(A× A)|

= lim
|A|→∞

|F(A× A)|
|P(A× A)|

≤ lim
|A|→∞

|A|3|A|

2|A|2
.

As

lim
|A|→∞

|A|3|A|

2|A|2
= lim
|A|→∞

(2−|A|)(|A|−3log2(|A|)) (3.15)

and lim|A|→∞(|A| − 3log2(|A|)) = ∞ by standard analytic arguments, then

(3.15) is equal to zero, and (3.12) follows.
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Chapter 4

Finitary properties for fiber products

of free semigroups and monoids

As discussed in Chapter 2 and Chapter 3, our consideration for subdirect

products of free semigroups in particular has been motivated by prior re-

sults and examples involving free groups outlined in Chapter 1. We also

noted that subdirect products and fiber products only coincide in congru-

ence permutable varieties by Fleischer (Lemma 1.7.8), and hence not in the

varieties of monoids and semigroups. Hence the classical questions relating

to finitary properties that have been asked for subdirect products of groups

can be asked for fiber products of monoids and semigroups, with possibly

inequivalent answers.

In the case of subdirect products of free groups, we outlined some of these

finitary properties such as finite generation, finite presentability, decidability

of the membership problem, word problem, and so on that have been well

studied (see Section 1.7). The literature for semigroups and monoids related

to finitary properties is more recent however, as the area is somewhat less

explored.

As subdirect products have a general setting in universal algebra, this al-

lows for the natural finitary property questions of decidability, generation

and presentation to be asked that were answered for free groups. Mayr &
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Ruškuc [19] have investigated such questions of generation and presentation

for subdirect products of general algebras. Specifically relevent to this work,

via congruences on a free monoid, they gave an example of a fiber product

over a finitely presented quotient which is itself finitely presented, but whose

factors are not finitely presented [19, Example 7.3].

They also gave an example of a fiber product of finitely generated free

monoids over a finite fiber which is not finitely generated [19, Example 7.1],

which motivated them to ask the following question:

Question 4.0.1 ([19, Problem 7.2]). Find necessary and sufficient condi-

tions for a fiber product of finitely generated monoids over a finite monoid to

be finitely generated. More specifically, is it decidable whether a fiber prod-

uct of two finitely generated free monoids over a finite quotient is finitely

generated?

In this chapter, we take the points outlined above (and our findings from

Chapter 2 and Chapter 3) as our motivation to begin a study of finitary

properties for fiber products of free semigroups and monoids.

We begin in Section 4.1, where we will concentrate on finite generation for

fiber products of free monoids. Namely, we aim to show that finite generation

of a fiber product of two (finitely generated) free monoids over a finite fiber

is decidable. We will also determine all such finite fibers ensuring finite

generation, directly answering Question 4.0.1. Moreover in Section 4.2, we

will show that finite generation implies finite presentation for these fiber

products, as well as giving an appropriate presentation.

In Section 4.3 we consider the same question, this time for free semigroups,

and, perhaps somewhat surprisingly, show that the answers in two cases dif-

fer substantially. In particular for finite fibers, we will show that there are

no finitely generated fiber products of two free semigroups. In the more

general case, we will show that finitely generated fiber products of free semi-

groups must have finitely generated, J -trivial, idempotent-free fiber quo-

tients. Given this, we will show that these conditions are not sufficient for

finite generation by considering the case where the fiber quotient is a free
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commutative semigroup.

We note that the results of this section are based on Sections 3 and 4 of the

paper [6], written by the author.

4.1 Finite generation for fiber products of free monoids

over finite fibers

In Chapter 3, we saw for two finite alphabets A and B that a set of letter

pairs is likely to finitely generate a subdirect product of A+ × B+ (Proposi-

tion 3.3.1). We also saw that the same cannot be said for generating a fiber

product of A+ × B+ (Proposition 3.3.2). Alongside these results, it is with

the motivation of Question 4.0.1 that in this section, we will investigate finite

generation for fiber products, particularly for free monoids.

It will be our main aim to classify for which finite monoid fibers M and which

epimorphisms ϕ : A∗ → M , ψ : B∗ → M is the fiber product of A∗ with B∗

with respect to ϕ, ψ finitely generated. We hence begin the section by briefly

recalling Definition 1.7.5 for the reader.

Definition 1.7.5. Given semigroups S, T, U and epimorphisms ϕ : S → U ,

ψ : T → U , the fiber product of S and T with respect to ϕ, ψ is the set

Π(ϕ, ψ) := {(s, t) ∈ S × T : ϕ(s) = ψ(t)}

with multiplication inherited from S×T . U is called the fiber, or fiber quotient

of Π(ϕ, ψ). If V is a subdirect product of S×T which is also a fiber product,

we will write V ≤fp S × T . �

The notation from Definition 1.7.5 will be adopted throughout this section.

We will also focus on when the alphabets A and B are finite, as a consequence

of the following result.

Proposition 4.1.1. Let S, T and U be semigroups, and let ϕ : S → U ,

ψ : T → U be epimorphisms. If Π(ϕ, ψ) is finitely generated as a semigroup,

then so are S, T and U .
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Proof. The projection maps from any generating set X of Π(ϕ, ψ) are semi-

group epimorphisms onto S and T , and hence as X is a finite generating set

for Π(ϕ, ψ), then the projection map images are finite generating sets for S

and T by Lemma 1.6.10. As ϕ is a semigroup epimorphism from S to U , and

S is finitely generated, then the image of any finite generating set for S is a

finite generating set for U , again by Lemma 1.6.10.

We note that a free monoid A∗ over an alphabet A is finitely generated as a

monoid if and only if the free semigroup A+ over A is finitely generated as a

semigroup, which is precisely when A is finite. Thus throughout the section,

A and B will be finite alphabets.

Our next result shows that for a finitely generated fiber product of two free

monoids over a finite fiber, the associated fiber need be a group.

Lemma 4.1.2. For two finite alphabets A and B, let ϕ : A∗ → M and

ψ : B∗ →M be epimorphisms onto a finite monoid M . If Π(ϕ, ψ) is finitely

generated, then M is a group.

Proof. We will prove the contrapositive: if M is not a group, then Π(ϕ, ψ)

is not finitely generated.

Recalling Lemma 1.2.10 and Lemma 1.2.11, as M is assumed to be a finite

non-group, then there exists some m ∈ M and k ∈ N such that mk is

idempotent but mk is not the identity of the monoid. Consequently, m has

no inverse in M . In particular, m can be chosen from ϕ(A) which is a

generating set for M by Lemma 1.6.9, for otherwise every generator from

ϕ(A) would have an inverse and M would be a group.

Hence as ψ is also a surjection, there exists some a ∈ A, v ∈ B∗ such that

ϕ(a) = m = ψ(v). It now follows that the set

{(aik, vk) : i ∈ N} (4.1)
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is contained in Π(ϕ, ψ), as

ϕ(aik) = ϕ(a)ik = mik = (mk)i = mk = (ψ(v))k = ψ(vk)

for all i ∈ N. Suppose for a contradiction that Π(ϕ, ψ) were finitely generated,

and let

X = {(ui, vi) : 1 ≤ i ≤ p} ⊆ A∗ ×B∗ (4.2)

be a finite generating set. We will attempt to write any element (aik, vk)

from (4.1) as a finite product of elements of X.

As ϕ(aj) = ϕ(a)j = mj for all j ∈ N, it follows that ϕ(aj) 6= 1M for all

j ∈ N, as m was assumed to have no inverse. Hence denoting the empty

word of B∗ by εB (which maps to 1M under ψ necessarily), it follows that

(aj, εB) 6∈ Π(ϕ, ψ) for all j ∈ N. Thus any element (aik, vk) from (4.1) can

be written as a finite product of elements of X ′, where

X ′ = {(ui, vi) ∈ X : vi 6= εB}.

The element (aik, vk) can be decomposed into at most k|v| elements of X ′,

as vk can be decomposed into at most k|v| elements of B+. As

(aik, vk) = (ui1 , vi1)(ui2 , vi2) . . . (uiq , viq)

for some elements (uij , vij) ∈ X ′ with q ≤ k|v|, then it follows that

|aik| ≤ lk|v|,

where l = max1≤i≤p |ui|. This is a contradiction, as the above inequality

must hold for all i ∈ N. Hence Π(ϕ, ψ) cannot be finitely generated.

In the next result, we refine the condition from Lemma 4.1.2, and show that

for a finitely generated fiber product of two free monoids with a finite fiber,

the associated fiber need be a cyclic group.

Lemma 4.1.3. For two finite alphabets A and B, let ϕ : A∗ → G and

ψ : B∗ → G be epimorphisms onto a finite group G. If Π(ϕ, ψ) is finitely
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generated, then G is cyclic.

Proof. We will prove the contrapositive: if G is not cyclic, then Π(ϕ, ψ) is not

finitely generated. We will proceed by creating an infinite set of indecompos-

able elements for Π(ϕ, ψ). The result will then follow, as any decomposable

element of Π(ϕ, ψ) must be included in a generating set.

By Lemma 1.6.9, every element of G \ {1G} is expressible as a finite product

of elements from ϕ(A). Hence ϕ(A) is a monoid generating set for G, and

thus in particular also a group generating set.

As G is non-cyclic, we claim there exist two distinct elements g, h ∈ ϕ(A)

such that

ghi 6= 1G for all i ∈ N0. (4.3)

For otherwise, we can choose x ∈ ϕ(A) such that for all g ∈ ϕ(A) there is

some i ∈ N0 with gxi = 1G. This implies g = x−i and so every g ∈ ϕ(A) is a

power of x, contradicting that G is non-cyclic and proving the claim.

Fixing such g, h ∈ ϕ(A) satisfying (4.3), there exist two letters a, b ∈ A with

g = ϕ(a) and h = ϕ(b). Denoting the orders of g and h by |g| and |h|
respectively, the set

{(abi|h|a|g|−1, εB) ∈ A∗ ×B∗ : i ∈ N} (4.4)

is contained in Π(ϕ, ψ), as

ϕ(abi|h|a|g|−1) = ghi|h|g|g|−1 = g(h|h|)ig|g|−1 = gg|g|−1 = 1G = ψ(εB)

for all i ∈ N. Moreover, we claim any element of (4.4) is indecomposable in

Π(ϕ, ψ). Suppose for a contradiction that

(abi|h|a|g|−1, εB) = (u1, v1)(u2, v2) . . . (up, vp) (4.5)

is a non-trivial decomposition of (abi|h|a|g|−1, εB) into a product of elements

(uj, vj) ∈ A∗ ×B∗. It must be that every vj = εB, and hence ϕ(uj) = 1G for

all j. In particular, the proper prefix u1 of abi|h|a|g|−1 maps to 1G.
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As ϕ(abj) = ghj 6= 1 for all 0 ≤ j ≤ i|h| by (4.4), then u1 = abi|h|aj for some

1 ≤ j ≤ |g| − 1. However, as

ϕ(abi|h|aj) = ghi|h|gj = gj+1,

then ϕ(abi|h|aj) cannot equal 1G for any 1 ≤ j < |g| − 1 by minimality of |g|.
Hence it must be that u1 = abi|h|a|g|−1, which is a contradiction as (4.5) must

then be a trivial decomposition. Hence as i was arbitrary, every element of

the set

{(abi|h|a|g|−1, εB) ∈ A∗ ×B∗ : i ∈ N}

is indecomposable, finishing the proof.

We now utilise Lemma 4.1.2 and Lemma 4.1.3 to give a full characterisation

for when a fiber product of two free monoids over a finite fiber is finitely

generated.

Theorem 4.1.4. For two finite alphabets A and B, let ϕ : A∗ → M and

ψ : B∗ → M be epimorphisms onto a finite monoid M . Then Π(ϕ, ψ) is

finitely generated if and only if |ϕ(A)| = |ψ(B)| = 1, and M is a finite cyclic

group.

Proof. (⇒) We prove the contrapositive. If M is not a cyclic group, then

Π(ϕ, ψ) is not finitely generated by Lemma 4.1.2 and Lemma 4.1.3. If M is

a cyclic group, then it has a group presentation

M = 〈x : xn = 1M〉,

and assume first that |ϕ(A)| > 1. We will proceed by constructing an infinite

set of indecomposable elements of Π(ϕ, ψ), which will be enough to show that

Π(ϕ, ψ) is not finitely generated.

As |ϕ(A)| > 1, we can choose a, a′ ∈ A such that ϕ(a) 6= ϕ(a′). We will

show by induction that for all k ∈ N, we can construct a length k word

uk = a1a2 . . . ak ∈ {a, a′}+ such that ϕ(a1 . . . ai) 6= 1M for all 1 ≤ i ≤ k.

That is, no non-empty prefix of the word uk maps to 1M .
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For the base case, either ϕ(a) 6= 1M or ϕ(a′) 6= 1M as ϕ(a) 6= ϕ(a′). Without

loss of generality, we can set u1 = a, and ϕ(a1) 6= 1M .

Assume for the inductive hypothesis that we can find a word

uk−1 = a1a2 . . . ak−1 ∈ {a, a′}+ of length k − 1 with ϕ(a1 . . . ai) 6= 1M for all

1 ≤ i ≤ k − 1. If

ϕ(a1a2 . . . ak−1a) = ϕ(a1a2 . . . ak−1a
′) = 1M ,

then

ϕ(a1a2 . . . ak−1)ϕ(a) = ϕ(a1a2 . . . ak−1)ϕ(a′),

implying ϕ(a) = ϕ(a′), which is a contradiction. Hence either

ϕ(a1a2 . . . ak−1a) 6= 1M or ϕ(a1a2 . . . ak−1a
′) 6= 1M . Both are words of length

k, and by the inductive hypothesis, ϕ(a1 . . . ai) 6= 1M for 1 ≤ i ≤ k. Making

the appropriate choice of a or a′ to extend the word uk−1 to a length k word

uk with ϕ(uk) 6= 1M finishes the induction.

As M is a group and ϕ is surjective, for a given word uk constructed as above,

there is a corresponding minimal length word vk ∈ A+ (not necessarily of

length k) such that

ϕ(ukvk) = ϕ(uk)ϕ(vk) = 1M .

Let wk = ukvk. As any non-empty prefix u of wk with length less than or

equal to k is a prefix of uk, then ϕ(u) 6= 1M . Moreover, as vk is chosen to be

the minimal word such that ϕ(ukvk) = 1M , then it follows that ϕ(u) 6= 1M

for any non-empty proper prefix u of wk. Hence the infinite set of elements

{(wk, εB) : k ∈ N} ⊆ A∗ ×B∗ (4.6)

is a subset of Π(ϕ, ψ), as ϕ(wk) = 1M for all k ∈ N. Moreover, any given

(wk, εB) can have no non-trivial decompositions in Π(ϕ, ψ), as every non-

empty proper prefix u of wk has the property that ϕ(u) 6= 1M .

Hence (4.6) is an infinite set of indecomposable elements of Π(ϕ, ψ) which

must be contained in any generating set, showing that Π(ϕ, ψ) is not finitely
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generated. A similar proof gives that |ψ(B)| > 1 implies Π(ϕ, ψ) is not

finitely generated.

(⇐) Suppose M is a cyclic group with group presentation

M = 〈x : xn = 1〉,

and |ϕ(A)| = |ψ(B)| = 1. By Lemma 1.6.9, ϕ(A), ψ(B) are monoid gener-

ating sets for M , and hence also group generating sets. As M is cyclic, it

must follow that ϕ(A) = {xp} and ψ(B) = {xq} for some 1 ≤ p, q < n with

gcd(p, n) = gcd(q, n) = 1. A pair (u, v) ∈ A∗ × B∗ is also an element of

Π(ϕ, ψ) if

ϕ(u) = ψ(v)

⇔ (xp)|u| = (xq)|v|

⇔ xp|u| (modn) = xq|v| (modn)

⇔ p|u| (modn) = q|v| (modn).

Hence

Π(ϕ, ψ) = {(u, v) ∈ A∗ ×B∗ : p|u| ≡ q|v| (modn)}.

We will show that every non-identity element of Π(ϕ, ψ) as decribed above

can be written as a finite product of elements from the set

X = {(u, v) ∈ A∗ ×B∗ : p|u| ≡ q|v| (modn), 0 ≤ |u|, |v| ≤ n}

\{(u, v) ∈ A∗ ×B∗ : |u| = |v| = n or |u| = |v| = 0}.

Noting that X is a subset of Π(ϕ, ψ) which is finite, this will be sufficient to

conclude the proof that Π(ϕ, ψ) is finitely generated as a monoid.

For a given non-identity pair (u, v) ∈ Π(ϕ, ψ), we can write |u| = k1n + r1

and |v| = k2n + r2 for some k1, k2 ∈ N0 and 0 ≤ r1, r2 < n. Hence we can

write

u = u′x1x2 . . . xk1

for some u′, xi ∈ A∗ with |u′| = r1, |xi| = n for 1 ≤ i ≤ k1, and similarly we
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can write

v = v′y1y2 . . . yk2

for some v′, yi ∈ B∗ with |v′| = r2, |yi| = n for 1 ≤ i ≤ k2. The pairs (xi, εB)

for 1 ≤ i ≤ k1 are all elements of X, as |xi| = n, |εB| = 0, and

p|xi| = pn ≡ 0 ≡ q0 ≡ q|εB| (modn).

Similarly, the pairs (εA, yi) for 1 ≤ i ≤ k2 are all elements of X as well. As

|u′| ≡ |u| (modn) and |v′| ≡ |v| (modn) by definition, then

p|u′| ≡ p|u| ≡ q|v| ≡ q|v′| (modn). (4.7)

Hence as 0 ≤ |u′| < n, 0 ≤ |v′| < n, then the pair (u′, v′) is an element of X.

Hence

(u, v) = (u′, v′)(x1, εB)(x2, εB) . . . (xk1 , εB)(εA, y1)(εA, y2) . . . (εA, yk2)

is a decomposition of (u, v) into a finite product of elements of X. This

concludes the proof that X is a monoid generating set for Π(ϕ, ψ), and thus

Π(ϕ, ψ) is finitely generated as a monoid.

We now briefly give some examples of epimorphisms that satisfy the condi-

tions of Theorem 4.1.4 (and provide a generating set for the fiber product),

and that do not satisfy the conditions (finding a specific infinite set of inde-

composable elements).

Examples 4.1.5. (a) Let {1} be the trivial cyclic group, let A = B = {a, b},
and let ϕ : A∗ → {1} be given by ϕ(a) = ϕ(b) = 1, extended uniquely to

a homomorphism on A∗ (so that ϕ(w) = 1 for all w ∈ A∗). Similarly, let

ψ : B∗ → {1} be given by ψ(a) = ψ(b) = 1, again uniquely extended to a

homomorphism on B∗ (so that ϕ(w) = 0 for all w ∈ B∗).

Then {1} and ϕ, ψ match the conditions of Theorem 4.1.4, and hence Π(ϕ, ψ)

is finitely generated. In fact, as every word in A∗ is mapped to 1 by ϕ, and

every word in B∗ is also mapped to 1 by ψ, then Π(ϕ, ψ) = A∗ ×B∗.
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By the proof of Theorem 4.1.4 (taking p = 1, q = 1, x = 1), a monoid

generating set for Π(ϕ, ψ) is given by

X = {(u, v) ∈ A∗ ×B∗ : |u| ≡ |v|mod 1, 0 ≤ |u|, |v| ≤ 1}

\ {(u, v) ∈ A∗ ×B∗ : |u| = |v| = 1 or |u| = |v| = 0}

= {(u, v) ∈ A∗ ×B∗ : 0 ≤ |u|, |v| ≤ 1, |u| 6= |v|}

= {(εA, a), (εA, b), (a, εB), (b, εB)}.

For example, (aba2, ba) ∈ Π(ϕ, ψ), and can be written as the product

(aba2, ba) = (a, εB)(b, εB)(a, εB)2(εA, b)(εA, a).

(b) Let Z2 = {0, 1} be the cyclic group of order two, let A = B = {a, b},
and let ϕ : A∗ → Z2 be given by ϕ(a) = 0 = ϕ(b), uniquely extended to a

homomorphism on A∗ (so that ϕ(w) = 0 for all w ∈ A∗). Let ψ : B∗ → Z2

be given by ψ(a) = 0, ψ(b) = 1, uniquely extended to a homomorphism on

B∗. In this manner, for any w ∈ B∗, we have

ψ(w) =

1 if w contains an odd number of bs.

0 otherwise.

Then Π(ϕ, ψ) = {(u, v) ∈ A∗ × B∗ : |v|b ≡ 0 mod 2}. By Theorem 4.1.4, as

|ϕ(B)| = 2, then Π(ϕ, ψ) is not finitely generated. Let

I = {(εA, bamb) ∈ A∗ ×B∗ : m ∈ N} ⊆ Π(ϕ, ψ).

If an element (εA, ba
mb) ∈ I were monoid decomposable over Π(ϕ, ψ), then

it must be that

(εA, ba
mb) = (εA, ba

r)(εA, a
sb)

for some 0 ≤ r, s ≤ m, with r + s = m. This cannot happen, as

ψ(bar) = 1, but ϕ(εA) = 0, so (εA, ba
r) 6∈ Π(ϕ, ψ). Hence every element

of I is indecomposable, which is an example of an infinite set of indecompos-

ables causing Π(ϕ, ψ) to be non-finitely generated. 4
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4.2 Finite presentation for fiber products of free monoids

over finite fibers

Theorem 4.1.4 shows that finitely generated fiber products of two free monoids

over a finite monoid are restrictive in their nature, as the epimorphisms must

map every generating letter of each free monoid onto one element of a cyclic

group. Given this restrictive behaviour, we can ask whether or not all such

finitely generated fiber products are finitely presented, and if not, give a

characterisation for the finitely presented ones. In fact, it will be our main

aim for this section to prove the following theorem.

Theorem 4.2.1. For two finite alphabets A and B , let ϕ : A∗ → M and

ψ : B∗ → M be epimorphisms onto a finite monoid M . Then Π(ϕ, ψ) is

finitely generated if and only if it is finitely presented.

As we wish to concern ourselves with finitely generated fiber products of free

monoids over finite fibers, we will adopt the following notation as a result of

Theorem 4.1.4.

Notation 4.2.2. For the rest of this section, F will be the finite cyclic group

of order n, with group presentation F = 〈x : xn = 1〉.

A and B will be finite alphabets, εA and εB will denote the empty words in

A∗ and B∗ respectively. The maps ϕ : A∗ → F and ψ : B∗ → F will be

epimorphisms onto F , which satisfy ϕ(A) = {xp} and ψ(B) = {xq} for some

1 ≤ p, q ≤ n with gcd(p, n) = gcd(q, n) = 1.

Π(ϕ, ψ) will be the fiber product of A∗ and B∗ with respect to ϕ, ψ. Note

that Π(ϕ, ψ) is finitely generated by Theorem 4.1.4.

Finally, Γ̄ and Γ will be the sets of formal symbols defined

Γ̄ := {γ(u, v) : u ∈ A∗, v ∈ B∗, p|u| ≡ q|v|modn, 0 ≤ |u|, |v| ≤ n}

and

Γ := Γ̄ \ {γ(u, v) : u ∈ A∗, v ∈ B∗, |u| = |v| = n or |u| = |v| = 0}.
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Note that if γ(u, v) ∈ Γ with |u| = n, then necessarily |v| = 0 and hence

v = εB. Conversely, if γ(u, v) ∈ Γ with |v| = n, then necessarily u = εA. �

In order to prove Theorem 4.2.1, we will first introduce two lemmas which

establish a set of relations that a finitely generated fiber product of two free

monoids over a finite fiber satisfies.

Lemma 4.2.3. Recall Notation 4.2.2. Then the relations

(γ(εA, v)γ(u, εB), γ(u, εB)γ(εA, v)) (|u| = |v| = n); (R1)

(γ(εA, v)γ(u, v1), γ(u, v2)γ(εA, v3)) (0 < |v1| < n, |v| = |v3| = n, (R2)

|v1| = |v2|, vv1 = v2v3);

(γ(u, εB)γ(u1, v), γ(u2, v)γ(u3, εB)) (0 < |u1| < n, |u| = |u3| = n, (R3)

|u1| = |u2|, uu1 = u2u3)

over Γ hold in Π(ϕ, ψ).

Proof. Let π̄ : Γ → Π(ϕ, ψ) be given by π̄(γ(u, v)) = (u, v), and let

π : Γ∗ → Π(ϕ, ψ) be the unique homomorphism extending π̄ to Γ∗, whose

existence is established by Lemma 1.6.15. Then in the case of (R1), we have

π(γ(εA, v)γ(u, εB)) = (εA, v)(u, εB)

= (u, v)

= (u, εB)(εA, v)

= π(γ(u, εB)γ(εA, v)),

and so (R1) holds in Π(ϕ, ψ). In the case of (R2), we have

π(γ(εA, v)γ(u, v1)) = (εA, v)(u, v1)

= (u, vv1)

= (u, v2v3)

= (u, v2)(εA, v3)

= π(γ(u, v2)γ(εA, v3)),
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and hence (R2) holds in Π(ϕ, ψ). In the case of (R3), we have

π(γ(u, εB)γ(u1, v)) = (u, εB)(u1, v)

= (uu1, v)

= (u2u3, v)

= (u2, v)(u3, εB)

= π(γ(u2, v)γ(u3, εB)),

and hence (R3) holds in Π(ϕ, ψ).

Lemma 4.2.4. Recall Notation 4.2.2. Let γ(u1, v1), γ(u2, v2) ∈ Γ with

0 < |u1|, |u2| < n, 0 < |v1|, |v2| < n and define u3, u4 ∈ A∗, v3, v4 ∈ B∗

in terms of u1, u2, v2, v2 as follows:

u1u2 = u3u4, |u4| = n if |u1u2| > n,

v1v2 = v3v4, |v4| = n if |v1v2| > n.

Then the relation

(γ(u1, v1)γ(u2, v2), w) (R4)

over Γ holds in Π(ϕ, ψ), where

w = γ(u1u2, v1v2) if |u1u2|, |v1v2| < n,

or w = γ(u3, v1v2)γ(u4, εB) if |u1u2| > n, |v1v2| < n,

or w = γ(u1u2, v3)γ(εA, v4) if |u1u2| < n, |v1v2| > n,

or w = γ(u3, v3)γ(u4, εB)γ(εA, v4) if |u1u2|, |v1v2| > n,

or w = γ(u1u2, εB)γ(εA, v1v2) if |u1u2| = |v1v2| = n.

Proof. Let π̄ : Γ → Π(ϕ, ψ) be given by π̄(γ(u, v)) = (u, v), and let

π : Γ∗ → Π(ϕ, ψ) be the unique homomorphism extending π̄ to Γ∗, whose

existence is established by Lemma 1.6.15.

Let γ(u1, v1), γ(u2, v2) ∈ Γ be two formal symbols with 0 < |u1|, |u2| < n and
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0 < |v1|, |v2| < n. As p|ui| ≡ q|vi| (modn) for i = 1, 2, then

p|u1u2| ≡ p(|u1|+ |u2|) ≡ q(|v1|+ |v2|) ≡ q|v1v2| (modn).

Hence if |u1u2| = n then q|v1v2| ≡ 0 (modn), implying |v1v2| ≡ 0 (modn). It

must then be that |v1v2| = n also, accounting for the possible sizes of v1 and

v2. Similarly, |v1v2| = n implies |u1u2| = n also. Hence there are five cases

to check for |u1u2| and |v1v2|:

Case 1: If |u1u1|, |v1v2| < n, then

π(γ(u1, v1)γ(u2, v2)) = (u1, v1)(u2, v2) = (u1u2, v1v2) = π(γ(u1u2, v1v2)),

and so (R4) holds.

Case 2: If |u1u2| > n, |v1v2| < n, then

π(γ(u1, v1)γ(u2, v2)) = (u1, v1)(u2, v2)

= (u1u2, v1v2)

= (u3u4, v1v2)

= (u3, v1v2)(u4, εB)

= π(γ(u3, v1v2)γ(u4, εB)),

and so (R4) holds.

Case 3: If |u1u2| < n, |v1v2| > n, then

π(γ(u1, v1)γ(u2, v2)) = (u1, v1)(u2, v2)

= (u1u2, v1v2)

= (u1u2, v3v4)

= (u1u2, v3)(εA, v4)

= π(γ(u1u2, v3)γ(εA, v4)),

and so (R4) holds.
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Case 4: If |u1u2|, |v1v2| > n, then

π(γ(u1, v1)γ(u2, v2)) = (u1, v1)(u2, v2)

= (u1u2, v1v2)

= (u3u4, v3v4)

= (u3, v3)(u4, εB)(εA, v4)

= π(γ(u3, v3)γ(u4, εB)γ(εA, v4)),

and so (R4) holds.

Case 5: Finally if |u1u2| = |v1v2| = n, then

π(γ(u1, v1)γ(u2, v2)) = (u1, v1)(u2, v2)

= (u1u2, v1v2)

= (u1u2, εB)(εA, v1v2)

= π(γ(u1u2, εB)γ(εA, v1v2)),

and so (R4) holds.

As this covers all possible cases, then (R4) holds in Π(ϕ, ψ) as claimed.

We now use Lemma 4.2.3 and Lemma 4.2.4 to prove Theorem 4.2.1, which

we restate below.

Theorem 4.2.1. For two finite alphabets A and B , let ϕ : A∗ → M and

ψ : B∗ → M be epimorphisms onto a finite monoid M . Then Π(ϕ, ψ) is

finitely generated if and only if it is finitely presented.

Proof. (⇐) is immediate from the definition of finite presentation.

(⇒) Recall Notation 4.2.2, let π̄ : Γ → Π(ϕ, ψ) be given by

π̄(γ(u, v)) = (u, v), and let π : Γ∗ → Π(ϕ, ψ) be the unique homomorphism

extending π̄ to Γ∗, whose existence is established by Lemma 1.6.15.

For the set R of relations (R1)-(R4), we claim that Π(ϕ, ψ) has monoid
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presentation given by

Π(ϕ, ψ) ∼= 〈Γ : R〉. (4.8)

As R and Γ are finite, this will be enough to prove the Theorem. As π(Γ)

is a monoid generating set for Π(ϕ, ψ) by the proof of Theorem 4.1.4, then

π(Γ∗) = Π(ϕ, ψ), and hence by the first isomorphism theorem

Γ∗/kerπ ∼= Π(ϕ, ψ).

As 〈Γ : R〉 = Γ∗/R] by definition (where R] is the smallest congruence on Γ∗

containing R), we will show that ker π = R], which will suffice to prove the

claim in (4.8).

As the set of relations R over Γ hold in Π(ϕ, ψ) by Lemma 4.2.3 and

Lemma 4.2.4, then R ⊆ kerπ. Hence as ker π is a congruence containing

R, it follows that R] ⊆ kerπ.

To show that kerπ ⊆ R], we first make the following two claims:

Claim 1: For all w ∈ Γ∗, (w,w1w2w3) ∈ R] for some

w1 ∈ {γ(u, v) ∈ Γ : 0 < |u|, |v| < n}∗,

w2 ∈ {γ(u, v) ∈ Γ : |u| = n}∗, (4.9)

w3 ∈ {γ(u, v) ∈ Γ : |v| = n}∗.

Claim 2: If (w,w′) ∈ kerπ, then (w,w1w2w3), (w′, w′1w
′
2w
′
3)) ∈ R] for some

w1, w
′
1 ∈ {γ(u, v) ∈ Γ : 0 < |u|, |v| < n}∗,

w2, w
′
2 ∈ {γ(u, v) ∈ Γ : |u| = n}∗, (4.10)

w3, w
′
3 ∈ {γ(u, v) ∈ Γ : |v| = n}∗

with w1 = w′1, w2 = w′2, w3 = w′3.

Claim 1 will be used to prove Claim 2, which is sufficient to prove that

kerπ ⊆ R] by symmetry and transitivity of R], and hence finish the proof of

the theorem. It thus remains to prove these two claims, which we now do.
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Proof of Claim 1: For the purposes of this proof, we will refer to those

elements γ(u, v) ∈ Γ with either u = εA or v = εB as ε-type letters of Γ.

Otherwise, γ(u, v) ∈ Γ will be referred to as φ-type.

Let w ∈ Γ∗. We will use (R1)-(R4) in the following rewriting procedure on w

(described by (A1) to (A3)) to prove the claim. An example of this rewriting

procedure is given immediately following this theorem in Example 4.2.5.

(A1) If w contains a letter γ(u1, v1) of φ-type which is immediately preceded

by a letter γ(u2, v2) of ε-type, then by (R2) and (R3) there exists a letter

γ(u3, v3) of φ-type, and a letter γ(u4, v4) of ε-type such that

(γ(u2, v2)γ(u1, v1), γ(u3, v3)γ(u4, v4)) ∈ R.

Repeatedly using a sequence of (R2) and (R3) on all such φ-type letters

which are immediately preceded by ε-type letters allows us to rewrite w as

w(1)w(2), where w(1) is a word consisting of φ-type letters (which is possibly

empty if w contains no φ-type letters), and w(2) is a word consisting of ε-type

letters (which again is possibly empty if w does not contain letters of ε-type).

Hence

(w,w(1)w(2)) ∈ R] (4.11)

for some w(1) ∈ {γ(u, v) ∈ Γ : 0 < |u|, |v| < n}∗, and for some

w(2) ∈ {γ(u, v) ∈ Γ : u = εA or v = εB}∗.

(A2) If |w(1)| ≥ 2, then w(1) contains a φ-type letter γ(u1, v1) which is im-

mediately followed by another φ-type letter γ(u2, v2). Then by (R4), there is

a word w(3) starting with a single φ-type letter, immediately followed by at

most two ε-type letters such that

(γ(u1, v1)γ(u2, v2), w(3)) ∈ R.

Repeatedly using (R4) from right to left on the letters of w(1) allows us to

rewrite w(1)w(2) as w1w(4) for w1 a φ-type letter (or εΓ), and w(4) a (potentially
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empty) word consisting of ε-type letters. Hence

(w(1)w(2), w1w(4)) ∈ R] (4.12)

for some w1 ∈ {γ(u, v) ∈ Γ : 0 < |u|, |v| < n} ∪ {εΓ}, and some

w(4) ∈ {γ(u, v) ∈ Γ : u = εA or v = εB}∗.

(A3) The relation (R1) describes commutativity between the letters γ(u1, v1)

of ε-type with u1 = εA, and letters γ(u2, v2) of ε-type with v2 = εB. As w(4)

is a product of letters of ε-type, then we can repeatedly use (R1) on the

letters of w(4).

This allows us to rewrite w(4) as w2w3, where w2 is a (possibly empty) word

consisting of ε-type letters γ(u, v) with v = εB, and w3 is a (possibly empty)

word consisting of ε-type letters γ(u, v) with u = εA. Hence

(w1w(4), w1w2w3) ∈ R], (4.13)

where w2 ∈ {γ(u, v) ∈ Γ : |u| = n}∗, and w3 ∈ {γ(u, v) ∈ Γ : |v| = n}∗.

At the end of this rewriting procedure, combining (4.11), (4.12) and (4.13)

by transitivity of R] finishes the proof of Claim 1.

Proof of Claim 2: Let (w,w′) ∈ kerπ. The fact that

(w,w1w2w3), (w′, w′1w
′
2w
′
3) ∈ R]

for wi, w
′
i as described in (4.10) follows from Claim 1. It remains to show

that wi = w′i for i = 1, 2, 3. We will do this by considering the lengths of the

first and second coordinates of π(w) and π(w′) respectively.

Let πA∗ : Π(ϕ, ψ)→ A∗ and πB∗ : Π(ϕ, ψ)→ B∗ be projections onto the first

and second coordinates respectively. As

π(w) = π(w1)π(w2)π(w3) = π(w′1)π(w′2)π(w′3) = π(w′),

then by considering the lengths of the first coordinates of both π(w) and
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π(w′), we have

|πA∗(π(w))| = |πA∗(π(w1)π(w2)π(w3))| = |πA∗(π(w1))|+ |πA∗(π(w2))|

as |πA∗(π(w3))| = |εA| = 0, and similarly

|πA∗(π(w′))| = |πA∗(π(w′1)π(w′2)π(w′3))| = |πA∗(π(w′1))|+ |πA∗(π(w′2))|.

As π(w) = π(w′), then it follows that

|πA∗(π(w1))|+ |πA∗(π(w2))| = |πA∗(π(w′1))|+ |πA∗(π(w′2))|.

As w2, w
′
2 ∈ {γ(u, v) ∈ Γ : |u| = n}∗, then |πA∗(π(w2))| = n|w2| and

|πA∗(π(w′2))| = n|w′2|, hence

|πA∗(π(w1))|+ n|w2| = |πA∗(π(w′1))|+ n|w′2|. (4.14)

Similarly, by considering the lengths of the second coordinates of both π(w)

and π(w′), we see that

|πB∗(π(w1))|+ n|w3| = |πB∗(π(w′1))|+ n|w′3|. (4.15)

We first consider the case of w1 and w′1. If w1 = εΓ, then necessarily

π(w1) = (εA, εB), and hence |πA∗(π(w1))| = 0. Now by taking congruences

modulo n on (4.14), we see that

|πA∗(π(w′1))| ≡ 0 modn,

and as w′1 ∈ {γ(u, v) ∈ Γ : 0 < |u|, |v| < n}∗, it must be that w′1 = εΓ∗ . A

similar proof shows that if w′1 = εΓ, then w1 = εΓ. Hence w1 = w′1 if either

is equal to εΓ. Otherwise, it must be that w1 = γ(u, v) and w′1 = γ(u′, v′) for

some 0 < |u|, |v|, |u′|, |v′| < n.

Again considering (4.14) modulo n, we see that |u| = |u′|modn, which im-

plies that |u| = |u′| on account of their sizes. As u and u′ are both length |u|
prefixes of πA∗(π(w)) and πA∗(π(w′)) respectively, and

πA∗(π(w)) = πA∗(π(w′)), it must be that u = u′. A similar proof taking

115



congruences modulo n on (4.15) shows that v = v′, and hence w1 = w′1.

In the case of w2 and w′2, as w2, w
′
2 ∈ {γ(u, v) ∈ Γ : |u| = n}∗, then

π(w2) = (u, εB) and π(w′2) = (u′, εB) for some u, u′ ∈ A∗ with

|u| ≡ |u′| ≡ 0 modn. By (4.14), as w1 = w′1, then |w2| = |w′2|. Now as

u and u′ are both length n|w2| suffixes of πA∗(π(w)) and πA∗(π(w′)) respec-

tively, and πA∗(π(w)) = πA∗(π(w′)), it must be that u = u′. Hence w2 = w′2.

A very similar proof shows that w3 = w′3 when considering the second coor-

dinates rather than the first. This concludes the proof of Claim 2, and hence

of the theorem.

We finish the section with an example of a presentation for a finitely gener-

ated fiber product of two free monoids over a finite fiber, which includes an

example of the rewriting procedure described in the proof of Theorem 4.2.1.

Example 4.2.5. Let {1} be the trivial group, let A = B = {a, b}, let

ϕ : A∗ → {1} be the constant mapping ϕ(w) = 1 for all w ∈ A∗, and

let ψ : B∗ → {1} be the constant mapping ψ(w) = 1 for all w ∈ B∗.

We saw in Examples 4.1.5 (a) that Π(ϕ, ψ) is equal to A∗ × B∗, and was

finitely generated by the set

X = {(εA, a), (εA, b), (a, εB), (b, εB)}.

We will find a finite monoid presentation for A∗ × B∗. As in the proof of

Theorem 4.2.1, the set of formal symbols Γ will be given by

Γ = {γ(εA, a), γ(εA, b), γ(a, εB), γ(b, εB)}.

Let x = γ(εA, a), y = γ(εA, b), z = γ(a, εB) and t = γ(b, εB). Then consider-

ing Lemma 4.2.3 and Lemma 4.2.4, the relations on Γ of the form (R1) are

given by the set

{(xz, zx), (xt, tx), (yz, zy), (yt, ty)},
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and as n = 1, there are no relations of the form (R2), (R3) or (R4). Hence

R = {(xz, zx), (xt, tx), (yz, zy), (yt, ty)}, and Π(ϕ, ψ) = A∗ ×B∗ has presen-

tation

Π(ϕ, ψ) ∼= 〈x, y, z, t : (xz, zx), (xt, tx), (yz, zy), (yt, ty)〉

by the proof of Theorem 4.2.1.

We now using the writing procedure (A1)-(A4) described in Theorem 4.2.1

on the word w = xzyt ∈ Γ∗. Firstly, as there are no relations of the form

(R2) or (R3) on Γ, then “using a sequence of (R2) and (R3) on all such

φ-type letters” as described in (A1) is redundant. Hence w is unchanged by

(A1). Similarly, as there are no relations of the form (R4), then “Repeatedly

using (R4) from right to left on the letter of w(1)” as instructed in (A2) is

also redundant. Hence w is unchanged by (A2).

As in (A4), however, we can repeatedly use (R4) on w to rewrite w as w2w3,

where

w2 ∈ {γ(u, v) ∈ Γ : |u| = n}∗ = {z, t}∗

and

w3 ∈ {γ(u, v) ∈ Γ : |v| = n}∗ = {x, y}∗.

We do this in the following steps.

(i) As (xz, zx) is in R (by (R4)) and hence also in R], and R] is a congru-

ence, then

(xz, zx)(yt, yt) = (xzyt, zxyt) ∈ R]. (4.16)

(ii) As (yt, ty) is in R (by (R4)) and hence in R], then

(zx, zx)(yt, ty) = (zxyt, zxty) ∈ R]. (4.17)

(iii) As (xt, tx) is in R (by (R4)) and hence in R], then

(z, z)(xt, tx)(y, y) = (zxty, ztxy) ∈ R]. (4.18)

(iv) Finally, combining (4.16), (4.17) and (4.18) by transitivity of R], we
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have (xzyt, ztxy) ∈ R].

We have now reached the end of the rewriting procedure, and have rewritten

xzyt as ztxy. 4

4.3 Finite generation for fiber products of free semi-

groups over infinite fibers

In Section 4.1, we classified the epimorphisms and finite fibers which result

in a finitely generated fiber product of two free monoids, and further showed

in Section 4.2 that all such fiber products are also finitely presented.

In this section, we move from monoids to semigroups, and it is for the same

reasons highlighted in Section 4.1 that we again focus on finite generation

and presentation for fiber products of free semigroups. As a consequence

of Proposition 4.1.1, we will again consider the free semigroups A+ and B+

when A and B are finite alphabets.

We wish to ask the same questions of fiber products of free semigroups over

finite fibers that we did for free monoids in Section 4.1. However, we now

show that fiber products of free semigroups over a finite fiber are not finitely

generated in the following result.

Proposition 4.3.1. For two finite alphabets A and B, let ϕ : A+ → S and

ψ : B+ → S be epimorphisms onto a finite semigroup S. Then Π(ϕ, ψ) is

not finitely generated, and hence is also not finitely presented.

Proof. We will find an infinite subset of Π(ϕ, ψ) consisting of indecomposable

elements, which must hence be contained in any generating set. Fix any

(u, v) ∈ Π(ϕ, ψ). Then ϕ(u) = ψ(v) = s for some s ∈ S.

As S is a finite semigroup, then s has some idempotent power sk for k ∈ N
by Lemma 1.2.10. As

ϕ(uik) = ϕ(u)ik = (sk)i = sk = ψ(v)k = ψ(vk),
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for all i ∈ N, then the set

{(uik, vk) : i ∈ N} (4.19)

is a subset of Π(ϕ, ψ). Suppose for a contradiction that there were a finite

generating set

X = {(ui, vi) : 1 ≤ i ≤ p} ⊆ A+ ×B+

for Π(ϕ, ψ). Then any element (uik, vk) from the set in (4.19) can be written

as a finite product of elements from X.

As vk can be decomposed in B+ into a product of at most k|v| elements of

B+, then the element (uik, vk) can be decomposed into a product of at most

k|v| elements of X. As

(uik, vk) = (ui1 , vi1)(ui2 , vi2) . . . (uiq , viq)

for some elements (uij , vij) ∈ X with q ≤ |v|, then it follows that

|uik| ≤ lk|v|,

where l = max1≤i≤p |ui|. This is a contradiction, as the above inequality

must hold for all i ∈ N. Hence Π(ϕ, ψ) cannot be finitely generated.

Proposition 4.3.1 gives a stark contrast to the case of finite generation and

presentation for free monoids given in the results of Theorem 4.1.4 and The-

orem 4.2.1. We obtain the following necessary condition for finite generation

of a fiber product of two free semigroups as a direct corollary to Proposi-

tion 4.3.1.

Corollary 4.3.2. For two finite alphabets A and B, let ϕ : A+ → S and

ψ : B+ → S be epimorphisms onto a semigroup fiber S. If Π(ϕ, ψ) is finitely

generated, then S is infinite.

We now wish to obtain further necessary conditions on a semigroup fiber S

for a fiber product of two free semigroups over S to be finitely generated.

We begin by showing that any fiber S for a finitely generated fiber product
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of two free semigroups cannot contain idempotents.

Proposition 4.3.3. For two finite alphabets A and B, let ϕ : A+ → S and

ψ : B+ → S be epimorphisms onto a semigroup fiber S. If Π(ϕ, ψ) is finitely

generated, then S is idempotent-free.

Proof. We prove the contrapositive, hence assume that S has an idempotent

e ∈ S. In particular, ei = e for all i ∈ N. As ϕ, ψ are surjections, then there

exists u ∈ A+, v ∈ B+ such that ϕ(u) = e = ψ(v). As

ϕ(ui) = ϕ(u)i = ei = e = ψ(v)

for all i ∈ N, it follows that the set

{(ui, v) : i ∈ N}

is a subset of Π(ϕ, ψ). Suppose for a contradiction that Π(ϕ, ψ) were finitely

generated, and let

X = {(ui, vi) : 1 ≤ i ≤ p} ⊂ A+ ×B+

be any finite generating set for Π(ϕ, ψ). Then for any i ∈ N, the element

(ui, v) is expressible as a finite product of elements of X.

As v is decomposable into at most |v| factors in B+, it follows that (ui, v) is

decomposable into a product of at most |v| elements of X. As

(ui, v) = (ui1 , vi1)(ui2 , vi2) . . . (uiq , viq)

for some elements (uij , vij) ∈ X with q ≤ k|v|, then it follows that

|ui| ≤ l|v|,

where l = max1≤i≤p |ui|. But this is a contradiction, as the above inequality

must hold for all i ∈ N. Hence Π(ϕ, ψ) is not finitely generated.

Proposition 4.3.3 in particular implies that S cannot be a group, and hence

investigating Green’s relations on the associated fiber S (which we defined in
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Section 1.4) is our next aim. In particular, we will show that Green’s relation

J on S must be trivial (recalling Definition 1.4.2) for Π(ϕ, ψ) to be finitely

generated in the following result.

Proposition 4.3.4. For two finite alphabets A and B, let ϕ : A+ → S and

ψ : B+ → S be epimorphisms onto a semigroup fiber S. If Π(ϕ, ψ) is finitely

generated, then S is J -trivial.

Proof. We will prove the contrapositive, hence suppose that S is not J -

trivial. Then there exists s, t ∈ S with s 6= t, but (s, t) ∈ J . By Lemma 1.4.4,

there exist x, x′, y, y′ ∈ S1 with

s = xty and t = x′sy′. (4.20)

In particular, it follows that

s = xty

= (xx′)s(y′y)

= (xx′)2s(y′y)2

...

= (xx′)is(y′y)i for all i ∈ N. (4.21)

If S is a monoid, then in particular it has an idempotent and hence Π(ϕ, ψ)

is not finitely generated by Proposition 4.3.3.

If S is not a monoid, then S1 = S ∪{1}. As s 6= t, it follows from (4.20) that

at most one of x and y can equal 1, and similarly at most one of x′ and y′

can equal 1.

As mn = 1⇔ m = 1 and n = 1 for all m,n ∈ S ∪ {1}, to avoid a contradic-

tion it must be that at most one of xx′ and y′y can equal 1. We consider all

of the possible cases:

Case 1: xx′ 6= 1 and y′y 6= 1. In this case, it follows that both xx′ ∈ S and

y′y ∈ S.
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As ϕ, ψ are surjections, then there exist u,w,w′ ∈ A+, v ∈ B+ with

ϕ(u) = s = ψ(v) and ϕ(w) = xx′, ϕ(w′) = y′y. Hence by (4.21), as

ϕ(wiu(w′)i) = ϕ(w)iϕ(u)ϕ(w′)i = (xx′)is(y′y)i = s = ψ(v)

for all i ∈ N, then the set

{(wiu(w′)i, v) : i ∈ N}

is a subset of Π(ϕ, ψ). Suppose for a contradiction that Π(ϕ, ψ) were finitely

generated, and let

X = {(ui, vi) : 1 ≤ i ≤ p} ⊂ A+ ×B+

be any finite generating set. For any i ∈ N, the element (wiu(w′)i, v) can

be decomposed as a finite product of elements of X, and in particular must

be decomposable into a product of at most |v| elements of X (as v can be

decomposed into a product of at most |v| elements in B+).

As

(wiu(w′)i, v) = (ui1 , vi1)(ui2 , vi2) . . . (uiq , viq)

for some elements (uij , vij) ∈ X with q ≤ |v|, it follows that

|wiu(w′)i| ≤ l|v|,

where l = max1≤i≤p |ui|. The above inequality must hold for all i ∈ N
however, which leads to a contradiction. Hence it follows that Π(ϕ, ψ) is not

finitely generated in this case.

Case 2: xx′ = 1. In this case, y′y 6= 1, or equivalently y′y ∈ S. As

s = s(y′y)i

for all i ∈ N by (4.20), then the set

{(u(w′)i, v) : i ∈ N}
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(where u,w′, v are as in Case 1 is a subset of Π(ϕ, ψ), similarly to Case 1. The

proof by contradiction that Π(ϕ, ψ) is not finitely generated is now similar

to Case 1, ignoring instances of the word w.

Case 3: y′y = 1. In this case, xx′ 6= 1, or equivalently xx′ ∈ S. As

s = (xx′)is

for all i ∈ N by (4.20), then the set

{(wiu, v) : i ∈ N}

(where u,w, v are as in Case 1) is a subset of Π(ϕ, ψ), again similarly to

Case 1. Once more, the proof by contradiction that Π(ϕ, ψ) is not finitely

generated is now similar to Case 1, this time ignoring instances of the word

w′.

This concludes all of the cases, and hence in any situation, Π(ϕ, ψ) is not

finitely generated. This completes the proof of the contrapositive, and hence

of the proposition.

Noting that Green’s relation J contains L,R, and H, it then follows as a

corollary to the above that S must be K-trivial for a fiber product of two

free semigroups over S to be finitely generated, for K any Green’s relation.

This completely characterises Green’s relations on S, and rules out classes

such as groups, inverse semigroups, bands, semilattices, left (right) groups,

and others (definitions of which can all be found in [16]).

Perhaps the most natural examples of semigroups which are infinite but

finitely generated, idempotent-free and J -trivial (thus satisfying the condi-

tions of the results of this section) are the finitely generated free semigroups

themselves. These will be the topic of discussion in Chapter 5.

Finitely generated free commutative semigroups of course also have these

properties. We will work for the remainder of the section to prove the fol-

lowing result:
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Theorem 4.3.5. For two finite alphabets A and B, let ϕ : A+ → S and

ψ : B+ → S be epimorphisms onto the free commutative semigroup S with

semigroup presentation

S = 〈x1, x2, . . . , xn : xixj = xjxi, 1 ≤ i, j ≤ n〉.

Then Π(ϕ, ψ) is finitely generated if and only if n = 1 (so that S ∼= N), and

either |ϕ(A)| = 1 or |ψ(B)| = 1.

In particular, this result will demonstrate that though the required con-

ditions found in this section are rather restrictive, they are necessary but

not sufficient for finite generation through the example of free commutative

semigroups. We introduce the following lemmas which will aid us in proving

Theorem 4.3.5.

Lemma 4.3.6. For two finite alphabets A and B, let ϕ : A+ → S and

ψ : B+ → S be epimorphisms onto the free commutative semigroup S with

semigroup presentation

S = 〈x1, x2, . . . , xn : xixj = xjxi, 1 ≤ i, j ≤ n〉.

If n > 1, then Π(ϕ, ψ) is not finitely generated.

Proof. First, any semigroup generating set for S must contain x1, x2, . . . , xn.

As ϕ(A), ψ(B) are semigroup generating sets for S by Lemma 1.6.10, then

each of x1, x2, . . . , xn are in both ϕ(A) and ψ(B). Thus in particular there

exist a, a′ ∈ A, b, b′ ∈ B with ϕ(a) = x1 = ψ(b), and ϕ(a′) = x2 = ψ(b′).

As

ϕ(aia′) = ϕ(a)iϕ(a′) = xi1x2 = x2x
i
1 = ψ(b′)ψ(b)i = ψ(b′bi)

for all i ∈ N, it follows that the set

{(aia′, b′bi) : i ∈ N} (4.22)

is a subset of Π(ϕ, ψ). We claim that every element of (4.22) is indecom-

posable in Π(ϕ, ψ), which is enough to prove that Π(ϕ, ψ) is not finitely
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generated, as any generating set must contain (4.22).

Suppose to the contrary; that an element (aia′, b′bi) of (4.22) can be decom-

posed into a non-trivial product

(aia′, b′bi) = (u, v)(u′, v′)

for some (u, v), (u′, v′) ∈ Π(ϕ, ψ). As this product is non-trivial, then u is a

proper prefix of aia′, and v is a proper prefix of b′bi.

The possible proper prefixes of aia′ and b′bi are of the form aj and b′bk

respectively, for some 1 ≤ j ≤ i, and 0 ≤ k < i. But the images of such

prefixes are

ϕ(aj) = ϕ(a)j = xj1,

and

ψ(b′bk) = ψ(b′)ψ(b)k = x2x
k
1.

As n > 1, then x1 6= x2, and hence xj1 6= x2x
k
1 for any 1 ≤ j ≤ i, and

0 ≤ k < i. This is a contradiction, as ϕ(u) 6= ψ(v), but (u, v) ∈ Π(ϕ, ψ).

Hence it must be that Π(ϕ, ψ) is not finitely generated in the case where

n > 1.

We thus restrict to the case where S is the free commutative semigroup of

rank one; which we will consider as the natural numbers N in the following

lemma.

Lemma 4.3.7. For two finite alphabets A and B, let ϕ : A+ → N and

ψ : B+ → N be epimorphisms onto N. If |ϕ(A)| and |ψ(B)| > 1, then

Π(ϕ, ψ) is not finitely generated.

Proof. As ϕ, ψ are surjections onto N and ϕ(A) and ψ(B) are semigroup gen-

erating sets for N by Lemma 1.6.10, then there exist some a ∈ A, b ∈ B with

ϕ(a) = 1 = ψ(b). Moreover, as |ϕ(A)|, |ψ(B)| > 1, then there exist a′ ∈ A,

b′ ∈ B with ϕ(a′) = p, ψ(b′) = q with p, q > 1. Either p ≥ q, or q ≥ p, which

we will consider separately as cases.
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Case 1: p ≥ q. In this case, p = cq + d for some c ∈ N, 0 ≤ d < q. Let

w = (b′)cbd, hence

ψ(w) = ψ(b′)cψ(b)d = cq + d = p. (4.23)

Now as

ϕ(a(a′)i) = ϕ(a)ϕ(a′)i = 1 + ip = ip+ 1 = ψ(w)iψ(b) = ψ(wib),

then the set

{(a(a′)i, wib) : i ∈ N}

is a subset of Π(ϕ, ψ). We will show that any element (a(a′)i, wib) is inde-

composable in Π(ϕ, ψ), which will be sufficient to show that Π(ϕ, ψ) is not

finitely generated (as any generating set for Π(ϕ, ψ) must contain the set of

indecomposables).

Suppose to the contrary, that (a(a′)i, wib) were reducible. Then

(a(a′)i, wib) = (u, v)(u′, v′)

for some (u, v), (u′, v′) ∈ Π(ϕ, ψ). Then u is a proper prefix of a(a′)i, hence

u = a(a′)j for some 0 ≤ j < i and thus ϕ(u) = 1 + jp. It follows that

ϕ(u) ≡ 1 mod p.

Moreover, as ϕ(u) = ψ(v), then ψ(v) ≡ 1 mod p also. As v is a proper prefix

of wib, the possibilities for v are as follows:

(i) v = wj(b′)k for some 0 ≤ j ≤ i− 1, 0 ≤ k < c with j + k > 0;

(ii) v = wj(b′)cbl for some 0 ≤ j ≤ i− 1, 0 ≤ l ≤ d.

In the instance of (i), we have

ψ(v) = ψ(w)jψ(b′)k = jp+ kq ≡ kqmod p,

and in the instance of (ii) we have

ψ(v) = ψ(w)jψ(b′)cψ(b)l = jp+ cq + l ≡ (cq + l) mod p.
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As kq < p for 0 ≤ k < c and cq + l ≤ p for 0 ≤ l ≤ d, then the set

{kq, cq + l : 0 ≤ k < c, 0 ≤ l ≤ d}

form a set of least positive residues modulo p. As ψ(v) ≡ 1 mod p, then one

of the elements of this set must equal 1. However as q > 1 by assumption,

then there can be no 0 ≤ k < c or 0 ≤ l ≤ d such that kq = 1 or cq + l = 1.

This is a contradiction, and hence it must be that the pair (a(a′)i, wib) is

irreducible in Π(ϕ, ψ). Now as i was arbitrary, it follows that the set

{(a(a′)i, wib) : i ∈ N}

is an infinite set of irreducible elements of Π(ϕ, ψ) as claimed, and hence

Π(ϕ, ψ) is not finitely generated.

Case 2: q ≥ p. In this case, we can write q = cp + d for some c ∈ N,

0 ≤ d < p, and similarly to the case for p ≥ q, it will follow that the set

{(wia, b(b′)i) : i ∈ N}

(where w = (a′)cad) is an infinite set of irreducible elements of Π(ϕ, ψ) by

a very similar proof to Case 1; replacing all instances of p, q, a, a′, b, b′, ϕ, ψ

by q, p, b, b′, a, a′, ψ, ϕ respectively, and reversing the coordinates of any pair.

Hence again, Π(ϕ, ψ) is not finitely generated.

We are now ready to prove Theorem 4.3.5 as the final result of the section,

which we now restate.

Theorem 4.3.5. For two finite alphabets A and B, let ϕ : A+ → S and

ψ : B+ → S be epimorphisms onto the free commutative semigroup S with

semigroup presentation

S = 〈x1, x2, . . . , xn : xixj = xjxi, 1 ≤ i, j ≤ n〉.

Then Π(ϕ, ψ) is finitely generated if and only if n = 1 (so that S ∼= N), and

either |ϕ(A)| = 1 or |ψ(B)| = 1.
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Proof. (⇒) We prove the contrapositive. If n > 1, then Π(ϕ, ψ) is not finitely

generated by Lemma 4.3.6.

Otherwise, if n = 1 but both |ϕ(A)| > 1 and |ψ(B)| > 1, then Π(ϕ, ψ) is not

finitely generated by Lemma 4.3.7.

(⇐) Assume that n = 1, and either |ϕ(A)| = 1 or |ψ(B)| = 1. As

S ∼= N, we will view the fiber as N and consider the epimorphisms as onto

N.

In particular, as ϕ, ψ are surjections and ϕ(A) and ψ(B) are semigroup

generating sets for N by Lemma 1.6.10, it must be that either ϕ(A) = {1}
or ψ(B) = {1}. We will consider the case where ϕ(A) = {1}, and argue that

the case for ψ(B) = {1} is similarly proved.

In this case, ϕ(a) = 1 for all a ∈ A, hence ϕ(u) = |u| for all u ∈ A+. It thus

follows that

Π(ϕ, ψ) = {(u, v) ∈ A+ ×B+ : |u| = ψ(v)}.

We will show that any element of Π(ϕ, ψ) can be written as a finite product

of elements of the set

X = {(u, v) ∈ Π(ϕ, ψ) : v ∈ B}.

X is finite, as there are only finitely many possibilities for v ∈ B, and any cor-

responding u such that (u, v) ∈ X has bounded word length,

as |u| = ψ(v).

Let (u, v) ∈ Π(ϕ, ψ). If |v| = 1, then v ∈ B and hence (u, v) ∈ X. Otherwise,

as

u = a1a2 . . . a|u|, v = b1b2 . . . b|v|

for some a1, a2, . . . , a|u| ∈ A and b1, b2, . . . , b|v| ∈ B, then for 1 ≤ i ≤ |v| let

wi = api+1api+2 . . . api+ψ(bi)

where p1 = 0, and pi = pi−1 + ψ(bi−1) for 2 ≤ i ≤ |v|.
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As |wi| = |api+1api+2 . . . api+ψ(bi)| = ψ(bi), then it follows that

(wi, bi) ∈ X for each 1 ≤ i ≤ |v|.

We will also argue that

(u, v) = (w1, b1)(w2, b2) . . . (w|v|, b|v|),

which is sufficient to prove that every element of Π(ϕ, ψ) can be written as

a finite product of elements from X, proving finite generation. As

(w1, b1)(w2, b2) . . . (w|v|, b|v|) = (w1w2 . . . w|v|, b1b2 . . . b|v|) = (w1w2 . . . w|v|, v),

it remains to argue that u = w1w2 . . . w|v|.

The first letter of w1 is a1. For every 1 ≤ i ≤ |v|, each letter of wi (except

for the last letter) has an index which is precisely one less than that of the

following letter by construction.

For all i < |v|, the last letter of wi has index pi +ψ(bi), and the first letter of

wi+1 has index pi+1 + 1. Hence as pi+1 + 1 = pi +ψ(bi) + 1 by definition, the

index of the last letter of wi is precisely one less than that of the first letter

of wi+1.

In the case of i = |v|, the last letter of w|v| has index

p|v| + ψ(bv) = p|v|−1 + ψ(b|v|−1) + ψ(b|v|)

= p|v|−2 + ψ(b|v|−2) + ψ(b|v|−1) + ψ(b|v|)

...

=

|v|∑
k=1

ψ(bk)

= ψ(b1b2 . . . b|v|)

= ψ(v)

= |u|
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The above arguments on letter indices combine to give that

w1w2 . . . w|v| = a1a2 . . . a|u| = u,

which completes the proof that (u, v) can be written as a finite product of

elements of X, and hence of the proof that Π(ϕ, ψ) is finitely generated

when n = 1 and |ϕ(A)| = 1. The case when |ψ(B)| = 1 can be proved in a

symmetric manner, using the generating set

X = {(u, v) ∈ Π(ϕ, ψ) : u ∈ A}.

We end the section with an example of a finitely generated fiber product of

two free semigroups over a free commutative semigroup

Example 4.3.8. Take S = N. Let A = B = {a, b}, and define ϕ : A+ → S

by ϕ(w) = |w| for all w ∈ A+. Further define ψ : B+ → S by ψ(a) = 1,

ψ(b) = 2 uniquely extended to a homomorphism on B+, so that ψ(w) =

|w|a + 2|w|b for all w ∈ B+.

Then Π(ϕ, ψ) = {(u, v) ∈ A∗ × B∗ : |u| = |v|a + 2|v|b}. Moreover, Π(ϕ, ψ)

is finitely generated by Theorem 4.3.5, as S = N and |ϕ(A)| = 1. As in the

proof of Theorem 4.3.5, a finite generating set for Π(ϕ, ψ) is given by

X = {(u, v) ∈ Π(ϕ, ψ) : v ∈ B}

= {(a, a), (b, a), (a2, b), (ab, b), (ba, b), (b2, b)} 4
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Chapter 5

Deciding finite generation for fiber

products of free semigroups and

monoids

In the previous chapter, we classified those fiber products of free semi-

groups/monoids over finite semigroups/monoids which are finitely generated,

which were the results of Proposition 4.3.1 and Theorem 4.1.4 respectively.

We saw that, in the monoid case, the structural properties of the fiber are

somewhat strong whenever we have finite generation, but as a consequence

implied finite presentation.

We saw in the case of free monoids, the fiber need be a cyclic group in the

finite case. For finitely generated fiber products of free semigroups, we saw

that the fiber need be an infinite (but finitely generated), J -trivial idempo-

tent free semigroup (see Proposition 4.3.1, Proposition 4.3.3, and Proposi-

tion 4.3.4).

Of course, the associated epimorphisms for the fiber product play a role too.

In the cases of finite generation seen so far, we have found restrictions for at

least one of the epimorphisms to be a constant map on the given alphabet

(see Theorem 4.1.4, Theorem 4.3.5). Though the conditions giving finite

generation for fiber products of free monoids (given in Proposition 4.3.1)

are strong, the problems of finite generation and presentation for such fiber
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products are decidable as a result.

Another notable decision problem is the membership problem (which we refer

the reader to Definition 1.6.24 for recap) for a semigroup. In the scope of

this work, it is a natural question to ask whether given semigroups S, T, U ,

epimorphisms ϕ : S → U , ψ : T → U , and a pair (s, t) ∈ S × T whether or

not (s, t) belongs to the fiber product Π(ϕ, ψ). In fact, the decidability of

the word problem for the fiber is sufficient for decidability of the membership

problem for a fiber product outlined, as seen in the following result.

Proposition 5.0.1. Let S, T, U be semigroups, and let ϕ : S → U and

ψ : T → U be epimorphisms onto U such that the associated fiber product

Π(ϕ, ψ) is finitely generated as a semigroup.

If the word problem of U is decidable, then the membership problem for

Π(ϕ, ψ) in S × T is decidable.

Proof. Let X be any generating set for S × T , and let w be a word over X.

Letting πS : S × T → S and πT : S × T → T be projections onto S and T

respectively, then w ∈ Π(ϕ, ψ) if and only if ϕ(πS(w)) = ψ(πT (w)).

As Π(ϕ, ψ) is finitely generated, then U is finitely generated by Proposi-

tion 4.1.1. Letting Y be any finite generating set for U , then we can write

ϕ(πS(w)) and ψ(πT (w)) as words over Y . As the word problem of U is decid-

able, then it is decidable whether or not ϕ(πS(w)) and ψ(πT (w)) represent

the same element of U , and hence whether or not w ∈ Π(ϕ, ψ), completing

the proof.

Our results indicate that decision problems for the fiber product are linked

with the properties of the fiber. Hence as the main aim for this chapter,

considering the problem of finite generation, we seek an example of a fiber

satisfying the conditions of Corollary 4.3.2, Proposition 4.3.3, and Proposi-

tion 4.3.4, whose fiber product has decidable finite generation problem.

Perhaps the most natural example of semigroups which are idempotent free,

J -trivial, infinite but finitely generated with decidable word problem are
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the (finite rank) free semigroups themselves. Hence in this chapter, we will

consider the finite generation problems for fiber products of free semigroups

and monoids over free semigroup and monoid fibers.

We begin with Section 5.1, where we obtain equivalent conditions to finite

generation for fiber products of free semigroups and monoids. Namely, we

will show that such fiber products are finitely generated if and only if they

have finitely many indecomposable elements.

Having completed this, we will then introduce the machinery of two-tape

automata in Section 5.2, with some worked examples, and construct such

automata from fiber products of free monoids over free monoid fibers. In

Section 5.3, we will show the automata constructed in Section 5.2 determine

the indecomposable elements of the associated fiber product.

We conclude with Section 5.4 by showing that the finite generation problem

for fiber products of free monoids over free monoid fibers is decidable, using

the automata. We then derive analogous results for fiber products of free

semigroups over free semigroup fibers. We finish with some examples of such

finitely generated fiber products.

We note that this chapter is based on Section 5 of the paper [6], written by

the author.

5.1 Equivalent conditions to finite generation for fiber

products of free semigroups and monoids over free

fibers

As mentioned at the beginning of the chapter, we will be considering the

finite generation problem for fiber products of free semigroups and monoids

over free fibers. In this section, we first give the following recharacterisation

of finite generation for such a fiber product of two free monoids in relation

to decomposition.

Lemma 5.1.1. For two finite alphabets A and B, let ϕ : A∗ → M and
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ψ : B∗ → M be epimorphisms onto a monoid M . Then Π(ϕ, ψ) is finitely

generated as a monoid if and only if Π(ϕ, ψ) has finitely many indecomposable

elements.

Proof. (⇒) Every generating set for Π(ϕ, ψ) must contain the set of indecom-

posable elements, hence if Π(ϕ, ψ) is finitely generated, Π(ϕ, ψ) has finitely

many indecomposable elements.

(⇐) We will show that the set of indecomposable elements is a generating

set for Π(ϕ, ψ). Hence let (u, v) ∈ Π(ϕ, ψ) \ {(εA, εB)}.

If (u, v) is indecomposable, then we are done. Otherwise, if (u, v) is decom-

posable, we will prove by induction on the sum of the lengths of u and v that

(u, v) can be written as a finite product of indecomposable elements from

Π(ϕ, ψ).

For the base case, let

m = min
(u,v)∈Π(ϕ,ψ),
(u,v)6=(εA,εB)

(|u|+ |v|).

Then any pair (u, v) ∈ Π(ϕ, ψ) with |u|+ |v| = m is necessarily indecompos-

able, for otherwise there is a non-trivial decomposition

(u, v) = (u1, v1)(u2, v2)

for some (u1, v1), (u2, v2) ∈ Π(ϕ, ψ), but as

|u1|+ |v1| < |u1|+ |u2|+ |v1|+ |v2| = |u|+ |v| = m

and similarly |u2| + |v2| < m, we would obtain a contradiction on the mini-

mality of m. This proves the base case.

Assume for the inductive hypothesis that any pair (u, v) ∈ Π(ϕ, ψ) with

|u| + |v| = k can be written as a finite product of indecomposable elements

of Π(ϕ, ψ), and consider for the next step any pair (u′, v′) ∈ Π(ϕ, ψ) with
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|u′|+ |v′| = n, where

n = min
(u′,v′)∈Π(ϕ,ψ),
|u′|+|v′|>k

(|u′|+ |v′|).

If (u′, v′) is indecomposable, then there is nothing to show. Otherwise, (u′, v′)

is non-trivially decomposable into a product

(u′, v′) = (u′1, v
′
1)(u′2, v

′
2)

for some (u′1, v
′
1), (u′2, v

′
2) ∈ Π(ϕ, ψ). As

|u′1|+ |v′1| < |u′1|+ |u′2|+ |v′1|+ |v′2| = |u′|+ |v′| = n,

and similarly |u′2|+ |v′2| < n, it must follow from minimality of n that |u′1|+
|v′1| ≤ k, |u′2|+ |v′2| ≤ k.

By the inductive hypothesis, each of (u′1, v
′
1) and (u′2, v

′
2) can be written

as a finite product of elements of Π(ϕ, ψ), and hence so can (u′, v′). This

completes the proof of the induction, and hence of the lemma.

We now give the following analogous statement for fiber products of free

semigroups as a corollary to this result.

Lemma 5.1.2. For two finite alphabets A and B, let ϕ : A+ → S and

ψ : B+ → S be epimorphisms onto a semigroup S. Then Π(ϕ, ψ) is finitely

generated as a semigroup if and only if Π(ϕ, ψ) has finitely many indecom-

posable elements.

Proof. The proof is precisely the same as for Lemma 5.1.1, without account-

ing for empty words.

Given the similarity between Lemma 5.1.1 and Lemma 5.1.2, we will concen-

trate on first obtaining results on finite generation for fiber products of free

monoids over free fibers. We will then derive the analogous results for fiber

products of free semigroups over free fibers later in the chapter.
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5.2 Two-tape automata construction for fiber prod-

ucts of free monoids over free monoid fibers

As a consequence of Lemma 5.1.1 and Lemma 5.1.2, deciding finite genera-

tion for Π(ϕ, ψ) is equivalent to deciding whether its set of indecomposable

elements is finite. In this section, we will construct a finite automaton from

a fiber product of two free monoids over a free fiber, and show in section

5.3 that it accepts a language corresponding to the fiber product’s inde-

composable elements. For a fiber product of two free monoids over a free

monoid fiber, if the accepted language of the automaton is finite, then we

will have decided that the fiber product is finitely generated as a consequence

of Lemma 5.1.1.

As the fiber products under consideration are semigroups of pairs of free

words, we will use two-tape automata, which we now define.

Definition 5.2.1. A two-tape automaton A is a 6-tuple

A = (Q,Σ1,Σ2, δ, ι, F ),

where:

• Q is a finite set of states ;

• Σ1, Σ2 are two finite alphabets forming the input alphabet

Σ = (Σ1 ∪ {ε1})× (Σ2 ∪ {ε2})

where ε1, ε2 are the empty words over Σ1 and Σ2 respectively;

• δ is a subset of Q× Σ×Q called the transition relation;

• ι ∈ Q and F ⊆ Q are the initial state and set of final states respectively.

Pictorially, the initial state ι and any final states qi ∈ F will be represented

respectively by the following nodes :
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ι qi

All other states will be represented by a regular circular node. A transition

(qi, (a, b), qj) of δ will be represented pictorially by the edge

qi qj
(a, b)

and say that the edge has label (a, b). Where there is more than one edge

going from state qi to state qj, we will write each label alongside a single

arrow, rather than drawing multiple arrows.

A path p of length n in A is a sequence of transitions p = (qi−1, σi, qi)
n
i=1. A

cycle is a path p = (qi−1, σi, qi)
n
i=1 with q0 = qn. A two-tape automaton is

said to be acyclic if it contains no cycles.

As Σ ⊆ Σ∗1 × Σ∗2, then there is a natural surjective homomorphism

π : Σ+ → Σ∗1 × Σ∗2 defined by

π(σ1σ2 . . . σn) = σ1 · σ2 · · · · · σn

where the right hand side is considered as a product of pairs in the product

monoid Σ∗1×Σ∗2. The mapping π will be called the product monoid mapping.

A pair (u, v) ∈ Σ∗1 × Σ∗2 will be a label for a path p = (qi−1, σi, qi)
n
i=1 if

π(σ1σ2 . . . σn) = (u, v).

An input is a word w ∈ Σ+. We will say that the automaton A accepts an

input w = σ1σ2 . . . σn ∈ Σ+ if there exists a path p = (qi−1, σi, qi)
n
i=1 with

q0 = ι, and qn ∈ F . The language accepted by A is the set of all words

w ∈ Σ+ which A accepts, and will be denoted L(A). �

Two-tape automata provide us with a way of considering pairs

(u, v) ∈ Σ∗1 × Σ∗2 as labels of the automaton. As the input alphabet is a
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direct product, then the automaton can either read either letters from u, or

from v, or from both u and v at the same time (hence being able to read

from “two tapes”).

We now provide an example of a two-tape automaton, illustrating the con-

nection between the language accepted by it and the corresponding language

in the product monoid.

Example 5.2.2. Let A = (Q,Σ1,Σ2, δ, ι, F ), where

• Q = {q0, q1};

• Σ1 = Σ2 = {a, b};

• δ = {(q0, (a, b), q1), (q1, σ, q1) : σ ∈ Σ};

• ι = q0, F = {q1}.

Pictorially, A has the following form:

q0 q1

(a, b)
σ : σ ∈ Σ

We can see that every input of the form (a, b)w for w ∈ Σ∗ is accepted by

the automaton, and conversely every input accepted by the automaton has

to be of this form. Hence

L(A) = (a, b)Σ∗ = {(a, b)w : w ∈ Σ∗}.

Considering the natural mapping of this language into Σ∗1 × Σ∗2, then

π(L(A)) = {(u, v) ∈ Σ∗1 × Σ∗2 : u1 = a, v1 = b}.

That is, for every pair of words (u, v) ∈ Σ∗1 × Σ∗2 where u begins with an a,

and v begins with a b, there is at least one corresponding word in Σ∗ that

the automaton accepts, and vice versa. 4

From a given fiber product of two free monoids over a free monoid fiber,

we now construct a two-tape automaton that can be used to decide whether
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the fiber product is finitely generated. The automaton will be designed to

accepted all input words whose image (under the map π defined in Defini-

tion 5.2.1) is an indecomposable element in the fiber product. This will be

proved later in Section 5.3, but we first give the construction in the following

definition, for which we ask the reader to recall the notation of Definition 1.5.3

and Definition 1.5.4.

Definition 5.2.3. Let A,B,C be finite alphabets, and let ϕ : A∗ → C∗,

ψ : B∗ → C∗ be two epimorphisms. Given the fiber product Π(ϕ, ψ), the

two-tape automaton Aϕ,ψ associated with Π(ϕ, ψ) is the 6-tuple

Aϕ,ψ = (Q,Σ1,Σ2, δ, ι, F ),

where:

• Q = Q1 ∪Q2 ∪ {ι, (εC , εC)}, for

Q1 = {(u, εC) ∈ C+ × {εC} : (∃w ∈ ϕ(A))(u <s w)},

Q2 = {(εC , v) ∈ {εC} × C+ : (∃w ∈ ψ(B))(v <s w)};

• Σ1 = A, Σ2 = B, so that

Σ = (A ∪ {εA})× (B ∪ {εB});

• δ =
⋃8
i=1 ∆i ⊂ Q× Σ×Q, where

∆1 = {(ι, (a, εB), (εC , εC)) : a ∈ A,ϕ(a) = εC},

∆2 = {(ι, (εA, b), (εC , εC)) : b ∈ B,ψ(b) = εC},

∆3 = {(ι, (a, b), (ψ(b)−1ϕ(a), εC)) : a ∈ A, b ∈ B,ψ(b) ≤p ϕ(a), ψ(b) 6= εC},

∆4 = {(ι, (a, b), (εC , ϕ(a)−1ψ(b)) : a ∈ A, b ∈ B,ϕ(a) ≤p ψ(b), ϕ(a) 6= εC},

∆5 = {((u, εC), (εA, b), (ψ(b)−1u, εC)) : b ∈ B, u 6= εC , ψ(b) ≤p u},

∆6 = {((u, εC), (εA, b), (εC , u
−1ψ(b))) : b ∈ B, u 6= εC , u ≤p ψ(b)},

∆7 = {((εC , v), (a, εB), (εC , ϕ(a)−1v)) : a ∈ A, v 6= εC , ϕ(a) ≤p v},

∆8 = {((εC , v), (a, εB), (v−1ϕ(a), εC) : a ∈ A, v 6= εC , v ≤p ϕ(a)},
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• ι is an initial state, and F = {(εC , εC)}.

Note that there are no transitions into the initial state, and no transitions

out of the final state. �

As the above definition is written techincally, we now give two examples

which illustrate how to construct the two-tape automaton associated with a

fiber product.

Examples 5.2.4. (a) Let A = {a, b} = B, and let C = {x}. Define

ϕ : A∗ → C∗ and ψ : B∗ → C∗ by ϕ(a) = ϕ(b) = x (which is uniquely

extended to an epimorphism from A∗ onto C∗), and ψ(a) = x, ψ(b) = x2

(which is uniquely extended to an epimorphism from B∗ onto C∗).

The fiber product Π(ϕ, ψ) can be described as

Π(ϕ, ψ) = {(u, v) ∈ A∗ ×B∗ : |u| = |v|a + 2|v|b}.

We now illustrate how to construct Aϕ,ψ from Π(ϕ, ψ). Firstly, as every state

and transition is written in terms of the images of the alphabets A and B,

then we note that

ϕ(A) = {x}, ψ(B) = {x, x2}.

For the states in Q1, the possible words w ∈ ϕ(A) are simply w = x,

which has no proper suffixes. Hence Q1 is empty. For Q2 however, as

ψ(B) = {x, x2}, then w = x2 has a proper suffix x. Hence Q2 = {(εC , x)},
and thus

Q = {ι, (εC , x), (εC , εC)}.

For the transition relation δ, we consider each set ∆i individually. Firstly,

∆1 is empty, as εC 6∈ ϕ(A). Similarly, ∆2 is also empty, as εC 6∈ ψ(B).

For ∆3, we will obtain two edges, as ψ(a) = x, which is a prefix of both

ϕ(a) = x and ϕ(b) = x. As ψ(a)−1ϕ(a) = x−1x = εC , and
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ψ(a)−1ϕ(b) = x−1x = εC , then

∆3 = {(ι, (a, a), (εC , εC)), (ι, (b, a), (εC , εC))}.

For ∆4, we will obtain four edges, as ϕ(a) = x = ϕ(b), which are both

prefixes of ψ(a) = x and ψ(b) = x2. These edges are

(ι, (a, a), (εC , εC)),(ι, (a, b), (εC , x)),

(ι, (b, a), (εC , εC)),(ι, (b, b), (εC , x)).

Two of these edges have already been included in δ from ∆3, which will be

accounted for when we take the union of the ∆i.

For ∆5, there are no states of the form (u, εC) for u 6= εC , hence ∆5 is empty.

The same is true for ∆6.

For ∆7 however, the only state of the form (εC , v) for v 6= εC is (εC , x). As

ϕ(a) = x = ϕ(b) are prefixes of x, then we obtain the two edges

∆7 = {((εC , x), (a, εB), (εC , εC)), ((εC , x), (b, εB), (εC , εC))}.

Finally, considering ∆8, as (εC , x) is the only state of the form (εC , v) for

v 6= εC , and x is a prefix of both ϕ(a) = x and ϕ(b) = x, then we’d again

obtain the two edges

∆8 = {((εC , x), (a, εB), (εC , εC)), ((εC , x), (b, εB), (εC , εC))},

which were already accounted for in ∆7.

Taking the union of the ∆i as our transition relation δ, then we obtain the

picture for Aϕ,ψ given in Figure 5.1, overleaf.

(b) Let A = {a, b} = B, and let C = {x}. Define ϕ : A∗ → C∗ and

ψ : B∗ → C∗ by ϕ(a) = x, ϕ(b) = x2 (which is uniquely extended to an

epimorphism from A∗ onto C∗), and ψ(a) = x2, ψ(b) = x (which is uniquely

extended to an epimorphism from B∗ onto C∗).
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ι

εC , εC

εC , x

(a, a), (b, a)

(a, b), (b, b)

(a, εB), (b, εB)

Figure 5.1: Aϕ,ψ for Π(ϕ, ψ) given in Examples 5.2.4 (a).

The fiber product can be given by

Π(ϕ, ψ) = {(u, v) ∈ A+ ×B+ : |u|a + 2|u|b = 2|v|a + |v|b}.

As the images of the alphabets are

ϕ(A) = {x, x2} = ψ(B),

then the only proper prefixes are x, and hence we create the states (x, εC)

according to Q1, and (εC , x) according to Q2, so that

Q = {ι, (εC , εC), (x, εC), (εC , x)}.

Turning to the transition relation δ, as εC does not appear in either ϕ(A) or

ψ(B), then ∆1 = ∆2 = ∅.

For ∆3, the non-empty prefixes of words in ϕ(A) = {x, x2}, are x or x2,

which are mapped onto by b and a via ψ, respectively. This gives us the set

of three edges

∆3 = {(ι, (a, b), (εC , εC)), (ι, (b, a), (εC , εC)), (ι, (b, b), (x, εC))}.

For ∆4, the non-empty prefixes of words in ψ(B) = {x, x2}, are x or x2,
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which are mapped onto by a and b via ϕ, respectively. This gives us the set

of three edges

∆4 = {(ι, (a, b), (εC , εC)), (ι, (b, a), (εC , εC)), (ι, (a, a), (εC , x))}.

For ∆5, the only state of the form (u, εC) for u 6= εC is (x, εC). As ψ(b) = x

which is a prefix of x, then we obtain the set of edges

∆5 = {((x, εC), (εA, b), (εC , εC))}.

Similarly for ∆6, as the only state of the form (u, εC) for u 6= εC is (x, εC),

then x is a prefix of both ψ(b) = x and ψ(a) = x2. This gives us the set of

two edges

∆6 = {((x, εC), (εA, b), (εC , εC)), ((x, εC), (εA, a), (εC , x))}.

For ∆7, the only state of the form (εC , v) for v 6= εC is (εC , x). As ϕ(a) = x

is a prefix of x, then we have the set of edges

∆7 = {((εC , x), (a, εB), (εC , εC))}.

Finally for ∆8, we’re considering edges from the state (εC , x) similarly to ∆7.

As x is a prefix of both ϕ(a) = x and ϕ(b) = x2, then we have the set of two

edges

∆8 = {((εC , x), (a, εB), (εC , εC)), ((εC , x), (b, εB), (x, εC))}.

Taking δ to be the union of the ∆i, we obtain the picture for Aϕ,ψ given in

Figure 5.2, overleaf. 4
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ι εC , εC

εC , x

x, εC

(a, b)

(b, a)

(b, b)

(a, a)

(a, εB)

(εA, b)

(b, εB) (εA, a)

Figure 5.2: Aϕ,ψ for Π(ϕ, ψ) given in Examples 5.2.4 (b).

5.3 The language recognised by the two-tape automa-

ton associated with Π(ϕ, ψ)

We now aim to show that Aϕ,ψ as constructed in 5.2 accepts a language

which corresponds to the set of indecomposable elements of Π(ϕ, ψ). This

will aid us in deciding finite generation by Lemma 5.1.2. Hence we introduce

the following result.

Theorem 5.3.1. Let ϕ : A∗ → C∗, ψ : B∗ → C∗ be two epimorphisms with

A,B,C finite alphabets, and let Aϕ,ψ be the associated automaton given in

Definition 5.2.3. Then

π(L(Aϕ,ψ)) = I,

where π is the product monoid mapping defined in Definition 5.2.1, and I is

the set of indecomposable elements of Π(ϕ, ψ).

Our strategy for proving Theorem 5.3.1 will be to prove each inclusion sep-

arately, by proving the following two lemmas.

Lemma 5.3.2. For ϕ, ψ, I defined in Theorem 5.3.1,

π(L(Aϕ,ψ)) ⊆ I.
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Lemma 5.3.3. For ϕ, ψ, I defined in Theorem 5.3.1,

I ⊆ π(L(Aϕ,ψ)).

We first introduce and prove the following technical lemmas (Lemma 5.3.4

and Lemma 5.3.5) in order to prove Lemma 5.3.2 and Lemma 5.3.3 later in

the section.

Lemma 5.3.4. Let ϕ : A∗ → C∗, ψ : B∗ → C∗ be two epimorphisms with

A,B,C finite alphabets, and let Aϕ,ψ be the associated automaton given in

Definition 5.2.3.

If a path from ι to a state (u, v) ∈ Q has label (α, β) ∈ A∗ ×B∗, then

ϕ(α)v = ψ(β)u. (5.1)

Proof. We will prove inductively on path length that (5.1) holds for any given

path of length k from ι to (u, v) with label (α, β).

For the base case, the paths p of length k = 1 originating from ι are precisely

the transitions described in ∆1, ∆2, ∆3 and ∆4. The paths p ∈ ∆1 ending

in state (εC , εC) have labels (a, εB) for a ∈ A, satisfying ϕ(a) = εC = ψ(εB),

and hence (5.1) holds. The case for ∆2 is similar.

The paths p ∈ ∆3 are of the form p = (ι, (a, b), (ψ(b)−1ϕ(a), εC)) for some

a ∈ A, b ∈ B. Hence the possible labels are (α, β) = (a, b), and the states

are (u, v) = (ψ(b)−1ϕ(a), εC)). Thus

ϕ(α)v = ϕ(a) = ψ(b)ψ(b)−1ϕ(a) = ψ(β)u,

and so (5.1) holds. Similarly, the paths p ∈ ∆4 are of the form

p = (ι, (a, b), (εC , ϕ(a)−1ψ(b)) for some a ∈ A, b ∈ B. Hence

ϕ(α)v = ϕ(a)ϕ(a)−1ψ(b) = ψ(b) = ψ(β)u,

and so (5.1) holds. This proves the base case for paths of length k = 1.

Assume for the inductive hypothesis that if a path from ι to (u, v) has length k
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and label (α, β), then it satisfies (5.1). Consider now a path p′ of length k+1,

from ι to (u′, v′) with label (α′, β′). Then there is a path p from ι to a state

(u, v) of length k with some label (α, β), and a transition t ∈ ∆5∪∆6∪∆7∪∆8

from (u, v) to (u′, v′).

There are two possible cases for the label of the transition t, which we will

consider separately:

Case 1: t has label (εA, b) for some b ∈ B. In this case, t belongs to either

∆5 or ∆6. Hence the state (u, v) is of the form (u, εC) for some u 6= εC .

Moreover, as the path p′ has label (α′, β′) = (α, β)(εA, b), then the path p

has label (α, β) = (α′, β′b−1). If ψ(b) ≤p u, then it follows that t ∈ ∆5, and

hence by definition it follows that (u′, v′) = (ψ(b)−1u, εC). Thus

ψ(β′)u′ = ψ(β′b−1)ψ(b)u′

= ψ(β′b−1)u

= ϕ(α′)v by the inductive hypothesis

= ϕ(α′)v′.

Otherwise, if u ≤p ψ(b), then t ∈ ∆6, and it follows that (u′, v′) = (εC , u
−1ψ(b)).

Hence

ψ(β′)u′ = ψ(β′b−1)ψ(b)

= ψ(β′b−1)uv′

= ϕ(α′)vv′ by the inductive hypothesis

= ϕ(α′)v′.

In both scenarios, (5.1) is satisfied, proving the inductive step.

Case 2: t has label (a, εC) for some a ∈ A. This time, t belongs to either ∆7

or ∆8. Hence the state (u, v) is of the form (εC , v) for some v 6= εC .

Thus the path p′ has label (α′, β′) = (α, β)(a, εB), and hence the path p has

label (α, β) = (α′a−1, β′). In the case where ϕ(a) ≤p v, then t ∈ ∆7 and
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hence by definition it follows that (u′, v′) = (εC , ϕ(a)−1v). Thus

ϕ(α′)v′ = ϕ(α′a−1)ϕ(a)v′

= ϕ(α′a−1)v

= ψ(β′)u by the inductive hypothesis

= ψ(β′)u′.

Otherwise, if v ≤p ϕ(a), then t belongs to ∆8, and hence (u′, v′) = (v−1ϕ(a), εC)

by the definition of ∆8. Thus

ϕ(α′)v′ = ϕ(α′a−1)ϕ(a)

= ϕ(α′a−1)vu′

= ψ(β′)uu′ by the inductive hypothesis

= ψ(β′)u′.

Again, (5.1) is satisfied, proving the inductive step. Hence the result holds

for paths of arbitrary length.

Lemma 5.3.5. For the automata Aϕ,ψ associated with the fiber product

Π(ϕ, ψ), let p = (qi−1, σi, qi)
n
i=1 be a path of length n with q0 = ι. Define

Φ = ϕ ◦ πA∗ ◦ π, Ψ = ψ ◦ πB∗ ◦ π

where π is the product monoid mapping defined in Definition 5.2.1,

πA∗ : A∗ × B∗ → A∗ is projection onto the first coordinate, and

πB∗ : A∗ ×B∗ → B∗ is projection onto the second coordinate.

Then either

qn = (Ψ(σ1 . . . σn)−1Φ(σ1 . . . σn), εC) (5.2)

if Ψ(σ1 . . . σn) ≤p Φ(σ1 . . . σn), or

qn = (εC ,Φ(σ1 . . . σn)−1Ψ(σ1 . . . σn)) (5.3)

if Φ(σ1 . . . σn) ≤p Ψ(σ1 . . . σn).
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Proof. We will proceed by induction on n. For the base case where n = 1,

the path p is a transition (ι, σ1, q1) ∈ ∆1 ∪∆2 ∪∆3 ∪∆4.

If p ∈ ∆1, then σ1 = (a, εB) for some a ∈ A with ϕ(a) = εC . Hence

Φ(σ1) = (ϕ◦πA∗ ◦π)(a, εC) = ϕ(a) = εC , Ψ(σ1) = (ψ ◦πB∗ ◦π)(a, εC) = εC ,

and q1 = (εC , εC) = (Ψ(σ1)−1Φ(σ1), εC) as expected. The case for p ∈ ∆2 is

almost identical.

For p ∈ ∆3 and p ∈ ∆4, (5.2) and (5.3) follow by definition of ∆3 and ∆4,

respectively. This proves the base case.

Assume for the inductive hypothesis that for all paths p = (qi−1, σi, qi)
k
i=1 of

length k, either

qk = (Ψ(σ1 . . . σk)
−1Φ(σ1 . . . σk), εC), (5.4)

if Ψ(σ1 . . . σk) ≤p Φ(σ1 . . . σk), or

qk = (εC ,Φ(σ1 . . . σk)
−1Ψ(σ1 . . . σk)), (5.5)

if Φ(σ1 . . . σk) ≤p Ψ(σ1 . . . σk).

Consider the state q′k+1 for a k + 1 length path p′ = (q′i−1, σ
′
i, q
′
i)
k+1
i=1 in the

case where q′k 6= (εC , εC). By the inductive hypothesis, state q′k satisfies either

(5.4) or (5.5).

In the case of (5.4), then as we assume

Ψ(σ′1 . . . σ
′
k)
−1Φ(σ′1 . . . σ

′
k) 6= εC , the transition (q′k, σ

′
k+1, q

′
k+1) is either an

element of ∆5 or ∆6. Hence σ′k+1 = (εA, b) for some b ∈ B.

If ψ(b) ≤p Ψ(σ′1 . . . σ
′
k)
−1Φ(σ′1 . . . σ

′
k), then by the definition of ∆5, we have

q′k+1 = (ψ(b)−1Ψ(σ′1 . . . σ
′
k)
−1Φ(σ′1 . . . σ

′
k), εC)

= ([Ψ(σ′1 . . . σ
′
k)ψ(b)]−1Φ(σ′1 . . . σ

′
k), εC)

= ([Ψ(σ′1 . . . σ
′
k)Ψ(σ′k+1)]−1Φ(σ′1 . . . σ

′
k), εC)

= (Ψ(σ′1 . . . σ
′
k+1)−1Φ(σ′1 . . . σ

′
k+1), εC),
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and so 5.2 holds. Otherwise if Ψ(σ′1 . . . σ
′
k)
−1Φ(σ′1 . . . σ

′
k) ≤p ψ(b), then by

the definition of ∆6,

q′k+1 = (εC , [Ψ(σ′1 . . . σ
′
k)
−1Φ(σ′1 . . . σ

′
k)]
−1ψ(b))

= (εC ,Φ(σ′1 . . . σ
′
k)
−1Ψ(σ′1 . . . σ

′
k)ψ(b))

= (εC ,Φ(σ′1 . . . σ
′
k)
−1Ψ(σ′1 . . . σ

′
k)Ψ(σ′k+1))

= (εC ,Φ(σ′1 . . . σ
′
k+1)−1Ψ(σ′1 . . . σ

′
k+1)),

and so 5.3 holds.

The case for (5.5) can be proven symmetrically. Hence the inductive step

has been proved, and the result follows for arbitrary n.

We are now in a position to prove Theorem 5.3.1 by proving Lemma 5.3.2

and Lemma 5.3.3 which we restate and prove below.

Lemma 5.3.2. For ϕ, ψ, I defined in Theorem 5.3.1,

π(L(Aϕ,ψ)) ⊆ I.

Proof. Let σ1σ2 . . . σk ∈ L(Aϕ,ψ) be a word of length k, and consider the im-

age

π(σ1σ2 . . . σk) = (α, β) ∈ A∗ ×B∗.

As σ1σ2 . . . σk ∈ L, there exists a length k path p = (qi−1, σi, qi)
k
i=1 in Aϕ,ψ,

from q0 = ι to (εC , εC) with label (α, β). By Lemma 5.3.4, it follows that

ϕ(α) = ψ(β), and hence (α, β) ∈ Π(ϕ, ψ).

Suppose for a contradiction that (α, β) were decomposable in Π(ϕ, ψ). Then

there would exist (α′, β′), (α′′, β′′) ∈ Π(ϕ, ψ) \ {(εA, εB)} such that

(α, β) = (α′, β′)(α′′, β′′) (5.6)

is a non-trivial decomposition of (α, β).

By the definition of the transition relation δ in Aϕ,ψ, either σ1 = (a, εB),

σ1 = (εA, b), or σ1 = (a, b) for some a ∈ A, b ∈ B. The first two situations
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lead to a contradiction, as either p = (ι, (a, εB), (εC , εC)) or

p = (ι, (εA, b), (εC , εC)), and hence either (α, β) = (a, εB) or (α, β) = (εA, b)

which are indecomposable.

Thus σ1 = (a, b) for some a ∈ A, b ∈ B. In particular, it must be that

σ1 = (|α|1, |β|1) (and moreover, (α, β) ∈ A+ ×B+).

Suppose α′ = εA. Then as (α′, β′) ∈ Π(ϕ, ψ) \ {(εA, εB)}, it must be that

β′ ∈ B+ and ψ(β′) = εC . Writing β′ = b1b2 . . . bi for some b1, b2, . . . , bi ∈ B,

it would follow that

ψ(β′) = ψ(b1b2 . . . bi) = ψ(b1)ψ(b2) . . . ψ(bi) = εC ,

and hence in particular ψ(b1) = εC . This is a contradiction, as

ψ(|β|1) = ψ(|β′|1) = ψ(b1) = εC and σ1 = (|α|1, |β|1), but there are no

transitions in δ of the form (ι, (|α|1, |β|1), q1) where ψ(|β|1) = εC . Hence

α′ 6= εA

A similar proof shows that β′ 6= εB, and hence it must be that

(α′, β′) ∈ A+ ×B+. Letting (α, β) = (a1a2 . . . a|α|, b1b2 . . . b|β|), then

(α′, β′) = (a1a2 . . . am, b1b2 . . . bn)

for some 1 ≤ m ≤ |α|, 1 ≤ n ≤ |β| with m+n < |α|+ |β|. As a1a2 . . . am and

πA∗(π(σ1σ2 . . . σi)) (for 1 ≤ i ≤ k) are prefixes of α, then there is a minimal

M ∈ N such that a1a2 . . . am = πA∗(π(σ1σ2 . . . σM)). Similarly, we can choose

an N ∈ N minimally such that b1b2 . . . bn = πB∗(π(σ1σ2 . . . σN)).

It cannot be that the length k of path p is equal to one, for then

(α, β) = π(σ1) = (a, b) for some a ∈ A, b ∈ B, with either ϕ(a) 6= εC or

ψ(b) 6= εC , and hence by definition of δ it would follow that (α, β) is inde-

composable.

Thus k > 1, and further by definition of δ, each σi for i > 1 is either equal

to (a, εB) or (εA, b) for some a ∈ A, b ∈ B, and so it cannot be that M = N .
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Letting µ = min{M,N}, it then follows that

π(σ1σ2 . . . σµ) =

(a1a2 . . . am, b1b2 . . . bn′) for some n′ < n if M < N,

(a1a2 . . . am′ , b1b2 . . . bn) for some m′ < m if N < M.

In the first case where µ = M , we claim that

π(σ1σ2 . . . σM+t) = (a1a2 . . . am, b1b2 . . . bn′+t), (5.7)

for all 0 ≤ t ≤ n − n′. We will show this by proving the case for t = 0, and

then showing that the case for t = l implies the case for t = l + 1, when

l < n− n′.

For the first case where t = 0, we have already seen that

π(σ1σ2 . . . σM) = (a1a2 . . . am, b1b2 . . . bn′).

If the case for t = l is true, then

π(σ1σ2 . . . σM+l) = (a1a2 . . . am, b1b2 . . . bn′+l),

For the next case t = l+1, we will determine σM+l+1 by considering the state

qM+l. As ψ(b1b2 . . . bn′+l) ≤p ψ(b1b2 . . . bn) for l < n − n′, and

ψ(b1b2 . . . bn) = ϕ(a1a2 . . . am), then

ψ(b1b2 . . . bl) ≤p ϕ(a1a2 . . . am). (5.8)

Recalling the definitions of Φ and Ψ from Lemma 5.3.5, as

Φ(σ1σ2 . . . σM+l) = (ϕ ◦ πA∗ ◦ π)(σ1σ2 . . . σM+l) = ϕ(a1a2 . . . am)

and

Ψ(σ1σ2 . . . σM+l) = (ψ ◦ πB∗ ◦ π)(σ1σ2 . . . σM+l) = ψ(b1b2 . . . bn′+l),

then by (5.8) and Lemma 5.3.5, the state qM+l is either in Q1 or

qM = (εC , εC). The latter case leads to a contradiction, as then
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(α, β) = (a1a2 . . . am, b1b2 . . . bn′+l) with n′ + l < n ≤ |β|. Hence it must

be that qM+l ∈ Q1, and hence σM+l+1 = (εA, b) for some b ∈ B.

As

πB∗(π(σ1σ2 . . . σM+lσM+l+1)) = b1b2 . . . bn′+lb,

and πB∗(π(σ1σ2 . . . σMσM+l+1)) is a prefix of β′, then it must be that

b = bn′+l+1. Thus as πA∗(π(σ1σ2 . . . σMσM+l+1)) = (a1a2 . . . am), we have

shown that

π(σ1σ2 . . . σM+l+1) = (a1a2 . . . am, b1b2 . . . bn′+l+1),

and have hence proved our claim in (5.7), as t = 0 implies t = 1, and t = 1

implies t = 2 and so on, until t = n − n′. Thus in the case that µ = M , in

particular we have

π(σ1σ2 . . . σM+n−n′) = (a1a2 . . . am, b1b2 . . . bn).

Hence by Lemma 5.3.5, it follows that qM+n−n′ = (εC , εC), as

(a1a2 . . . am, b1b2 . . . bn) ∈ Π(ϕ, ψ). As there are no transitions leading out

from the state (εC , εC) by the definition of δ, it must then be that

qk = qM+n−n′ , and thus (α, β) = (α′, β′).

This is a contradiction of the non-triviality of the decomposition in (5.6),

and hence (α, β) is indecomposable in the case where µ = M . The case for

µ = N is similar to µ = M , when showing that

π(σ1σ2 . . . σN+t) = (a1a2 . . . am′+t, b1b2 . . . bn)

for 0 ≤ t ≤ m′ −m, and deducing that qN+m−m′ = (εC , εC), again showing

by Lemma 5.3.5 that (α, β) = (α′, β′).

Thus we have shown that (α, β) ∈ I for any (α, β) ∈ π(L(Aϕ,ψ)), and hence

the result follows.

Lemma 5.3.3. For ϕ, ψ, I defined in Theorem 5.3.1,

I ⊆ π(L(Aϕ,ψ)).
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Proof. Let (α, β) ∈ Π(ϕ, ψ) be an indecomposable element. We will con-

struct a path p = (qi−1, σi, qi)
k
i=1 with q0 = ι and qk = (εC , εC) so that

σ1σ2 . . . σk ∈ L(Aϕ,ψ), and π(σ1σ2 . . . σk) = (α, β).

In the particular case where α = εA, it must be that β ∈ B+. Writing

β = b1b2 . . . bn for some b1, b2, . . . bn ∈ B, then as

εC = ϕ(α) = ψ(β) = ψ(b1b2 . . . bn) = ψ(b1)ψ(b2) . . . ψ(bn),

it follows that ψ(bi) = εC for each 1 ≤ i ≤ n. Hence if (α, β) is indecompos-

able with α = εA, it follows that (α, β) = (εA, b) for some b ∈ B. Now the

transition

p = (ι, (εA, b), (εC , εC)) ∈ ∆2

is a path accepting the word σ1 = (εA, b) ∈ Σ∗, with π(σ1) = (α, β), and

hence (α, β) ∈ π(L(Aϕ,ψ)) in this particular case.

Similarly, if β = εB, then (α, β) = (a, εB) for some a ∈ A, and the transition

p = (ι, (a, εB), (εC , εC)) ∈ ∆1 is a path accepting the word

σ1 = (a, εB) ∈ Σ∗, with π(σ1) = (α, β). Hence again, (α, β) ∈ π(L(Aϕ,ψ)).

We will thus consider the final case where (α, β) ∈ A+×B+. Hence suppose

(α, β) = (a1a2 . . . a|α|, b1b2 . . . b|β|)

for some a1, a2, . . . , a|α| ∈ A, b1, b2, . . . , b|β| ∈ B. Define the sequence of triples

p = (qi−1, σi, qi)
|α|+|β|−1
i=1 ∈ Q× Σ×Q (where Q,Σ are as in Definition 5.2.3)

by q0 = ι, σ1 = (a1, b1), and (recalling the definitions of Φ and Ψ from

Lemma 5.3.5)

qi =

(Ψ(σ1 . . . σi)
−1Φ(σ1 . . . σi), εC) if Ψ(σ1 . . . σi) ≤p Φ(σ1 . . . σi)

(εC ,Φ(σ1 . . . σi)
−1Ψ(σ1 . . . σi)) if Φ(σ1 . . . σi) ≤p Ψ(σ1 . . . σi)

for 1 ≤ i ≤ |α|+ |β| − 1, and finally

σi =

(aji−1
, εB) if qi−1 ∈ Q2

(εA, bki−1
) if qi−1 ∈ Q1

(5.9)
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(where ji−1 = |πA∗(π(σ1 . . . σi−1))| + 1, and ki−1 = |πB∗(π(σ1 . . . σi−1))| + 1

for 2 ≤ i ≤ |α|+ |β| − 1).

Firstly, each qi is a well defined state in Aϕ,ψ, as for each

1 ≤ i ≤ |α| + |β| − 1, Φ(σ1σ2 . . . σi) is a prefix of ϕ(α), Φ(σ1σ2 . . . σi) is

a prefix of ψ(β), and ϕ(α) = ψ(β). Hence either Φ(σ1σ2 . . . σi) is a prefix of

Ψ(σ1σ2 . . . σi), or vice versa for each i.

Moreover, qi 6= (εC , εC) for i < |α| + |β| − 1 by indecomposability of (α, β).

Hence as each qi ∈ Q1 ∪ Q2 for 1 ≤ i ≤ |α| + |β| − 1, then each σi is a well

defined element of Σ in Aϕ,ψ.

We make the following claims about the sequence of triples

p = (qi−1, σi, qi)
|α|+|β|−1
i=1 just defined:

Claim 1: (qi−1, σi, qi) ∈ δ for 1 ≤ i ≤ |α|+ |β| − 1, and hence p is a path in

Aϕ,ψ.

Claim 2: π(σ1σ2 . . . σ|α|+|β|−1) = (α, β).

From Claim 2, it follows that q|α|+|β|−1 = (εC , εC) by Lemma 5.3.5 as

Φ(σ1σ2 . . . σ|α|+|β|−1) = ϕ(α) = ψ(β) = Ψ(σ1σ2 . . . σ|α|+|β|−1),

and thus σ1σ2 . . . σ|α|+|β|−1 ∈ L(Aϕ,ψ). Hence (α, β) ∈ π(L(Aϕ,ψ)), complet-

ing the proof of the result.

It thus remains to prove Claim 1 and Claim 2.

Proof of Claim 1: In the case of i = 1, σ1 = (a1, b1) by definition. As

Φ(σ1) = ϕ(a1), and Ψ(σ1) = ψ(b1), then as ϕ(α) = ψ(β), either

ψ(b1) ≤p ϕ(a1) or ϕ(a1) ≤p ψ(b1). Hence either

q1 = (Ψ(σ1)−1Φ(σ1), εC) = (ψ(b1)−1ϕ(a1), εC)

if ψ(b1) ≤p ϕ(a1), thus (q0, σ1, q1) = (ι, (a1, b1), (ψ(b1)−1ϕ(a1), εC)) ∈ ∆3 as

required, or

q1 = (εC ,Φ(σ1)−1Ψ(σ1)−1) = (εC , ϕ(a1)−1ψ(b1))
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if ϕ(a1) ≤p ψ(b1), thus (q0, σ1, q1) = (ι, (a1, b1), (εC , ϕ(a1)−1ψ(b1)) ∈ ∆4 as

required.

For i > 1, the triple (qi−1, σi, qi) is such that qi−1 ∈ Q1∪Q2. We will consider

the cases where qi−1 ∈ Q1 and qi−1 ∈ Q2 separately, showing in both cases

that (qi−1, σi, qi) ∈ δ for 1 < i ≤ |α|+ |β| − 1.

If qi−1 ∈ Q1, then qi−1 = (Ψ(σ1 . . . σi−1)−1Φ(σ1 . . . σi−1), εC) and

σi = (εA, bki−1
) by construction, where ki−1 = |πB∗(π(σ1σ2 . . . σi−1))| + 1.

If Ψ(σ1 . . . σi) ≤p Φ(σ1 . . . σi), then as Φ(σ1 . . . σi) = Φ(σ1 . . . σi−1), and

Ψ(σ1 . . . σi) = Ψ(σ1 . . . σi−1)ψ(bki−1
), it follows that ψ(bki−1

) is a prefix of

Ψ(σ1 . . . σi−1)−1Φ(σ1 . . . σi−1). Moreover, by construction,

qi = (Ψ(σ1 . . . σi)
−1Φ(σ1 . . . σi), εC)

= ([Ψ(σ1 . . . σi−1)Ψ(σi)]
−1Φ(σ1 . . . σi−1), εC)

= (Ψ(σi)
−1Ψ(σ1 . . . σi−1)−1Φ(σ1 . . . σi−1), εC)

= (ψ(bki)
−1Ψ(σ1 . . . σi−1)−1Φ(σ1 . . . σi−1), εC).

Hence (qi−1, σi, qi) ∈ ∆5 ⊆ δ by definition. Similarly if

Φ(σ1 . . . σi) ≤p Ψ(σ1 . . . σi), then as Φ(σ1 . . . σi) = Φ(σ1 . . . σi−1) and

Ψ(σ1 . . . σi) = Ψ(σ1 . . . σi−1)ψ(bki−1
), it follows that Ψ(σ1 . . . σi−1)−1Φ(σ1 . . . σi−1)

is a prefix of ψ(bki−1
). Moreover, by construction,

qi = (εC ,Φ(σ1 . . . σi)
−1Ψ(σ1 . . . σi))

= (εC ,Φ(σ1 . . . σi−1)−1Ψ(σ1 . . . σi−1)Ψ(σi))

= (εC , [Ψ(σ1 . . . σi−1)−1Φ(σ1 . . . σi−1)]−1Ψ(σi))

= (εC , [Ψ(σ1 . . . σi−1)−1Φ(σ1 . . . σi−1)]−1ψ(bki)),

thus (qi−1, σi, qi) ∈ ∆6 ⊆ δ by definition.

Otherwise, if qi−1 ∈ Q2, then qi−1 = (εC ,Φ(σ1 . . . σi−1)−1Ψ(σ1 . . . σi−1)) and

σi = (aji−1
, εB) by construction, where ji−1 = |πA∗(π(σ1σ2 . . . σi−1))| + 1. A

similar proof to the case where qi−1 ∈ Q1 gives that (qi−1, σi, qi) ∈ ∆7 ⊆ δ if

Φ(σ1 . . . σi) ≤p Ψ(σ1 . . . σi), and that (qi−1, σi, qi) ∈ ∆8 ⊆ δ if
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Ψ(σ1 . . . σi) ≤p Φ(σ1 . . . σi).

Thus having considered all cases, we have shown that (qi−1, σi, qi) ∈ δ for

1 ≤ i ≤ |α|+ |β| − 1, concluding the proof of Claim 1.

Proof of Claim 2: We will show that π(σ1σ2 . . . σ|α|+|β|−1) = (α, β). Firstly,

we will consider the possible values for each ji, ki as defined in the construc-

tion of the σi for 1 ≤ i ≤ |α|+ |β| − 1.

In the case of j1, as σ1 = (a1, b1) by definition, then

j1 = |πA∗(π(σ1))|+ 1 = |a1|+ 1 = 2.

More generally for i > 1, if σi = (aji−1
, εB), then

ji = |πA∗(σ1 . . . σi)|+ 1 = (|πA∗(σ1 . . . σi−1)|+ 1) + 1 = ji−1 + 1,

whereas if σi = (εA, bki−1
), then

ji = |πA∗(σ1 . . . σi)|+ 1 = |πA∗(σ1 . . . σi−1)|+ 1 = ji−1.

It follows that the set

SA = {ji : 2 ≤ i ≤ |α|+ |β| − 1, σi ∈ A× {εB}}

is equal to {2, 3, 4 . . . ,m} for some m ≤ |α|, and moreover satisfies

ji < ji′ ⇔ i < i′. Now as

πA∗(π(σ1σ2 . . . σ|α|+|β|−1)) = a1aji1aji2 . . . ajiµ

for ji1 , ji2 , . . . jiµ ∈ SA with µ = |SA| and i1 < i2 < · · · < iµ, it must be that

πA∗(π(σ1σ2 . . . σ|α|+|β|−1)) = a1a2a3 . . . am. (5.10)

A very similar proof shows that when considering the values of ki, the set

SB = {ki : 1 ≤ i ≤ |α|+ |β| − 1, σi ∈ {εA} ×B}

156



is equal to {2, 3, 4 . . . , n} for some n ≤ |β|, satisfies ki < ki′ ⇔ i < i′, and

hence we can similarly deduce that

πB∗(π(σ1σ2 . . . σ|α|+|β|−1)) = b1b2b3 . . . bn. (5.11)

Together, (5.10) and (5.11) imply that

π(σ1σ2 . . . σ|α|+|β|−1) = (a1a2a3 . . . am, b1b2b3 . . . bn),

and hence to prove the claim it remains to show that m = |α|, and

n = |β|.

As m ≤ |α|, suppose for a contradiction that m < |α|. As m = |SA| + 1, it

follows that |SA| < |α| − 1. As

|SA|+ |SB| = |α| − 1 + |β| − 1 = |α|+ |β| − 2,

it now follows that

|α|+ |β| − 2 < |α| − 1 + |SB| ⇒ |β| − 1 < |SB|.

But as |SB| = n− 1, it follows that |β| − 1 < n− 1, and hence |β| < n which

is a contradiction, as we saw that n ≤ |β|. Hence it must be that m = |α|.
A similar proof shows that n = |β|, and hence we have proved Claim 2, and

thus the result.

By proving Lemma 5.3.2 and Lemma 5.3.3, we have now proved Theorem

5.3.1, which we restate below.

Theorem 5.3.1. Let ϕ : A∗ → C∗, ψ : B∗ → C∗ be two epimorphisms with

A,B,C finite alphabets, and let Aϕ,ψ be the associated automaton given in

Definition 5.2.3. Then

π(L(Aϕ,ψ)) = I,

where π is the product monoid mapping defined in Definition 5.2.1, and I is

the set of indecomposable elements of Π(ϕ, ψ).
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5.4 Decidability of finite generation for fiber products

of free semigroups and monoids over free fibers

Having constructed automata recognising a language corresponding to the

indecomposable elements of the fiber product Π(ϕ, ψ), in this section we will

use the automata to determine finite generation of Π(ϕ, ψ). We begin by

presenting the following result as a corollary to Theorem 5.3.1, which gives

a necessary and sufficient criterion for the fiber product of two free monoids

over a free monoid fiber to be finitely generated.

Theorem 5.4.1. Let ϕ : A∗ → C∗, ψ : B∗ → C∗ be two epimorphisms with

A,B,C finite alphabets, and let Aϕ,ψ be the associated automaton given in

Definition 5.2.3. Then the following are equivalent:

(i) Π(ϕ, ψ) is finitely generated;

(ii) Aϕ,ψ is acyclic.

Proof. For (i) ⇒ (ii), we will prove the contrapositive: if Aϕ,ψ has a cycle,

then Π(ϕ, ψ) is not finitely generated.

Hence let (qi−1, σi, qi)
k
i=1 be a cycle in Aϕ,ψ, so that q0 = qk. As there are

no transitions of the form ((εC , εC), σi, qi) or (qi−1, σi, ι) in δ by definition,

then it must be that q0 ∈ Q1 ∪ Q2. That is, either q0 = (u, εC) for some

u ∈ C+ with u <s w for some w ∈ ϕ(A), or q0 = (εC , v) for some v ∈ C+

with v <s w
′ for some w′ ∈ ψ(B).

We will consider the case for q0 = (u, εC), as the case for q0 = (εC , v) can be

given by a similar symmetric argument. As u is a suffix of w = ϕ(a) for some

a ∈ A, and ψ is surjective, then there exist b1, . . . , bj, b
′
1, . . . , b

′
l ∈ B such that

ψ(b1 . . . bj)u = w and ψ(b′1 . . . b
′
l) = u. In particular, each bi, b

′
i ∈ B can be

chosen so that ψ(bi) 6= εC and ψ(b′i) 6= εC .

We construct the sequences of transitions (pi−1, τi, pi)
j
i=1 and (ri−1, ρi, ri)

l
i=1

where

1. (p0, τ1, p1) = (ι, (a, b1), (ψ(b1)−1w, εC)),
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2. pi = (ψ(b1...bi)
−1w, εC), τi = (εA, bi) for 1 < i ≤ j ,

3. r0 = q0, ρi = (εA, b
′
i), ri = (ψ(b′1 . . . b

′
i)
−1u, εC) for 1 ≤ i ≤ l.

Note that (p0, τ1, p1) ∈ ∆3 as ψ(b1) ≤p ψ(b1 . . . bj)u, ψ(b1 . . . bj)u = w = ϕ(a),

and thus ψ(b1) ≤p ϕ(a) with ψ(b1) 6= εC . Further, for 1 < i ≤ j,

(pi−1, ti, pi) = ((ψ(b1 . . . bi−1)−1w, εC), (εA, bi), (ψ(b1 . . . bi)
−1w, εC)) ∈ ∆5,

as ψ(b1 . . . bi−1)−1w 6= εC , ψ(bi) ≤p ψ(b1 . . . bi−1)−1w, and

ψ(bi)
−1ψ(b1 . . . bi−1)−1w = [ψ(b1 . . . bi−1)ψ(bi)]

−1w = ψ(b1 . . . bi)
−1w.

Similarly, (r0, ρi, r1) = ((u, εC), (εA, b
′
1), (ψ(b′1)−1u, εC)) ∈ ∆5, as u 6= εC and

ψ(b′1) ≤p u. Moreover for 1 < i ≤ l,

(ri−1, ρi, ri) = ((ψ(b′1 . . . b
′
i−1)−1u, εC), (εA, b

′
i), (ψ(b′1 . . . b

′
i)
−1u, εC)) ∈ ∆5,

as ψ(b′1 . . . b
′
i−1)−1u 6= εC , ψ(b′i) ≤p ψ(b′1 . . . b

′
i−1)−1u, and

ψ(b′i)
−1ψ(b′1 . . . b

′
i−1)−1u = [ψ(b′1 . . . b

′
i−1)ψ(b′i)]

−1u = ψ(b′1 . . . b
′
i)
−1u.

Noting that p0 = ι, pj = q0 = qk = r0 and rl = (εC , εC), it follows that

the concatenation of the sequence (pi−1, τi, pi)
j
i=1, n copies of the sequence

(qi−1, σi, qi)
k
i=1, and (ri−1, ρi, ri)

k
i=1 gives a path of length j + kn + l in Aϕ,ψ

originating from ι and ending in (εC , εC).

This path has label τ1τ2 . . . τj(σ1σ2 . . . σk)
nρ1ρ2 . . . ρl, and hence

τ1τ2 . . . τj(σ1σ2 . . . σk)
nρ1ρ2 . . . ρl ∈ L(Aϕ,ψ)

for all n ∈ N. Thus by Theorem 5.3.1,

π(τ1τ2 . . . τj(σ1σ2 . . . σk)
nρ1ρ2 . . . ρl) ∈ I

for all n ∈ N. Hence by Lemma 5.1.1, it follows that Π(ϕ, ψ) is not finitely

generated, as it has infinitely many indecomposable elements.

For (ii) ⇒ (i), suppose that Aϕ,ψ has no cycles. As A and B are finite, it
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follows that Q and δ are finite, and hence Aϕ,ψ is a finite automaton. As

Aϕ,ψ has no cycles, then there are only finitely many paths in Aϕ,ψ, and

thus the language accepted by Aϕ,ψ is finite. By Theorem 5.3.1, Π(ϕ, ψ)

has finitely many decomposable elements, and hence is finitely generated by

Lemma 5.1.1.

For a given fiber product Π(ϕ, ψ), the associated automaton Aϕ,ψ can be

viewed as a directed graph with finitely many nodes and edges. As it is

decidable whether or not a finite directed graph has cycles, we have shown

the following result.

Theorem 5.4.2. Given a fiber product Π(ϕ, ψ) of two free monoids A∗ and

B∗ over the free monoid fiber C∗ (where |A|, |B|, |C| < ∞), it is decidable

whether or not Π(ϕ, ψ) is finitely generated as a monoid.

Having dealt with the case for free monoids, we are able also derive analagous

results for free semigroups. Given epimorphisms ϕ : A+ → C+,

ψ : B+ → C+ (with A,B,C finite alphabets), we can extend ϕ and ψ

naturally to epimorphisms ϕ′ : A∗ → C∗, ψ′ : B∗ → C∗ by mapping εA and

εB to εC .

As Π(ϕ′, ψ′) = Π(ϕ, ψ) ∪ {(εA, εB)}, then Π(ϕ, ψ) is finitely generated as a

semigroup if and only if Π(ϕ′, ψ′) is finitely generated as a monoid. From

Lemma 5.1.2, this gives us the following corollaries.

Corollary 5.4.3. Let ϕ : A+ → C+, ψ : B+ → C+ be two epimorphisms

with A,B,C finite alphabets, and let Aϕ′,ψ′ be the associated automaton given

in Definition 5.2.3, where ϕ′ : A∗ → C∗ and ψ′ : A∗ → C∗ are the natural

monoid epimorphism extensions. Then the following are equivalent:

(i) Π(ϕ, ψ) is finitely generated;

(ii) Aϕ′,ψ′ is acyclic.

Corollary 5.4.4. Given a fiber product Π(ϕ, ψ) of two free semigroups A+

and B+ over the free semigroup fiber C+ (where |A|, |B|, |C| < ∞), it is

decidable whether or not Π(ϕ, ψ) is finitely generated as a semigroup.
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We conclude the chapter with some examples of finitely generated and non-

finitely generated fiber products of free monoids over a free monoid.

Examples 5.4.5. (a) Recall from Examples 5.2.4 (a) that the fiber product

Π(ϕ, ψ) = {(u, v) ∈ A∗ ×B∗ : |u| = |v|a + 2|v|b}

has the associated two-tape automaton Aϕ,ψ given by Figure 5.3, printed

below.

ι

εC , εC

εC , x

(a, a), (b, a)

(a, b), (b, b)

(a, εB), (b, εB)

Figure 5.3: Aϕ,ψ for Π(ϕ,ψ) given in Examples 5.4.5 (a).

We saw in Example 4.3.8 that Π(ϕ, ψ) was finitely generated. This is now

evidenced once more by Theorem 5.4.1, as we can see by inspection of 5.3

that Aϕ,ψ has no cycles.

(b) Recall from Examples 5.2.4 that the fiber product

Π(ϕ, ψ) = {(u, v) ∈ A+ ×B+ : |u|a + 2|u|b = 2|v|a + |v|b}

has the associated two-tape automata Aϕ,ψ given by Figure 5.4, overleaf.

Then by Theorem 5.4.1, Π(ϕ, ψ) is not finitely generated, as it has a cycle

between the states (εC , x) and (x, εC). The automaton accepts words in the

language

{(a, a)[(b, εB)(εA, a)]m(a, εB) ∈ Σ∗ : m ∈ N}.

Considering the image of these words under the product monoid mapping π,
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ι εC , εC

εC , x

x, εC

(a, b)

(b, a)

(b, b)

(a, a)

(a, εB)

(εA, b)

(b, εB) (εA, a)

Figure 5.4: Aϕ,ψ for Π(ϕ,ψ) given in Examples 5.4.5 (b).

then by Theorem 5.3.1, it follows that the set

{(abma, am+1) ∈ A∗ ×B∗ : m ∈M}

is an infinite set of indecomposable elements of Π(ϕ, ψ). 4
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Chapter 6

Concluding remarks and further

questions

In this concluding chapter, we briefly summarise the thesis by reflecting on

our findings, and pose some arising questions for future research. A num-

ber of these questions have also been posed in [7] and [6], written by the

author.

In Chapter 2, we commented that Z×Z had only two non-trivial subgroups up

to isomorphism, and hence contained only finitely many subdirect products

up to isomorphism. By contrast, we proved that the direct product N × N
has uncountably many subsemigroups up to isomorphism (Theorem 2.1.12).

This was later used to prove that the finite power Nk had uncountably many

subdirect products up to isomorphism (Theorem 2.3.3).

Both N and Z are examples of finitely generated commutative semigroups,

but have different subdirect substructure. We thus ask the following.

Question 6.0.1 ([7, Question 4.1]). Is it possible to characterise all pairs

of finitely generated commutative semigroups S , T such that there are only

countably many pairwise nonisomorphic subdirect products of S and T?

We also give a generalisation of this question to finitely generated free semi-

groups of other varieties, as below.

163



Question 6.0.2 ([7, Question 4.3]). How many pairwise non-isomorphic sub-

semigroups and subdirect products does F ×F contain, where F is a finitely

generated free semigroup in some other well-known semigroup varieties, such

as inverse semigroups or completely regular semigroups?

We derived that the direct product of two semigroups, both of which with

infinite order elements, has uncountably many subsemigroups up to isomor-

phism (Corollary 2.1.13). We ask the following additional questions based

on this result.

Question 6.0.3. Does Corollary 2.1.13 generalise to subdirect products?

That is, if S and T are semigroups with elements of infinite order, can we al-

ways find uncountably many subdirect products of S×T up to isomorphism?

If not, for which S and T is this true?

We also classified in Theorem 2.2.4 and Theorem 2.4.1 the finite semigroups

S for which N × S has only countably many subsemigroups, and subdirect

products respectively. We found that in both cases, the structure of S played

the key role in determining countability. In the subsemigroups case, S needed

to be a union of groups. In the subdirect product case, every element of S

needed to have a relative left or right identity. We saw in Examples 2.4.2

that such semigroups can be as small as order 2. This is surprising, as we saw

that N had only countably subsemigroups up to isomorphism, but N×{x, 0}
did not, for {x, 0} the two element zero semigroup. In a similar vein to

Question 6.0.1, we ask the folllowing.

Question 6.0.4 ([7, Question 4.2]). Given a finitely generated infinite com-

mutative semigroup S, is it possible to characterise all finite semigroups T

such that S × T has only countably many pairwise non-isomorphic subsemi-

groups or subdirect products? Do these characterisations depend on S?

Leading on from the results of Chapter 2, we continued our combinatorial

survey of subdirect products of free semigroups in Chapter 3, with a view

towards finite generation. In particular, we found the number of sets of letter

pairs which generated subdirect products of free semigroups in Lemma 3.1.4.

Within these sets, we then counted the number which also generated fiber

164



products in Corollary 3.2.5. The analytic comparison of Proposition 3.3.1

suggested that finitely generated subdirect products of this type were nu-

merous, but we argued in Proposition 3.3.2 that few of them arise as fibered

products.

Sets of letter pairs are just one example of finitely generating subdirect prod-

ucts however. Any finite generating set for a subdirect product of free semi-

groups has a bound on the length of the words in each factor. Sets of letter

pairs are the special case where this bound is set to be one. We hence ask

the following.

Question 6.0.5. Given a bound k ∈ N, how many subsets of A+ × B+

consisting of pairs (u, v) with |u|, |v| ≤ k generate a subdirect product of

A+ ×B+? How many generate fiber products? Is it decidable when a given

subset generates a fiber product? Is there a matrix characterisation of such

subsets, as in the proofs of Lemma 3.1.4 and Corollary 3.2.5?

In Chapter 4, we concentrated on the finitary properties of finite generation

and finite presentation, in particular for fiber products of free semigroups

and monoids. We saw that for finite fibers, fiber products of free monoids

are finitely generated only in the case where the fiber is a cyclic group, and

the associated epimorphisms are constant on the alphabet (Theorem 4.1.4).

In the case of finite generation however, we saw that we also have finite

presentation, and gave such presentations in the proof of Theorem 4.2.1. We

argued that this perhaps indicates that fiber products of free semigroups are

hard to finitely generate.

Contrastingly, we showed that fiber products of free semigroups over finite

fibers are never finitely generated or presented (Proposition 4.3.1). We saw

that, for finitely generated fiber products of free semigroups, the fiber need be

an infinite, J -trivial, idempotent-free finitely generated semigroup (Propo-

sition 4.3.1, Proposition 4.3.3, and Proposition 4.3.4). These conditions on a

semigroup are particularly restrictive, but we saw in Lemma 4.3.6 that they

are not sufficient to ensure finite generation. Additional requirements for the

epimorphisms are also likely necessary. We ask the following questions based
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on this material.

Question 6.0.6 ([6, Question 7.1]). Does there exist a finitely generated

subdirect product (non-fibered) of two free monoids with a finite quotient,

which is not finitely presented?

Question 6.0.7. Find further necessary conditions on a fiber product of free

semigroups to be finitely generated. What are the necessary conditions for

the Cayley graph of the fiber?

Question 6.0.8 ([6, Question 7.3]). Does Theorem 4.1.4 generalise to fiber

products of free monoids over infinite fibers? That is, is every finitely gen-

erated fiber product of two free monoids also finitely presented?

We finished our study in Chapter 5, where we discussed the finite generation

problem for fiber products of free semigroups and monoids, particularly with

free fibers. We determined, in general, that the number of indecomposable

elements of a fiber product ultimately decides whether it is finitely gener-

ated or not (Lemma 5.1.1, Lemma 5.1.2). We utilised a two-tape automatic

construction in order to decide the cardinality of the set of indecomposables,

showing that such automata accept a language in bijection with the indecom-

posables (Theorem 5.3.1). We deduced that this set was finite if and only

if the automata constructed were acyclic (Theorem 5.4.1,Corollary 5.4.3),

which is a decidable property of graphs. We concluded that the finite gen-

eration problem for fiber products of free semigroups and monoids over free

fibers is decidable (Theorem 5.4.2, Corollary 5.4.4).

The following questions arise from these results.

Question 6.0.9. In the case of finite generation for a fiber product of two

free semigroups/monoids over a free fiber, can we deduce a finite presentation

for it, given the associated two-tape automaton?

Question 6.0.10. Can two-tape automata be used to recognise the indecom-

posable elements of fiber products over other infinite fibers? What properties

of such automata can be deduced, and how do they relate to the structure

of the fiber?
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