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Abstract

The use of inappropriate methods for estimating the effects of covariates in survival data

with frailty leads to erroneous conclusions in medical research. This study evaluated the

performance of 13 survival regression models in assessing the factors associated with the

timing of complications in implant-supported dental restorations in a Swedish cohort. Data

were obtained from randomly selected cohort (n = 596) of Swedish patients provided with

dental restorations supported in 2003. Patients were evaluated over 9 years of implant loss,

peri-implantitis or technical complications. Best Model was identified using goodness, AIC

and BIC. The loglikelihood, the AIC and BIC were consistently lower in flexible parametric

model with frailty (df = 2) than other models. Adjusted hazard of implant complications was

45% (adjusted Hazard Ratio (aHR) = 1.449; 95% Confidence Interval (CI): 1.153–1.821, p =

0.001) higher among patients with periodontitis. While controlling for other variables, the

hazard of implant complications was about 5 times (aHR = 4.641; 95% CI: 2.911–7.401,

p<0.001) and 2 times (aHR = 2.338; 95% CI: 1.553–3.519, p<0.001) higher among patients

with full- and partial-jaw restorations than those with single crowns. Flexible parametric sur-

vival model with frailty are the most suitable for modelling implant complications among the

studied patients.

Introduction

Survival regression methods are commonly used to explore heterogeneity among subjects in

medical research [1] and to estimate prognostic factors for survival [2–6]. However, one of the

major challenges in survival analysis modelling is clustering among followed subjects, other-

wise known as frailty [7,8]. The concept of frailty is an issue of discourse in statistical model-

ling, including survival analysis. Frailty is a group-specific latent random effect that multiplies
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into the hazard function. The frailties are unobservable positive quantities. They follow a

gamma distribution with a mean of 1 and variance to be estimated from the data. Theoreti-

cally, any distribution with positive support (mean = 1) and finite variance may be used to

model frailty. In most cases, shared-frailty models are used to model the within-group correla-

tion. Observations within a particular group are often referred to as correlated because they

share the same frailty. Let us consider the case of patients attending a dental clinic. Any of the

patients may have issues with any of their teeth after a particular intervention. The teeth of a

single patient form a cluster. While it is reasonable to assume independence of the dental

patients, it is incorrect to assume that the occurrence of infection to any of the teeth within

each patient is independent. It is necessary therefore to accommodate the potential “depen-

dency” by assuming that it was the result of a latent patient-level effect or frailty. Non-consid-

eration of clustering in clustered data causes poor model fit and biased estimates. This suggests

that a mixed-effects model that contains both the random and fixed effects would be most

appropriate to model such outcomes.

The alternative, traditional survival regression models, divided into parametric (Poisson,

Weibull), semiparametric (Cox), and nonparametric (Kaplan–Meier) have distinct disadvan-

tages that could make them unsuitable to correctly predict survival outcomes [1,9]. For

instance, the Kaplan-Meier model does not accommodate covariates, hence its utilization is

limited [1,5]. Although the Cox proportional hazard (CPH) model is the most commonly used

model in survival analyses [1,10,11] and has been used extensively in the literature [4,11–13],

its efficiency is limited for short observation periods [1]. Further, its distribution-free assump-

tion is often violated in long-term studies. In either case, many of the subjects may not have

experienced the event of interest and, thus, survival and cumulative hazard functions are

incomplete and cannot be extrapolated in the CPH [1]. The CPH models assume a constant

hazard, an assumption that is also frequently violated [14,15]. The Cox model has an advantage

in that it does not assume the form of the baseline hazard function, therefore, not hindering

the prediction of hazards and other related functions for a given set of covariates but this

advantage gave birth to its major disadvantage [14]. Moreover, survival and cumulative hazard

functions of the CPH model are step functions and, thus, limit the possibility of having smooth

functions [10,16].

Parametric models, such as the exponential and Weibull models [1], attempted to overcome

some of the shortcomings of the CPH model by producing smooth predictions by assuming a

functional form of the hazard [1,17] and directly estimating the absolute and relative effects

[14]. The models can be used to estimate the smooth cumulative hazard functions and hazard

ratios of risk factors and extrapolate survival and cumulative functions [1]. Nonetheless, the

models assume that the survival and hazard functions have a specific distribution which is

often too structured and sometimes unrealistic for use with real data [9,10]. In addition,

parametric models with complex underlying hazard fail to capture true effects [18,19]. Thus,

in most cases, parametric models have insufficient flexibility and, thereby, produce biased

cumulative hazard and survival functions [10].

While the disadvantages of non-parametric models can be overcome by the use of stratifica-

tion, the number of factors used for such stratification may be limited [1]. Another way of alle-

viating the challenges of the CPH is to use a sufficiently large sample size and extensive study

duration [20]. Also, parametric survival models may be useful if available data do not violate

the underlying assumptions of the distributions. Despite these mitigations, none of the non-

parametric, semi-parametric or parametric models is flexible enough to accommodate struc-

tural composition of all real-life data.

Royston and Parmar (RP) therefore developed flexible parametric survival regression

(FPSR) models as a result of lack of adequate flexibility of the Cox and parametric survival
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models [9,10,21]. The FPSR model offers a compromise between the CPH and parametric

models and retains the desired features of both types of models. The flexible parametric

approach works by relaxing the assumption of linearity of log time by using restricted cubic

splines [10,22]. The overall advantages of the FPSR models have been reported in the literature

[1,9,14,18,19,23,24]. CPH, parametric and the FPSR models have incorporated frailty options.

Different factors could be associated with complications affecting dental restorations sup-

ported by implants but it is not known how non-consideration of the clustering nature of the

implants (multiple implants in one subject) affect outcomes of the modelling approach. The

need for appropriate statistical models for accurate medical inferences and decisions motivated

this study. It is designed to evaluate and compare the application of CPH, parametric and

FPSR models to complications affecting dental implants. Implants are clustered within patients

and intra-cluster dependency may occur. We hypothesized that models with frailty, and the

flexible parametric model with frailty, in particular, would perform better than all other range

of models. We aimed to apply different survival analysis regression models to a dataset origi-

nating from Sweden [25,26] and assess the performance of the models to identify the model

with the best data fit. We considered the (i) Cox proportional hazard models for frailty, (ii)

Multilevel mixed-effects parametric survival models for proportional hazard and accelerated

failure times and (iii) Flexible parametric survival regression models with frailty generally

referred to as the Royston-Parmar (RP) models and their equivalents without frailty.

Methods and statistical models

Cox proportional hazard models with frailty

The Cox proportional hazard (PH) model with frailty is an extension of the Cox PH model

developed in 1972 which assumed that hazards are multiplicatively proportional to baseline

hazards [5] as shown in Eq (1).

hðtÞ ¼ h0ðtÞe
b1x1þb2x2þ���bkxk ð1Þ

The above equation provides estimates of β1, β2,. . .,βk, and its variance-covariance matrix

but provides no direct estimate of the baseline hazard (h0(t)). However, the model provides an

avenue to estimate the baseline cumulative hazard (H0(t)) and baseline survival (S0(t)) which

can be used to estimate the h0(t) [10].

Let us assume groups i = 1,. . .. . .. . .. . .. . .,n groups with j = 1,. . .. . .. . .. . .. . .,ni observations

in group i. For the jth observation in the ith group, the hazard is shown in Eq (2).

hijðtÞ ¼ h0ðtÞaie
b1x1þb2x2þ���bkxk ð2Þ

where group-level frailty is estimated by αi. The frailties are unobservable positive quantities

and are assumed to have a mean of 1 and a variance θ. Shared-frailty models are used to model

within-group correlation; observations within a group are correlated because they share the

same frailty. The degree of within-group correlation can be measured by an estimate of “θ”,

where θ is 0 in cases where there is no frailty.

By letting vi = log αi, the hazard is as shown in Eq (3)

hijðtÞ ¼ h0ðtÞe
b1x1þb2x2þ���bkxkþni ð3Þ

which makes the log frailties vi, to be analogous to random effects obtainable in the corre-

sponding standard linear models.

Numerically, let xi be the row vector of covariates for the time interval (t0i; ti) for the ith

observation in a dataset with N subjects (i = 1,. . .. . .. . ..,N). The estimates of the coefficient (βi)
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of the covariates (Xi) can be estimated by maximizing the partial log-likelihood function in Eq

(4)

logL ¼
PD

j¼1
½
P

i2Dj
xib � dj logf

P
k2Rj

expðxkbÞg� ð4Þ

Where j represents the index of the ordered failure times t(j), j = 1;. . .. . .. . .; D; such that Dj

is the set of dj observations that fail at t(j); dj is the number of failures at t(j); and Rj is the set of

observations k that are at risk at time t(j), that is, for all k such that t(0k)<t(j)�t(k) [27–29].

The data for Cox shared-frailty models are usually organized into G groups with the ith

group consisting of n1 observations, i = 1,. . .. . .. . .,G. The estimation of θ is done via maxi-

mum profile log-likelihood. For fixed θ, estimates of β and v1,. . .. . ..,vG are obtained by maxi-

mizing the parameters in Eq (5).

logLðyÞ ¼ logLCoxðb; v1; . . . ::vGÞ

þ
PG

i¼1

1

y
v1 � ev1f g þ

1

y
þ DI

� �

1 � log
1

y
þ DI

� �� �

�
logy
y
þ logG

1

y
þ DI

� �

� logG
1

y

� �� �

ð5Þ

where Di is the number of death events in group i and logLCox(β, v1,. . .. . .. . .,vG) is the standard

Cox partial log-likelihood, with the vi as the vector of the variables’ coefficients indicator

which identifies the groups. The jth observation in the ith group has log relative hazard βxij+νi.
The values that maximize logLðŷÞ are the final estimates of β in νi [30].

Mixed-effects parametric survival models

The mixed-effects parametric survival models otherwise called the multilevel parametric sur-

vival models are well known [31]. These models contain both fixed and random effects. The

accelerated failure-time (AFT) model and the multiplicative or proportional hazards (PH)

model are the most-used models for adjusting survivor functions for the effects of covariates.

In the AFT model, log t is expressed as a linear function of the covariates, when random-effects

is incorporated, the function yields the function in Eq 6.

logtji ¼ Xjibþ zjiuj þ vji ð6Þ

for j = 1,. . .. . .. . .. . .,M, clusters, with cluster j consisting of i = 1,. . .. . .. . .. . .,nj observations.

The 1 X p row vector Xji contains the covariates for the fixed effects, with regression coeffi-

cients (fixed effects) β. The zji has 1 x q dimension and contains the covariates corresponding

to the random effects. Also, vji are the observation-level errors with density φ(.). In the PH

models, the model contains the covariates which have a multiplicative effect on the hazard

function in Eq (7).

hðtjiÞ ¼ h0ðtjiÞexpðXjibþ zjiujÞ ð7Þ

where h0(t), the baseline hazard function, is assumed to be parametric. Both the exponential

and Weibull models can be implemented using the AFT and PH parameterizations, but the

gamma and log-logistics and log-normal can only be implemented in AFT and implemented

with “mestreg” in Stata.

Flexible parametric survival regression models

The FPSR model is based on a series of models that are modifications of several standard sur-

vival models [21] but has additional flexibility [21,23]. These models use restricted cubic

splines to model a transformation of the survival function. The Weibull model is one of the
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most common parametric models and is an approximation of the PH model. It has been criti-

cized for inflexibility in the shape of the baseline hazard function, which either increases or

decreases monotonically. Weibull survival function is S(t) = exp(−λtγ), and the corresponding

log cumulative hazard scale is ln {H(t)} = ln[−ln{S(t)}] = ln[−ln{exp (−λtγ)}] = ln(λ)+γ ln(t),

after transformation. Addition of covariates to the model produces ln {H(t|xi)} = ln(λ)+γ ln(t)

+xiβ.

Splines are flexible mathematical functions defined by piecewise polynomials with some

constraints to ensure that the overall curve is smooth, are used. The polynomials join one

another at points called knots. The fitted function is forced to have continuous 0th, 1st and 2nd

derivatives. The most common splines used are cubic splines. Restricted cubic splines with k

knots can be fitted by creating k-1 derived variables. For knots k1, k2,. . .. . .. . .. . .. . ..kk, and

parameters γ0, γ1,. . .. . .. . .. . .. . ..γk−1, a restricted cubic spline function can be written as s(x) =

γ0+γ1z1+� � �. . .. . .. . .. . .+γk−1zk−1; where z1 = x = ln(t) and zj(j�2). The derived variables, zj, are

computed as in Eq (8)

zj ¼ ðx � kjÞ
3

þ
� �jðx � kjÞ

3

þ
� ð1 � �jÞðx � kjÞ

3

þ
; ð8Þ

where j = 2,. . .,k−1; ðx � kjÞ
3

þ
¼ maxf0; ðx � aÞ3g; �j ¼ ðkk � kjÞ=ðkk � k1Þ; kk is the maxi-

mum k, and k1 is the minimum k. The derived variables can be highly correlated and are

orthogonalized by using Gram–Schmidt orthogonalization.

The hazard function involves the derivatives of the restricted cubic splines functions as s0(x)

= γ1z01+γ2z02+� � �. . .. . .. . .. . .+γk−1z0k−1. The choice of position of knots determines the com-

plexity of the flexible models. Usually, k knots, maximum at 9 knots, has k+1 degrees of free-

dom (df). The position of the knots (internal) is usually in centiles computed as 100/df. So, for

3 knots, the df is 4 and the knots will be located at centiles 25, 50 and 75. The internal knots are

bounded by “boundary knots” which are placed at the minimum and maximum of the distri-

bution of uncensored survival times. The FPSR models become the Weibull model if the num-

ber of knots is 0, while γ0 and γ1 are equal to the scale parameter and shape parameter

respectively. Royston et al. suggest using 1 or 2 knots for smaller (<10,000) datasets and 4 or 5

for larger (> = 10,000) datasets [10]. The FSPR models are implemented in Stata using

“stpm2” with an option for frailty.

In the flexible parametric model, the contribution to the log-likelihood for the ith individual

on the log cumulative hazard scale can be written as shown in Eq 9.

lnLi ¼ diðln½s
0flnðtiÞjg; k0g� þ ZiÞ � expðZiÞ ð9Þ

where di is the event indicator. The likelihood can be maximized by defining an additional

equation for the derivatives of the spline function and constrain the parameters to be equal to

the equivalent spline functions in the main linear prediction [22,32].

Model selection criteria

Log-likelihood, Akaike information criteria (AIC) [33] and the Bayesian information criteria

(BIC) [34] were used for model selection. Lower values of AIC and BIC indicated a better

model fit. AIC and BIC are usually computed and compared separately among different mod-

els to determine the best fitting model. However, confusion may arise if the best fitting model

according to the AIC is different from that identified by the BIC [14]. Literature suggests that

AIC will choose a more complex model irrespective of sample size while BIC is more likely to

choose a simpler model [14]. AIC is often preferable in situations when a false negative finding

would be considered to be more misleading than a false positive, and BIC is superior in situa-

tions where a false positive is as misleading as, or more misleading than, a false negative. AIC
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is best for prediction as it is asymptotically equivalent to cross-validation. BIC is best for an

explanation as it allows consistent estimation of the underlying data generating process

[14,35].

The data

The dataset used for this study originates from a project evaluating the effectiveness of dental

implant therapy in Sweden. A cohort of 596 randomly selected adults, provided with implant-

supported dental restorations in 2003, were followed over 9 years. The extent of dental treat-

ment varied from the replacement of single teeth to the restoration of full jaws. The average

number of implants per patient was 4.0 ±2.8 (range 1–12). Complications related to the resto-

rations/implants were scored using the patient as the unit of analysis and timing was recorded

in days relative to the time point of implant insertion. The complications included: Loss of a

dental implant, development of peri-implantitis and/or occurrence of a technical complica-

tion. For details regarding case definitions of the different categories of complications, the

reader is referred to Derks et al. [25,26,36]. The occurrence of any of the complications

referred to above was considered as an event in the present analyses. There were a total of

1,038 events during the observation period with 469 complications in single-record/single-fail-

ure data.

Operational definitions

Median survival time: This is a statistic that refers to how long patients “survive” in general

after dental restorative therapy including the use of implants.

The incidence rate is a measure of the frequency with which dental implant complications

occurred per day.

Incidence Rate ¼
Number of new cases of disease during specif ied period
Time each person was observed; totalled for all persons

Ethics approval and patient consent

The research protocol was approved by the regional Ethical Committee, Gothenburg, Sweden

(Dnr 290–10), registered at ClinicalTrials.gov (NCT01825772) and study participants signed

an informed consent form prior to inclusion.

Results

One of the 596 subjects was excluded from analysis due to missing data. The mean age (in

2003) of the 595 included participants was 62.3 (SD = 9.3) years, with 42% aged 60–69 years,

24% aged 70–79 years and 55% were females. Roughly 60% of patients presented without signs

of periodontitis at the 9-year examination, 24% had periodontitis and 16% were edentulous

(no teeth). A total of 28% had full-jaw restorations, 48% had partial-jaw restorations and 24%

had single crowns, only. Regarding dental products, 31% received Straumann implants (Type

A), 20% had Astra Tech implants (Type B), 40% had Nobel Biocare implants (Type C). The

remaining 9% of subjects were treated with various other types of implants categorized as

Type D.

The overall incidence rate of implant complications was 0.000241 per day. It was higher

among those without remaining natural teeth (0.000387) and those who had full-jaw restora-

tions (0.000439). The median survival time (when 50% of implant-carrying subjects would

have “failed”) to implant complications was 2476 days, while the 25% survivorship was 820

days. The medium “survival” time was highest among those who had partial-jaw restorations
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(3347 days), females (3044 days), treated within the public dental service (3044 days), treated

with Type A (3347 days) or other dental products (Type D) (3227 days respectively) as shown

in Table 1.

The distribution of the incidence rate of implant complications by time is shown in Fig 1.

The incidence rate reduced with increasing time of follow-up.

The hazard and survival functions of dental complications under different

distributions

We assessed the hazard function under different models for periodontal status (one of the

main prognostic factors) in Fig 2. In Fig 2, the chart in panel (a) is from the Weibull mixed

effects parametric proportional hazard (b) Loglogistic mixed effects parametric proportional

hazard (c) Cox proportional hazard and (d) Cox smoothed proportional hazard. The hazard

for “periodontitis” was consistently higher than the hazard for “healthy” and “no teeth”. The

hazard for “healthy” and “no teeth” was similar.

In Fig 3, we present the survival function under different models for periodontal status. The

chart in panel (a) is from the Weibull mixed effects parametric proportional hazard (b) Loglo-

gistic mixed effects parametric proportional hazard (c) Cox proportional hazard and (d) Cox

smoothed proportional hazard for periodontal status. The survival for “periodontitis” was con-

sistently lower than the survival for “healthy” and “no teeth”. The survival for “healthy” and

“no teeth” was similar.

Test of assumption of proportionality

The test of violations of assumptions of the proportional hazard showed that the test was not

violated (X2 = 5.50, df = 4, p = 0.240)

Comparison of the survival and hazard functions of the flexible model at

different degrees of freedom

We compared the performance of the survival and hazard functions of the flexible model at

various degrees of freedom (1, 2, 3 and 6) for the periodontal status of the patients. A degree of

freedom of 1 is an equivalent of the Weibull distribution. The hazard functions of the Weibull

distribution were different from the hazard functions at the other degrees of freedom. How-

ever, the function at 6 degrees of freedom was different and more flexible than at 2 and 3

degrees of freedom (Fig 4A). The survival functions at 2, 3 and 6 degrees of freedom were,

however, similar but distinct at 1 degree of freedom (Fig 4B).

Selection of the best model

Loglikelihood, AIC BIC for all the models considered, with and without frailty, are presented

in Table 2. All three parameters were consistently lower among the flexible frailty models at

different degrees of freedom than the Cox PH frailty, parametric frailty models (Table 2). We

observed that the AIC and BIC of the parametric models without frailty were consistently

lower than those with frailty. Among the FPSR models at different degrees of freedom, the low-

est loglikelihood was at df = 6, the lowest AIC was at df = 4, while the lowest BIC was at df = 2.

However, for df >1, differences between the lowest and highest loglikelihood, between the

lowest and highest AIC and between the lowest and highest BIC were 4.4 (0.45%), 1.47 (0.04%)

and 18.7 (0.89%) respectively. According to the AICs, all the FPSR models at df>2 were simi-

lar. Hence we chose the simplest of all the FPSR models at df = 2. Our decision was further

supported by the significance of the spline variables for the log baseline cumulative hazard
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Table 1. Distribution of incidence rate and quartile survival times by patients’ characteristics (n = 595).

Characteristics N(%) Days at risk incidence rate Survival time (days)

25% Median (50%) 75%

Age(years) in 2003 mean(sd) 62.3(9.3)

<50 80(13.5) 266436 0.000135 1935 cbc cbc

50–59 121(20.3) 399995 0.000170 1185 cbc cbc

60–69 252(42.4) 813359 0.000299 746 1874 cbc

70–79 145(24.4) 467601 0.000261 593 1927 cbc

Age group

Younger (<60) 201(33.8) 666431 0.000156 1386 cbc cbc

Older (�60) 394(66.2) 1280960 0.000285 685 1915 cbc

Sex

Male 267(44.9) 872344 0.000288 685 1927 cbc

Female 328(55.1) 1075047 0.000203 899 3378 cbc

Periodontal status

Healthy 356(59.8) 1168495 0.000187 1081 cbc cbc

Periodontitis 144(24.2) 468620 0.000280 868 1966 cbc

No Teeth 95(16.0) 310276 0.000387 471 1185 cbc

Extent of treatment

Full jaw 167(28.1) 537496 0.000439 470 1082 2840

Partial jaw 283(47.6) 928468 0.000208 929 3347 cbc

Single 145(24.4) 481427 0.000083 . cbc cbc

Smoker

Yes 76(12.8) 246840 0.000292 929 2118 cbc

No 519(87.2) 1700551 0.000234 820 2509 cbc

Clinical setting

Public dental service 174(29.2) 575246 0.000214 868 3044 cbc

Private dental service 372(62.5) 1211970 0.000261 807 2210 cbc

Mix 49(8.2) 160175 0.000187 594 cbc cbc

Frequency of maintenance

Regular (annual) 479(82.2) 1565319 0.000259 746 2057 cbc

Irregular (< annual) 104(17.8) 341940 0.000178 1752 cbc cbc

Ever Smoker

Yes 209(35.1) 682082 0.000238 746 2515 cbc

No 386(64.9) 1265309 0.000243 820 2280 cbc

Dental product

Type A 181(31.2) 605090 0.000207 959 3347 cbc

Type B 115(19.8) 374929 0.000272 746 1874 cbc

Type C 230(39.6) 740492 0.000236 929 2604 cbc

Typ D 55(9.5) 180580 0.000222 869 3227

Bone augmentation

No 436(84.7) 1428524 0.000240 820 2476 cbc

Yes 79(15.3) 256548 0.000265 654 2070 cbc

Retention of restoration

Cemented 198(34.1) 664274 0.000117 2057 cbc cbc

Screw-retained 346(59.6) 1122931 0.000314 624 1661 cbc

Both 37(6.3) 119748 0.000275 404 2069 cbc

(Continued)
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(_rcsi) otherwise called the slope of the hazard curve within each of the knots generated by the

degrees of freedom. At df = 2, the two slopes were statistically significant: _rcs1 = 2.26

(p<0.001) and _rcs2 = 1.150 (p<0.001). At df = 3, the first two slopes were statistically signifi-

cant: _rcs1 = 2.25 (p<0.001) and _rcs2 = 1.134 (p<0.001) but the last slope was not significant

(_rcs3 = 1.02 (p = 0.107). The slopes at df>2 had similar patterns with the slopes at df = 3.

Modelling the risk factors of implant complications

We fitted an FPSR model at 2 degrees of freedom to the data and identified the adjusted deter-

minants of implant complications among the patients. Table 3 showed that the adjusted hazard

of implant complications was 45% (adjusted Hazard Ratio (aHR) = 1.449; 95% Confidence

Interval (CI): 1.153–1.821, p = 0.001) higher among patients with periodontitis than those who

were periodontally healthy. While controlling for other variables, the hazard of implant com-

plications was about 5 times (aHR = 4.641; 95% CI: 2.911–7.401, p<0.001) and 2 times

(aHR = 2.338; 95% CI: 1.553–3.519, p<0.001) higher among patients with full- and partial-jaw

restorations respectively when compared to subjects with single crowns, only. The adjusted

hazard of implant complications was 27% (aHR = 1.272; 95% CI: 1.047–1.548, p = 0.016)

higher among male patients than females. The adjusted hazard of an implant complication was

40% (aHR = 1.397; 95% CI: 1.069–1.826, p = 0.014) higher among patients provided with Type

B dental products with Type A products as reference. Smoking history, type of retention and

age were not significant predictors of complications.

Discussion

This study was designed to apply and compare the performance of semi-parametric, paramet-

ric and flexible parametric survival regression models to a dataset on dental implant-related

Table 1. (Continued)

Characteristics N(%) Days at risk incidence rate Survival time (days)

25% Median (50%) 75%

Total 595 1947391 0.000241 820 2476 cbc

cbc Cannot be computed

Missing data if the sum of categories <595.

https://doi.org/10.1371/journal.pone.0245111.t001

Fig 1. Distribution of incidence rate of dental failure by time.

https://doi.org/10.1371/journal.pone.0245111.g001
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complications with or without frailty. This analytical study showed that models with frailty

performed better than those without frailty except among the parametric models where the

reverse was the case. This could be ascribed to inconsistencies and inflexibilities of parametric

models (Royston and Lambert, 2011). Nonetheless, the AIC and the BIC of the flexible models

were lower than those computed from the other models irrespective of whether the clustering

nature of the implant data was considered or not.

Therefore, the flexible parametric survival regression model was the best of the three main

models considered in this study. Our finding is consistent with findings in earlier studies

[10,15,23]. All measures of model fit and model selection adopted in our study were consis-

tently better in the flexible parametric survival regression models than in the other models.

Loglikelihood, AIC and BIC were lower in the flexible parametric survival regression models

than the Cox PH model and the parametric models. Similar findings have been reported in the

literature [15,23,37]. The flexible models had a unique advantage by separating the hazard

function into segments (splines) based on the specified degrees of freedom and computing the

hazard within each spline [9,10,18,21].

We used AIC and BIC to select the ultimate degrees of freedom to use for the flexible

parametric survival regression model. AIC and BIC are measures of the amount of informa-

tion lost in the models [33,34]. The lower these values, the better the models. In this study, BIC

Fig 2. Comparison of the hazard functions of the models using the determinate variable.

https://doi.org/10.1371/journal.pone.0245111.g002

PLOS ONE Survival analysis of dental complication

PLOS ONE | https://doi.org/10.1371/journal.pone.0245111 January 7, 2021 10 / 16

https://doi.org/10.1371/journal.pone.0245111.g002
https://doi.org/10.1371/journal.pone.0245111


Fig 3. Comparison of the survival functions of the models using the determinate variable.

https://doi.org/10.1371/journal.pone.0245111.g003

Fig 4. Comparison of the survival and hazard functions of the Weibull model and the flexible models.

https://doi.org/10.1371/journal.pone.0245111.g004

PLOS ONE Survival analysis of dental complication

PLOS ONE | https://doi.org/10.1371/journal.pone.0245111 January 7, 2021 11 / 16

https://doi.org/10.1371/journal.pone.0245111.g003
https://doi.org/10.1371/journal.pone.0245111.g004
https://doi.org/10.1371/journal.pone.0245111


was lowest at 2 degrees of freedom while AIC was lowest at 4 degrees of freedom. This discrep-

ancy has previously been reported [35] and may be due to how the two information measures

compute “complexities”. The problem of defining “N” (the number of observations) is not

related to AIC because N is not used in computing AIC, which rather uses a constant 2 to

weight complexity as measured by k (number of parameters estimated), rather than ln(N) in

BIC. According to Stone at al. [38], AIC approximately minimizes the prediction error and is

asymptotically equivalent to leave-1-out cross-validation (LOOCV) while BIC is equivalent to

leave-k-out cross-validation (LKOCV) [39] and it is not consistent with the amount of data

available. However, BIC has the advantage of being consistent. With a very large amount of

data, and if the true model is among the candidate models, the probability of selecting the true

model based on the BIC criterion would approach 1. This, however, may slightly affect predic-

tion performance. We chose the flexible parametric survival regression model at 2 degrees of

freedom as suggested by the BIC because the slopes of the curves within each spline were insig-

nificant after 2 degrees of freedom, the differences in parameter estimates at 2, 3 and 4 degrees

of freedom were negligible. Also, the AIC at 2, 3 and 4 degrees of freedom changed by 0.07%,

which was considered negligible.

Our finding that the FPSR method with frailty fitted the data used in this study is further

corroborated by the behaviour of the hazard and survival functions shown in Figs 2–4. How-

ever, there could be challenges of over-parametrization in the flexible model due to its adapt-

ability and incorporation of up to ten knots. Also, the Cox model makes minimal assumptions

about the form of the baseline hazard function and may have hindered the prediction of

Table 2. Comparison of the flexible models using different knots.

Frailty Model Model ll(null) ll(model) df AIC BIC

None Cox Cox -2717.70 -2633.63 17 5301.26 5384.09

Parametric Weibull -1187.65 -1134.54 19 2307.07 2399.64

Exponential -1189.12 -1134.86 18 2305.73 2393.43

Log Logistic -1182.18 -1130.25 19 2298.51 2391.08

Gamma -1178.59 -1130.46 20 2300.92 2398.37

Flexible Model df = 1 -1294.47 -1134.54 19 2307.07 2399.64

df = 2 -1294.47 -1128.29 20 2296.58 2394.03

df = 3 -1294.47 -1127.95 21 2297.90 2400.21

df = 4 -1294.47 -1125.68 22 2295.36 2402.55

df = 5 -1294.47 -1124.84 23 2295.69 2407.74

df = 6 -1294.47 -1123.84 24 2295.68 2412.62

Yes Cox Cox with strata -2047.18 -2001.85 17 4037.70 4120.52

Cox frailty -2866.48 -2577.24 17 5188.48 5271.31

Parametric Weibull -4359.71 -3900.89 20 7841.78 7939.22

Exponential -4376.43 -3910.82 19 7859.64 7952.21

Log Logistic -4349.04 -3898.90 20 7837.80 7935.24

Gamma -4363.40 -3905.27 20 7850.54 7947.98

Flexible Model df = 1 -1143.70 -988.24 19 2014.47 2107.04

df = 2 -1143.70 -972.51 20 1985.01 2082.45

df = 3 -1143.70 -971.73 21 1985.45 2087.76

df = 4 -1143.70 -969.99 22 1983.98 2091.17

df = 5 -1143.70 -969.16 23 1984.31 2096.37

df = 6 -1143.70 -968.11 24 1984.22 2101.15

AIC Akaike Information Criteria BIC Bayesian Information Criteria df degrees of freedom ll loglikelihood PH Proportional Hazard AFT Accelerated Failure Rate

https://doi.org/10.1371/journal.pone.0245111.t002

PLOS ONE Survival analysis of dental complication

PLOS ONE | https://doi.org/10.1371/journal.pone.0245111 January 7, 2021 12 / 16

https://doi.org/10.1371/journal.pone.0245111.t002
https://doi.org/10.1371/journal.pone.0245111


hazards and other related functions for a given set of covariates. It also results in unsmooth

estimated curves and lack of information about what occurs between the observed failure

times. Parametric models, on the other hand, produce smooth predictions by assuming a func-

tional form of the hazard. Its assumed form is too structured for use with real data (Royston

and Lambert, 2011). Therefore, the non-proportional hazards can be modelled using restricted

cubic splines in FPSR models [14] and thereby produce a better fit.

The fitted flexible parametric survival regression model at 2 degrees of freedom showed

that the hazard of implant complications was higher among male patients, patients with peri-

odontitis, among patients with either full- or partial-jaw restorations and among patients that

were provided with dental product Type B. It is plausible that more extensive restorations are

at higher risk for complications through the simple fact that more implants and surfaces are

exposed to potential events. More extensive restorations, however, may also serve as a surro-

gate parameter for the individual’s susceptibility to developing tooth- or implant-related prob-

lems. This may be illustrated by the fact that subjects presenting with periodontitis at

remaining teeth were at higher risk for implant-related complications. This relationship is

most likely explained by the strong association between periodontitis and peri-implantitis

Table 3. Adjusted prognostic factors of dental implant complications using FPSR model (df = 2).

Characteristics Adjusted Hazard Ratio 95% CI p-value

Periodontal status

Healthy 1.000

Periodontitis 1.449 1.153–1.821 0.001

No teeth 1.050 0.797–1.383 0.730

Extent of treatment

Full jaw 4.641 2.911–7.401 <0.001

Partial jaw 2.338 1.553–3.519 <0.001

Single 1.000

Age (years) in 2003

<50 1.000

50–59 1.086 0.713–1.652 0.702

60–69 1.108 0.740–1.658 0.620

70–79 0.860 0.559–1.322 0.491

Gender

Male 1.272 1.047–1.548 0.016

Ever smoker

Yes 1.014 0.769–1.337 0.922

Dental product

Type A 1.000

Type B 1.397 1.069–1.826 0.014

Type C 1.074 0.848–1.360 0.554

Type D 1.116 0.779–1.597 0.550

Retention of restoration

Screw-retained 1.000

Cemented 0.870 0.627–1.208 0.406

Both 0.920 0.607–1.395 0.695

_rcs1 2.262 2.080–2.459 <0.001

_rcs2 1.150 1.091–1.213 <0.001

_rcs are the spline variables for the log baseline cumulative hazard

https://doi.org/10.1371/journal.pone.0245111.t003
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[40]. Peri-implantitis was one of the complications recorded in the present study. The back-

ground to the other factors identified in the model (sex and dental product) are not under-

stood. It may be speculated that biting force and/or behaviour in terms of oral health may have

had an impact.

The covariates included in the flexible model have shown that there is a wide range of fac-

tors that contribute to complications affecting dental implants. Their inclusion has influenced

the performance of the models as they demonstrated reality. For instance, the risk of implant

complications was generally higher among patients with periodontitis than those that were

periodontally healthy. No difference, however, was noted between periodontally healthy and

edentulous patients. Similar assertions have been made in earlier studies [41,42].

Conclusion

Flexible parametric survival model represents the best approach for estimating the hazard of

clustered implant complications including (i) implant loss, (ii) peri-implantitis and (iii) techni-

cal complications. The study underscores the need to explore the multilevel (clustering) nature

of datasets to be analysed. Non-consideration of the clustering nature of data is potentially

misleading. The hazard of complications was higher among male patients, patients with peri-

odontitis, patients with more extensive restorations and was dental product specific.
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