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Abstract. We prove that the entropy map for countable Markov shifts of

finite entropy is upper semi-continuous on the set of ergodic measures. Note

that the phase space is non-compact. We also discuss the related problem of
existence of measures of maximal entropy.

1. Introduction

The entropy map of the continuous transformation T : X Ñ X defined on
a metric space pX, dq is the map µ ÞÑ hµpT q which is defined on the space of
T´invariant probability measures MT , where hµpT q is the entropy of µ (precise
definitions can be found in Section 2). The study of the continuity properties of
the entropy map, with MT endowed with the weak˚ topology, goes back at least
to the work of Bowen [Bo1]. In general it is not a continuous map (see [Wa,
p.184]). However, in certain relevant cases it can be shown that the map is upper
semi-continuous, that is, if pµnqn is a sequence in MT that converges to µ then
lim supnÑ8 hpµnq ď hpµq. For example, if T is an expansive homemorphism of
a compact metric space then the entropy map is upper semi-continuous, see [Wa,
Theorem 8.2] and [Bo1, De, Mi2]. It is also known that if T is a C8 map defined over
a smooth compact manifold then, again, the entropy map is upper semi-continuous
(see [N, Theorem 4.1] and [Y]). Lyubich [Ly, Corollary 1] proved that the entropy
map is upper semi-continuous for rational maps of the Riemann sphere. In all
the above examples the phase space is compact: in this article we will drop the
compactness assumption on the underlying space.

Markov shifts defined over finite alphabets have been used with remarkable suc-
cess to study uniformly hyperbolic systems. Indeed, these systems possess finite
Markov partitions and are, therefore, semi-conjugated to Markov shifts. See [Bo2]
for an example of the wealth of results that can be obtained with this method.
Following the 2013 work of Sarig [Sa2], countable Markov partitions have been
constructed for a wide range of dynamical systems defined on compact spaces (see
[Bu2, LM, LS, O]). The symbolic coding captures a relevant part, though not
all, of the dynamics. We stress that this relevant part is often non-compact. For
example, diffeomorphisms defined on compact manifolds have countable Markov
partitions that capture all hyperbolic measures. These results have prompted a
renewed interest in the ergodic properties of countable Markov shifts.
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In this paper we study countable Markov shifts pΣ, σq. More precisely, the shift
on sequences of elements of a countable alphabet in which the transitions, allowed
and forbidden, are described by a directed graph (see Section 3 for definitions).
The space Σ is usually non-compact with respect to its natural topology. If the
alphabet is finite, a so-called subshift of finite type, and so the space Σ is compact,
it is a classical result that the entropy map is upper semi-continuous [Wa, Theorem
8.2]. In this article we recover upper semi-continuity in the ergodic case for shifts
of finite topological entropy defined on non-compact spaces. Our main result is:

Theorem 1.1. Let pΣ, σq be a two-sided countable Markov shift of finite topological
entropy. If pµnqn, µ are ergodic measures in Mσ such that pµnqn converges in the
weak* topology to µ then

lim sup
nÑ8

hpµnq ď hpµq.

That is, the entropy map is upper semi-continuous on the set of ergodic measures.

This has the following corollary:

Corollary 1.2. Let pΣ`, σq be a one-sided countable Markov shift of finite topo-
logical entropy. If pµnqn, µ are ergodic measures in Mσ such that pµnqn converges
in the weak* topology to µ then

lim sup
nÑ8

hpµnq ď hpµq.

That is, the entropy map is upper semi-continuous on the set of ergodic measures.

The strategy of the proof is the following. First note that if there exists a finite
generating partition of the space such that the measure of its boundary is zero for
every invariant measure, then the entropy map is upper semi-continuous. This is
no longer true for countable generating partitions. Krieger [Kr] constructed a finite
generating partition for each ergodic measure. More recently, Hochman [H1, H2]
constructed finite partitions that are generating for every ergodic measure. We can
not use the result by Krieger since we need the same partition for every measure
and we can not use Hochman’s result since his partitions have a large boundary.
We overcome this difficulty by constructing finite generating partitions with no
boundary.

If T : X Ñ X is a continuous transformation defined on a compact space for
which the entropy map is upper semi-continuous then there exists a measure of
maximal entropy. Diffeomorphisms of class Cr, for any r P r1,8q (in the compact
setting), with no measure of maximal entropy have been constructed by Misiurewicz
[Mi1] and Buzzi [Bu1]. These are examples for which the entropy map is not
upper semi-continuous. If the space X is non-compact, even if the entropy map
is upper semi-continuous, measures of maximal entropy might not exist. Indeed,
in the non-compact case the space of invariant probability measures might also be
non-compact and therefore a sequence of measures with entropy converging to the
topological entropy may not have a convergent subsequence. For instance, consider
the geodesic flow on a non-compact pinched negatively curved manifold. Velozo
[V] showed that in that setting the entropy map is always upper semi-continuous,
but there are examples for which there is no measure of maximal entropy (see for
example [DPPS]). In Section 4 we discuss conditions that guarantee the existence
of measures of maximal entropy. We also address the relation between upper semi-
continuity of the entropy map and thermodynamic formalism. More precisely, we
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provide conditions for the existence of equilibrium measures. Finally, in Section 5
we apply our results to suspension flows.

We would expect our results to pass to some systems which are coded by count-
able Markov shifts, but with the important caveat that it is not always straightfor-
ward to compare topologies on the shift versus the coded space, so weak˚ conver-
gence in one space may not imply weak˚ convergence in the other.

2. Entropy and generators

This section is devoted to recall basic properties and definitions that will be used
throughout the article. The reader is referred to [Do, P, Wa] for more details.

2.1. The weak˚ topology. Let pX, dq be a metric space, we denote by CbpXq the
space bounded continuous functions ϕ : X Ñ R. Denote by MpXq the set of Borel
probability measures on the metric space pX, dq.

Definition 2.1. A sequence of probability measures pµnqn defined on a metric
space pX, dq converges to a measure µ in the weak˚ topology if for every ϕ P CbpXq
we have

lim
nÑ8

ż

ϕ dµn “

ż

ϕ dµ.

Remark 2.2. In this notion of convergence we can replace the set of test functions
by the space of bounded Lipschitz functions (see [Kl, Theorem 13.16 (ii)]). That
is, if for every bounded Lipschitz function ϕ : X Ñ R we have

lim
nÑ8

ż

ϕ dµn “

ż

ϕ dµ.

then the sequence pµnqn converges in the weak˚ topology to µ.

If the space pX, dq is compact then so is MpXq with respect to the weak˚ topol-
ogy (see [Pa, Theorem 6.4]). For A Ă X denote by int A,A and BA the interior,
the closure and the boundary of the set A, respectively. The following result char-
acterises the weak˚ convergence (see [Pa, Theorem 6.1]),

Theorem 2.3 (Portmanteau Theorem). Let pX, dq be a metric space and pµnqn, µ
measures in MpXq. The following statements are equivalent:

(a) The sequence pµnqn converges in the weak˚ topology to the measure µ.
(b) If C Ă X is a closed set then lim supnÑ8 µnpCq ď µpCq.
(c) If O Ă X is an open set then lim infnÑ8 µnpOq ě µpOq.
(d) If A Ă X is a set such that µpBAq “ 0 then limnÑ8 µnpAq “ µpAq.

Let T : pX, dq Ñ pX, dq be a continuous dynamical system, denote by MT the
space of T´invariant probability measures.

Proposition 2.4. Let T : pX, dq Ñ pX, dq be a continuous dynamical system de-
fined on a metric space, then

(a) The space MT is closed in the weak˚ topology ([Wa, Theorem 6.10]).
(b) If X is compact then so is MT with respect to the weak˚ topology (see [Wa,

Theorem 6.10]).
(c) The space MT is a convex set for which its extreme points are the ergodic

measures (see [Wa, Theorem 6.10]). It is actually a Choquet simplex (each
measure is represented in a unique way as a generalized convex combination
of the ergodic measures [Wa, p.153]).
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2.2. Entropy of a dynamical system. Let T : pX, dq Ñ pX, dq be a continuous
dynamical system. We recall the definition of entropy of an invariant measure
µ PMT (see [Wa, Chapter 4] for more details).

Definition 2.5. A partition P of a probability space pX,B, µq is a countable (finite
or infinite) collection of pairwise disjoint subset of X whose union has full measure.

Definition 2.6. The entropy of the partition P is defined by

HµpPq :“ ´
ÿ

PPP
µpP q logµpP q,

where 0 log 0 :“ 0.

It is possible that HµpPq “ 8. Given two partitions P and Q of X we define
the new partition

P _Q :“ tP XQ : P P P, Q P Qu
Let P be a partition of X we define the partition T´1P :“

 

T´1P : P P P
(

and

for n P N we set Pn :“
Žn´1
i“0 T

´iP. Recall that a sequence of real numbers
panqn is subadditive if for every n,m P N we have an`m ď an ` am. A classical
result by Fekete states that if panqn is a subadditive sequence of non-negative real
numbers then the sequence pan{nqn converges to its infimum. Since the measure µ
is T´invariant, the sequence HµpPnq is subadditive.

Definition 2.7. The entropy of µ with respect to P is defined by

hµpPq :“ lim
nÑ8

1

n
HµpPnq

Definition 2.8. The entropy of µ is defined by

hµpT q :“ sup thµpPq : P a partition with HµpPq ă 8u .

If the underlying dynamical system considered is clear we write hµ instead of
hµpT q.

2.3. Generators. We now recall the definition and properties of an important
concept in ergodic theory, namely generators.

Definition 2.9. Let pT,X,B, µq be a dynamical system. A one-sided generating
partition P of pT,X,B, µq is a partition such that

Ť8

n“1 Pn generates the sigma-
algebra B up to sets of measure zero. Analogously, if pT,X,B, µq is an invertible
dynamical system a two-sided generating partition P of pT,X,B, µq is a partition
such that

Ť8

n“´8 Pn generates the sigma-algebra B up to sets of measure zero.

A classical result by Kolmogorov and Sinai [Si] states that entropy can be com-
puted with either one- or two-sided generating partitions (see also [Wa, Theorem
4.17 and 4.18] or [Do, Theorem 4.2.2]).

Theorem 2.10 (Kolmogorov-Sinai). Let pT,X,B, µq be a dynamical system and
P a one-or a two-sided generating partition, then hµpT q “ hpµ,Pq.

The existence of generating partitions depends on the acting semi-group. Rohlin
[Ro1, Ro2] proved that ergodic (actually aperiodic) invertible systems of finite en-
tropy have countable two-sided generators. This was later improved by Krieger
[Kr] (see also [Do, Theorem 4.2.3]).
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Theorem 2.11 (Krieger). Let pT,X,B, µq be an ergodic invertible dynamical sys-
tem with hµpT q ă 8 then there exists a finite two-sided generator P for µ. The

cardinality of P can be chosen to be any integer larger than ehµpT q.

Note that in Krieger’s result the generator depends upon the measure. There are
some well known cases in which there exists a finite partition which is a generator
for every measure. For example, if pΣ, σq is a transitive two-sided subshift of finite
type then the cylinders of length one form a two-sided generating partition for every
invariant measure. Hochman proved that a uniform version of Krieger result can
be obtained (see [H2, Corollary 1.2]).

Theorem 2.12 (Hochman). Let pT,X,Bq be an invertible dynamical system with
no periodic points and of finite entropy. Then there exists a finite two-sided partition
P that is a generator for every ergodic invariant measure.

2.4. Upper semi-continuity of the entropy. The following well known result
(see for example [Do, Lemma 6.6.7]) relates the existence of finite generating par-
titions with continuity properties of the entropy map.

Proposition 2.13. Let pT,X,Bq be a dynamical system and P be a finite two-
sided generator for every measure in C Ă MT . If for every µ P C we have that
µpBPq “ 0 then the entropy map is upper semi-continuous in C.

Proof. Let µ P C and P P P. Note that since µpBPq “ 0 the function ν Ñ νpP q is
continuous at µ. Since the partition P is finite, the function defined in C by

ν Ñ HνpPq “ ´
ÿ

PPP
νpP q log νpP q,

is continuous at µ. Note that µpBPq “ 0 implies that µpBPnq “ 0. Thus, the
function in C defined by ν Ñ HνpPnq is also continuous. Since the function defined
in C by

ν ÞÑ hνpPq “ inf
n

1

n
HνpPnq

is the infimum of continuous functions at µ we have that the map ν ÞÑ hνpPq is
upper semi-continuous at µ. Since P is a uniform generating partition in C for
every ν P C we have hνpT q “ hνpPq. Thus, the map

ν ÞÑ hνpT q

is upper semi-continuous at µ. Since µ P C was arbitrary the result follows. �

Remark 2.14. Note that if in Proposition 2.13 we have C “MT then the entropy
map is upper semi-continuous in the space of invariant probability measures.

Remark 2.15. The argument in Proposition 2.13 breaks down if we consider count-
able (infinite) generating partitions since, in that case, the map ν Ñ HνpPq need
not to be continuous (see Remark 3.11 or [JMU, p.774]).

Remark 2.16. Expansive maps defined on compact metric spaces are examples
of dynamical systems having finite generators as in Proposition 2.13 (see [Wa,
Theorem 8.2]). We stress that while Theorem 2.12 provides a finite (uniform)
generating partition, in general this does not satisfy the condition of zero measure
boundary.
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3. Countable Markov shifts

In this section we define countable Markov shifts, both one-and two-sided and
prove our main results.

3.1. Two-sided countable Markov shifts. Let pΣ, σq be a two-sided Markov
shift defined over a countable alphabet A. This means that there exists a matrix
S “ psijqAˆA of zeros and ones such that

Σ “
 

x P AZ : sxixi`1
“ 1 for every i P Z

(

.

Note that the matrix S induces a directed graph on A. Let n P N and r :“
pr1, . . . , rnq P An, we say that r is an admissible word if sriri`1 “ 1, for i P
t1, . . . , n ´ 1u. We say that the system is transitive if, given x, y P A, there exists
an admissible word starting at x and ending at y. Let pr1, . . . , rnq be an admissible
word and l P Z, we define the corresponding cylinder set by

rr1, ..., rnsl :“ tx P Σ : xl “ r1, xl`1 “ r2, ..., xl`n´1 “ rnu .

If l “ 0 then we omit this in the notation, writing rr1, ..., rns in place of rr1, ..., rns0.
We endow Σ with the topology generated by the cylinder sets. Note that, with
respect to this topology, the space Σ is non-compact. The shift map σ : Σ Ñ Σ is
defined by pσpxqqi “ xi`1. Let Mσ be the set of σ´invariant probability measures
and Eσ ĂMσ the set of ergodic invariant probability measures.

Each element a P A corresponds either to a transitive component of Σ, i.e., a
maximal subset Σ1 of Σ where there are x P Σ1 with xi “ a for some i, and which
is transitive (note that pΣ1, σq is also Markov); or, if not, to the wandering set.
Since we will be dealing with ergodic measures µn converging to some µ, we will
take a P A such that µprasq ą 0, and we may assume that µnprasq ą 0 for all n.
Ergodicity implies that our measures are supported on the transitive component
corresponding to a, and thus it is sufficient for our proofs to assume from here on
that our system is transitive.

The topological entropy of σ is defined by

htoppσq :“ lim sup
nÑ8

1

n
log

ÿ

σnx“x

χraspxq

“ sup thµpσq : µ PMσu “ sup thµpσq : µ P Eσu ,

where a P A is an arbitrary symbol and χras is the characteristic function of the
cylinder ras. By transitivity this definition is independent of a P A. Gurevich
formulated this condition in [Gu1, Gu2] and proved that if pΣ, σq is topologically
mixing then in fact the limit exists (see also [DS, Remark 3.2]); he also proved the
second and third equalities.1

3.2. Proof of Theorem 1.1. Given a P A we define

Σa :“ tx P Σ : σkx P ras for infinitely many positive and negative k P Zu.

Observe that Σa is a Borel σ-invariant subset of Σ. Therefore, the dynamical system
σ : Σa Ñ Σa is well defined. Since pΣ, σq is a finite entropy system, so is pΣa, σq.

1If the system were not transitive, we could take the supremum of all these quantities over the
transitive components.
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Remark 3.1. Let µ P Eσ be an ergodic σ-invariant probability measure such that
µprasq ą 0, then by the Birkhoff ergodic theorem we have µpΣaq “ 1. This is
the only point in our proof where we use ergodicity of our measures of interest.
Moreover, since the system is transitive the set Σa is dense in Σ.

The following class of countable Markov shifts that has been studied in [BBG,
Ru1, Sa1] will be of importance in what follows.

Definition 3.2. A loop graph is a graph made of simple loops which are based at
a common vertex and otherwise do not intersect. A loop system is the two-sided
countable Markov shift defined by a loop graph.

Lemma 3.3. The system pΣa, σq is topologically conjugate to a loop system pΣ, σq
of finite entropy.

Proof. For every n P N denote by Cn the set of non-empty cylinders in Σ of the
form rax1...xnas, where xi ‰ a for all i P t1, . . . , nu. Since the entropy of Σ is finite,
the number of elements in Cn is finite. Let cn be the number of elements in Cn and
write Cn “ tA

1
n, ..., A

cn
n u. Construct a loop graph with exactly cn loops of length

n`1, and denote by Σ the loop system associated to it. For convenience we denote
the vertex of the loop graph with the letter a. There is a one to one correspondence
between Cn and the non-empty cylinders in Σ of the form raxas, where the word
x does not contain the letter a and it has length n. Denote by Bin to the cylinder
in Σ associated to Ain.

Note that every x P Σa is of the following form p. . . ax´1ax0ax1a . . . q, where
xi are admissible words that do not contain the letter a. Observe that for each
xi there is a unique corresponding cylinder Aini . Moreover, for each Aini there is

a unique corresponding cylinder Bini in Σ. Finally, fo each Bini there is a unique

corresponding admissible word xb
i in Σ. Following this procedure we can define a

bijective map F : Σa Ñ Σ by F p. . . ax´1ax0ax1a . . . q “ p. . . ax
b
´1ax

b
0ax

b
1a . . . q.

We will now prove that F is a homeomorphism. Let U be an open set in Σ.
Consider a point x P U and define y “ F´1pxq. To prove the continuity of F it
is enough to check that y is an interior point of F´1pUq. Let raxb

1ax
b
2a...ax

b
mash,

where h P Z and no xi contains the letter a, be a cylinder contained in U such that
x P U . Note that

F´1praxb
1ax

b
2a...ax

b
mashq “ rax1ax2a...axmash

Note that y P rax1ax2a...axmash, rax1ax2a...axmash Ă F´1U and the cylinder set
rax1ax2a...axmash is open. Therefore, F is continuous. A similar argument gives
that F´1 is also continuous, therefore F is a homeomorphism. By construction we
have that σ|Σ˝F “ F ˝ σ|Σa . Since Σa has finite entropy so does Σ. �

The following result was obtained by Boyle, Buzzi and Gómez [BBG, Lemma
3.7], they established the existence of a continuous embedding of a loop system
into a subshift of finite type. Let us stress that the relevant part of the result
is the continuity. Borel embeddings have been obtained in greater generality (see
Hochman [H2, Corollary 1.2] or [H1, Theorem 1.5]).

Theorem 3.4 (Boyle, Buzzi, Gómez). A loop system of finite topological entropy
can be continuously embedded in an invertible subshift of finite type.
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Lemma 3.5. Let A and B be disjoint open subsets of Σa. Suppose A1 and B1 are
open subsets of Σ such that A1 X Σa “ A and B1 X Σa “ B. Then A1 and B1 are
disjoint.

Proof. Suppose that A1 and B1 are not disjoint. In this case we can find a non-
empty open set U Ă A1 X B1. Define V “ U X Σa and observe that V Ă A X B.
Since Σa is dense in Σ we have that V “ U X Σa is non-empty, which contradicts
that A and B are disjoint. �

Given an open subset A of Σa we define pA as the largest open subset in Σ such

that pAXΣa “ A. Similarly, for a closed subset B of Σa we define qB as the smallest

closed subset of Σ such that qB X Σa “ B. The existence of both pA and qB follows
from Zorn’s Lemma.

Remark 3.6. If B Ă Σa is closed set, then there exists a closed set B1 Ă Σ such
that B1 X Σa “ B. Since B Ă B1, we conclude that B Ă B1, where B is the
closure of B in Σ. This implies that B Ă B X Σa Ă B1 X Σa “ B, and therefore

B X Σa “ B. Moreover qB “ B.

Lemma 3.7. Let A be an open and closed subset of Σa. Then pA Ă qA, in particular
pA “ A.

Proof. Let B :“ Σa rA. Observe that Σ r qA is open and that pΣ r qAq XΣa “ B.

By the definition of pB it follows that pΣr qAq Ă pB, or equivalently that Σr pB Ă qA.
Observe that A and B are disjoint open subsets of Σa, therefore we can use Lemma

3.5 and obtain that pA Ă pΣ r pBq. All this together implies that pA Ă qA. �

Lemma 3.8. Suppose that R “ tR1, ..., RNu is a partition of Σa such that the sets
Ri, with i P t1, . . . , Nu, are open and closed in the topology of Σa. Then there exists

a finite partition pR of Σ which induces the partition R on Σa and µpB pRq “ 0 for
every probability measure on Σ such that µpΣaq “ 1.

We observe that there is an important step in the proof of this lemma which uses
the density of Σa in Σ, which as in Remark 3.1 follows from topological transitivity.

Proof. Let pR “ txR1, ...,yRN , Xu, where X “ Σ r
ŤN
i“1

xRi. The partition is well

defined since by Lemma 3.5 the sets txR1, ...,yRNu are disjoint. Observe that the set
X is closed and has empty interior (since Σa is dense in Σ). Therefore µpBXq “

µpX r int Xq “ µpXq ď µpΣrΣaq “ 0. It follows from Lemma 3.7 that µpBxRiq “

µpxRi r xRiq “ µpRi r xRiq. As observed in Remark 3.6 we have that Ri X Σa “ Ri.
Therefore

µpBxRiq “ µpRi r xRiq “ µppRi X Σaqr xRiq “ µpRi r xRiq “ 0.

�

Proposition 3.9. Let pµnqn be a sequence of invariant probability measures con-
verging in the weak˚ topology to a measure µ. If µpΣaq “ 1 and µnpΣaq “ 1, for
every n P N, then

lim sup
nÑ8

hµnpσq ď hµpσq.
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Proof. It was shown in Lemma 3.3 that there exists a topological conjugacy F :
Σa Ñ Σ between pΣa, σq and pΣ, σq. From Theorem 3.4 there exists a topologi-
cal embedding G : Σ ãÑ Σ0, where Σ0 is a subshift of finite type with alphabet
t1, ..., Nu. The partition P “ tr1s, r2s, ..., rN su is a generating partition of pΣ0, σq
for every invariant probability measure (see [Wa, Theorem 8.2]). It follows that
Q “ G´1P is a generating partition for every σ-invariant measure in Σ. The
continuity of G implies that G´1 prisqq is open and closed, in particular

BG´1 prisq “ G´1 prisqr int G´1 prisq “ H.

Therefore BQ “ H. Let R “ F´1Q. Then R is a generating partition for pΣa, σq,
BR “ H and moreover the elements in R are open and closed. From Lemma 3.8

we construct a partition pR of Σ that induces R when restricted to Σa. Since by
assumption the measures µ and pµnqn give full measure to Σa, Lemma 3.8 implies

that µpB pRq “ 0. Moreover hµpσq “ hµpσ, pRq and hµnpσq “ hµnpσ,
pRq for every

n P N. Indeed, for every σ-invariant probability measure ν on Σ such that νpΣaq “ 1
we have that the systems pΣ, σ, νq and pΣa, σ|Σa , ν|Σaq are isomorphic. Therefore

hνpΣ, σq “ hνpΣa, σq “ lim
nÑ8

1

n
HνpRnq,

since R is a generating partition for pΣa, σq. Note that for every n P N and
pRi1,...,ın P

pRn we have

νp pRi1,...,ınq “ νp pRi1,...,ın X Σaq “ ν|ΣapRi1,...,ınq.

Thus hνpσq “ hνpσ, pRq. Therefore, Proposition 2.13 implies that

lim sup
nÑ8

hµnpσq “ lim sup
nÑ8

hµnpσ,
pRq ď hµpσ, pRq “ hµpσq.

�

Proof of Theorem 1.1. The above argument proves that if pµnqn is a sequence of
ergodic measures that converges in the weak˚ topology to the ergodic measure µ
then limnÑ8 hµnpσq ď hµpσq. Indeed, there exists a P A such that µprasq ą 0.
Since limnÑ8 µnprasq “ µprasq ą 0, there exists N P N such that for every n ą N
we have that µnprasq ą 0. We then use Proposition 3.9 to get the result. �

3.3. One-sided countable Markov shifts. Let pΣ`, σq be a one-sided Markov
shift defined over a countable alphabet A. This means that there exists a matrix
S “ psijqAˆA of zeros and ones such that

Σ` “
 

x P AN : sxixi`1
“ 1 for every i P N

(

.

The shift map σ : Σ` Ñ Σ` is defined by pσpxqqi “ xi`1. The entropy of σ is
defined by htop “ htoppσq :“ sup thµpσq : µ P Eσu. Note that, as in the two-sided
setting, it is possible to give a definition of entropy computing the exponential
growth of periodic orbits, but for the purposes of this article the above definition
suffices.

Proof of Corollary 1.2. Denote by pΣ, σq the natural extension of pΣ`, σq and by
E and E` the corresponding sets of ergodic measures. There exists a bijection
π : E` Ñ E such that for every µ P E` we have that hµ “ hπpµq (see [Do, Fact
4.3.2] and [Sa3, Section 2.3]).
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Lemma 3.10. Let pµnqn, µ P E` such that pµnqn converges weak˚ to µ. Then
pπpµnqqn converges weak˚ to πpµq.

Proof. Note that in the notion of weak˚ convergence we can replace the set of test
functions by the space of bounded Lipschitz functions (see Remark 2.2). That is,
if for every bounded Lipschitz function ϕ : Σ Ñ R we have

lim
nÑ8

ż

ϕ dµn “

ż

ϕ dµ,

then the sequence pµnqn converges in the weak˚ topology to µ. A result by Daon
[Da, Theorem 3.1] implies that for every Lipschitz (the result also holds for weakly
Hölder and summable variations) function ϕ : Σ Ñ R there exists a cohomologous
Lipschitz function ψ : Σ Ñ R that depends only on future coordinates. The transfer
function can be chosen bounded and uniformly continuous. The function ψ can be
canonically identified with a Lipschitz function ρ : Σ` Ñ R. Thus,

ż

Σ

ϕ dπpµnq “

ż

Σ

ψ dπpµnq “

ż

Σ`
ρ dµn.

Therefore,

lim
nÑ8

ż

Σ

ϕ dπpµnq “ lim
nÑ8

ż

Σ`
ρ dµn “

ż

Σ`
ρ dµ “

ż

Σ

ϕ dπpµnq.

The result now follows. �

Let µn, µ P Eσ be such that pµnqn converges weak˚ to µ. Lemma 3.10 implies
that pπpµnqqn converges weak˚ to πpµq. Moreover, for every n P N we have that
hπpµnq “ hµn and hπpµq “ hµ. Since, by Theorem 1.1, the entropy map is upper
semi-continuous in pΣ, σq we obtain the result. �

Remark 3.11. The finite entropy assumption in Theorem 1.1 and in Corollary 1.2 is
essential as the following example shows. Let pΣ`, σq be the full shift on a countable
alphabet, note that htoppσq “ 8. Denote by P the partition formed by the length
one cylinders. This is a generating partition. Let h P R` be a positive real number
and panqn be the sequence defined by an “

h
logn for every n ą 1. Consider the

following stochastic vector

~pn :“
´

1´ an,
an
n
,
an
n
, . . . ,

an
n
, 0, 0, . . .

¯

,

where the term an{n appears n times. Let µn be the Bernoulli measure defined
by ~pn. Note that the sequence pµnqn converges in the weak˚ topology to a Dirac
measure δ1 supported on the fixed point at the cylinder C1. Note that

HµnpPq “ ´p1´ anq logp1´ anq ´ an log an ´ an log
1

n
.

Therefore,

lim
nÑ8

HµnpPq “ h ą 0 “ Hδ1pPq.

The above example shows that the map ν Ñ HνpPq need not to be continuous
for countable generating partitions. Moreover, since the measures µn are Bernoulli
we have that hµnpσq “ HµnpPq, and therefore the above argument shows that the
entropy map is not upper semi-continuous:

lim
nÑ8

hµnpσq “ h ą 0 “ hδ1pσq.
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In other words, the entropy map could fail to be upper semi-continuous for general
dynamical systems defined on non-compact spaces, even if there exists a uniform
(countable) generating partition with no boundary. The construction of the above
example is based on examples constructed by Walters ([Wa, p.184]) and by Jenkin-
son, Mauldin and Urbański [JMU, p.774]. This example also shows that the entropy
map is not upper semi-continuous even if we consider a sequence of measures for
which their entropy is uniformly bounded.

4. Measures of maximal entropy

A continuous map T : pX, dq Ñ pX, dq defined on a compact metric space for
which the entropy map is upper semi-continuous has a measure of maximal entropy.
Indeed, from the variational principle there exists a sequence of ergodic invariant
probability measures pµnqn such that limnÑ8 hµnpT q “ htoppT q. Since the space
of invariant measures MT is compact, there exists an invariant measure µ which is
an accumulation point for pµnqn. It follows from the fact that the entropy map is
upper semi-continuous that

htoppT q “ lim
nÑ8

hµnpT q ď hµpT q.

Therefore, µ is a measure of maximal entropy. For countable Markov shifts the
variational principle holds (see [Gu1, Gu2]) and the entropy map is upper semi-
continuous (see Theorem 1.1 and Corollary 1.2), however the space Mσ is no longer
compact. Despite this, under a convergence assumption we can prove the existence
of measures of maximal entropy. Indeed, Corollary 1.2 provides a new proof of the
following result by Gurevich and Savchenko [GS, Theorem 6.3].

Proposition 4.1. Let pΣ, σq be a finite entropy countable Markov shift. Let pµnqn
be a sequence of ergodic measures such that limnÑ8 hµnpσq “ htoppσq. If pµnqn
converges in the weak˚ topology to an ergodic measure µ then hµpσq “ htoppσq.

It might happen that there is a sequence pµnqn with limnÑ8 hµnpσq “ htoppσq,
but pµnqn does not converge in the weak˚ topology. Examples of countable Markov
shifts with this property have been known for a long time. In [Ru2] a simple
construction of a Markov shift of any given entropy with no measure of maximal
entropy is provided. In [Gu3, GN] examples are constructed of finite entropy count-
able Markov shifts having a measure of maximal entropy µmax and sequences of
ergodic measures pµnqn, pνnqn with limnÑ8 hµnpσq “ limnÑ8 hνnpσq “ htoppσq
such that pµnqn converges in the weak˚ topology to µmax and pνnqn does not have
any accumulation point.

The continuity properties of the entropy map also have consequences in the
study of thermodynamic formalism. Let pΣ`, σq be a transitive one-sided countable
Markov shift of finite entropy and ϕ : Σ` Ñ R a continuous bounded function of
summable variations. That is

ř8

n“1 varnpϕq ă 8, where

varnpϕq :“ sup tϕpxq ´ ϕpyq : xi “ yi, i P t1, . . . , nuu .

Sarig (see [Sa3] for a survey on the topic) defined a notion of pressure in this context,
the so called Gurevich pressure, that we denote by P pϕq. He proved the following
variational principle

P pϕq “ sup

"

hµpσq `

ż

ϕ dµ : µ PMσ

*

“ sup

"

hµpσq `

ż

ϕ dµ : µ P Eσ
*
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A measure µ PMσ such that P pϕq “ hµpσq `
ş

ϕ dµ is called equilibrium measure.
It directly follows from Corollary 1.2 that

Proposition 4.2. Let pΣ`, σq be a finite entropy countable Markov shift and ϕ :
Σ Ñ R a bounded function of summable variations. Let pµnqn be a sequence of
ergodic measures such that limnÑ8

`

hµnpσq `
ş

ϕ dµn
˘

“ P pϕq. If pµnqn converges

in the weak˚ topology to an ergodic measure µ then P pϕq “ hµpσq `
ş

ϕ dµ.

Note that the thermodynamic formalism of a two-sided countable Markov shift
can be reduced to the one-sided case (see [Sa3, Section 2.3]).

5. Suspension flows

Let pΣ, σq be a finite entropy countable Markov shift and let τ : Σ Ñ R`
be a locally Hölder potential bounded away from zero. Consider the space Y “

tpx, tq P Σˆ R : 0 ď t ď τpxqu, with the points px, τpxqq and pσpxq, 0q identified for
each x P Σ. The suspension flow over Σ with roof function τ is the semi-flow
Φ “ pϕtqtPR on Y defined by ϕtpx, sq “ px, s` tq whenever s` t P r0, τpxqs. Denote
by MΦ the space of flow invariant probability measures. Let

Mσpτq :“

"

µ PMσ :

ż

τ dµ ă 8

*

. (5.1)

It follows directly from results by Ambrose and Kakutani [AK] that the map
R : Mσ ÑMΦ, defined by

Rpµq “
pµˆ Lebq|Y
pµˆ LebqpY q

,

where Leb is the one-dimensional Lebesgue measure, is a bijection. Denote by EΦ

the set of ergodic flow invariant measures. Let F : Y Ñ R be a continuous function.
Define ∆F : Σ Ñ R by

∆F pxq :“

ż τpxq

0

F px, tq dt.

Kac’s Lemma states that if ν PMΦ is an invariant measure that can be written as

ν “
µˆ Leb

pµˆ LebqpY q
,

where µ PMσ, then
ż

Y

F dν “

ş

Σ
∆F dµ

ş

Σ
τ dµ

.

The following Lemma describes the relation between weak˚ convergence in MΦ

with that in Mσ.

Lemma 5.1. Let pνnq, ν PMΦ be flow invariant probability measures such that

νn “
µn ˆ Leb
ş

τ dµn
and ν “

µn ˆ Leb
ş

τ dµn

where pµnqn, µ P Mσ are shift invariant probability measures. If sequence pνnqn
converges in the weak˚ topology to ν then

pµnqn converges in the weak˚ topology to µ and lim
nÑ8

ż

τ dµn “

ż

τ dµ.
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Proof. Assume first that pνnqn converges in the weak˚ topology to ν. Let f : Σ Ñ R
be a bounded continuous function. Following Barreira, Radu and Wolf [BRW] there
exists a continuous function F : Y Ñ R such that

fpxq “ ∆F pxq :“

ż τpxq

0

F px, tq dt. (5.2)

Indeed, define F px, tq : Y Ñ R by

F px, tq :“
fpxq

τpxq
ψ1

ˆ

t

τpxq

˙

,

where ψ : r0, 1s Ñ r0, 1s is a C1 function such that ψp0q “ 0, ψp1q “ 1 and ψ1p0q “
ψ1p1q “ 0. Note that since τ is bounded away from zero, F px, tq is continuous and
bounded. Therefore

lim
nÑ8

ż

F dνn “

ż

F dν.

By Kac’s Lemma we have that

lim
nÑ8

ş

∆F dµn
ş

τ dµn
“

ş

∆F dµ
ş

τ dµ
. (5.3)

In particular if f “ 1 is the constant function equal to one, we obtain

lim
nÑ8

ş

τ dµn
ş

τ dµ
“ 1. (5.4)

Let f : Σ Ñ R be a bounded continuous function, then it follows from equations
(5.2), (5.3) and (5.4) that

lim
nÑ8

ż

f dµn “

ż

f dµ.

Therefore pµnq converges weak˚ to µ. �

Proposition 5.2. If pνnqn is a sequence of ergodic measures in EΦ converging to
an ergodic measure ν, then

lim sup
nÑ8

hνnpΦq ď hνpΦq.

Proof. Let pνnqn be a sequence in EΦ that converges in the weak˚ topology to
ν P EΦ. Note that there exists a sequence of ergodic measures pµnqn P Mσ and
µ PMσ ergodic such that

νn “
µn ˆ Leb

pµn ˆ LebqpY q
and ν “

µˆ Leb

pµn ˆ LebqpY q
.

By Abramov’s formula [Ab], for any ν1 PMΦ, with ν1 “ µ1ˆLeb
pµ1ˆLebqpY q we have that

hν1pΦq “
hµ1pσq
ş

τ dµ1
.

Recall that by Lemma 5.1 we have that νn Ñ ν in the weak˚ topology implies that
µn Ñ µ in the weak˚ topology and limnÑ8

ş

τ dµn “
ş

τ dµ. Since htoppσq ă 8 by
Theorem 1.1 or Corollary 1.2 we have that

lim sup
nÑ8

hµnpσq ď hµpσq.
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Therefore,

lim sup
nÑ8

hνnpΦq “ lim sup
nÑ8

hµnpσq
ş

τ dµn
“

lim supnÑ8 hµnpσq
ş

τ dµ
ď
hµpσq
ş

τ dµ
“ hνpΦq.

�
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