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We present a beyond-mean-field approach to predict the nature of organic polariton lasing, accounting
for all relevant photon modes in a planar microcavity. Starting from a microscopic picture, we show how
lasing can switch between polaritonic states resonant with the maximal gain, and those at the bottom of the
polariton dispersion. We show how the population of nonlasing modes can be found, and by using two-time
correlations, we show how the photoluminescence spectrum (of both lasing and nonlasing modes) evolves
with pumping and coupling strength, confirming recent experimental work on the origin of blueshift for
polariton lasing.
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By placing optically active organic material in a planar
microcavity, one can create strong light-matter coupling,
and thus new quasiparticles, exciton polaritons [1]. As seen
in many materials [2,3], when pumped sufficiently, such
polaritons transition to a “condensed” or lasing state, with
macroscopic mode occupation and long range coherence.
A wide variety of organic materials have shown polariton
lasing [4–15] (for a review, see Ref. [16]). However, there
are no general design rules for the optimal material
properties for polariton lasing. Some key ideas have been
identified through effective rate-equation modeling [17–
21], showing how resonance with vibrational modes can
play a key role in scattering from an excitonic reservoir to
the polariton modes. However, such effective models leave
open many questions, about weak-to-strong coupling cross-
over, the evolution of coherence and line shapes, or the
competition between lasing modes.
Answering the above questions requires a microscopic

model which captures competition between different
cavity modes, and approaches beyond mean-field theory
(MFT). These two requirements go hand in hand:
fluctuation corrections to MFT grow with the number
of photon modes. Single-mode models have been a
popular and powerful tool [22–27]. However, because
they only capture the macroscopically occupied modes,
they cannot describe thermalization nor recover standard
results for critical temperature in equilibrium. The
relation between critical temperature and density for
an equilibrium Bose-Einstein condensate arises because
thermal populations of nonzero momentum states deplete
the macroscopically occupied mode. Capturing such
behavior requires considering fluctuation corrections to
MFT, analogous to work on equilibrium excitonic con-
densates [28–31]. Here we extend this idea to incoher-
ently pumped and decaying systems.

In this Letter, to realize the physics described above, we
develop a second-order cumulant approach to describe the
behavior of an organic polariton condensate. Using this we
study the evolution of the system with pump strength and
cavity detuning. We find a variety of different types of
behavior, with lasing either near the bottom of the polariton
dispersion or near resonance with the peak of the gain
spectrum. By calculating two-time correlation functions,
we present also a microscopic picture of how the polariton
dispersion evolves with increasing pumping, giving direct
predictions on the polariton blueshift.
Our model of organic molecules in multimode planar

microcavities is illustrated in Fig. 1. Following Refs. [22,27]
we model the Nmol molecules as vibrationally dressed
emitters, placed randomly in a planar cavity, using an
extendedmultimode Tavis-Cummings-Holstein Hamiltonian
(i.e., in the rotating wave approximation):

(c)(a) (b)

FIG. 1. (a) Organic molecules are placed inside a microcavity
that supports multiple photon modes. (b) Molecular level struc-
ture and processes: Incoherent electronic pumping has rate Γ↑,
electronic decay Γ↓, and dephasing Γz. The thermal (de)excitation
rates of the vibrational modes are γ↑ð↓Þ. (c) Discretized photon
dispersion. Integer k labels modes. Light-matter coupling hybrid-
izes the photon (ωk) and exciton (ε) into polariton modes. Figure
plotted for ω0 ¼ ε. We truncate the photon modes at K ¼ Nmodes
where the hybridization becomes weak.

PHYSICAL REVIEW LETTERS 125, 233603 (2020)

0031-9007=20=125(23)=233603(7) 233603-1 © 2020 American Physical Society

https://orcid.org/0000-0002-6624-2307
https://orcid.org/0000-0002-9888-8524
https://orcid.org/0000-0001-8082-1826
https://orcid.org/0000-0003-0979-9894
https://orcid.org/0000-0002-4283-552X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.125.233603&domain=pdf&date_stamp=2020-12-02
https://doi.org/10.1103/PhysRevLett.125.233603
https://doi.org/10.1103/PhysRevLett.125.233603
https://doi.org/10.1103/PhysRevLett.125.233603
https://doi.org/10.1103/PhysRevLett.125.233603


H ¼
X
n

�
ε

2
σzn þ ωvðb†nbn þ

ffiffiffi
S

p
ðb†n þ bnÞσznÞ

�

þ
X
k

ωka
†
kak þ

X
n;k

ðgn;kakσþn þ g�n;ka
†
kσ

−
n Þ: ð1Þ

The first line describes the organic molecules, labeled
by site n. Here ε is the energy of the electronic transition,
the Pauli matrices σz;�n describe the electronic state,
while b†n creates a vibrational excitation (vibron) of
energy ωv. The vibronic coupling is characterized by the
Huang-Rhys parameter S. For brevity we use below the
notation (n −m) to denote a transition between the elec-
tronic ground state with n vibrons, and the electronic
excited state with m vibrons. The operator a†k creates a
photon with wave vector k and energy ωk, and the light-
matter coupling has strength gn;k; these are discussed in
detail below. We ignore hopping of excitons between
molecules as delocalization through coupling to light
dominates over hopping [22,32].
To consider a finite number of photon modes we must

consider a finite-sized simulation. We take the system to be
a L × L square with periodic boundaries, so the photon
modes are plane waves with k ¼ ð2π=LÞðKx; KyÞ, where
Kx and Ky are integers. The coupling constants gn;k then
take the form gn;k ¼ ge−ik·rn , where rn is the in-plane
location of molecule n, discussed further below [33]. The
coupling strength depends on the photon mode volume
such that g ∼ 1=

ffiffiffiffiffiffi
L2

p
, but as each photon mode couples to

many molecules the overall light-matter coupling strength
is better characterized by the Rabi splitting ΩR ¼ ffiffiffiffiffiffiffiffiffiffi

Nmol
p

g,
which will depend on the molecular density in the cavity
plane ρ2D ¼ Nmol=L2.
We may write the photon energies as ωk ¼ ω0 þ

EρðK2
x þ K2

yÞ=Nmol, where we have defined an energy
scale Eρ ¼ π2ρ2Dℏ2=2m in terms of the molecular density
ρ2D and effective photon mass m. The integers Kx, Ky will
have an upper bound, as only those photon modes close
enough to resonance with the molecules are relevant.
Taking this condition to be ðωkmax

− εÞ ≳ΩR leads to a
value Kmax ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NmolΩR=Eρ

p
. Counting the total number of

photon modes,Nmodes, in a 2D system,Nmodes ∝ K2
max [34],

so we find Nmodes=Nmol ∼ΩR=Eρ. This ratio is important,
as it determines how well MFT works. For a single mode,
fluctuation corrections to MFT are suppressed as 1=Nmol.
As we discuss below, adding more photon modes increases
fluctuations, so that the relevant ratio is Nmodes=Nmol. This
same ratio also determines the relation between in-plane
molecular separation Δr vs typical in-plane wavelength
λt ∼ L=Kmax, i.e., Eρ=ΩR ∼ ðλt=ΔrÞ2. For realistic systems
Eρ is typically of the order 105–106 eV [35], far greater
than the typical value of ΩR ≃ 1 eV. For the numerical
results in this Letter we have set Eρ ¼ 5 × 105 eV [36].

Including the incoherent processes shown in Fig. 1, the
equation of motion for the system density matrix is [27]

∂tρ¼−i½H;ρ�þ
X
k
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X
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whereL½X� ¼XρX†− 1
2
ðX†XρþρX†XÞ.We include photon

loss at rate κ (assumed equal for all modes), and incoherent
pumping, decay, and dephasing of molecules with rates Γ↑,
Γ↓, and Γz respectively. The last two terms describe
thermalization of vibrons, with rates γ↓ ¼ γvðnb þ 1Þ,
γ↑ ¼ γvnb, and nb ¼ ½expðωv=kbTvÞ − 1�−1 is the Bose-
Einstein distribution. Physically this corresponds to assum-
ing that molecular vibrational modes rapidly thermalize by
coupling to some effective external reservoir at temperature
Tv, such as a solvent or the surrounding medium.
To capture both strong vibrational and light-

matter coupling, we will combine two electronic and N
vibrational levels into 2N-level molecular operators for
each molecule. A basis for such operators are the gener-

alized Gell-Mann matrices [38], λðnÞi . Using these, the
system Hamiltonian takes the form H ¼ P

k ωka
†
kakþP

n½Ai þ
P

kðBia
†
ke

−ik·rn þ H:c:Þ�λðnÞi . Hereon, sums
over repeated Gell-Mann matrix indices i are implicit.
The form of the vectors Ai and Bi is determined by
Eq. (1). Equation (2) can similarly be rewritten as

∂tρ¼−i½H;ρ�þP
k κL½ak�þ

P
μ;nL½γμi λðnÞi �. Here μ runs

over the different molecular dissipative processes (pump,
decay, dephasing, and vibrational excitation and decay).
As noted above, mean-field (MF) approaches are useful

to understand the linear stability of the normal state, but
cannot yield information about the nonlasing modes, which
ultimately can modify the critical properties of the lasing
transition. In thermal equilibrium, this was studied by
considering Gaussian fluctuation corrections to MFT
[28–31]. There one finds that when fluctuation corrections
are large, the critical temperature matches the degeneracy
temperature of the 2D Bose gas, due to thermal depopu-
lation of the condensate mode. The relative significance of
fluctuations in those works depends on a dimensionless
ratio, m� ¼ mΩR=ℏ2ρ2D—meaning fluctuations are more
significant when there is a large photon density of states.
This quantity m� is the same ratio as Nmodes=Nmol,
identified as controlling the role of beyond-mean-field
effects. We will see that even in the general nonequilibrium
context, this same parameter controls the effects of fluc-
tuations. Given the small value we have for Nmodes=Nmol,
we may expect the effects of fluctuations will be small, but
nonvanishing. A further discussion of the effects of
changing this parameter is given in the Supplemental
Material [37].
To go beyond MFT, we write second order cumulant

equations; this means writing equations of motion for
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second-order correlations of the operators ak; a
†
k, and λðnÞi ,

and splitting all higher order expectations into products of
first and second order moments [39]. Such an approach
directly relates to the semiclassical theory of lasing [40,41],
and has been used to study the differences between lasing
and condensation in the Dicke model [42,43], and to study
Rabi oscillations [44]. As the Hamiltonian has Uð1Þ
symmetry under a common phase change of ak and σ−n ,
the cumulant equations will simplify if we split the λi into
three groups: those that conserve, increase, or decrease the
electronic excitations, denoted z;þ, and −, respectively.
As yet, we have made no assumptions about the positions

of molecules rn. At this point we use the earlier observation
that there are many molecules within the typical in-plane
wavelength; we may thus assume spatial homogeneity, and
so approximate

P
ne

iðk−k0Þ·rn¼Nmolδk;k0 , giving conserva-
tion of momentum [45]. For single-mode lasing, this also

leads to homogeneous populations, so that li ¼ hλðnÞiz
i is

independent of n. Similarly, we can write the Fourier

components of the coherences cki ¼
P

ne
ik·rnhakλðnÞiþ i=

Nmol and dkij ¼
P

n;m≠n e
ik·ðrn−rmÞhλðnÞiþ λðmÞ

i−
i=N2

mol. The
equations of motion for these quantities, along with the
photon occupations nk ¼ ha†kaki take the form

∂tnk ¼ −κnk − 2NmolIm½Bicki �; ð3Þ
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ipd
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where c̃ik ¼ cki −
P

q c
q
i =Nmol and the coefficients

ξij; Xij;ϕi; βij, and ζij are different combinations of the
relevant structure constants, Hamiltonian constants, and
decay rates, specified in the Supplemental Material [37].
By going beyond MF approaches, these equations now
enable us to correctly capture the multimode behavior, and
see how fluctuations modify the lasing threshold.
To get numerical results we have to fix values for the

parameters of the system. We choose values, given in the
caption of Fig. 2, which recover a realistic absorption and
emission spectra in the weak-coupling regime—see
Ref. [37]. To further reduce the problem size, we can
project the k dependence of the equations onto one
dimension. From hereon the integer K labels photon
modes, with jkj ¼ 2πK=L, and a degeneracy factor WK
accounts for the two-dimensional density of states, see

Ref. [37] for details. Figures 2(a)–2(b) show phase dia-
grams of total photon occupation, ntot ¼

P
K WKnK, vs

photon detuning ω0 and pump Γ↑. Where MF predicts
lasing (white line, from Ref. [27]) there is macroscopic
occupation, while outside that region there is only occu-
pation of order 1. The agreement between the MF and
cumulant equations holds only because Nmol ≫ Nmodes; in
Ref. [37] we show that for smaller Nmol, fluctuations push
the transition to higher pump power. The only exception is
in the bottom left corner, for values of ω0 where MF
predicts no lasing, but there exists a larger ω0 which
would show lasing at the same pump strength. In this
case, the multimode model permits lasing of K > 0
modes. We find lasing at nonzero K occurs in other cases
as well. Figures 2(c)–2(d) show which photon mode has the
largest occupation nK in the lasing region. In the case of
weaker coupling (ΩR ¼ 0.1 eV, left column), we find that
when ω0 is close to (n − 0) transitions (i.e., for
ω0 ¼ ε − nωv) for n ¼ 0, 1, 2, lasing is predominantly
in the K ¼ 0 mode. For ω0 between the (1-0) and (2-0)
transitions there is competition between K ¼ 0 and
the mode, denoted K� below, closest to resonance with
the (1-0) transition.
To better see this competition, Fig. 3 shows nK as a

function of the pump for ω0 ¼ ε − 1.5ωv ¼ 0.7 eV. For
weaker light-matter coupling, the growth of photon occu-
pation is linear with pumping. The mode switching can
then be explained by the competition of two potential lasing
modes: the lowest mode K ¼ 0 and a nonzero K mode,
resonant with the (1-0) transition. Each mode has its own

(a) (b)

(c) (d)

FIG. 2. Phase diagrams for the system at two values of the Rabi
splitting ΩR. The top row shows total photon occupation vs
external pump rate (vertical) and the detuning of the photon
dispersion from the zero vibron transition (horizontal). The white
line is the single mode, MF linear stability result. The bottom row
shows theK index of the highest occupied photonmode. Thewhite
dashed line indicates the parameters used in Figs. 3(a)–3(b). The
parameters used here are S ¼ 0.1, ωv ¼ 0.2, Γ↓ ¼ κ ¼ 10−4,
Γz ¼ 0.03, γv ¼ 0.02, and kbTv ¼ 0.025 eV.

PHYSICAL REVIEW LETTERS 125, 233603 (2020)

233603-3



threshold and slope efficiency (gradient of photon occu-
pation vs pump). When two modes are above threshold, the
mode with larger gain will suppress the other. There is a
very narrow region of pump values where the gain is
similar, which leads to coexistence [47]—macroscopic
occupation of both modes—this can be seen from, e.g.,
Γ↑ ¼ 0.67Γ↓ line in Fig. 3(c). Another notable feature is
that even at the lowest detunings, lasing never switches to a
mode resonant with the (3-0) transition. This can be
explained by the coupling to this transition being too weak,
as the effective coupling to the (n − 0) transitions falls off
as hnje

ffiffi
S

p ðb†−bÞj0i ¼ Sn=2=
ffiffiffiffiffi
n!

p
.

At stronger light-matter coupling, as shown in the right
columns of Figs. 2 and 3, the mode switching can no longer
be described as a patchwork of single mode results.
Figure 2(d) shows two interesting changes. First, there is
a region of high K� lasing for very high pump strength and
positive detuning, and second, at large negative detuning
there is switching between adjacentK� modes. The highK�
lasing can be explained by the complete inversion of the
two-level system, which implies net gain exists at both high

and low frequencies (away from the vibronic structure);
photon modes at high K� overlap with such gain. A large
positive ω0 is required to reach total inversion of the two-
level systems, as otherwise, polariton lasing clamps
hσzi < 0. For further details see Ref. [37]. To understand
the K� switching we consider in detail the behavior seen in
Fig. 3(b). Because for ΩR ¼ 0.4 eV, the system remains in
the strong coupling regime even when lasing (see below),
we may note that even at a fixed K�, the energies of the
polaritons are known to shift to higher energy with
increasing density (also discussed below). As such, the
shift to higher K� with increasing pump is at first surpris-
ing: lasing moves to higher energy modes, as each mode
itself moves to higher energy. The explanation of this
requires the observation that with increasing pumping, the
gain spectrum also shifts to higher energies. This happens
because the sequence of (n − 0) vibrational sidebands, with
decreasing n and thus increasing energy, become inverted
in turn as pumping increases.
As already noted, due to strong light-matter coupling,

the mode energies are those of polaritons, not bare
photons and excitons. Moreover, because of the saturabil-
ity of two-level systems, these polariton energies are
density dependent, showing a blueshift of the lower
polariton with increasing pumping. To find the energy
of the occupied modes, we can calculate the photo-
luminescence (PL) spectrum:

SkðνÞ ¼
Z

∞

−∞
dtha†kðtÞakð0Þieiνt: ð7Þ

This can be found by the quantum regression theorem
[41]: Using the steady state density matrix ρss, we
construct ρ̃ð0Þ ¼ akρss, time evolve ρ̃, and then evaluate

(a) (b)

(d)(c)

FIG. 3. Lasing mode switching for two different Rabi splittings
ΩR. The top row shows photon occupation as a function of
external pump when ω0 falls in between the (1-0) and (2-0)
transitions (ω0 − ε ¼ −1.5ωv). (a) For Rabi splitting of
ΩR ¼ 0.1 eV, the nonzero vibron transitions (vibronic sidebands)
are outside of the range of strong coupling. There is clear
switching between two lasing modes, one close to (1-0) and
the other atK ¼ 0. Each mode that lases behaves linearly (a linear
fit is shown by the thinner, fainter lines), similarly to textbook
weak-coupling single-mode models. Reference [37] shows the
threshold behavior on logarithmic scale. (b) For Rabi splitting of
ΩR ¼ 0.4 eV the lasing behavior is strongly influenced by the
light-matter coupling, and the curves are no longer linear. The
bottom row shows the occupation of all photon modes vs bare
photon frequency ωk, for the same values of ω0 and ΩR as in (a),
(b), and pump strengths as marked by the gray vertical lines in
panels (a),(b). Other parameters are the same as in Fig. 2.

(a)

(c)

(b)

FIG. 4. (a)–(b) Photoluminescence spectra of the system for
(a) Γ↑ ¼ 0.1Γ↓ and (b) Γ↑ ¼ Γ↓. (c) The energy of the lower
polariton branch νLP0 (purple, solid line, left axis) and hσzi
(dashed, orange line, right axis) vs pump strength. The black
dots correspond to the pump values in panels (a)–(b) above, and
the gray line marks the lasing threshold.
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Tr½a†kρ̃ðtÞ�. Within our cumulant approximation, this gives
a set of coupled differential equations for two-time
correlators, with a form similar to Eqs. (3)–(6), see
Ref. [37].
Example PL spectra are shown in Figs. 4(a) and 4(b), for

parameters matching the strong light-matter coupling
shown in Fig. 3(b). Panel (a) corresponds to a small
pumping while (b) shows larger pumping in the lasing
regime. The peaks in the spectra correspond to the system’s
mode energies, their widths to the lifetimes, and intensities
to the occupations. The polariton anticrossing is clearly
visible in both spectra, indicating strong coupling persists,
but the splitting is reduced at higher pumping, correspond-
ing to a blueshift of the lower polariton branch. In contrast,
for ΩR ¼ 0.1 eV, the polariton splitting collapses before
lasing occurs. We may note that even when strong coupling
is seen, a broad feature at the bare exciton energy is visible.
This corresponds to uncoupled excitonic “dark states,”
which are known to become optically active due to the
vibronic coupling [24,48,49]. We can study the blueshift by
extracting the lower polariton frequency at K ¼ 0
for different pumping strengths, as seen in Fig. 4(c) in
solid (purple)—see Ref. [37] for details. By comparing
the lower polariton energy to the inversion hσzi (dashed,
orange line) it is clear that the blueshift seen here
corresponds entirely to the saturation of the molecular
optical transition.
In this Letter we have shown how the nature of organic

polariton lasing changes with changing pump, detuning,
and light-matter coupling. To understand this fully
requires consideration of the multiple photon modes in
a planar microcavity, which in turn demands a treatment
beyond MFT, which we have introduced here. We find
switching between different lasing modes, which can be
understood via the slope efficiencies of different modes,
and the evolution of gain profile. Our approach allows
direct calculation of the PL spectrum of the driven system,
giving information on the lasing frequency and the
evolution of the polariton dispersion, distinguishing pho-
ton and polariton lasing. Using our microscopic model,
we could show that the blueshift closely matches the
occupation of the exciton ground state, corroborating the
phenomenological saturation model of polariton interac-
tion [15]. The methods described in this Letter can
straightforwardly be extended to more complex molecules
(e.g., other electronic states, further vibrational modes, or
other dissipative processes), or to analysis of time-depen-
dent pumping which we will discuss in a subsequent
publication. As such, this provides a foundation to predict
how molecular properties determine the optimal materials
for organic polariton lasing.

The research data underpinning this publication can be
accessed at [50].
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