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Abstract. Similarity search using metric indexing techniques is largely
a solved problem in low-dimensional spaces. However techniques based
only on the triangle inequality property start to fail as dimensionality
increases.
Since proper metric spaces allow a finite projection of any three objects
into a 2D Euclidean space, the notion of angle can be validly applied
among any three (but no more) objects. High dimensionality is known to
have interesting effects on angles in vector spaces, but to our knowledge
this has not been studied in more general metric spaces. Here, we consider
the use of angles among objects in combination with distances.
As dimensionality becomes higher, we show that the variance in sampled
angles reduces. Furthermore, sampled angles also become correlated with
inter-object distances, giving different distributions between query solu-
tions and non-solutions. We show the theoretical underpinnings of this
observation in unbounded high-dimensional Euclidean spaces, and then
examine how the pure property is reflected in some real-world high di-
mensional spaces. Our experiments on both generated and real world
datasets demonstrate that these observations can have an important im-
pact on the tractability of search as dimensionality increases.

Keywords: metric search · high dimensional space

1 Introduction

The context of interest is searching a (large) finite set of objects S which is a
subset of an infinite set U , where (U, d) is a metric space: that is, a pair (U, d),
where U is a domain of objects and d is a total distance function d : U ×
U → R, satisfying postulates of non-negativity, identity, symmetry, and triangle
inequality. The general requirement is to efficiently find members of S which
are similar to an arbitrary member of U given as a query, where the distance
function d gives the only way by which any two objects may be compared. There
are many important practical examples captured by this general mathematical
framework, see for example [4, 14]. There are two main types of query: range and
nearest-neighbour search. The range search for some query q ∈ U and threshold
t ∈ R is defined as having the solution set R = {s ∈ S| d(q, s) ≤ t}. More
practical in many contexts is the nearest-neighbour (kNN) search where the
solution set comprises the k closest objects to a query.
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The essence of metric search is to spend time pre-processing the finite set S
so that solutions to queries can be efficiently calculated. In all cases distances
among members of S and selected reference or pivot objects are calculated during
pre-processing. At query time the relative distances between the query and the
same pivot objects can be used to make deductions about which data values
may, or may not, be candidate solutions to the query. Such deductions are based
upon the triangle inequality property of the metric.

1.1 Distances and angles

In this paper we consider not just the measured distances among objects, but
also the angles implied by these distances. In any metric space, the triangle
inequality property also implies a finite 3-embedding in 2D Euclidean space [5],
and so it is valid to discuss the angles of a triangle constructed according to
the distances among any three objects selected from the space. It is important
to stress that, in this paper, this is the only notion of angle that we use; thus
our discussion is valid with respect to any proper metric space, not just vector
spaces.

In the context of metric search, we are interested in the distribution of angles
∠pqsi where objects p and q are fixed, and si is sampled within a relatively small
bounded distance from q. This is typical of a situation where p represents some
reference object, q represents a query object, and si is sampled from the solution
objects of the query. Note that the situation described generalises to both range
and nearest-neighbour queries.

In general, we compare this distribution of angles with the alternative distri-
bution of ∠pqxi where the same p and q are selected, but where xi is sampled
from the entire metric space without constraint. We find that in many cases, es-
pecially in high-dimensional spaces, these distributions differ significantly. This
information can be used to effect within existing metric access methods, and fur-
thermore gives a geometric explanation to phenomena that have been previously
observed, but not previously explained, in approximate indexing techniques.

The main observation of this paper is that the following usually hold in high-
dimensional metric spaces:

– if three values p, q, x are randomly sampled, then the mean of the angle ∠pqx
is 60 degrees, and the variance in this measurement decreases as dimension-
ality increases;

– however if values p, q are fixed, and then si is sampled from a sufficiently
small fixed distance bound of q, then the mean of the angle ∠pqsi is greater
than 60 degrees, and again the variance decreases as dimensionality increases.

We show how these observations can be used to effect in approximate search
techniques.
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1.2 Contributions

It is generally known that, as the dimension of a vector space increases, the
probability of two independently selected vectors being close to orthogonal in-
creases. In Section 3 we show that in an unbounded Euclidean space, for any
values of a and b, and c sampled within a distance bound t of b, the mean angle
∠abc is 90°, and the variance decreases according to the dimension of the space.
This corollary allows the angles to be calculated using only the distances among
three objects, rather than from the values of two vectors, and thus allows the
possibility of extension into general metric spaces.

We show that this effect can be used to determine an upper bound on the
probability of a randomly selected point lying in the intersection of hyperspheres
centred on a and b, and how this probability may be used to construct approxi-
mate search mechanisms. We show that this probability is related to the function
sinn θ where n is the Euclidean dimension. This can lead to very low probabilities
in some cases, and thus highly accurate approximations.

In Section 4 we show by experiment that this theory holds perfectly in a
bounded uniform Euclidean space, as long as the position of b and the distance
d are fixed to ensure that the hypersphere described by <b, d> is fully enclosed
in the space. However, in many high-dimensional search spaces, this does not
hold. This is because the hypersphere <q, t>, where q is a query object and t is
a distance bound which includes elements of the finite search space, may include
a significant region that lies outside the boundaries of the space. Nonetheless for
such spaces there still exists a predictable distribution of sampled angles which
is different from randomly sampled angles. We introduce an observed correlation
between outlierness and the distribution of angles in these spaces.

Finally in Section 5 we study some “real-life” high-dimensional metric search
spaces to check if the theoretical observations still hold. We find that, while
compromised from the pure model, there is still a useful distinction between the
angle distributions of query solutions and non-solutions, and furthermore this is
observable in non-Euclidean metric spaces as well as Euclidean spaces. We show
some experiments which use a variant of LAESA to demonstrate a practical
application of our observations. For all of the datasets used, a relaxation on the
exclusion condition based on the angle-enhanced analysis allows substantially
more exclusion while still maintaining almost perfect accuracy.

2 Related work

The distribution of vectors within high-dimensional vector spaces is discussed
in a book chapter by Hopcroft and Kannan [2]. This introduces the notion of
the 90◦ degree angle norm in discussion of an “annulus” within the hypersphere.
However, the subtleties of the hyperspace being only partially embedded within
the data space are overlooked.

In [3], the authors state that it is “a matter of folklore” that “all high di-
mensional random vectors are almost always nearly orthogonal to each other”.
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They quantify this with a probability density function, directly proportional
to sin(n−2) θ, for the angle between two vectors randomly sampled from a uni-
form distribution on the surface of an n-dimensional hypersphere. This is con-
sistent with our distribution, which is proportional to sinnθ, considering points
uniformly distributed within a segment of the hypersphere. They also observe,
without explanation, the close relationship between the function sinnθ and a
related normal distribution, as we use in Section 3.

Pramanik et al [12] give an expression for the volume of a hypersphere in
an n-dimensional Euclidean space, and imply a derived PDF for angles which is
proportional to sinnθ. They do not give a derivation of their volume formula. Per-
haps as a result of this, their implication of the relationship between volume and
probability is incorrect, and in fact the density function should be proportional
to sin(n−2)θ as above.

They go on to use an angle-based relaxation of a ball partitioning mechanism
to improve performance of a single-pivot mechanism, the AB Tree, which they
show to be effective in terms of increased performance versus a small loss in
accuracy. There are however a number of issues with their presentation which we
clarify in our work. First, they overlook the fact that as dimensions increase the
theoretical distribution becomes ever less true due to the inability of a bounded
data space to contain the query hypersphere. They present graphs showing a
perfect distribution over a search space which we have been unable to reproduce.
Most importantly, the conceptual basis of their optimisation depends on the
angle ∠qpisj , where q is the query, pi is the centre of a ball partition, and sj is a
potential solution to the query. This implies that the radius of the search space
around the query object is larger than the radius of the data which is being
pivoted by pi, which could not occur in a high-dimensional space.

We have been able to synthesise large numbers of uniformly distributed val-
ues within very low-volume hyperspheres thanks to a technique shown by Voelker
et al. [13]. This has been extremely valuable as, in high dimensions, it is effec-
tively impossible to otherwise find uniformly distributed points within a given
hypersphere.

Finally, there are many papers that give results based on relaxing the strict
condition of triangle inequality in ball partitioning, increasing the efficiency of
the mechanisms at cost of giving giving approximate results. We believe that
our work here goes a long way to explain the effectiveness of such mechanisms
in high-dimensional spaces.

3 Unbounded Euclidean spaces

The orthogonality of vectors in high dimensional spaces, once quantified, can
give useful insights with respect to single pivot exclusion, in particular towards
assessing the probability of an object lying within the intersection of two hyper-
spheres. Traditional metric search techniques allow only that this is zero when
the sum of the radii is greater than the distance between the centres; we are
interested in quantifying the probability of an object from the finite space lying
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within an intersection of the infinite space. However given a high probability of
restricted angles in high dimensional spaces, many overlapping hyperspheres will
have a very low probability of the geometric intersection containing any elements
of a given finite space.
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Fig. 1. On the left hand side, the figure shows how the intersection of the hyperspheres
is contained in the segment of the hypersphere around q defined by θ. The graph on
the right hand side shows the probability of a randomly selected point from within the
hypersphere also being in this segment, as x in the left hand figure varies between 0
and 2t. This therefore gives an upper bound on the probability of such an object in
the intersection.

The left hand side of Figure 1 shows how a restriction of angles is useful
in metric search. p and q represent hypersphere centres, where a finite metric
space S has been divided during pre-processing into Sout and Sin according
to a distance m from a pivot p. q represents a query, to which solutions are
being sought within the threshold distance t. Since the hyperspheres intersect,
according to the distance d(p, q) calculated at query time, Sin cannot be excluded
using the metric properties alone.

With respect to the hypersphere centred around q, consider the segment
defined by the angle θ. If, for all elements si ∈ S such that d(q, si) ≤ t, the angle
∠pqsi is greater than θ, then the finite intersection is empty and the set Sin can
be excluded from the search. If there is a high probability of vectors pq and qsi
being close to orthogonal, there will be a correspondingly high probability of the
intersection being empty.

In a general Euclidean space of course this can never be guaranteed; however
as we will show, as the dimension of the space increases, the probability of an
individual point from a uniform distribution being within the intersection may
become very small. The right hand side of Figure 1 gives probability density
functions (PDFs), in various dimensions of Euclidean space, for the displacement
x for a randomly selected point within the solution space.

It can be seen that, for higher dimensions, the probability of a point lying
with the intersection is very low. We will proceed to give a quantification of
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an upper bound which is easily calculated. In the remainder of this section, we
derive a PDF and quantify the examples shown in the figure.

3.1 Volume of a hypersphere

The volume of a hypersphere of radius r can be expressed in terms of the volume
of the unit hypersphere (i.e. r = 1) as

Vn(r) = vnr
n (1)

where vn is the volume of the unit hypersphere. Equation (1) is well known in a
more general context, and straightforward to demonstrate1.

The intersection of a hyperplane in Rn with a n-ball is an (n − 1)-ball.
Considering a unit (n − 1)-ball bn−1 centred on the origin, the volume of the
unit n-ball can be written as an integral of volumes of (n−1)-balls by considering
hyperplanes orthogonal to the X1-axis:

vn =

∫
b

dx1 . . . dxn =

∫ 1

−1

(∫
bn−1 ∩{X1=z}

dx2 . . . dxn

)
dz (2)

As depicted in the left-hand side of Figure 2, the intersection bn ∩ {X1 = x}
is an (n-1)-ball of radius r =

√
1− x2, thus its volume is Vn−1(

√
1− x2) and

Equation (2) can be rewritten as

vn =

∫ 1

−1
Vn−1(

√
1− x2)dx

which then, according to Equation 1 gives

vn = vn−1

∫ 1

−1

(√
1− x2

)n−1
dx

as vn−1 may be removed from the integral as it is a constant.

x

y

r = 1
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f(x) =
√
1− x2

x

y

r = 1

θ

f(x) = sin θ

Fig. 2. Volume of a (3D) unit sphere:
∫ 1

−1
π
(√

1− z2
)2
dz =

∫ π
0
π sin2 θ dθ

1 Vn(R) =
∫
Bn(R)

1 dx1 . . . dxn =
∫
Bn(1)

Rn dy1 . . . dyn = RnVn(1), where we inte-
grate by substitution with xi = Ryi for all i
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Finally, by considering, as shown on the right hand side of Figure 2, that x
can be written as cos θ and then f(x) = sin θ, integrating by substitution we
have∫ 1

−1

(√
1− x2

)n
dx =

∫ 0

π

(√
(1− cos2 θ)

)n−1
(− sin θ)dθ =

∫ π

0

(sinθ)ndθ

So finally putting all the pieces together we have an expression for the volume
of a hypersphere of radius r in n dimensions:

Vn(r) = rnk

∫ π

0

sinnxdx (3)

for a constant k.

3.2 Derivation of the PDF

To construct a PDF, we note that Equation 3 derives from a Riemann integral
of infinitesimal hyperspheres, in n−1 dimensions, each orthogonal to a diameter
through the centre of the n-dimensional hypersphere. Considering the left-hand
side of Figure 1, the integration may notionally be performed along the axis pq
within any (n − 1)-dimensional hyperplane containing p and q. Then the angle
θ in the figure corresponds to the integral variable x in Equation 3. Thus, the
volume in the green-shaded area of the figure is given by the definite integral
tnk

∫ θ
0
sinnxdx. Within a uniformly populated space, the PDF of a point being

within the defined segment, with respect to the angle θ, is therefore directly
proportional to h(x) = sinnx, x ∈ [0, π].

The PDFs shown in the right hand side of Figure 1 are produced by applying
this function to cos xt , where x is the distance from q along the line pq, in order
to convert the angular dependence to a distance along the pq axis. The outcome
is then divided by the volume of the hypersphere around q to normalise the area
under the curves.

Quantifying this PDF is non-trivial. However, for high values of n, the func-
tion sinn x becomes almost indistinguishable from a related Gaussian, and in
turn the related PDF becomes almost indistinguishable from that of a normal
distribution, and thus readily available. For large n, for example n > 15, the
PDF function is almost indistinguishable from that of a normal distribution
with µ = π

2 and σ = 1√
n
. This observation has also been made by [3], and is

discussed in [1].

3.3 Examples of overlap in unbounded Euclidean spaces

Table 1 gives probability calculations, for Euclidean spaces of various dimensions,
for the situation shown in Figure 1, where d(p, q) = m+ t

2 . These figures corre-
spond with the probability density functions shown in the Figure. Two points are
notable: first, how small the probabilities become as dimensions increase, even
with this significant amount of overlap; secondly, how the normal distribution
estimate gives an increasingly small error as the dimension increases.
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Table 1. Probability of Inclusion

Dimension Probability Normal estimate
2 0.195 0.228
10 0.0405 0.0479
20 0.0074 0.0093
30 0.0015 0.0020

Table 2. Proportion of queries within unit cube

Metric Inside cube Outside Cube
Euc10 87.57% 12.43%
Euc20 51.15% 48.85%
Euc30 35.88% 64.12%

4 Experiments in generated Euclidean spaces

In the following experiments we use a number of different generated Euclidian
spaces with individual coordinates drawn from a Gaussian distribution. Data
points in these spaces have 10, 20 and 30 coordinates and are referred to as
EUC10, EUC20 and EUC30.

In the following experiments we examine the mean and variance of angles abc
within various spaces. In the first experiment a, b and c are sampled uniformly
from within the space. The results of this experiment are shown in the brown
(left hand) distributions in Figure 3. In all cases the average angle is close to
60° with standard deviations of 16.5°, 11.25°, 9.11° for Euc10,20 and 30 respec-
tively. As can be observed from the figure the standard deviation drops as the
dimensionality of the data-set increases.

In the second experiment a and b are sampled uniformly from the space but
the third point c is constrained to be both within a threshold of the query point
b and within the unit cube. For each experiment the radius of the hypersphere
is calibrated to return one-millionth of the data-set. For EUC10, EUC20 and
EUC30 these are: 0.229, 0.602 and, 0.727 respectively.2 The results of this ex-
periment are shown in the blue (right hand) distributions in Figure 3. As can
be seen the angle is close to 90° and like the earlier experiment the standard
distribution of angles reduces with increasing dimensionality of the data-set.

4.1 Query regions lying outwith the unit cube

In the above experiment we constrained the third points c to be within the
sampled space. To determine the proportion of the query ball that lies outwith
the unit cube we performed the following experiment on each of the Euclidean
spaces. We randomly sampled one thousand points from within the space. For
each point we uniformly sampled a further thousand points from within the
2 If the radius of the hypersphere is constrained to be within the unit cube rather than
at the defined radii the results are identical.
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Fig. 3. Distance distributions for constrained and unconstrained triples

hypercube of radius set to be the standard thresholds (described above) and
measured if the point is within the unit cube or not. The results of running the
experiment is shown in Table 2. As can be seen, the proportion of the hypersphere
outwith the unit cube increases dramatically as the dimensionality of the data-
set increases.

4.2 Prediction of the angle distribution

To understand the effect of the relationship between where queries are in the
space and the resultant angles we conducted the following experiment. We sweep
a hyper sphere up the diagonal of the unit hyper cube (in some dimension) from
the origin to the opposite corner (1,..,1) in intervals of 0.01. The radius of the
hypersphere is set using the standard thresholds used above. We examine the
mean and variance of angles ∠abc as follows. a is a fixed viewpoint which is
always the centre of the unit cube3, b is set to be a point along the diagonal of
the cube (0, 0, ..., 0) to (1, 1, ..., 1), and for each instance of b, c is sampled from
within a fixed hypersphere centred around b as before. As before, we discard any
points that are not within the (0,..,0)-(1,..,1) hypercube – i.e. those points that
cannot be legal solutions to the query. In each case 1 million points from within
the hyper sphere are chosen randomly and those lying outwith the unit cube
are discarded. During this process we also measure outlierness using a Local
3 We separately established that the viewpoint does not affect the measured angles.
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Intrinsic Dimensionality (LIDIM) maximum likelihood estimator due to Levina
& Bickel [9]. To determine outlierness, we apply this formula using distances to a
set of reference points rather than calculating LIDIM using a set of neighbouring
points.

Fig. 4. Constrained Angles in the EUC20 Dataset

The results of these experiments are shown in Figure 4. These four plots
demonstrate a number of different interesting facets of the query solutions.
Firstly, it can can be seen that angles ∠abc are far from uniform. At the edge
of the unit cube they rise and fall rapidly as the hyper sphere approaches the
vertices of the unit cube. When the hypersphere approaches the centre of the
cube the angles tend towards 90°. Secondly the distribution of angles are not
constant. As the sphere approaches the centre of the cube they rise to a rela-
tively constant variation of approximately 13.1°. Thirdly, the number of points
inside the cube vary greatly. Close to the vertices of the cube the number of
legal points tend towards zero whereas in the centre all of the 1 million sampled
points are within the cube. Lastly, a good approximation to how much of an
outlier a point is can be made by using the LIDIM formula with a fixed set of
reference points as described above.
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5 Experiments in other spaces

In this section we test the value of the angle analysis by examining pivot exclu-
sion, enhanced by angle analysis, in a LAESA-like framework. We should stress
that these experiments are to test the proof of the concept only; we believe that
more sophisticated mechanisms can take advantage of the angle information to
much better effect.

Table 3. Data Sets

Name Dimensions Derivation Preparation Metric
MfAlex 4096 MirFlickr fc6 layer AlexNet, no RELU Euclidean
DeCaf 4096 Profiset fc7 layer AlexNet, post-RELU Euclidean
AnnSift 128 MirFlickr `2 normalised Euclidean
MfGist 480 MirFlickr `1 normalised Jensen-Shannon

We used four different high-dimensional data sets with different properties,
as summarised in Table 3. MfAlex is derived from the application of the AlexNet
[8] convolutional neural network on the MirFlickr image collection4. The data
used is extracted from the first fully connected layer (fc6). DeCaf descriptors
[7] are extracted from the Profiset image collection5 using AlexNet, from which
the fc7 post-Relu layer is extracted. AnnSift descriptors [10] are taken from the
ANN_SIFT1M dataset6. Although queried with the `2 distance, these vectors
are `2 normalised and thus this metric acts as a proxy for Cosine distance.
MfGist is derived using GIST [11] image descriptors over the MirFlickr 1M image
collection. These descriptors are queried using the Jensen-Shannon distance,
which has been shown to be the best metric for near-duplicate detection [6].

Of the four data sets, only the first therefore represents a true Euclidean
space where each dimension contains a range of positive and negative values. We
have deliberately chosen this range of data sets to examine whether the angular
properties which are clear in unbounded Euclidean spaces follow in more general
metric spaces. The four spaces all contain one million objects, and in each case
a ground truth is known for one thousand queries, each of which has 100 known
nearest neighbours.

The queries are divided into two equal sets, the first of which is used to
perform analysis over the space, and the second of which is used to test a search
mechanism using that analysis.

5.1 Correlation of outlierness and angle

Our hypothesis is that for any high-dimensional space, the distribution of angles
∠piqsj , where pi is selected from a set of reference points, q is a query and
4 https://press.liacs.nl/mirflickr
5 http://disa.fi.muni.cz/profiset/
6 http://corpus-texmex.irisa.fr/
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Fig. 5. Correlation between query outlierness and mean angle ∠piqsj , where sj is a
solution to query q. The lines show the best-fit quadratics, used in the experiments in
Section 5.

Fig. 6. Correlation between query outlierness and mean angle ∠piqsj for the non-
Euclidean spaces.

sj is selected from solutions to that query, will be constrained in comparison
with randomly sampled angles from the space, and will be correlated with the
outlierness of the query.

A randomly selected set of 256 objects was selected from the dataset to act
as reference objects. For each query q, for each pi in the reference set, and for
each sj in the known solution set, the angle ∠piqsj was measured and the mean
and variance recorded.

For each q, an approximation to the outlierness was calculated based on
the distances d(pi, q) for each reference object using the maximum likelihood
estimator as described above [9]. The scatter plots in Figure 6 show a clear
relationship between query outlierness and the mean angle. It is clear in all
cases that the majority of angles are greater 60° and are thus distinct from the
angles within a randomly selected triplet. The angles depicted on the scatters are
averaged over the query’s 100 nearest neighbours, and in all cases the standard
deviation is quite low - almost always less than 10°. The implication, in terms
of the analysis shown in Section 3, is that exclusion may safely occur in many
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situation where its safety cannot be guaranteed by triangle inequality alone. We
quantify this in the next section.

5.2 Use in querying

In this section, a simple search mechanism is applied in order to give experimental
validation of the principles outlined7.

The search mechanism used is a variant of LAESA. From the data set S,
a randomly selected subset P of 256 reference objects8 is removed. The pre-
processing phase comprises the calculation of a distance table between each
reference object pi ∈ P and each remaining member sj of S. At query time,
the distance between the query and pi is calculated. The possibility of exclusion
of each object sj is determined by scanning the appropriate row of the pre-
calculated distance table. In the normal LAESA algorithm, exclusion may occur
if and only if |d(pi, sj)− d(pi, q)| > t, where t is the threshold distance for that
query. In that case, it is impossible for the hypersphere of radius t centred on q
to contain sj , and the distance d(q, sj) does not require to be calculated.

The pure LAESA mechanism is adapted to perform exclusion even in some
cases where |d(pi, sj) − d(pi, q)| ≤ t, as depicted in Figure 1. For each query q,
the set of distances d(q, pi) is calculated as usual. These distances are first used
to measure an estimate of outlierness, as described in Section 5.1, and thus to
determine an estimate γ of the mean angle ∠pqsi in cases where d(q, si) is small.
In our experiments, a fixed amount of variance τ is allowed, with the intent
that, for all solutions, the angle ∠pqsi is highly likely to lie within the bounds
γ ± τ . Now, for all values sj from the finite set, and for each pi, the angle θ is
calculated9 from the values d(pi, sj), d(pi, q) and t. If the angle θ lies outside the
range γ ± τ , then sj is excluded without performing the calculation d(q, sj).

In the experiments over all the data sets we report outcomes using a range
of fixed tolerances between 0.3 and 0.65 radians. Finally, each experiment is
repeated with a tolerance of π2 radians, which effectively makes exclusion impos-
sible other than when allowed by the pure LAESA mechanism.

Results for the four data sets are shown in Figure 7. The left hand graph
shows the cost per query for the different tolerances; as expected, a smaller
tolerance, resulting in a larger cutoff angle θ, gives a lower cost. The right hand
graph shows recall for the same tolerances. As noted, this mechanism always
gives perfect precision.

The results fully justify our derived model. For all data sets, a tolerance
value of around 0.6 radians gives almost perfect recall. This value implies that
all query solutions, in these spaces, do indeed lie within an arc of 1.2 radians in

7 Source code is available from https://github.com/aldearle/SISAP2020_angles or
from the authors.

8 the same number is used across all sets to allow fair comparison, even although for
example the cost of performing an exclusion for AnnSift may be greater than the
cost of measuring the distance directly.

9 unless |d(pi, sj)− d(pi, q)| > t, when exclusion can occur in any case
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Fig. 7. Test results with LAESA with increasing tolerance. The left figure shows cost,
as the number of distance calculations performed divided by the size of the data. The
right hand figure shows recall. The values at the right hand side of each graph equate
to those for an unmodified LAESA mechanism.

the 2D projection, implying that over half of the angular space is empty. It is
also noteworthy that the data sets with higher costs for the unmodified LAESA
give perfect recall with lower tolerance levels. It is reasonable to assume that
this is a consequence of a higher inherent dimensionality leading to a tighter
clustering of the angles within the 2D projection.

6 Conclusions and future work

We have taken an observation from high-dimensional vector spaces and applied
it to general metric spaces by way of a derived approximate search paradigm. We
have shown an underlying mathematical model which explains a related effect in
unbounded, uniform Euclidean spaces, and demonstrated it experimentally. We
have shown that, unfortunately, the effect does not hold perfectly in bounded
high dimensional search spaces. This is because the radius required to capture
query solutions in a finite space far exceeds the boundaries of the space.

We have demonstrated nonetheless an interesting restriction in the distribu-
tion of angles in metric spaces, and in particular that the angles from a reference
point, via a query, to a query solution are significantly different from angles ran-
domly sampled from the space.

We have outlined how this may be used to conduct a probabilistic search,
and a trade-off is shown between query efficiency and accuracy in spaces which
are otherwise intractable for exact search. We believe that this topic has much
further promise; our present analysis of the spaces is based on a relatively crude
measure of query outlierness, and we believe a more sophisticated analysis of
the space may result in a finer-grained understanding of the angle distribution,
as well as further query mechanisms based on it. In particular, we have not yet
examined the effect of the restricted angles on hyperplane exclusion mechanisms,
nor in conjunction with the four-point property of supermetric spaces.
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