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Abstract
This paper considers the representation of odd moments of the distribution of a
four-step uniform random walk in even dimensions, which are based on both linear
combinations of two constants representable as contiguous very well-poised gen-
eralized hypergeometric series and as even moments of the square of the complete
elliptic integral of the first kind. Neither constants are currently available in closed
form. New symmetries are found in the critical values of the L-series of two
underlying cusp forms, providing a sense in which one of the constants has a
formal counterpart. The significant roles this constant and its counterpart play in
multidisciplinary contexts is described. The results unblock the problem of
representing them in terms of lower-order generalized hypergeometric series,
offering progress towards identifying their closed forms. The same approach
facilitates a canonical characterization of the hypergeometry of the parbelos,
adding to the characterizations outlined by Campbell, D'Aurozio and Sondow
(2020, The American Mathematical Monthly 127(1), 23-32). The paper also
connects the econometric problem of characterizing the bias in the canonical
autoregressive model under the unit root hypothesis to very well-poised general-
ized hypergeometric series. The confluence of ideas presented reflects a
multidisciplinarity that accords with the approach and philosophy of Prasanta
Chandra Mahalanobis.

Keywords. Four-step uniform random walk in the plane, Dickey-Fuller
distribution, very well-poised generalized hypergeometric series, elliptic integral,
universal parabolic constant, moments
AMS (2000) subject classification. Primary 33C20, 60G50, 62M10, Secondary
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1 Introduction

In his assessment of the impact of Karl Pearson's work in the development
of Statistics in India, Nayak (2009) outlined the nascent role it played in
attracting Prasanta Chandra Mahalanobis to the discipline, and in inspiring
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him towards his eventual leading role in its development across the Indian
subcontinent. See also Ghosh (1994). C.R. Rao (1973) saw Mahalanobis exis-
tentially as “. . . a physicist by training, a statistician by instinct and a planner
by conviction.” He argued that

“He did not consider statistics as a narrow subject confined to the math-
ematical theory of probability, or routine analysis of data in applied
research, or collection of data as an aid to administrative decisions . . .
But he took a wider view of statistics as ‘a new technology for increasing
the efficiency of human efforts in the widest sense'. This has naturally
aroused his interest in various fields and enabled him to enrich the science
of statistics with a practical base of great depth and spread. (ibid., p. 463)

This paper is also influenced by an early Pearson contribution: a statement of the
problem on the randomwalk. While it does not deal directly with an issue inspired
by a statistical contribution byMahalanobis and has more scientific than practical
application, it attempts to offer a multidisciplinary approach, including an
application toEconometrics, that is consistent with his wider statistical philosophy.

Pearson (1905) initiated work on a now-celebrated problem: characterizing
the distribution of the distance travelled in anN-step randomwalk in the plane.
The walk starts at the origin and entails N steps of unit length, each taken in a
uniformly random direction. The problem is classical and attracted some
immediate contributions, e.g. Rayleigh (1905) who, referring to his earlier work,
gave the distribution for largeN; and Kluyver (1905) who expressed the density
function for general N in terms of an integral involving Bessel functions.
Finding closed-form expressions for the densities for small N, however, has
proved to be considerably more challenging, given their lack of smoothness
and the radical differences in their shapes compared with the densities for larger
N. Indeed, it could be argued the small-N problem has only received a satis-
factory treatment given recent developments in mathematical and com-
putational technology. General approaches to the small-N problem are
Borwein, Nuyens, Straub and Wan (2011), Borwein, Straub, Wan and
Zudilin (2012), Borwein, Straub and Vignat (2016) and Joyce (2017).
Related papers, including some of a more technical nature, are Borwein,
Straub and Wan (2013), Borwein and Straub (2013), Borwein and
Sinnamon (2016) and Zhou (2019a). Borwein (2016) offers an introduc-
tion and perspective on recent work. The problem is also discussed in
Chapter 6 of the recent monograph by Brunault and Zudilin (2020).

We first consider the N-step uniform random walk problem in the plane,
although our results pertain to higher dimensions. LetXN be the distance to the
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origin after N steps. Borwein, Straub, Wan and Zudilin (2012) showed the s-th
moments of XN can be computed by

Let pN(x) be the probability density function ofXN. Then pN(x) and are
related via

where, accordingly, is the Mellin transform of pN(x). Kluyver (1905)
showed that

pN xð Þ ¼ ∫∞0 xt J 0 xtð ÞJ 0 tð ÞNdt; ð1:3Þ
where J 0 tð Þ≔ 2

π ∫
π=2
0 cos t cos θð Þ dθ is the Bessel function of the first kind and

zero-th order.
As a probability density function, pN(x) is supported on [0,N]. While closed forms

are available for N = 1 and 2, the small-N behaviour of (1.3) makes finding closed-
forms or even just tractable expressions for the densities and moments in the short-
walk problems analytically andnumerically challenging.This is especially so forN=3,
4, 5 and 6. Borwein, Nuyens, Straub and Wan (2011) illustrate the dramatically
different shapes of the small-N density functions, including the so-called “shark-fin
curve” of theN= 4 case of interest here. The densities become smooth only atN= 6.
Remarkably, the small-N case has thrownup features that have numerous analogies in
multidisciplinary contexts, including Analytic Number Theory and Physics.

Borwein, Nuyens, Straub andWan (2011) showed by two different methods
that for general N in the plane,

where k
a1;…;aN

� �
is the multinomial coefficient k!

a1!…aN !
and the function Re(.)

denotes the real part of a complex number. The even moments take on a
simpler form. Borwein, Straub, Wan and Zudilin (2012) showed that

ð1:1Þ

ð1:2Þ

ð1:5Þ

ð1:4Þ
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Borwein, Nuyens, Straub and Wan (2011) found this same expression in
Richmond and Shallit (2009), indicating that the even moments in the plane
count Abelian squares. They also satisfy a recursion that has an analytic
continuation to the complex plane. In the N = 4 case,

The analytic continuation, based on a three-term recurrence relation, im-
plies that the odd moments can be written in terms of two initial values:

(1.7)

and

(1.8)

where J0(t) are the Bessel functions of the first kind in (1.3), J1(t)≔ − dJ0(t)/dt,
and I 0 tð Þ≔ 1

π ∫
π
0exp tcosϕð Þ dϕ and K0 tð Þ≔∫∞0 exp −tcoshuð Þ du are the modified

Bessel functions of first and second kinds, of zero-th order respectively.1

Borwein, Straub and Vignat (2016) showed through a generalization of (1.5)
and (1.6) that the constants given by (1.7) and (1.8) provide a basis for all the
odd moments in arbitrary even dimensions in the sense that all such moments
are linear combinations of them with weights that are rational numbers.

The primary purpose of the paper is to develop the connection between
moments in the four-step random walk problem and very well-poised (VWP)
generalized hypergeometric series. The search for closed forms for (1.7) and (1.8)
has been an important element of this problem because of the connection it
provides to numerous other disciplines. Here, we contribute directly to the problem
in two ways. Firstly, we provide a sense in which the constant represented by (1.7)
has a formal counterpart in generalized hypergeometric series and describe the
multidisciplinary role that both play; and secondly, usingmethods based on elliptic
integrals, we derive new series representations for the constant and its counterpart

ð1:6Þ

1 The expressions involving I0 and K0 are included to elicit a connection to work by Bailey, Borwein,
Broadhurst and Glasser (2008) on Feynman diagrams in two-dimensional Quantum Field Theory; Laporta
(2008, 2018) on four-loop integrals in Quantum Electrodynamics; and Broadhurst (2013, 2016), Broadhurst
and Mellit (2016), Broadhurst and Roberts (2018) and Zhou (2019b) on critical L-values attached to modular
forms (as defined in Section 2).
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that provide another step towards finding their closed forms. The efficacy of the
method proposed in the paper is demonstrated through its successful application to
the problem of characterizing the hypergeometry of the parbelos recently discussed
byCampbell, D'Aurizio and Sondow (2020). Finally, a connection ismade between
the econometric problem of characterizing the bias in the canonical autoregressive
model under the unit root hypothesis and VWP generalized hypergeometric series.
This elucidates a shared characteristic with the four-step random walk problem
that could be exploited in future work. While the methods presented here are
appropriate to the times, they represent a confluence of ideas having a flavour of
multidisciplinarity in the spirit of the work and philosophy of Prasanta Chandra
Mahalanobis.

The paper is organized as follows. Section 2 provides the notation and
definitions of generalized hypergeometric series and the other machinery,
including modular forms, used in the later sections. Section 3 contains
the main results, providing new expressions for the moment (1.7) and its
counterpart defined there. Section 4 contains the application to the
hypergeometry of the parbelos. Section 5 offers the econometric applica-
tion. Section 6 concludes and offers suggestions for further work. Proofs
are given in the Appendix.

2 Notation

As usual, we let be the set of natural numbers, the set of
integers, the set of rational numbers, the set of real numbers and the set
of complex numbers.

2.1 Generalized Hypergeometric Series and Special Functions For
, and interpreting empty products as 1,

pFq α1;…; αp; β1;…; βp; z
� �

≡pFq
α1;…; αp

β1;…; βq
; z

� �
≔ ∑

∞

n¼0

α1ð Þn… αp
� �

n

β1ð Þn… βq
� �

n

zn

n!
ð2:1Þ

p≤q þ 1; p≤q and zj j < ∞; p ¼ q þ 1 and zj j < 1; p ¼ q þ 1; zj j ¼ 1 and Re sð Þ > 0ð Þ;

where Pochhammer's symbol (λ)n denotes the shifted factorial function

ð2:2Þ
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which, in terms of the gamma function, Γ zð Þ≔∫∞0 e−ttz−1dt Re zð Þ > 0ð Þ, is given by

(2.3)

This allows us to define the binomial coefficient as

λ
n

� 	
≔

Γ λ þ 1ð Þ
n!Γ λ−n−1ð Þ ¼

−1ð Þn −λð Þn
n!

: ð2:4Þ

The parameter excess, ω, is

ω≔∑q
j¼1 β j−∑

p
j¼1 a j β j∉Z−

0 ; j ¼ 1;…; q
� �

ð2:5Þ

Specifically, when p = q + 1, (2.1) is

(i) absolutely convergent for |z| = 1 if Re(ω) > 0;
(ii) conditionally convergent for |z| = 1(z ≠ 1) if− 1 < Re(ω) ≤ 0; and
(iii) divergent for |z| = 1 if Re(ω)≤ − 1.

Both standard notations in (2.1) will be used: the second emphasizes the
distinction between numerator and denominator parameters but the first is
more parsimonious.

We now consider special cases where the numerator and denominator
parameters are related in certain ways. The generalized hypergeometric series
(2.1), with p = q + 1,

qþ1Fq
α1;…; αqþ1

β1;…; βq
; z

� �
¼ ∑

∞

n¼0

α1ð Þ… αqþ1
� �

β1ð Þ… βq
� � zn

n!
; ð2:6Þ

is said to be

(i) balanced if α1 +…+ αq+ 1 + 1= β1 +…+ βq;
(ii) nearly-poised (of the first kind) if α1 + β1 =…= αq+ βq;
(iii) well-poised if αq+1 + 1= α1 + β1 =…= αq+ βq; and
(iv) very well-poised (VWP) if it is well-poised and α1 ¼ 1

2 αqþ1 þ 1:

Our focus here is on VWP non-terminating 7F6(1) series,2 which take the
general form

2 The literature on generalized hypergeometric series divides between non-terminating (or never-ending) series
and terminating series where the series terminates after a finite number of terms. The assumption in the
terminating case that one of the numerator entries c, d, e, f or g is a negative integer is therefore not made here.
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W a; c; d; e; f ; gð Þ≔7F 6

a; 1þ 1
2
a; c; d; e; f ; g

1
2
a; 1þ a−c; 1þ a−d; 1þ a−e; 1þ a− f ; 1þ a−g

; 1

264
375; ð2:7Þ

with s≔ c+ d+ e+ f+ g− 2a− 1 being subject to the convergence condition s< 1.
Bailey (1935) showed in his classic tract that, under conditions, a series such

as (2.7) can be decomposed into two balanced 4F3(1) series. See the Appendix
for details.

Other special functions of interest include the complete elliptic integral of
the first and second kinds:

K kð Þ ¼ ∫π=20
dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−k2sin2θ
p ¼ 1

2
π 2F 1

1
2
;
1
2

1
; k2

" #
; kj j < 1; ð2:8Þ

and

E kð Þ ¼ ∫π=20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−k2sin2θ

p
dθ ¼ 1

2
π 2F 1

−
1
2
;
1
2

1
; k2

" #
; kj j < 1; ð2:9Þ

where the real number k is called the modulus of the elliptic integral. K′(k)≔
K(k′) and E′(k)≔E(k′) are complementary functions, with k

0
≔

ffiffiffiffiffiffiffiffiffiffi
1−k2

p
called

the complementary modulus.

2.2 Modular forms and L-series Let denote the special linear
group

For , a modular form of weight k is an analytic function f defined on the
upper half plane that transforms according to the rule

and whose Fourier series

f zð Þ ¼ ∑∞
n¼−∞γ nð Þexp 2πizð Þ; i ¼

ffiffiffiffiffiffi
−1

p
; ð2:12Þ

satisfies γ(n) = 0 for all n < 0. If, in addition, γ(0) = 0, then f is said to be a cusp
form of weight k. For Im(τ) > 0, the Dedekind eta function is defined by

ð2:10Þ

ð2:11Þ
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η τð Þ≔q1=24 ∏
∞

m¼1
1−qmð Þ ¼ ∑

∞

n¼−∞
−1ð Þnq 6nþ1ð Þ2=24;where q ¼ exp 2πiτð Þ: ð2:13Þ

This function offers a way of generating modular forms. See Martin (1996) for a
classification.

Given , we can define the following congruence subgroup

(2.14)

Then a weight k modular form (respectively, cusp form) of level N, fk, N, is
defined as before, but with replaced by Γ0(N). Its L-function can be
defined through a Mellin transform:

L f k;N ; s
� �

≔
2πð Þs
Γ sð Þ ∫∞0 f k;N iyð Þys−1dy: ð2:15Þ

A special L-value L(fk, N, s0) is said to be critical if s0∈N∩ [1, k − 1]. See
Koblitz (1993) for more background to this section.

2.3 Basis constants and integer-relation algorithms Our generic
problem is whether the generalized hypergeometric series involved in the
representation of the moments of the four-step random walk problem via
(1.7) and (1.8) can be evaluated in terms of known constants or reduced
to a more fundamental, tractable or accessible form. Moments are, of
course, just numbers and so notions of a “closed form” of a number, as
discussed by Borwein and Crandall (2013), are important. Here, we shall
work within what they called the ring of hyperclosure, which essentially
means numbers or constants that are representable as generalized
hypergeometric series. An important question then is whether such num-
bers are further reducible as products of gamma functions of rational
argument, or more generally in terms of a linear combination of a set of
notionally fundamental constants, including such gamma values, with
weights in . The general question of identifying such fundamental con-
stants, or basis constants, has become an important topic in Quantum
Field Theory. See, e.g., Ablinger and Blümlein (2013), Ablinger, Blümlein
and Schneider (2011, 2013) and Laporta (2018). The premise that basis
constants exist is entirely consistent with the philosophy of integer-
relation algorithms such as the PSLQ algorithm (Bailey and Broadhurst,
2000). Given a set of real numbers known to a given precision, such
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algorithms involve a search that seeks integer relations among them, or
seeks to determine that no such relation exists within a certain bound.3

McCrorie (2020b) takes the idea a step farther and explicitly proposes a
notion of duality between series and integrals on one hand and basis
constants on the other. Instead of just classically summing series and
evaluating integrals in terms of rational linear combinations of basis
constants, the dual approach sees linear combinations of basis constants
decomposed into series and integrals in such a way that different series
and integrals can be systematically and taxonomically related. The poten-
tial relevance to the current problem is demonstrated in Section 4 where it
is successfully applied to construct the hypergeometry of the parbelos,
albeit in a context where closed form summation is already available.

The following constants, which are periods in the sense of Kontsevich and
Zagier (2001), are treated here as basis constants:ffiffiffi

2
p

≔∫x2≤ 1
2
dx≅1:41421 35623 73095 04880 16887 24209 69807 85696… ð2:16Þ

π≔∫∫x2þy2≤1dx dy ¼ Γ
1
2

� 	2

≅3:14159 26535 89793 23846 26433 83279 502… ð2:17Þ

L≔∫∫x4þy4≤1dx dy ¼ Γ
1
4

� 	2

=2
ffiffiffiffiffiffi
2π

p
≅2:62205 75542 92119 81046 48395 89… ð2:18Þ

ϖ8≔∫∫x8þy8≤1dx dy ¼ Γ
1
8

� 	2

=27=4Γ
1
4

� 	
≅4:65437 02848 73077 50121 007257… ð2:19Þ

log 2≔∫0< x< 1
2

dx
1−x

≅0:69314 71805 59945 30941 72321 21458 17656 80755… ð2:20Þ

log 1þ
ffiffiffi
2

p� �
≔∫0<x<1

dxffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p ≅0:88137 35870 19543 02523 26093 24979 79230… ð2:21Þ

The constants π, L andϖ8 have the geometric interpretation of being arclengths of
the circle, lemniscate and quatrefoil respectively. The algebraic independence of π
and L follows from Chudunovsky's theorem which established the algebraic inde-
pendence of Γ 1

2

� �
and Γ 1

4

� �
(see Waldschmidt, 2008). In accordance with the

approach taken in integer-relation algorithms, we shall avoid using mixed expres-
sions involving, say, π and Γ 1

4

� �
, or using Γ 1

4

� �
alongside Γ 3

4

� �
; and instead use π, L

and ϖ8, and their powers and reciprocal powers, as basis constants.4 McCrorie

3 While any positive result represents, at best, the basis of a conjecture, through the identification process such
an algorithm may facilitate the construction of a formal proposition and a proof or refutation.
4 For example, instead of Γ 3

4

� �
, we use π

ffiffiffi
2

p
=Γ 1

4

� �
, through which a term in the reciprocal of L emerges.
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(2020b) discusses a possible alternative approach that utilizes the singular values of
the elliptic integral K. Both approaches are essentially based on values of the
central beta function and, while the singular value approach would in certain
circumstances usefully facilitate a connection with theta functions, they are not
required here.

3 Main results

In this section, we first state an expression for the density p4 and the
series governing its odd moments in even dimensions. We then show how
the series for has a counterpart in analysis that arises through
the consideration of an intertwinement between certain cusp forms. New
symmetries between the pair of constants are then established, which at
the same time reveal new expressions for each in terms of fundamental
VWP7F6(1) series that are reducible to sums of lower-order 4F3(1) series
with entries in and .

3.1 Generalized hypergeometric series representation of even moments
in the four-step random walk problem With the notation in Section 2, we
begin with the expression for p4 derived by Borwein, Straub, Wan and Zudilin
(2012), which is valid for all x∈ (0, 4]:

p4 xð Þ ¼ 2
π2

� 	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4−xð Þ 4þ xð Þp

x
Re 3F 2

1
2
;
1
2
;
1
2

5
6
;

7
6

;
4−xð Þ3 4þ xð Þ3

108x4

264
375: ð3:1Þ

The above expression embodies an analytic continuation as the 3F2

function on the interval (0, 2) is complex, and masks the fact that the
expansion of p4 at 0 involves logarithmic terms. Joyce (2017) discusses
this aspect in some detail and provides other expressions for p4. Unfor-
tunately, none of the hitherto derived expressions for p4 readily lends
itself towards deriving tractable expressions for the moments of p4 via a
direct application of (1.2). The even moments in odd dimensions can be
expressed via (1.7) and (1.8) in terms of linear combinations VWP non-
terminating 7F6(1) series, viz.
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and

See Borwein, Straub and Vignat (2016) for details. To focus on the topics of
interest in the following section, we shall only concentrate on the series in (3.2).
Further results, including a discussion of (3.3), are provided in the companion
paper by McCrorie (2020a) where series allied to the series in (3.2) and (3.3) are
constructed taxonomically.

3.2 and a counterpart as critical values of the L-series of cusp
forms Consider the pair of weight 4 cusp forms

f 4;8 τð Þ ¼ η 2τð Þ4η 4τð Þ4; f 4;16 τð Þ ¼ η 4τð Þ16
η 2τð Þ4η 8τð Þ4 ; ð3:4Þ

with levels 8 and 16 (LMFDB labels 8.4.1a and 16.4.1.a) respectively.5 Rogers,
Wan and Zucker (2015, p.128) noted the following intertwinement among their
critical L-values:6

L f 4;16;3
� �¼ π

2
L f 4;8; 2
� �¼ π2

8
L f 4;16; 1
� �¼ 1

4
∫10K kð ÞK 0 kð Þdk¼ 1

8
∫10
K kð Þ2
k0

dk

¼ π3

32
4F3

1
2
;

1
2
;

1
2
;

1
2

1; 1; 1
; 1

" #
ð3:5Þ

and

ð3:2Þ

5 The LMFDB collaboration provides the L-functions and Modular Forms Database, where modular forms
and their properties are classified by label. See: http://www.lmfdb.org.
6 The penultimate expression of (3.5) has been replaced by an equivalent expression involving K and K′ that
arguably makes the symmetry clearer.

ð3:3Þ
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L f 4;8; 3
� � ¼ π

2
L f 4;16; 2
� � ¼ π2

4
L f 4;8; 1
� � ¼ 1

8
∫10
K kð ÞK 0

kð Þ
k

0 dk ¼ 1
4
∫10K kð Þ2dk

¼ π4

128 7F6

1
2
;
5
4
;
1
2
;
1
2
;
1
2
;
1
2
;
1
2

1
4
; 1; 1; 1; 1; 1

; 1

264
375;

ð3:6Þ

where K(k) is the complete integral of the first kind and K′(k) is its
complementary function. The constants represented by the generalized
hypergeometric series in (3.5) and (3.6) appear in a number of different
fields. Laporta (2008) treated both constants as simplest cases in his analysis
of spin integrals related to Feynman diagrams. His constant A is a multiple
π3/8 of the 4F3(1) series in (3.5) and his constant B is a multiple π4/16 of the
7F6(1) series in (3.6). As noted, Rogers, Wan and Zucker (2015) found both
constants in the L-series evaluations discussed above, as did Wan and Zucker
(2016) in certain eight-dimensional lattice sum evaluations. The first con-
stant is a multiple of the constant c4;0≔∫∞0 K0 tð Þ4dt that arose in evaluations
by Bailey, Borwein, Broadhurst and Glasser (2008) of integrals that arise in
Quantum Field Theory. Seen as a four-loop sunrise integral, it relates
directly to Laporta's (2008) paper and indeed their constant c4, 0 is a
multiple of 2π of Laporta's constant A. The second constant here, represent-
ed by the VWP 7F6(1) series in (3.6), is a multiple of their constant s4, 0
which is expressed in terms of the integral in (1.7) involving modified Bessel
functions. Their s4, 0 is the same as Laporta's constant B. Guttmann (2010)
demonstrated a connection of the first constant to the lattice Green's func-
tion of the four-dimensional hyper-body-centred cubic lattice. It has also
appeared recent ly, and more fundamenta l ly, in the areas o f
supercongruences and Calabi-Yau threefolds (Zagier, 2018; Zudilin, 2018;
and Osburn and Straub, 2019). The second constant, of direct interest here
given its role in the four-step random walk problem, is central in the theory
of elliptic integrals. See especially Wan (2012).

The possibility of whether the two generalized hypergeometric series can be
reduced to -linear spans of sets of more basic mathematical constants re-
mains an open problem and, indeed, the hypergeometric form in (3.2) has not
hitherto been found to be especially amenable to decomposition or analysis.
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Borwein and Straub (2013) note that an immediate expression in terms of
balanced 6F5(1) series is available via standard contiguous series relations:

W
1
2
;
1
2
;
1
2
;
1
2
;
1
2
;
1
2

� 	
¼ 6F 5

1
2
;
1
2
;
1
2
;
1
2
;
1
2
;
1
2

1; 1; 1; 1; 1
; 1

" #
þ 1

16 6F 5

3
2
;
3
2
;
3
2
;
3
2
;
3
2
;
3
2

2; 2; 2; 2; 2
; 1

" #
: ð3:7Þ

Following an intensive search based on the PSLQ algorithm, Wan (2013) and
Borwein, Straub andWan (2013) found a conjectural three-term relation whose
validity they then established using known integrals associated with W. Zudilin
and Y.V. Nesterenko in work on the irrationality of special odd values of the
Riemann zeta function and related constants:7
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The first right-hand-side series in involved in (3.3) but, again, neither series on
the right-hand-side readily decomposes into two balanced 4F3(1) series using
standard methods.

Our principal result shows that lower-order generalized hypergeometric
series are available for both constants and that there is a formal sense in
which they are exact counterparts of each other. This idea is implicit in
certain decompositions of integrals of elliptic integrals in the Ph.D. thesis by
Wan (2013) although the idea was not developed there. See also Wan (2012).
Expression (3.9) below in its essential form was obtained by Wan (2013, p. 115)
as an expression involving 4F3(1) series, although here we show it is more
fundamentally an expression involving a three-term relation between VWP
7F6(1) series. (3.10) is new. Decomposing each series into two balanced 4F3(1)
series reveals a remarkable symmetry: a chosen multiple of the 7F6(1) series
describing each constant is seen to decompose into the same two 4F3(1) series,
the magnitudes of whose weights are exactly the same.

THEOREM 1.

π3

4
W

1
2
;
1
2
;
1
2
;
1
2
;
1
2
;
1
2

� 	
¼ L2W

1
4
;
1
8
;
1
4
;
1
2
;
1
2
;
5
8

� 	
þ π2

L2 W
3
4
;
3
8
;
1
2
;
1
2
;
3
4
;
7
8

� 	
ð3:9Þ

π2

2
W

1
2
;
1
4
;
1
2
;
1
2
;
1
2
;
3
4

� 	
¼ L2W

1
4
;
1
8
;
1
4
;
1
2
;
1
2
;
5
8

� 	
−
π2

L2 W
3
4
;
3
8
;
1
2
;
1
2
;
3
4
;
7
8

� 	
ð3:10Þ

7 See Borwein, Straub and Wan (2013).
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Theorem 1 expresses the same idea in two ways. In part (a), a chosenmultiple of
eachVWP series is seen to satisfy a three-term relation involving the sameVWP
7F6(1) series, whose weights, L2 and π2/L2, are the same up to a sign. The series
W 1
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1
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2 ;
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2 ;

5
8

� �
and W 3

4 ;
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2 ;
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4 ;
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8

� �
relate to each other in the same way

that π relates to 1/π and Γ 1
4

� �
relates to Γ 3

4

� �
. Note that towards the ultimate

aim of obtaining a closed form for both left-hand-side series, the decomposition
on the right-hand-side has entries in . Part (b) expresses the same idea in
4F3(1) series. While the above results unblock the problem of finding decompo-
sitions ofW 1

2 ;
1
2 ;

1
2 ;

1
2 ;

1
2 ;

1
2

� �
in terms of entries in and , none of the series

on the right-hand-side of the above expressions has a known closed form.
A further decomposition of the series in (3.5) and (3.6) can be obtained

using the decomposition of the moments of a different elliptic integral.
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ðaÞ
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π3W4 −1ð Þ ¼ 8∫10K kð Þ2dk ¼ 32L f 4;8; 3
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Again, the decomposition is seen fundamentally to involve three-term relations
involving VWP 7F6(1) series and involves remarkable symmetries. While there
is a generalized hypergeometric series in (3.15) that appears not to be common
to (3.16), this is only because of cancellation, as can be seen when directly
applying the decomposition of the VWP 7F6(1) series in (3.14) into balanced
4F3(1) series:

ð3:15Þ

ðbÞ
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Consideration of which VWP 7F6(1) series can potentially support the latter
4F3(1) series in (3.16) in their decomposition into 4F3(1) series leads to the
following two-term relation, which supports our final result on the representa-
tion of and related series. This provides a remarkable connection
between the series involved in (3.5) and (3.6), and a balanced 5F4(1) series.
More expressions involving entries in and are provided in the compan-
ion paper by McCrorie (2020a).
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Again, the result is seen fundamentally to be a relation between VWP 7F6(1)
series but the key to (3.19) is that the seriesW 1; 12 ;

3
4 ;

3
4 ;

3
4 ;

3
4

� �
is a 5F4(1) series in

disguise. Closed-form results in the context of 4F3(1) and 5F4(1) series are sparse
in the literature and, while recent progress has been made by Campbell,
D'Aurizio and Sondow (2019), none of the series in Theorems 1 to 3 is currently
known in closed form. Nevertheless, we now demonstrate that, at least in
principle, the approach followed in this paper does potentially offer progress.
In the context of constructing the hypergeometry of the parbelos, we show that
finding transformed series with entries in and provides a route towards
finding the closed form of a relevant generalized hypergeometric series. Our
approach adds to the four approaches to the characterization problem offered by
Campbell, D'Aurizio and Sondow (2020).

4 Hypergeometry of the Parbelos

Sondow (2013) formally introduced the parbelos as a parabolic analogue of
the arbelos, a classical shape bounded by three pairwise tangent semicircles
with collinear diameters. The parbelos corresponding to a given arbelos is
obtained by replacing the semicircles of the arbelos with the latus rectum arcs
of parabolas opening in the same direction, the foci of which are the centres of
the semicircles of the arbelos. Sondow showed that the ratio of the length of the
boundary of a parbelos to the length of the corresponding arbelos is always P/π,
where P is the universal parabolic constant. For any parabola, this constant is
the ratio of the arc length of the parabolic segment formed by the latus rectum
to the focal parameter. It is given by

P ¼
ffiffiffi
2

p
þ log 1þ

ffiffiffi
2

p� �
≅2:29558 71493 92638 07403 42980 49189 4903… ð4:1Þ

The problem of characterizing the hypergeometry of the parbelos is to find
generalized hypergeometric series that sum to P/π. We could say, given the
discussion in Section 2.3, that the problem more generally seeks to find allied
series up to multiplication by a rational number, or even multiplication by a
product or ratio of gamma factors. Campbell, D'Aurizio and Sondow (2020)
recently outlined methods in which generalized hypergeometric series relating
to the universal parabolic constant could be derived, their first establishing that

3F 2
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;
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4
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3
4
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; 1

; 1

264
375 ¼ P

π
: ð4:2Þ
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Here, we will use the duality concept discussed earlier to derive this series based
on a decomposition of the basis constant log 1þ ffiffiffi

2
p� �

. The method can also be
applied, in principle, to characterize the equilateral hyperbolic constant, which
is the constant that, for any equilateral (or rectangular) hyperbola, i.e. one
whose semi-axes are similar, is the ratio of the area of the latus rectum segment
to the square of its semi-axis. It is given by

H ¼
ffiffiffi
2

p
−log 1þ

ffiffiffi
2

p� �
≅0:53283 99753 53552 02356 90793 99229 9057…ð4:3Þ

We will also show how deriving series with entries in drives this
characterization.

A classical result by Watson (1918) in a mildly reparametrized form
states that
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� 	
−ψ

a
2

� �
−ψ

b
2

� 	� 	
; ð4:4Þ

where ψ(x)≔ d log Γ(z)/dz= Γ′(x)/Γ(x) is the digamma function. Kölbig
(1996) shows that

ψ
p
q

� 	
¼ −γ−log qð Þ þ ∑

q−1

j¼1
exp −2πijp=qð Þ log 1−exp 2πij=qð Þð Þ; ð4:5Þ

where εj= exp(2πij/q) (j = 0, 1, . . . , q –1) are the q-th roots of unity.
This expression motivates taking special values of logarithms of the
cyclotomic polynomials (polynomials fundamentally factorized using the
roots of unity) as basis constants for the class of 3F2(1) generalized
hypergeometric series. See also Ablinger, Blümlein and Schneider (2011,
2013).

McCrorie (2020c) argued that closed-form summation in 3F2(1) series in-
volving P or H could be naturally seen from the initial standpoint of Watson's
resu l t , tak ing a ¼ b ¼ 1

4 and, at f i r s t , us ing known values o f
, which involve the basis constant log 1þ ffiffiffi

2
p� �

.
For example,

ψ 1=8ð Þ ¼ −γ−
π

2
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−4log 2ð Þ−

ffiffiffi
2

p
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; ð4:6Þ

ψ 5=8ð Þ ¼ −γ þ π
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p� �
; ð4:7Þ
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where γ≔limn→∞ ∑n
k¼1

1
k −log nð Þ� �

is the Euler-Mascheroni constant. Applica-
tion of (4.4) gives upon simplification of the gamma factors the implicit three-
term relation
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: ð4:8Þ

From this base, allied generalized hypergeometric series can be constructed
taxonomically using transformations applied to the left-hand-side of (4.8)
through various methods. McCrorie (2020c) shows that
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Campbell, D'Aurizio and Sondow (2020) showed that
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and that (4.9) is contiguous to (4.2). The hypergeometry of the parbelos is
therefore established from the natural base position given by (4.8).

McCrorie (2020c) motivates the consideration of
through a reduction of series with entries in to series with entries in , in the
spirit of Section 3. He derived the following relationship which he argued should be
viewed as fundamental:
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The two 3F2(1) series on the right-hand-side are free of Pochhammer
symbols, viz.
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With entries in , the series are therefore of a form that is summable, up to a
constant that is the product of a rational number and ϖ8 or its reciprocal, in
terms of the digamma functions (see Al-Saqabi,
Kalla and Srivastava, 1991). The method supports an approach to series
summation whose evaluation involves the logarithm of 1þ ffiffiffi

2
p

, and extrapo-
lates via (4.4) and (4.5) to a wider class of basis constants based on the
cyclotomic polynomials. Ablinger, Blümlein and Schneider (2011, 2013) set this
idea in the context of sums relevant to Mathematical Physics. As noted, the
issue of finding (or defining) basis constants for the series in Section 3 is more
challenging because the underlying series are of 4F3(1) type.

5 An Analogous Problem in Econometrics

We now establish a connection between a classical, still-open problem in
Econometrics and VWP 7F6(1) series. Consider the first-order autoregressive,
AR(1), process8

xt ¼ ρxt−1 þ εt t ¼ 1;…;Tð Þ ð5:1Þ
where εt ~ NID(0, 1), x0 = 0 and |ρ| = 1. Although (5.1) is highly ideal-
ized from today's standpoint, it is canonical as a building block for more
useful and realistic econometric time series models in a sense explicitly
outlined by Abadir (1992). The ordinary least squares (OLS) estimator
of ρ based on a sample of size T coincides with the Gaussian maximum
likelihood estimator and is given by

bρT≔∑T
t¼1xtxt−1=∑

T
t¼1x

2
t−1: ð5:2Þ

8 The material in this section is based on the framework adopted by McCrorie (2020b).
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In contrast to the uniform random walk problem, where in the multi-
dimensional case each step corresponds to a random vector distributed
on the unit sphere, here it is the model, parametrized by ρ, which nests
a random walk (along with other types of behaviour). Our objective is to
estimate this parameter on the basis of data and, in this context, it is
the estimator, bρT , that connects to the hypersphere through its being a
ratio of quadratic forms.9 Clearly, the properties of the estimator bρT vary
across different regions in the parameter space. The characterization of,
for example, the bias of the estimator,

bT ρð Þ≔E bρT� �
−ρ; ð5:3Þ

has been a classical problem in Econometrics, see e.g. Hurwicz (1950),
White (1961) and Shenton and Johnson (1965). As T→∞,

If ρj j < 1;TbT ρð Þ converges in probability to − 2ρ;
If ρ ¼ �1;TbT ρð Þ converges to�m ρ; where m is a negative constant;

If ρj j > 1;T−1=2 ρj jTbT ρð Þ converges to −2−1=2π1=2ρ−1 ρ2−1
� �3=2

:

ð5:4Þ

See also Le Breton and Pham (1989) and Abadir (1993a). The problem of
characterizing the constant m appearing in (5.4), which is negative in the
positive parameter case (and positive in the negative case), remains open. An
equivalent way of expressing the problem is that m is the mean of the asymp-
totic distribution of the test statistic under the unit root null hypothesis ρ=1.
This distribution, called the Dickey-Fuller distribution after Dickey and Fuller
(1979, 1981), has become pervasive in the area of econometric time series
analysis,10 a discipline whose underlying (economic) variables seemingly exhibit
trending behaviour. It is surprising that, forty years on, little is known about its
mean when viewed as a mathematical constant. Renewed interest in the
constant has followed from work on predictive regression by Phillips (2012,
2015). The model is typified by the specification

yt ¼ β
0
xt−1 þ u0t ; ð5:5Þ

xt ¼ ρxt−1 þ uxt; ð5:6Þ

9 See Hillier (2001), Forchini (2002) and references therein.
10 See also Rao (1978), Phillips (1987) and Abadir (1993b). Tanaka (2017) provides a textbook treatment.
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where the objective is to predict the scalar time series yt given past information
embodied in a set of regressors xt − 1 under an assumption such as is a
martingale difference sequence with

where is the natural filtration associated with innova-
tions ut ¼ u0t ; u

0
xt

� � 0
: Applying OLS to (5.5) under the assumption that xt is

scalar, and setting u0:xt ¼ u0t−σ0xΣ−1
xx uxt, the estimation error decomposes asbβ−β ¼ ∑T

t¼1xt−1u0:xt

∑T
t¼1x

2
t−1

þ σ0xΣ−1
xx bρ−ρ� �

; ð5:8Þ

where bρ ¼ ∑T
t¼1x

2
t−1

� �−1∑T
t¼1xt−1 xt . Taking expectations,

E bβ−β� �
¼ σ0xΣ−1

xxE bρ−ρ� �
¼ σ0xΣ−1

xx BT ρð Þ; ð5:9Þ

where the autoregressive bias function

BT ρð Þ≔E bρ−ρ� �
ð5:10Þ

depends only on ρ andT. Phillips (2012) provides an exact formula forBT(ρ) under
Gaussianity and the following complete set of large-T asymptotic expansions

BT ρð Þ ¼

−2ρ=T þO T−2� �
m=T þO T−2� �

−g cð Þ=T þO T−2� �
O 1= ρj jT
� �

8>>><>>>:
ρj j < 1
ρ ¼ 1

ρ ¼ 1þ c=T
ρj j > 1

; ð5:11Þ

where g(c) is a continuous function of a constant c given explicitly by Phillips
(2012) and limc→ 0g(c) = −m.

McCrorie (2020b) classified a set of generalized hypergeometric series that
are allied to the constant m, defining the canonical member of the set to be

M≔1−m ¼ 3F 2
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5
4

; 1

264
375≅2:78143 01712 77837 42085 88648 61173 56… ð5:12Þ

Treated as basis constants, M and another constant constructed in parallel11

were seen along with π and L to be involved in an expression for a critical value

ð5:7Þ

11 This constant relates toM in precisely the way Γ 1
4

� �
relates to Γ 3
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in Theorem 1 relate to each other.
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of the L-series of an elliptic curve of conductor 32, one of whose isogenies is the
“congruent number elliptic curve” (Tian, 2015) and another which has the
modular form parametrization f2, 32(τ) = η(4τ)2η(8τ)2. They are LMFDB elliptic
curves 32.a3 and 32.a4 respectively.12 See Rodriguez Villegas (1999), Zudilin
(2013) and Ito (2018) for a discussion of this L-series evaluation problem from
the point of view of Analytic Number Theory.

We now show that, like the moments in the four-step uniform random walk
problem, the constantM is representable in terms of VWP 7F6(1) series. This is
facilitated by the following lemma which involves a transformation to a 3F2(1)
series that is allied to the series in (5.12).

LEMMA 4.
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THEOREM 5.
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12 f(τ)≔ f2, 32 is an example of a type of multiplicative η-product discussed by Voskresenskaya (2012) such that
f2(τ/2) is also a multiplicative η-product. Here, f2(τ/2) = η(2τ)4η(4τ)4 = f4, 8.
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The expressions can be read in two ways. On one hand, M and so m are
expressed in terms of a number of VWP 7F6(1) series. On the other, if M
is taken to be a basis constant, the series themselves, which are not
symbolically evaluated in term of known constants by software such as
Mathematica 11.2, can be expressed in closed form within the -linear
span of {π, L,M}. McCrorie (2020b) shows that each 7F6(1) series can be
split-up into balanced 4F3(1) series with entries in and , and
closed form expressions for such series involving a wider class of con-
stants including M can be obtained. These evaluations complement those
that were obtained for allied 3F2(1) series.

6 Conclusion

This paper has provided new results and perspective on a mathematical
constant that appears in the representation of the odd moments in even
dimensions of Pearson's four-step uniform random walk problem. The symme-
tries in (3.11), (3.12), (3.15), (3.16) and (3.20) formally reveal the sense in which
the constant defined by the series (3.2) has a counterpart in the generalized
hypergeometric series in (3.5). As described above, both constants are manifest
in a variety of fields. While the question of whether either constant can be
reduced to a -linear span of a more fundamental set of constants (known or to
be defined) remains open, relating both constants to VWP 7F6(1) series with
entries in and allowed a number of series of lower order to be related to
them. While the results are of interest in their own right, they also open up the
possibility of establishing the constants in terms of more elemental closed forms
following the approach taken by McCrorie (2020c) to the universal parabolic
constant summarized in Section 4.

The paper also motivates questions for possible future work. By providing a
formal sense in which the two constants in Section 3 were counterparts of each
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other, the paper goes farther than Rogers, Wan and Zucker (2016) in describing
how the critical values of the L-series of two related, even-weight cusp forms are
intertwined. It would be interesting to investigate whether the type of the
symmetries exhibited here apply more widely in the interplay between modular
forms and generalized hypergeometric series and, if so, whether they can be
built up in a similar way. Recent results by Straub and Zudilin (2020) and
Brunault and Zudilin (2020) also suggest a connection with Mahler measure.

Given for any weight 4 modular form f, the functional equation
relates L(f, s) and L(f, 4 − s), the value at s= 4 may have special impor-
tance. Papanikolas, Rogers and Samart (2014) and Wan and Zucker
(2016) have derived hypergeometric series expressions for the L-series of
f4, 8 evaluated at 4, one being

L f 4;8; 4
� � ¼ π4

192 5F 4

1
2
;
1
2
;
1
2
;
1
2
;
1
2

1; 1; 1;
3
2

; 1

264
375þ 7ζ 3ð Þ

π2

8><>:
9>=>;; ð6:1Þ

where ζ sð Þ≔ ∑
∞

n¼1

1
ns Re sð Þ > 1ð Þ is the Riemann zeta function. It would be

interesting to explore whether (6.1) encodes any information beyond that
encoded in the critical values discussed here. A generalized
hypergeometric series representation for L(f4, 16, 4) could also be derived
and its relation to (6.1) explored.

Another direction for future work might relate the results in the paper more
strongly to the property that the densities of the short-walk problems are
recursively related. Indeed, following Hughes (1995), if ϕN(x) = pN(x)/2πx, then
for integers N≥ 2,

ϕN xð Þ ¼ 1
2π

∫2π0 ϕN−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2−2xcosα þ 1

p� �
d α : ð6:2Þ

While this aspect has already been exploited, the underlying complexity of the
short-walk problem for small N has meant that tractable expressions have still
been difficult to obtain. On the other hand, some sharp results have been
obtained on certain special values of the density functions. For example,
Borwein, Straub, Wan and Zudilin (2012) and Joyce (2017) show using differ-
ent methods that

p4 1ð Þ ¼ p
0
5 0ð Þ ¼ 1

8π4
ffiffiffi
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� 	
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15

� 	
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� 	
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K 2
15; ð6:3Þ
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where K15 is the complete elliptic integral evaluated at the 15-th singular
value. The five-step random walk problem centres around a weight 3
level 15 cusp form

f 3;15 τð Þ ¼ η τð Þη 15τð Þ½ �3 þ η 3τð Þη 5τð Þ½ �3: ð6:4Þ

See especially Bloch, Kerr and Vanhove (2015), Samart (2016) and Zhou
(2019a). This context offers another instance of the observation of Rogers,
Wan and Zucker (2015) of an L-series of an odd-weighted modular form having
critical values that are products of gamma functions. Because the functional
equation here relates L(f3, 15, s) and L(f3, 15, 3 − s), all the critical values relate to
each other in a way that avoids intertwinement with another modular form as
was exemplified here by (3.5) and (3.6). Specifically,

π2

15
L f 3;15; 1
� � ¼ 1

2

ffiffiffiffiffiffi
π2

15

s
L f 3;15; 2
� � ¼ π4

30
∫∞0 J 0 tð Þ4dt ¼ ∫∞0 tI 0 tð ÞK 0 tð Þ4dt
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The ratio of the above value to π2 is the so-called Bologna constant introduced
by Laporta (2008) op. cit. and independently by Broadhurst (2007) in work
that was developed in the jointly authored paper by Bailey, Borwein,
Broadhurst and Glasser (2008). Characterizing the commonalities and differ-
ences in the types of expressions for moments that relate to even versus odd
weight modular forms remains an important open problem.

Last, but by no means least, this paper has provided a connection between
moment properties of the distribution of a short-walk problem and the Dickey-
Fuller distribution that is now pervasive in Econometrics. The distribution
theory underlying statistics like (5.2) that are ratios of quadratic forms is still
incompletely characterized in the asymptotic case, and is less resolved in the
finite sample case (see e.g. Hillier, 2001; Forchini, 2002; and references therein).
Very few analytical expressions are available for the relevant densities and
distributions beyond what K.M. Abadir derived in a number of papers in the
1990s (see, e.g. Abadir, 1993b; Abadir and Lucas, 2004). In spite of work by Van
Garderen (1999, 2000), the underlying geometry of non-stationary
autoregressive models is still not fully characterized. The shared characteristics
between the four-step random walk problem and least-squares estimation in
autoregressive models could motivate new approaches towards the latter that
embrace machinery currently commonplace in Analytic Number Theory and
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Mathematical Physics, and more systematically encompass numerical and
experimental methods. The fundamental problem in autoregressive models, in
the absence of a well-developed finite-sample theory, is the polarization in their
properties that manifests itself in large samples. Some recent methods seek to
confront this problem directly. The IVX endogenous instrumentation proce-
dure introduced by Phillips and Magdalinos (2009) and developed by Phillips
and Lee (2013, 2016), Kostakis, Magdalinos and Stamatogiannis (2015) and
Phillips (2015) is central to this effort.

The intention of writing the current paper was to use the setting of the four-
step random walk problem to offer a confluence of ideas around the constant
represented by the VWP 7F6(1) series in (3.2) involved in the representation of
the odd moments in even dimensions. The approach underpinned a multidisci-
plinary perspective of a type encouraged by the journal's founding editor, P.C.
Mahalanobis. The MacTutor History of Mathematics Archive – a resource
that provides, inter alia, summaries of the historical contribution of important
mathematicians in the last few centuries – is held in the School of Mathemat-
ical Sciences in the author's current institution, the University of St Andrews.
While not a substitute for Rao's (1973) important biographical article or the
biography by Rudra (1996), its summary entry for Prasanta Chandra
Mahalanobis can be accessed here: http://www-groups.dcs.st-and.ac.
uk/history/Biographies/Mahalanobis.html.
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Appendix: Proofs

We shall use the following decomposition derived by Bailey (1935, p. 29) of a
VWP non-terminating 7F6(1) series into two balanced 4F3(1) series under

permutations of the parameters such that poles of the gamma function can be
avoided and individual series converge.

W a; c; d; e; f ; gð Þ≔7F 6

a; 1þ 1
2
a; c; d; e; f ; g

1
2
a; 1þ a−c; 1þ a−d; 1þ a−e; 1þ a− f ; 1þ a−g

; 1

264
375

¼ Γ 1þ a−eð ÞΓ 1þ a− fð ÞΓ 1þ a−gð ÞΓ 1þ a−e− f−gð Þ
Γ 1þ að ÞΓ 1þ a− f−gð ÞΓ 1þ a−g−eð ÞΓ 1þ a−e− fð Þ

�4F 3
1þ a−c−d; e; f ; g

1þ a−c; 1þ a−d; e þ f þ g−a ; 1
� �

þ Γ 1þ a−cð ÞΓ 1þ a−dð ÞΓ 1þ a−eð ÞΓ 1þ a− fð ÞΓ 1þ a−gð Þ
Γ 1þ að ÞΓ 1þ a−c−dð ÞΓ eð ÞΓ fð ÞΓ gð Þ

� Γ e þ f þ g−a−1ð ÞΓ 2þ 2a−c−d−e− f−gð Þ
Γ 2þ 2a−c−e− f−gð ÞΓ 2þ 2a−d−e− f−gð Þ

�4F 3
2þ 2a−c−d−e− f−g; 1þ a− f−g; 1þ a−g−e; 1þ a−e− f

2þ a−e− f−g; 2þ 2a−c−e− f−g; 2þ 2a−d−e− f−g ; 1
� �

Re 2þ 2a−c−d−e− f−gð Þ > 0:

ðA:1Þ
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We shall also use a two-term relation he derived between VWP 7F6(1) series
(ibid., p. 62):

W a; c; d; e; f ; gð Þ ¼
Γ 1þ a−cð ÞΓ 1þ a−dð ÞΓ 2þ 2a−e− f−gð ÞΓ 2þ 2a−c−d−e− f−gð Þ
Γ 1þ að ÞΓ 1þ a−c−dð ÞΓ 2þ 2a−c−e− f−gð ÞΓ 2þ 2a−d−e− f−gð Þ
�W 1þ 2a−e− f−g; c; d; 1þ a− f−g; 1þ a−e−g; 1þ a−e− fð Þ

ðA:2Þ

PROOF OF THEOREM 1.

Wan (2013, p.115) showed that

∫10K kð Þ2dk ¼ ∫10
1þ kð ÞK kð ÞK 0

kð Þ
4

ffiffiffi
k

p dk ¼ 1
4
∫10k

−1=2K kð ÞK 0
kð Þdx þ 1

4
∫10k

1=2K kð ÞK 0
kð Þdx: ðA:3Þ

Expression (6.65) in Wan (2013), which relates the left-hand-side to two
balanced 4F3(1) series, follows from applying the Mellin transform given by
Wan (2012, Proposition 2):

∫10k
nK kð ÞK 0

kð Þdx ¼ π2

8
Γ 1

2 n þ 1ð Þ� �2
Γ 1

2 n þ 2ð Þ� �2 4F 3

1
2
;
1
2
;
n þ 1
2

;
n þ 1
2

1;
n þ 2
2

;
n þ 2
2

; 1

264
375: ðA:4Þ

Evaluating the ratio of gamma functions in terms of powers of π and L, and
reciprocals gives

∫10k
−1=2K kð ÞK 0

kð Þdx ¼ πL2

2 4F 3

1
4
;
1
4
;
1
2
;
1
2

3
4
;

3
4
; 1

; 1
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375; ðA:5Þ

∫10k
1=2K kð ÞK 0

kð Þdx ¼ π3

2L2 4F 3

1
2
;
1
2
;
3
4
;
3
4

1;
5
4
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5
4

; 1

264
375: ðA:6Þ

Expressions (3.9) and (3.11) then follow from noting that

F 3

1
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1
4
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1
2
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1
2
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3
4
; 1

; 1
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4F 3
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and ∫10K kð Þ2dk ¼ π4

32 W
1
2 ;

1
2 ;

1
2 ;

1
2 ;

1
2 ;

1
2

� �
, upon multiplication by 2/π. Thus

(6.65) of Wan (2013), expressed in 4F3(1) series, is more fundamentally the
three-term relation in VWP 7F6(1) series given by (3.9). Expressions (3.10) and
(3.12) follow from consequences of the hitherto unnoticed fact that the 4F3(1)
series in (3.5) is also a VWP 7F6(1) series:
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;
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;
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;

1
2
;
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;
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π2 4F 3
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;
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L2 4F 3
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4
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5
4
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5
4

; 1

264
375by A:1ð Þ:

(3.10) and (3.12) follow from applying (3.5), (A.7) and (A.8) and multiplying
by π2/2.

PROOF OF THEOREM 2.

Wan (2013, p.115) also showed that

∫10K kð Þ2dk ¼ ∫10
1−kð ÞK 0

kð Þ2
8

ffiffiffi
k

p dk ¼ 1
8
∫10k

−1=2K
0
kð Þ2dk− 1

8
∫10k

1=2K
0
kð Þ2dk: ðA:9Þ

Now we use the Mellin transform derived by Wan (2012, Proposition 1):

∫10k
nK 0 kð Þ2dx ¼ 24n n þ 1ð Þ

16
Γ 1

2 n þ 1ð Þ� �8
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ðA:10Þ
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Substituting for n and evaluating the ratio of gamma functions in terms of
powers of π, L and their reciprocals gives

∫10k
−1=2K

0
kð Þ2dx ¼ L4
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Expression (3.13) follows from applying (A.9), (A.11) and (A.12) upon multi-
plication by 16, noting that ∫10K kð Þ2dk ¼ π4=32ð Þ �W 1

2 ;
1
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1
2 ;

1
2 ;

1
2 ;

1
2

� �
. Applying

the decomposition (A.1) to the W expressions in (A.11) and (A.12) gives
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L4F 3

3
4
;
3
4
;
3
4
;
3
4

5
4
;
5
4
;
3
2

; 1

264
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(3.15) now follows from applying (A.9), (A.11) and (A.12) upon multiplication
by 8.
Expressions (6.41) and (7.25) by Wan (2013) give

π3

4 4F 3

1
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1
2
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1
2
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1
2

1; 1; 1
; 1

264
375 ¼ ∫10

1þ kð ÞK kð Þ2ffiffiffi
k

p dk ¼ ∫10
1þ kð ÞK 0

kð Þ2
4

ffiffiffi
k

p dk: ðA:15Þ

Expression (3.14) then follows from W 1
2 ;

1
4 ;

1
2 ;

1
2 ;

1
2 ;

3
4

� �
¼ 4F 3

1
2
;
1
2
;
1
2
;
1
2

1; 1; 1
; 1

" #
by ap-

plying (A.11) and (A.12) and multiplying by 8. (3.16) follows similarly from
(A.15) applying (3.5), (A.13) and (A.14) and multiplying by 4.
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PROOF OF THEOREM 3.

Part (a) follows by applying (A.2) to W 1; 12 ;
3
4 ;

3
4 ;

3
4 ;

3
4

� �
. For (b) note that
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Now apply (A.1) to W 1; 12 ;
3
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3
4 ;

3
4 ;

3
4

� �
to get
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L
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; 1

264
375þ L4

8π 4F 3
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4
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5
4

; 1

264
375;

on applying (A.16). (3.19) follows upon multiplication by 8π3/L4. Finally, (3.20)
follows from subtracting (3.19) from (3.15), using (3.16) and then dividing both
sides by π3.

PROOF OF LEMMA 4.

Expression (5.6) is (M.11a) in McCrorie (2020b) where it is one of a taxonom-
ically constructed set of 3F2(1) series allied toM. It can be proved directly using
(7.4.4.1) and (7.4.4.5) from Prudnikov, Brychkov and Marichev (1986). Specif-
ically, the former is

3F 2
a; b; c
d; e

; 1
� �

¼ Γ dð ÞΓ d þ e−a−b−cð Þ
Γ d þ e−a−bð ÞΓ d−cð Þ 3F 2

e−a; e−b; c
d þ e−a−b; e

; 1
� �

: ðA:17Þ

(Re(d+ e − a − b − c) > 0 andRe(d − c) > 0)
and the latter is

3F2
a; b; c
d; e

; 1
� �

¼ Γ 1þ a−dð ÞΓ 1þ b−dð ÞΓ 1þ c−dð ÞΓ dð ÞΓ eð Þ
Γ að ÞΓ bð ÞΓ cð ÞΓ 1þ e−dð ÞΓ 2−dð Þ

3F2
1þ a−d; 1þ b−d; 1þ c−d

1þ e−d; 2−d ; 1
� �

þ Γ 1þ a−dð ÞΓ 1þ c−dð Þ
Γ 1−dð ÞΓ 1þ a þ c−dð Þ

3F2
a; c; e−b

1þ a þ c−d; e ; 1
� �

:

ðA:18Þ

(Re(d+ e − a − b − c) > 0 andRe(1+ b − d) > 0)
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In one application of (A.18) below, the 3F2(1) series reduces to a well-defined
2F1(1) series, which is summable using the Gauss Summation Theorem (e.g.
Bailey (1935), equation 1.3.1):

2F 1 a; b; c; 1ð Þ ¼ Γ cð ÞΓ c−a−bð Þ
Γ c−að ÞΓ c−bð Þ Re c−a−bð Þ > 0ð Þ: ðA:19Þ

By (A.17),
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By (A.18),
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We now apply (A.17) to the first 3F2(1) series on the right-hand-side of (A.21):
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We then apply (A.18) to the second:
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where 2F 1

1
4
;
1
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5
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375 ¼ π

2
ffiffi
2

p (by A.19). Hence, by (A.20) – (A.23), we obtain (5.13):
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PROOF OF THEOREM 5.

The advantage of using (5.13) is that it has a VWP 7F6(1) series representation
that immediately reduces to the 3F2(1) series by the cancellation of numerator
and denominator parameters:
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Additional VWP 7F6(1) series can be derived by permuting the entries in
(A.24) and applying the two-term relation (A.2):
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ðA:25Þ

Finally, applying (A.2) to (A.25) with its entries appropriately permuted gives

W 1;
1
2
;
1
4
; 1;

3
4
;
3
4

� 	
¼ 3

4
π

L

� �2
W

1
2
;
1
2
;
1
4
;
1
2
;
1
4
;
1
4

� 	
:

The six expressions in the statement of theorem are obtained by dividing the
right-hand expressions by the factor 3 that appears in (5.13), reordering the
entries of each 7F6(1) series in ascending order, and putting the series following
the canonical series in ascending order in the parameter a.
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