
Cost-Effective OCR Implementation to Prevent
Phishing on Mobile Platforms

Yunjia Wang
School of Computer Science

University of St Andrews
St Andrews, United Kingdom

yw43@st-andrews.ac.uk

Yang Liu
Independent Scholar

Beijing, China
liuyang1026@outlook.com

Tiejun Wu
NSFocus IT Co Ltd

Beijing, China
wutiejun@nsfocus.com

Ishbel Duncan
School of Computer Science

University of St Andrews
St Andrews, United Kingdom

immd@st-andrews.ac.uk

Abstract—Phishing is currently defined as a criminal mecha-
nism employing both social engineering and technical subterfuge
to gather any useful information such as: user personal data
or financial account credentials. Many users are sensible about
this kind of attack from suspicious URL addresses or obvious
warning information from browsers, but phishing still accounts
for a larger proportion of all of malicious attacks. Moreover, these
warning features will be eliminated if the victim is under a DNS
hijacking attack. There is much research about the prevention
and evaluation of phishing, in both PC platforms and mobile
platforms, but there are still technical challenges to reducing the
risk from phishing, especially in mobile platforms.

We presented a novel method to prevent phishing attacks by
using an Optical Character Recognition (OCR) technology in a
previous paper. This method not only overcomes the limitation of
current preventions, but also provides a high detection accuracy
rate. However, whether this method can be implemented ideally
in mobile devices needed to be further examined, especially
in relation to the challenges of limited resources (power and
bandwidth). In this paper, we apply the OCR method in a
mobile platform and provide a prototype implementation scheme
to determine applicability. Experiments are performed to test the
technique under DNS hijacking attacks.

Index Terms—Phishing, OCR, Mobile Phishing Prevention

I. INTRODUCTION

Phishing is a social engineering attack in which the purpose
is to steal user data, such as private information or bank
information etc. As shown by existing data from the Anti-
Phishing Working Group (APWG) phishing activity trends
report, the number of phishing sites detected was 266,387
in the third quarter of 2019, which was nearly double those
detected in 2018 Q4 [1], as shown in Figure 1. Additionally,
according to the Threat Landscape Report from ENISA in
2018 [2], 75% of EU’s Member states disclosed that their
enterprises had undergone cases of phishing. Over 90% of
malware infection and 72% of data leakages in enterprises are
from phishing attacks [3].

Phishing is currently defined as a criminal mechanism
employing both social engineering and technical subterfuge
to gather user personal identity data and financial account
credentials by APWG [1]. With the increasing upgrade of
technical approaches, phishing attacks have become more
complicated. For example, general phishing can be identified
through observing the URL path, because many users are sen-
sible about this kind of attack from suspicious URL addresses

Fig. 1. APWG phishing activity trends report Q3 2019 [1]

or obvious warning information from browsers, as shown in
Figure 2. However, all of these features will be eliminated if
the victim is under a DNS hijacking attack. In this case, not
only is the accessed URL the same as the official website, the
associated SSL certificate is not displayed in an apparent way,
as shown in Figure 3.

Fig. 2. general phishing URL about PayPal

There is much research about the prevention and evaluation

mailto:yw43@st-andrews.ac.uk
mailto:liuyang1026@outlook.com
mailto:wutiejun@nsfocus.com
mailto:immd@st-andrews.ac.uk

Fig. 3. two accessed results; normal and DNS hijacking

of phishing, in both PC platforms and mobile platforms, but it
is still hard to reduce the risk from phishing. Spear phishing, a
more targeted attack towards a specific individual, organisation
or business [4], is the number one infection vector employed
by 71 percent of organized groups according to the Internet
Security Threat Report from Symantec in 2018, as shown in
Figure 4 [5]. Also, most Advanced Persistent Threat (APT)
groups have used spear phishing as the initial infection vector
[5]. Thus, phishing threats are worth researching to determine
cheaper and faster solutions. In our last paper [6], we presented
a novel method to prevent phishing attacks by using an Optical
Character Recognition (OCR) technology, and this method not
only overcomes the limitation of current preventions, but also
provides a high detection accuracy rate. The evaluation results
were promising, but whether this method can be implemented
ideally in mobile devices needed to be further examined, espe-
cially in relation to the challenges of limited resources (power
and bandwidth). In this paper, we execute our novel method
in a mobile platform and provide a prototype implementation
scheme to determine its applicability. Also, this method will
be examined under a DNS hijacking attack.

Fig. 4. Symantec, internet security threat report 2018

The remainder of this paper is structured as follows: in
section 2, the related work is reviewed. In section 3, we
describe the methodology used and subsequently the prototype
implementation. The experimental results are evaluated in
section 4 and finally, the conclusion is summarized in section
5.

II. RELATED WORK

In this section, we focus on two aspects of the reviewed liter-
ature: DNS redirection and current phishing attacks on mobile
devices. We also implemented several relevant experiments for
each aspect to examine the risk.

DNS redirection, also known as DNS hijacking attack, is
a type of DNS attack that redirects the user to an unex-
pected malicious site without any user knowledge through an
incorrectly resolved DNS query traffic. Normally, a targeted
website IP address is indexed in a DNS mapping table after
sending a DNS query from the user. Subsequently, this user
can receive the corresponding IP address from the DNS server.
The relevant HTML response will be parsed according to this
IP address. However, under a DNS hijacking attack, in order
to return a specific fake IP address to this user, the perpetrators
usually tamper with the DNS mapping table. Any DNS query
traffic in this DNS server regarding this targeted website, will
be redirected to a malicious site. Typically, a DNS mapping
table exists in both the user local computer (see Figure 5) and
the remote system, such as a router or ISP server. Therefore, to
perform this kind of DNS attack, perpetrators either take over
a local DNS mapping table or intercept a DNS communication
between the victim and a remote server [7].

Fig. 5. default local DNS setting on MAC OS

Mocan [8] summarized how most perpetrators manage to
perform DNS hijacking. Typically, there are several basic
types, which are:

• Through Malware
• By Compromising DNS Servers
• By Setting Up Rogue DNS Servers
The author also mentioned another type of DNS hijacking,

named as ISP hijacking, although it is not as dangerous as the
DNS hijacking above [8]. ISP hijacking always take place in
third-party advertisers; the purpose is to earn more profits by
inserting extra HTML code to redirect user traffic, rather than
to steal personal and financial data. Alternatively, the user will
also be redirected to a fake website with several ads if they
type in a website address that does not exist.

Most security specialists use Secure Sockets Layers (SSL)
to protect their traffic [7] [9]. This can also be used for
preventing ISP hijacking due to the asynchronous encryption;
an ISP would not read your data in plaintext as it does not
have your private key. During SSL communication, there are

two kinds of potential errors regarding SSL certification; ‘Not
Matched’ and ‘Not Trusted’. In the Not Matched error, the
browser states that the ‘certificate is not valid’ in an error
code if the SSL certificate information is not matched with the
accessed website. In the Not Trusted error, the browser will
notify that the ‘certificate is not trusted’ if the SSL certificate
is not issued by a trusted certificate organization, as shown in
Figure 6. In addition, as the not matched error has a higher
risk, the browser will warn only on the ‘not trusted’ if the SSL
certificate has both problems.

Fig. 6. SSL certificates with the not matched (valid) warning (left) and the
not trusted warning (right)

An SSL channel could completely overcome this kind of
hijacking attack, unless the SSL certificate has been stolen by
perpetrators [9]. The fake website that has been redirected has
an unmatched SSL certificate information with the targeted
website. Alternatively, an evident Not Trusted error will result
in a warning even if the perpetrators make their SSL certificate
have the same information as the targeted one when under a
DNS hijacking attack. However, this apparent warning can be
eliminated through an HTTPS downgrade attack. The browser
would not report any SSL certificate errors if the HTTPS
connection has been downgraded to an HTTP connection.
Only an unobvious ‘not secure’ symbol (see Figure 3) is
displayed on the browser URL bar in either a PC or a mobile.
Therefore, an advanced phishing attack, for example a DNS
hijacking, can bypass the user’s security awareness. So, not
only does the accessed URL look the same as the official
website, but also the SSL certificate warning is not displayed
in an apparent way.

There are many open-source tools online which can be
used to examine the network environment. Rash [9] mentioned
two approaches to diagnose DNS hijacking, WHOISMYDNS1

and Router Checker2. WHOISMYDNS is an online website,
though it is not a dynamic approach. It can detect your relevant
DNS server information automatically, such as the DNS server
IP address, the name of the reverse DNS and the IP owner
information. The suspicious DNS server can be identified if
this is indexed in their blacklist. A router Checker is a tool,
which compares your DNS server with an authorized DNS
server to identify any mismatches. Unlike WHOISMYDNS,

1Available at:http://whoismydns.com/
2Available at:

https://www.f-secure.com/gb-en/home/free-tools/router-checker

this authorized server does not need to be updated frequently,
but this tool does require a pre-installation.

Compared to a desktop or laptop computer, most mobile
users claim that a mobile has less security software installed
on their device. In 2018, around 25% of users indicated they
did not know whether their mobile has been protected by any
form of security software [10].

In addition, due to the global downward trend of buying
computers, users have increasingly shifted towards using mo-
bile devices for daily tasks. It is estimated that a mobile
could be a user’s only computer in less than two years [11].
Meanwhile, hackers have already focused their attention on
mobile devices to gain more benefits, although a mobile is
safer to use than PCs for several reason such as the sandbox
on Android devices, code-signing on Androids and unexpected
IP address3 connections [12]. However, there are more restric-
tions influencing mobile security issues. Shahriar, Klintic and
Clincy [13] listed 10 important factors that make the mobile
web different from desktop usage. Most of the factors are
based on the limited resources on mobile devices. Mobile
application users are more vulnerable to phishing attacks [14].
They have difficulty in verifying if a page is legitimate due to
a small screen, and some URLs are not often displayed within
mobile browsers. Also, a fake address bar can be hidden by
exploiting JavaScript scrollTo() within the page, though this
risk has been fixed in the latest Android version [15]. Some
mobile security software cannot be thoroughly executed to
examine device security because of limited bandwidth, power
usage and slower processes [13].

Moreover, for the mobile phishing attack, a user has less
protection to avoid risks. In one previous experiment we
collected 30 phishing URLs, which had been reported from
PhishTank4, and all of these URL connections elicited warn-
ings when we tried to access them on a desktop browser.
However, only 57% of the URLs [17] were identified as a
phishing attack when the mobile used is an Android platform.
Apple’s devices fared even more poorly; less than half of the
phishing URLs [13] were detected in a Safari browser, and
the Chrome browser (on IOS) missed all of them, as shown
in Figure 7:

There are two general approaches to mitigate phishing, a
blacklist-based or a content based [13] [14] [16]. A blacklist-
based scheme is a static approach, all of the malicious URLs
in this list can be detected and identified to the user. A content
based scheme detects phishing through extracting features
from the URL. Some machine learning approaches are derived
from this approach, such as using lexical and host-based
analysis to categorize the features [17] [18] [19]. Nevertheless,
both approaches are still not good enough to mitigate phishing
attacks due to their limitations. In the first approach, a zero-
day phishing attack cannot be detected as the blacklist-based
scheme is not dynamic [13]. It may still steal user credentials if
this is a newly created phishing website not already included in

3It is hard to confirm the IP address for mobile use unless it is connected
to Wi-Fi

4Available at:http://www.phishtank.com/

http://whoismydns.com/
https://www.f-secure.com/gb-en/home/free-tools/router-checker
http://www.phishtank.com/

Fig. 7. mobile browser examination results

this list. In the second approach, the analysis result depends on
the extracted features from the target website. For instance, in
the host-based step, the server properties are investigated from
WHOIS, collecting data such as the IP address, registration
information etc. However, gathering this information may
become a hard problem due to possible restrictions in the
future [6]. In order to comply with the EU’s General Data
Protection Regulation (GDPR) legislation [20], most of this
information may have been wiped as it releases too much
private information.

In our last paper [6], we presented a novel method to
prevent phishing by using Optical Character Recognition
(OCR) technology. By analysing the logo content from a target
website and comparing against the official website, the website
could be confirmed as official. Subsequently the phishing
website could be identified through the comparison of SSL
certificates between the target website and the official website.
This approach enables a high detection accuracy rate and the
evaluation results look promising. However, there are several
challenges if implementing this approach on mobile platforms.
Unlike the desktop, it is hard to execute OCR computing on
mobile devices due to their limited resources, either in power
or in network bandwidth. Therefore, in this paper, we consider
the following research questions:

• How to implement our OCR approach for mobile users?
• How to reduce the resource consumption as much as

possible on a mobile client.

III. METHODOLOGY & IMPLEMENTATION

A. Research Purpose & Plan

In our previous paper [6], we researched OCR technology
as a mean of identifying phishing. The specific procedure was
divided to four steps, as shown below:

1) Extract the targeted website background / logo image
using web crawler

2) Recognize the extracted image content using OCR tech-
nology

3) Confirm the official URL using Google Search

4) Verify the accessed URL through SSL certification com-
parison

The resources, either in bandwidth or in CPU, are greatly
consumed during the first two steps. In step 1, the HTML
response can be parsed from the accessed URL through a
web crawler. Although the bandwidth would not be used up,
some websites might contain many images or icons so that it
is difficult to locate where the actual logo image is. In our
solution, we extracted all of the images to record these URLs.
Thus, the CPU resource consumption will be high here. In
step 2, all of these image URLs need to be analysed through
OCR technology, so we adopted Google Vision API, which
means many requests will be sent to the Google Cloud. As the
bandwidth consumption is high, these manipulations should be
executed on the server side rather than in the local device if
we want to implement this approach in mobile platforms.

The ideal situation is a plug-in script set up in a mobile
browser. Before parsing the HTML response, the targeted
URL address should be sent to the server side for identifying
veracity. The above four steps from the OCR approach needs
to be implemented on the server side in order to improve
the efficiency and reduce the mobile resource consumption.
In order to prove the feasibility of this approach on mobiles,
we simulated an environment that assumed a script in a mobile
browser by using mitmproxy5 , as shown in Figure 8 below.

Fig. 8. illustration of experimental environment

We established the connection between the mobile platform
and mitmproxy. This proxy will interrupt the network traffic
and redirect it to the server. The relevant manipulations regard-
ing OCR are executed in our server and return a result (true
or false) to the proxy. The final response is either a warning
to the user or a redirect request to the real site, confirmed
by the proxy. The mobile and mitmproxy can be assumed to

5Mitmproxy, is a free and open source interactive HTTPS proxy. Available
at:http://mitmproxy.org/

http://mitmproxy.org/

be an extra functional browser on a mobile device, the server
is the vendor of this browser. Therefore, in this environment,
both the bandwidth and CPU resources on a mobile would
not consume extra data. For the bandwidth, there are only two
requests to be sent from the user. One is sent to the server for
verifying the security of a URL; the other is sent to the real
site if the returned result displays the accessed URL is not a
phishing site. For the CPU resources, all of the relevant OCR
manipulations would be executed on the server side, rather
than in the user’s device, which means it would not take any
extra data consumption from the user.

B. Preliminary Requirement

In order to implement the OCR function, the following
open source APIs need to be preliminary registered, and then
enabled in the local server:

• Google Optical Character Recognition (OCR) API
• Google Search API
Also, the installation of mitmproxy in the test server was

necessary. In our experiment, the machine used was a Mac-
Book Pro and we used ‘pip3 install mitmproxy’ to install it.

C. Implementation

The specific implementation included four phases: connect
to mitmproxy, interrupt traffic and redirect to the test server,
implement OCR functions in the test server, and execute the
response from mitmproxy.

Phase 1, Connect to mitmproxy
Both mobile and mitmproxy require to be in a same network

(Wi-Fi), to establish the connection between this mobile and
mitmproxy. In our experiment, we used an iPhone 7 to connect
the proxy, and this proxy was listening on port 8080. The
configuration on the mobile phone is shown in Figure 9 below.

Fig. 9. network configuration on the mobile phone

Phase 2, Interrupt Traffic and Redirect to Server

A python program was written and named ‘mitm.py’ in
mitmproxy. The function ‘response’ is used to handle the
traffic flow. In this proxy, firstly, it retrieves the URL address
from the request that is sent by the mobile. Secondly, the
proxy redirects this URL address to the browser vendor
server to verify its security through the OCR function. In our
experiment, we set up the proxy and the server in the same
machine; a MacBook Pro 2016, i5 Processor, 15GB Memory.
Finally, this proxy would execute different responses according
to the detected result from the browser vendor server. This will
be explained further in Phase 4.

Phase 3, Implement OCR Functions in the test Server
Once the server (machine) receives the URL request, the 4

step OCR manipulation would be triggered.
1) Parse URL and extract all images: After receiving the

URL from the mitmproxy, the relevant HTML response would
be parsed, and the web crawler used to extract the logo image.
Due to the complexity and diversity of phishing websites, the
logo image may be stored in different place, such as in HTML
code or in a .css file. When the logo image is in HTML code,
it is always inserted under the tag of , as shown in
Figure 10. In the other case, a logo image is linked via a
.css file, under the attributes of background or background-
img, as shown in Figure 11. Therefore, in order to cover
all possibilities, both HTML code and .css files need to be
traversed. In this step, all of the images will be traversed and
stored for recognition.

Fig. 10. Google logo path

Fig. 11. PayPal logo path

2) Recognize image content: In this step, the Google Op-
tical Character Recognition (OCR) API would be called to
recognize the content of the extracted image from the last
step. This API only works for detecting the specific text from
an image, which means the detected result from a redundant
image, such as a symbol icon from the .css file, is worthless.
All of a logo’s content would be stored and moved to the
next step. An exception should be noted her, the program will
be terminated if there is nothing detected from the images
via OCR API. For example, some websites may use a full
screenshot from the official website to be a phishing page. In
our last paper, we adopted 40 phishing URLs to evaluate the
accuracy of this approach. We found only 4 phishing URLs
were missed. Two of these phishing websites used a screenshot
to fill up the whole page, so there was too much information
for the API to process.

3) Search official website URL: In this step, the official
website address from the parsed URL would be identified
according to the analysed content from the above phase.
By using a keyword search in the Google Search API, the
related official website URL addresses can be gathered. In our
experiment, we only collected the top three results from the
returned result list from the search API. Typically, at least one
of them is the official URL; the rest of them may be the Wiki
link, related news or other branches of this website. Figure 12
shows an example of the obtained results if the search keyword
is ‘PayPal’.

Fig. 12. search result from the keyword ‘PayPal’

4) Verify the security of parsed URL: At the end of 2017,
Google announced they will flag all unencrypted traffic in
order to make their user feel secure on the internet. Secure
Sockets Layer (SSL) is used to improve the security of the traf-
fic transmission based on encrypted technology, which ensures
the traffic is private and integral under an established channel
between a browser and a server [21]. So far, most websites
have already deployed SSL to establish the connection. Thus,
we adopt the SSL certificate information to verify the security
of the URL. In this step, we retrieve the SSL certificate ‘issue
by’ and ‘issue to’ attributes to confirm whether there are same.
We attempted to use SSL thumbprint to verify the result in the
initial experiment, but the result is not ideal. The hash value is
inconsistent if the websites are located in different enterprise
branches, as shown in Figure 13. Subsequently, the detected
result is returned to mitmproxy at the end of this phase.

Fig. 13. Google SSL hash comparison between .com and .co.uk

Phase 4, Execute Response in mitmproxy
According to the received result, this proxy would execute

different responses. If this URL is verified to belong to a
malicious link, this proxy would not redirect this URL request
to the real site and return a warning page to the user directly.
This is shown in Figure 14. Alternatively, a redirect request
to the real site is made and the parsed response is returned to
the user.

IV. EVALUATION

In this section, the experimental results would be sum-
marised to detect the availability and accuracy of our approach.
Subsequently, we conduct the evaluation to examine why this
approach is an improvement over current techniques.

A. Experimental Results
In our experiment, 60 URLs were collected from Phish-

Tank, all of these malicious URLs must satisfy the following
conditions:

Fig. 14. warning page from mitmproxy

• These malicious websites must be online during the
experiment.

• These malicious websites have to include a logo image,
and this logo must contain text, otherwise the OCR API
would not return the recognition result..

• Their logo must be in English, as this OCR API only
works in English so far.

In these 60 URLs, 75% (45/60) were financial-based web-
site, such as PayPal, American Express, etc. In this 75%,
the highest proportion was PayPal, at 77% (35/45). Under
our solution, 92% (55/60) phishing URLs were identified
successfully, only 5 URLs were missed. We further analysed
the failure results, the specific reasons were:

• The URL was redirected to other addresses during the
web crawler parsing.

• The logo was generated in text rather than in an image.
Subsequently, we examined the effectiveness of this protec-

tion against DNS hijacking attacks. We built a fake ‘Google’
website and connected the mobile DNS to our suspicious
DNS server. Any search for ‘http://www.google.co.uk’ was
redirected to our webpage, as shown in Figure 15:

Under a DNS hijacking attack, a hacker must downgrade the
protocol from HTTPS to HTTP, otherwise, the browser will
warn that the SSL certificate is not valid. During the detection
of our approach, the text ‘Google’ was extracted successfully
from the logo and recognized by the OCR API. Also, relevant
official websites and their SSL certificate information were
indexed correctly, as shown in Figure 16. The accessed URL
has been downgraded to an HTTP connection, which means
the SSL certificate does not exist or is not accessed. Thus,
both ‘issued to’ and ‘issued by’ are null. Finally, the accessed
URL was identified as a phishing site through the comparison
of the SSL certificate information.

Fig. 15. accessing the fake Google website under a DNS hijacking attack on
a mobile

Fig. 16. relevant official website and their SSL certificate information

B. Evaluation

In order to prove the effectiveness of our approach on the
mobile platform, we used the same URLs to compare the
results of our method with existing mobile browser (Safari on
IOS). Only 40% (8/20) malicious URLs resulted in warnings,
and the other 60% (12/20) could be accessed without any no-
tifications, as shown in Figure 17. Therefore, in our approach,
the security has a significate increase, from 40% (8/20) up to
92% (55/60).

The challenges of mobile implementation were presented
in our last paper; such as how this approach points to the
user and how the consumption of mobile resources can be
minimized, are both eliminated. The requested URL needs to
be interrupted in a script on the mobile before forwarding
to the real, official site; this URL will be redirected to the
browser’s server (cloud) and the relevant OCR functions are
conducted on the server side. The detected result is returned to
the script on the mobile and, according to the result, the script
will respond with different pages; either a warning page, or
the parsed HTML result from the official site.

However, this prototype mobile implementation still has the
same limitations as on desktop. They are [6]:

• The accuracy of detected image content result from OCR.

Fig. 17. same Phishing URLs accessing result on existing mobile browser
(Safari on IOS)

• The cost of OCR API queries.
• The efficiency of the test server and the cloud API.

V. CONCLUSION

Phishing attacks are always cheap to produce and easy to
deploy. Although many users are sensible about this kind of
attack, a phishing attack still has the highest proportion of
attacks in a global cyber threat. With the increase in technical
approaches, phishing attacks have become more complicated.
In particular, in the case of a DNS hijacking attack, the
accessed URL will be same as the official address, and the
SSL warning can be mitigated. Current solutions cannot keep
up with the constant updating of phishing websites. Here we
presented a novel approach to identifying phishing websites by
using an OCR technique, not only to overcome the limitation
on existing solutions, but also to provide a high detection
accuracy rate even under a DNS hijacking attack.

In this paper, we presented an effective prototype to im-
plement a phishing attack solution on mobile platforms. We
highly recommend that browser vendors insert a function to
examine the user traffic before forwarding to the official site.
This traffic will then be redirected to the remote browser
server, and analysed. The browser can then respond with
different webpages according to the result from the server. In
our prototype, the mobile device resources would not be used
up as most of computation process is executed on a server,
and consequently the consumption is no different from normal
accessing.

REFERENCES

[1] APWG, “Phishing Activity Trends Report, 3Q, 2019.”
[2] ENISA, “ENISA Threat Landscape Report 2018 — ENISA.” [On-

line]. Available: https://www.enisa.europa.eu/publications/enisa-threat-
landscape-report-2018. [Accessed: 02-Dec-2019].

[3] ICO, “data-security-incidents-201718.” [Online]. Available:
https://ico.org.uk/media/action-weve-taken/csvs/2014850/data-security-
incidents-csv-201718.xlsx. [Accessed: 02-Dec-2019].

https://www.enisa.europa.eu/publications/enisa-threat-landscape-report-2018
https://www.enisa.europa.eu/publications/enisa-threat-landscape-report-2018
https://ico.org.uk/media/action-weve-taken/csvs/2014850/data-security-incidents-csv-201718.xlsx
https://ico.org.uk/media/action-weve-taken/csvs/2014850/data-security-incidents-csv-201718.xlsx

[4] Kaspersky, “What is Spear Phishing? — Definition and Risks —
Kaspersky Lab UK,” KasperskyLab, 2018. [Online]. Available: https:
//www.kaspersky.co.uk/resource-center/definitions/spear-phishing. [Ac-
cessed: 02-Dec-2019].

[5] Symantec, “Internet Security Threat Report, Volume XIII,” 2008.
[6] Y. Wang and I. Duncan, “A novel method to prevent phishing by using

OCR technology,” in 2019 International Conference on Cyber Security
and Protection of Digital Services, Cyber Security 2019, 2019.

[7] imperva.com, “What is a DNS Hijacking — Redirection Attacks
Explained — Imperva,” 2019. [Online]. Available: https://www.
imperva.com/learn/application-security/dns-hijacking-redirection/. [Ac-
cessed: 02-Dec-2019].

[8] T. Mocan, “What Is DNS Hijacking? (How to Stop DNS Hijacking)
— CactusVPN.” [Online]. Available: https://www.cactusvpn.com/
beginners-guide-online-security/dns-hijacking/. [Accessed: 02-Dec-
2019].

[9] W. Rash, “How to Avoid the New DNS Hijacking Attacks - eWEEK.”
[Online]. Available: https://www.eweek.com/security/how-to-avoid-the-
new-dns-hijacking-attacks. [Accessed: 02-Dec-2019].

[10] CBS, “Mobile phones less often secure than computers.” [Online].
Available: https://www.cbs.nl/en-gb/news/2018/38/mobile-phones-less-
often-secure-than-computers. [Accessed: 02-Dec-2019].

[11] CHRISTINA BONNINGTON, “In Less Than Two Years, a Smartphone
Could Be Your Only Computer — WIRED,” Wired, 2015.

[12] B. Jones, “Internet Security: Is Your Smartphone Safer Than Your
PC? - PSafe Blog.” [Online]. Available: https://www.psafe.com/en/blog/
internet-security-smartphone-safer-pc/. [Accessed: 02-Dec-2019].

[13] L. Wu, X. Du, and J. Wu, “Effective Defense Schemes for Phishing
Attacks on Mobile Computing Platforms,” IEEE Trans. Veh. Technol.,
vol. 65, no. 8, pp. 6678–6691, Aug. 2016.

[14] T. Klintic and V. Clincy, “Mobile Phishing Attacks and Mitigation
Techniques,” J. Inf. Secur., vol. 6, pp. 206–212, 2015.

[15] Y. Niu, F. Hsu, and H. Chen, “iPhish: Phishing Vulnerabilities on
Consumer Electronics.”.

[16] N. Mazher, I. Ashraf, and A. Altaf, “Which web browser work best for
detecting phishing,” in ICICT 2013 - Proceedings of the 2013 5th Inter-
national Conference on Information and Communication Technologies:
Using Technology to Create a Better World, 2013.

[17] M. S. I. Mamun, M. A. Rathore, A. H. Lashkari, N. Stakhanova, and
A. A. Ghorbani, “Detecting malicious URLs using lexical analysis,” in
Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), 2016,
vol. 9955 LNCS, pp. 467–482.

[18] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, Beyond Blacklists:
Learning to Detect Malicious Web Sites from Suspicious URLs. 2009.

[19] K. Krombholz, P. Frühwirt, P. Kieseberg, I. Kapsalis, M. Huber, and E.
Weippl, “QR Code Security: A Survey of Attacks and Challenges for
Usable Security.”

[20] BBC, “GDPR ‘risks making it harder to catch hackers’ - BBC News.”
[Online]. Available: https://www.bbc.co.uk/news/technology-44290019.
[Accessed: 02-Dec-2019]..

[21] Kavya, “Why Google is Forcing You To Have SSL Certificate on
Your Websites.” [Online]. Available: https://serverguy.com/ssl/google-
forcing-ssl-certificate-websites/. [Accessed: 02-Dec-2019].

https://www.kaspersky.co.uk/resource-center/definitions/spear-phishing
https://www.kaspersky.co.uk/resource-center/definitions/spear-phishing
https://www.imperva.com/learn/application-security/dns-hijacking-redirection/
https://www.imperva.com/learn/application-security/dns-hijacking-redirection/
https://www.cactusvpn.com/beginners-guide-online-security/dns-hijacking/
https://www.cactusvpn.com/beginners-guide-online-security/dns-hijacking/
https://www.eweek.com/security/how-to-avoid-the-new-dns-hijacking-attacks
https://www.eweek.com/security/how-to-avoid-the-new-dns-hijacking-attacks
https://www.cbs.nl/en-gb/news/2018/38/mobile-phones-less-often-secure-than-computers
https://www.cbs.nl/en-gb/news/2018/38/mobile-phones-less-often-secure-than-computers
https://www.psafe.com/en/blog/internet-security-smartphone-safer-pc/
https://www.psafe.com/en/blog/internet-security-smartphone-safer-pc/
https://www.bbc.co.uk/news/technology-44290019
https://serverguy.com/ssl/google-forcing-ssl-certificate-websites/
https://serverguy.com/ssl/google-forcing-ssl-certificate-websites/

	Introduction
	Related Work
	Methodology & Implementation
	Research Purpose & Plan
	Preliminary Requirement
	Implementation
	Parse URL and extract all images
	Recognize image content
	Search official website URL
	Verify the security of parsed URL

	Evaluation
	Experimental Results
	Evaluation

	Conclusion
	References

