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Abstract

The analytic hierarchy process (AHP) is a widely-used method for multicriteria de-
cision support based on the hierarchical decomposition of objectives, evaluation of
preferences through pairwise comparisons, and a subsequent aggregation into global
evaluations. The current paper integrates the AHP with stochastic multicriteria ac-
ceptability analysis (SMAA), an inverse-preference method, to allow the pairwise com-
parisons to be uncertain. A simulation experiment is used to assess how the consistency
of judgements and the ability of the SMAA-AHP model to discern the best alternative
deteriorates as uncertainty increases. Across a range of simulated problems results in-
dicate that, according to conventional benchmarks, judgements are likely to remain
consistent unless uncertainty is severe, but that the presence of uncertainty in almost
any degree is sufficient to make the choice of best alternative unclear.

Keywords: decision analysis; multicriteria; analytic hierarchy process; uncertainty; sim-

ulation

1 Introduction

The analytic hierarchy process (Saaty, 1990) is a widely-used method for multicriteria

decision support based on a hierarchical decomposition of a decision problem into multiple

criteria, the assessment of preferences using pairwise comparisons, and an aggregation of

these pairwise preferences into an overall evaluation of the alternatives. While a number

of practical and theoretical aspects of the AHP have proved controversial (see for example

the discussion in Belton and Stewart (2002)), it has found widespread application and

acceptance in practice (e.g. Vaidya and Kumar, 2006), to the extent that it may well be

among the most-frequently applied of currently available methods for decision support.

At the heart of the method is a nine-point semantic scale used by decision makers to

express their preferences for one alternative over another on a particular criterion, and for
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how much one criterion is valued over another. It is clear that sometimes these assessments

will be subject to uncertainty – meaning that the decision maker (DM) does not possess

the necessary information to describe or deterministically predict the inputs required by

the AHP (see Durbach and Stewart (2012) for a review of uncertainty in multicriteria

decision support). Although the standard AHP method does not directly treat uncertainty

or imprecision in its inputs, a number of extensions have been proposed to address this

issue, using for example fuzzy set theory (Van Laarhoven and Pedrycz, 1983; Buckley,

1985; Boender et al., 1989), interval arithmetics (Salo and Hämäläinen, 1995), and various

stochastic techniques (Saaty and Vargas, 1987; Hauser and Tadikamalla, 1996).

This paper adds to that body of work by introducing a simulation-based method for

representing imprecise or uncertain pairwise comparison information from one or more

DMs through stochastic distributions, and a computational method to treat this infor-

mation in the analysis. The method is a variant of stochastic multicriteria acceptability

analysis (SMAA; see Lahdelma et al. (1998); Lahdelma and Salminen (2001); Tervonen

et al. (2008)), an inverse-preference methodology applied here to the case of the AHP. The

resulting SMAA-AHP can be used with arbitrary independent or dependent distributions

for the comparisons, and is based on Monte Carlo simulation from probability distribu-

tions appropriately defined over any uncertain pairwise comparisons and a subsequent

collection of statistics summarising the performance of each alternative. SMAA-AHP is

related to other simulation-based methods, most notably Hauser and Tadikamalla (1996),

but presents additional information to the DM, defines uncertainty regions differently, and

uses a different distribution for the uncertain judgements. SMAA-AHP also allows more

flexible representation of weight constraints and can also be used with missing preference

information.

The remainder of the paper is organized as follows. Section 2 reviews uncertainty mod-

elling in the AHP. Section 3 describes the SMAA-AHP method. Section 4 demonstrates

the method using a small example. Section 5 discusses the advantages and potential

problems with the method, guided by the results of a simulation study. A final section

concludes the paper.

2 Uncertainty modelling in the AHP

In the following, we consider a decision problem consisting of I alternatives, each evaluated

on K criteria. Let zik be the evaluation of alternative i in terms of criterion k, according
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to some suitable performance measure. In the standard AHP the DM performs pairwise

comparisons at each node of the objectives hierarchy, expressing their preferences for one

alternative over another on a particular criterion, or for how much one criterion is valued

over another. The pairwise preference aijk for alternative i over alternative j on criterion

k represents the ratio between evaluations zik/zjk, expressed on a discrete scale from 1 to

9 (where 1 means equal preference and 9 denotes absolute preference). Where convenient,

we drop the criterion subscript and refer simply to the pairwise evaluation aij . The same

approach is used to compare the importance of criteria, in which case we refer to a pairwise

preference aij for criterion i over criterion j representing the ratio between trade-off weights

wi/wj . In cases where pairwise comparisons can be assessed precisely, a number of ways

have been proposed to aggregate these into global measures of performance (Belton and

Stewart, 2002). Most commonly, the eigenvector corresponding to the largest eigenvalue

of the (I × I or K ×K) pairwise comparison matrix A = [aij ] is extracted (the so-called

priority vector), and a global evaluation formed by a simple weighted sum.

Our concern is with decision making situations in which the pairwise evaluations aijk

(and consequently computed values for zik and wj) are uncertain. Early research into the

modelling of probabilities in the AHP was largely concerned with deriving relationships

between the distributional form of the uncertain pairwise judgements and the distribu-

tions of the marginal evaluations contained in the priority vector (Vargas, 1982; Saaty

and Vargas, 1987; Basak, 1989, 1991). Subsequent probabilistic AHP models (Hauser and

Tadikamalla, 1996; Levary and Wan, 1998, 1999; Basak, 1998; Banuelas and Antony, 2007)

have focused on using Monte Carlo simulation to randomly generate pairwise evaluations

from the distributions specified by decision makers. These approaches all follow the same

basic approach, first expressed by Hauser and Tadikamalla (1996). The decision maker

expresses pairwise comparisons in the usual way i.e. using the same 1-9 scale as for de-

terministic AHP, except that these comparisons are allowed to be random variables with

associated probability distributions. Hauser and Tadikamalla generated random judge-

ments a∗ij uniformly on the interval [aij − daij , aij − daij ], with d an uncertainty factor,

before transforming any values less than one using f(a∗ij) = 1/(2−a∗ij). Further restrictions

may be placed on the types of distributions if necessary. Next sets of random pairwise

judgements are generated using Monte Carlo simulation. For each set of randomly gen-

erated evaluation matrices the priority vector is computed. Repeating this process many

times gives a distribution of priorities for each alternative, which can be used to rank the
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alternatives, in most cases using the mean of the distribution.

Most authors make small embellishments around this general process. Levary and Wan

(1998) incorporate scenarios into their model (see also Levary and Wan (1999)). Decision

makers thus assess different (possibly stochastic) judgemental matrices for each scenario.

Their simulation approach first generates a random number to specify which scenario is

being used, and then generates further random numbers specifying the pairwise judge-

ments within each scenario. Basak (1998) uses a Bayesian approach to integrate expert

judgements with the decision maker’s prior probabilistic assessments. Pairwise judgements

are simulated by drawing from the posterior distributions. Banuelas and Antony (2007)

add a sensitivity analysis phase to investigate the influence of the probabilistic judgements

on the consistency index. As mentioned above the primary distinction between existing

simulation-based AHP methods and SMAA-AHP is the additional information that is

presented to DMs, which can be useful in facilitating a greater understanding of the deci-

sion problem and progressing towards a final decision. We discuss this information in the

presentation of the SMAA-AHP given in the following section.

3 The SMAA-AHP method

In SMAA-AHP, the DMs may express their comparisons on a discrete scale from 1 to 9

or use arbitrary positive values. The DMs can give their pairwise comparisons either as

precise values, as in AHP, or as intervals to express imprecise or uncertain preferences.

The DMs can give the lower and upper bounds of the intervals explicitly, or express them

as [aij/dij , aijdij ] where aij is the geometric mean of the interval and dij ≥ 1 is the so-

called imprecision factor of their pairwise comparison. For example, the interval [0.5, 8]

corresponds to the pairwise comparison 2 with imprecision factor 4. The imprecision factor

is a meaningful way to express uncertainty on a ratio scale, where all values should be

positive.

When the DMs express their pairwise comparisons, it should be checked that these

are sufficiently consistent. In the original AHP, where pairwise comparisons are expressed

deterministically, a popular approach for evaluating consistency is to compare λ1, the

leading eigenvalue of an assessed pairwise comparison matrix, with I, the leading eigen-

value obtained from an I × I matrix of perfectly consistent judgements (in the sense that

aik = aijajk, ∀i, j, k). To provide a measure of the severity of this deviation, (λ1−I)/(I−1)

is compared with the mean inconsistency value derived from many randomly generated

4



reciprocal matrices of the same size. An inconsistency ratio of 0.1 or less is generally

stated to be acceptable (Saaty, 1990), meaning that the inconsistency of the observed

pairwise comparisons should be no more than 10% of what would be observed, on average,

from completely random judgements. For an interval-based analysis, a natural analogue

would be to suggest that the geometric mean of the comparisons should have a inconsis-

tency ratio below 10%. Note, however, that this benchmark, as well as the general use of

the inconsistency ratio, has been strongly criticised (see in particular Bana e Costa and

Vansnick (2008))

After each DM has given his/her pairwise comparisons, we combine them into intervals

[amin
ij , amax

ij ] where amin
ij is the minimal value that any DM has expressed and amax

ij is

the maximal value. We represent then the aggregated comparison values by stochastic

variables with suitable probability distributions. Technically, it is possible to use arbitrary

distributions. However, in the absence of information about the distribution, we apply

the truncated and scaled 1/x distribution. The PDF (probability density function) of the

scaled 1/x distribution is given by f(x) = α/x when x ∈ [xmin, xmax], and zero elsewhere.

The scaling coefficient α = 1/ ln(xmax − xmin) is determined so that the integral over the

PDF equals one.

The motivation for using the scaled 1/x distribution to represent pairwise comparisons

in an interval is that this distribution allocates equal probability mass for all sub-intervals

[x/d, xd] corresponding to the same imprecision factor d. For example, given a pairwise

comparison interval [0.5, 8], the scaled 1/x distribution allocates equal probability mass

of 1/4 for each of the subintervals [0.5, 1], [1, 2], [2, 4], and [4, 8]. If the interval is degen-

erate, i.e. amin
ij = amax

ij , we use Dirac’s delta function (the unit impulse function) as the

distribution.

After representing the aggregated pairwise comparisons by suitable distributions, we

analyse the performance of each alternative through stochastic simulation by simultane-

ously drawing pairwise comparisons from their corresponding distributions and computing

the score for each alternative as in AHP. Observe that even if the pairwise comparisons

given by each DM are (sufficiently) consistent, comparisons drawn from the combined in-

tervals can be inconsistent. It is easy to reject during the simulation comparisons whose

inconsistency ratio exceeds some threshold. However, inconsistent comparisons can also

be included in the computations, because the random inconsistencies do not introduce any

systematic bias to the results.
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During the simulation we collect statistics about the weights at different nodes of

the hierarchy, the overall score of the alternatives, and their ranking. In particular, we

collect the following statistics: the number of times alternative i obtains rank r (Bir),

the number of times alternative i scores better than alternative j (Cij), the sum of scores

for alternative i at node t in the hierarchy (Sit), the sum of the weights for criterion k

during the iterations when alternative i obtained first rank (Wik), and the number of times

alternative i obtained first rank using its central weights (Pi, computation of which requires

a second simulation round after the central weights have been computed). A sufficient

number of simulation runs K to obtain 95% confidence limits of 0.01 around most outputs

(most notably, acceptability) is approximately 10 000 (Tervonen and Lahdelma, 2007).

Based on the statistics, we compute the following descriptive measures for evaluating the

alternatives:

• Average criterion score for different alternatives at each criterion node. This gener-

alizes the corresponding crisp AHP criterion scores to consider imprecise comparison

values. The average criterion score is computed as sit = Sit/K.

• Average overall score for different alternatives. This generalizes the crisp AHP over-

all score to consider imprecise comparison values. The average overall score is simply

the average criterion score sti for the root node t.

• The rank acceptability index bri measures the variety of different preferences for which

alternative i obtains rank r. The rank acceptability indices can be used for ranking

the alternatives roughly, or for finding compromise alternatives in case no alternative

obtains sufficient acceptability for the first rank. Potential compromise alternatives

are those with high acceptability for the best ranks. Alternatives that obtain high

acceptability for the worst ranks should be avoided. The rank acceptability index is

computed as bri = Bir/K.

• The first rank acceptability index b1i measures the variety of different preferences

that make alternative i most preferred. In other words, the acceptability index

measures how widely acceptable the alternative is. The acceptability index can

be interpreted as the share of people voting for the alternative, assuming that the

applied distribution for comparison values represents the voters’ preferences. Zero

acceptability means that the alternative is inefficient, i.e. no preferences make it

best.
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• The central weight vector wc
i describes what kinds of weights are favourable for

alternative i, i.e. make it most preferred. The central weights can be presented to the

DMs in order to help them understand how different weights correspond to different

choices with the assumed preference model. The central weights are undefined for

inefficient alternatives. The central weights are computed as wc
ik = Wik/Bi1.

• The pairwise winning index cij is the probability for alternative i to score better

than alternative j considering the uncertainty in the preference statements. The

pairwise winning indices are computed as cij = Cij/K.

• The confidence factor pci is the probability for alternative i to be most preferred

when the central weight vector for that alternative is applied. In other words, the

confidence factor measures if the performance of the alternative has been assessed

accurately enough, so that it can be selected under favourable preferences between

criteria. The confidence factors are computed as pci = Pi/K.

4 Illustrative example

To illustrate the SMAA-AHP method, we reconsider the AHP example originally used in

Saaty (1990). First we consider the problem with precise comparison values, then with

imprecise comparisons, and finally with missing comparisons.

Tables 1 and 2 show the pairwise comparisons assessed between the criteria and al-

ternatives respectively. Only the upper triangle of each reciprocal comparison matrix is

presented. The criterion comparison matrix in Table 1 is a little inconsistent with con-

sistency index CI = 0.14 and inconsistency ratio IR = 11%, as is the comparison matrix

for criterion four (CI = 0.10, IR = 20%). The remaining comparison matrices have

IR < 10%, the conventional benchmark (Saaty, 1990).

Crit. 2 3 4 5 6

1 5 7 5 3 1
2 3 1/5 1/6 1/6
3 1/4 1/5 1/5
4 1/5 1/6
5 1

Table 1: Pairwise comparisons between criteria.

Using the standard AHP approach, alternative A obtains the highest score (normalised to

sum to 100) of 40 followed by B at 36 and C at 24. Suppose now that the inputs above
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Alt. B C

A (1/3,1,5,9,1/2,6) (1/2,1,1,7,1,4)
B (3,1,1/5,1/5,2,1/3)

Table 2: Pairwise comparisons between alternatives with respect to different criteria. For
compactness comparisons are displayed in vector form (aij1, aij2, . . . , aijK).

Alt. sti b1 b2 b3 pc wc
i ciA ciB ciC

A 40 86 14 0 95 [33,5,3,9,23,28] 0 86 100
B 36 14 86 0.005 30 [35,5,3,9,23,25] 14 0 99.995
C 24 0 0.005 99.995 0 – 0 0.005 0

Table 3: Output from the SMAA-AHP model: rank acceptability indices, confidence
factors, central weights, and pairwise winning indices (all expressed as %).

are not precise but are effectively expectations (or other forms of ‘best guesses’) around

which substantial uncertainty exists. For simplicity we use the same uncertainty factor

dij = 1.5 for all comparisons aij .

Output from the SMAA-AHP model is shown in Table 3. Alternative A remains the

most likely candidate for the first rank, with a first rank acceptability of 86%. However

alternative B, which obtains b1 = 14%, is also potentially optimal. In practice the DMs

could either decide that this result is conclusive enough, or determine that more accurate

evaluation of the alternatives may be necessary. Similar central weights are observed for

the two potentially optimal alternatives – to be expected because these are restricted

by the pairwise comparisons between criteria. The confidence factors show that under

favourable preferences alternative A is very likely (95%) the most preferred one. In contrast

alternativeB receives only 30% confidence, meaning it is unlikely to be the best option even

when its central weights are applied. Choosing B would require more precise comparisons

to be collected, and for that new information to favour B.

The use of simulation allows for the collection of detailed statistics on consistency and

its effect on results. Basic consistency information is summarized in Figure 1, which shows

empirical distributions of inconsistency ratios for each of the seven pairwise comparison

matrices. Clearly the greatest inconsistencies lie in the pairwise comparisons between

criteria and within criterion 4, and to a lesser extent within criterion 1 and 6. For all of

these, the conventional 10% upper bound on consistency is regularly violated (in 82%, 83%,

26%, and 26% of simulations, for the four cases respectively) by the matrices simulated

as part of SMAA-AHP. This provides the user with information on the consistency of the

preferences implied by the combination of initial judgements and imprecision factor d,
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either in the form of the full empirical distributions or summarized as the proportion of

simulated judgments violating some consistency benchmark such as 10%.

crit.1 crit.2 crit.3 crit.4 crit.5 crit.6 weights
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Figure 1: Distributions of inconsistencies in the simulated judgments.

Of particular interest is whether these inconsistent judgements are linked to preferences

for particular alternatives. This information can be conveyed in a number of ways. Figure

2 shows the average first rank acceptability indices for alternatives as a function of the

observed inconsistency in each comparison matrix. It is important to note that because

consistency refers to the pairwise comparison matrix as a whole, two simulated matrices

with the same inconsistency ratio may differ substantially in their pairwise judgments,

and hence the ranking of alternatives and subsequent acceptabilities that are derived

from them. Therefore, to ease interpretation, the averages shown in Figure 2 have been

smoothed with a simple local smoother using a neighbourhood of the closest 10% of obser-

vations and a cubic inverse distance function to weight those observations, although our

conclusions are relatively insensitive to these choices. Our aim in doing so is to provide a

summarized view of how preferences change, on average, with increased inconsistency.

In Figure 2(a), which uses the same imprecision factor d = 1.5 for all judgements,

it is clear that acceptabilities remain roughly the same regardless of the consistency of

simulated judgements. However, this need not always be the case, particularly where

uncertainty is not symmetric around the initial point judgement. Figure 2(b) provides

an illustration of results obtained if only those between-criteria comparisons a12, a15, and

a25 are uncertain and these are generated U [0.5, 2]; all within-criteria comparisons are still

subject to an imprecision factor d = 1.5. In that case the overall acceptability of alternative

B increases marginally to 18%, but the bottom panel of Figure 2(b) reveals that much

of this increase in acceptability is derived from inconsistent simulated between-criteria
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Figure 2: Effect of inconsistency on rank-1 acceptability indices.

judgements, and that under highly inconsistent between-criteria assessments alternative

A attains higher acceptability, on average, than B.

Where acceptabilities are sensitive to judgmental consistency, two broad responses are

possible. The first is simply to reject any simulated matrices whose inconsistency is above

a certain threshold (e.g. the usual benchmark of 10%). A second option, arguably more

closely aligned with the goal of decision support, is to interrogate the inconsistent judg-

ments that are favouring a particular alternative, in an attempt to understand the sources

of the inconsistency and ultimately to resolve these, either through more precise eval-

uations or rejecting certain judgements. Simulated comparison matrices favouring each

alternative may be collected and stored as part of the SMAA process, so that those above

a certain consistency threshold can be easily identified and summarized. To illustrate, in

Table 4 we summarize 250 between-criteria comparison matrices which obtain a inconsis-

tency ratio above 0.17 and hence, from Figure 2(b), can be seen to increasingly favour

alternative B. Here, a12 = 2.93 and a52 = 8.68 so that it would appear that a51 should be

greater than 1 and indeed perfect consistency would imply a15 = 2.93/8.68 = 0.34. The

geometric mean of the inconsistent simulated comparisons indicates, however, a strong
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c1 c2 c3 c4 c5 c6
c1 1 2.93 7 5 5.41 1
c2 0.34 1 3 0.2 0.12 0.17
c3 0.14 0.33 1 0.25 0.20 0.2
c4 0.20 5 4 1 0.20 0.17
c5 0.18 8.68 5 5 1 1
c6 1 6 5 6 1 1

Table 4: Mean between-criteria pairwise comparisons, among those matrices obtaining a
inconsistency ratio above 0.17.

Alt. sti b1 b2 b3 pc wc
i ciA ciB ciC

A 44 82 15 3 100 [14,17,18,19,15,19] 0 84 96
B 28 16 31 52 99.7 [33,17,10,7,26,8] 16 0 47
C 28 1 54 45 24 [16,23,40,4,13,5] 4 53 0

Table 5: Output from the SMAA-AHP model with missing information (all figures ex-
pressed as %).

preference for criteria 1 over 5 (a15 = 5.41). At this stage the decision maker would need

to decide whether the inconsistent simulated judgments are merely artifacts of the simu-

lation that can be summarily rejected, and/or whether further, more refined assessments

are required.

Finally, we demonstrate the use of SMAA-AHP in the case where comparison informa-

tion between criteria is completely missing. We represent this missing information using

non-negative normalized weights that follow a joint uniform distribution. Table 5 shows

the output from the revised SMAA-AHP model.

Average overall scores indicate that A increases its superiority, while B and C appear

almost equally good. Rank acceptability indices show how the increased uncertainty in the

comparisons is reflected as increased uncertainty in the ranking. The confidence factors

show that both A and B can be chosen under favourable preferences, but C is likely not

the best alternative under any preferences. The central weights identify what kind of

trade-off ratios between the criteria make each alternative most preferred. We can see

that different alternatives are favoured by dramatically different weights. For example,

alternative C would require about 40% of the weight to be placed on criterion 3 alone.

The pairwise winning indices reveal the surprising fact that while B is superior to C when

competing about the first rank, C is preferred to B on average. An analysis of consistency

information is not provided here, but would be conducted as for the partial-information

case described above.
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5 Simulation study

The purpose of the simulation study is to evaluate the influence of imprecision on model

results. In particular we wish to evaluate the rate at which the consistency of the result-

ing judgements and the ability of the SMAA-AHP model to discern the best-performing

alternative deteriorate as imprecision, as captured by the imprecision factor d, increases

in magnitude.

5.1 Simulation design

The basic structure of each simulation run is as follows:

1. Select problem size parameters (number of alternatives I and criteria K) and gen-

erate K + 1 pairwise comparison matrices.

2. Select an imprecision factor d and select which of the pairwise comparison matrices

are to be imprecise. Modify the appropriate pairwise judgements to reflect impreci-

sion.

3. Simulate the application of SMAA-AHP to the resulting imprecise decision problem.

4. Evaluate model results.

By performing a number of simulation runs at each combination of parameters, aggregate

statistics can be collected and the mean performance of the SMAA-AHP model assessed

and compared statistically across a range of simulated conditions. Further details on the

simulation structure are given below.

5.1.1 Generating pairwise comparison matrices

For each criterion k, pairwise comparisons aij are generated by first simulating the eval-

uation of alternative i on criterion k, denoted zik, for all i and k. The evaluations are

drawn from U [0.1, 0.9] and normalized so that each alternative’s scores sums to one over

all criteria. This ensures that all initial ratio judgements will lie between 1/9 and 9 as

per the AHP scale, and that all alternatives are non-dominated. Pairwise comparisons are

computed from the resulting normalized evaluations aij = zi/zj , where for convenience

we have dropped the subscript k. Pairwise comparisons of criterion importance are done

in the same way, except that no normalization is required. All initial judgements are

therefore perfectly consistent.
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5.1.2 Introducing imprecision into pairwise judgements

We introduce imprecision into the simulated pairwise comparisons via the imprecision fac-

tor d described in Section 3. This factor is left as a parameter of the simulation, taking

on a range of values between 1 and 5. We also differentiate between imprecision involving

evaluations of alternative performance and imprecision involving evaluations of criterion

importance. This gives three conditions: (a) both pairwise comparisons of criterion im-

portance and pairwise comparisons of performances on each criterion are imprecise; (b)

pairwise comparisons of criterion importance are imprecise but pairwise comparisons of

performances on each criterion are not; (c) pairwise comparisons of performances on each

criterion are imprecise but pairwise comparisons of criterion importance are not. For

simplicity, the same values of d are used for both types of imprecision.

5.1.3 Simulating the application of SMAA-AHP

Once the imprecision factor d has been chosen, a single iteration of the SMAA-AHP model

involves replacing each pairwise comparison aij in the upper triangular part of the pairwise

comparison matrix with a randomly drawn value a∗ij from the scaled 1/x distribution

defined between [aij/d, aijd]. In this case, xmax/xmin = d2 and so α = 1/ln(d2). We

do not generate random values in the lower triangular part of the pairwise comparison

matrix so as to preserve the relation a∗ij = 1/a∗ij , and also allow the generated values to lie

beyond the usual AHP 1-9 scale. Once all a∗ij have been generated, scores are computed

as in the usual AHP model. That is, for each pairwise comparison matrix we extract

the eigenvector corresponding to the largest eigenvalue, and aggregate the resulting scores

using an additive model. Alternatives are ranked in descending order of global score, and

we note which alternative is ranked in each position (for later calculation of acceptability

indices).

In implementing the SMAA-AHP model, acceptability results are based on 10 000

iterations of the procedure described above, following results in Tervonen and Lahdelma

(2007). Note that the pairwise judgements generated by SMAA-AHP i.e. the a∗ij , may

well be inconsistent. We do not reject inconsistent judgements at this stage; rather we

simply compute the average inconsistency and report how this varies with changes to the

imprecision factor d as well as other parameters of the simulation.
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5.1.4 Evaluating model results

Information is collected on the following outcome measures:

1. b1: Mean acceptability of the first-ranked alternative;

2. b1 − b2: Mean difference between the acceptability of the first-ranked and second-

ranked alternatives, giving some indication of the degree to which a best alternative

can be discerned;

3. Pr(b1i > 0): Mean proportion of alternatives with non-zero acceptability indices,

bearing in mind that all alternatives are by construction Pareto optimal.

4. IR: Mean inconsistency ratio evaluated across all matrices for which d > 1.

5. Pr(IR > 0.10): Mean proportion of imprecise matrices (i.e. those for which d > 1)

with inconsistency ratios above the benchmark of 0.10.

5.1.5 Parameter values used in the simulation study

We carry out the following three sets of experiments:

1. The imprecision factor d ∈ {1.1, 1.2, 1.4, 1.6, 1.8, 2, 2.5, 3, 4, 5} is varied, holding I =

10 and K = 8 fixed and with both types of imprecision present.

2. The type of imprecision present (criterion importance, alternative performance, or

both) is varied, for each element in a subset of imprecision factors d ∈ {1, 1.5, 2, 2.5, 3, 4, 5}

and holding I = 10 and K = 8 fixed.

3. The problem size parameters governing the number of alternatives and criteria are

varied, using four different problems sizes: (I = 5,K = 4); (I = 10,K = 16);

(I = 20,K = 8); and (I = 20,K = 16) with both types of imprecision present and

for each element in a subset of imprecision factors d ∈ {1, 1.5, 2, 2.5, 3, 4, 5}.

For each combination of simulation parameters 50 simulation runs are performed, giving

standard errors of at most 0.05 for any group means discussed in the results.

5.2 Results

Figure 3 shows how the acceptability and consistency results obtained from SMAA-AHP

change as a function of the imprecision parameter d, for the base case of I = 10 and
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K = 8, with uncertainty in both alternative performance and criterion importance eval-

uations. With no imprecision (d = 1) the acceptability of the best-ranked alternative is

by definition 1, so that all other alternatives receive zero acceptability. As imprecision

increases the acceptability of the best-ranked alternative decreases sharply and more al-

ternatives become potentially optimal. Our results indicate that at seemingly moderate

degrees of imprecision (i.e. d = 1.5) the best-ranked alternative will receive on average

around 70% acceptability, with the second-ranked alternative receiving around 20%. At

this stage, upwards of 60% of the alternatives would be identified as Pareto optimal. Nat-

urally these figures may vary greatly from case to case, but an acceptability of 20% would

certainly prevent ruling out this alternative (and simply selecting the alternative with the

highest acceptability index). Thus our results suggest that AHP results may be fairly

sensitive to imprecision in their inputs.
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Figure 3: Main simulation results showing (a) mean acceptability outcomes and (b) con-
sistency outcomes obtained from the SMAA-AHP model (for fixed number of alternatives
I = 10 and criteria K = 8, and with both types of imprecision present).

On the other hand the consistency of judgements, as measured by inconsistency ratios,

show a strong robustness to imprecision in the judgemental inputs. Imprecision must be

extreme (d ≥ 2.8) before the mean inconsistency ratio exceeds 0.10. The inconsistency

ratio increases near-linearly in the imprecision factor d. Clearly, if a rejection policy was

to be employed to remove inconsistent judgements from SMAA-AHP, then the proportion

of rejected simulated matrices rises sharply around this level of imprecision. This would
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appear to be a fairly unlikely scenario however, effectively allowing an initial judgement

of 3 to lie anywhere between 1 and 9.

Figure 4 shows how the effect of imprecision type on acceptability and consistency,

again holding the problem size fixed at I = 10 and K = 8. Average consistency results

remain the same because these means are simply formed from those pairwise comparison

matrices that are affected by imprecision i.e. K + 1 if both imprecision types are present,

K if only alternative performances are imprecise, and 1 if only criterion importance is

imprecise. As imprecision is increased the acceptability of the best-ranked alternative

initially decreases much more slowly when only criterion importance is imprecise than

when alternative performance is imprecise. Once the imprecision factor is large, however

(i.e. d ≥ 3), the rate of further decrease is very similar in both conditions. The net

effect is that when only criterion importance is uncertain, the best-ranked alternative

retains a high acceptability regardless of the level of imprecision, and fewer alternatives

are identified as potentially optimal. Nevertheless with substantial acceptability indices

for at least two alternatives it would still be necessary to resolve the uncertainty about

criterion importance before a final choice could be justified.
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Figure 4: Effect of imprecision type on (a) mean acceptability outcomes and (b) consis-
tency outcomes.

Finally we examine the effect of problem size on our acceptability and consistency

results, now returning to the case where both types of imprecision are present. Figure

5 displays these results, which show that the relationship between mean consistency and
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imprecision is remarkably consistent over the generated range of problem sizes. The pro-

portion of inconsistent judgements experiences a sharp increase between d = 2 and d = 3,

with the steepness of the transition depending on the number of pairwise comparisons

made (note that the number of pairwise judgements increases linearly in the number of

criteria but exponentially in the number of alternatives). Acceptability results are more

complex. The relationship between the top-ranked acceptability indices and imprecision

is also fairly consistent over problem sizes (see results for b1 and b1 − b2), but the rate

at which potentially optimal alternatives are identified (as d increases initially) is much

greater when fewer pairwise comparisons are made (i.e. I = 5, K = 4) than when more

are made (I = 20, K = 16). The reason for this is not immediately apparent.
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Figure 5: Effect of problem size on (a) mean acceptability outcomes and (b) consistency
outcomes.

6 Conclusions

In this paper we have introduced the SMAA-AHP method for representing uncertain or im-

precise information through stochastic distributions in the AHP and a simulation approach

for analysing the resulting model. The method is suitable for group decision-making prob-

lems, where it is difficult to agree on precise pairwise comparisons. A particular strength

of the method is that it allows flexible modelling of different kinds of imprecision, uncer-

tainty, or missing preference information. This may be useful in many decision problems
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where information is gradually refined during the process. The multiplicative uncertainty

factor of SMAA-AHP is a natural way to express the uncertainty symmetrically around

a midpoint, and has (in comparison to the uniform distribution, see for example Hauser

and Tadikamalla (1996)) the advantage of allocating equal probability mass for equal pro-

portional sub-intervals. However, the SMAA approach is not constrained by this choice,

and any realistic distribution may be used (see Tervonen et al. (2013) for details).

One concern that users of the AHP may raise about the use of a simulation-based

method such as SMAA is the potential for generating inconsistent judgements. Inconsis-

tent judgements may of course be screened out using rejection sampling, but our simulation

results indicate that they are unlikely to arise at all (given precise point judgements i.e.

entirely due to the simulation process) unless imprecision is fairly severe. The simulations

results also show that with even quite limited imprecision there tend to be several po-

tentially optimal alternatives, with the difference between the largest and second-largest

acceptability decreasing rapidly with imprecision. This means that when imprecision is

present in almost any degree the choice of best alternative will not be clear. In some

instances imprecision may be resolvable by further discussion with the DM; in others it

may be an unavoidable element of the decision problem (for example, when it results from

uncertainty about future events). In either case, the SMAA methodology provides a set

of output measures that can be presented to DMs, so that they can better understand

the kinds of preferences that support the selection of each of the alternatives. Even where

progression to a final choice is not immediately possible this information can help DMs to

gain greater insight into the choices facing them.
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