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A new numerical scheme for obtaining the steady state form of an internal solitary wave

of large amplitude is presented. A stratified inviscid two dimensional fluid under the

Boussinesq approximation flowing between horizontal rigid boundaries is considered. The

stratification is stable, and buoyancy is continuously differentiable throughout the domain

of the flow. Solutions are obtained by tracing the buoyancy frequency along streamlines

from the undisturbed far field. From this the vorticity field can be constructed and the

streamfunction may then be obtained by inversion of Laplace’s operator. The scheme is

presented as an iterative solver where the inversion of Laplace’s operator is performed

spectrally. The solutions agree well with previous results for stratification in which the

buoyancy frequency is a discontinuous function. The new numerical scheme allows signif-

icantly larger amplitude waves to be computed than have been presented before and it is

shown that waves with Richardson numbers as low as 0.062 can be computed straight-

forwardly. The method is also extended to deal in a novel way with closed streamlines

when they occur in the domain. The new solutions are tested in independent fully non-

linear time dependent simulations and are verified to be steady. Waves with regions of

recirculation are also discussed.
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1. Introduction

Internal solitary waves (ISWs) are understood to be an ubiquitous feature of coastal

ocean areas (Ostrovsky & Stepanyants 1989; Stanton & Ostrovsky 1998; Moum et al.

2003; Helfrich & Melville 2006). They are frequently observed to have large amplitudes,

that is, with maximal pycnocline displacements several times the undisturbed depth of

the pycnocline (Stanton & Ostrovsky 1998). At such amplitudes the waves are highly

nonlinear and differ markedly from the predictions of well known weakly nonlinear Ko-

rteweg De-Vries (KdV) theory (see Miles 1980).

The propagation characteristics of large amplitude ISWs are important since they

transport mass and energy in coastal oceans. In addition, the interaction of these waves

with underwater structures, particularly those associated with oil and gas extraction, may

have implications for the design of such structures. Furthermore, shoaling and breaking of

ISWs may cause significant mixing in the water column (Grue et al. 2000; Fructus et al.

2009), and hence redistribution of available potential energy. Therefore an understanding

of the steady state form of ISWs at large amplitudes is important to the fundamental

understanding of such problems.

Oceanic ISWs may occur in situations where the background conditions vary signifi-

cantly. For example, the water depth can change as a wave shoals or moves into deeper

water and stratification can change with season or location. In the current approach,

waves moving in a constant depth of water with a constant background stratification

and no background shear are considered (a short discussion of how a net shear may be

added is given in section 2). The idealized assumptions are a consequence of studying

steady state wave behaviour, since waves moving in non-constant conditions will be in-

herently unsteady. In addition, a rigid horizontal lid is employed and the lower boundary

is assumed to be horizontal and flat. Free slip conditions are used on both top and bot-
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tom boundaries. Hence free surface and frictional effects are neglected. These boundary

conditions simplify the mathematics and are widely employed when studying problems

of this nature (for example see Turkington et al. (1991); Brown & Christie (1998); Choi

& Camassa (1999); Fructus & Grue (2004)). In the ocean, waves often occur in rank or-

dered groups but it is well known that large amplitude internal waves have greater wave

speeds than their smaller counterparts and so the individual waves tend to separate as

time evolves (Ostrovsky & Stepanyants 1989). Hence consideration of a solitary wave is

thought to be appropriate here.

Previous approaches to the problem of finding the steady state form of ISWs in a

system with a given stratification have focussed largely on using the Dubreil-Jacotin–

Long (DJL) equation as a means of analysing the fluid flow. In particular, various authors

have considered layered profiles with either constant density or constant stratification in

each layer (Grue et al. 2000; Fructus & Grue 2004), while others have considered smooth

profiles of stratification (Turkington et al. 1991; Brown & Christie 1998; Lamb 2002).

Different methods are appropriate for different stratifications. For constant density layers,

solving Laplace’s equation for the streamfunction in each layer and matching across layer

boundaries is sufficient (Funakoshi & Oikawa 1986; Grue et al. 1999; Rus̊as & Grue 2002).

Alternatively it is possible to run a fully nonlinear time dependent simulation long enough

to converge on the steady state (Vlasenko et al. 2000).

In the current work a new derivation of a useful variant of the DJL equation is presented

in terms of the streamfunction and buoyancy which are natural variables to consider in

an incompressible Boussinesq fluid system. A new procedure for finding fully nonlinear

ISW solutions for a background buoyancy (likewise density) stratification that is suffi-

ciently smooth is also given. This procedure is much simpler than the integral methods

described in Fructus & Grue (2004) and requires no matching across layers. It also repre-
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sents an alternative approach to the method presented by Turkington et al. (1991). This

method obtains solutions for ISWs in a smooth background stratification but substitutes

a variational problem for the direct problem solved here. To reproduce a similar layered

structure to Fructus & Grue (2004) the profile of the stratification (expressed through

buoyancy frequency N(Y ), where Y is a mass coordinate) is smoothed across layers. It

is shown that it is possible to match the results from a sharply layered stratification

acceptably well by comparing results to those provided by Fructus & Grue (2004). Other

methods for obtaining solutions describing large amplitude ISWs often have difficulty in

finding waves with small values of the Richardson number. In particular, Lamb (2002)

(the methodology of which follows that of Turkington et al. (1991)) describes several

limits which restrict the amplitude at which solutions can be found. Two of these lim-

its can be regarded as shortcomings of the model of Turkington et al. (1991) and are

worth addressing since that methodology is the main means at present of obtaining large

amplitude ISW solutions for a smooth background stratification. The limits are (i) that

solutions describing waves with Richardson number much below 0.25 cannot be found

(ii) that waves with closed streamlines which lead to a stable wave cannot be found. In

the numerical scheme presented here the Richardson number is not a limiting factor and

ISW solutions are found with minimum Richardson numbers in the pycnocline as low as

0.062. In particular waves with Richardson number well below 0.25 are straightforwardly

computed, as documented in section 3. Although representing a theoretical steady state,

they are not expected to be stable if they are evolved in time, as it is known that large

waves with small Richardson number can exhibit a Kelvin-Helmholtz type instability as

documented experimentally by Fructus et al. (2009).

Previous authors have suggested closed streamlines may occur when the buoyancy

frequency is non-zero at the top/bottom of the domain for a wave of depression/elevation
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(Brown & Christie 1998; Fructus & Grue 2004). Such methods however, are expected to

be unstable since density is unstably stratified in the closed streamline region. A new

approach is proposed here for obtaining the density (or buoyancy) in areas in which

closed streamlines occur, and where no large scale recirculation exists in the steady state

flow. The new solutions presented suppose instead that a region of the flow is essentially

stagnant in the frame of reference moving with the wave. The area of the stagnant region

simply increases as the amplitude of the wave increases.

Lamb (2002) also comments that a conjugate flow limit exists in which waves become

flat at the centre and longer as wave amplitude increases (Benjamin 1966; Lamb &

Wan 1998). This is also observed in the solutions presented here. Note that this is not

a shortcoming of the method presented by Turkington et al. (1991), or the numerical

scheme presented here as waves can continue to be found even as they flatten in the

centre. As the wave amplitude increases a set of solutions is obtained for which the front

and back of the wave become further apart and the two fronts move like two smooth

bores. This phenomena has been noted previously in the literature (for example see

Lamb & Wan (1998)), and is a real physical limitation of the system.

2. Description of the methodology

A computational domain is chosen so that a wave is centred in the domain pictured

in figure 1. The domain is periodic in the horizontal direction x and of length 2π. This

ensures that the use of fast Fourier transforms is possible in x. In the vertical direction

y, the flow is bounded between a rigid free-slip horizontal floor at y = 0 and a rigid

free-slip lid at y = Ly. In the vertical direction either Fourier sine or cosine transforms

are used to represent fields depending on whether a given field is zero at the domain

edges, in which case sines are used, or its derivative is zero, in which case cosines are
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Figure 1. Schematic diagram showing the computational domain, in a frame of reference fol-

lowing a wave at a calculated wave speed c. The diagram shows the generic path of a streamline

in this frame. The streamline has a deflection in the centre of the domain due to the wave and

has an undisturbed height upstream and downstream of the wave.

used. The domain is set up by specifying the domain aspect ratio which is then used to

set Ly (since the domain length in the x direction is fixed at 2π). Using a small aspect

ratio (Ly/2π = 0.05 throughout the paper) ensures that the domain is long compared

to the length of the waves. Although no non-dimensionalisation is performed it is clear

that many flows may be in some sense similar. In particular, the domain height can be

rescaled so that any flow with a layered structure in which the layers occur at the same

relative positions, but in a different overall depth, can be considered as similar. Likewise

time can be rescaled so that any one value of the buoyancy frequency N2 can be rescaled

so that N2 = 1 and the flow will remain similar. Commonly this is taken so that either an

average or a maximum value of N2 is set to one. In the following sections, when dealing

with a layered stratification, stratifications are considered in which the middle layer (or

top layer for a two layer stratification) has N2 = 1. Through a rescaling of time, results

for these particular stratifications are applicable to a wider class of stratifications.

The relevant equations used to model the flow are the inviscid, incompressible Oberbeck–
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Boussinesq equations in two dimensions:

ρ0 (ut + u.∇u) = −∇p− ρgj, (2.1)

ρt + u.∇ρ = 0, (2.2)

∇.u = 0, (2.3)

where ρ0 is a convenient constant reference density, u = (u, v) is the fluid velocity vector,

t denotes time, ∇ = (∂/∂x, ∂/∂y) is the gradient operator, p is the fluid pressure, ρ is

the fluid density, g the gravitational acceleration constant and j the vertical unit vector.

Introducing a buoyancy variable such that b = −g(ρ− ρ0)/ρ0, and re-scaling pressure in

a suitable way transforms (2.1)-(2.3) to equations which only involve buoyancy directly

and not density

ut + u.∇u = −∇p+ bj, (2.4)

bt + u.∇b = 0, (2.5)

∇.u = 0. (2.6)

Note that the computational domain is chosen so that in a frame of reference that moves

at the wave speed c, streamlines are generically of the form shown in figure 1. That is

they have a point on the right hand edge of the domain which has zero displacement

height (defined as y = Y ). This, along with ensuring that streamlines approach the

edges of the domain with zero gradient, ensures that the wave is truly solitary and is

unaffected by interactions with identical waves in the periodic boxes in front and behind

the periodic domain being considered. Such a scheme clearly relies on being able to draw

a streamline from any point within the domain to the upstream edge of the domain. This

is problematic in cases where closed streamlines are present in the flow and indeed such

flows are known to be relevant to large amplitude ISWs (Grue et al. 2000; Carr et al.
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2008). A new procedure for dealing with closed streamlines will be discussed in section

2.1 below.

A streamfunction ψ(x, y) in the fixed frame is introduced, such that in a fixed frame

v = ψx and u = −ψy. Furthermore, a streamfunction ψ̃(x, y) in the frame moving with

the wave speed c is introduced. The fixed and moving frame streamfunctions are related

by

ψ̃(x, y) = ψ(x, y) + cy. (2.7)

It follows that ũ = u− c and ṽ = v. For flows with no closed streamlines in the moving

frame it is then possible to write

ψ̃(π, Y ) = ψ̃(x, y), (2.8)

where Y denotes the height of the streamline through the point (x, y) at the upstream

(right-hand) edge of the domain. Re-writing (2.8) and utilising (2.7) gives

ψ(π, Y ) + cY = ψ(x, y) + cy,

= ψ(x, y) + c(Y − η), (2.9)

where η(x, y) = Y − y is the streamline displacement at any general point in the domain

(η is defined to be positive for downwards displacements). Note that ψ may be chosen so

that ψ(π, Y ) = 0 since in the stationary frame velocities far from the centre of the wave

are zero. Therefore from (2.9) it can be deduced that

η(x, y) =
ψ(x, y)

c
. (2.10)

Reversing this logic a height Y can be defined for any point (x, y) in the domain such

that the streamline through that point reaches a height Y at the upstream domain edge.

Therefore it follows that

Y = y + η = y +
ψ(x, y)

c
. (2.11)
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This is useful in that, if a quantity A(x, y) is materially conserved, then the value of that

quantity can be found throughout the domain simply from the value at the domain edge:

A(x, y) = A(π, Y ). Since the values of all fields reduce to their background states at the

domain edge (i.e. velocities are zero, the density takes background values and pressure is

hydrostatic), this presents a useful method to simplify the problem of finding field values

throughout the domain.

This model can be generalised to include the effects of a net shear across the water

column. A profile of horizontal velocity (and hence streamfunction) can be specified at

the domain edge. This would ensure that the background has some profile of horizontal

velocity to describe the shear far away from the wave. Then the difference in perturbation

streamfunction values between the top and bottom of the domain specifies a net shear

across the domain. In this paper no consideration is given to this problem. A fuller

exploration of solutions with a background shear is left as the subject of future work (see

also Stastna & Lamb (2002); Lamb (2003)).

Expressing (2.4)-(2.6) in terms of the streamfunction in the moving frame ψ̃(x, y), a

steady flow in the moving frame must satisfy

J(ψ̃, u) = −px, (2.12)

J(ψ̃, v) = −py + b, (2.13)

J(ψ̃, b) = 0, (2.14)

where J(A,B) = AxBy − AyBx denotes the Jacobian. Note that at the domain edge

(2.12) and (2.13) reduce to p = p̄(Y ) and p̄Y = b̄(Y ) respectively, where barred variables

denote the background (undisturbed) buoyancy and pressure. Buoyancy frequency N(Y )

is introduced and defined by

N2(Y ) = b̄Y = − g

ρ0

∂ρ̄

∂Y
. (2.15)
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The condition that a field A(x, y) is materially conserved, (ũ.∇)A = 0, simply reduces

to the condition that J(ψ̃, A) = 0 in this notation. It can be seen immediately from (2.14)

that buoyancy is a materially conserved field. Another field having this property is the

Bernoulli pressure P (x, y), defined as

P = p+
1

2
(u− c)2 +

1

2
v2 − 1

2
c2 − yb. (2.16)

The procedure outlined by Yih (1960) and Grue et al. (2000) can be followed to obtain

an equation of Helmholtz form for vorticity (the equivalent of equation (10) in Yih (1960),

equation (2.13) in Benjamin (1966) or equation (3.1) in Grue et al. (2000)), namely

ζ = ∇2ψ =
dP

dψ̃
+ y

db

dψ̃
. (2.17)

This is a slightly simplified version of the Dubreil-Jacotin–Long equation (Dubreil-Jacotin

1932; Long 1953). Since both P and b are conserved along streamlines it is possible to

use the domain edge values to evaluate the derivatives in (2.17), so that

dP

dψ̃
=

dP̄

dψ̃
=

1

c
P̄Y , and,

db

dψ̃
=

db̄

dψ̃
=

1

c
b̄Y =

N2(Y )

c
, (2.18)

by use of (2.15) and noting that dψ̃/dY = c since from (2.7) and (2.11) ψ̃ = cY through-

out the domain. Expanding the Bernoulli pressure derivative using (2.16) gives

dP̄

dψ̃
=

1

c

d

dY

(
p̄− Y b̄

)
= −1

c
Y b̄Y = −Y

c
N2(Y ), (2.19)

recalling p̄Y = b̄. Therefore (2.17) can be written as

ζ = (y − Y )
N2(Y )

c
. (2.20)

Finally, using (2.11) gives

ζ = ∇2ψ = −N
2(Y )

c2
ψ. (2.21)

Note that (2.21) involves N2(Y ) and not simply N2(y), making the equation explicitly

nonlinear since Y itself depends on ψ. Equation (2.21) has been widely used in the
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context of ISWs (Davis & Acrivos 1967; Lamb & Wan 1998; Brown & Christie 1998;

Lamb 2002). The procedure for obtaining the fully nonlinear solutions to this equation

is given in section 2.2, while details of the linear and weakly nonlinear solutions to the

problem are given in appendix A.

2.1. Closed streamline regions

It is known that in domains where the value of N2 does not go to zero at either the top

or the bottom of the domain (for waves of depression or elevation respectively) closed

streamlines can occur (Brown & Christie 1998; Fructus & Grue 2004). This immediately

presents a problem for the above method, since in a closed streamline region the height

Y defined by Y = y + ψ/c cannot be interpreted as an actual streamline height at the

upstream edge of the domain. Instead if the definition of Y is extended to be the notional

height of the streamline upstream, then it is possible to continue. For closed streamlines

the height Y defined in this way simply lies outside the domain [0, Ly]. It is necessary

therefore to consider how the values of N2(Y ) and b̄(Y ) should be extended to allow for

values outside the domain. Fructus & Grue (2004) have previously considered waves of

depression, while Brown & Christie (1998) have considered both waves of depression and

elevation. Both sets of authors allowed the function for N2(Y ), (or equivalently F ′(ψ) in

Brown & Christie (1998)) to be continued by simply extending the domain of definition

of the function but keeping the same functional form (an idea that goes back to Davis

& Acrivos (1967)). In a region of constant N2 as in Fructus & Grue (2004), this would

correspond to

N2(Y ) = N2(Ly), for Y > Ly. (2.22)

Such a definition however, leads to an area of the flow containing a buoyancy field that is

statically unstable (both Brown & Christie (1998) and Fructus & Grue (2004) note this).
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A flow defined in this way cannot be stable and therefore solutions containing regions

of closed streamlines of this sort cannot represent realistic steady state descriptions of

ISWs.

The subject of recirculating vortex cores in ISWs has been considered in the weakly

nonlinear regime by Derzho & Grimshaw (1997); Aigner et al. (1999) and in a more

unusual flow regime by Derzho & Grimshaw (2002). Each of these consider a constant

density recirculating core of fluid and Derzho & Grimshaw (1997) make a convincing

argument for why this must in fact be the only stable configuration. They also refer to

the results of Grimshaw (1969), which are analogous to the Batchelor-Prandtl theorem

but for a fluid with non-constant density. Grimshaw (1969) argues that in the presence of

a small amount of diffusion (both of momentum and density in the form of heat or salinity

diffusion) then a two dimensional flow with nested streamlines must tend to a constant

density and vorticity. Both values of buoyancy and vorticity must then be determined by

the boundary of the closed region since equation (2.21) is not strictly valid in this region.

This would appear to settle any argument as to the structure of a closed recirculating

core in an ISW. Care should be taken applying this theory though since it requires that

there be sufficient time for diffusion to act, which could be problematic at the very large

Reynolds numbers characteristic of real oceanic ISWs.

As further evidence that a constant buoyancy core is the only stable configuration,

there are various observations of waves for which a constant density recirculating core

is seen. In particular the observations of Clarke et al. (1981); Doviak & Christie (1989);

Cheung & Little (1990) and Doviak et al. (1991) of atmospheric solitary waves or bores, all

describe recirculating regions with constant (or nearly constant) density which is equal,

or just greater than, that at the surface upstream. A similar picture is seen in an oceanic

setting at least for elevation waves. For example Scotti & Pineda (2004) have observed
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constant density trapped cores of fluid. Also in laboratory experiments Manasseh et al.

(1998) have observed solitary waves with trapped constant density cores, although in

this case the core could be due to the generation mechanisms used in the experiments. In

addition Grue et al. (2000) and Carr et al. (2008) observed waves with trapped cores but

no density measurements were made so it is unclear whether the density was constant

in the core in these cases. Additionally the vorticity measured in these experiments was

found to include small weaker vortices within the core, although these could be due to the

generation mechanism of the experiments, and may be transitory (transitory instabilities

of the vortex core can be long-lived, compare the constant density, non-zero vorticity

core discussed later in section 3). Constant density cores were also found in the unsteady

simulations of lock release flows in a stratified fluid presented by White & Helfrich (2008).

The conclusion of these observations leads to the contention here that a better choice

for extending the function N2(Y ) might be N2(Y ) = 0 for Y > Ly as opposed to

N2(Y ) = N2(Ly). In practice however, a sharp but continuous transition to this value is

allowed as follows

N2(Y ) = N2(Ly) exp (−((Y − Ly)/W )2), for Y > Ly, (2.23)

where W is a small adjustment length scale. The scale W is chosen so that W � Ly, in

order to minimise the area in which static instability occurs.

It then remains to determine the flow pattern within any closed streamline region.

The simplest approach to this problem is to assume the continued validity of equation

(2.21) and so obtain vorticity values directly from the values of N2(Y ) given above in

equations (2.22) and (2.23). This is the approach used in both Brown & Christie (1998)

and Fructus & Grue (2004). However as they also note equation (2.21) is not strictly

valid in this region, nevertheless, results from the use of both equation (2.22) and (2.23)

are discussed in section 3. Steady state solutions in each case are presented along with
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an examination of the stability of those solutions in unsteady numerical simulations of

equations (2.4)-(2.6). An alternative approach is to model the flow within the core using

a vorticity-streamfunction relation and match it to the flow outside the core through a

pressure continuity condition at the core boundary. Derzho & Grimshaw (1997) did this

for a linear background stratification, and recently this approach has been extended for

arbitrary stratifications (Helfrich & White 2010).

The simplest solutions possible for flow within the closed streamline region are for

the region to have constant vorticity. Since this vorticity must be set by the bounding

streamline to the closed region two possibilities present themselves, which are analogous

to the continuation of buoyancy in the argument above. Either vorticity, like N2(Y ),

can drop to zero over some small distance W , or the value of vorticity can be set by

the value of the term dP/dψ̃ from equation (2.17) at the edge of the closed streamline

region. Note that there is a jump discontinuity in the term db/dψ̃ at exactly this point

in the stratification, however taking the limit from above shows that the contribution

from this term is zero. The first of these scenarios gives essentially a zero vorticity core

of fluid and is equivalent to the previously discussed case of simply using equation (2.21)

and (2.23) to obtain a smooth transition into the core. The second option leaves open

the possibility of a rotating core with some vorticity whose value can once again be

determined from upstream conditions (since the bounding streamline will be the last to

connect upstream), in which case

ζcore =
dP̄

dψ̃
(Ly) = −

L2
yN

2(Ly)

c
, (2.24)

where ζcore denotes the constant vorticity in the closed streamline region. Note that this

prescription for ζcore does not rely on the Batchelor-Prandtl diffusion argument used

by Grimshaw (1969). This possibility is also presented and discussed in section 3 where

both steady state solutions and unsteady simulations are presented. Solutions with more
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elaborate distributions of vorticity within a constant density core are perhaps possible

but are left for future study. The argument presented in section 3 concerning the stability

of a constant vorticity core can easily be generalised to apply to a rotating core with any

(non-zero) distribution of vorticity. It should be noted once again that the observations

from experiments involving ISWs with trapped cores (Grue et al. 2000; Carr et al. 2008)

have not shown a constant or zero vorticity core but often have a region with weak smaller

vortices contained within it. Resolving this issue is the subject of further research into

the unsteady behaviour and breaking of ISWs.

2.2. Computational implementation

To compute solutions of (2.21) for a given N2(Y ) the following iterative procedure is

carried out. First a uniform computational grid is set up within the domain described

in figure 1, with nx intervals in x, and ny intervals in y. The background buoyancy field

b̄(Y ) is found by integrating the specified profile of N2(Y ) with respect to Y (b̄(0) = 0

can be used without loss of generality). The iterative solution procedure is then started

with a guess for ψ, here the weakly nonlinear solitary wave solution as outlined in Fructus

& Grue (2004) for instance (also see appendix A below). Starting at a small amplitude

A, the aim is to obtain a whole family of steady state solutions spanned by A. To that

end the wave amplitude may be defined as A = ηrms = ψrms/c, where η is the streamline

displacement (see (2.10)) and rms denotes the root-mean-square value. Defined in this

manner the amplitude contains a measure of both the vertical displacement and also

the horizontal length of a given wave. By using the wave speed cwnl from the weakly

nonlinear solution, ψ may be scaled to have initial amplitude A0. Subsequent states then

differ in amplitude by a specified δA.

There are several advantages of using the amplitude as defined in this way (A = ηrms)

as the control variable spanning the family of solutions. First, it is a global, integrated
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measure of the wave amplitude. This allows the same definition to apply to any stable

stratification without needing to impose a layered piecewise constant N2(Y ) structure.

Second, previous studies have often used wave speed c as a control variable (Fructus

& Grue 2004), or alternatively the maximum vertical displacement of a given stream-

line (Brown & Christie 1998). While these control variables are easily compared with

field observations, the approach is not ideal since (as shown below) these measures tend

to constant values as the amplitude increases, thus rendering it increasingly difficult to

distinguish between successive states in the computations. Another alternative would

be to use the available potential energy of the wave (as defined later in section 3.3) as

the control variable (following Turkington et al. (1991) and Lamb (2002) for example).

This is also an integrated measure and distinguishes well between states at large ampli-

tude. However there are problems with its use as the control variable in the numerical

implementation used here. Firstly and least importantly it distinguishes slightly more

poorly than A between states at small amplitude. Secondly the relationship between

available potential energy, streamfunction and wave speed is not a simple one. So to

determine wave speed at a given amplitude for a given streamfunction would require in

general the solution of a complicated interrelated set of equations with, for example, a

Newton-Raphson type method. This solution would be required at each iteration with

no guarantee of good convergence properties particularly for larger amplitude waves and

would considerably slow down the overall numerical solution. By contrast, when using

ηrms as the control variable, finding the correct wave speed value is simple (equation

(2.25) below). The drawback is that ηrms is not a physically intuitive amplitude measure

and a direct comparison with observational data is not straightforward.

The initial guess for ψ and c is corrected by solving (2.11) for Y , followed by (2.21)

for ζ at each point in the domain (using the previous guess for ψ in the right hand side
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of (2.21)). Inverting ∇2ψ = ζ spectrally provides an updated value for ψ, and

c =
ψrms
A

, (2.25)

provides an updated value for c. This process is then repeated, by solving (2.11), (2.21),

and (2.25) until ψ converges. In general, however ψ does not converge, and relaxation is

required. Therefore the expression ζ = rζnew+(1−r)ζold is used, where ζold is the previous

value for ζ and ζnew is obtained from ζnew = −N2(Y )ψold/c
2. The relaxation parameter

r < 1 is allowed to vary in order to speed convergence. Here r = 0.2(1−ni/nmax), where

ni represents the current number of iterations in finding a particular steady state and

nmax represents the maximum allowed number of iterations to find a state before the

code is stopped (nmax = 10000). Typically a few 10s or 100s of iterations are needed to

find a steady state. However finding the first steady state for which closed streamlines

occur (when such a solution exists) can be more difficult, requiring more iterations.

The relaxation scheme was also devised in order to overcome the convergence hurdle

represented by finding the first state with closed streamlines. Progress beyond that point

and convergence in general is more problematic without the relaxation as presented.

A solution ψ is accepted if the error, defined by the rms value of the change in ψ divided

by ψrms is less than 1× 10−7 ((ψ − ψold)rms/ψrms < 1× 10−7, with the previous value

of ψold found from ∇−2ζold). The relative change of the absolute value of the difference

|ψ−ψold|/ψmax is also monitored and found to be similarly small. Solutions obtained in

this manner have been independently verified to be steady in a numerical code solving

the unsteady equations (2.4)-(2.6).

The interpolation of N2(Y ) is performed on a grid 16 times finer than the y grid spacing

used to represent ψ. Furthermore, the values of N2 are found from cubic interpolation,

using analytical values of N2 and dN2/dY on the fine grid. This ensures a highly accurate

interpolation of N2 in (2.21). Interpolation is employed in general, so that a measured
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profile (laboratory or observational) can be used as input. For the analytic profiles of N2

described here the errors of the interpolation are of the order of machine precision.

Each of the numerical simulations is terminated when a wave amplitude is reached in

which the wave fills half the domain horizontally, as defined by the spacing between the

maximum and minimum of the vertical velocity field v. Many of the solutions in section 3

exhibit the conjugate flow limit behaviour discussed by Lamb & Wan (1998), namely the

waves exhibit a maximum vertical displacement at some amplitude and solutions beyond

this amplitude simply broaden with a flat central region (the conjugate flow).

3. Results

Using the methodology outlined above results are now presented for several different

stratifications. Stratifications yielding ISWs of depression will be the focus, as ISWs of

depression are more commonly observed in coastal oceans than ISWs of elevation (Os-

trovsky & Stepanyants 1989). However the methodology can equally well be applied to

obtain solutions to stratifications that permit ISWs of elevation. In each of the calcu-

lations presented the computational grid used is 1024 points horizontally by 128 points

vertically unless stated otherwise. The effect of changing the resolution is considered

below and it is demonstrated that this choice of resolution is sufficient for the results

presented.

3.1. Layered stratification

First solutions are presented for fluids consisting of either two or three linearly stratified

layers. This allows comparison with the results of Fructus & Grue (2004), but moreover

such flows are in themselves good models for many conditions found in the oceans.

However, it should be noted that any smooth profile of N2(Y ) can be used as input for

the numerical scheme. A sharply stratified layered profile of N2(Y ) can be generalised
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Figure 2. Plots of the profiles of N2 (left) and b (right) for a layered stratified fluid with

smoothing as defined in equation (3.1). The parameters used are N2
0 = 0.25, N2

1 = 1, N2
2 = 0.04,

Y1/Ly = 0.6, and Y2/Ly = 0.8 with a smoothing distance δ = 0.015625, and a domain aspect

ratio Ly/2π = 0.05.

to allow for a degree of smoothing, this is accomplished by setting

N2(Y ) =

(
N2

0 +N2
2

2

)
+

(
N2

1 −N2
0

2

)
erf

(
Y − Y1
δ

)
+

(
N2

2 −N2
1

2

)
erf

(
Y − Y2
δ

)
, (3.1)

where erf denotes the error function, N2
k are the squared buoyancy frequencies in each

of the three layers as in Fructus & Grue (2004) (with layers k = 0, 1, 2 being equivalent

to layers 3,2,1 in Fructus & Grue (2004) respectively) and δ represents a distance over

which the profile is smoothed using the above error function formulation. The layers are

therefore numbered from the bottom upwards. This results in a profile which in general

looks like that given in figure 2, where both buoyancy (obtained by integrating N2) and

buoyancy frequency squared are smooth. The lower layer has stratification given by N0,

the middle layer by N1, and the top layer by N2. The layer heights Y1 and Y2 mark the

bottom and top of the middle layer respectively. Smoothing can be suppressed by setting

δ to a small number well below the finest grid size. However, convergence of the solution
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Figure 3. Plots of scaled wave speed c/c0 − 1 versus amplitude A. (i) Shows the effect of

changing the resolution of the computation while keeping the smoothing distance δ/Ly = 2/128

fixed. This smoothing length corresponds to two grid lengths in the standard resolution. (ii)

Shows the effect of changing the resolution (as in plot (i)) where the smoothing is set always to

be δ = 24y, that is, two grid lengths of the given resolution. In each case the symbols correspond

to ◦ = (512× 64), 4 = (1024× 128) and × = (2048× 256) in resolution. The underlying setup

is three layers with Y1/Ly = 0.81, Y2/Ly = 0.86 and N2
0 = N2

2 = 0, N2
1 = 1. In both plots the

grey regions are zoomed regions from the main plot to better see the differences between each

of the curves.

method then becomes problematic in some cases. In practice, a value of delta δ = 24y,

(or two y grid lengths) is taken. The effect of varying δ is discussed below.

The benefit of considering smooth profiles of N2(Y ) is that the solutions obtained

in this way are smoother vertically and therefore exhibit negligible fringes in a spectral

approach to inverting (2.21). This smoothness is also useful for accurately solving the

weakly nonlinear problem (see appendix A), here used as a first guess (as described in

section 2.2).

Figure 3 shows the sensitivity of the wave speed to the resolution of the computation,

in a typical case with Y1/Ly = 0.81, Y2/Ly = 0.86 and N2
0 = N2

2 = 0, N2
1 = 1 (two

neutral layers bounding a linearly stratified one). The wave speeds shown in figure 3
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have been non-dimensionalised by dividing through by the linear long wave speed c0 (the

wave speed for linear waves with wavenumber zero – see appendix A for more details

of how this is obtained). In plot (i) the effect of keeping a fixed smoothing distance, in

this case δ/Ly = 2/128 while varying the resolution is considered. This smoothing length

corresponds to two grid lengths in the standard resolution. This test measures how well

the computations converge to the solution for a given smoothed profile. Results are shown

for the resolutions ◦ = (512 × 64), 4 = (1024 × 128) and × = (2048 × 256). It is found

that there is very little difference between any of the resolutions and in particular that

there is no benefit in moving from a resolution of (1024×128) to (2048×256) since there

are no significant differences in the wave speeds when increasing resolution. In plot (ii),

the effect of changing the resolution while this time allowing the smoothing distance for

the profile to change in step with the resolution is examined. The smoothing distance is

set to be δ = 24y, where 4y is the grid length of a given resolution. This test illustrates

how the results for smoothed profiles converge to those for a profile that has jumps in N2

in the limit of infinite resolution. Plot (ii) uses the same resolutions as in plot (i). As the

resolution increases the curves get closer together, though now more slowly than in plot

(i). Nevertheless a convergent limit appears to exist. For practical reasons the resolution

(1024× 128) is used in subsequent calculations.

In figure 4 results for a three layer stratification with N2
0 = N2

2 = 0, N2
1 = 1, and layer

boundaries at the non-dimensional heights Y1/Ly = 0.81 and Y2/Ly = 0.94 are shown.

A standard smoothing distance of two grid lengths is used in the profile of N2(Y ). This

stratification compares with figure 6 of Fructus & Grue (2004). A wave with amplitude

A = 0.011 is shown, which gives a/(Ly − Y1) = 1.17, where a is the maximum deflection

of the streamline which coincides with the height Y1 upstream. This wave therefore

closely matches the wave shown in Fructus & Grue (2004) in amplitude. The horizontal
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Figure 4. (i) The streamfunction ψ̃ and (ii) scaled vorticity ζ/(2N̂), for a three layer wave with

layer height Y1/Ly = 0.81 and Y2/Ly = 0.94, and N2
0 = N2

2 = 0, N2
1 = 1. The wave shown

has amplitude A = 0.011, and is matched in setup and amplitude to that shown in figure 6 of

Fructus & Grue (2004). The bold lines are streamlines coinciding with the heights Y1/Ly and

Y2/Ly at the domain edge, while dashed lines mark the layer heights Y1/Ly and Y2/Ly.

length scale is non-dimensionalised in the same manner as in figure 6 of Fructus & Grue

(2004), and the functions are plotted in the frame moving with the wave. In plot (i)

contours of the streamfunction ψ̃ in the moving frame are shown. The contour levels

of streamfunction plotted are similar to those shown in Fructus & Grue (2004) and

the layer heights (Y1/Ly, Y2/Ly) are plotted in bold. In plot (ii) ζ/(2N̂) is shown for

the same wave as in plot (i). The value of N̂ is defined as in Fructus & Grue (2004),

namely N̂ = Nk
√

1− u/c where Nk is the value of N for a given layer (k = 0, 1, 2)

at the upstream domain edge. It should be noted that Fructus & Grue (2004) defined

streamfunction in the opposite sense to the definition given in section 2 and so obtain

positive vorticity values while the values given here are negative. Both approaches are

however consistent. The agreement between the plots shown in figure 4 and figure 6 of

Fructus & Grue (2004) is very good.

Finally for this stratification, plots of the Richardson number are presented. The
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Richardson number may be defined as

Ri =
by
ζ2
. (3.2)

It represents the balance of stabilising stratification to destabilising shear forces. To

obtain the Richardson number plots, a much finer resolution was used in the simulations,

with a grid set at (2048×512) points and with a correspondingly small smoothing distance

set at 24y. This extra resolution was needed in order to resolve the area covered by

Ri < 0.25 as this is a small region within the wave. In figure 5(i) a contour plot of the

Richardson number is given, with the outer contour showing Ri = 0.25. It is well known

that for Ri > 0.25 inviscid parallel shear flows must be stable to small disturbances

and for Ri < 0.25 the flow is potentially unstable (Miles 1961). The wave shown is

the largest calculated for this stratification and has amplitude A = 4.4 × 10−2, which

is equivalent to an amplitude a/(Ly − Y1) = 1.77. Figure 5 (i) demonstrates that the

minimum values of Richardson number occur near the top edge of the wave’s pycnocline.

This is in agreement with the computations presented in Fructus et al. (2009). The

minimum Richardson number computed is Ri = 0.062. This is well below the 0.25 level

which has proved difficult for other numerical methods to go beyond.

In figure 5(ii) cross-sections of Richardson number through the centre of the wave are

given for waves of different amplitudes as indicated. These curves demonstrate that as

amplitude increases the minimum Richardson number gets smaller, and the low Richard-

son number region moves down in the domain following the region where streamlines

reach their maximum excursion.

A further comparison with the results of Fructus & Grue (2004) is made in figure 6,

showing results for a stratification with layer boundaries at the non-dimensional heights

Y1/Ly = 0.81 and Y2/Ly = 0.94. Here, N0 = 0 and N1 = 1 are fixed, while N2 takes

values N2 =0, 0.5, 0.7, 0.87, 1.0 as indicated. The smoothing distance used in the profile
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Figure 5. Plots of the Richardson number defined as in the main text. The stratification in

both plots is such that Y1/Ly = 0.81 and Y2/Ly = 0.94, N2
0 = N2

2 = 0, N2
1 = 1. (i) Shows

contours of Ri for a wave with amplitude A = 4.4×10−2 the outer contour is for Ri = 0.25, and

six contours are presented, evenly spaced in Ri down to the contour Ri = 0.065. The outer two

(in some regions three) contours are almost indistinguishable since Ri changes sharply at the

edge of the wave. (ii) Shows Ri along cross-sections through the middle (x = 0) of waves with

amplitudes A = 5× 10−3 (−), 1× 10−2 (−−), 1.5× 10−2 (· · · ), 2.2× 10−2 (−·), 4.4× 10−2 (−+).

of N2(Y ) was set to be one grid length as this more closely matches the stratification

in Fructus & Grue (2004) (this sharper transition was found to be important in deter-

mining pycnocline thickness, shown in plot (ii) of figure 6). In order to reproduce the

curves given in Fructus & Grue (2004), the extension for N2(Y ) for closed streamlines

outlined in (2.22) has been used. The current figure can be compared with figure 9(c) of

Fructus & Grue (2004). Plot (i) of figure 6 shows the non-dimensionalised wave speed

against the measure of amplitude used by Fructus & Grue (2004), namely a/(Ly − Y1),

where a is once again the maximum deflection of the streamline which coincides with the

height Y1 upstream. The wave speed in plot(i) has been non-dimensionalised by dividing

through by the linear long wave speed c0. In plot (ii) the thickness of the pycnocline

(the region bounded by the streamlines traced from heights Y1 and Y2 upstream) at the

wave midpoint is shown. Once again the plot is against the amplitude measure preferred
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Figure 6. (i) Non-dimensionalised wave speed versus amplitude and (ii) pycnocline thickness

at the midpoint of the wave versus amplitude. In both plots the amplitude measure is that

used in Fructus & Grue (2004), (to compare to their figure 9(c)). The stratification is such that

Y1/Ly = 0.81 and Y2/Ly = 0.94, N2
0 = 0, N2

1 = 1. The different curves represent different values

of N2: N2 = 0(–x), 0.5(–.), 0.7(...), 0.87(- -), 1.0(–).

by Fructus & Grue (2004) and is given in order to compare to their results. Both plots

show good agreement with figure 9(c) of Fructus & Grue (2004). Very small differences

are seen in the curves and can be attributed to the smoothing length used in the method

presented here. Note also that the plots shown are continued for larger amplitudes than

those given by Fructus & Grue (2004).

Next the effect of using the different continuations for N2(Y ) relevant to dealing with

closed streamlines, as discussed in section 2.1 are examined. A two layered stratification

with Y1/Ly = 0.81, Y2/Ly = 0.94, N2
0 = 0 and N2

2 = N2
1 = 1 is considered. No change

in stratification occurs at Y2 but it is set so that the streamline plots produced may

be compared to figure 15 of Fructus & Grue (2004). The smoothing distance δ was set

to one grid length. The smoothing distance to the extension outside the domain W

was set to 10−9Ly. In section 2.1 three different options for the steady state solution

were considered. The first option assumes non-constant vorticity and buoyancy across

the closed streamline region, and arises from continuing N2(Y ) at a constant value,
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and using equation (2.21) to solve within the region. The other two options both assume

constant buoyancy across the closed streamline region, the first of these has zero vorticity

across this region and the second assumes constant vorticity of a value determined by

conditions at the upstream domain edge. First the new solution with a zero vorticity

core will be compared to the solution with non-constant buoyancy within the core. Then

solutions with non-zero vorticity cores will be discussed.

In figure 7 the results of the two different continuations for N2(Y ) detailed in section

2.1 are shown. In particular, plot (i) shows the streamlines resulting from using (2.23)

while plot (ii) shows those resulting from using (2.22). Plot (ii) corresponds to the larger

amplitude wave plotted by Fructus & Grue (2004) in their figure 15. Both plots (i) and

(ii) are generated using equal intervals for the levels of the streamfunction. The lack of

closed streamlines in plot (i) is therefore a real feature of the flow. Effectively the core

region of the flow is stagnant in the moving frame with a constant density and zero

vorticity.

The differences between the two approaches are further outlined in figure 8. In figure

8 (i) the non-dimensionalised wave speed is plotted as a function of wave amplitude A

and in plot (ii) the maximum value of the non-dimensionalised horizontal velocity u/c is

plotted, again as a function of amplitude. In both plots the approach outlined in (2.23)

is shown with a solid line, while that outlined in (2.22) is shown with a dashed line. The

background stratification for the waves computed in figure 8 is the same as in figure 7.

Plot (i) shows that the effect of the new approach is that the wave speed c is less than in

the previous model when closed streamlines (or now more accurately stagnant patches)

start to appear within the flow. Plot (ii) also demonstrates that while the dimensionless

horizontal velocity keeps increasing for the approach previously used (equation 2.22), the

new approach shows that u/c is sharply bounded by unity, so that the horizontal velocity
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Figure 7. Plots of the streamlines for a wave with amplitude A = 0.009, with equal intervals of

2× 10−4 chosen for the levels of the streamfunction. Only the top half of the domain is shown.

The underlying stratification for the computations is Y1/Ly = 0.81, Y2/Ly = 0.94, and N2
0 = 0,

with N2
2 = N2

1 = 1, giving a two layered structure. Both layer heights are plotted although the

upper layer height does not correspond to a change in stratification. The layer heights Y1/Ly and

Y2/Ly are plotted with dashed lines. (i) Is a calculation performed with the procedure outlined

by (2.23), while (ii) was obtained by use of (2.22). (ii) Corresponds to the larger amplitude case

plotted by Fructus & Grue (2004) in their figure 15.

never exceeds the wave speed. Note that if u/c > 1 the flow will be convectively unstable

and therefore the steady state predicted from (2.21) is not in fact realisable. Both Brown

& Christie (1998) and Fructus & Grue (2004) acknowledge this contradiction in their

work.

Figure 9 shows the streamlines associated with a wave having a constant density and

constant non-zero vorticity core. This wave has the same amplitude as those in figure

7, and is found using the methodology discussed in section 2.1. The constant vorticity

in the core is found using equation (2.24). The extra closed streamlines seen in the core

demonstrate that for this wave the re-circulating flow is much stronger than in the waves

seen in figure 7.
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Figure 8. (i) Shows the non-dimensional wave speed versus the amplitude of the wave A. (ii)

Shows the maximum dimensionless horizontal velocity u/c versus A. In both plots the approach

outlined in (2.23) having a uniform density core is shown by a solid line, while that outlined in

(2.22) is shown by a dashed line. The background stratification for these waves is Y1/Ly = 0.81,

Y2/Ly = 0.94, and N2
0 = 0, with N2

2 = N2
1 = 1, as in figure 7 above.
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Figure 9. Plots of the streamlines for a wave with amplitude A = 0.009, with equal intervals of

2× 10−4 chosen for the levels of the streamfunction. Only the top half of the domain is shown.

The underlying stratification and line styles are as for figure 7. This wave has a constant density

but non-zero constant vorticity core as discussed in section 2.1.

3.2. Flow evolution

In figures 10, 11 and 12 (and in the supplementary movies) simulations of the time

evolution of the states plotted in figures 7 (i), (ii) and 9 are presented respectively. The

waves shown in each of these figures propagate from left to right. The time evolution
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is computed by solving the vorticity formulation of (2.4)-(2.6), including a weak ∇6

hyperdiffusion on vorticity (with diffusion coefficient 512−6) in order to stabilise the

solution. The unsteady numerical simulations were carried out using CLAM, an accurate

numerical method using contour advection (Dritschel & Ambaum 1997) to evolve the

buoyancy field conservatively. Details of the numerical method used in these figures may

be found in Dritschel & Fontane (2010). Further analysis of the unsteady behaviour of

such ISWs is the subject of current work. Figures 10, 11 and 12 (movies 1, 2 and 3

respectively) contain sequences of plots of the vorticity distribution within the wave.

The consequences of the three different approaches outlined in section 2.1 for dealing

with flows in which closed streamlines may occur are apparent in the first frame. The

new approach (figure 10) has a region of zero vorticity in the top part of the upper layer

where the flow is stagnant. The previous approach (figure 11) has non-zero vorticity

throughout the closed streamline region. The approach leading to a rotating core of

constant buoyancy and constant non-zero vorticity (figure 12) has a larger core region

with a comparatively large value of vorticity throughout. Figures 10, 11 and 12 all show

weak fringing of positive vorticity around the edges of the pycnocline where there are

sharp gradients of vorticity and buoyancy. The fringing is due to sharp gradients in

vorticity and buoyancy around the edges of the pycnocline along with the diffusion of

vorticity required to stabilise the numerical scheme. If a smoother underlying profile of the

background buoyancy is used the appearance of these fringes can be reduced. Nevertheless

it is evident that the new approach with zero vorticity in the closed streamline region

(figure 10) is substantially more stable than the approach used previously by Brown &

Christie (1998) and Fructus & Grue (2004) (figure 11), and the approach with a constant

vorticity rotating core (figure 12). In particular the case with non-constant buoyancy

throughout the closed streamline region (figure 11), which was noticed previously to be



30 S. E. King, M. Carr, and D. G. Dritschel

statically unstable is indeed subject to an instability and mixes the zone where closed

streamlines were predicted. In the new approach (figure 10) the stagnant region remains

stable and stagnant despite the appearance of fringes of positive vorticity arising from

the sharp gradients in buoyancy around the edge of the closed streamline region. The

rotating core solution can also be seen to be unsteady (figure 12). A disturbance to the

flow starts at the top left of the wave and is subsequently advected around the central

vortex core. This modifies the structure of the original wave and causes it to slow slightly.

To better understand this flow adjustment, a schematic diagram of the streamline

pattern for any wave with a rotating core of fluid is illustrated in figure 13. Stable and

unstable streamline configurations appear as marked in figure 13. At the front of the

wave fluid particles accelerate away from the wall, this is a stable process in the sense

that two particles initially near each other will remain so. At the back of the wave

where streamlines impinge on the wall particles decelerate towards the wall which is an

unstable process. Here particles may be swept either to the left or to the right, depending

sensitively on their exact position. This is analogous to the instability occurring in two

dimensional dipoles (Dritschel 1995). The similarity can be seen by simply considering

the rigid boundary of this problem as the mid plane of the problem in Dritschel (1995)

and reflecting the streamlines about it.

3.3. Wave properties

Two sets of steady state wave solutions are compared next. This is done in order to

elicit the effect of simple changes to one of the parameters in a layered background

stratification. To see the result of such changes various characteristic quantities of the

flow (such as wave speed or energy) are plotted as a function of wave amplitude. The

results presented are for a three layer background stratification. The parameter values

are summarised in tables 1 and 2. In the first set of solutions (table 1), the level of the
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Figure 10. Sequence showing the nonlinear evolution of the vorticity field ζ for the steady state

pictured in figure 7 (i). Each successive plot is at a later time (times t = 0, 25, 50, 75, 100, time

increasing downwards), with the total time of integration being approximately equivalent to the

time the wave would take to move one and a half times through the full computational domain.

The axes labels are omitted for clarity, however the region of the domain shown is (x, y) ∈

[−0.5, 0.5]× [0.5, 1.0]. See also movie 1.
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Figure 11. As in figure 10 but starting from the steady state shown in figure 7 (ii). See also

movie 2.

pycnocline is varied from just below three-quarters of the domain height to near the

top of the domain. The pycnocline thickness remains unvaried at 0.05Ly. That is, the
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Figure 12. As in figure 10 but starting from the steady state shown in figure 9. See also

movie 3.

distance Y2 − Y1 remains fixed at 0.05Ly, while the heights Y1 and Y2 are allowed to

vary from just below three-quarters of the domain height to near the top of the domain.
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StableUnstable

Figure 13. Schematic diagram showing the structure of streamlines for a steady state solution

with a rotating core of fluid in a region of closed streamlines. The stable and unstable stream-

line configurations are marked on the diagram. This diagram can also be compared with the

streamlines shown in figure 9.

The stratification in this set has the buoyancy constant (N2 = 0) in the upper and lower

layers and N2 = 1 within the pycnocline. For the second set of solutions (table 2), the

pycnocline is kept at a fixed height and location. The value of N2 is fixed at 0 in the

lower layer, at 1 within the pycnocline and systematically increased in the top layer. In

all of the computations the smoothing length for the profile of N2(Y ) was set to two grid

lengths: δ = 2Ly/128. The smoothing distance W to the continuation of N2(Y ) outside

the domain was taken to be 10−9Ly.

Various properties of these solutions are plotted in figures 14 to 19. Figure 14 shows

(i) the non-dimensional wave speed against A and (ii) the measure of amplitude used by

various other authors (namely a/(Ly − Y1), where a is the maximum deflection of the

streamline with height Y1 upstream) as a function of wave amplitude A for the cases in

table 1. Figure 15 shows the same quantities for the cases in table 2. In both sets of cases

the quantities considered all tend to constant values at large wave amplitudes. Figure 14

shows that the effect of raising the pycnocline height is to (i) increase the wave speed and

to (ii) increase the vertical excursion of the streamlines. Likewise figure 15 shows that



The steady state form of large amplitude internal solitary waves 35

Layer heights Y1/Ly, Y2/Ly Layer-wise N values Symbol used in plots

0.7, 0.75 0, 1, 0 (–)

0.75, 0.8 0, 1, 0 (- -)

0.8, 0.85 0, 1, 0 (- -)

0.85, 0.9 0, 1, 0 (...)

0.9, 0.95 0, 1, 0 (– ·)

Table 1. Values of the parameters used in the first set of steady state solutions. These runs

simply vary the height of the pycnocline up and down.

Layer heights Y1/Ly, Y2/Ly Layer-wise N values Symbol used in plots

0.81, 0.86 0, 1, 0.25 (–)

0.81, 0.86 0, 1, 0.5 (- -)

0.81, 0.86 0, 1, 0.75 (- -)

0.81, 0.86 0, 1, 1 (...)

0.81, 0.86 0, 1, 1.25 (– ·)

Table 2. Values of the parameters used in the second set of steady state solutions. These runs

keep the pycnocline height fixed and vary the value of N in the top layer.

the effect of strengthening the stratification in the top layer is to (i) increase the wave

speed while (ii) no monotonic change is seen in the vertical excursion of the streamlines.

In both cases the streamline deflection shown in figures 14 (ii), and 15 (ii) tends to a

constant value at large amplitude which is suggestive that the conjugate flow limit has

been reached.

Following Lamb & Nguyen (2009) the energy associated with the wave can be defined

as the sum of the kinetic energy and the available potential energy. The pseudoenergy

defined in this way reflects that not all of the potential energy in the system is available
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Figure 14. (i) Non-dimensionalised wave speed versus the amplitude of the wave A. (ii) Shows

a typical measure of amplitude used in many previous studies (a/(Ly − Y1), where a is the

maximum deflection of the streamline which coincides with the height Y1 upstream) plotted

against the current amplitude measure A. The plot is for parameter values and line styles as

given in table 1.
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Figure 15. (i) Non-dimensionalised wave speed against the amplitude of the wave A. (ii) Shows

a typical measure of amplitude used in many previous studies (a/(Ly − Y1), where a is the

maximum deflection of the streamline which coincides with the height Y1 upstream) plotted

against the current amplitude measure A. The plot is for parameter values and line styles as

given in table 2.

to be converted into kinetic energy. The expression for pseudoenergy is

E =

∫∫
D

(
1

2

(
u2 + v2

)
+ Eape

)
dxdy, (3.3)

where Eape is the available potential energy density and D represents the domain over
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which the solution is defined. Similarly integrals of the kinetic and available potential

energy may be defined respectively by

Ek =

∫∫
D

1

2

(
u2 + v2

)
dxdy, and Eape =

∫∫
D
Eapedxdy. (3.4)

Using the method for obtaining available potential energy outlined in Lamb (2008) gives

Eape(x, y) =

∫ Y (x,y)

y

(b(x, y)− b̄(s))ds. (3.5)

Figure 16(i) shows the total energy associated with the wave as a function of wave

amplitude, using the definitions in equations (3.3) and (3.5), while figure 16(ii) shows

the ratio of kinetic energy to available potential energy using equations (3.4) and (3.5).

Both plots (i) and (ii) in figure 16 are for the cases in table 1. Figure 17 shows the

corresponding results for the cases in table 2. From figure 16 it can be seen that simply

moving the pycnocline up has little effect on the total energy in the wave; it does however

change the balance of kinetic and available potential energy. As the pycnocline moves up

the wave contains more kinetic energy, which was previously found by Lamb & Nguyen

(2009). In figure 17 it can be seen that as the stratification in the top layer strengthens

the energy content of the wave increases, particularly the kinetic energy content. In all

cases the ratio of kinetic energy to available potential energy is found to be greater than

unity as found previously by Turkington et al. (1991) and Lamb & Nguyen (2009).

Figure 18(i) shows the circulation Γ associated with a given wave, defined as

Γ =

∫∫
D
ζdxdy, (3.6)

versus A, while figure 18(ii) shows the integrated buoyancy anomaly Q, defined as

Q =

∫∫
D

(
b(x, y)− b̄(y)

)
dxdy, (3.7)

versus A. Both quantities are shown for the cases in table 1. The circulation, like the

energy, is an invariant of the flow. It becomes increasingly large and negative as the wave



38 S. E. King, M. Carr, and D. G. Dritschel

0.00 0.01 0.02 0.03 0.04 0.05 0.06
0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0.0009

0.00 0.01 0.02 0.03 0.04 0.05 0.06
1.00

1.05

1.10

1.15

1.20

1.25

1.30

A

E

A

Ek/Eape

(i) (ii)

Figure 16. (i) The total energy E (kinetic plus available potential energy, see equation (3.3))

contained in the wave plotted as a function of wave amplitude A. (ii) The ratio of kinetic energy

to available potential energy Ek/Eape versus A. The parameters and line styles are given in table

1.
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Figure 17. (i) The total energy E and (ii) the ratio of kinetic energy to available potential

energy Ek/Eape versus A for the set of cases given in table 2.

amplitude increases. The buoyancy anomaly is proportional to the mass contained within

the wave and this increases in a similar manner to the total energy (see figure 16) as the

wave amplitude increases.

Using the integrated quantities E , Q and Γ, with the wave speed c, it is possible to

construct length scales characterising the waves. These length scales may be useful since

they may be evaluated for arbitrary stratification, also as they are integrated quantities

they are insensitive to the detailed structure of the wave. Therefore they may be prac-
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Figure 18. (i) Circulation Γ (see equation 3.6) and (ii) buoyancy anomaly Q (see equation

3.7) versus A. In both plots the parameters and the line styles used are given in table 1.

tically useful for observations of waves having associated measurement error. Moreover

they are constructed from integral invariants of the wave, which is commonly done in

various fluid dynamical problems to obtain characteristic length and time scales for a

given flow. Four length scales can readily be constructed, namely:

L1 =

√
2E
c

, L2 =
Q
c2
, L3 =

Γ2

Q
, L4 =

E
Q
. (3.8)

Figure 19 parts (i)-(iv), show L1 . . . L4, respectively, for the cases in table 1. It is clear

that L4 represents some vertical extent of the wave since L4 tends to a constant value

at large amplitude and is much smaller in magnitude than the other length scales. The

scale L1 depends only weakly on changes in stratification and is linear, implying it carries

much the same information as the amplitude A. The last two scales L2 and L3 increase

as the horizontal scale of the wave does. Thus they provide a measure of the length of

the wave.

3.4. A smooth ocean-like stratification

An alternative profile for N2(Y ) is now considered, of the form:

N2(Y ) = N2
0 e
α0Y/Lyerfc

(
β0

(
Y

Ly
− Y0

))
, (3.9)
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Figure 19. (i)-(iv) Length scales L1-L4 as defined in the text. Parameter values and the line

styles used for the plots are taken from table 1.

where erfc denotes the complementary error function and N2
0 is chosen so that the max-

imum value of N2 is unity. The parameters α0, β0 and Y0 are chosen so that the profile

resembles the measured ocean stratification in Stanton & Ostrovsky (1998) without any

direct reference to layer heights. The profile is shown in figure 20 and consists of a small

well mixed layer of fluid at the surface, overlying a smooth transition into a sharply strat-

ified region, below which the strength of the stratification decays towards the bottom of

the domain.

Figure 21 illustrates various fields associated with a large amplitude ISW in this strat-

ification. The wave considered has amplitude A = 0.0395 and the parameters used to set

up the background stratification using (3.9), are α0 = 3, β0 = 30 and Y0 = 0.9. In plot

(i) the vorticity ζ is shown and in plot (ii) the squared buoyancy frequency N2 is shown.
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Figure 20. Plots of both the profiles of N2(Y ) and b(Y ) for a fluid stratified according to 3.9.

The parameters used for the plot have values: α0 = 3, β0 = 30, and Y0 = 0.9, and the domain

has aspect ratio 0.05.

Both quantities exhibit the broad flat-topped nature of the wave, which is typical of large

amplitude ISWs limited by a conjugate flow (Lamb & Wan 1998). In plots (iii) and (iv)

the u and v components of the velocity field are presented respectively. In (iii) the shear

layer at the centre of the wave is evident. Finally, in (iv) the previous use made of the

distance between the global maximum and minimum of the v component of velocity to

define a length scale for the wave can be seen to be justified.

4. Summary

A new method of finding the steady state form of ISWs in a stratified fluid has been

presented. This method is significantly simpler than previous methods (Turkington et al.

1991; Fructus & Grue 2004), as it only involves the inversion of a Laplace operator in

spectral space rather than solving a variational problem or complicated integral equa-

tions. The cost of this simplicity is that the stratification needs to be smooth, that is,

N2(Y ) must be a smooth function. It has been demonstrated however that with a suitable

choice of smoothing it is possible to closely approximate a sharply layered stratification.
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Figure 21. (i) ζ (ii) N2 (iii) u − c and (iv) v for a wave with amplitude A = 0.0395, in a

background stratification given by equation (3.9), with α0 = 3, β0 = 30, and Y0 = 0.9. The

contours are solid for positive values, dashed for negative and dotted for the zero contour where

it is shown. The contours shown are (i) −0.1 → −1.0 with contour interval 0.1, (ii) 0.1 → 0.9

with contour interval 0.1 and the 0.9 contour picked out in bold, (iii) and (iv) contours are evenly

spaced working from the zero contour, with contour intervals 0.005 and 0.001 respectively.

As part of this new method, a new amplitude measure has been introduced. This mea-

sure appears to be more robust than previous measures of wave amplitude in that it

does not explicitly depend on a given background stratification and it continues to in-

crease for large amplitude waves when other commonly used amplitude measures tend

to constant values. In turn this allows a clearer discrimination between different large

amplitude waves. The new method is not limited by small Richardson numbers. Waves

with values of the Richardson number as low as 0.062 were computed. In addition, a new
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approach for dealing with flows containing closed streamlines was presented. In particu-

lar, the new approach allows for a region of constant buoyancy or equivalently density,

and zero vorticity. The region moves as a trapped, nearly stagnant core translating at

the wave speed, rather than as a recirculating core of fluid having a large region of stat-

ically unstable fluid. Waves having constant buoyancy and non-zero vorticity cores were

also considered and unsteady simulations of three different cases were presented. The

unsteady numerical simulations exhibit striking differences between a constant density

core and a non-constant density core: the latter is considerably less steady and breaks

down violently. Similarly, waves with a non-zero constant vorticity core were observed

to destabilise near the rear stagnation point of the wave. The instability is less violent

and appears to lead to an adjusted quasi-steady wave. A more thorough investigation of

the nonlinear evolution of ISWs will be the focus of further experimental and numerical

work.
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ences Research Council under its Mathematical Sciences Programme (grant number

EP/F030622/1). The helpful comments of four anonymous referees are also gratefully
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Appendix

The initial guesses for the wave speed and the streamfunction provided to the fully

nonlinear wave computations are given by weakly nonlinear KdV theory. The KdV theory

comes from an appropriate long wave - small amplitude scaling of the model equations,

and the well known sech2 form of solitary wave is obtained as the relevant solution.



44 S. E. King, M. Carr, and D. G. Dritschel

Following the solution given in Benney (1966) this gives

ψ(x, y, t) = −a(x, t)cwnlφ(y), (A 1)

where a(x, t) is a solution to the KdV equation (at + c0ax + α0aax + βaxxx = 0), cwnl is

the phase speed of the wave, and φ(y) is the solution to the linear eigenproblem for the

wave with zero horizontal wavenumber:

d2φ

dy2
+
N2(y)

c20
φ = 0, (A 2)

subject to φ(0) = φ(Ly) = 0. Here c0 is the linear long wave speed associated with this

mode (c−20 is the eigenvalue). The simple solitary wave solution to the KdV equation is

a(x, t) = â0sech2

(
x− cwnlt

λ

)
, (A 3)

where â0 is a given amplitude, cwnl = c0 + â0α0/3 and λ2 = 12β/â0α0. The constants

α0 and β appearing in the coefficients of the KdV equation above are given by

α0 =
3c0
∫ Ly

0
φ3ydy

2
∫ Ly

0
φ2ydy

, (A 4)

β =
c0
∫ Ly

0
φ2dy

2
∫ Ly

0
φ2ydy

. (A 5)

A wave of elevation or depression can be obtained depending on whether α0 > 0 or

α0 < 0 respectively.

Returning to equation (A 2), a note on how this may be solved for the continuous

profiles of N2(y) used in section 3 is now given. The solution for φ(y) may be written

φ(y) =

ny∑
n=0

an sin(γny), (A 6)

for some (as yet) unknown an, with γn = nπ/Ly. Here ny = 128 typically. Cosine modes

are eliminated due to the boundary conditions of the eigenproblem φ(0) = φ(Ly) = 0.

Substituting (A 6) into (A 2), multiplying by sin(γmy) and integrating over the domain

converts the problem into the standard matrix eigenvalue form (A − c20I)b, where I is
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the identity matrix and the elements of the matrix A and vector the b are given by

An,m =
2

γ2nLy

∫ Ly

0

N2(y) sin(γny) sin(γmy)dy (A 7)

bn = γ2nan. (A 8)

The eigenvectors and eigenvalues can be easily found using standard numerical methods

(either LAPACK or NAG libraries for instance), giving a number of values for c0 and

b as eigenvalues and eigenvectors of the problem respectively. The largest value of c0

is associated with the vertical mode having no zeros except at the boundaries, and the

required values of an can then easily be recovered from the associated bn/γ
2
n.
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