
ORIGINAL ARTICLE

doi:10.1111/evo.14091

Quantifying the causal pathways
contributing to natural selection
Jonathan M. Henshaw,1,2,3 Michael B. Morrissey,4 and Adam G. Jones2

1Institute of Biology I, University of Freiburg, Freiburg im Breisgau 79104, Germany
2Department of Biological Sciences, University of Idaho, Moscow, Idaho 83844

3E-mail: jonathan.henshaw@biologie.uni-freiburg.de
4School of Biology, University of St Andrews, St Andrews KY16 9TF, United Kingdom

Received March 23, 2020

Accepted August 7, 2020

The consequences of natural selection can be understood from a purely statistical perspective. In contrast, an explicitly causal

approach is required to understand why trait values covary with fitness. In particular, key evolutionary constructs, such as sexual

selection, fecundity selection, and so on, are best understood as selection via particular fitness components. To formalize and

operationalize these concepts, we must disentangle the various causal pathways contributing to selection. Such decompositions

are currently only known for linear models, where they are sometimes referred to as “Wright’s rules.” Here, we provide a general

framework, based on path analysis, for partitioning selection among its contributing causal pathways. We show how the extended

selection gradient—which represents selection arising from a trait’s causal effects on fitness—can be decomposed into path-specific

selection gradients, which correspond to distinct causal mechanisms of selection. This framework allows for nonlinear effects and

nonadditive interactions among variables, which may be estimated using standard statistical methods (e.g., generalized linear

[mixed] models or generalized additive models). We thus provide a generalization of Wright’s path rules that accommodates the

nonlinear and nonadditive mechanisms by which natural selection commonly arises.
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Causal thinking is essential to understanding natural selection

and its evolutionary consequences (Sober 1984; Wade and Kalisz

1990; Arnold and Duvall 1994; Godfrey-Smith 2007; Morrissey

2014b; Okasha 2016; Shipley 2016; Walsh and Lynch 2018;

Uller and Laland 2019; Okasha and Otsuka 2020; Queller 2020).

At the coarsest explanatory level, selection and its consequences

can be treated as purely statistical patterns. However, explaining

why selection operates the way it does requires causal analysis

of the interrelationships among traits, fitness components, and

fitness. For instance, covariation among traits due to shared ge-

netic or environmental underpinnings can lead a trait distribution

to change under selection, even when the trait has no direct

influence on fitness (Lande and Arnold 1983; Godfrey-Smith

2007). Sober (1984) accordingly distinguished between “selec-

tion for” and “selection of” a trait. Causality is also inherent to a

series of key evolutionary concepts—sexual selection, fecundity

selection, longevity selection, and so on—that can be understood

as selection via particular fitness components (Andersson 1994;

Arnold and Duvall 1994; Henshaw et al. 2016, 2018). Our ability

to explain and generalize from observations of trait-fitness

relationships depends crucially on pinning down such causal

mechanisms.

Classical approaches to quantifying the causal structure of

selection are based on regression (Lande and Arnold 1983;

Arnold and Wade 1984) and path analysis (Wright 1921, 1934;

Arnold and Duvall 1994; Scheiner et al. 2000) (reviewed in Walsh

and Lynch 2018). Regression-based approaches, as pioneered by

Lande and Arnold (1983), can quantify the direct effects of traits

on fitness in the absence of unmeasured confounders (Rausher

1992; Walsh and Lynch 2018). However, such approaches are

constrained to view selection as a single-step causal process

(Henshaw et al. 2018; Grace and Irvine 2020), without causal

intermediaries between traits and fitness, and so give limited in-

sight as to why traits covary with fitness.
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Path analysis allows for more sophisticated, multi-step

models of causal processes. Such models can explicitly ac-

count for indirect causal effects, such as when a trait’s fitness

effects are mediated by other variables. Early path-analytic

work generally assumes that the relationships between effects

and their causes are linear (Wright 1934; Lande and Arnold

1983; Crespi and Bookstein 1989; Kingsolver and Schemske

1991; Arnold and Duvall 1994; Conner et al. 1996; Frank 1997;

Latta and McCain 2009; but see Scheiner et al. 2000). This

allows total selection to be partitioned across all contributing

causal pathways using “Wright’s rules” (Wright 1934; Loehlin

2004; Henshaw et al. 2018). Linearity is unlikely to hold in

most applications, however, and is a particularly problematic

assumption for fitness components, which are often measured

as binary or count variables (e.g., survival, fecundity, or the

number of matings). Morrissey (2015) addresses this issue by

extending the path-analytic approach to more general settings,

accommodating nonlinear effects and nonadditive interactions

among variables (see also Grace et al. 2012; Lefcheck 2016).

Morrissey’s “extended selection gradient” allows the total causal

effect of a trait on fitness to be quantified for arbitrary smooth

relationships among traits and fitness (Morrissey 2014b, 2015).

Currently, however, we lack a general nonlinear framework for

decomposing total selection into contributions from multiple

pathways (Fig. 1). Such pathways may comprise both causal

effects of the focal trait on fitness (potentially mediated by other

traits) and spurious associations arising from common causes.

Parallel to these developments, there has been a revolution

in the mathematical analysis of causal processes (e.g., Pearl

2009, 2018), the fruits of which have gone largely unnoticed

and unused in evolutionary biology (but see, e.g., Okasha 2016;

Otsuka 2016; Shipley 2016; Fromhage and Jennions 2019;

Okasha and Otsuka 2020; Queller 2020). Here, we harness these

recent mathematical advances to provide a general framework

for quantifying the causal tributaries of selection, combining the

intuition behind Wright’s rules with the generality of Morrissey’s

(2015) nonlinear path analysis. We also provide analogous

methods for decomposing the predicted evolutionary response to

selection between generations. Importantly, our approach can be

applied to observational data if appropriate causal assumptions

are met. This feature is desirable, because the multi-level causal

processes that determine fitness are often difficult or impossible

to manipulate experimentally.

Notation
We use regular typeface for scalar random variables and bold-

face for random vectors and matrices. We write E(X ) for the ex-

pected value of a random variable X and E(X |Y1, . . . ,Yn) for the

expected value of X conditional on the values of Y1, . . . ,Yn. Sim-

Figure 1. (A) An example causal diagram, where a set of ex-

ogenous traits X1, . . . ,Xn influences relative fitness w via some

endogenous traits A, B, and C. Each endogenous trait Y is also

influenced by an unmeasured background variable, denoted UY .

Single-headed arrows represent potential causal effects, whereas

double-headed arrows indicate potential shared influences that

are not analyzed explicitly. If an arrow from X to Y is missing, it is

assumed that X has no direct causal effect onY . The subgraphs for

the path-specific selection gradients on X1 via each of its children

are shown in color (yellow for A; blue for B; red forC). Note that (i)

the path-specific selection gradient ηX1 |C (shown in red) does not

include the path X1 → B→ C → w, because by definition it only

includes paths with first edge X1 → C, (ii) the edge C → w counts

toward the path-specific selection gradients via both B and C, in-

dicated here by parallel blue and red arrows, and (iii) the paths

X1 → B→ w and X1 → B→ C → w do not have identifiable se-

lection gradients, although their union (shown in blue) does. (B)

A twin-network model for conceptualizing the path-specific selec-

tion gradient on X1 via A. Effectively, X1 is split into two variables,

X1A and X1∗, where A is influenced by X1A, and all other children

of X1 are influenced by X1∗. The path-specific selection gradient

on X1 via A is equal to the extended selection gradient on X1A af-

ter setting X1A = X1∗ = X1 (see Supporting Information for formal

proof).

ilarly, P(X ) = P(X = x) is the probability that X attains a partic-

ular value x and P(X |Y1, . . . ,Yn) is the conditional probability of

X given Y1, . . . ,Yn. The probability distribution of a continuous

random variable X is written dP(X ). The variance of X is σ2
X .

Last, we write ∇ for the gradient of a function with respect to its
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Table 1. Summary of key variables and notation.

Notation Meaning

E(X) Expected value of X
E(X |Y ) Expected value of X conditional on Y
P(X ) Probability distribution of X
σ2

X Variance of X
∇ f Gradient of a function with respect to its arguments: ∇ f (x1, . . . , xn) = [ ∂ f

∂x1
, . . . ,

∂ f
∂xn

]T

Z Vector of all measured traits, including fitness
X Vector of exogenous traits (of which causes are not modeled explicitly)
Y Vector of endogenous traits (of which causes are modeled explicitly)
U Vector of unmeasured background variables
S Selection differential (vector of covariances between traits and fitness)
P Variance-covariance matrix of phenotypic traits
βLR Linear regression selection gradients: βLR = P−1 S
βAP Average partial selection gradients (average rate that fitness is predicted to change given

small changes in each trait, while holding all other measured traits fixed)
G Variance-covariance matrix of genetic values
ch(Z ) Children of a trait Z (i.e., set of measured traits that Z influences directly)
pa(Z ) Parents of a trait Z (i.e., set of measured traits that directly influence Z)
fZ Function relating a trait Z to its parents pa(Z ) and background variable UZ
δw
δZ Causal derivative of fitness w on a trait Z (rate at which fitness would change due to

small changes in Z , holding fixed all nondescendants of Z)
ηZ Extended selection gradient on Z (average of δw

δZ across joint distribution of all traits)
δw
δZ |H Path-specific causal derivative of fitness w on a trait Z via paths H (rate at which fitness

would change due to small changes in Z , holding fixed all pathways other than H)
ηZ |H Path-specific selection gradient on Z via paths H (average of δw

δZ |H across joint
distribution of all traits)

arguments: i.e., ∇ f (x1, . . . , xn) = [ ∂ f
∂x1

, . . . ,
∂ f
∂xn

]T . Key variables

and notation are summarized in Table 1.

Background: The Lande-Arnold
Framework
We begin by summarizing Lande and Arnold’s (1983) approach

to quantifying selection. Let W be absolute fitness (as estimated,

for instance, by the number of offspring produced) and let Z =
[Z1, . . . , Zn]T be a vector of traits with covariance matrix P. Envi-

ronmental variables may also be included in Z without fundamen-

tally changing the analysis. The directional selection differential

S is the difference in mean trait values before and after selection

(i.e., within a generation). For example, if fitness is estimated by

the number of offspring produced, then the selection differential

is the difference in mean trait values between all individuals and

the parents of offspring, with the latter weighted by the number

of offspring per parent. Writing w = W
E(W ) for relative fitness, the

selection differential is given by (Robertson 1966; Henshaw and

Zemel 2017; Walsh and Lynch 2018):

S = E (wZ)− E (Z) = cov (Z, w) . (1)

Let us now write w = E(w|Z)+ εw, where εw represents

variation in relative fitness that is not explained by the traits Z.

By construction, we have cov (Z, εw ) = 0 and hence:

S = cov (Z,E (w|Z)) . (2)

Further, if the trait vector Z is multivariate normal, then by

Stein’s lemma (Stein 1981; Lande and Arnold 1983; Liu 1994;

de Villemereuil et al. 2016; Walsh and Morrissey 2019), we have

S = P E (∇E (wZ)) . (3a)

In particular, the selection differential on the ith trait Zi can

be written as

Si =
n∑

j=1

cov
(
Zi, Zj

)
E

(
∂

∂Zj
E (w|Z)

)
(3b)

As a consequence of these useful properties, transforma-

tions that bring Z close to multivariate normality are often de-

sirable. Alternatively, measured traits may be modeled as non-

linear functions of underlying “latent” traits that are normally
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Figure 2. An example causal diagram, showing the potential

causal paths (red) and noncausal or “backdoor” paths (black) be-

tween a trait A and fitness w. Background variables are omitted

for simplicity, but traits with potential shared influences are joined

by double-headed arrows. The causal effect of A on fitness can be

estimated from observational data by controlling for an appropri-

ate set of covariates. For the pictured graph, such backdoor sets

include {X,Y }, {X,Y,C}, and {X,Y,Z}. Note the following: (i) B can-

not be included in any backdoor set for A because it is a descen-

dant of A, (ii) the set {Y } is not a backdoor set for A because it

leaves the backdoor pathA↔ X → B→ w unblocked, and (iii) the

set {X,C} is not a backdoor set for A because the inclusion ofC un-

blocks the backdoor path A← Y → C ← Z → D→ w. This is be-

cause, although A and Z are independent, they may be dependent

after conditioning on C (see Supporting Information or Pearl 2009

for details).

distributed (for details, see de Villemereuil et al. 2016; de Ville-

mereuil 2018).

Following Lande and Arnold (1983), the vector of direc-

tional selection gradientsβ on the traits Z is usually defined

as the solution to S = Pβ. Equivalently, β is the vector of

partial regression coefficients in an ordinary least-squares lin-

ear regression of relative fitness on trait values. In the case

where Z is multivariate normal and P is invertible, it follows

from equation (3a) that β = E(∇E(w|Z)). In other words, the

selection gradients equal the average rate that fitness is predicted

to change given small changes in each trait, while holding all

other measured traits fixed. To avoid ambiguity, we refer to

βLR = P−1 S as the linear regression selection gradients and

βAP = E(∇E(w|Z)) as the average partial selection gradients

(note that our terminology differs from Walsh and Lynch 2018,

who call βAP the Janzen-Stern gradients).

Causal Model
Following Pearl (2009), we consider causal models consisting of

three components: (1) a causal diagram, which describes the hy-

pothesized causal relationships among variables in a qualitative

way, (2) a model of the functional relationships between vari-

ables and their causes, and (3) a model of the probability distri-

butions of unmeasured “background variables,” which generate

unexplained variation in measured variables. Most of the mathe-

matical results we rely on below were developed by Judea Pearl

and colleagues (Avin et al. 2005; Pearl 2009), but our application

of these results to evolutionary biology is largely new.

The causal diagram specifies qualitative assumptions about

causal effects in the form of a graph, in which multiple measured

traits Z are represented by nodes and causal links between such

traits are represented by arrows (e.g., Fig. 1). For the purposes of

studying selection, the set Z must always include fitness w and

may also include components of fitness like survival, fecundity,

or mating success. Single-headed arrows of the form A→ B rep-

resent a direct causal effect of A on B, whereas double-headed

arrows A↔ B indicate that these traits potentially have shared

causal influences that are not accounted for in the causal diagram.

We write X for the set of exogenous traits, whose causes are not

modeled explicitly, and Y for endogenous traits with at least one

modeled cause. As in the Lande-Arnold framework, environmen-

tal variables can be included as “traits” without fundamentally

changing the analysis.

Each trait Z∈ Z is fully determined by (i) its parentspa(Z ),

which is a subset of Z, and (ii) an unmeasured background vari-

able UZ , which captures all other causal determinants of Z . We

write the functional relationship between a trait and its causal de-

terminants as

Z = fZ
(
pa (Z ) ,UZ

)
. (4)

We say that a trait Z is a child of its parents and we write

ch(Z ) for the set of children of Z . An exogenous trait X ∈ X has

no explicitly modeled causes (i.e., pa (X ) = ∅) and so for our

purposes can be treated as identical to its background variable

(i.e., X = fX (UX ) = UX ). The causal diagram G is formed by

drawing a single-headed arrow from each trait to each of its chil-

dren (e.g., Fig. 1A). In addition, a double-headed arrow is drawn

between traits A and B if their background variables UA and UB

may covary due to shared influences. A directed path from A to

B is a sequence of traits of the form (A = P1 , P2, . . . , Pn = B)

such that there is a single-headed arrow Pi → Pi+1 from each

trait to the next in the sequence. We say that B is a descendant

of A if there is a directed path from A to B. This means that A

has a (direct or indirect) causal influence on B. These terms obey

the everyday genealogical conventions: a variable’s descendants

consist of its children, its children’s children, and so on. We re-

strict our attention to graphs that are acyclic, meaning that no

trait is a descendant of itself. Cyclic graphs require more sophis-

ticated data collection and analysis than we consider here and,

even in linear cyclic models, key parameters may be inestimable

(Gianola and Sorensen 2004). A causal modelM consists of a

causal diagram, a set of functional relationships fZ , and a joint
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probability distribution of background variables P(U ). Note that

a given causal diagram G can support many causal models.

These methods require that the researcher can make plau-

sible assumptions about the qualitative structure of the causal

processes that generated their data. These assumptions may be

based on prior knowledge of the study species (e.g., due to pre-

vious experiments), general principles (e.g., causes precede ef-

fects in time), or mathematical relationships (e.g., when fitness is

viewed as an “effect” of its components). Most importantly, the

researcher must identify the potential presence and direction of

causal effects between measured traits (i.e., the structure of the

causal diagram). Including a potential causal effect in a model

does not mean that the effect must be nonzero; on the other hand,

the absence of an effect (i.e., a missing arrow) is a substantive as-

sumption. Nonetheless, including unnecessary arrows in a model

can introduce additional noise in estimates of causal effects, so

researchers should only include an arrow if they believe the ef-

fect it represents is plausible. As in any selection analysis, our

causal interpretations hold only in the absence of certain con-

founding variables. Confounding occurs when the relationship

between two measured traits is misestimated because both traits

are influenced by an unmeasured third variable. The nature and

strictness of no-confounding assumptions depend on the result in

question, so we outline them as necessary below. For a general re-

view of how departures from causal assumptions can complicate

or invalidate causal inference, we refer the reader to Antonakis

et al. (2010).

Causal Derivatives and Extended
Selection Gradients
Suppose that, by some external intervention, an individual’s trait

value Z is changed by a small amount, while holding fixed all

traits and background variables that are not causally influenced

by Z (i.e., all nondescendants of Z). This intervention induces

cascading effects on the descendants of Z , which are described

by the deterministic relationships of equation (4). Let us write

π(Z, w) for the set of directed paths from Z to fitness w. For any

such path P, we denote the variables along the path in order as

(Z = P0 , P1, . . . , Pm(P) = w), where m(P) is the length of the

path. In the limit of infinitesimally small interventions, we can

consider the instantaneous rate of fitness change due to changes

in Z . We refer to this rate as the causal derivative of w on Z , de-

noted δw
δZ (this notation indicates a special kind of partial deriva-

tive, where only nondescendants of Z are held fixed). If all the

variables Pi are continuous, we can apply the chain rule of calcu-

lus to express the causal derivative as

δw

δZ
=

∑
P∈π(Z,w)

m(P)∏
j=1

∂Pj

∂Pj−1
. (5)

The partial derivatives on the right are understood as ∂Pj

∂Pj−1
=

∂
∂Pj−1

fPj (pa(Pj ),UPj ). Hypothetical interventions, as considered

here, are a standard tool of modern causal theory (e.g., as imple-

mented in Judea Pearl’s do-calculus: Pearl 2009). Surprisingly,

however, we could find no precedent for the concept of a causal

derivative, perhaps because the mathematical literature on causal-

ity tends to focus on discrete interventions. For readers familiar

with Pearl’s approach to causal modeling (Pearl 2009, 2018), we

provide an alternative definition of δw
δZ in the Supporting Infor-

mation (see also eq. 15). This alternative definition can also be

applied when the descendants of Z are not all continuous.

The extended selection gradientηZ is the mean causal deriva-

tive of Z , taken over the joint probability distribution of all traits

(Morrissey 2014b, 2015):

ηZ = E

(
δw

δZ

)
. (6)

The extended selection gradient can be thought of as the av-

erage causal effect of small changes in a focal trait on fitness.

Morrissey (2015) discusses extended selection gradients on both

measured traits ηZ and background variables ηUZ (note that these

two gradients coincide if ∂Z
∂UZ
= 1). Here, we mainly emphasize

selection on measured traits. For normally distributed traits Z , the

portion of the selection differential arising from the causal effect

of Z on fitness is given by (proof in Supporting Information):

Scausal,Z = σ2
Z ηZ . (7)

This is the portion of the change in the mean of Z within

a generation that arises via causal effects of Z on fitness. Note

here that only Z is required to be normal; all other traits may be

nonnormal.

Our focus on continuous traits and on interventions of small

effect is partly for mathematical convenience. In particular, this

focus will allow us to separate extended selection gradients

cleanly into components arising via distinct causal pathways

(eq. 16 below). Nonetheless, many of our results can be recast in

forms applicable to discrete variables, although we do not present

these additional results here.

Estimating Extended Selection
Gradients Using the Backdoor
Criterion
The causal derivative δw

δZ potentially depends on the values of

the unmeasured background variables U . As a consequence, the

value of δw
δZ is generally unknowable for any given observation.

On the other hand, the extended selection gradient ηZ can often

be estimated from observational data if the effects of confound-

ing variables can be removed statistically. If we knew all of the
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functional relationships fZ among traits, as well as the joint prob-

ability distributions of the background variables P(U ), then we

could estimate the extended selection gradients on each trait by

applying equations (5) and (6) directly. In practice, such informa-

tion is generally not available, and more nuanced approaches are

required (for gentle introductions, see Pearl 2018; Rohrer 2018;

a more thorough treatment is given by Pearl 2009).

How can one estimate the causal effects of a trait without

having measured all possible variables? A familiar solution to

biologists is to control for a set of variables that intercepts non-

causal paths between the focal trait Z and fitness. If we want to

isolate the causal effect of a trait on fitness, it is important to

choose this set carefully. For instance, we should not control for a

descendant D of Z , as this will remove any indirect causal effects

of the form Z → D→ w, where each arrow indicates a directed

path. Our set of covariates should also block all noncausal path-

ways between Z and fitness and not inadvertently open any new

noncausal paths. The “backdoor criterion” is a formal method for

ascertaining whether controlling for a particular set of covariates

will isolate the causal effect of one variable on another (Pearl

2009, 2018). We call B a backdoor set with respect to selection

on a trait Z if (i) B contains no descendants of Z and (ii) B blocks

all backdoor (i.e., noncausal) paths from Z to fitness (Fig. 2: see

Appendix for details). If B is a backdoor set for Z , then the ex-

tended selection gradient on Z can be expressed as

ηZ = E

(
∂

∂Z
E (w|Z, B)

)
. (8)

In other words, ηZ can be calculated as an average partial

selection gradient on Z with the traits B as covariates. If, in ad-

dition, Z is normally distributed, then equations (7) and (8) allow

us to calculate how much of the selection differential arises from

the causal effect of Z on fitness.

A special case arises when we are only interested in selection

on the exogenous traits X (i.e., traits whose causes are not mod-

eled explicitly). Suppose here that the set of background variables

UY of the endogenous traits is independent of X . For any focal

exogenous trait, the remaining exogenous traits then constitute a

backdoor set. We can consequently write the vector of extended

selection gradients ηX on the exogenous traits as

ηX = E (∇E (w|X )) . (9)

In other words, the extended selection gradients ηX equal

the average partial selection gradients βAP on X (it is important

that the endogenous traits are excluded when calculating these

gradients). If the exogenous traits are jointly multivariate nor-

mal, then the linear selection differentials on X can be expressed

as SX = PXηX, where PX is the phenotypic variance-covariance

matrix of X (cf. eq. 3a).

Decomposing Extended Selection
Gradients Along Causal Pathways
So far, we have considered selection on a trait Z arising via all

causal paths from Z to w. Suppose now that we only wish to

consider selection via some subset of these pathways. For in-

stance, we might want to consider all pathways passing through

the variable(s) representing an individual’s mating success; this

would provide a measure of (premating) sexual selection (Hen-

shaw et al. 2018). Let us write H for the subgraph of G consisting

of the union of our paths of interest. For example, H might con-

sist of a single path, or several paths representing similar types of

selection. Analogously to above, we write πH(Z, w) for the set

of directed paths from Z to w that lie entirely in H. We define

the path-specific causal derivative of w on Z via paths in H as

the rate at which fitness changes due to changes in Z , while hold-

ing all paths outside of H fixed. If all variables in πH(Z, w) are

continuous, we can express the path-specific causal derivative as

δw

δZ
|H =

∑
P∈πH (Z,w)

m(P)∏
j=1

∂Pj

∂Pj−1
. (10)

Similarly, the path-specific selection gradient on Z is the av-

erage path-specific causal derivative:

ηZ |H = E

(
δw

δZ
|H

)
. (11)

We also provide a more general definition of ηZ |H that does

not require the descendants of Z to be continuous (see Support-

ing Information and eq. 16). Note that the extended selection

gradient is simply the path-specific selection gradient over the

whole graph G (i.e., ηZ = ηZ |G). Estimating path-specific selec-

tion gradients often requires stronger assumptions than estimat-

ing extended selection gradients. As we will see in the next sec-

tion, even given strong assumptions that exclude certain types of

confounding, only some path-specific selection gradients can be

estimated from observational data alone.

Identifiability of Path-Specific
Selection Gradients
We now consider which path-specific selection gradients are

identifiable. This means that they can be estimated from obser-

vational data, assuming that the causal diagram is correct, with-

out any prior knowledge of the functional relationships between

causes and their effects (i.e., we know nothing about the shape

of these functions, such as whether they are linear or additive).

We assume that the background variables UY of the endogenous

traits are mutually independent and that UY is independent of

the exogenous traits X . Given these assumptions, there is a for-

mal criterion that allows one to decide if any given path-specific
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selection gradient is identifiable (Avin et al. 2005; proof in Sup-

porting Information). We first present the criterion and then con-

sider its interpretation:

(First-edge criterion) Suppose C is a child of a trait Z . Let

H(C) be the subgraph of G consisting of all directed paths from

Z to w whose first edge is Z → C. Then the path-specific selec-

tion gradient ηZ |H(C) is identifiable (we will use the shorthand

ηZ |C = ηZ |H(C) and refer to the C-specific selection gradient on

Z). Further, if H is any subgraph for which the path-specific se-

lection gradient ηZ |H is identifiable, then H can be expressed as

a union of the form H = ∪
C∈C

H(C), where C is a subset of the

children of Z .

The first-edge criterion might seem obscure initially, but its

essence is very simple (Fig. 1A). If there are multiple causal path-

ways from Z to w that begin with the edge Z → C, then these

pathways cannot be teased apart using observational data alone

(at least not in the absence of further assumptions; see below). In

this sense, the C-specific selection gradients are minimal identi-

fiable components of the extended selection gradient. Moreover,

they are exhaustive, in the sense that any identifiable path-specific

gradient can be built up out of one or more C-specific gradients.

In fact, there is a one-to-one correspondence between identifiable

path-specific selection gradients and subsets of the children of Z .

The extended selection gradient on a trait Z can now be

rewritten as the sum of path-specific selection gradients via each

of its children:

ηZ =
∑

C∈ch(Z )

ηZ |C . (12)

If Z is normally distributed, then the component of the se-

lection differential on Z that arises via the effect of Z on its child

C can be expressed as σ2
ZηZ |C . This represents the portion of the

change in the mean of Z within a generation that arises due to the

direct effect Z → C.

Three subtleties are worth noting. First, the first-edge crite-

rion applies in a very general setting, where nothing is assumed

about probability distributions or the functional relationships

among traits, other than the correctness of the causal diagram

(which includes the independence assumptions on UY ). Fur-

ther pathways may become identifiable if additional assumptions

about the data-generating process can be made. In particular, if

the effects of background variables can be assumed to be additive,

then all path-specific selection gradients are identifiable (see be-

low). This is a standard assumption in linear path analyses. Sec-

ond, the C-specific selection gradient on a trait Z may not account

for all pathways that pass from Z via C to w. Rather, it represents

exactly those pathways that begin with the edge Z → C (see, e.g.,

the C-specific selection gradient on X1 in Fig. 1A, which does not

include the pathway X1 → B→ C → w). In other words, the C-

specific selection gradient represents selection arising from the

direct effect of Z on C. Third, some downstream edges may be

included in path-specific selection gradients via more than one

child (e.g., the edge C → w in Fig. 1A), consistent with the fact

that multiple mechanisms of selection may share a causal link.

Estimating Path-Specific Selection
Gradients
So far, we have demonstrated the conditions under which

path-specific selection gradients are identifiable, assuming that

nothing is known about the functional relationships between

causes and their effects. Fortunately, empirically interesting path-

specific selection gradients should be estimable in a range of

practical settings, requiring similar types of assumptions to those

that practitioners of more elementary types of path analyses are

regularly willing to make. We now provide an explicit way to

estimate path-specific gradients whenever they are identifiable.

We assume, as above, that the background variables UY of the

endogenous traits are mutually independent and that UY is inde-

pendent of the exogenous traits X . It follows that the joint dis-

tribution of the traits Z equals the distribution of the exogenous

traits X multiplied by the product of the conditional distributions

of each endogenous trait Y given its parents (Pearl 2009):

P (Z) = P (X)
∏
Y∈Y

P
(
Y |pa (Y )

)
. (13)

We say that G is Markovian conditional on X .

Suppose now that we have estimated the distribution of each

endogenous trait Y , conditional on its parents pa(Y ) (i.e., the dis-

tribution P(Y |pa(Y ))). Such estimates can be obtained using a

variety of regression-based methods that predict both the condi-

tional expectation of a trait given its predictors, as well as the

distribution of residuals (Morrissey 2014a). These include lin-

ear or generalized linear models, as well as more flexible frame-

works such as generalized additive models and multidimensional

smoothing (O’Hara 2009; Wood 2017). Given such estimates for

each endogenous trait Y , we can write expected fitness as

E (w) =
∫

w dP (X )
∏
Y∈Y

dP
(
Y |pa (Y )

)
. (14)

In other words, we integrate realized fitness w over the joint

probability distribution of the exogenous traits dP(X ) and the

conditional probability distributions dP(Y pa(Y )) of each endoge-

nous variable given its parents. Now, the extended selection gra-

dient ηZ on a continuous trait Z is fully determined by the trait’s

effects on its children ch(Z ). Analogously to equation (14), we

can write the extended selection gradient as (proof in Supporting
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Information):

ηZ = E

(
δw

δZ

)
=

∫
w dP (X )

⎛
⎝ ∂

∂Z

∏
C∈ch(Z)

dP
(
C|pa (C)

)⎞⎠
︸ ︷︷ ︸

children of Z⎛
⎝ ∏

Y∈Y\ch(Z)

dP
(
Y |pa (Y )

) ⎞
⎠

︸ ︷︷ ︸
nonchildren of Z

. (15)

Note that the product term from equation (14) has been split

up into two factors, representing endogenous traits that are chil-

dren and nonchildren of Z , respectively. The partial derivative in

the first of these factors quantifies how small changes in Z af-

fect the distributions of its children dP(C|pa(C)). Unlike equa-

tion (5), this expression still applies if the descendants of Z are

not all continuous.

Equation (15) tracks how changes in Z affect all of its chil-

dren. In contrast, the path-specific selection gradients relate to

changes in some subset of these children. One way to concep-

tualize this is via a “twin-network” model (Fig. 1B), where the

focal trait Z can take on one value for the purposes of influenc-

ing some children, but another value for influencing its remaining

children (Avin et al. 2005; Pearl 2009; details in Supporting In-

formation). This construction allows one to control for (i.e., hold

fixed) all nonfocal pathways when quantifying path-specific se-

lection gradients. Equivalently, one can decompose the extended

selection gradient into its child-specific components by applying

the product rule of calculus to the partial derivative in equation

(15). For any child C, the C-specific selection gradient equals:

ηZ |C =
∫

w dP (X)

(
∂

∂Z
dP

(
C|pa (C)

))
⎛
⎝ ∏

Y∈Y\C
dP

(
Y |pa (Y )

)⎞⎠ . (16)

Note that the right-hand side of this equation depends only

on observable quantities and can consequently be estimated from

observational data (see Appendix for a worked example). Unlike

equation (10), this expression still applies when the descendants

of Z are not all continuous. The joint distribution of X can be esti-

mated as its empirical (i.e., sample) distribution or by parametric

means. Note that our focus on infinitesimal interventions allows

a clean separation of the extended selection gradient into path-

specific gradients, each of which corresponds to the trait’s effects

via one of its children. For discrete interventions, it is more chal-

lenging to cleanly separate a variable’s effects arising via multiple

causal pathways.

Decomposing Path-Specific
Coefficients into Multiplicative
Components, Assuming that the
Effects of Background Variables are
Additive
The above analysis is very general, in the sense that the functional

relationships fZ and the distribution of U are arbitrary (aside from

the independence assumptions encoded in the causal diagram).

We now make an additional assumption that, when met, allows

us to further decompose causal effects. Suppose that the effects

of background variables are additive, in the sense that for each

trait Z there exist functions gZ and hZ such that

fZ
(
pa (Z ) ,UZ

) = gZ
(
pa (Z )

)+ hZ (UZ ) . (17)

This assumption is standard in classical path analysis, which

assumes that residuals are additive. If, in addition, UZ is indepen-

dent of pa(Z ), then the partial derivative of Z with respect to any

of its parents pa(Z )i is given by

∂Z

∂pa(Z )i
= ∂

∂pa(Z )i
E

(
Z|pa (Z )

)
. (18)

Note that this expression is independent of UZ and thus can

be estimated from observational data (i.e., it is identifiable). Con-

sequently, all path-specific derivatives and effects are identifiable

in this case. From equation (10), the path-specific causal deriva-

tive of w on Z via the single directed path P is then given by

δw

δZ
|P =

m(P)∏
j=1

∂

∂Pj−1
E

(
Pj |pa

(
Pj

))
. (19)

In other words, the causal derivative is equal to the product

of partial effects corresponding to each edge along a chain of se-

quential causal effects. This is a restatement of Wright’s rules that

relies on the local linearity of the functions fPi . Note that this ex-

pression does not explicitly depend on the background variables

U , but rather only on the observed traits Z. Using the Markovian

property from equation (13), the path-specific selection gradient

on Z via the path P is then

ηZ |P = EZ

⎛
⎝ m(P)∏

j = 1

∂

∂Pj−1
E

(
Pj |pa

(
Pj

))⎞⎠

= ∫
⎛
⎝m(P)∏

j=1

∂

∂Pj−1
E

(
Pj |pa

(
Pj

))⎞⎠

dP (X )
∏
Y∈Y

dP(Y |pa (Y )). (20)

This formula allows us to calculate path-specific selection

gradients via any causal pathway, under the assumptions that (i)
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background variables UY of endogenous traits are both mutually

independent and independent of X , and (ii) the effects of back-

ground variables are additive.

In classical path-analytic models, each endogenous trait

is a linear function of its parents. We can then write
∂

∂Pj−1
E (Pj |pa(Pj )) = βPj Pj−1 , where the path coefficientβPj Pj−1 is

a fixed constant that does not depend on the values of the parent

variables pa(Pj ). In this case, we can rewrite equation (20) as

ηZ |P =
m(P)∏
j=1

βPj Pj−1 . (21)

Thus, we recover the well-known rule for linear models that

the P-specific effect is simply the product of path coefficients

along the path P (Wright 1921; Loehlin 2004; Pearl 2009; Zhang

and Bareinboim 2018). The extended selection gradient is the

sum of such products over every directed path P joining Z to w.

For nonlinear relationships, this simple decomposition does not

hold, as was recognised already by Wright (1921).

Decomposing the Predicted
Evolutionary Response to Selection
Between Generations Across Causal
Pathways
As well as inducing a change in phenotype, selection may also

change the distribution of alleles in a population within a single

generation. The phenotypic effects of transmitting such changes

between generations are known as the evolutionary response to

selection. Here, we show how to decompose the predicted evolu-

tionary response to selection along causal pathways. Let us sup-

pose that each background variable UZ can be modeled as a func-

tion of a genetic valueAZ and a residual valueRZ . In other words,

UZ = fUZ (AZ , RZ ) for some function fUZ . A common model is

UZ = AZ + RZ , where AZ is an additive genetic effect (i.e., a

breeding value) and RZ incorporates both environmental and non-

additive genetic effects (Lande 1979; Morrissey 2015; Walsh and

Lynch 2018). We write A and R for the vectors of genetic and

residual values for each trait. Note that these values determine

the background variables rather than the measured traits (in the

language of Morrissey 2015, they determine the “exogenous in-

puts” to the system).

The evolutionary response to selection is generally predicted

via the change in mean additive genetic values due to selection

within a generation (i.e., the difference in A between all indi-

viduals and the parents of offspring, with the latter weighted by

the number of offspring per parent). This change is given by the

genetic selection differentialsSA = cov(A, w) (Robertson 1966;

Walsh and Lynch 2018). If the additive genetic values A are mul-

tivariate normal, then Stein’s lemma tells us that (Walsh and Mor-

rissey 2019)

SA = GβA. (22)

Here, G = cov(A) is the covariance matrix of genetic ef-

fects and βA = E(∇E(w|A)) is a vector of average partial se-

lection gradients on the genetic values A. Suppose further that

(i) UZ = AZ + RZ for all traits Z (i.e., background variables equal

the sum of genetic and residual values), and (ii) A is indepen-

dent of R (Geyer and Shaw 2008; Queller 2017). We then have

βA = ηU , where ηU = E(∇E(w|U )) is the vector of extended

selection gradients on the background variables (proof in Sup-

porting Information). This allows us to write (Morrissey 2015):

SA = GηU (23)

This equation describes the within-generation genetic

change in background variables as a result of selection. The ac-

tual phenotypic change between generations depends on this ge-

netic change, along with any environmental change and the de-

tails of inheritance, where only some of the latter will be cap-

tured by the causal model (Morrissey 2015; Walsh and Lynch

2018). Note that this equation holds under arbitrary dependen-

cies among the background variables U .

The above equations depend explicitly on the unmeasured

background variables U . To apply them, we must model the

functional relationships fZ between unmeasured background

variables and measured traits, as well as the distribution of

background variables given pa(Z ). In the particular case where a

background variable UZ is assumed to affect the trait Z additively

(i.e., Z = gZ (pa(Z ))+ hZ (UZ ), as above), we can transform

UZ such that hZ is the identity function and ∂Z
∂UZ
= 1. We then

have ηZ = ηUZ . The component of the predicted evolutionary

response to selection on Z that is due to the causal effects of Z

on fitness can then be written as

Scausal,AZ = σ2
AZ

ηZ . (24)

This represents the portion of the change in genetic values

for Z within a generation that arises due to the causal effect of Z

on fitness, rather than by spurious mechanisms. Moreover, using

equation (12), we can further decompose this quantity into con-

tributions arising from the causal effects of Z on fitness via each

of its children:

Scausal,AZ = σ2
AZ

∑
C∈ch(Z )

ηZ |C . (25)
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Empirical Applications
In a companion article, we apply the above method to study selec-

tion on body mass and early pregnancy in Soay sheep (Ovis aries)

(Janeiro et al. pre-print). We also provide a worked example in

the Appendix to this article, where we analyze simulated data in-

spired by the life history of the marsupial genus Antechinus.

Discussion
We have presented general principles for decomposing selection

into components arising via distinct causal pathways. In partic-

ular, our approach allows researchers to calculate selection via

intermediate traits such as fitness components, which leads nat-

urally to operational definitions of concepts like sexual selec-

tion (i.e., selection via mating or fertilization success), fecundity

selection, and longevity selection. Such nuanced causal break-

downs are not provided by classical approaches based on selec-

tion differentials and selection gradients alone. The framework

we present is very general, in that it accommodates arbitrary trait-

fitness relationships and arbitrary distributions of variables. It is

not necessary that researchers know the shapes of such relation-

ships or distributions in advance. Rather, each endogenous vari-

able in the causal diagram can be modeled using any appropriate

regression technique, including semiparametric methods that re-

quire few statistical assumptions (Schluter 1988; Morrissey and

Sakrejda 2013; Morrissey 2014a; Lefcheck 2016; Wood 2017).

Our approach is consequently much more flexible than classical

path analyses, which assume that the relationships between ef-

fects and their causes are linear and additive (Wright 1921, 1934;

Arnold and Duvall 1994; Frank 1997). The framework presented

here complements that of Morrissey (2015) by estimating not

only the extended selection gradients, but also the path-specific

selection gradients via causally intermediate traits. It can also be

used to obtain path-specific decompositions of the predicted evo-

lutionary response to selection, thus integrating smoothly with

evolutionary quantitative genetics.

Very little causal knowledge can be gained from observa-

tional data alone (Rohrer 2018). However, a few judicious as-

sumptions about the qualitative nature of causal pathways of-

ten suffice to permit extensive quantitative inferences regarding

their strengths (Pearl 2009). Our method requires that the re-

searcher sketch a plausible causal diagram outlining the quali-

tative structure of the causal processes that generated their data,

including the potential presence (or assumed absence) and direc-

tion of causal effects among measured traits. In many cases, we

believe such models will be naturally suggested by a species’ life

cycle and ecology. For instance, fitness may be determined by

life history components such as survival, fecundity, and so on,

which in turn are influenced by morphological and behavioral

traits (Arnold and Duvall 1994). The causal relationships among

traits that are more distantly linked to fitness will often be less

clear. As with approaches based on selection gradients, however,

our framework allows the researcher to remain agnostic about the

causal determinants of exogenous traits. Although methods exist

to compare the plausibility of competing causal hypotheses, at

least in some circumstances, these methods are not the focus of

the current work (for details, see Pearl 2009; Kline 2016; Shipley

2016).

Like all phenotypic analyses of selection, our results hold

only in the absence of certain types of confounding variables

(i.e., unmeasured variables that causally influence two or more

measured variables). The problem of “hidden variables” is

well-known from regression-based studies of selection (e.g.,

Mitchell-Olds and Shaw 1987; Rausher 1992; Morrissey et al.

2010; Walker 2014; Reed et al. 2016; Walsh and Lynch 2018)

and is fundamentally no different here. Analyses will be im-

proved by measuring and including any obvious confounders,

to the extent that this is feasible. Although some relevant vari-

ables will inevitably be missed, the framework presented here

potentially provides a more nuanced understanding of selection

than regression-based approaches, which also assume no hidden

variables. Ultimately, information from a variety of sources, in-

cluding manipulative experiments, should be integrated together

to unambiguously resolve causal patterns.

A prime application of the theory here will be to analyzing

sexual selection. Sexual selection is usually defined as selection

arising via competition for mating or fertilization opportunities

(Andersson 1994; Shuker 2010). It can be further partitioned

into premating sexual selection, which acts via the number and

quality of mates, and postmating sexual selection, which acts

via fertilization success after mating (e.g., paternity under sperm

competition: Parker and Pizzari 2010). We currently lack general

methods to partition natural selection into sexual and nonsexual

components, and to further disentangle sexual selection into

selection via mate number, mate quality, and fertilization success

(Fitzpatrick 2015; Henshaw et al. 2018). Current approaches are

limited to quantifying multiple components of sexual selection

en bloc (Henshaw et al. 2018) or are constrained by inappropriate

assumptions of linearity and additivity (Arnold and Duvall 1994).

Decomposing the variance in fitness into pre- and postmating

components may be heuristically useful (Arnold and Wade 1984;

Rose et al. 2013; Janicke et al. 2015; Evans and Garcia-Gonzalez

2016; Marie-Orleach et al. 2016), but such decompositions are

inexact and do not indicate the extent to which fitness variance

is due to selection versus environmental effects (cf. Klug et al.

2010). The method outlined here would allow selection to be

partitioned along these constituent pathways, a goal that we will

pursue in future work.
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Although we have presented our framework in the context

of selection theory, it applies naturally to many problems where

the causal relationships among continuous variables can be rep-

resented via directed acyclic graphs (i.e., graphs with no causal

loops). Assuming there are no unmeasured confounders or other

sources of bias, the total effect of a continuous variable X on

a variable Y can be decomposed into path-specific effects via

each child of X , while controlling for other measured variables

(eq. 16). For a normally distributed variable X , the covariance

between X and Y can then be separated into causal and spurious

components, and the causal component can be decomposed into

effects arising via the direct effects of X on each of its children.

Like the causal theory that it draws from (Avin et al. 2005; Pearl

2009, 2018), our approach is consequently of broad applicability.
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Appendix
The Backdoor Criterion

Here, we briefly introduce the “backdoor criterion,” which is a

formal method for ascertaining whether controlling for a par-

ticular set of covariates is sufficient to isolate the effect of

one variable on another (see Pearl 2009 for a more extensive

treatment). We first require some further terminology. A path

from a variable X to another variable Y is sequence of traits

(X = P1 , P2, . . . , Pn = Y ) such that there is an arrow between

each adjacent pair of traits Pi and Pi+1 in the sequence. The ar-

rows may point in either direction or be double headed (in con-

trast to a “directed path,” where all arrows are single headed and

point in the same direction). A backdoor path from X to Y is

a path that begins with an arrow pointing into X (i.e., a path of

the form X ← . . .Y or X ↔ . . .Y ). Backdoor paths may gener-

ate spurious covariation between traits and must consequently be

controlled for when estimating causal effects. We say that a set of

traits B blocks a backdoor path P if and only if:

1. P contains a chain of the form Pi−1 → Pi → Pi+1 or Pi−1 ←
Pi ← Pi+1 or a fork of the form Pi−1 ← Pi → Pi+1 such that

the middle node Pi is in B, or

2. P contains a collider Pi−1 → Pi ← Pi+1 such that neither the

middle node Pi nor any of its descendants is in B.

Graphs with double-headed arrows should be evaluated by

first replacing edges of the form R↔ S with R← URS → S,
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Figure A1. Causal diagram for the worked example on antechi-

nus females. An individual’s body size B and her last date of tor-

por T influence her absolute fitnessW via their effects on her sur-

vival to breed L, and her number of matingsM and total fecundity

F if she does survive. In addition, fecundity may depend on the

(nonzero) number of matings. The covariance between body size

and the last date of torpor is not analyzed causally. Unmeasured

background variables are omitted.

where URS is an unmeasured common cause. Informally, if B
blocks a backdoor path P, then controlling for B should remove

spurious effects arising via P (see Fig. 2 in the main text for

examples).

Worked Example

Here, we illustrate our method via a hypothetical exam-

ple that was inspired by the genus Antechinus (the simu-

lated dataset and R code for this example are available on

Dryad:http://doi.org/10.5061/dryad.j0zpc86c8). Antechinus are

small carnivorous marsupials that use torpor to reduce en-

ergy consumption from late summer to early winter (Fisher

et al. 2006). They reproduce once per year in late winter or early

spring, following which most individuals die. We suppose that re-

searchers tracked female antechinus from mid-summer to the end

of the breeding season. They measured the following variables:

body size B at the beginning of the study period; the last date T at

which individuals used torpor; survival L to the beginning of the

breeding season; and the number of matings M and the fecundity

F of surviving females. Fecundity was used as an estimate of

absolute fitness, under the assumption that very few individuals

would survive to breed again. The researchers constructed a

path model of selection on body size and the date of last torpor

(Fig. A1). They supposed that both these traits might directly

affect survival, mating success and fecundity. Because only

surviving individuals can mate, we necessarily have M = 0 when

L = 0. Similarly, only mated individuals can produce offspring,

so F = 0 when L = 0. In addition, the researchers allowed for a

direct effect of the (nonzero) number of mates on fecundity.

We begin by estimating the distribution of each endoge-

nous variable, conditional on its parents, using standard regres-

sion techniques. Given that the fitting of regression models is not

the focus of the current work, we ask that readers accept that

the models we have chosen are appropriate for the dataset. Of

course, the selection of suitable models is a crucial step in any

empirical application of our method. We modeled all three in-

termediate variables (i.e., survival, fecundity, and the number of

matings) using generalized additive models (Wood 2017). We ex-

plicitly modeled mating success only for surviving individuals,

and fecundity only for those individuals that mated at least once,

because the effects of nonsurvival or zero mating are certainly

not additive with respect to other variables. To allow for nonlin-

ear relationships, the effects of all predictors (i.e., the parents of

each intermediate variable) were fitted as smooth functions using

thin plate regression splines (R package “mgcv”: Wood 2017).

Survival was modeled as a binomial variable with a logit link

function. Fecundity and the number of matings were modeled as

Poisson variables with log link functions. Absolute fitness was

estimated by F .

From these regression models, we estimated the extended

selection gradients for each trait, as well as the path-specific se-

lection gradients via survival, fecundity, and the number of mat-

ings. We write Ŵ (B, T ) for the expected value of absolute fitness

given any pair of (B, T ). Note that each of these traits constitutes

a backdoor set for the other trait. The extended selection gradient

on B (eq. 8 in the main text) can then be estimated as

ηB = 1

E (W )
lim
ε→0

EB,T

(
Ŵ (B+ ε, T )− Ŵ (B, T )

ε

)
. (A1)

In practice, this function can be closely approximated by set-

ting ε to a small value. The factor 1
E(W ) corresponds to a transfor-

mation from absolute to relative fitness, assuming that population

mean fitness is relatively insensitive to changes in an individual’s

trait values (i.e., the population is fairly large). For fixed inputs,

expected fitness Ŵ (B, T ) was estimated as

Ŵ (B, T ) = P(L = 1|B, T )
∑
M≥1

P(M|B, T, L = 1)

E(F |M, B, T, L = 1). (A2)

Each component of this equation was calculated from the

fitted generalized additive models described above. We then av-

eraged over the empirical distribution of (B, T ) to obtain ηB.

For the path-specific selection gradients, rather than work-

ing with equation (16) in the main text directly, it is more conve-

nient to rely on the underlying twin-network model (Fig. 2B in

the main text; see Supporting Information for the formal model).

Let us write ŴX (BX , B∗, T ) for the expected fitness when B has

the value BX for the purposes of influencing X , but the value B∗
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Table A1. Breakdown of selection on body size (B) and the last day of torpor (T , in days) into contributions from each modeled causal

pathway in a simulated dataset of antechinus females. Raw values are based on unstandardized traits, whereas standard values are

calculated using traits that have been standardized to have variances of one.

Measure Formula Raw value Standard value

Variance in body size σ2
B 25.00 1

Variance in torpor emergence
date

σ2
T 17.20 1

Covariance between body size
and torpor emergence date

cov(B, T ) –5.13 –0.247

Selection on
body size,
B

Path-specific selection
gradients via L, M, F

ηB|LηB|MηB|F 0.010
0.003
0.008

0.052
0.017
0.038

Extended selection gradient ηB 0.021 0.107
Linear regression selection

gradient
βLR,B 0.021 0.107

Causal components of
selection differential arising
via effects of B on L, M, F

σ2
BηB|Lσ2

BηB|Mσ2
BηB|F 0.260

0.083
0.192

0.052
0.017
0.038

Causal component of selection
differential

σ2
BηB 0.535 0.107

Direct selection (Lande and
Arnold 1983)

σ2
BβLR,B 0.534 0.107

Selection differential SB = cov(B, w) 0.455 0.091
Selection on

last torpor
date, T

Path-specific selection
gradients via L, M, F

ηT |LηT |MηT |F 0.016
0.001
–0.002

0.066
0.002
–0.006

Extended selection gradient ηT 0.015 0.062
Linear regression selection

gradient
βLR,T 0.015 0.064

Causal components of
selection differential arising
via effects of T on L, M, F

σ2
T ηT |Lσ2

T ηT |Mσ2
T ηT |F 0.273

0.009
–0.027

0.066
0.002
–0.006

Causal component of selection
differential

σ2
T ηT 0.256 0.062

Direct selection (Lande and
Arnold 1983)

σ2
T βLR,T 0.264 0.064

Selection differential ST = cov(T, w) 0.155 0.037

for influencing all other children of B. The X -specific selection

gradient can then be estimated as

ηB|X = 1

E (W )
lim
ε→0

EB,T

(
ŴX (B+ ε, B, T )− ŴX (B, B, T )

ε

)
.(A3)

The quantities ŴX (BX , B∗, T ) are straightforward to esti-

mate from our regression models. For instance, to calculate the

survival-specific selection gradient on body size, we used

ŴL (BL, B∗, T ) = P(L = 1|BL, T )
∑
M≥1

P (M|B∗, T, L = 1)

E (F |M, B∗, T, L = 1) . (A4)

We then averaged over the empirical distribution of (B, T )

to obtain ηB|L . Last, noting that body size is approximately nor-

mal in distribution, we estimated the component of the selection

differential arising due to the causal effect of body size on fitness

via survival as σ2
BηB|L (Table A1). We used analogous calcula-

tions to estimate path-specific selection on body size and torpor

date via survival, mating success, and fecundity.

Results

Our analysis shows that there is weak overall selection on both

body size and the date of last torpor (selection differentials in Ta-

ble A1). Selection led to an increase of almost half a gram in body

size (SB = 0.455), and an extension of torpor by around one sixth

of a day ( ST = 0.155). The joint distribution of body size and the
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date of last torpor was approximately bivariate normal. Accord-

ingly, our estimates of the extended selection gradients on these

traits were very close to the linear regression selection gradients

βLR. For both traits, causal selection for larger trait values (i.e.,

for larger body size or later emergence from torpor) was offset

by spurious selection for smaller trait values, which arose due to

the negative covariance between body size and the date of last

torpor.

Selection on body size occurred mainly via its effect on sur-

vival and fecundity, with selection via mating success contribut-

ing only modestly to overall selection. Selection on the date of

last torpor occurred almost exclusively via its effect on survival,

with individuals that emerged late from torpor being more likely

to survive until the beginning of the breeding season. Surviving

individuals had similar mating success and fecundity, regardless

of when they emerged from torpor.
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