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Abstract 

 
A family of hybrid Perovskite-oxalates (“Perovzalates”) of general composition AILi3MII(C2O4)3 (A = K+, 

Rb+, Cs+; M = Fe2+, Co2+, Ni2+) are presented. All eight new compounds are isostructural with the 

previously reported examples NH4Li3Fe(C2O4)3 and KLi3Fe(C2O4)3, crystallising in the rhombohedral 

space group R𝟑̅c, with a ~11.3 - 11.6 Å, c ~14.8 – 15.2 Å. In contrast to other families of “hybrid 

perovskites” such as the formates, these compounds can be regarded as closer structural relatives to 

inorganic (oxide) perovskites, in the sense that they contain direct linkages of the octahedral sites via 

bridging oxygen atoms (of the oxalate groups). It is of note, therefore, that monoatomic cations as 

large as Cs+ can be incorporated into the perovskite-like A sites this structures type, which is not 

feasible in traditional ABO3 perovskites; indeed CsLi3Ni(C2O4)3 appears to exhibit the ‘mostly tightly 

bound’ 12-coordinate Cs+  ion in an oxide environment, according to a bond valence analysis. 

 

Introduction  

Perovskites (general formula ABX3) have dominated the field of functional materials and exhibit a wide 

range of properties including superconductivity, ferroelectricity and magnetism.1 The introduction of 

organic components into the traditional perovskite structure could improve both the toxicity and 

sustainability of the compounds and introduce greater structural diversity.  Hybrid perovskites, which 

may contain organic moieties at either the A, B or X sites, or further combinations of these, are already 

a highly-studied group of materials and there are many examples of such compounds with interesting 

properties.2,3 Examples of complex anions that may be incorporated at the perovskite-like X site are 

cyanide, formate, azide, tetrahydroborate and hypophosphite.4–7  Whilst the oxalate ligand is already 

extensively used in coordination polymers, its ability to form perovskite-like structures has only 

recently been recognised in the composition KLi3Fe(C2O4)3.8 Here, we extend our studies of this 

unusual structure type by showing that substitution of K by Rb or Cs and of Fe by Co or Ni is feasible. 

Hence, eight new compositions, AILi3MII(C2O4)3 (A = K+, Rb+, Cs+; M = Fe2+, Co2+, Ni2+), are reported and 

their structural variations are discussed. 

Experimental  

Crystalline samples were synthesised via a hydrothermal method from commercially available 

reagents. The reactions mixtures were heated between 160 and 220 ˚C in a Teflon lined autoclave for 

3 to 6 days. The resultant products were subsequently filtered and dried overnight at 50 ˚C prior to 

analysis by X-ray diffraction. Reactions typically produced a mixture of phases, and several variants of 
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composition/temperature/solvent were explored to increase yield and purity. Further synthetic 

details are provide in ESI. Nevertheless, suitable single crystals could be isolated using an optical 

microscope and X-ray diffraction data were collected on a Rigaku SCXmini desktop instrument using 

Mo Kα1 radiation (λ = 0.7107 Å) at 173 K. The data were processed using Rigaku CrystalClear software 

and were solved and refined using the SHELX package within the WINGX program.9–11 Powder X-ray 

diffraction data were collected on a PANalytical Empyrean diffractometer using Cu Kα1 radiation (λ = 

1.5406 Å) at ambient temperature. The data were collected between 5 - 70˚ for one hour, and 

subsequently analysed using the Rietveld method using GSAS and the Expgui interface.12,13 Magnetic 

data were collected on a quantum design MPMS SQUID instrument between 300 K and 2 K. Data were 

collected at zero field and at 100 Oe at 10 K intervals between 300 and 20 K and 2 K increments 

between 20 K and 2 K. Samples initially underwent a zero field cool (ZFC) followed by a field 

heating/cooling cycle (FC).   

Results and discussion 

 
All eight new compositions crystallise in the same structure type, isotypic with KLi3Fe(C2O4)3,8 in space 

group R 3̅ c (Table 1). In fact, the first compound reported with this structure type was 

NH4Li3Fe(C2O4)3,14 but the relationship to the perovskite structure was not noted in that work. The 

direct relationship to the “cubic” ABX3 perovskite structure can be most clearly seen if the carbon 

atoms of the oxalate moiety are regarded as secondary features, both in the stoichiometry of the 

compound and in the corresponding structural description. Thus, Figure 1 shows the octahedral 

framework of an idealised cubic perovskite, compared to the corresponding framework in the 

perovzalate family. The stoichiometry of perovzalate may be written [AI(vac)3]A[Li3MII]B[C6O12]X to 

emphasise the simultaneous 1:3 ordering of AI/vacancies at the A-site and MII/Li at the B-site in an 

idealised “A4B4X12” quadruple perovskite. 

 



Table 1 Crystallographic data and refinement details  

Formula KLi3Co(C2O4)3 KLi3Ni(C2O4)3 RbLi3Fe(C2O4)3 RbLi3Co(C2O4)3 RbLi3Ni(C2O4)3 CsLi3Fe(C2O4)3 CsLi3Co(C2O4)3 CsLi3Ni(C2O4)3 

Formula Weight 382.91 382.69 426.20 429.28 429.06 473.64 476.72 476.50 

Density (g cm-3) 2.277 2.304 2.465 2.515 2.542 2.666 2.713 2.740 

Crystal System Trigonal Trigonal Trigonal Trigonal Trigonal Trigonal Trigonal Trigonal 

Space Group R3̅c R3̅c R3̅c R3̅c R3̅c R3̅c R3̅c R3̅c 

a/Å 11.3215(9) 11.3071(8) 11.4780(8) 11.4019(8) 11.3796(7) 11.6046(8) 11.5264(8) 11.4908(8) 

b/Å 11.3215(9) 11.3071(8) 11.4780(8) 11.4019(8) 11.3796(7) 11.6046(8) 11.5264(8) 11.4908(8) 

c/Å 15.0942(13) 14.9434(12) 15.1001(12) 15.1029(12) 14.9962(10) 15.1779(12) 15.2164(1) 15.1534(10) 

α(˚) 90 90 90 90 90 90 90 90 

β(˚) 90 90 90 90 90 90 90 90 

γ(˚) 120 120 120 120 120 120 120 120 

V/Å3 1675.5(3) 1654.6(3) 1722.8(3) 1700.4(3) 1681.8(2) 1770.1(3) 1750.8(3) 1732.8(3) 

Z 6 6 6 6 6 6 6 6 

Measured Ref 5415 5246 5535 5449 5226 5297 5481 5412 

Independent Ref 
436 [R(int) = 

0.1083] 

426 [R(int) = 

0.0432] 

446 [R(int) = 

0.0542] 

444 [R(int) = 

0.0803] 

441 [R(int) = 

0.0747] 

447 [R(int) = 

0.0994] 

444 [R(int) = 

0.0439] 

442 [R(int) = 

0.0384] 

Refined 

Parameter 
37 37 37 37 37 37 37 27 

GOOF 0.631 0.711 0.815 0.610 0.876 1.145 0.853 0.935 

Final R Indices 

(I > 2σ(I)) 

R1 = 0.0329, 

wR2 = 0.0808 

R1 = 0.0216, 

wR2 = 0.0748 

R1 = 0.0251, 

wR2 = 0.0886 

R1 = 0.0274, 

wR2 = 0.0736 

R1 = 0.0328, 

wR2 = 0.1025 

R1 = 0.0346, 

wR2 = 0.1153 

R1 = 0.0202, 

wR2 = 0.0920 

R1 = 0.0229, 

wR2 = 0.1012 



        
 

Figure 1. Hypothetical “cubic” perovskite structure incorporating simultaneous 1:3 cation ordering at 

both the B and A sites (left) and the corresponding observed perovzalate structure (right). LiO6 

octahedral are shaded blue, MIIO6 octahedra brown and AI cations purple. Note that there are direct 

B-O-B links mediated via the oxalate groups. 

 

The particular arrangement of simultaneous 1:3 cation ordering at both the A and B perovskite sites 

has no precedent in traditional perovskite chemistry.15 The closest examples are the CaCu3Ti4O12 

structure type,16 having 1:3 A-site ordering and derivatives such as CaCu3Fe2Sb2O12, which also has 1:1 

B-site order.17 Further insight into the nature of this ordering pattern can be gleaned from examining 

the local coordination around each of the crystallographically-distinct A-sites. Figure 2 compares the 

generic cubic perovskite unit cell, with A at the body-centre position, B at the cell corners and X at 

each cell edge, with the corresponding pseudo-cubes in perovzalate. It can be seen that there are two 

distinct types of “cube” in perovzalate. In common with perovskite itself, both are surrounded by eight 

corner-shared BO6 octahedra, with two of the B-sites being occupied by MII (across a body-diagonal), 

but whereas those with AI at the centre have a fairly conventional environment, the ones with 

vacancies at the centre are “capped” across two opposite cube faces by oxalate moieties. This feature 

itself is obviously incompatible with occupancy of these particular cubes by any typical A-site cation, 

as it would lead to unfavourable A-carbon contacts. This drives the specific 1:3 ordering observed. The 

asymmetric unit contains one of each cation type, each on a special position in space group R3̅c 

(hexagonal setting) with Wyckoff positions/site symmetries: AI (6b, 3̅ ); MII (6a, 32); Li (18e, .2). 

Resulting bond lengths, angles and bond valence sums (BVS)18 for each composition are given in Table 

2.  The local coordination environments around the AI and MII sites are shown in Figure 3.  

 



 
Figure 2. Comparison of perovskite A sites (a) cubic SrTiO3, (b) A site of AILi3MII(C2O4)3 and (c) vacant 

site of AILi3MII(C2O4)3, trans-capped by oxalate groups. 

 

 
Figure 3. Local coordination environments of AI (left) and MII (right) of perovzalate AILi3MII(C2O4)3. AI 

cations are purple, MII cations blue, oxygen atoms red and carbon atoms black. 

 

Naturally, as the absolute and relative sizes of the three cationic species varies, structural distortions 

are also influenced. The Li coordination environment, however, changes little across the series, and 

its bond valence is close to ideal. The varying size of the MII site results in systematically reduced ‘bite’ 

angles for the oxalate ligand versus increasing MII size, for each series, AI = K, Rb, Cs (Figure 4). This 

results in more “distorted” MO6 octahedra, as quantified by a conventional distortion index, δ2,  

𝛿2 =  
1

11
∑(𝜃𝑖 − 90)2 (Table 3), although the LiO6 octahedra are significantly more distorted in each 

case.  The most dramatic, and perhaps surprising, structural effect, however, is in the nature of 

bonding at the AI sites. Taking each as 12-coordinate, the bond valence sum at AI increases 

dramatically with ionic size, such that Cs+ has BVS values far in excess of those normally observed. In 

each case, the mean Cs-O bond length is well below that found in the comprehensive study of Gagné19 

(mean CsXII-O = 3.377 Å). Gagné quotes a minimum mean bond length of 3.207 Å for CsXII-O whereas 

the mean Cs-O bond length in CsLi3Ni(C2O4)3
 is only 3.155 Å, and the corresponding BVS of Cs in 

CsLi3Ni(C2O4)3
 is 1.44 valence units (v.u.) using Gagné’s revised bond valence parameters for CsXII-O19, 

and as high as 1.64 v.u. using Brese’s parameters18.  Indeed Gagné’s full list of compounds containing 

CsO12 polyhedra contains only five compounds with their six shortest Cs-O bond of the order of ~3.12 



Å or lower. Most of these have their next six Cs-O bonds considerably longer. Of note are the 

compounds Cs2PbCu(NO2)6
20 and CsNa3Li12(GeO4)4,21 which appear to have the highest BVS for CsO12 

environments amongst previously reported, well-determined structures: viz., 1.32 and 1.35 v.u., 

respectively, using Gagné’s BV parameters. Other Cs oxalates, for example CsHC2O4
22 (BVS for CsXII-O 

= 1.13 v.u.), do not show such extreme over-bonding of Cs. A fuller list of calculated Cs BVS values 

from Gagné’s list is provided in ESI. 

 

 
Figure 4. Variation of O-M-O bite angles (˚) of perovzalates (AILi3MII(C2O4)3) with AI and MII cations  

 

Table 3. Distortion parameters, δ2, for the Li and M sites in (AILi3MII(C2O4)3) 

Alkali Metal  ALi3Fe(C2O4)3 ALi3Co(C2O4)3 ALi3Ni(C2O4)3 

K 
MII 47.94 32.63 21.24 
Li 196.8 195.1 194.1 

     

Rb 
MII 49.44 32.64 22.16 
Li 206.1 202.2 202.4 

     

Cs 
MII 54.41 33.99 23.83 
Li 222.7 218.3 218.0 

 

An additional measure of the bonding at the A and B sites in perovskites is the tolerance factor (t). 

These are shown for the present family in Table 4 (calculated using Shannon’s ionic radii23 for 12-

ccordinate AI and 6-coordinate Li, MII, O2-) . As can be seen, the potassium-containing members of this 

family fall within the reasonably allowed tolerance factor limits seen in conventional oxides 

perovskites, whereas the Rb and Cs derivatives lie well above the ideal value of t = 1. In the case of 

conventional oxide perovskites the “cubic” perovskite structure would be unstable for such high t 

values, and preferential formation of a hexagonal perovskite or other structure type would occur. 

Apparently in this family the perovskite-like octahedral framework is further stabilised by the 

additional influence of the bridging oxalate moieties, despite the compressive strain at the large A-

site cations. We note that there are no examples of significant Rb or Cs incorporation into cubic ABO3 

perovskites, whereas such structures do exist for the corresponding fluorides, where the divalent (i.e. 

relatively large) cation on the B-site permits the incorporation of a larger A-site cation. Thus, CsCaF3 (t 

= 0.98) adopts the cubic perovskite structure, whereas CsNiF3 (t = 1.13) adopts a hexagonal (2H) 



perovskite structure. Cs+ represents the largest available monatomic cation. In order to “push” the 

geometric limits of the present structure type we attempted reactions aimed at preparing analogues 

with larger (e.g. methylammonium) or smaller (Na+) cations at the A-site. So far, this has been 

unsuccessful, suggesting a stability region incorporating only K, Rb or Cs at the A-site in the perovzalate 

family. 

 

Table 4. Tolerance factors of the perovzalate compounds (AILi3MII(C2O4)3) 

Alkali Metal ALi3Fe(C2O4)3 ALi3Co(C2O4)3 ALi3Ni(C2O4)3 

K 1.000 1.004 1.010 
    

Rb 1.026 1.031 1.037 
    

Cs 1.080 1.084 1.091 

 

 

Preliminary magnetic measurements were carried out on several samples that exhibited good phase 

purity. The 1/ versus T data for two samples are shown in Figure 5, with a linear Curie-Weiss fit in 

the region 150 – 300 K. Both samples show no evidence of magnetic ordering down to 2 K, perhaps 

not surprising for such magnetically-dilute systems. Derived parameters for KLi3Co(C2O4)3 and 

KLi3Ni(C2O4)3, respectively are  = -2.00 K, -25.0 K; C = 2.899 cm3 mol-1, C = 1.635 cm3 mol-1; eff = 4.815 

B, 3.62 B, both of which are within the expected range for the high-spin divalent cations.24 

 

         

Figure 5. Magnetisation data (1/ versus T) for (left) KLi3Co(C2O4)3 and (right) KLi3Ni(C2O4)3 

 

 

 

 

 

 

 
 



Table 2 Bond lengths (Å) and bond valence sums (valence units)18 derived from single crystal data collected at 173 K 
 KLi3Co(C2O4)3 KLi3Ni(C2O4)3 RbLi3Fe(C2O4)3 RbLi3Co(C2O4)3 RbLi3Ni(C2O4)3 CsLi3Fe(C2O4)3 CsLi3Co(C2O4)3 CsLi3Ni(C2O4)3 

Li-O 2.019(6) × 2 2.020(3) × 2 2.024(6) × 2 2.029(7) × 2 2.023(6) × 2 2.032(7) × 2 2.038(5) × 2 2.042(5) × 2 

 2.130(3) × 2 2.1344(14) × 2 2.138(3) × 2 2.147(3) × 2 2.161(3) × 2 2.177(4) × 2 2.185(3) × 2 2.197(3) × 2 

 2.165(6) × 2 2.152(3) × 2 2.196(6) × 2 2.178(6) × 2 2.174(5) × 2 2.230(7) × 2 2.215(5) × 2 2.203(5) × 2 

BVS 1.08 1.09 1.05 1.05 1.04 0.98 0.98 0.97 

         
M-O 2.083(2) × 6 2.0523(10) × 6 2.127(2) × 6 2.089(2) × 6 2.053(2) × 6 2.132(3) × 6 2.095(2) × 6 2.059(2) × 6 

BVS 2.09 2.16 2.07 2.05 2.16 2.05 2.02 2.13 

         
K-O 3.007(2) ×6 3.0179(9) × 6 3.057(2) × 6 3.048(2) × 6 3.0560(17) × 6 3.1228(19) × 6 3.1199(15) × 6 3.1240(17) × 6 

 3.152(2) × 6 3.1215(11) × 6 3.193(2) × 6 3.164(2) × 6 3.139(2) × 6 3.234(4) × 6 3.207(2) × 6 3.186(2) × 6 

BVS 0.94 0.96 1.19 1.24 1.27 1.55 1.61 1.64 



 

 
 

 
Conclusions  
 
We have presented a family of hybrid perovskite-related oxalates (“Perovzalates”) of general 
composition AILi3MII(C2O4)3 (A = K+, Rb+, Cs+; M = Fe2+, Co2+, Ni2+). All compounds are isostructural, with 
rhomobohedral symmetry, and can be regarded as derived from the traditional oxide perovskite 
structure, ABO3, by replacement of oxide ligands by oxalate groups with concomitant ordering of 
K+/vacancies at the A site and Li/MII at the B-site.  The ordering correlates with accommodation of the 
oxalate groups, which effectively “cap” the opposite faces of unoccupied A-site cubes. A particularly 
unusual feature of this family is that cations as large as Cs+ can be accommodated at the perovskite-
like  A-site; a phenomenon which has not been seen in traditional oxide perovskites. In fact, existing 
data suggest that CsLi3Ni(C2O4)3 sets a “world record” for the most tightly bound 12-coordinate 
caesium atom in an oxide environment. 
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