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Igor Marković Abstract

| Abstract
This thesis presents the study of electronic structure of two materials with
strong spin-orbit coupling using angle-resolved photoemission spectroscopy
(ARPES) experiments and density-functional theory (DFT) band calcula-
tions. The two materials are NbGeSb and Ca3Ru2O7, which host weak and
strong electronic interactions, respectively. While at first glance they seem
rather disparate, I will show in both cases how novel phenomena emerge
from the interplay of spin-orbit coupling and the crystal symmetries.

In NbGeSb, I combine insights from spin-integrated and spin-resolved
ARPES measurements with DFT slab calculations to reveal how band in-
version of two pairs of spin-orbit coupled surface states along the edge of
the Brillouin zone results in a peculiar crossing structure with two protected
and two asymmetrically gapped crossing points. I show how this is caused
by the presence of a mirror symmetry line assigning definite mirror parity
to orbital and spin angular momentum of the bands. This leads to a low-
energy description of the crossing points equivalent to a two-dimensional
Weyl equation, establishing them as 2D analogues of Weyl points.

In Ca3Ru2O7, on the other hand, spin-orbit coupling provides a link
between the electronic structure, the underlying antiferromagnetic order
and the inherent antipolar distortion in the crystal structure. Our results
reveal that a known structural and spin reorientation transition is caused
by a spin-orbit derived gapping of a large Fermi surface. The hybridisation
term couples the magnetic moment direction with the antipolar distortion
of the crystal structure, and is only unlocked when the resulting electronic
energy gain becomes enough to overcome the cost of spin reorientations.

These findings together highlight the abundance of possibilities for novel
phenomena arising from the interplay of spin-orbit coupling and crystal
symmetries in quantum materials.
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Igor Marković 1 Introduction

1 | Introduction
Much of the research in condensed matter physics in the recent years is
being done under the umbrella term of quantum materials [1–5], which
have captured the interest of the community both from the point of view
of fundamental understanding of the cornucopia of emergent phenomena
in condensed matter, as well as the potential technological applications.
New quantum phases of matter are being discovered and studied that are a
result of the topology and entanglement properties of the electronic wave-
functions of the system in question, and some well known examples include:
superconductors [6–8], where the electronic wavefunction becomes a macro-
scopic object; topological insulators and semimetals [9–11], in which the
wavefunction develops non-trivial topology which differs from that of an
atomic insulator; predictions of topological superconductors [10, 12], which
combine these two properties and are expected to generate a condensed
matter realisation of Majorana fermions, long predicted and sought after
in high-energy physics; non-collinear magnets [13, 14], where the spins are
entangled even into topologically non-trivial textures such as skyrmion lat-
tices [15, 16]; two-dimensional magnetism recently discovered in van der
Waals materials [17–19], contrary to conventional expectations; quantum
spin-liquids [20] and spin-ice [21] materials, and many more... As these
effects concern the electronic wavefunctions in the materials, the potential
applications of the quantum phenomena in materials is mostly oriented to-
wards improvements of the performance of electronic devices. They extend
our utilisation of the electron’s degrees of freedom in spintronics [22, 23],
valleytronics [24] and twistronics [25], or even rebuild our approach to elec-
tronics and computation from the ground up, in the quest for quantum
computation [26].

A very important aspect dictating the properties of the electronic be-
haviour in materials is spin-orbit coupling. It is a relativistic effect con-
necting the electron’s spin and orbital angular momenta in an atom, and
is typically treated as a weak perturbation in light elements. However, it’s
strength increases with the size of the atom, and can have considerable influ-
ence on the electronic structure where heavy elements are involved [27, 28].
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1 Introduction Igor Marković

Spin polarisation of 2D electronic states at surfaces and interfaces medi-
ated by spin-orbit coupling has opened a large field of research [29–31]. A
number of spin-orbit related phenomena have been studied in the f -electron
systems [32], and the majority of work done in the field of topological in-
sulators [9, 10] relies on strong spin-orbit coupling as one of the key tun-
ing parameters. The way spin-orbit coupling acts is closely related to the
symmetry of the environment, and often involves the breaking of inversion
symmetry [33–38]. The details of how spin-orbit coupling is inter-related to
crystal symmetries will be the central theme of this thesis.

A wide variety of the phenomena in quantum materials also arises as
a result of electronic correlations, from formation of local moments and
magnetism, to correlated metallic states, quantum criticality and uncon-
ventional superconductivity [39, 40]. The correlated behaviour is partic-
ularly pronounced in d-electron systems, and typically represented in the
Mott mechanism of metal-insulator transitions [39, 41]. The strength of
interactions there is set by the on-site Hubbard repulsion term for electrons
in the same orbital, U . However, it has been shown that Hund’s on-site
interaction, JH, between electrons in different orbitals, can also provide a
route to strong correlation effects [40]. When these potential terms are
larger than the kinetic term, given by the bandwidth, W , strong correlation
effects are expected to manifest. The strength of the interaction, U/W , is
generally observed to decrease with increased number of shells in the elec-
tronic structure of the constituent elements, as the valence orbitals become
more extended. However, at the same time the spin-orbit interaction shows
a strong increase, and it has been shown that this can offset the reduction in
interaction strength, allowing strong correlations to develop in the strongly
spin-orbit coupled regime [27, 28, 42, 43].

The majority of phenomena which are of either fundamental or techno-
logical interest in quantum materials are closely related to their electronic
structure. As a method which allows direct insight into the electronic struc-
ture of crystalline materials, angle-resolved photoemission spectroscopy has
been established as one of the foremost techniques in the investigation quan-
tum materials [6, 44–47]. The combination with theoretical approaches for
modelling and ab initio calculations of the electronic structure provides an
indispensable route to exploration and understanding of quantum materi-
als. In this thesis, I use this approach to study two materials hosting strong
spin-orbit coupling and different degrees of electronic interactions, and seek

2



Igor Marković 1 Introduction

to uncover the roles these, and their interplay with crystal symmetries, have
in shaping the underlying electronic structures.

My thesis is structured as follows. In Chapter 2, I outline the rele-
vant principles of electronic structure theory in crystalline solids. I describe
the construction of electronic band theory from the nearly free electron,
and the tight-binding perspectives in Section 2.1, before first describing
the effects that crystal symmetries and spin-orbit coupling can have on the
band structure in Section 2.2, and introducing electronic interactions via
Landau’s Fermi liquid theory in Section 2.3. In Section 2.4 I show how
most common types of interactions, including the electron-electron Fermi
liquid model, modify the electronic structure of materials. Chapter 3 is
dedicated to the two main methods I have used in this thesis. The theory
and the experimental realisation of spin- and angle-resolved photoemission
spectroscopy is described in Section 3.1, along with a comment on the most
common data analysis techniques. A brief overview of density-functional
theory calculations is given in Section 3.2, focused on band structure cal-
culations. Chapters 4 and 5 outline the studies of NbGeSb and Ca3Ru2O7,
respectively. In both Chapters I include an introduction specific to the ma-
terial studied, before describing and discussing the results. I conclude the
Chapters with a brief outlook on the potential implications of these results
within the broader context of quantum materials. Finally, in Chapter 6 I
provide an overview of the presented results and some general concluding
remarks.
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Igor Marković 2 Electrons in solids

2 | Electrons in solids

2.1 Band structure

The main principle of the behaviour of electrons in crystalline solids is the
formation of bands [48–50]. This is a direct consequence of the periodic
nature of crystals, and can be demonstrated by two models which construct
the band structure of solids from opposite extremes of electronic localisation:
the nearly free electron (NFE) model and the tight-binding (TB) model,
covered in detail elsewhere. I will give a brief introduction to the problem,
and highlight the points particularly relevant to my thesis.

The NFE model [48–50] takes as a starting point a completely free elec-

tron, with the parabolic dispersion given by E =
~2k2

2me

, where ~ is the

reduced Planck constant, me is the free electron mass, and E and k are the
energy and the momentum of the electron, respectively. Introduction of a
weak periodic potential in real space mimics the electric potential of the
crystal lattice. The plane-wave states scatter from it in Bragg reflections

E

kGG/20-G/2-G

c
E

kGG/20-G/2-G

b
E

k

a

Figure 2.1: Nearly free electron model. a Dispersion of a completely
free 1D electron. b,c Weak periodic potential leads to the formation of
Brillouin zones (dashed lines), and I represent the copies of the original free
electron parabola, translated by reciprocal lattice vectors G, by the thin
green lines. The allowed bands (purple dispersion lines) and forbidden gaps
in energy (grey) are shown in the extended (b), and repeated (c) Brillouin
zone schemes.
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which create standing wave solutions at half-integer multiples of the recip-
rocal lattice vector, nG/2, in- and out-of-phase with the underlying weak
potential. The energies of the standing waves are therefore split by the
strength of the periodic potential, creating forbidden gaps in energy, where
there are no electronic states. The original free electron parabola is then
modified as illustrated in the extended zone scheme in Figure 2.1b. How-
ever, by Bloch’s theorem, all electronic properties are periodic in momentum
space as well, best illustrated in the repeated zone scheme in Figure 2.1c,
where the formation of allowed bands and forbidden gaps in the electronic
band structure is most obvious. Because of the periodicity, all information
in momentum space is contained within any single Brillouin zone, and so
we can restrict ourselves to considering only the first zone, 〈−G/2,G/2〉, in
Figure 2.1c, which defines the reduced zone scheme. Despite the difference
in their appearance, these pictures are equivalent, and one just needs to be
mindful of the counting of the electronic states. Done correctly, the count
is always exactly one electron per real-space unit cell for each singly de-
generate band in a Brillouin zone, or two electrons for each spin-degenerate
band.

The tight-binding model [48–50], on the other hand, takes as a starting
point an electron fully localised at an isolated atom in space. We can
then bring many such atoms together one by one, arranging them into the
periodic lattice and allowing for electrons to hop between atoms due to finite
spatial overlap of the original atomic orbitals. This process is parametrised
by a hopping integral t as depicted in Figure 2.2a for a one-dimensional
chain. We can think of the whole crystal as a large molecule [51], where
the electronic states separate in energy from their atomic level, ε0, with
varying degrees of bonding and anti-bonding character. The separation of
the most bonding and the most anti-bonding state will not vary much with
the number of atoms, and is given by the extent of the orbital overlap as
W = 4t in terms of the hopping parameter (Figure 2.2b). In the limit of
thermodynamically many atoms in the crystal, the electronic states form
quasi-continuous bands of states of width W , showing a cosine dispersion
illustrated in Figure 2.2c. We again observe the simple state-counting rule,
that one singly degenerate atomic state per unit cell corresponds to one
fully filled singly degenerate band in a Brillouin zone.

Beyond this basic introduction to band theory, the tight-binding method
provides an extremely powerful framework for intuitive insight into elec-
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a

Figure 2.2: Tight-binding model. a A model for 1D periodic chain of
atoms with nearest neighbour hopping. b The energy levels of the generated
delocalised states are modified due to the hopping. In the limit of ∞-many
atoms in the chain, they form a continuous band of states with a cosine
dispersion. The total separation of the highest and lowest energy states,
i.e. the degree of bonding or bandwidth, does not depend on the number of
atoms in the chain, just on the hopping integral, W = 4t. c In momentum
space these states are distributed in a cosine dispersion.

tronic structure [52, 53]. Setting up an appropriate arrangement of orbitals
and hopping parameters between them [54, 55], we can in principle model
any real system to an arbitrary degree of complexity/simplicity. Taking
multiple orbitals per lattice site results in that number of bands. Their
relative positions in energy (given by their respective atomic energy levels
ε0) and their bandwidths (W , given by the atomic orbital overlap, i.e. the
hopping strength) determine whether there will be forbidden energy gaps
between them, or if the bands will overlap. By allowing hopping between
different types of orbitals, the model can develop hybridisations and mixing
of orbital characters in the resulting bands.

In the nearly free electron limit, the bands are broad and the eigenstates
resemble plane waves since the electrons are highly delocalised, while in the
tight-binding limit the bandwidths are relatively modest, and the eigen-
states have considerable atomic-orbital character [48–50]. However, these
two pictures are adiabatically connected by tuning the degree of electron
localisation, or equivalently, the width of the bands. Both approaches have
found uses and applicability in real quantum materials: e.g. the nearly free
electrons in metallic delafossite oxides [56], or the tight-binding approach
in modelling the bands from structural clusters [51, 53, 57].

These basic principles underpin the general band nature of the electronic
states in solids, and are sufficient to describe many systems in condensed
matter. However, other phenomena will impose restrictions and determine
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the relationships between the parameters of these models. Crystal sym-
metries, spin-orbit coupling and electronic interactions will be of particular
importance to the results presented in this thesis.

2.2 Spin-orbit coupling and crystal symmetries

The atomic spin-orbit effect is a relativistic correction to the energies of the
electronic states of an atom which comes from the coupling between spin
and orbital angular momenta of a state [58]. In a simple picture, it is a
phenomenon whereby electron’s spin couples to the effective magnetic field
in its rest frame, as it moves in the electric potential of the nucleus. This
effective magnetic field can be written in terms of the electron’s orbital
angular momentum, L, and the gradient of the potential of the nucleus,
∇V . Zeeman coupling with the spin S of the electron then gives rise to
a Hamiltonian term proportional to L · S. With this term, Lz and Sz are
no longer good quantum numbers, and instead the total angular momen-
tum is defined as J = L + S. The Hamiltonian is then diagonalised by
L · S = 1

2
(J2 − L2 − S2), and the total energy shift written in terms of the

respective eigenvalues is ∆ESO ∝ (j(j + 1)− l(l + 1)− s(s+ 1)) [58, 59].
The proportionality constant contains a factor of Z4, where Z is the atomic
number, making spin-orbit coupling a much more noticeable effect the bigger
the nucleus of the atom. In reality, there is a more structured dependence
on orbital n and l quantum numbers, using which detailed atomic proper-
ties, including the spin-orbit splitting of electronic levels, can be calculated
analytically [60].

The spin-orbit interaction can also affect the band structure of solids.
One way its influence can be seen is directly inherited from the atomic case,
in the shifting and splitting of the on-site energies of orbitals which would
otherwise be degenerate [48, 61]. Perhaps more interestingly though, it can
assign different energies to the spin-up and spin-down partners of the same
orbital state [60, 62]. However, in a generic situation the orbital states
tend to be degenerate in spin due to the simultaneous presence of both
time-reversal (T ) and inversion (P ) symmetries [62, 63].

In a time-reversal invariant system, any state at wavevector k has to
have a counterpart at −k with the same energy, but with opposite spin σ:

E (k, σ) = E (−k,−σ) .
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Figure 2.3: Spin-polarisation of electronic bands. Illustration of condi-
tions which are imposed on spins in band structures by: a time-reversal (T ),
and b inversion (P ) symmetries. This results in c strict spin degeneracy
when both are present in solids. The bands split into spin-up and spin-
down copies in different ways when either: d inversion, or e time-reversal is
broken. The nature of the developed spin-splitting preserves the remaining
symmetry.

In an inversion invariant system, however, any state at wavevector k has to
have a counterpart at −k with the same energy, and with the same spin σ:

E (k, σ) = E (−k, σ) .

Therefore, in any system in which both T and P are present, there can be
no spin polarisation of the bands:

E (k, σ) = E (k,−σ) .

Breaking one of these symmetries however, lifts the protection, allowing the
spin-up and spin-down bands to separate in a way that still obeys the re-
maining symmetry [63], as illustrated in Figure 2.3. Removing time-reversal,
the bands split "vertically", by a k-independent gap, such as in the case of
magnetic exchange splitting [64]. Removing inversion symmetry, on the
other hand, spin-orbit coupling leads to an energy gap linear in k, which
gives the appearance of a "lateral" splitting of the bands [65–67].

An important example of the influence of SOC in inversion-broken en-
vironments is the Rashba effect [33, 35, 68]. It is a spin-orbit coupling
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Figure 2.4: Rashba effect on 2D free electrons. a Band structure of a
two-dimensional free electron gas with Rashba spin-orbit coupling. b Spin
texture of the constant energy contours of Rashba split bands from a.

term which appears as a result of polar structural environments in solids,
e.g. as a bulk effect in wurzite structures [33] or perovskites [69], and as
a two-dimensional effect on surfaces, interfaces and heterostructures [30,
35], where a symmetry breaking field develops perpendicular to the plane.
Derivation of the Rashba Hamiltonian commonly follows an inaccurate, but
intuitive, toy model similar to the derivation of the atomic spin-orbit ef-
fect [30, 63]. Relativistic electrons moving within the symmetry-breaking
field feel an effective magnetic field in their rest frame. This effective mag-
netic field can be expressed in terms of the electron’s momentum, p, and
the direction of the symmetry-breaking field, ẑ, giving the well known ex-
pression for the Rashba Hamiltonian:

HR = −αR (σ × p) · ẑ,

where σ is the electron spin and αR is the so-called Rashba coefficient.
We can see that the obtained Rashba Hamiltonian indeed provides an

energy contribution which is linear in the electron momentum, and changes
sign with the spin orientation, as mentioned above. The effect on the band
structure in the typical case of a 2D free electron gas with Rashba cou-
pling [65–67] is demonstrated in Figure 2.4. The free electron paraboloid
splits radially by spin, as seen in Figure 2.4a, giving two concentric circular
pockets in constant energy contours. Furthermore, the form σ×p locks the
spin orientation relative to the direction of the crystal momentum, leading
to counter-rotating spin textures on the two pockets, both with winding
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number +1, as shown in Figure 2.4b.

More accurate derivations via k ·p or tight-binding approaches are con-
siderably more tedious and less transparent [63, 70–72]. They do, however,
provide some valuable insights [73]. They are capable of quantitative, not
only qualitative predictions of the effect, and more importantly for us, they
demonstrate that a macroscopic electric field is not strictly required for
the Rashba effect to take place, only the corresponding asymmetry in the
hopping parameters.

In bulk solids where inversion symmetry breaking is not unidirectional
(e.g. in the zincblende structure), a similar phenomenon takes place, known
as the Dresselhaus effect [34]. In systems of localised spin which fulfil a set
of symmetry conditions determined by Moriya [38], the spin-orbit interac-
tion can manifest by favouring spin canting via an antisymmetric exchange
term, known also as the Dzyaloshinskii-Moriya interaction [37, 38]. All
these different spin-orbit phenomena always trace back to the atomic L · S
Hamiltonian, which is reduced to their specific forms by the details of the
symmetry environment.

As mentioned above, the spin degeneracy of the electronic bands is lifted
in non-centrosymmetric crystal environments [33, 34, 62]. In the bulk, this
condition does not actually refer to the bulk space group symmetry, but
rather to the point groups of all the sites. If at least one site group is
non-centrosymmetric, spin polarisation will develop via: the Rashba effect
if there is a net site dipole field, or the Dresselhaus effect if there is only site
inversion asymmetry [36]. A crystal can exhibit antipolar ordering of intrin-
sically non-centrosymmetric structural elements within the unit cell, leading
to global restoration of inversion symmetry. Electrons behave according to
their local environment, and so the bands develop spin-polarisation within
each non-centrosymmetric structural element. This results in bands with
opposite spin polarisation, coming from structural elements of opposite po-
larity, overlapping in energy and thus removing spin polarisation form the
global band structure of the centrosymmetric unit cell. Nevertheless, indi-
vidual bands still hold hidden spin character [36, 74, 75].

This demonstrated the influence of inversion symmetry on overall exis-
tence of spin polarisation. However, other crystal symmetries, and their
combinations, can have similar effects on particular components of the
spin [76, 77]. For example, the combination of time-reversal (T ) and any
even rotational (C2n) symmetry prevents the development of spin polarisa-
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tion parallel to the rotation axis [59]. Symmetry effects can also be more
localised in reciprocal space, applying only at certain crystal momenta, k.
Since the electronic Hamiltonian inherits the full symmetry of the struc-
ture, its solutions, the bands, do as well [49, 76, 77]. That means that along
the points in reciprocal space which are invariant to a symmetry element
such as a mirror plane, rotation axis, or a nonsymmorphic glide plane and
screw axis, the bands carry a definite eigenvalue of that symmetry and can-
not hybridise with bands of orthogonal eigenvalues. As another example
of restricting spin polarisation, imagine a singly degenerate band dispersing
along a mirror plane of the Brillouin zone. All of the properties of that band
can either have even or odd parity under that mirror symmetry, and there-
fore the only allowed spin polarisation component is that perpendicular to
the mirror (i.e. along the coordinate which the mirror flips).

Such symmetry considerations, of course, apply to all of the properties
of the bands, not just the spin. In particular, all consideration for the spin
will similarly apply to orbital angular momentum, since both transform as
axial vectors under the relevant symmetries [59, 76, 77]. Related to that, as
it will prove important later in the thesis, the symmetry restrictions apply
to the orbital decomposition of the individual bands, based on how each of
the basis orbitals transforms under the given symmetry.

2.3 Interactions: Fermi liquid theory

So far, I have not considered any interactions between the electrons in a ma-
terial. At a glance, this seems like an unreasonable assumption considering
the fact that electrons are charged and interact via the Coulomb potential.
The fact that the Coulomb potential is long range, i.e. has a singularity
at wavevector q = 0, destabilises the Fermi sea by creating a cascade of
electron-hole pairs [78–80]. However, precisely due to the presence of the
many conduction electrons, the Coulomb potential is screened in metals,
making it short range in the Thomas-Fermi theory [48, 50]. This screening
removes the singular part of the interaction, but the rest remains, and in
such an environment bare electrons are no longer eigenstates of the system.
A generic framework for incorporating the remnant interactions into de-
scriptions of metals was given by Landau in his Fermi liquid theory [81–83],
of which a short description is given here following Refs. [78–80].

We can imagine constructing the new eigenstates of the interacting sys-
tem from the non-interacting bare electrons by introducing the screened
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Coulomb interaction. The crucial assumption is that this needs to be done
adiabatically, so that no phase transitions occur, and that the eigenstates of
the system are adiabatic modifications of the original bare electrons. The
interactions induce a cascade of electron-hole pair formation, such that the
Fermi sea deforms as shown in Figure 2.5b, depleting states deep below the
Fermi level, and occupying states far above it. However, there remains a
finite sharp step at the Fermi level, called the Migdal discontinuity, but now
only a fraction Z of its size in the non-interacting case. The Migdal step
is a signature that the interaction is not singular, as the Fermi sea is not
completely destabilised, and it ensures that there exists an adiabatically
continuous construction of quasiparticle states from bare electron states.
These Landau quasiparticles carry the same quantum numbers as the bare
electrons, and therefore also form a Fermi sea, but for which the Fermi step
is preserved in full, as in Figure 2.5a.

The quasiparticles are constructed as a superposition of a bare electron,
a bare electron with one electron-hole pair excitation, a bare electron with
two electron-hole pair excitations, and so on... essentially representing an
electron that generates a cascade of electron-hole pairs as it moves around
the material. This can be represented with the creation and annihilation
operators for the quasiparticles (q̂) and for the bare electrons (ĉ) as:

q̂† =
√
Zĉ† +

∑
ai,j ĉ

†ĉ†i ĉj +
∑

ai,j,m,nĉ
†ĉ†i ĉj ĉ

†
mĉn + ... (2.1)

The bare electron part comes with a weight factor of
√
Z, where Z is the

size of the Migdal discontinuity step, also known as the quasiparticle weight.
This relationship shows that as long as the quasiparticles have this direct
coherent link to the original bare electron state, the Landau’s Fermi liquid
construction is stable [80].

Only the part of the electron-electron interaction which destabilises the
Fermi sea has been removed by the construction of the Landau quasipar-
ticles. The rest is inherited as the interactions between the quasiparticles
which can therefore scatter, meaning they are not exact eigenstates of the
system and will have a finite decay rate. However, since the quasiparticle
Fermi sea is stable, Pauli’s exclusion principle provides very strong phase
space restrictions on scattering for quasiparticles near the Fermi level, sup-
pressing their decay rate. A short calculation will give us the parameter
space in which the quasiparticles live long enough that the approximation
of them being the eigenstates is justified [79, 80]. The situation used in the
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Figure 2.5: Fermi liquid theory. a,b Occupation probability functions
n(k) for bare electron states of a given k at T = 0 is shown in the: a
non-interacting, and b interacting case. c Illustration of the scattering of
a quasiparticle off the filled Fermi sea for calculation of the quasiparticle
decay rate. The Pauli phase space restriction condition is illustrated in the
inset. d Comparison of the quasiparticle excitation energy ε and its decay
rate Γ, with the intersection value of energy εFL denoting the point where
adiabatic continuity, and hence Fermi liquid theory, fails.

calculation is illustrated in Figure 2.5c.

We look at a full Fermi sea and a single quasiparticle with energy ε above
it. For this quasiparticle to decay, it needs to scatter off another quasipar-
ticle within the Fermi sea, with energy ε′. Due to the Pauli principle, both
quasiparticles need to end up above the Fermi level after scattering, since
those are the only available states. If the transferred energy in the process
is ω, these Pauli restrictions dictate that ω < ε and ε′ < ω. We see already
from this that there are less and less scattering options available (quasi-
particles with energy ε′) the closer the initial quasiparticle is to the Fermi
surface, i.e. as ε approaches zero. The decay rate can be quantified using
Fermi’s golden rule [59] integrated over all available scattering channels:

Γi =
2π

~
∑
f

|〈i|Hint|f〉|2δ(Ef − Ei), (2.2)

where |〈i|Hint|f〉| is the matrix element of the interaction, here quasiparticle-
quasiparticle scattering process, between the initial and final states, and Ei
and Ef are the energies of those states, respectively. We have made the
common assumption in the beginning that we are dealing with the screened
Coulomb interaction as Hint, which is short-ranged in real space and there-
fore long-ranged in reciprocal space. It is thus justified to approximate the
matrix element here as a constant, |V0|. This leaves us with the sum over
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the available second quasiparticles, and final states.
Transforming the sum to an integral over energy, each of these three

states generates a density of states factor, taken as the density of states at
the Fermi level, gF. The Pauli restrictions, mentioned above, strongly limit
the energy integrals over ω and ε′ by 0 6 ε′ 6 ε, giving the total energy
factor of 1

2
ε2 as seen in Figure 2.5c. Thus we obtain the decay rate of a

quasiparticle with the excitation energy ε [79, 80] as:

Γ(ε) =
π

~
|V0|2g3

Fε
2.

Two things are of note: quasiparticles exactly at the Fermi level have in-
finite lifetimes (τ = Γ−1) and are therefore exact eigenstates of the inter-
acting system; and there is always a range of energies close to the Fermi
level where the quasiparticle decay rate is lower than their excitation en-
ergy (Figure 2.5d). When the quasiparticle decay rate exceeds its energy,
the quasiparticle decays before the interactions can be fully turned on adi-
abatically, i.e. before they can be adiabatically formed from bare electron
states. This violates the basic assumption of Landau’s Fermi liquid theory,
and so it breaks down at sufficiently high energies.

Furthermore, if we consider the system at finite temperature, thermal
excitations provide a minimum excitation energy scale for the quasiparticles
as ε ∼ kBT , and thus Γ ∝ ε2 results in a T 2 temperature dependence of the
decay rate as well. In relatively pure metals at low enough temperatures
(where other scattering channels have frozen out), one can therefore observe
the effect of quasiparticle-quasiparticle scattering in transport experiments
as resistivity increases with T 2 [78–80].

As long as adiabatic continuity of the quasiparticle construction holds,
the configurational entropy of the quasiparticles is the same as that of the
bare electrons, meaning that the number of filled states of the Fermi sea, and
hence also kF, do not change. However, that is not true of their energy. The
effect that the interactions have on the energies of the states is in the Fermi
liquid theory dealt by Landau’s energy functional. On purely symmetry-
based arguments, Landau was able to show that the energy change in the
single-quasiparticle levels amounts to a simple mass renormalisation as com-
pared to the bare band, changing its velocity (while keeping the same kF).

In summary, including interactions requires us to switch to new elec-
tronic basis states called Landau quasiparticles [78–80]. They differ from
the original bare electrons in three main points: they have a coherent contri-
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bution of weight Z coming from the original bare electron and an incoherent
contribution where the bare electron is dressed in electron-hole pair excita-
tions; they have a finite decay rate which goes to zero at the Fermi level
as ∝ ω2; their dispersion is renormalised by giving them a higher effective
mass (equivalently, smaller effective Fermi velocity vF).

2.4 Single-particle spectral function

I started the discussion in this Chapter by constructing the band structure
of solids using non-interacting electrons. I then introduced interactions
and showed how the resulting Fermi liquid system is naturally described
in terms of the Landau quasiparticles [78–80]. Now we turn back and ask
what excitations of bare single particles and holes look like in such a Fermi
liquid, and how they behave. Crucial insight comes from the realisation
that Equation (2.1) can be inverted to represent the bare electron operator
in terms of the quasiparticle ones:

ĉ† =
√
Zq̂† +

∑
bi,j q̂

†q̂†i q̂j + ... (2.3)

It shows that a single particle excitation is decomposed into a coherent
quasiparticle carrying the same quantum numbers with

√
Z, and the in-

coherent part consisting of a cascade of quasiparticle-quasihole pairs [80].
This approach will in principle allow us to introduce any type of interaction
into the model, using the mathematical formalism based on the Green’s
functions [84].

A Green’s function represents the response function of a system when a
bare particle (or a hole) with momentum k is introduced into it at a point in
time and then removed at a later point, with the system evolving according
to its full Hamiltonian in between [84]. A time-Fourier transform gives a
Green’s function in frequency and momentum, G(ω,k), which can be used to
calculate the single-particle spectral function by A(ω,k) = − 1

π
ImG(ω,k),

as the poles of the Green’s function. The spectral function A(ω,k) rep-
resents the probability of adding a particle or a hole with energy ω and
momentum k to a many-body system [44, 45, 80, 84]. In essence, it there-
fore represents the electronic structure of the system. In the non-interacting
case a particle inserted into the system cannot be scattered as it is in an
eigenstate. Therefore the possibility of inserting a particle or a hole into
the system exists only exactly at the positions given by the non-interacting,
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bare band dispersion, εk. The Green’s function and the spectral function
are then given by:

G0(ω,k) =
1

ω − εk ± iη
,

A0(ω,k) = δ(ω − εk).

An infinitesimal imaginary part η in the Green’s function is just an artificial
tool to make the Fourier transform integrable, and the sign is chosen to
preserve causality depending on whether a particle or a hole was introduced.
It is set to zero at the end of the calculation.

In a general case, the particle inserted into the system is scattered by
the interaction Hamiltonian. A perturbative calculation in the interaction
leads to the famous Dyson equation:

G(ω,k) =
1

[G0(ω,k)]−1 − Σ(ω,k)
=

1

ω − εk − Σ(ω,k)
, (2.4)

which describes the interacting Green’s function as a renormalisation of
the non-interacting Green’s function, G0, by the interactions [84]. In other
words, a quasiparticle (or a quasihole) propagates through the system like
the corresponding non-interacting particle whose properties have been mod-
ified by the term Σ(ω,k), called the irreducible self energy. It is a complex
property,

Σ(ω,k) = Σ′(ω,k) + iΣ′′(ω,k),

and its real and imaginary part carry the dispersive and dissipative con-
tributions to G(ω,k) as a response function. The former modifies the dis-
persion of the band, and the latter determines the decay rate of the states
in it. The interacting Green’s function from Equation (2.4) results in the
following general form of the spectral function:

A(ω,k) = − 1

π

Σ′′(ω,k)

(ω − εk − Σ′(ω,k))2 + (Σ′′(ω,k))2 . (2.5)

It takes the form of a normalised Lorentzian peak as a function of ω, with
its centre moved from the position εk of the bare band by Σ′(ω,k), and a
full width at half maximum (FWHM) of 2Σ′′(ω,k). The Green’s function
formalism used here was for T = 0. Finite temperature Green’s functions
can be used for a more accurate description at higher temperatures, where
the temperature dependence of the interactions is encoded in the self energy.
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The width of the Fermi edge is also affected by temperature, but in most
cases a simple multiplication of A(ω,k) by the relevant Fermi-Dirac distri-
bution factor (fFD for adding a single hole to the system, and (1− fFD) for
adding a single electron) at the given temperature is sufficient to describe
this [84, 85].

2.4.1 Example interactions

The described formalism is general, capable of treating any perturbative
interaction. I list here how the electronic band structure is modified in
the presence of the three most common sources of electron scattering: im-
purities, electron-electron interactions in terms of the Fermi liquid model
described earlier, and electron-boson (i.e. phonons, magnons, ...) interac-
tion. The effect of these types of interactions on the spectral function are
illustrated in Figure 2.6.

Impurities in the crystal will only cause incoherent scattering of the
electrons. This is simply described by a self-energy term that only has a
finite imaginary term, Σ′′imp, which does nothing to the dispersion of the
band, but gives it a finite lifetime, as in Figure 2.6a [86].

I have already described electron-electron interaction within the Fermi
liquid model. The single-particle spectral function allows us to visualise the
Landau quasiparticles in terms of the bare single particle excitations as in
Equation (2.3). The coherent quasiparticle part of the excitation produces
a pole in the Green’s function with the weight Zk and a corresponding peak
in the spectral function, while the incoherent part (Ginch) only superimposes
a smooth, non-singular background (Ainch) [45, 79, 86]:

G(ω,k) = Zk
1

ω − Zk(εk + Σ′)− iZkΣ′′
+ (1− Zk)Ginch,

A(ω,k) = −Zk

π

ZkΣ′′

(ω − Zk(εk + Σ′))2 + (ZkΣ′′)2 + (1− Zk)Ainch.

For strong electron-electron interaction strengths, the quasiparticle weight,
Zk, can become fairly small, making the coherent peak of the quasiparticle
barely distinguishable from the incoherent background. We have seen that
the dispersive correction from the interactions can be seen as just a mass
enhancement, reducing the bandwidth as compared to the bare band, while
keeping the same kF. The decay rate depends on ω2 and on T 2 indepen-
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Figure 2.6: Single-particle spectral function for interacting sys-
tems. Simulated single particle spectral function, for: a simple impurity
scattering, b coherent part of the Landau quasiparticles in a Fermi liquid
for electron-electron interaction, c electron-boson interaction. The inset
demonstrates the “kink” feature, characteristic for electron-boson interac-
tions. The bare non-interacting band is overlaid for each case to better
illustrate the effect of the interactions.

dently. All together we have the self energy of the following form:

Σ(ω,k) = αω − iβ
(
ω2 + (πkBT )2

)
,

where α and β are factors that depend on the strength of the interac-
tion [79], resulting in the spectral function shown in Figure 2.6b. Quasi-
particle weight also depends on the quasiparticle-quasiparticle interaction
strength, and indeed it can be related to the mass renormalisation as Zk =

(1− ∂Σ′/∂ω|ω→εk)−1.

Interaction with bosons will introduce a specific structure into the spec-
tral function as a result of their characteristic maximal energy (Debye en-
ergy, ωD ∼ 10–1000 meV, in case of phonons [87]) typically being much
smaller than the quasiparticle bandwidth. We can model the interaction
as quasiparticles either emitting or absorbing the bosons [86]. At T = 0

the model simplifies as all bosons are in the ground state, and therefore
unavailable to be absorbed, meaning only emission processes are possible. I
will consider an excited quasiparticle above a filled Fermi sea in two energy
regimes: with its energy within ωD of the Fermi level, ω < ωD, and with its
energy larger than the characteristic boson energy, ω > ωD. In the second
case, quasiparticles can emit the full spectrum of bosons, with energies 0–
ωD, independent of their own energy, and so the scattering rate is constant
with ω. However, close to the Fermi level, the scattering phase space is
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limited by the Pauli restrictions, since the quasiparticle cannot enter the
filled Fermi sea, and so it can emit phonons only up to its own energy, ω.
This significantly reduces the scattering rate of the quasiparticles within ωD
of the Fermi level, as can be seen in Figure 2.6c. These processes renor-
malise the dispersion most strongly precisely at the characteristic energy of
the bosons, ωD, resulting in the characteristic “kink” feature [45, 86] seen in
Figure 2.6c and its inset. At finite temperatures boson absorption processes
become possible as well, which move the quasiparticle away from the Fermi
level and are hence allowed at all energies. This has the effect of making the
characteristic features become less prominent the higher the temperature of
the system.

We will see in Chapter 3 that angle-resolved photoemission spectroscopy
directly probes precisely the occupied part of the single-particle spectral
function, and therefore has access to information about the electronic struc-
ture in solids, including also both the dispersive and the dissipative effects
of the quasiparticle interactions.

20



Igor Marković 3 Methods

3 | Methods
In this Chapter I will introduce the two main techniques used in the pre-
sented work: angle-resolved photoemission spectroscopy (ARPES), as an
experimental method of imaging band structures of solids; and density-
functional theory (DFT), as a tool for theoretically predicting band struc-
tures from first principles. These two methods are commonly performed
together since the experimental results can be used to benchmark the cal-
culations, while the theory can provide information inaccessible to the mea-
surements. Combined, these techniques often yield insights about the prob-
lem which would not be possible from either one alone, as I will demonstrate
in my results.

3.1 Angle-Resolved Photoemission Spectroscopy

Photoemission spectroscopy is a general term for a family of experimental
techniques based on spectroscopy of electrons generated by the photoelectric
effect [88], in which a photon of energy hν liberates an electron from the
material. Einstein recognised the process as a manifestation of the quantum
nature of light [89]: a photon incident on a sample can be absorbed by
an electron in it, giving the electron enough energy to overcome the work
function of the material, Φ, and escape the material. If the photoelectron
is then detected in a way which measures the direction in which it was
emitted relative to the sample surface, as well as its kinetic energy (given
by angles ϑ and ϕ, and p in Figure 3.1a, respectively), the technique is
called angle-resolved photoemission spectroscopy or ARPES [85]. This is
illustrated in Figure 3.1a, and gives ARPES direct experimental access to
the momentum-resolved electronic band structure in crystalline solids. I will
first give a short introduction to relevant photoemission theory following
Hüfner [85, 86] and Damascelli [44, 45], then describe a typical ARPES
experiment, and finally the basic ARPES data analysis procedures used in
this thesis.

The photoemission itself can be thought of as a scattering process where
a particular electron from an initial many-body state |ΨN

i 〉 of N electrons
within the material is scattered into a total final state |ΨN

f 〉 consisting of
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Figure 3.1: Photoemission process overview. a Schematic of the pho-
toemission process. Incident photon, hν, liberates an electron with momen-
tum p from the sample at polar angle ϑ and azimuthal angle ϕ. Polarisation
vectors are shown for s and p linearly polarised incident light. b A schematic
illustration of the one-step model of photoemission [85].

that electron freely propagating away from the surface leaving a hole in
the now excited N − 1 electron many-body state in the material. The
probability of that scattering transition is therefore described by Fermi’s
golden rule [44, 45, 59, 85]:

wi→f =
2π

~
|〈ΨN

f |Hint|ΨN
i 〉|2δ

(
EN
f − EN

i − hν
)
, (3.1)

where Hint is the Hamiltonian of the electron-photon interaction, the δ-
function ensures conservation of the energy in the whole N -electron system.
In principle, this process occurs in a single step, where the photoelectron
is directly excited from an equilibrium Bloch state in the material to a
freely propagating state in vacuum [90]. This final state is known as the
inverse-LEED (low-energy electron diffraction) state [85, 91] and has a finite
penetration depth into the material, which provides a finite overlap with
the initial state needed for the transition. This one-step model is depicted
in Figure 3.1b. While this approach treats photoemission correctly, it is
too complex for the everyday treatment of experiments. For that reason,
photoemission is typically treated in a three-step model [92] which, although
an oversimplification of the process, is still highly successful in explaining
the experimental results [44, 45, 85].
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3.1.1 Three-step model

The three-step model separates the photoemission process into, unsurpris-
ingly, three consecutive steps which it treats independently. Firstly, the
electron is optically excited from its equilibrium to an excited state of the
system. Secondly, the excited electron travels to the surface of the crystal,
typically modelled in terms of a travelling wave packet. And thirdly, the
photoelectron needs to overcome the workfunction of the material, escaping
into the vacuum where it is detected. Typically, the whole photoemission
process is treated as instantaneous, which is known as the sudden approx-
imation. It assumes that the photoelectron leaves the sample without in-
teracting with the remaining excited N − 1 electronic sea, i.e. the excited
photohole, which considerably simplifies the description of the process. This
approximation is thought to hold well in a typical ARPES experiment, such
as those used in this thesis, but may fail in extreme regimes, e.g. for very
slow photoelectrons such as are produced in low-energy laser ARPES. I
now give a short description of the three steps [44, 45, 85], highlighting
the kinematic restrictions that are imposed at each step, as illustrated in
Figure 3.2, arriving in the end at a set of equations used to interpret exper-
imental ARPES data.

i) Optical excitation in the bulk

The first step considers the optical excitation of an electron from an equi-
librium Bloch state to an excited Bloch state of the material. A common
assumption here is that we can factorise the total wavefunctions of the
system, ΨN , from Equation (3.1) into φk, the part describing of the photo-
electron with momentum k, and ΨN−1, describing the rest [44, 45, 85]. For
the final state, we can only perform this factorisation of the wave function
by invoking the sudden approximation. Applying this to both the initial
and the final ΨN states then factorises the transition matrix element from
Equation (3.1):

〈ΨN
f |Hint|ΨN

i 〉 = 〈φk
f |Hint|φk

i 〉〈ΨN−1
f,m |Ψ

N−1
i 〉.

The first part, 〈φk
f |Hint|φk

i 〉 ≡Mk
f,i, is a one-electron dipole matrix element,

and the second is the overlap of the initial state of the remaining N−1 elec-
tron sea with some excited eigenstate m, 〈ΨN−1

f,m |Ψ
N−1
i 〉. The latter overlap

gives a probability that a removal of a single electron from the initial state
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Figure 3.2: Photoemission kinematics in the three-step model. a
Optical excitation from the initial (Ei) to the final (Ef) state illustrated
in the reduced and the extended zone schemes of the NFE approximation.
Adapted from Damascelli [45]. b Snell’s law illustration for the photo-
electron leaving the surface of the material in the third step of the model.
Adapted from Hüfner [85]. c Dispersion of the free photoelectron in vacuum.
d Energy distribution of the measured photoelectrons.

|ΨN
i 〉 leaves the remaining electron sea in an excited state m [44, 45]. The

associated probability, summed over m, is precisely the single-particle spec-
tral function, A(ω,k), described Section 2.4. The photon can be absorbed
by any electron (within the photon’s penetration depth), and we therefore
get the total contribution of the transition matrix to the photoemission in-
tensity by summing over all initial and final states as: ∝

∑
f,i

|Mk
f,i|2A(ω,k).

Complete and accurate evaluation of the one-electron dipole matrix el-
ement, Mk

f,i, is in a general case a complex issue [44, 45, 93, 94], which
depends on the energy and polarisation on incident light, symmetry prop-
erties and momentum k of the initial and final states, as well as the details
of the experimental geometry. The experimental geometry is determined by
the relative orientations of the incident light and the analyser with respect
to the sample. Both the direction of the incident light (setting the scatter-
ing plane) and its angle to the sample surface affect which initial states can
be excited, based on the orbital symmetry of the states and the polarisation
of the light. On the other hand, the direction of the emission of the photo-
electron (setting the emission plane), can restrict which components of the
final state we are able to detect, again based on their orbital symmetry. In
a general case, without specific symmetry constraints to the experimental
geometry, little can be inferred without detailed simulations [93, 94].

However, with careful control of the experimental geometry, it is still
possible to extract some relevant information about the symmetry of the
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initial state’s orbital decomposition [44, 45, 93, 95–97]. In the case of linearly
polarised light, the most useful geometries are with the polarisation vector
(ε, see Figure 3.1a) within (p-polarised), or perpendicular (s-polarised) to
the scattering plane, and in normal or grazing incidence. Combinations
of those can place the polarisation vector along the three orthogonal axes
on the crystal, and the orientation of the scattering plane can be set to
match an intrinsic symmetry axis of the material. A simple example is
demonstrated in the review articles by Andrea Damascelli [44, 45], where
the highly symmetric case, of both the scattering and the emission plane
coinciding with a mirror plane of the initial orbital is considered. It is then
shown that the orientation of the light polarisation vector selects only the
orbital character of the initial states with the matching mirror parity to
appear in the measured spectrum, i.e. p-polarised light excites only the
even-orbital contributions, while s-polarised light excites only odd-orbital
contributions of the initial state.

Finally, the first, optical excitation step of the three-step model needs to
obey the conservation of energy and momentum. Total energy conservation
of the photoemission process, as given by the δ-function of Fermi’s golden
rule (Equation (3.1)), can within the sudden approximation be reduced
to a simpler statement concerning only the energy of the electron being
photoexcited, Ef = Ei + hν [85]. The energy of the electron does not
change after the optical excitation, as demonstrated by the horizontal line
marking Ef in Figure 3.2.

The implications of the conservation of momentum are slightly more
nuanced. Firstly, we typically neglect the momentum of the incident photon,
which is a good approximation for standard ARPES experiments where
the photon energy is below the soft x-ray regime (hν . 100 eV) and the
corresponding photon momentum is much smaller than the typical Brillouin
zone (|G| ∼ 10–20 Å−1) [45]. This makes the transition “vertical” in the
reduced Brillouin zone picture: k = K, where I use k and K for the crystal
momentum of the initial and the final state, respectively. However, it is
more useful in photoemission to think in the extended zone scheme [91],
where it is explicitly seen that the periodic lattice provides momentum G

to reach the final state, as depicted in Figure 3.2a. Without the lattice,
there would be no final state available for a vertical transition. That gives
total momentum conservation, K = k + G, but also the equivalent for its
components K‖ = k‖ + G‖ and K⊥ = k⊥ + G⊥, parallel and perpendicular
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to the crystal surface, respectively [44, 45, 85]. The momentum conservation
for the component perpendicular to the surface only holds here because of
the assumption that the excitation step occurs between proper bulk Bloch
states, such that k⊥ is a good quantum number. This is not true close to
the surface, which will be important in step iii).

ii) Transport to the surface

The second step of the 3-step model involves the final-state wavepacket
travelling towards the surface of the crystal [44, 45, 85]. Only the elec-
trons which do not scatter before reaching the surface contribute coher-
ently to the photoemission process. Therefore, the relevant parameter here
is the inelastic mean free path of that electron, λmfp, which, in combina-
tion with the light penetration depth in the material, sets the limit on the
probing depth for photoemission techniques. We can describe the resulting
attenuation of photoemission intensity with depth using Beer-Lambert’s
law [98]: I(z) = I0 exp(−z/λmfp), where 1/λmfp can be thought of as an
imaginary contribution to the out-of-plane momentum of the final state,
K⊥ → K⊥ + iλ−1

mfp. This reduced extent of the effective final state into the
system means that K⊥ is no longer a well defined quantum number, and
that the final state becomes intrinsically broadened in momentum, resulting
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Figure 3.3: Universal inelastic mean free path. Material independent of
the inelastic mean free path, λmfp, as function of the energy of the electron.
Adapted from Seah and Dench [98].
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in a broadening factor [85, 99] of:

1

(k⊥ −K⊥)2 + (1/λmfp)2 .

The inelastic mean free path is found to change non-monotonically with
the energy of the electron, following the same “universal” dependence seen
in Figure 3.3 for most materials [98]. The curve has a minimum around
typical ARPES energies, making the technique very surface sensitive, with
a probing depth of . 1 nm. All the electrons that do get scattered during
this step, but still leave the crystal, are known as “secondary” electrons
and contribute to a k-uniform, but stepped in energy, background in the
measured photoemission intensity [85, 100–103].

iii) Escape into vacuum

Upon reaching the surface, if the energy of the final state is above the
vacuum level, the photoelectron will leave the crystal [85, 91]. As mentioned
before, there is no change in the energy of the electron in this step. There is,
however, a difference in the definition of the zero-energy point on two sides
of the surface. Within the crystal, the reference point for energies within the
crystal is given by the Fermi level, which sits below the vacuum reference
point for the kinetic energy of the free electron, Ek. The difference is the
work function of the material, Φ. Since the energy is conserved, this gives
us Ef = Ek + Φ − hν, where Ef and Ek are both positive, and measured
from EF and the vacuum level Ev, respectively, as seen in Figure 3.2a,c.

On the other hand, crossing the surface does have a real effect on the
momentum of the photoelectron. The reason for that is the same as the
source of the work function: there is a discontinuous step in the electrostatic
potential that happens at the surface of a material. Since the discontinuity
exists only in the out-of-plane direction, by Fresnel equations the component
of the momentum parallel to the surface is conserved [85], and we have
p‖/~ = K‖, where p is the momentum of the free electron in vacuum. The
effect on momentum perpendicular to the surface is easily understood if we
interpret the surface potential step as a difference in effective impedances
for electrons as waves in the material and in vacuum. The momentum
perpendicular to the surface is then not conserved for electrons crossing it
in a general case [45, 85, 91]. In order to quantify the loss of K⊥ across the
surface, we have to resort to a specific model for the final state.
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The most commonly used one assumes that the final Bloch state in
the crystal is a nearly free electron state, as described in Chapter 2, and
illustrated in Figure 3.2a. This approximation is expected to work well for
simple metals with NFE Fermi surfaces, and for final states which are high
enough in energy that the crystal potential can be seen as only a small
perturbation [45]. However, it has become broadly used also in systems
where the initial states are not free electron-like. The NFE approach treats
the surface potential as a constant, V0, known as the inner potential. It
represents the energy difference between the bottom of the NFE band of
the final state and the vacuum level1, i.e. the bottom of the free electron
dispersion in vacuum, as depicted in Figure 3.2. The electron is treated as
a plane wave on both sides of the surface, and so crossing the surface is
perfectly described by Snell’s law [85], seen in Figure 3.2b. That allows us
to determine the out-of-plane momentum component of the final state as
~2K2

⊥ = p2
⊥ + 2mV0 [91], in keeping with the view of the surface as a step

in impedance.

Photoemission intensity

The three-step model allows us to write the total photoemission current
of free electrons with kinetic energy Ek, emitted in the direction defined
by the angles ϑ and ϕ, and obtained from excitation by photons of energy
hν [44, 45, 85]. Doing it step-wise, to better illustrate where the factors
come from, this gives:

I(Ek, ϑ, ϕ, hν) ∝
∑
f,i

|Mk
f,i|2A(Ei,k)

· δ(Ef − Ei − hν)δ(K‖ − k‖ −G‖)δ(K⊥ − k⊥ −G⊥)

· 1

(k⊥ −K⊥)2 + (1/λmfp)2

· δ(Ek + Φ− Ef )δ(p‖ − ~K‖)δ(p2
⊥ + 2mV0 − ~2K2

⊥),

where the purple factors come from step i), the green from ii), and the red
from step iii) of the model as it is described above. With some reordering of
the factors in the above expression, and combining some of the δ-functions,

1The inner potential, V0, corresponds to the depth of the potential well in the Som-
merfeld model of a metal.
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we obtain:

I(Ek, ϑ, ϕ, hν) ∝
∑
f,i

A(Ei,k)
|Mk

f,i|2

(k⊥ −K⊥)2 + (1/λmfp)2

· δ(Ek + Φ− Ei − hν)

· δ(p‖/~− k‖ −G‖)δ(p
2
⊥/~2 + 2mV0/~2 − (k⊥ +G⊥)2).

(3.2)

This directly illustrates that by measuring I(Ek, ϑ, ϕ, hν) an ARPES ex-
periment records the single-particle spectral function of the initial states
A(Ei,k), modulated by the matrix effects and final state broadening ef-
fects. The free electron momentum p(Ek, ϑ, ϕ) is a function of the kinetic
energy and the emission angles from Figure 3.2a. Therefore, the energy and
momentum conservations given by the δ-functions lead to a set of equations
relating the parameters of the measured photoelectron to those of the initial
state [44, 45, 85]:

Ei = Ek + Φ− hν (3.3)

kx =

√
2me

~
√
Ek sinϑ cosϕ (3.4)

ky =

√
2me

~
√
Ek sinϑ sinϕ (3.5)

kz =

√
2me

~
√
Ek cos2 ϑ+ V0. (3.6)

The energy convention here has Ei < 0 measured from the Fermi level.
This definition is used throughout the thesis, and denoted as E − EF. The
only value not directly measured is V0 which is most commonly, and most
reliably, determined as an experimental fit parameter in the dependence of
kz on incident photon energy hν (and hence Ek).

3.1.2 ARPES experiment

In a typical ARPES experiment, shown in Figure 3.4a, a source of monochro-
matic light is used to photoemit electrons from a single-crystalline sample.
Photoelectrons leave the sample with a kinetic energy Ek in different direc-
tions relative to the surface of the sample (angles ϑ and ϕ in Figure 3.1a).
The electrons emitted within a certain solid angle of acceptance in the di-
rection of the analyser are first collected into a series of electromagnetic
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Figure 3.4: Data collection and processing. a Schematic of the APRES
experiment. The orientation of the sample is determined by three angles:
polar θm, tilt φm, and azimuth αm. b Processing of the measured disper-
sions. c Illustration of the Brillouin zone mapping by changing the angle
perpendicular to the analyser entrance slit (φm in this geometry), and the
related data processing.

lenses which modify their overall kinetic energy, and adjust their trajec-
tories to provide angular resolution. The electrons are then directed onto
the entrance slit of the hemispherical analyser. The entrance slit is a thin
opening, selecting only the electrons within a 1D subset of that solid angle
(i.e. angle along the slit, θm in Figure 3.4) to be passed into the analyser.
The analyser is in essence a hemispherical capacitor, where the electrons
entering it get separated by energy in the direction perpendicular to the
slit. After passing through the hemisphere (Figure 3.4a), the electrons ar-
rive at a microchannel plate (MCP) detector, producing 2D intensity maps
in kinetic energy versus the angle along the entrance slit, demonstrated in
Figure 3.4b.

Brillouin zone mapping

By changing which part of the emission solid angle is mapped onto the en-
trance slit of the analyser, we can detect electrons emitted within a large
total solid angle. This is typically achieved by rotating the sample along
the angle perpendicular to the slit direction, φm in Figure 3.4. The θm and
φm angles define the position of the physical sample within the experiment,
and are not to be confused with emission angles ϑ and ϕ from Figure 3.1a.
They do, however, span the same space and therefore map onto the in-plane
crystal momentum k‖ [104]. Therefore, by collecting many dispersion scans
at small increments of the φm angle, we can acquire a three-dimensional
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dataset of electronic states in the material spanning the surface projected
Brillouin zone, as illustrated in Figure 3.4c. We can then also extract con-
stant energy contours of the bands from such a dataset, which, taken at EF,
correspond to the image of the Fermi surface of the material, commonly
referred to as Fermi surface maps.

The described procedure is only one way to map the in-plane momentum
space in an ARPES experiment, albeit the most widely used one. If the
azimuthal angle of the sample, αm, can be changed as well, then the space
of the emission solid angle defined by (ϑ, ϕ) is over-constrained by the three
orientational angles of the sample (θm, φm, αm), and any two of them can
be used to perform the mapping. Alternatively, some designs [104] of the
analyser now use electromagnetic deflectors in the lens system which can
selectively project different parts of the acceptance solid angle onto the
analyser entrance slit, without the need to physically move the sample itself.

kz mapping

In order to get information on the out-of-plane dispersion of the bands, along
kz, we perform a different kind of mapping procedure, varying photon en-
ergy, hν, for a given measured dispersion [44, 45]. Following Equation (3.6),
we see that changing the photon energies, which then changes Ek, will lead
to probing different kz values. However, the size of the in-plane momentum
component, k‖, also changes the probed kz for a fixed photon energy. It is
therefore easiest to see how this works at normal emission (i.e. cosϑ = 1

and k‖ = 0), when all of the kinetic energy of the detected photoelectron
is in p⊥ (Figure 3.2b). Any variation in the binding energy of the mea-
sured band with hν is then entirely determined by its dispersion along kz.
However, in reality, photon energy does not precisely determine the value
of kz. As described in step ii) of the three-step model, the damping of
the final state by the finite inelastic mean free path, λmfp, results in the
equivalent broadening of the K⊥ [99]. The experiment therefore probes a
finite-size kz interval, in some cases even on the order of 2π/c, the size of the
out-of-plane dimension of the Brillouin zone. Bands with strong intrinsic
kz-dispersion will appear as broadened features, their binding energy inte-
grated over the probed kz interval. At high photon energies λmfp becomes
larger, and the technique becomes more bulk sensitive, reducing the intrinsic
kz-width of the bands and increasing the effective kz-resolution [99]. Soft
x-rays (100 eV–10 keV) are therefore often needed in order to have suffi-
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cient effective kz-resolution to observe the out-of-plane dispersion of bands
in this type of experiment. On the other hand, highly two-dimensional
states, such as surface states or states confined to crystal layers parallel to
the surface, will have very little out-of-plane dispersion. This makes them
appear narrower than three-dimensional states in the measurements, with
their measured linewidths reliably reflecting only the intrinsic lifetime of
the initial state [45, 85, 99, 105].

Data processing

The raw measured datasets need to be processed, and converted from the
experimental parameters to initial electronic state parameters using Equa-
tions (3.3) to (3.6). First, the measured Ek is converted to Ei of the initial
state (for each measured dispersion slice if a mapping procedure was per-
formed). This is done by using Equation (3.3), where the workfunction
of the material is replaced by the workfunction of the analyser which sets
the position of the vacuum level in the measurement process. Furthermore,
the energy axis conversion requires a reliable Fermi level reference in the
measured data (see Figure 3.2d). An added complication is that a straight
entrance slit generates curvature on the energy axis in the measured data
due to the hemispherical geometry of the analyser. This is resolved by ac-
quiring a reference dispersion across the Fermi level on a polycrystalline
gold sample, showing a uniform Fermi step across the detector. The fit of
the Fermi level position is then applied to correct the measured dispersions
and convert the energy axis into Ei.

The angle-axes parallel and perpendicular to the entrance slit of the
analyser are converted into in-plane crystal momentum components by using
Equations (3.4) and (3.5) relative to the position of normal emission (NE)
in the data. Since this conversion is non-linear, dispersions for which the
slit direction does not contain the NE point actually image a curved line
in momentum space. This is illustrated in Figure 3.4c for the example of
Brillouin zone mapping, where we need to convert the energy axis and the
two in-plane momentum axes.

In the case of kz-maps, the mapping axis is given as hν by the experi-
ment. For each hν value, the measured dispersion is converted to Ei and k‖
along the slit, by the procedure described above. If the inner potential, V0,
can be reliably determined, typically from the observed periodicity of the
band dispersions with varying photon energy, the hν axis of the map can
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be converted into kz by using Equation (3.6).

Spin-resolved ARPES

If the detection in an ARPES experiment is done in a way which is sensitive
to the photoelectron’s spin orientation, we can also measure the spin polari-
sation of the bands in a given material [106, 107]. There are several ways to
achieve this, and our experiments were performed on experimental setups
where the ARPES analyser was fitted with very low energy electron diffrac-
tion (VLEED) spin-detectors [108–110]. Electrons from the desired part of
the dispersion are passed through an additional aperture positioned next
to the MCP detector on the exit of the analyser, and scattered off magne-
tised O-passivated Fe(001)p(1×1)-O thin film targets [111]. The exchange
interaction between the magnetised target and the incident electrons pro-
vides a spin-selective scattering cross-section, and the electrons whose spin
is aligned with the magnetisation of the target are preferentially scattered
into a channeltron detector (electron counter).

By comparing the counts measured with the target magnetised in the
two opposite directions along the same axis α (I+

α and I−α ) for any (E,k)

point, we can determine the spin polarisation along α of that point [106, 107]
as:

Pα =
1

S

I+
α − I−α
I+
α + I−α

,

where S is an experimental parameter known as the Sherman function [112].
The Sherman function encodes the relative reflectivity of the opposite-spin
species, defining the spin-differentiation efficiency of the experiment [106,
107]. For the Fe(001)p(1×1)-O thin-film targets in VLEED detectors, the
Sherman function is usually ≈ 0.2–0.4 [111], meaning that a 100% polarised
electron beam would result in a 20–40% difference in measured count num-
bers. Knowing the polarisation of a dispersion point (E,k) allows us to also
extract the true contributions of spin-up and spin-down electrons along α
for that point [106, 107] as:

I↑,↓α =
I+
α + I−α

2
(1± Pα).

In our experiments, this procedure was performed point by point at constant
energy, i.e. along momentum distribution curves (MDC) and at constant
momentum, i.e. along energy distribution curves (EDC). The example of
this procedure is demonstrated on an example MDC dataset in Figure 4.13.
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Figure 3.5: Schematic spin-polarisation measurement of bands with
ARPES. a Sample data of a spin-integrated MDC. b The same MDC
measured for positive (top), and negative (bottom) magnetisation of the
VLEED target. c “True” spin-up (top) and spin-down (bottom) MDCs
along the target magnetisation direction, calculated from (b). The numbers
indicate the polarisation of each of the two bands. d Polarisation MDC
calculated from (b).

The spectral weights attributed to individual bands, which can be extracted
by peak-fitting procedures described below, can be analysed in the same
way, yielding the polarisation values of the corresponding bands, represented
in Figure 4.13c.

Any one target can only be used for two orthogonal axes α [106, 113].
Therefore, two VLEED targets are used with a 90◦ relative orientation [109,
110]. Each target is oriented such that it provides one of the orthogonal in-
plane polarisation axes (x̂ or ŷ) and the out-of-plane axis (ẑ). Performing
the measurement along the same EDC or MDC line with target magneti-
sations along each of the three axes, and both directions of magnetisation
along each axis, we can extract the full polarisation vector of the bands by
the procedure described above [106, 107, 109, 110, 113].

3.1.3 Experimental setup

In order to perform photoemission experiments, we need a source of high-
intensity, monochromatic light, well focused on the sample. Most com-
mon laboratory-based options are plasma gas-discharge lamps and laser
sources [86]. Plasma lamps are the easiest to maintain and use, but pro-
vide comparably low photon flux and no variability in photon energy. Laser
sources, are more intense and provide very good resolution [114–116], but
are often limited to very low photon energies, and are generally much more
difficult to operate. Synchrotron facilities, however, provide light sources
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beamline hν/eV spot/µm2 ∆E/meV ∆ϑ/◦ slit spin

Diamond - I05 18–240 50×50 < 2 0.1 v 7

Max IV - BLOCH 10–1000 10×40 < 2 0.1 v 7

Soleil - Cassiopee 8–1500 50×50 < 1 0.1 v 7

SLS - SIS ULTRA 10–800 50×100 < 2 0.1 h 7

Elettra - APE-LE 10–100 50×150 < 6 0.2 v 3

HiSOR - BL-9B 16–80 700×2000 < 7 0.2 h 3

Figure 3.6: Synchrotron beamlines. Layout of the I05 beamline at Di-
amond Light Source, adapted from Hoeosch et al. [118], represents a typ-
ical ARPES beamline. The table lists some important technical details of
the beamlines used in this thesis [108–110, 118–123]. Effective energy and
angle resolutions for spin-resolved measurements in our experiments were
100 meV and 0.3◦, respectively.

with very good photon fluxes over a wide energy range [45].

Synchrotrons are accelerator facilities where electrons are kept circu-
lating along a curved path, producing tangential EM radiation as they
curve [117]. Additional dipolar-magnet arrays called undulators are used
to amplify the emitted synchrotron radiation within a given energy band
and polarise it. Beamlines built around the electron storage ring guide the
radiation from the undulators to various specialised user-based endstations
where the synchrotron light is used in a multitude of different experiments.
Complex beamline optics are used to select and monochromise the energy
of the incoming photons, as well as direct and focus the light beam onto
the sample. A typical outline of a synchrotron ARPES beamline is shown
in Figure 3.6. Results presented in this thesis have been collected across
six beamlines [108–110, 118–123], all at different synchrotron facilities. The
main technical properties of the beamlines are summarised as a table in
Figure 3.6.

ARPES experiments have another large technical requirement, which is
that they need to be conducted in ultra-high vacuum (UHV) conditions with
p ∼ 5 · 10−11 mbar for optimal resolution and data quality [45, 86]. There

35



3 Methods Igor Marković

are multiple reasons for this. Most importantly, the photoelectrons need to
travel a distance on the order of a meter from the sample until they are
detected on the MCP in the analyser, without scattering. Also, as I have
mentioned already, ARPES is a surface-sensitive technique. This means
that any contaminants or adsorbates [124] (e.g. air molecules) greatly re-
duce the data quality by introducing random scattering both in the final
state, as photoelectrons leave the surface, and in the initial state, increasing
the impurity scattering contribution of the self energy from surface scatter-
ing [86].

The entire experimental endstation is therefore enclosed within a UHV
chamber, with the sample mounted onto a motorised manipulator, allowing
ideally, 6-axis motion (3 translations, 3 rotations). The (x, y, z) translations
position the sample in the path of the incident light and at the focus of the
analyser, while polar, tilt and azimuthal angles, (θm, φm, αm), control the
orientation of the sample relative to the entrance slit of the analyser as
indicated in Figure 3.4a.

The relative orientation of the analyser entrance slit to the manipulator
axis sets which manipulator angle needs to change to perform the Brillouin
zone mapping procedure [104]. In the standard, vertical, position of the
manipulator, vertical slit orientation uses the polar angle, while horizontal
slit uses the tilt angle for mapping (Figure 3.4). As the light scattering
plane is typically horizontal, different slit orientations will result in different
symmetry conditions on the matrix elements in the measurements.

Sample surfaces do not only need to be atomically clean, they also need
to be reasonably flat and uniform along some crystal plane [124]. Steps and
terraces are unavoidable in practice, but do not present a problem unless
their size is so small as to make the surface amorphous. This means that
the samples need to be single-crystalline, at least on the length scale of the
spot size of the incident light beam. The presence of polycrystallinity, mul-
tiple domains, or surface roughness can defeat the purpose of a momentum-
resolved experiment, as they will integrate the spectrum over all crystallite
orientations. Atomic flatness of the surfaces is achieved by cleaving the
crystal along the desired direction. To have the surface clean, the cleave is
done in situ, under measurement conditions of ultra-high vacuum and with
the sample at base temperature [124]. A special technique is used for in
situ cleaving, where we use silver epoxy to glue a small ceramic top-post
onto the sample surface. The top-post is then knocked off in UHV, cleaving
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away the top part of crystal. The same silver epoxy is also used to glue the
sample to its holder, since good electrical contact is needed to ground the
sample and prevent charge build-up due to a large current of photoelectrons
leaving the sample.

3.1.4 Data analysis

As discussed in Section 2.4, a lot of information about the electronic states
and their interactions is encoded in the spectral function (Equation (2.5)),
which ARPES measures [45, 86]. In order to extract quantitative informa-
tion from the experimental intensity maps, be they dispersions or constant-
energy contours, we perform lineshape fitting analysis on the processed
datasets. The fits provide quantitative estimates of the positions and widths
of the bands, from which we can extract the interaction self energy Σ(ω,k)

if the bare band dispersion εk is known. Typically, the fits are performed
on one-dimensional cuts extracted from the data at either constant energy
or constant momentum, known as momentum distribution curves (MDC)
and energy distribution curves (EDC), respectively (see Figure 3.7a). From
Equation (2.5) it can be shown that linecuts will have a Lorentzian shape
in the EDCs if: i) Σ′′ is energy-independent, ii) Σ′ is at most linear in en-
ergy; and in the MDCs only if: i) Σ′′ is momentum-independent, ii) Σ′ is
at most linear in momentum, iii) the bare band dispersion εk is linear in
momentum.

Given the above considerations, and the three most common self energy
terms discussed in Section 2.4.1, we can see that the EDC quasiparticle
peaks have a strictly Lorentzian shape if only impurity scattering is present.
Electron-electron and electron-boson interactions both lead to more com-
plex distributions of the spectral weight. Further complications arise in
EDC lineshapes since the quasiparticle peaks can partly overlap with the
incoherent spectral weight in the Fermi liquid, the secondary photoelectrons
provide an energy-dependent background, and the Fermi function cuts off
the spectrum in a temperature-dependent step. The EDC fits in this thesis
were performed as a sum of Lorentzian quasiparticle peaks and a background
of secondary electrons, multiplied by the Fermi function at the appropriate
temperature, and convoluted with a Gaussian broadening of the instrumen-
tal energy resolution. An example is demonstrated in Figure 3.7b.

On the other hand, the interaction self energies discussed in Section 2.4.1
are all k-independent, so to extract self energy parameters by Lorentzian
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Figure 3.7: ARPES data analysis. a Example dispersion with extracted
one EDC and one MDC. b A sample EDC line fit using Lorentzian peaks, an
energy-dependent background and the Fermi function, convolved Gaussian
broadening. c Lorentzian fits to MDCs near the Fermi level (purple), with
the linear fit to the extracted peak positions in k‖ (green).

peak fits to MDCs [44, 45, 86], we need to approximate the bare band
dispersion as being linear2. The quasiparticle lifetimes can be extracted
as Γ(ω) = v0Γ(k) when Σ is k-independent. The slope of the bare band,
v0, can be extracted from band structure calculations, e.g. from density-
functional theory, which I describe below. By tracing the position of the
peak for different energies, we can extract the experimental dispersion of a
particular band. A linear fit to the dispersion at the Fermi level, as shown in
Figure 3.7c yields directly the Fermi velocity, vF, and the Fermi wavevector,
kF. The ratio of the measured Fermi velocity and the Fermi velocity of the
bare band gives us an estimate of the strength of the interactions which are
not already capture by the calculation.

In the case of constant-energy contours any one-dimensional cut is a
momentum-distribution curve. To quantify the sizes and shapes of the
Fermi pockets in maps, it is sometimes convenient to perform the line-
fitting procedure on radial MDCs, centred in the pocket (usually at Γ). The
integral of the pocket size then gives us the carrier concentration contributed
by that Fermi pocket, and via Luttinger’s theorem [125, 126], the filling of
the corresponding band.

2When ω− ε(k), is linear in both ω and k, it can explicitly be rewritten into the form
k − k(ω). The width of that Lorentzian in k is then: Γ(k) = Γ(ω)/∂ε(k)

∂k .
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3.2 Density-Functional Theory

Density-functional theory (DFT) provides a framework which makes solv-
ing large many-body quantum problems from first principles possible. The
theory itself is completely general, and can be applied to any many-body
system, be that an atom, a molecule, or a crystal. It is in principle set up
as an exact theory, but in practice some assumptions and approximations
need to be made in order to perform and interpret the calculations. In this
Section, I will give a quick introduction to the basic principles of the theory
and the common necessary approximations that are made in the calcula-
tions following a review by Capelle [127], and outline how the calculations
are done in practice. Even though DFT has many uses, I will focus here on
its application to electronic band structure calculations in crystalline solids.

3.2.1 Hohenberg-Kohn theorems

A quantum description of N electrons in a solid is typically given by the
many-body Schrödinger equation [59][

N∑
i=1

(
− ~2

2m
∇2
i + v(ri)

)
+
∑
i<j

U(ri, rj)

]
Ψ(r1, ..., rN) = EΨ(r1, ..., rN),

(3.7)
where the first term in the Hamiltonian represents the kinetic energy (T̂ ),
the second term represents a potential external to the electron sea (V̂ ), i.e.
electrostatic potential of the lattice in the Born-Oppenheimer approxima-
tion3 and any applied external fields, and the third term is the electron
interaction term from the Coulomb potential (Û). So, in an ideal case, we
supply the external potential v(r) for the desired system to Equation (3.7),
solve the eigenproblem, and calculate any observable of the system using
eigenfunctions Ψ. One such observable is the electron density,

n(r) = N

∫
dr2 ...

∫
drNΨ∗(r1, ..., rN)Ψ(r1, ..., rN). (3.8)

This approach has 3N variables, 3 coordinates for each electron, making it
unwieldy in reality.

The first big breakthrough in forming the DFT approach came in the
3The Born-Oppenheimer approximation decouples the electronic system from the dy-

namics of the lattice, precluding ab initio inclusion of electron-phonon coupling in the
calculation for a static v(r). However, there are methods which can reintroduce it by
hand at later stages of the calculation.
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form of Hohenberg-Kohn theorems [128], which deal with that obstacle. The
first theorem states that the external potential v(r) is a unique functional of
the ground state electron density, n0(r) [127]. But this means that the full
Hamiltonian is also a functional of the ground state density (E[n0(r)]), and
so all the properties of the system are determined by n0(r), along with all
its many-body wavefunctions. However, the functional E[n(r)] is not known
within the formalism. What is known from the variational principle is the
second theorem, which says that the functional E[n(r)] reaches a global
minimum for, and only for the ground state electron density, n0(r) [127].
Excited states need to be calculated by other methods, making DFT a
ground-state theory. Therefore, Ψ0(r1, ..., rN) = Ψ[n0(r)], and the dimen-
sionality of the problem is reduced from 3N to 3.

The formalism recognises that the total energy functional can be decom-
posed by the parts of the Hamiltonian in Equation (3.7) into a universal
part, F [n] = T [n] +U [n], which does not depend on the particular problem
(v(r)), and a problem-specific part that does, V [n]. Furthermore, it sepa-
rates F [n] into two contributions. First holds the terms which are always
known exactly, the non-interacting kinetic term, Ts[n], and the Hartree
(classical Coulomb) term, UH [n]. The second contribution, on the other
hand, combines the effects of exchange and correlation, which are not known
exactly, into a single term Exc[n]. The density functional for the total energy
is then

Ev[n] = Ts[n] + UH [n] + Exc[n] + V [n], (3.9)

and the variation of it with n yields the ground state energy E0 for the
minimising ground state density n0(r). The Hohenberg-Kohn theorems then
guarantee that we can calculate any ground state observable, as they are
all functionals of n0(r).

3.2.2 Kohn-Sham equations

Even though the variational problem set up by the Hohenberg-Kohn theory
reduced the original 3N - to a 3-dimensional form, we still do not know
how to solve it explicitly. Minimisation of Ev[n] is a non-trivial prob-
lem in general, and we still do not know explicit forms of the exchange-
correlation functional, Exc[n]. These problems are dealt with by the Kohn-
Sham method [129]. In it, the original interacting many-body system in
an external potential v (which we cannot solve) is replaced by an auxiliary
non-interacting many-body system in an effective potential vKS(r) (which
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we can solve). This is achieved by realising that Equation (3.9) can be
rewritten as Ev[n] = Ts[n] + VKS[n], with the effective potential given as

vKS(r) = vH(r) + vxc(r) + v(r), (3.10)

where vH(r) and v(r) are the Hartree potential and the external potential of
the system, respectively, and vxc(r) is an appropriately chosen approximate
exchange-correlation potential for the ground state. We can then write the
non-interacting single-particle Schrödinger equation:[

− ~2

2m
∇2 + vKS(r)

]
ψi(r) = εiψi(r), (3.11)

where εi and ψi are fictitious eigenvalues and wavefunctions of the auxil-
iary system, known as the Kohn-Sham energies and orbitals [127]. This
procedure exactly solves the full many-body problem because the Kohn-
Sham orbitals by construction reproduce the electron density of the original
system as

n(r) ≡ nKS(r) =
N∑
i

fi|ψi(r)|2, (3.12)

where fi is the occupation number of ψi. Equations (3.10) to (3.12) are
known as the Kohn-Sham equations [127, 129]. With them we have gone
from describing the original system with the interacting many-body Schrö-
dinger equation (3.7), via minimisation of the energy functional E[n] in
Equation (3.9), to solving a non-interacting Schrödinger equation with the
Kohn-Sham potential. The equation is, however, non-linear, since vKS de-
pends on n0, which depends on ψi, which depend on vKS, and needs to be
solved self-consistently.

For simplicity, I have described the basics of DFT for spinless, non-
relativistic electrons. The theory can easily be expanded to include the spin
of electrons by treating n↑ and n↓ as separate entities [127]. Relativistic
effects can be fully included by substituting the Schrödinger for the Dirac
equation, which properly includes spin-orbit coupling [127].

3.2.3 Approximations of DFT

There are three main types of approximations involved in solving the Kohn-
Sham equations [127]. The first is conceptual, and concerns our interpre-
tation of the Kohn-Sham energies and wavefunctions, i.e. how much real
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physical meaning we ascribe to them. As I have stressed before, Kohn-Sham
energies and orbitals are fictitious objects, purely mathematical constructs
meant to help solve the original many-body problem. However, it turns
out that they represent very good approximations for band energies and
wavefunctions in the case of fermionic quasiparticles and no strong corre-
lations [127]. This is precisely the approach of DFT band structure calcu-
lations for solids. The band energies are Kohn-Sham energies, εi, and the
wavefunctions are Kohn-Sham orbitals, ψi. Taking this literal understand-
ing of the Kohn-Sham eigenstates effectively turns DFT into a mean-field
theory of the vKS(r) potential for non-interacting quasiparticles [127].

The second type of approximation is technical, and comes from the nu-
merical precision of the specific code and algorithms used in the calcula-
tions [127]. As the Kohn-Sham equations are solved iteratively, on a dis-
crete set of points in momentum space, enough points need to be included
in order to ensure proper convergence of the calculation. The numerical pre-
cision of a correctly converged calculation mainly depends on the type of
basis states that are chosen for the Kohn-Sham orbitals. A good choice for
electrons in solids are augmented plane waves (APW) [130, 131]. They are
constructed by dividing the space into atomic spheres, where the wavefunc-
tions are atomic-like orbitals, represented by a linear combination of radial
functions and their derivatives multiplied by spherical harmonics, and inter-
stitial space where they are described by plane waves. With wavefunction
matching at the sphere surfaces, this results in plane waves in the crystal,
augmented by atomic-like orbitals within the spheres.

The third approximation is physical, and it involves constructing an
approximate expression for the unknown exchange-correlation functional,
Exc[n] [127]. Historically first, and still one of the most widely used, is the
local density approximation (LDA) [128]. It assumes that energy density at
any position r is that of a homogeneous (n = const.) system which has the
electron density corresponding to the value of n(r) at that position. This
is tantamount to turning the exchange-correlation energy from a functional
into a function of the electron density: Exc[n(r)] → Exc(n(r)). The LDA
approximation separates the spatially inhomogeneous interacting problem
into a spatially homogeneous interacting problem (the solution to which is
known), and the spatially inhomogeneous non-interacting problem of the
Kohn-Sham equations [127].

The generalised gradient approximations (GGA) were developed in order
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to provide a semi-local treatment of the density [132]. They allow for the
exchange-correlation energy to depend on its gradient as well as the value:
Exc[n(r)]→ Exc(n(r),∇n(r)). In introducing the gradient-dependence, the
GGA functionals offer an improvement over LDA, however, they lose a
systematic cancellation of errors which is present in the LDA approach [127].
This means that making the choice on which one is more suitable often
depends on the specifics of the system in question. Both approaches are
known to underestimate band gaps in semiconductors, and more complex,
hybrid functionals need to be employed in order to account for that.

3.2.4 Practical implementation

The program flow of any DFT code follows three basic steps. i) Initialisa-
tion, where the system under study is defined and the code calculates the
initial guess for the electron density, n(r). ii) The self-consistency cycle,
in which the Kohn-Sham equations are iteratively solved. iii) Extraction
of observables, in which the desired information about the system is cal-
culated from the converged electron density. I present here the outline of
these steps as implemented within the WIEN2k code [133–135], illustrated
by the flowchart in Figure 3.8. I used this code to perform the calculations
for the study of Ca3Ru2O7 in Chapter 5, with the main results repeated
and expanded on by Dr. Helge Rosner using the FPLO code [136], while
all the DFT data for the study of NbGeSb in Chapter 4 was calculated by
Dr. Matthew Dyer, using the VASP code [137].

The initialisation takes the crystal structure of the material whose band
structure we want to calculate as input. The code will then deduce the
symmetry elements of the structure, and use that information to reduce
the computational cost of the calculation. We must then assign the type
of magnetisation present in the system, if any, and, if we choose to include
spin-orbit coupling, assign the direction in which it develops the magnetic
moment. WIEN2k uses a fully relativistic approach for the core electrons,
and a second variational method for the valence electrons, including the
spin-orbit coupling [133–135]. The code can then solve the atomic Schrö-
dinger equation for the atoms in the crystal, getting their atomic electron
densities, whose superposition is used as the initial guess for n(r) in the
self-consistency cycle. There, the Kohn-Sham equations will be converged
for a discrete set of points in the momentum space, the k-mesh of the cal-
culation. We must choose the point-density of the k-mesh, keeping in mind
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Figure 3.8: Program flow of the WIEN2k code. An algorithmic repre-
sentation of the: initialisation (green), self-consistency cycle (purple), and
band structure extraction (red) within the WIEN2k code. Adapted from
the WIEN2k manual [135].
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that if the mesh is too sparse, the calculation might not converge properly
(if it converges at all), while if there are too many k-points, the calcula-
tion will take an impractically long time to perform. Symmetries help us
here as well, making it enough that the calculation is performed only on
the irreducible wedge of the Brillouin zone. Finally, we must choose which
approximation for the exchange-correlation functional will be used in the
calculation. These considerations will prove important for the conclusions
drawn from DFT calculations in the study of Ca3Ru2O7 in Chapter 5.

Within the self-consistency cycle, n is first used to calculate the compo-
nents of the effective Kohn-Sham potential. The Hartree (classical Coulomb)
term is calculated using the Poisson equation, ∇2vH(r) = −8πn(r), and the
correlation-exchange potential, vxc(r), is determined according to the cho-
sen approximate potential. WIEN2k separates the core and valence elec-
trons, treating core electrons using the atomic Schrödinger equation, and
the valence electrons using the Kohn-Sham equation [133–135]. Separate
electron densities for valence and core electrons are thus obtained from the
eigenstates in the two cases, as illustrated in Figure 3.8. These are added
together, and combined with the total electron density from the previous
iteration, resulting a new value for n(r). If predetermined convergence cri-
teria are met, the code exits the cycle, and if not, it feeds the new density
as the starting point of another iteration. We can also choose to allow the
crystal structure to relax at this stage by minimising the forces on the atoms
as one convergence criterion. This obviously means that the external po-
tential is no longer kept fixed, but is also changed with each iteration, and
a stable configuration of the atoms is obtained self-consistently.

Once the calculation has converged, we can proceed with obtaining the
electronic band structure [133–135]. In order to do this, we need to spec-
ify the exact path in momentum space along which this should be done,
typically some sequence of high-symmetry lines of the Brillouin zone. The
code then extracts both the eigenvalues as band energies, and the details of
the eigenvectors as wavefunctions with an atomic-orbital weight decompo-
sition, for each k-point along the desired path. This results in the famous
“spaghetti”-plots of the band structure. As another calculable observable of
interest for the electronic structure of solids, the total or partial densities
of states can also be obtained at this point.
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Slab calculations

By using the unit cell of the crystal structure as input for the calculation,
only bulk electronic states can be obtained in the end. In order to get infor-
mation on the surface states of materials, special structural unit cells need
to be made [138]. We use slabs of several crystal-unit cells in thickness with
a vacuum layer above the surfaces in the out-of-plane directions. This re-
sults in super-cells, which are still periodic in the out-of-plane direction, but
with the vacuum layers between the slabs guaranteeing there is no overlap
of electronic states between the slabs. In these cases, the surface crystal
structure should always be allowed to relax, as there will typically be some
degree of structural reconstruction present at crystal surfaces. Performing a
DFT calculation with such slabs as structural units will yield surface states
in the electronic structure, and they can easily be identified in the band
structure as bands which have considerable projection onto atoms in the
surface layers of the slab.

In the following two Chapters, I lay out my results on the studies of the
electronic structures of NbGeSb and Ca3Ru2O7, obtained by the methods
described above.
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4 | Protected band crossings in
NbGeSb

In this Chapter I will present my results on investigating the band structure
of NbGeSb, a material with weak electron interactions, and strong effects
arising from spin-orbit coupling. It belongs to a family of materials known
to host multiple protected crossing points and nodal lines in their band
structure. My results will identify topological features in the band structure
which are common to the materials of this family, but also some which
have been observed for the first time in NbGeSb, notably two-dimensional
Weyl-like crossing points of spin-split surface states. To help navigate the
rich terminology of topological semimetals and clarify the terms which I
use, I will first give a brief general introduction to topologically protected
band crossings in electronic structures, with a focus on layered square net
materials, relevant for NbGeSb.

4.1 Protected crossings in band structures

The physical models of elementary particles in the high-energy regime have
been known to show some remarkable similarities to the models of low-
energy excitations of quasiparticles in condensed matter systems [139]. Re-
cent popular examples include the realisations of Dirac and Weyl fermions in
the electronic structure of solids [11, 140, 141]. Dirac developed his famous
equation as a relativistic extension of the Schrödinger equation [142, 143]
for electrons. Its Hamiltonian is a 4 × 4 matrix which acts in the space of
four-component spinors. It yields solutions for both the particle and the
anti-particle, each with two spin states, i.e. four states in total. The equa-
tion generally has a mass term which gaps the spectrum at zero energy,
separating the particle and anti-particle solutions.

Hermann Weyl modified the equation for massless electrons, eliminating
two of the solutions in Dirac’s formalism [144]. This results in an equation
describing two singly degenerate, linearly dispersing states, bearing opposite
spin. The Weyl Hamiltonian is therefore a 2×2 matrix simply given by [11,
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144]:
H = ±cp · σ, (4.1)

where c is the velocity of the particles (speed of light for massless particles),
p is their momentum, and σ are the Pauli matrices, representing the two
spin states. The sign at the front of the Hamiltonian determines the chirality
of the solutions. Two pairs of Weyl states of opposite chirality can be
combined to give the four states of the Dirac equation. In the condensed
matter equivalent, the symmetries of a crystal allow for different velocities,
v, and we can write [11, 12]:

H ∝ vxkxσx + vykyσy + vzkzσz, (4.2)

where k now represents the crystal momentum. Any 2 × 2 matrix can be
written as a linear combination of the Pauli matrices [11, 59], and the Weyl
Hamiltonian uses all of them4 to define the dispersion of the bands. As
such, adding any small perturbation will only change the position of the
degeneracy of the two states in momentum space, but cannot completely
remove it. Such protected crossings of bands in the electronic structure,
described by the Weyl equation, are called Weyl points [11, 140, 141].

The same conclusion is found in general analysis of electron energy eigen-
value degeneracies in crystals [145, 146]. The energy gap of any two singly
degenerate states is determined by three independent parameters of the cor-
responding two-state Hamiltonian. Three independent conditions (one for
each Pauli matrix component) therefore need to be satisfied in order for the
gap to close. If all three conditions are accidentally satisfied at an arbitrary
point in momentum space, the two bands will be degenerate there, and can
locally be described by the Weyl Hamiltonian in Equation (4.2). This means
that the three conditions are satisfied by the three momentum-space coor-
dinates of the degeneracy, and that any small perturbation will only change
those coordinates, but will not lift the degeneracy. Such accidental crossing
points of singly degenerate states in condensed matter are indeed topo-
logically equivalent to the Weyl-fermion description, and are shown to be
singularities of the Berry curvature, carrying topological invariants [147]. As
a consequence, the pseudospin σ has non-trivial winding around the Weyl
point, with the winding number representing the topological invariant, and

4The fourth basis matrix is the 2× 2 identity matrix, which only provides a uniform
energy offset to the Hamiltonian, and therefore bears no effect here.
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corresponding to the chirality of the high-energy equation [11].
The analogy goes further, as two Weyl points of opposite chirality can

be merged with each other at a high-symmetry line, creating a single Dirac
point, a fourfold-degenerate crossing of two spin-degenerate bands described
by the Dirac equation [11, 140]. As in the high-energy case, the fact that
there are now four states in the system allows for a mass term to develop,
which will generically gap the Dirac point, unless a symmetry protects
it. Symmetry protection of band degeneracy occurs at symmetry-invariant
points in the Brillouin zone, if the two bands belong to different irreducible
representations of that symmetry. The bands are then orthogonal and hy-
bridisation is prevented [76, 77].

In general, therefore, band degeneracies in condensed matter are pro-
tected by [11]:

i) symmetry - when they are completely pinned in momentum space by
symmetry elements,

ii) accidental tuning of the parameters - occurring at an arbitrary place
in momentum space,

iii) a combination of the two - where some of the coordinates in mo-
mentum space are pinned by symmetry while others can be tuned to
achieve band degeneracy.

Only Weyl points represent purely accidental degeneracies, while Dirac
points require some level of symmetry protection.

There are two main ways for symmetry to stabilise a Dirac point in con-
densed matter. Following a review by Armitage, Mele and Vishvanath [11], I
will refer to them as “band-inverted” and “symmetry enforced” Dirac points.
I illustrate band inversion in Figure 4.1, as a process where tuning a param-
eter of the system drives two bands of opposite parity to partially overlap.
We start with two well separated, spin-degenerate bands of opposite parity
in Figure 4.1a, describing a topologically trivial band insulator. Closing the
gap between the two bands, the system goes through a quantum critical
point between the trivial and a topological phase, with a semimetallic dis-
persion where the two bands touch in a single Dirac point, as in Figure 4.1b.
Driving the band overlap further, the bands cross through each other, and
in a generic case they hybridise [145], leaving them with sections of inverted
band character [9, 10, 148–151] as seen in Figure 4.1c.

The resulting insulating state is topologically non-trivial, and describes
a schematic of the standard Z2 topological insulators (TI) [152, 153]. As a
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Figure 4.1: Band inversion. Two bands with opposite parity (green and
purple lines) can be made to overlap by tuning a parameter of the system,
driving the system between different regimes. a Topologically trivial insu-
lator. b Bands touching at the quantum critical point between a trivial and
a topological insulator. c,d Fully gapped finite band overlap leading to c
a topological insulator, or d a semimetal if the crystal symmetries protect
band crossings along certain high-symmetry lines (e.g. k2, but not k1), re-
sulting in a Dirac point. e A schematic of a Dirac point splitting into two
Weyl points if time-reversal or inversion symmetry is broken.

result of the bulk-boundary correspondence [154], topological surface states
bridge the bulk projected gap, connecting the topological insulator in the
bulk of the material with the trivial insulator (vacuum) on the outside. The
inverted bulk bands do not necessarily hybridise at every momentum point
though. Symmetry elements present in the Brillouin zone can prevent the
hybridisation [155, 156], as illustrated in Figure 4.1d. In the illustrated
case, the crossing point is pinned to a specific high-symmetry line, however,
its position along that line is determined by the microscopic details for the
system and therefore accidental. In special cases, the protected crossing
can form a line instead of a single point, which is then known as a nodal
line. [11, 140, 141].

If the material is time-reversal and inversion invariant, it can in principle
host Dirac, but not Weyl points. When one of those symmetries is broken,
the bands split by spin, and the Dirac points split into two Weyl points of
opposite chirality [11, 140, 141]. This is schematically illustrated in Fig-
ure 4.1e. By construction of the band inversion mechanism, we see that all
the induced crossing points can be removed if we un-invert the bands by
simply tuning a parameter, without ever breaking any symmetries of the
Hamiltonian.

The symmetry enforced Dirac points, on the other hand, represent the
set of bulk band degeneracies which cannot be removed without breaking
some fundamental symmetry of the Hamiltonian [11]. They occur when
the space group of the crystal structure requires by symmetry that a de-
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generacy point be present in the band structure, which is only possible in
nonsymmorphic space groups [11, 157, 158], described below.

4.2 Nonsymmorphic symmetries and square nets

Nonsymmorphic symmetries, {g|t}, are a combination of a point symmetry
element, g, i.e. a mirror plane, M , or a rotation axis, C, with a translation,
t, by a fraction of the Bravais lattice vector resulting in a glide plane or a
screw axis, respectively (e.g. Figure 4.2a,b). It has long been known that
nonsymmorphic symmetries make bands “stick” together at the edges of the
Brillouin zone as a result of the fractional translations [77, 158, 159]. The
nonsymmorphic symmetries increase the size of the unit cell as compared to
the underlying symmorphic structure by the factor of the fractional trans-
lation. This increases the number of the basis atoms in the unit cell, and
reduces the size of the Brillouin zone by the same factor. Each atom in
the unit cell now contributes an identical band in momentum-space to the
original one (Figure 4.2c), offset by a phase factor given by its displacement
ti from the origin.

I illustrate how this is realised on an example of a simple 1D chain, by
introducing a glide-mirror plane {Mz|1200} in Figure 4.2a and a fourfold
screw axis {C4,x|1400} in Figure 4.2b. The {Mz|1200} glide-mirror creates
two bands in anti-phase in the new Brillouin zone, while the screw axis
{C4,x|1400} creates four bands with successive π/2 phase shifts, as shown
in Figures 4.2d and e, respectively. This generically creates band touch-

kxkx

E

kxkx

E

kx

E

x
π/2

a/4

x

a/2

edc

ba

Figure 4.2: Nonsymmorphic symmetries and band structure. a A
glide-mirror plane {Mz|1200}, and b a screw axis {C4,x|1400} are illustrated
on a 1D atomic chain. The cosine band of a simple 1D chain (c) is trans-
formed by the glide plane (d) and the screw axis (e), causing symmetry
enforced crossings at the new Brillouin zone edges.
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Figure 4.3: The Young and Kane model. a Two-dimensional square
lattice hosts two basis-atoms in the indicated

√
2×
√

2 unit cell. b A non-
symmorphic bilayer created by offsetting the two different basis atoms from
the lattice in a by z and −z, respectively. c–f The resulting respective Bril-
louin zones (c, e) and band structures (d, f), with the high-symmetry points
hosting the enforced band degeneracy highlighted in green. The figure has
been adapted from Young and Kane [161].

ing points at the edges of the nonsymmorphic Brillouin zone, as seen in
Figure 4.2d,e, built into the symmetry of the Hamiltonian of the system.

This process can equivalently be described by “backfolding” the original
band along the dashed lines, the edges of the nonsymmorphic Brillouin
zones indicated in Figure 4.2d,e, making it clear that the states which are
exactly on the dashed line will not move and will therefore be common for
both new bands [77, 158, 160]. These effects can be seen in square net
structures, which are of particular importance for NbGeSb (as well as of
some relevance for layered perovskite structures discussed in Chapter 5).

Crystal structures in condensed matter come in many structural forms,
and different models can be used to better illustrate the relevant constituting
elements such as clusters [162], polyhedra [163], or 2D nets with various
vertex connectivity (e.g. square, triangular, honeycomb and kagome 2D
lattices) [160]. Even though multiple descriptions might mathematically be
applicable to the same structure, a particular choice is usually made which
most naturally explains the connection of the structure to the resulting
physical phenomena. In Chapter 5 that will be the polyhedral description,
while here I will focus on the layered nets, in particular square atomic nets.

A simple square lattice extends the cosine band from 1D in the tight-
binding example of Section 2.1 into two dimensions as E ∝ cos(kxa) cos(kyb).
However, this 2D plane can combine with other structural elements in real
crystals, which often establish the true unit cell to be

√
2×
√

2, with a 45◦

rotation compared to the primitive square unit cell, as illustrated in Fig-
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ure 4.3a. The Brillouin zone is then half the size, also with a 45◦ rotation,
as can easily be seen from a band “backfolding” construction where the cor-
ners of the simple BZ are folded back onto its centre [158, 160]. The two
basis atoms of this unit cell are connected by a (1

2
1
2
0) fractional translation,

causing the bands to stick together along the entire Brillouin zone bound-
ary as in the nonsymmorphic examples above, protected by the {E|1

2
1
2
0}

symmetry [161], where E is the identity. The position and appearance of
the protected nodal lines are shown in Figure 4.3c,d.

Such square net layer can be made nonsymmorphic by offsetting the
two basis atoms in the layer by ±z, in the opposite directions perpendicular
to the crystal plane, illustrated in Figure 4.3b. This generates a glide-
mirror plane {Mz|12

1
2
0}, and two screw axes: {C2,x|1200} and {C2,y|01

2
0},

which all together protect the degeneracies at the high-symmetry points
on the Brillouin zone edge (X and M) [161], as indicated in Figure 4.3e,f.
Dirac points at X and M generated in this way are symmetry enforced, and
protected against gapping even when spin-orbit coupling is introduced.

4.3 Layered square nets

The two types of square nets presented in Figure 4.3a,b can be used as
building blocks which generate the NbGeSb crystal structure (space group
P4/nmm, #129 [164, 165]) shown in Figure 4.4a. This structure is generally
know as the PbFCl-, or ZrSiS-type structure, and is very versatile, capable

Γ
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X

R

M

A

Γ XM

c

a
b
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c

a
b

topGe(Si)
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Sb(S)

c

b

ba
c

d
cb

a

Figure 4.4: NbGeSb crystal structure. a The ZrSiS-type structure,
space group P4/nmm, # 129, in which NbGeSb crystallises. The middle
of the unit cell holds the glide-mirror plane of the nonsymmorphic bilayers
which connects b the top half of the unit cell to c the bottom half. The
optimal cleavage plane coincides with the glide-mirror plane shown in a
leaving only b or c as the crystal termination. d The corresponding bulk,
and c-axis surface projected Brillouin zones.
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Figure 4.5: Bulk ZrSiS electronic structure. a Fermi surface of ZrSiS.
b The bulk band structure of ZrSiS calculated by DFT along the indicated
path in the Brillouin zone (Figure 4.4d). The red circles denote the Dirac
points which form the square nodal line at the Fermi level, and gap with
spin-orbit coupling. The green circles denote the enforced Dirac points,
which form nodal lines in kz indicated by the green squares. c Measured
Γ–X and Z–R dispersions with the indicated position of the enforced Dirac
point. d From such measurements at different kz values, the enforced Dirac
point is found to disperse with kz. The a,c and d panels are adapted from
Chen et al. [167], and the b panel from Su et al. [168].

of hosting large variations in chemical composition [160, 166]. It is built
of two nonsymmorphic bilayers, of the type described in Figure 4.3b, and
a
√

2×
√

2 square net layer from Figure 4.3a. The nonsymmorphic bilayers
are arranged so that they share the same glide-mirror plane, indicated in
the middle of the unit cell of Figure 4.4a, with a bilayer of main group
element atoms (Sb or S in Figure 4.4) enclosed between the two layers of
the transition metal bilayer (Nb or Zr in Figure 4.4). These are then stacked
along the c axis alternating with a

√
2×
√

2 square net layer of another main
group element (Ge or Si in Figure 4.4). This means that the {Mz|12

1
2
0} glide

plane of the nonsymmorphic bilayers is inherited by the bulk space group,
and it connects the top and bottom halves of the unit cell, as can be seen
by their c-axis view in Figure 4.4b and c, respectively.

Some band structure features are also directly inherited from these two-
dimensional square net building blocks, both in the bulk and the surface
projected Brillouin zone, shown in Figure 4.4d. In real materials, multi-
ple orbitals present at each site of the square net result in multiple bands.
Backfolding of these bands in the

√
2×
√

2 unit cell can lead to crossings
between different bands somewhere in the Brillouin zone [160, 166]. This
crossing is generically not symmetry enforced and gaps with spin-orbit cou-
pling, however, charge compensation can pin it to the Fermi level where
it forms a nodal line. This has attracted much attention in ZrSiS, where
such nodal lines are the only bulk states at the Fermi level, as seen in Fig-
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Figure 4.6: Surface ZrSiS electronic structure. a The elliptical surface
state Fermi pocket seen at X in Figure 4.5a is shown in constant energy
contours, from Chen et al. [167], shrinking to a point with binding energy.
b The two surface states are identified in ZrSiS in Topp et al. [178], shown
along the high-symmetry lines in the vicinity of the X point. c Slab DFT
calculations in Su et al. [168] identify the orbital character of the two surface
states from b.

ure 4.5a,b, making it a bulk Dirac nodal line semimetal [166, 169, 170] with
clear signatures in transport measurements [168, 171–177]. The symmetry
enforced Dirac crossings at the edges of the zone, introduced in Figure 4.3,
are also preserved in three dimensions. In fact, since these nonsymmorphic
symmetry elements are present at every value of the out-of-plane momen-
tum, the Dirac points at X and M in 2D become nodal lines in 3D, along the
kz direction (along X–R and M–A in the 3D Brillouin zone) [166, 167, 169],
as demonstrated in Figure 4.5c,d.

These materials also exhibit interesting behaviour at the surface of the
crystal. Reportedly, the most stable c-axis termination is along the glide
plane indicated in Figure 4.4a [168, 169, 179]. The nonsymmorphic symme-
try of the bulk is therefore broken at the surface, since the bilayer building
blocks are not complete in the surface half-unit cell (Figure 4.4b,c). This
loss of nonsymmorphic symmetry allows the surface states to unpin from
their bulk counterparts along the entire zone edge and disperse within the
bulk projected band gap closer to the Fermi level [178]. Two such surface
states were predicted and observed in ZrSiS [167–170, 178], as seen in Fig-
ure 4.6b. One of them, SS, is derived from the transition metal d states
(Zr) [168, 178] (Figure 4.6c) and is mainly unoccupied, only crossing the
Fermi level at the X point, and creating a simple elliptical electron-like
Fermi surface pocket in Figure 4.6a. The other, SS′, mainly comes from
the nonsymmorphic main group element layer (S) [168] (Figure 4.6c), and
remains well below the Fermi level in the entire Brillouin zone.

Isovalent substitution of Hf for Zr increases considerably the strength of
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spin-orbit coupling on the transition metal site, leading to a substantially
increased spin splitting in the SS state, which originates from electrons on
that site. As a result of that, the SS surface state, as well as its Fermi sur-
face, develop considerable spin splitting via the Rashba mechanism enabled
by the inversion symmetry breaking at the surface [167, 180] (Section 2.2).

NbGeSb represents another isostructural chemical substitution option.
It would again be expected to host considerably stronger spin-orbit cou-
pling [160, 165] as compared to ZrSiS, now on all three atomic species.
However, the substitution here is aliovalent, with Nb having one electron
more than Zr, and Sb one electron less than S. The total charge count is
still the same, so we expect global charge compensation, but with a possi-
bility of considerable energy shifts of both bulk and surface state bands. In
the surface band structure, this is expected to manifest as lowering of the
Nb-derived SS band in energy, and raising of the Sb-dominated SS′ band
(which is fully occupied in ZrSiS) to cross the Fermi level. The substitution
however violates the charge count requirements for the nodal line to be the
only bulk states at the Fermi level, and introduces a significant bulk density
of states to the Fermi level.

4.4 Methods

To study the electronic structure of NbGeSb with ARPES experiments,
I used high-quality single crystals grown by Prof. Jonathan Alaria and
his student, Keiron Murphy, at the University of Liverpool (Figure 4.7a).
The samples were grown by chemical vapour transport in a quartz tube
filled in an argon atmosphere and sealed under vacuum, using iodine as
the transport agent [179]. The x-ray scattering data in Figure 4.7b show
the crystals to be of very high quality. Materials in this family reportedly
cleave along the glide-mirror plane indicated in Figure 4.4a [168, 169, 179],
which leaves an Sb-terminated surface in NbGeSb. I have empirically found
that ∼ 90 % of the cleaves on our samples are consistent with that cleaving
plane. The remaining 10 % of the cleaves have not shown the recognisable
“floating” [178] surface states in ARPES measurements, which implies that
they leave the nonsymmorphic bilayers intact in the surface layer, most
likely cleaving at the Ge layer. Unless explicitly mentioned, the presented
data comes form the “standard”, Sb-terminated cleaves.

Spin-integrated ARPES data, unless stated otherwise, was all measured
at the CASSIOPEE beamline [120] of the Soleil synchrotron in France. Some
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Figure 4.7: High-quality NbGeSb single crystals. a Image of a typical
NbGeSb single crystal, and b the accompanying x-ray diffraction pattern
data.

data were also collected at the SIS beamline [121] of the SLS synchrotron
at the Paul Scherrer Institute in Switzerland. There, the horizontal orienta-
tion of the ARPES analyser entrance slit provides a different experimental
geometry, and hence different conditions on the matrix element modulation
of the measured photoemission intensity. Spin-resolved ARPES data were
gathered at the APE beamline [110, 122] of the Elettra synchrotron in Italy,
and the BL-9B beamline [108, 109, 123] of the HiSOR synchrotron in Japan.
Both facilities use double VLEED detectors described in Section 3.1.2. The
Sherman function, and the absolute orientation of the measured spin polar-
isation of the bands, was determined by me for the Elettra data by perform-
ing and analysing measurements on the known Au(111) Rashba spin-split
surface states [65, 66, 181]. At HiSOR this normalisation procedure was
performed by the beamline staff, using Bi(111) surface states [108, 109].

It is worth noting that the NbGeSb samples show deterioration in the
quality of the acquired photoemission data over relatively short time scales,
even in ultra-high vacuum conditions. We have observed noticeable broad-
ening of the ARPES features after ∼ 6 hours at the SIS and APE beamlines,
and after ∼ 8–12 hours at the BL-9B and CASSIOPEE beamlines.

To help with the interpretation of the photoemission data, Dr. Matthew
Dyer and his student, Philip Murgatroyd, at the University of Liverpool
performed a series of DFT band calculations both for the bulk and slab ge-
ometry of NbGeSb. The calculations were done using the VASP code [137],
using the PBE exchange-correlation functional [132] with inclusion of spin-
orbit coupling [182]. Starting from the experimental values, the bulk crystal
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structure was first allowed to relax self-consistently on a 20×20×9 k-mesh
until all forces fell below 0.001 eV/Å. A 5-unit cell thick slab was created
by taking seven unit cells of the relaxed bulk structure, and removing two
in a way that created a symmetric slab, terminated by Sb layers on either
side. The structure was then further relaxed on a 20× 20× 1 k-mesh until
all forces again fell below 0.001 eV/Å, resulting in relaxed periodic images
of the slab, separated by a vacuum region of 18.36 Å. All properties of the
band structure were then extracted non-self-consistently along the desired
k-paths.

Further understanding of the surface state crossing structure, as well
as the chiral texture of the bands near the crossing points, described in
Section 4.7, was gained through a tight-binding calculation performed by
Dr. Chris Hooley, developed through a series of collaborative discussions.
The model is based on the five Nb 4d bands, each with two possible spin
projections, and is built in three parts as:

H = H0 +HR +HSO.

We first construct a spin-independent model, H0, using the symmetry ele-
ments of the NbGeSb Brillouin zone (C4 rotational symmetry, Mx and My

mirror symmetries, and time-reversal symmetry)5 to constrain the allowed
hopping form factors. Employing only relatively near-neighbour form fac-
tors: c+ ≡ cos kx + cos ky; c− ≡ cos kx − cos ky; sx ≡ i sin kx; sy ≡ i sin ky;
and sxy ≡ sin kx sin ky, the model Hamiltonian becomes:

H0 =



∆1 + t1c+ t2c− t3sy t4sxy t3sx

t2c− ∆2 + t5c+ t6sy 0 −t6sx
−t3sy −t6sy ∆3 + t7c+ + t8c− t9sx t10sxy

t4sxy 0 −t9sx ∆4 + t11c+ −t9sy
−t3sx t6sx t10sxy t9sy ∆3 + t7c+ − t8c−


,

where the parameters ∆1 = ∆2 = −1, ∆3 = ∆4 = 0, t1 = −0.5, t2 = −0.75,
t3 = t4 = t5 = t6 = −1, t7 = 0.75, t8 = 0.25, t9 = 1, t10 = 0.3, and
t11 = 0.5 were chosen arbitrarily. Spin-orbit coupling is then added to the
model in two steps, as HR and HSO. Even though they originate from the
same microscopic effect, we find it convenient to separate the spin-orbit

5The Mz mirror symmetry is not enforced, reflecting the surface nature of the bands
in the model.
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interaction into an inter-unit cell Rashba term, HR = αRẑ · (S× k), and
the intra-unit cell atomic spin-orbit term, HSO = αSOL · S which is taken
as k-independent [183]. The terms are included with respective weights of
αR = 0.2 and αSO = 0.02.

These will help us in the understanding of the electronic structure of
NbGeSb presented below.

4.5 NbGeSb band structure overview

Figure 4.8 shows the band structure of NbGeSb obtained from our ARPES
measurements (Figure 4.8a,b) and DFT slab calculations (Figure 4.8c–e),
from which we can immediately see the similarity in the main features.

Figure 4.8: NbGeSb band structure overview. a,b Experimental band
structure of NbGeSb, from ARPES measurements. a Fermi surface, mea-
sured with p-polarised 120 eV photons. b Dispersions along the high-
symmetry lines, measured using 65 eV photon energy. The dispersions are a
sum of measurements using circular left (CL) and circular right (CR) light
polarisation. c–e Equivalent plots of the band structure, calculated using
DFT. The Fermi surface is shown for calculations in both the slab (c), and
bulk (d) geometry. e Dispersions were calculated in the slab geometry, with
the coloured width of the lines representing the weight of the eigenstates
projected onto the surface Nb (blue) and surface Sb (green) atomic layers.
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Figure 4.8a shows the measured Fermi surface. We can see a square Fermi
surface centred at the Γ point, as well as elliptical Fermi pockets around the
X points, reminiscent of the ZrSiS Fermi surface (Figure 4.5a). Figure 4.8c,d
are DFT calculated Fermi surfaces, for a slab configuration which includes
surface state contributions, and for a bulk calculation, respectively. We
can see that the square Fermi surfaces at the Brillouin zone centre are
significantly more structured in NbGeSb than in ZrSiS, i.e. there are two
concentric square pockets, the larger one being mainly derived from surface
states. The bulk Fermi surface is composed of the smaller square pocket,
a “cross”-shaped pocket with its “petal”-like ends pointing towards the M

point, and a small round pocket just around Γ. The “petals” of the bulk
states cross through the surface state square pocket along the Γ–M which
can be seen both in the slab calculation of the Fermi surface and in the
measured ARPES data as sectioning and outward bowing of the sides of
the large square pocket close to the indicated Γ–M line.

This can also be seen from the dispersions of the bands along the in-
dicated high-symmetry lines of the Brillouin zone measured by ARPES in
Figure 4.8b and calculated by slab-DFT in Figure 4.8e. The slab calculation
in Figure 4.8e also shows the surface character of the calculated bands as
coloured widths of lines, with blue representing the surface Nb, and green
representing the surface Sb character of the bands. The small circular bulk
Fermi pocket is best seen in the ARPES dispersions as a hole-like band
crossing the Fermi level closest to Γ. The “cross” bulk Fermi surface comes
from an electron-like band around the Brillouin zone centre, seen in the
measured Γ–X dispersion as the second band crossing the Fermi level from
Γ. The slab calculation along the Γ–M line clearly shows an electron-like
bulk band being the one crossing the Fermi level furthest away from the Γ

point, representing the “petal” of the “cross” Fermi surface.

The projected surface weight of the bands in the DFT calculation helps
us distinguish the bulk and surface states in the measured data. We can see
in Figure 4.8e that a lot of the surface weight in the band structure occurs
within the bulk band manifolds, indicating they are surface resonances with
significant extent of the wavefunction into the bulk. For example, the large
square Fermi surface is made by surface states that have become resonant
with the bulk bands, which in turn make the smaller, bulk square Fermi
surface. There are two pairs of surface states though, which disperse in the
bulk-projected band gap, completely separated from the bulk bands. These
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Figure 4.9: Photon energy dependence of the Fermi surface. Photon
energy dependence of the bands at the Fermi level, along the a Γ–X, and
b Γ–M lines are shown as hν-k‖ maps, measured using linear p polarisation
of light.

I assign as the same surface states identified in ZrSiS [168, 178], arising
from the breaking of nonsymmorphic symmetry at the surface. I will follow
the naming convention set by Topp et al. [178], SS and SS′, shown also in
Figure 4.6b.

The dispersions in Figure 4.8b,e illustrate the band shifts of these surface
states as compared to ZrSiS, resulting from the aliovalent substitution of Nb
for Zr and Sb for S described before. We can see that the SS state, which is
derived predominantly from Nb states, is lowered in energy, while SS′, which
also has a significant contribution from the Sb states, is significantly raised
in energy. The effective hole doping on the Sb site forces SS′, which is fully
occupied in ZrSiS, to cross the Fermi level along Γ–X, causing it to intersect
SS along the M–X. This intertwining of the two surface states means that
the elliptical Fermi pocket around X is now made from Fermi crossings of
both surface states: SS along the M–X line and SS′ along the Γ–X line,
unlike in ZrSiS, where it was made only by the SS state. Furthermore, we
can see that with this substitution both SS and SS′ develop considerable
splitting away from the high-symmetry time-reversal invariant momentum
points, X and M. The properties of this intertwining of the two pairs of
surface states will be further explored in Section 4.7.

The surface states can in principle also be experimentally distinguished
from the bulk states by their lack of dispersion in the out-of-plane direc-
tion. Changing the photon energy corresponds to probing bands at different
out-of-plane momentum, and therefore, the bands that show no dispersion
with photon energy can be assigned as two-dimensional, or surface states.
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Figure 4.10: Constant energy contours of the NbGeSb band struc-
ture. The constant energy contours in 200 meV increments, measured at
the SIS beamline in both p-polarised (top) and s-polarised (bottom) linear
light polarisation. The symmetry enforced Dirac points are circled in green.

Figure 4.9a,b shows the photon energy (hν) dependence of the bands at the
Fermi level along the Γ–X and the Γ–M high-symmetry lines, respectively.
We can assign the observed bands to the features of the Fermi surface iden-
tified above. Indeed, the bands with significant surface character appear as
straight lines in the kz-k‖ maps. We would expect the bulk bands to show
periodic dispersion with kz, and indeed such behaviour can be seen for the
“petal” bands along Γ–M and for the small square Fermi surface bands along
Γ–X for hν ∼ 60–80 eV. Reliable recognition of dispersive features is made
difficult due to two effects. The photon energies that were used in the exper-
iment (< 200 eV) were too low for precise kz selection, and instead integrate
over a large interval of kz values. The other effect comes from the matrix
elements changing with photon energy, resulting in a strong variation of
the measured spectral weight of the bands, additionally complicated by the
nonsymmorphic symmetry [184].

The in-plane dispersion of the pockets can also be nicely illustrated by
constant energy contours at a series of binding energies. Two such series
of maps are presented in Figure 4.10, measured using the s and p linear
polarisations of incident light. The different light polarisations highlight
different features, such that we can see, e.g. the large square Fermi surface
better using p-polarised light, while the corners of the small square Fermi
surface and the “petal” pockets protruding from the large square pocket at
the Fermi level are better seen with s-polarised light.

We can see that the square Fermi surfaces, as well as the small round
Fermi surface at Γ, expand with increasing binding energy, demonstrating
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a hole-like character. When the corners of the square pockets reach the
X points, around 0.7 eV below the Fermi level, they cross the bands from
the adjacent zones forming the enforced nonsymmorphic Dirac crossings
discussed above. On the other hand, the “petals” of the “cross” pocket
become smaller with increasing binding energy, narrowing to a line along
Γ–M around 0.5 eV below the Fermi level, which is explored in more detail
below. This coexistence of electron- and hole-like pockets at the Fermi level
is consistent with the expectation of global charge compensation in NbGeSb.

In the remainder of this Chapter I will first discuss two points of interest
of the bulk band structure of NbGeSb, and then address the spin-orbit
coupled surface states SS and SS′, which intertwine along the Brillouin zone
edge forming the elliptical Fermi surface and two-dimensional equivalents
of Weyl points.

4.6 NbGeSb bulk band structure

The most studied feature of the ZrSiS bulk band structure is the square
Dirac nodal line pinned to the Fermi level [167–178], seen in Figure 4.5a,b.
In NbGeSb, this nodal line develops much stronger hybridisation due to
stronger spin-orbit coupling, but also becomes unpinned from the Fermi
level due to charge redistribution as compared to ZrSiS. The equivalent
feature can still be seen in the bulk band structure of NbGeSb as avoided
crossings close to the Fermi level along the Γ–X and Γ–M lines in Figure 4.11
shown below, however, the notion of the nodal line is lost here.

Therefore, in this Section I discuss two striking features of the bulk
electronic structure which were described above. The nonsymmorphic Dirac
line nodes at the high-symmetry X and M points at the edge of the Brillouin
zone, and the band crossing in the dispersion of the “petal”-shaped pockets
along the Γ–M high-symmetry line, seen in Figure 4.10. Both features are
also shown to exhibit significant surface spectral weight, mixed with the
bulk states in the form characteristic of surface resonances. Due to this
mixed character of the bands, careful assignment of the origin of observed
features will be necessary when discussing the data.

4.6.1 Symmetry enforced bulk Dirac nodal line

Arguably the most important feature of the bulk band structure are the
nonsymmorphic symmetry enforced Dirac line nodes at X and M. These
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Figure 4.11: Nonsymmorphic Dirac nodal line. a Bulk band structure
of NbGeSb from DFT calculations for different values of kz. The symmetry
enforced Dirac nodal lines at X and M are circled in green. b Γ–X disper-
sion, measured using 18 eV photon energy and linear s-polarised light, with
clearly visible surface resonant states crossing at X. c The same dispersion
as in b, measured using p-polarised 130 eV light, making the broad intensity
of the bulk band dispersion visible as well. d Photon energy dependence of
the cut indicated in c, measured with linear p-polarised light.

enforced nodal lines form along the out-of-plane momentum by extending
the Young and Kane mechanism [161], illustrated in Figure 4.3e-f, into three
dimensions as described above. To visualise the out of plane dispersion
of the bulk bands, Figure 4.11a shows the bulk DFT calculation of the
dispersions along the high-symmetry lines of the surface-projected Brillouin
zone, projected to particular values of the out-of-plane momentum kz. Two
enforced Dirac nodes are circled, one at X and the other at M. We can see
that the enforced Dirac points are present at all plotted values of kz, making
them nodal lines along the M–A and X–R lines in the three-dimensional
Brillouin zone, as was found for ZrSiS (Figure 4.5b). The Dirac points
have a different binding energy at different kz values, indicating that the
nodal lines disperse along the out-of-plane direction. As in ZrSiS [167], we
find that the nodal line at X is much more dispersive than the one at M,
indicated by the difference in binding energy of the crossing point for kz = 0

and kz = π/c.

This node is however most easily observable along the Γ–X line (Fig-
ure 4.11b,c), where it appears in the standard cone-like form, as a cross-
ing of linearly dispersing bands with opposite velocities. Two features are
seen to form the band crossing, a sharp cross with high measured intensity,
and broad, weaker intensity which traces it. The broad feature is the kz-
broadened bulk state, while the sharp feature is the resonant surface spectral
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weight, as seen in Figure 4.8e. Where these bands cross the Fermi level, they
form the square Fermi surfaces along the Γ–X line. The spectral weight of
the bulk states is suppressed by matrix elements effects in Figure 4.11b.
However, with a good choice of photon energy in Figure 4.11c, where both
bulk band branches have visible intensity, we can experimentally confirm
that the crossing occurs along a span of energies for different kz values. We
have performed a detailed photon energy-dependent measurement of these
bands, and in Figure 4.11d I show a hν-k‖ map centred at X, 0.7 eV below
the Fermi level where the surface resonant states cross. We can see that the
surface state spectral weight forms a non-dispersive, straight line with hν,
while the more diffuse, bulk spectral weight appears as a dispersive band
around that line. Even though the shape of the bulk band in Figure 4.11d
would indicate kz dispersion, we cannot completely exclude that this is not
simply an illusion coming from the intensity changes in the bulk states due
to the variation of matrix elements effects with hν.

While the two bands that form the enforced crossing have opposite veloc-
ities along the Γ–X direction, they both disperse downwards together along
M–X. In the DFT calculations in Figure 4.11a, we can indeed distinguish
these two bands, degenerate at the X and M high-symmetry points, but split
and dispersing side-by-side along the Brillouin zone boundary. These are
the bands that would have been degenerate if they originated only from the√

2×
√

2 square net layers of Ge atoms (Figure 4.3a,c,d). However, due to
out-of-plane hopping of electrons, the bands gain some Nb and Sb character
with a different symmetry environment (Figure 4.3b,e,f), which splits the
two bands. This splitting can be seen as an energy scale of the relevant sym-
metry breaking due to the out-of-plane hopping processes. Comparing the
calculated bands of NbGeSb in Figure 4.11a and for ZrSiS in Figure 4.5b,
we can see that the splitting is considerably larger in NbGeSb, indicating
stronger out-of-plane orbital overlap, consistent with NbGeSb having more
radially extended orbitals as well as a smaller c/a lattice parameter ratio
(2.218 [165], compared to 2.273 of ZrSiS [164]).

4.6.2 Dispersive nodal line along Γ–M

Another interesting feature of the bulk NbGeSb band structure presents
itself along the Γ–M high-symmetry line, without an obvious equivalent
seen for ZrSiS in literature. I have described it already as the narrowing
of the “petal”-shaped bands in Figure 4.10. A more detailed view is offered
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Figure 4.12: Bulk line node along Γ–M. a High-resolution constant
energy contours, measured using s-polarised 18 eV light. Γ–M lines are
indicated by dashed green lines, and the position of the dispersive line node
is circled in green. b A series of dispersions perpendicular to the Γ–M line
were taken at position indicated in a. The data was measured using p-
polarised 65 eV light, on a cleave which does not display the presence of
the SS and SS′ surface states. c An equivalent dispersion to those in b, but
measured at kΓM = 0.386 Å−1 along the Γ–M line, on a “standard” cleave,
showing surface states, using p-polarised 130 eV light. d Photon energy
dependence of the cut indicated in c, measured with p-polarised light. The
dispersive bulk features are indicated by dashed green lines, and an inset
with higher colour-saturation is used to make them more readily visible.

in Figure 4.12a, as constant energy contours from a high-resolution map,
where we recognise the same features described above. It is clear that the
flat sides of the large square Fermi surface are not continuous lines. The
middle section along the Γ–M line is separated from the corners of the
square (oriented along Γ–X) by small hybridisation gaps at the Fermi level,
presumably because they are intersected there by the bulk “petal”-pockets
(not visible at the experimental conditions of the map in Figure 4.12a).
Upon closer inspection, we can see that this middle section of the square
Fermi surface’s side is composed of two bands. This is expected since we
have already concluded from Figure 4.8b,e that this Fermi surface comes
from the split SS′ surface state pair becoming resonant with the bulk states
as it crosses the Fermi level along Γ–M.

Further below the Fermi level, we can clearly see the sides of the “petal”
pockets coming closer together around the Γ–M line to form a cross with
a centre at Γ, and finally meeting at 0.5 eV below the Fermi level. The
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bands first meet close to the Brillouin zone centre, with the touching point
moving to higher binding energies towards the M point. This forms an
in-plane dispersive nodal line feature along the Γ–M high-symmetry line.

Since the bands that form this nodal line disperse most strongly in the
direction perpendicular to the Γ–M line (k⊥ΓM), the crossing is most easily
seen in that direction. Measured along the Γ–M line (kΓM) it appears only
as a weak, non-dispersive feature seen in Figure 4.8b at ∼ 0.3 eV below
the Fermi level. Measured dispersions in the perpendicular direction, how-
ever, give striking results, showing a clear Dirac-like dispersion of the bands.
Figure 4.12b shows such dispersion cuts measured at equidistant positions
along the Γ–M line, indicated in the constant energy maps in Figure 4.12a.
The dispersions demonstrate that this linear band crossing indeed persists
along Γ–M, forming a nodal line, as well as the fact that the nodal line
disperses further below the Fermi level towards the edge of the Brillouin
zone, as seen from the binding energy of the crossing point in the cuts in
Figure 4.12b. It is worth noting here that the dispersions in Figure 4.12b
were measured on one of the rare cases when the sample presumably did
not cleave along the glide-mirror plane between the two Sb layers. The SS
and SS′ surface states are therefore not present on this surface, and hence
we do not observe the large square Fermi surface states which would ap-
pear as flat bands near the Fermi level of Figure 4.12b(i). In comparison,
Figure 4.12c shows the equivalent dispersion cut, but measured on a “stan-
dard” cleave, and the surface states are clearly seen as a high-intensity flat
state at the Fermi level. The flat band is broken into three parts where the
bulk bands forming the “petal” cross through it, just as we have seen in the
Fermi surface maps. This hybridisation of the bulk and surface states leads
to surface resonant spectral weight of the SS′ states also dispersing down to
form a sharp Dirac crossing. The lack of SS and SS′ surface states in Fig-
ure 4.12b, which typically manifest as the most intense bands in NbGeSb,
has the advantage of giving the bulk states higher relative intensity in the
measurements, allowing us to see them more clearly. However, this surface
termination presumably also hosts surface states of a different kind, making
the assignment of the band character difficult.

I again use a photon energy dependent map to help distinguish the bulk
and surface contributions, and further characterise this band crossing. The
out-of-plane dispersion of the states is shown in the hν-kΓM map in Fig-
ure 4.12d. It was taken at the same position along the Γ–M line as the
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dispersion in Figure 4.12c, at kΓM = 0.3861 Å−1, at the energy of 0.3 eV
below the Fermi level. The normal emission of the map (k⊥ΓM = 0) rep-
resents the point on the Γ–M line. Two main features can be seen in the
map, a pair of parallel lines at k⊥ΓM ≈ ±0.05 Å−1 showing no dispersion
with hν, and two highly dispersive bands with low spectral weight, crossing
at photon energies of ≈ 120 eV and ≈ 160 eV. The dispersion of this band
is traced in Figure 4.12d for clarity, and an inset with higher colour satu-
ration serves to make the band more easily visible. Since it is difficult to
determine clear high-symmetry planes from our data without bias, I have
chosen to leave the data represented by photon energy values, instead of
converting those to kz values. The features which are non-dispersive in the
out-of-plane direction (with hν in the map) are assigned as surface resonant
spectral weight, and their crossing occurs at ≈ 0.5 eV below the Fermi level.
The highly dispersive bands in Figure 4.12d are, on the other hand, bulk
in origin, and form crossing points at ≈ 0.3 eV below the Fermi level as
they disperse along the out-of-plane momentum direction. While it is likely
related to the mirror plane which lies along Γ–M, the true origin of the
observed Dirac nodal line here is currently not entirely understood.

4.7 Weyl-like points in the surface electronic structure

I now shift my focus to the two pairs of surface states, SS and SS′, in-
troduced in Figure 4.8b,e as equivalents of the surface states known from
ZrSiS (Figure 4.6). These surface states have a reportedly unconventional
origin [178], arising from the breaking of the bulk nonsymmorphic sym-
metry at the surface which allows them to completely separate from their
bulk partners along the entire Brillouin zone edge, and disperse in the pro-
jected bulk band gap there. However, this mechanism does not provide
them with topologically non-trivial properties [168], and so we can consider
them as conventional two-dimensional states, confined to the c-axis surfaces
of the crystal. I will show below that starting from such trivial 2D states,
and given the right symmetry conditions, we can engineer topologically
non-trivial crossing points of singly-degenerate bands in the band-inversion
scheme.

68



Igor Marković 4 Protected band crossings in NbGeSb

4.7.1 Spin-split surface states of NbGeSb

As discussed above, the two surface states are brought closer to each other
in energy in NbGeSb than they are in ZrSiS. They are seen in Figure 4.8e to
freely disperse along the Brillouin zone edge within a projected bulk band
gap and to overlap at the X point causing a band inversion. Figure 4.13a
provides a more detailed view of the bands, measured by ARPES, along the
two high-symmetry lines in the vicinity of the X point. From the disper-
sions, we can clearly see that both surface states are split into two bands
away from the high-symmetry (time-reversal invariant momentum) X and
M points (Figure 4.8). While the SS bands have an electron-like dispersion
at X along both high-symmetry lines (SS band along M–X becomes the
surface resonance seen best in Figure 4.11b along Γ–X), for the SS′ state
X is more akin to a saddle point. The SS′ bands can be seen to disperse
downwards from X towards the M point, but upwards, crossing the Fermi
level to form the elliptical Fermi surface towards Γ. I have conducted a
series of spin-resolved ARPES measurements on these bands, with the key
results presented in Figure 4.13a demonstrating that the splitting of both
SS and SS′ surface states is a spin splitting. The spin-resolved EDCs and
MDCs measured along the lines indicated in the Γ–X and M–X dispersions
of Figure 4.13a reveal clear spin polarisation of the bands which reverses
between the two branches of the same surface state. Given this behaviour,
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Figure 4.13: Spin polarisation of the surface states. a High-resolution
ARPES data of the surface states near the X point, measured using p-
polarised 18 eV light. The spin-resolved EDCs and MDCs show the splitting
of the bands to be spin-splitting. The displayed spin component is perpen-
dicular to the high-symmetry line at which the measurement is taken. b,c
The measurement of the full in-plane spin polarisation of the bands is shown
for: b the Γ–X EDCs, and c the M–X EDCs. The coordinate labels refer
to Figure 4.14a.
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Figure 4.14: Symmetry elements near the X point. Surface pro-
jected Brillouin zone showing: a the coordinate system and high-symmetry
lines, and b the position of all the symmetry elements of the p4mm layer
group [185]. The elliptical surface state Fermi surface around the X point
(purple squares in a and b) is shown with: c the relevant crystal symmetry
elements, and d symmetry constrained spin texture for the outer (purple ar-
rows) and inner (green arrows) elliptical pocket, determined by spin-ARPES
experiments and DFT slab calculations.

I attribute the band splitting to the Rashba mechanism, described in Sec-
tion 2.2, and in agreement with previous studies which observed a similar
splitting of the SS state in HfSiS [167, 180].

All spin-resolved data in Figure 4.13a is plotted for the component of
the spin polarisation perpendicular to the high-symmetry line along which
the data was taken. Spin-resolved EDCs for the orthogonal in-plane spin
components are shown alongside these in Figure 4.13b,c, exhibiting no re-
solvable polarisation of the bands for the component parallel to the high-
symmetry line. The presence of C4 and time-reversal symmetries precludes
any out-of-plane spin polarisation. We can then conclude that the full 3D
spin polarisation vector of the bands is in-plane, and lies perpendicular to
the high-symmetry lines. All four Brillouin zone edges are equivalent under
the C4 rotational symmetry, and I choose the one at kx = π/a to focus
on in the following discussion (see Figure 4.14a). At that zone face the Sy
spin component is along Γ–X, while the Sx spin component is along M–X,
as indicated in Figure 4.13. We can understand this by employing sym-
metry analysis to the possible spin components of the bands. As seen in
Figure 4.14b,c, two mirror lines cross at the X point, running along the
two perpendicular high-symmetry lines. Since spin is an axial vector prop-
erty, mirror operations flip the components parallel to them, but keep the
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perpendicular components invariant. Only those can therefore be present
along the mirror lines. Quantum mechanically, singly degenerate bands
along a mirror line need to be definite eigenstates of that mirror operation,
i.e. spin-up and spin-down perpendicular to the mirror.

The symmetry elements present around X strongly constrain the spin
texture of the surface states. In particular, we have seen that the SS and
SS′ surface states combine to form the spin-split elliptical Fermi surface
surrounding the X point. Due to all the described symmetry restrictions,
and SS and SS′ having the same effective sign of the Rashba effect, the two
ellipses of the Fermi surface acquire a complex spin texture schematically
drawn in Figure 4.14d. The information about the spin texture comes from
further, detailed spin-resolved measurements on and off the high-symmetry
directions along the elliptical Fermi surface, and is also in good agreement
with predictions from the DFT calculations. This spin texture is at a glance
uncharacteristic of the standard spin-momentum locking in Rashba split
states, such as Au(111) surface states mentioned before, as they have the
opposite winding number. However, we need to keep in mind that this is a
Fermi surface formed of two different Rashba split bands in perpendicular
directions, and that it forms on the edge of the Brillouin zone, instead of at
its centre, allowing for this texture.

4.7.2 Surface state band crossings

The structure of the crossing created by the inversion of SS and SS′ surface
state pairs along the Brillouin zone edge will be of interest for the rest of
this Chapter. Along the M–X–M line of the Brillouin zone edge, it is the
top of the SS′ band that inverts with the bottom of the SS band at the X

point. Since the two surface states here cross as spin-split pairs, they form
a quartet of crossings on either side of the high-symmetry X point. This
crossing structure is shown in Figure 4.15 as measured in a high-resolution
ARPES dispersion and calculated by the DFT slab calculation. To make
further discussion of the crossing structure easier, I assign numbers to the
four crossing points, as shown in Figure 4.15, such that crossings #1 and
#3 are between opposite-spin bands, while the #2 and #4 are between
like-spin bands. The experiment and the calculations show excellent agree-
ment, confirming that the electronic structure of NbGeSb is in the weakly
interacting regime. We do observe a signature of electron-phonon coupling
as small characteristic kinks (discussed in Section 2.4.1) in the SS bands
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Figure 4.15: Surface state crossing structure along M–X–M. The
fourfold crossing between SS and SS′ states along the Brillouin zone edge
is shown in high-resolution ARPES measurement (left), and from DFT cal-
culations (right). The crossing points are numbered in the DFT dispersion,
and spin labels are assigned to the bands. The inset shows a small gap
developing at crossing #3.

appearing at ≤ 50 meV from the Fermi level.
The observed quartet of crossings exhibits a peculiar structure, present-

ing two main points of interest. First is that the like-spin crossings appear
to be protected, with no sign of hybridisation in either the measured or cal-
culated dispersions. This is in contrast with the crossing #1, of oppositely
spin-polarised bands, which develops a clear gap on the order of 50 meV.
However, the crossing #3, its opposite-spin partner, is only seen to open a
small gap of ≈ 1 meV in a calculation done on a very dense k-path (inset of
Figure 4.15). This is too small to be experimentally resolved here, and the
#3 crossing shows no appreciable gap in the measured ARPES dispersion.
A strong anisotropy is thus present in the hybridisation strengths of the #1
(↑x,↓x), and the #3 (↓x,↑x) band crossings.

The intertwining of the SS and SS′ surface state pairs around X is further
revealed in the way the elliptical surface Fermi surface evolves with binding
energy in Figure 4.16a,b. Instead of the pocket simply becoming smaller
further below the Fermi level, as it does in ZrSiS (Figure 4.6a), it goes
through a series of Lifshitz-like transitions at the energies where the bands
intersect. The constant energy contours at the energy of each of the four
crossing points identified in Figure 4.15 are shown both as measured ARPES
maps, and as calculated by slab DFT. At ∼ 0.75 eV below the Fermi level,
the original pocket finally closes and merges into a point, which we can
identify as the symmetry enforced Dirac crossing of the surface resonant
states along Γ–X seen in Figure 4.11b,c.

This can also be seen in Figure 4.16c, in a series of dispersions parallel
with the M–X–M line, extracted from the same dataset. These dispersions
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Figure 4.16: Intertwining of surface states off high-symmetry lines.
Constant energy contours of the elliptical surface state Fermi pocket, a at
100 meV intervals, and b at binding energies of the four crossing points from
Figure 4.15 which are compared to DFT calculations. c Dispersions parallel
to the M–X line from the same measured dataset at kx positions indicated
in a. For clarity, the ARPES data is presented as a sum of normalised
measurements made using p- and s-polarised 18 eV light.

also reveal the importance of the mirror symmetry element present on the
Brillouin zone edge. While the unusual structure of the four crossings seen
in Figure 4.15 is present along the Brillouin zone edge, even slight deviation
from the mirror line leads to the two pairs of surface states opening gaps
and separating completely.

The asymmetric hybridisation of the #1 and #3 crossings in Figure 4.15
are highly unusual, since for conventional bulk states, which have their
orbital momentum quenched by the crystal field, there is no a priori way to
differentiate a (↑x,↓x) from a (↓x,↑x) crossing. In that situation we might
expect similar hybridisation gaps to develop in both crossings. However,
this is not necessarily true for surface states, where finite unquenched orbital
angular momentum (OAM) is allowed to develop. I will show below that
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this ultimately drives the unusual crossing structure here.

4.7.3 Orbital angular momentum of the bands

The loss of inversion symmetry at the surface allows for the development of
unquenched orbital angular momentum by allowing additional orbital hy-
bridisations, prohibited in the inversion symmetric bulk [73, 95, 186–188].
When spin-orbit coupling is smaller than the scale of inversion symme-
try breaking, it cannot mix the states which have opposite orbital angu-
lar momenta, but instead only splits them by spin. Such a spin-splitting
then develops on the scale of the full atomic spin-orbit coupling, and con-
siderable orbital angular momentum is expected to arise in such surface
states, with approximately the same expectation value in both spin-split
branches [73, 187, 188]. For the SS and SS′ surface states of NbGeSb, the
size of the spin splitting is best seen in Figure 4.15. The SS band de-
velops maximal splitting of ∼ 90 meV, while the splitting in SS′ reaches
∼ 225 meV, values comparable to the average atomic spin-orbit coupling
for Nb 4d and Sb 5p orbitals [60, 189], weighted by their relative contri-
butions to the bands. This indicates that the energy scale of the inversion
symmetry breaking in NbGeSb is indeed larger than that of the atomic spin-
orbit coupling [188], and that we can expect these surface states to develop
significant orbital angular momentum.

Since the Brillouin zone edge hosts a mirror line, all eigenstates of the
SS and SS′ surface states along it must have definite parity with respect to
that mirror operation [76, 77]. Considering that orbital angular momentum
is an axial-vector property, the same symmetry restrictions apply to it as
for the spin angular momentum, discussed above. It is therefore expected
that Lx would be the only orbital angular momentum component that de-
velops an expectation value in the bands along the kx = π/a Brillouin zone
edge, which is a Mx mirror line. We can already see this from the orbital
decomposition of the surface states as given by the slab DFT calculations
in Figure 4.17a,b. The Nb 4d orbitals (Figure 4.17a) even under the Mx

mirror are the d3r2−z2 , dx2−y2 and dyz, and they contribute only to the SS
state. These orbitals form the basis for the orbitally unquenched states
with Lx = {−2, 0,+2}, which are even under Mx. The remaining dxy and
dxz contribute only to the SS′ state. They are odd under the Mx mirror,
and form the basis for Lx = {−1,+1} states, placing the orbital angular
momenta of the SS and SS′ states in two orthogonal manifolds as required
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Figure 4.17: Orbital decomposition of surface states and the tight-
binding model. Slab calculation along the X–M line with projection of
the eigenstates onto atomic orbital basis of: a Nb, and b Sb surface layers.
c The fourfold crossing of the surface states along X–M is reproduced by a
tight-binding model using the five Nb 4d orbital basis.

by symmetry.

Of the Sb 5p bands (Figure 4.17b), px contributes to SS, and py and pz
contribute to SS′. This would naïvely appear to be opposite parity contri-
butions to those from the Nb orbitals. However, since Sb and Nb atoms
never lie on the same Mx mirror line in the surface unit cell (the symmetry
schematic in Figure 4.14b applies to Figure 4.4b,c as well), we need to make
a choice of which one to use. The mirror line which keeps the Nb positions
invariant will map the Sb atoms to a point a distance a away in the x direc-
tion, and an opposite translation is then needed to bring them back to the
original position. This translation introduces a corresponding Bloch factor
of e−ik·r into the wavefunction, where the translation vector is r = (a, 0)

and on our chosen Brillouin zone edge we have kx = π/a. The Bloch factor
therefore reduces to a phase of eiπ = −1, exchanging the effective parities
of Sb orbitals for the Mx mirror operation.
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In order to pursue the orbital angular momentum composition of the
bands further, we have constructed a tight-binding model of the SS and
SS′ surface states. For simplicity, we restrict the choice of basis states to
the five Nb 4d orbitals, since the symmetry allowed mixing of the Sb states
would not affect the fundamental results. The model is built in three steps
as:

H = H0 +HR +HSO,

described in detail in Section 4.4. TheH0 term encodes the spin-independent
near-neighbour hopping processes, restricted by the symmetries of the sys-
tem given in Figure 4.14b, andHR andHSO represent separate inter-unit cell
Rashba component and an intra-unit cell atomic k-independent component
of spin-orbit coupling, respectively. This separation of spin-orbit terms al-
lows us to consider the influence of orbital mixing generically allowed by the
atomic L ·S term on the crossings of bands split by the Rashba mechanism.
The result of the model along the kx = π/a Brillouin zone edge, shown
in Figure 4.17c, faithfully reproduces the fourfold crossing structure of the
surface states seen in Figure 4.15 and the asymmetry in the hybridisation
strengths of the opposite spin crossings #1 and #3.

Figure 4.18a reproduces the quartet of band crossings from the tight-
binding model from Figure 4.17c, now including the expectation values of
orbital angular momentum. Our expectation based on symmetry analysis
is confirmed, and only the Lx component of orbital angular momentum
acquires a finite value along this Brillouin zone edge. The SS′ pair of bands
is shown to be nearly in the pure Lx = +1 state, while SS pair is mainly in
the Lx = 0 state, showing small admixture of the Lx = ±2 state.

A minimal model which neglects the Lx = ±2 contribution in the SS′

states, and treats all bands as having pure orbital angular momentum val-
ues, is shown in Figure 4.18b and represents a good starting point for ex-
plaining the peculiar crossing structure from Figure 4.15. Since this sim-
plification puts the orbital angular momenta of SS and SS′ in neighbouring
Lx projections, we can see that the strong symmetry restrictions on allowed
angular momentum components along the Brillouin zone edge formulate the
minimal band crossing problem in terms of a two-level model in both the
spin and orbital angular momenta. Any inter-orbital mixing of states with
orthogonal mirror parity is forbidden at the mirror lines, and so only the
atomic spin-orbit coupling of the HSO ∝ L · S form can open hybridisation
gaps seen in crossings #1 and #3.
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Figure 4.18: Orbital angular momentum in surface states. a The
tight-binding bands from Figure 4.17c are shown with projected expectation
value of the x component of the orbital angular momentum. b Schematic
of the minimal model of the fourfold surface state crossing, with the bands
labelled by the orbital and spin angular momenta in ket notation.

The x basis is the natural one to use in this situation, as only the x
components of orbital and spin angular momentum are expected to be non-
zero, giving us [59]:

L · S = LxSx +
1

2
(L+S− + L−S+)

as the Hamiltonian acting at the four band crossings in Figure 4.18b. The
LxSx term will not be able to act at any of the four crossing points, since
they are all between bands with different Lx values, regardless of the spin
sector. In fact, even with allowing for the orbital angular momentum states
not to be pure, this still holds because the bands that cross always belong to
orthogonal manifolds under the mirror symmetry. We therefore only need
to consider the remaining, “spin-flip” terms, which hybridise states where
the spin and the orbital angular momenta change in the opposite sense.

Only crossing #1, between |Lx=1, ↓x〉 and |Lx=0, ↑x〉 fits into that cat-
egory, and it is indeed the one where a sizeable gap is visible in the real
material. At #3, its opposite-spin crossing partner, the spin and angular
momenta change in the same sense between |Lx=1, ↑x〉 and |Lx=0, ↓x〉 and it
is therefore protected within this minimal model. In reality, the admixture
of Lx = ±2 in the SS′ states allows the “spin-flip” terms to act, and so our
tight-binding model opens a gap at #3. The size of this gap is determined
by the amount of the admixed states, and is expected to be small compared
to the one that opens at #1. The gap size ratio in our tight-binding model
is ∼ 14, while an even larger ratio is seen for the real material (∼ 50 in the
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DFT calculations in Figure 4.15). The large observed gap asymmetry points
to the deviations from the simple two-level model being small in reality.

At the two like-spin crossings, #2 and #4, the “spin-flip” terms can-
not act between bands as they have the same spin projection, and LxSx

is still forbidden because the bands belong to orthogonal orbital angular
momentum manifolds. Even in the realistic case when the orbital angular
momentum states are not pure, these conditions are ensured by the presence
of the mirror symmetry along this high-symmetry line, making the #2 and
#4 crossings strictly protected.

4.7.4 Weyl-like points in the tight-binding model

We have seen in Figure 4.16c already that all four crossing points open up
gaps as the bands move off the mirror line on the Brillouin zone edge. As
soon as the strict symmetry requirements on the eigenstates are lifted away
from the mirror line, both inter-orbital mixing and spin canting become
allowed, opening gaps even for the crossings of the like-spin bands. This
means that the #2 and #4 crossing points along the X–M line are isolated
band degeneracies in momentum space. The full dispersion of bands in the
vicinity of the crossing point #4 is depicted in Figure 4.19a and locally
has the typical cone shape of tilted type-I Weyl fermions [190] seen in bulk
materials.

Here, however, the bands are confined to the two-dimensional surface
of the crystal. As I have discussed in Section 4.1, 3D Weyl points are
fully “accidental” crossings of two singly degenerate bulk bands, with their
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Figure 4.19: Protected Weyl-like crossing of surface states. a Band
dispersion around the crossing #4 from Figure 4.18b, calculated by our
tight-binding model. b Orbital and c spin angular momenta are extracted
along the indicated green contour.
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local protection lying in the fact that the three dispersion terms in the
Hamiltonian use up all of the Pauli matrices spanning the basis of the
Hamiltonian. In two dimensions the out-of-plane dispersion is lost, and
some additional symmetry is needed to prevent perturbations in σz, which
would generically open a gap in the spectrum. At this level one could still
imagine the crossing point occurring at an arbitrary value of both in-plane
momentum components (kx, ky). The surface states of NbGeSb, however,
fall in the category shown in Figure 4.1d, where a crystal symmetry protects
the crossing only along a particular high-symmetry line in momentum space.
The symmetries in NbGeSb fix the value of one of the in-plane momenta
to the Brillouin zone edge, leaving the remaining one as the accidental
position of the crossing along the high-symmetry line, and also prevent any
perturbations in σz from gapping the like-spin crossings of the surface states.

For the conventional Weyl theory, the two bands that cross have opposite
spin, and the winding of the spin angular momentum of the bands on closed
contours around the crossing point has become one of the defining charac-
teristics of Weyl points [11, 140, 141]. In our case, the protected crossings
are between bands of the same spin, but different parity of orbital angular
momentum. In order to interpolate between the two opposite parities, it
is now the orbital angular momentum which winds on a small closed loop
around the crossing point in k-space, seen in Figure 4.19b, while the spin
only develops slight canting in Figure 4.19c. The low-energy description of
the crossing can be written as

Heff = vξz (τxpy + τypx) , (4.3)

where v is the velocity, ξz is a pseudospin-1/2 variable defining on which
Brillouin zone edge the crossing is located, τ is the orbital pseudospin,
and p is the in-plane momentum relative to the crossing point. The or-
bital pseudospin-1/2 variable τ is written here in its natural basis, such
that it is aligned with the orbital angular momentum L. Applying sub-
sequent C4 rotation and Mx mirror reflection to the pseudospin does not
affect the winding number of the effective Hamiltonian in Equation (4.3)
and it transforms it into the standard Weyl form ∝ τ ·p of Equations (4.1)
and (4.2) [11, 140]. This shows that the low-energy description of the pro-
tected crossings of NbGeSb surface states is topologically equivalent to a
2D Weyl Hamiltonian, leading me to denote them as “Weyl-like” [140].

The local dispersion around the slightly gapped opposite-spin crossing
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Figure 4.20: Gapped crossing of surface states. a Band dispersion
around the crossing #3 from Figure 4.18b, calculated by our tight-binding
model. b Orbital and c spin angular momenta are extracted along the in-
dicated green contour. The insets demonstrate the winding of both angular
momenta near the high-symmetry line.

#3 is shown in Figure 4.20a. As the bands at this crossing have both
different spin and orbital angular momentum, both properties develop a
winding on a closed loop around the crossing point to interpolate the values.
The orbital and spin angular momenta display winding numbers of -1 and
+1 in Figure 4.20b,c, respectively, with the majority of the winding being
restricted to the close proximity of the high-symmetry line as seen in the
insets of Figure 4.20b,c. It is interesting to note that this complex winding
structure does not in itself require the crossing to be gapped. We can
imagine closing only the L · S derived gap without changing the rest of the
band structure, effectively setting αSO = 0 in the tight-binding model. In
that case the winding structure of both spin and orbital angular momenta
seen in Figure 4.20b,c would still persist around the now protected crossing
point #3, making the interplay of the spin and orbital degrees of freedom
even more intricate here than in the like-spin crossings #2 and #4.

4.8 Conclusion

I have presented an overview of the electronic structure of NbGeSb, a little-
studied member of the ZrSiS family of nonsymmorphic bulk Dirac nodal
line materials. Alongside an observation of the expected bulk nodal line
enforced by nonsymmorphic symmetry, I identify an additional dispersive
nodal line along the Γ–M high-symmetry line in the bulk band structure.

In the surface electronic structure, I show two topologically trivial,
Rashba spin-split pairs of states whose band inversion creates a series of
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two-dimensional Weyl-like crossing points along the edge of the Brillouin
zone. This finding reveals the exciting possibility of driving topological
transitions via parity inversion of electronic bands not only in the bulk, but
also in two-dimensional surface systems. This is of practical importance as
the surface state energies lend themselves much more easily to manipulation
and tuning via e.g. gating of interfaces or surface adsorption of dopants. In
NbGeSb, transport effects from the protected surface state crossings would
be obscured by the presence of the metallic character of the bulk. However,
we can imagine similar band structures could be realised within projected
bulk band gaps, where they would be accessible even to transport measure-
ments.

One could also imagine this leading to additional lower-dimensional
topological edge state, i.e. an equivalent of the surface Fermi arc states,
which span the projections of the chiral pairs of standard Weyl points in 3D
onto the surface Brillouin zone [11, 140, 141]. Further theoretical analysis
of the 2D Weyl analogues I present here is needed to ascertain whether they
could support equivalent long-lived one-dimensional edge states. In general,
it might be possible to stabilise 1D edge states by parity inversion of two-
dimensional bands in a material with a topologically trivial bulk. This would
provide an alternative to the theoretically predicted hinge-states [191–193],
which are also 1D edge modes, but stabilised by higher-order topological
invariants in the bulk.

The surface state electronic structure of NbGeSb showcases how the
interplay of spin-orbit coupling and crystal symmetries can create intricate
and novel phenomena in weakly interacting electron systems. In the next
Chapter, we shall see how such interplay manifests in a material with strong
electronic interactions.
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5 | Electronically driven spin re-
orientation in Ca3Ru2O7

In this Chapter, I shift the focus to Ca3Ru2O7, a material in which strong
electronic interactions are present. Materials with partially filled d or f
orbitals typically exhibit strong electronic correlations [194, 195], giving
rise to an abundance of new phenomena such as metal-insulator transi-
tions [39, 41], high-temperature superconductivity [6–8, 44], colossal magne-
toresistance [196], or quasiparticles with large effective masses and reduced
spectral weight [197, 198]. The prevalent explanation for the correlated be-
haviour relies on the Mott mechanism, whereby carriers are localised due
to strong Coulomb repulsion, U , and reduced bandwidth, W , leading to
Mott insulators [39, 41]. The Mott effects, proportional to U/W [39], are
most pronounced in 3d materials such as cuprates, but weaken down the
periodic table where more extended orbitals provide for both reduced val-
ues of the screened Coulomb interaction and relatively broad bands due to
higher orbital overlap. Nonetheless, 4d materials such as ruthenates still
exhibit significant correlation effects, as well. In the past decade it has been
recognised that many of them owe their strong correlation effects to Hund’s
coupling, giving rise to so called Hund’s metals [40, 199]. They also host
pronounced strength of spin-orbit interaction, which is typically considered
negligible in the light 3d transition metal atoms, making them ideal for our
study.

5.1 Ca3Ru2O7 crystal structure

Ca3Ru2O7 has a layered perovskite structure, belonging to the Ruddlesden-
Popper family [200, 201]. The materials of the Ruddlesden-Popper series
have the general formula: An+1BnO3n+1 (Figure 5.1), and can host a wide
variety of physical properties due to many allowed combinations for the A
and B site cations [202]. The A site is typically an alkaline metal, mainly
influencing the overall crystal structure and its deformations through steric
and bond-valence effects [203–205]. Meanwhile, the B site is occupied by a
transition metal cation centred within an oxide octahedron which dominates
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Figure 5.1: Ruddlesden-Popper series. The crystal structure of the
Ruddlesden-Popper series, showing the: a single-, b bi- and c trilayer com-
pounds, as well as the d n = ∞ cubic perovskite. The A and B cation
positions of the general formula (An+1BnO3n+1) are indicated (a), and the
rocksalt and perovskite layers are indicated in (b). Here I show the stron-
tium titanate series, which retains the high-symmetry I4/mmm structure
across the first three members.

the electronic properties of the material. Their structural basis, the simple
cubic perovskite structure, can be described as an interpenetrating primitive
cubic structure of A and B cations, with face-centred oxygens (see n =∞ in
Figure 5.1), or alternatively, as a staggered stacking of AO and BO2 square
layers [205, 206], giving the formula unit ABO3 of cubic perovskites. The
chemical formula of the Ruddlesden-Popper series, An+1BnO3n+1, can be
rewritten as (AO)(ABO3)n illustrating the separation of the n perovskite
layers stacked along the c-axis of the crystal, and the rocksalt spacer layers,
as indicated in Figure 5.1b. The series goes from single-layer, n = 1, mate-
rials, where the perovskite and rocksalt layers alternate 1-to-1, to n = ∞,
which is the simple cubic perovskite structure without any rocksalt layers.

The base structure is defined by the tetragonal body-centred space group
I4/mmm [200, 201]. However, many members of the Ruddlesden-Popper
series will undergo structural distortions, lowering the overall symmetry of
their structures. These distortions will commonly involve rotations [207]
and Jahn-Teller distortions [57, 208–210] of the BO6 octahedra, as well as
global polar distortions of the structure [211, 212]. Some general trends of
the extent of the distortions are observable in related Ruddlesden-Popper
materials, such as Sr and Ca based ruthenate series [40, 213]. One is the
number of the stacked perovskite layers, n, and is specific to the layered
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nature of the structure. With increased n there is an increased number of
structural degrees of freedom to provide distortions which could lower the
total energy of the structure, and so we observe a tendency towards more
distorted structures with increased n. Another factor in this case is the
type, and size, of the A site cation [202, 206]. As mentioned above, its in-
fluence will mainly be through steric and bond-valence effects, well known
in inorganic crystal chemistry [203–205]. In order to stack the AO and BO2

layers in the perovskite crystal structure, the interatomic distances between
the oxygen and the cations are changed from their equilibrium values, lead-
ing to suboptimal effective valence of the cations. In order to alleviate this
problem, the perovskite structure buckles by way of rotating the BO6 octa-
hedra. The rotation disproportionates the O–A–O bond lengths, and as the
bond-valence depends exponentially on the the interatomic distance, this
brings it back closer to the equilibrium value. Due to steric effects, smaller
cations will typically allow for larger octahedral rotations [206].

The Sr and Ca ruthenate series nicely exemplifies these trends. The
single-layer Sr2RuO4 has completely undistorted RuO6 octahedra [214],
whereas in the bilayer Sr3Ru2O7 they develop in-plane rotations [215]. By
substituting the smaller Ca cation for Sr in the series, we observe fur-
ther increase in the distortions for the same n. In Ca2RuO4 [216] and
Ca3Ru2O7 [217] the octahedra buckle, developing both in-plane and out-of-
plane rotations. However, while Ca2RuO4 is centrosymmetric, Ca3Ru2O7

develops a global polar distortion. All of these materials, as well as their
cubic perovskite (n = ∞) counterparts, host a wide variety of correlation-
induced phenomena [40]. Of the simple perovskites, SrRuO3 is a ferromag-
netic metal [218], and CaRuO3 is a paramagnetic metal showing transport
behaviour incompatible with Fermi liquid predictions [219]. Single-layered
Sr2RuO4 is a highly studied unconventional superconductor [214, 220–222],
while the bilayer Sr3Ru2O7 has been reported to host a metamagnetic quan-
tum critical point [223] and electronic nematicity [224]. The single-layer Ca
compound is the only reported ruthenate insulator [225], undergoing an
orbitally selective Mott transition [226, 227] whose transition temperature
can be shifted by applying pressure or driving an electric current through
the sample [228]. All of them exhibit significant mass renormalisations
(m∗/m = 4–10) as compared to simple band structure calculations [40],
and as a 4d metal, Ru introduces significant spin-orbit coupling. The bi-
layer Ca3Ru2O7 is thus a prime candidate for the study of spin-orbit coupled
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Figure 5.2: Crystal structure of Ca3Ru2O7. a Illustration of the X+
2

octahedral rotation mode in one bilayer of the Ca3Ru2O7 structure. Only
basal oxygen atoms shown for clarity. b Illustration of the X−3 octahedral
tilt mode in one bilayer of the Ca3Ru2O7 structure. Only apical oxygen
atoms shown for clarity. c Illustration of the polar Γ−5 mode displacing Ca
ions in the unit cell of Ca3Ru2O7. d The unit cell of the Ca3Ru2O7 (space
group #36, Bb21m), from [217].

strongly correlated electrons.
Three distortion modes, illustrated in Figure 5.2, describe how the Ca3Ru2O7

crystal structure is generated from its parent structure in the I4/mmm

space group. The modes are labelled according to the irreducible represen-
tation of the parent symmetry group to which they belong6 [159, 229].

The in-plane octahedral rotation mode X+
2 , and the out-of-plane octahe-

dral tilt mode X−3 define the space group of Ca3Ru2O7 as #36, Bb21m [212,
230–232]. These two modes are not polar in themselves, but when they ap-
pear together there is a symmetry-allowed coupling to a polar Γ−5 distortion
mode of the Ca ions [230]. The in-plane rotation, X+

2 , rotates the octa-
hedra around the c-axis of the crystal, in the opposite sense for in-plane
neighbours as shown in Figure 5.2a, but the same sense for the vertically
stacked octahedra in a bilayer [231, 233]. This rotation doubles the unit
cell as compared to the high-symmetry one, and rotates it by 45◦. It also
allows for a pronounced orthorhombic distortion to set into the structure,
differentiating the in-plane a and b crystallographic axes.

6In the Miller and Love notation [229] the letter denotes the k-vector of the irrep in
the first BZ, ± is the sign of the inversion parity with respect to the origin, and the
subscript number is just used to differentiate irreps at the same k without particular
meaning.
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The out-of-plane, X−3 , mode will prove very important later on. As seen
in Figure 5.2b, the two octahedra sharing a central apical oxygen in the
bilayer tilt along the a axis in a hinge-like manner, such that the outer
apical oxygens displace one way, while the central apical oxygen displaces
in the opposite direction [233]. This induces a local polar distortion, with
the effective dipole coming from the fact that two negative oxygen ions were
displaced in, e.g. the +a direction, while only one was displaced in the −a
direction. Considering this as a single site of the perovskite bilayer, the
neighbouring bilayer sites hinge in the opposite sense along the a-axis. The
alternating direction of the tilts leads to an antipolar ordering of the local
dipoles [231, 232]. Therefore, no global net polar distortion is induced by
the X−3 tilt mode.

The crystal structure is, however, not only non-centrosymmetric, but
also polar [217]. The polar distortion is set by the Γ−5 mode (Figure 5.2c)
which defines displacements of the Ca ions along the b-axis of the structure.
The Ca ions in the outer CaO2 planes of the perovskite bilayers (belonging to
the rocksalt layer as well) displace in one direction along the b-axis, while the
Ca ions in the middle of the bilayer displace in the opposite direction [233].
This creates a local polar distortion, much like the apical oxygens in the
tilt mode did along the a-axis. However, since the Ca atoms displace in
the same direction throughout the bilayer and in the same sense in both
bilayers of the unit cell, there is now a net polar axis in the structure along
the b direction [231, 232]. The way in which this polar mode couples to
the two non-polar octahedral rotations is the basis for the theory of hybrid
improper ferroelectrics, originally based on an insulating sister compound
with the same structure, Ca3Ti2O7 [212, 230, 231]. Unlike the titanate
compound, Ca3Ru2O7 is not an insulator, but a metal, preventing it from
becoming a ferroelectric with a developed electric dipole of the unit cell.
Instead, the itinerant electrons screen the internal electric fields although a
robust polar distortion remains present in the structure, making Ca3Ru2O7

one of the rare “polar metals” [234–239].

As a general observation, higher temperature tends to increase the sym-
metry of the lattice. Indeed, while the ruthenate and titanate compounds
have only been reported in the distorted Bb21m structure, the sister com-
pound Ca3Mn2O7 has a high-temperature transition into the parent I4/mmm

structure [240]. A temperature dependent structural study [217] reveals
this tendency in Ca3Ru2O7 as well, as seen in Figure 5.3. At temperatures
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Figure 5.3: Temperature dependence of the crystal structure. The
changes of the lattice parameters: a a, b b, and c c, d the unit cell volume,
and e the orthorhombicity factor (b−a)/(b+a), with temperature from 8 K
to room temperature. The temperature TS = 48 K of the phase transition
is indicated as a dashed line. Data adapted from [217].

above 50 K, the unit cell volume slowly increases, and the lattice parame-
ters change so that the orthorhombicity of the structure is reduced with the
increase of temperature. However, this change still remains rather small on
the absolute scale of the orthorhombic distortion, with the orthorhombicity
factor (b − a)/(b + a) (Figure 5.3e) only changing between approximately
1.55 % and 1.35 % from 50 K to room temperature, always retaining rela-
tively large values.

A more abrupt structural change, however, can be seen in Figure 5.3a–d
at lower temperatures. At the temperature of TS = 48 K there is a sudden
change in the lattice parameters, whereby both in-plane lattice parameters
increase upon cooling, while the c-axis reduces, together giving a total vol-
ume increase to the unit cell. Below this transition, the structure hardly
changes any more with further cooling, and the orthorhombicity is set in
the low-temperature phase at ≈ 1.55 %. It is also worth noting that the
same neutron scattering study measured no appreciable distortion of the
RuO6 octahedra themselves down to base temperature of 8 K [217]. This
transition is isostructural, squashing the unit cell along the c-axis without
any change in the symmetry of the structure. It is also intimately coupled to
a magnetic and an electronic transition occurring at the same temperature,
as they are described below.
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5.2 Magnetic order

The magnetic moment in Ca3Ru2O7 comes predominantly from Ru 4d elec-
trons. Ru is present in the +IV oxidation state, as Ru4+ ions with the
electronic configuration of [Kr]4d4. As the Ru ions sit in an octahedral en-
vironment formed by the oxygen atoms, the octahedral crystal field splits
the Ru 4d atomic levels, raising the eg, and lowering the t2g manifold ener-
gies [163, 210]. This configuration yields a low-spin state, with the four 4d

electrons partially filling the three t2g orbitals, leaving two unpaired elec-
trons per Ru atom aligned [163, 245] as illustrated in Figure 5.4a. Elastic
and inelastic neutron scattering experiments measure the total magnetic
moment to be 1.59 µB [217] and 1.8 µB per Ru [246], respectively, while
magnetisation saturation experiments yield 1.73 µB per Ru [247], indicat-
ing that this electron configuration provides a good approximate description
of the physical reality. The discrepancy would suggest that a truly localised
picture of the magnetic moment is not fully valid here and that the electrons
responsible for magnetism have partially itinerant character as well.

At high temperatures Ca3Ru2O7 is thus a paramagnet, ordering antifer-
romagnetically upon cooling below the Nèel temperature of TN = 56 K [241,
247–250]. The Ru magnetic moments order ferromagnetically within the bi-
layers, but antiferromagnetically between bilayers [217, 241–243] as shown
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Figure 5.4: Spontaneous magnetic order in Ca3Ru2O7. a Diagram
of the crystal field splitting of the Ru 4d states in the octahedral environ-
ment of RuO6. b Ca3Ru2O7 orders in two antiferromagnetic phases, AFM-a
and AFM-b, with ferromagnetic coupling within the bilayers and antiferro-
magnetic coupling between the bilayers [217, 241–243]. Data adapted from
[244], originally measured by [217]. c Density of states calculation of the
Ru 4d electrons confirms the crystal field picture, shown here separately for
the minority- and majority-spin projections within a ferromagnetic bilayer.
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in Figure 5.4b. Thinking of the perovskite bilayers as magnetic units, this
magnetic structure is also described as the A-type antiferromagnet, or by
a (0, 0, π/2) ordering vector. At the temperature of the Nèel transition,
the easy magnetic axis is along the short axis of the structure, and so
the magnetic moments align with the a crystal axis [241–243] (AFM-a
in Figure 5.4b). Upon further cooling, Ca3Ru2O7 goes through a spin-
reorientation transition, whereby the sense of the magnetic ordering is pre-
served, but the easy axis changes. The magnetic moments simply reorient
to the b crystal direction [241–243] (AFM-b in Figure 5.4b). The spin reori-
entation occurs at TS, together with the isostructural transition described
before.

As discussed below, we performed DFT calculations of the Ca3Ru2O7

band structure. It is worth noting here that in the magnetically ordered
phase we predict a magnetic moment of 1.8 µB per Ru, in good agreement
with the experiments and previous work. The calculations also predict
the configuration with magnetic moments oriented along b to be the lowest
energy state. As mentioned in Section 3.2, DFT is a ground-state technique,
so it cannot by itself determine why the magnetic easy axis is oriented
along the a axis at higher temperatures. However, we know this to be the
case, and then DFT can give us valuable insights into the nature of the
transition, as I will show in Section 5.7. The density of states obtained
from the calculation is shown in Figure 5.4c. It predicts predominantly Ru
t2g electrons at the Fermi level in an almost half-metallic configuration with
an exchange splitting of ≈ 1 eV. This supports the itinerant picture for the
Ru t2g electrons, with the two unpaired electrons ferromagnetically aligned.

5.3 Transport properties

The transport properties of a material depend on its electronic structure
at the Fermi level [48]. As seen in Figure 5.5a, the absolute values of in-
and out-of-plane electrical resistivity show a resistivity anisotropy of two
orders of magnitude [251, 252], revealing highly two-dimensional transport
in Ca3Ru2O7. I will focus on the in-plane behaviour, dominated by transport
within the perovskite bilayers.

At high temperatures Ca3Ru2O7 is metallic, with the resistivity de-
creasing linearly with decreasing temperature. Such T -linear resistivity
behaviour has been the subject of much discussion in the community, due
to its disagreement with Landau’s Fermi liquid theory, which predicts a
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ba

Figure 5.5: Electronic transport in Ca3Ru2O7. a Resistivity measure-
ments in the ab plane and along the c axis, adapted from [252]. Inset shows
the resistivity is proportional to T 2 below 1 K. b Hall coefficient measure-
ment, adapted from [256].

T 2 dependence of resistivity as pointed out in Section 2.3. This type of
non-Fermi liquid behaviour is famously seen in the normal state of high-TC

cuprate superconductors at optimal doping [253, 254], near candidate quan-
tum critical points [254, 255]. The fact that Ca3Ru2O7 exhibits this type of
behaviour makes its high-temperature phase interesting for further study,
but is beyond the scope of this thesis.

Cooling through the Nèel transition leads to a minor dip in resistivity, ex-
pected as the spin-fluctuation scattering channels are frozen out. Lowering
the temperature further, the material goes through the coupled isostruc-
tural and spin-reorientation transition at TS, discussed above, upon which
the resistivity exhibits a sudden jump. The temperature dependent Hall co-
efficient [256], shown in Figure 5.5b, also shows a sharp change of both sign
and magnitude at TS. Below the transition, the resistivity starts to increase
with cooling, showing a local maximum at ≈ 30 K. The phase transition
at TS has often been discussed as a metal-insulator transition [247, 257–
259], and the temperature region between 30 K and TS as an insulating
phase of Ca3Ru2O7. This is controversial in the literature [252, 260–263], as
Ca3Ru2O7 is assumed to be a low-carrier density semimetal with multiple
types of carriers below TS. Transport properties of such systems depend
on the temperature dependence of the concentrations and mobilities of dif-
ferent carrier types. They can result in complex, and even non-monotonic
gradual7 changes of the resistivity with temperature. At very low tempera-

7This cannot cause sharp changes of resistivity though. The sudden jump at TS is
due to the phase transition.
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tures the resistivity assumes a ∝ T 2 Fermi liquid behaviour, as seen in the
inset of Figure 5.5a. The observation of quantum oscillations [252] confirms
the presence of Landau quasiparticles in this regime.

The phase transition at TS therefore likely has an electronic aspect, along
with the structural and magnetic ones discussed above, making Ca3Ru2O7

an interesting platform to study the interplay of all these degrees of freedom
in a single phenomenon.

5.4 Methods

The samples I used in the experiments came from Dr. Dmitry Sokolov,
our collaborator at the Max Planck Institute for Chemical Physics of Solids
in Dresden, Germany. They were grown using the floating zone method
in a mirror furnace, according to an established procedure [264, 265]. The
growth atmosphere was an Ar and O2 mixture in an 85 : 15 ratio. The grown
rods are brittle and are shattered post-growth into smaller crystals. I chose
high-quality single crystals from several growth batches, with a typical size
of & 1 × 1 mm2, with an example shown in Figure 5.6a. Ca3Ru2O7 single
crystals grow with antiphase domains, in which the a and b crystal axes are
interchanged as shown schematically in the insets of Figure 5.6a, but the
space group in both domains remains Bb21m

8 [231]. The antiphase domains
can be seen under an optical microscope, using polarised-light microscopy,
as displayed in Figure 5.6a. I cannot exclude the presence of micro-domains
in our samples, but we can put an upper limit on their size to 500 nm,
set by the resolution of the optical microscope. I used only the samples
in which I had observed the domain structure to be the same on both ab-
plane surfaces of the crystal. I oriented the crystals using the fact that the
antiphase domain boundaries occur along the (110) direction (corresponding
to (100) of the parent tetragonal structure) [231, 243, 266], and used the
domain boundaries as guides for cutting the crystal with a wire saw into
500×500 µm2 single-domain squares. The crystals were cut with a standard
wire saw, and the cut pieces sonicated in acetone for 30 minutes to remove
the slurry without any further damage to the crystals.

An independent check can be performed during the ARPES measure-
ments by the symmetry of the Fermi surface. I will discuss the Fermi surface

8These are not to be confused with the orthorhombic polar twin, which has the space
group A21am. There the axes stay where they are but both octahedral distortion mode
irreps, X+

2 and X−
3 , are taken around the a, instead of the b axis [231].
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Figure 5.6: Antiphase domains in single crystals of Ca3Ru2O7. a
Image of a typical raw single crystal of Ca3Ru2O7 taken under a polarised-
light optical microscope. The difference in hue at the surface of the crystal
indicates different antiphase domains, where the a and b axes of the crystal
have been interchanged as shown in the diagrams. b,c Fermi surfaces dis-
playing two-fold rotational symmetry, measured on the same single-domain
crystal, upon rotating the sample by 90◦.

at length below, but it is sufficient to observe here that the constant energy
cuts display a strong two-fold symmetry. If the samples contained a signif-
icant amount of both antiphase domains on the length scale smaller than
the diameter of our beam (Figure 3.6), the photoemission intensity coming
from both domains would overlap, and therefore appear fourfold symmet-
ric. Rotating the sample by 90◦ results in the corresponding rotation of
the features in the constant energy cuts (Figure 5.6b,c), eliminating the
possibility that the two-fold symmetry comes from photoemission matrix
elements effects. Rather, it follows the underlying symmetry of the lattice.

The experiments themselves were performed at the BLOCH beamline
of the Max-IV synchrotron in Sweden [119], and the I05 beamline of Dia-
mond Light Source in the UK [118]. In order to find suitable measurement
conditions for visualising the band structure (those that maximise the pho-
toemission matrix element contributions described in Section 3.1.1), we have
performed test measurements at a series of photon energies in the 20–100 eV
range and with different polarisations of the light. The data were collected
using 22 eV p-polarised light, with some datasets taken using s-polarised
light to better highlight weak band features (due to symmetry effects on
the matrix elements, Section 3.1.1). A detailed study of the photon energy
dependence of the band structure may however yield further improvements.
To collect data from a particular direction in momentum space, we first
need to ensure that the crystal is correctly aligned with respect to the en-
trance slit of the analyser as discussed in Section 3.1.2. However, extremely
low signal intensity of the low-energy bands and the lack of distinct fea-
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tures in most of the Brillouin zone make precise alignment of Ca3Ru2O7

samples challenging and laborious. Temperature dependent data were re-
produced on both synchrotrons, using multiple samples, and in both heating
and re-cooling cycles, ensuring that the effects presented below are intrinsic,
rather than artefacts of the setup, crystal quality, or sample ageing due to
temperature cycling.

To gain further insights, we employed density-functional theory as in-
troduced in Section 3.2. I performed a series of calculations within the
WIEN2k formalism [134], converged on a k-mesh of 5 × 5 × 5 k-points.
However, after we had noticed slight numerical inconsistencies in the cal-
culations, most of the calculations were repeated by Dr. Helge Rosner, our
DFT specialist collaborator, using the FPLO code [136] and a k-mesh of at
least 16× 16× 6 k-points. These additional calculations showed only minor
discrepancy with mine, confirming all the findings of my calculations, and
we were able to identify the numerical inconsistencies as being due to the
sparsity of the k-mesh I used9. The data presented in this thesis therefore
comes from my calculations, unless explicitly stated otherwise.

All calculations used experimentally derived crystal structures at various
temperatures from Yoshida et al. [217], fully including spin-orbit coupling
unless otherwise stated. I used the local spin density approximation (LSDA)
exchange-correlation functional (LDA for spin polarised calculations), and
Perdew-Burke-Ernzerhof (PBE) [132] as the most established functional in
the GGA family. All the reported data were calculated with the LDA
functional, unless explicitly stated otherwise, in which case I will discuss
the implications of using different exchange-correlation functionals.

Magnetic order was simulated as ferromagnetic throughout the unit cell
rather than using the true, antiferromagnetic order, which makes the calcu-
lations much faster and easier to perform. In the AFM case, the Ru atoms
bearing opposite magnetic moment need to be separately defined in the in-
put structure of the calculation, and the antiferromagnetic space group sym-
metries need to be carefully taken into account. The increased number of
atoms and the decreased symmetry constraints make the antiferromagnetic
calculations particularly difficult and computationally demanding if they are
to converge correctly. Considering the ferromagnetic alignment of the spins
within the perovskite bilayers [217, 242, 243], and very weak inter-bilayer

9Unfortunately, much denser k-meshes were unavailable to me, due to restrictions in
computational resources.
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coupling which is seen in transport measurements, the FM calculations are
expected to reproduce all the key aspects of the band structure. This as-
sumption has already been shown to work [258, 267], and is corroborated
by the broad agreement between our calculations and the experimentally
measured electronic structure shown below.

5.5 Low-temperature electronic band structure

The calculated total density of states (DOS) across a relatively broad en-
ergy range around the Fermi level is shown in Figure 5.7a. The orbitally
projected DOS calculation (Figure 5.7b) puts the Ru t2g-derived bands at
the Fermi level, in accordance with the crystal field argument for a Ru4+

ion in an oxide octahedron made before, and illustrated in Figure 5.4a. Fur-
thermore, the crystal field has pushed the eg states well above the Fermi
level, separating them completely from the t2g manifold with a well defined
gap. An angle-integrated photoemission spectrum, shown in Figure 5.7c,
measures the DOS directly. The Ru eg states are inaccessible to conven-
tional photoemission experiments, but below the Fermi level we find a broad
band corresponding to the Ru t2g states, followed by a high-intensity man-
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Figure 5.7: Valence band density of states. a Total density of states
(DOS) calculated by LSDA+SOC. The shading indicates the DOS within
the atomic spheres of the augmented plane wave basis (APW). b Atomically
resolved DOS shown for the same axis scaling. c Angle-integrated photoe-
mission measurement reveals a similar structure of the valence bands. Inset
at the Fermi level reveals very low quasiparticle residue, in good agreement
with a previous study [260]. d The angle-resolved photoemission dispersion
shows only very broad features with little dispersion. Due to large variation
in the measured intensities of the bands, the region around the Fermi level
is shown with increased contrast for clarity.
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Figure 5.8: Low-energy electronic structure. a An EDC taken at kF

along the My −Γ direction shows a quasiparticle peak. b ARPES measure-
ments show coherent quasiparticle dispersions along the My − Γ−Mx −X
path of the surface projected Brillouin zone. Insets better illustrate the
bands crossing the Fermi, along My − Γ by using data collected with s-
polarised light, and along My−Γ by using the data from the second Brillouin
zone and higher intensity contrast for clarity. c The My−Γ high-symmetry
line is shown as measured using s and p linearly polarised light.

ifold identifiable as O 2p in origin. We find that our calculated density
of states shows excellent agreement with the measurements, and confirms
the assigned character of the observed bands. Figure 5.7d shows an angle-
resolved measurement for the same energy range, with the measured bands
appearing as very broad, incoherent features. Looking at a narrow energy
range below the Fermi level in the inset of Figure 5.7c, we can barely see
a quasiparticle peak before the strong incoherent intensity sets in at about
100 meV.

The angle-resolved measurements of the same low-energy range, shown
in Figure 5.8, display well defined quasiparticles to binding energies of
≈ 50 meV, albeit with very low intensity. Figure 5.8a shows an exam-
ple of a quasiparticle peak in this region. I can estimate the value of the
quasiparticle residue as Z ≈

(
1 + v∗F/v

DFT
F

)−1
= 0.15 from the extent of

mass renormalisation between the measured bands and the DFT calcula-
tion, which will be detailed below. Such a small value of Z suggests a high
degree of electronic correlation. It also causes considerable experimental
difficulty for the ARPES measurements, requiring high-quality crystals and
long acquisition times to improve the signal-to-noise ratio, as well as very
high energy resolution (< 2 meV on both beamlines where the experiments
were performed) to clearly resolve the band features.

The dispersions in Figure 5.8b are very different for the My−Γ and Mx−Γ
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high-symmetry directions leading to a pronounced two-fold symmetry in
the Brillouin zone. There are three main distinct band features to notice:
a steep band crossing the Fermi level close to the zone boundary along the
My−Γ line, a small electron-like band crossing the Fermi level around the Mx

point, and relatively flat, M-shaped bands near the zone centre. A previous
ARPES study [260] has identified these, and our measurements mostly agree
with their findings on the low-temperature electronic structure. However,
the technical advances of the ARPES experiments in the past 10 years and
a careful selection of only single-domain samples for the experiments allow
us to better resolve weak features at small energy scales such as are present
in Ca3Ru2O7, and develop a better understanding of the underlying band
structure. A concurrent ARPES study to mine [263] appeared as preprint
as I was writing the thesis, with high-quality data identifying the same
features in the low-temperature electronic structure. However, their focus
is slightly different, disregarding the M-shaped bands at the Brillouin zone
centre, leading them to an electron-nematic interpretation of the TS phase
transition. I will comment on this further, after presenting my own results.

The steep band crossing the Fermi level along My − Γ is seen to have
a partner with roughly the same kF, but opposite vF. Together they form
a Λ-shaped hole-like band, offset from the Brillouin zone boundary, whose
band top just reaches the Fermi level. The two sides of this Λ-shaped band
show up with very different intensities when p-polarised light is used, but
exhibit similar, if weaker, intensities with s-polarised light making them
easier to observe (Figure 5.8c). Along the Mx − Γ high-symmetry direc-
tion, a shallow electron-like band crosses the Fermi level. With a binding
energy of . 15 meV, its band bottom reaches towards the top of a hole-like
band dispersing further downwards below it. The inset in Figure 5.8b also
shows slightly different kF values for the band along the two different high-
symmetry directions. Finally, there is a set of relatively flat bands reaching
. 10 meV below the Fermi level around the centre of the Brillouin zone.
Using different light polarisations we can identify at least three hole-like
bands in that set, dispersing up towards the Fermi level before levelling off
into an M-shaped band top.

In Figure 5.9, I compare the experimental results to my ab initio band
structure calculations. Figure 5.9a first shows the raw calculated band struc-
ture, which is then overlaid on the experimental data for comparison in Fig-
ure 5.9b. Due to electronic interactions, the experimental band structure
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Figure 5.9: Band structure calculated by density-functional theory.
a The LSDA+SOC calculated band structure along the My − Γ−Mx − X
high-symmetry lines near the Fermi level. b The same data is shown again
overlaid over the experimental band structure. The DFT calculation has
been uniformly renormalised to account for the correlation effects, by a
factor of 0.15, which provided the best overall fit to the experimental data.

is strongly renormalised as compared to the bare dispersions obtained from
DFT calculations. However, we find good agreement of the calculations with
the experimental data upon simple uniform scaling of the calculated bands.
In order to approximately account for the strong mass renormalisation, I
rescale the energy of the calculated bands by a factor of 0.15, indicated
above Figure 5.8b, corresponding to an average effective mass increase by
a factor of ≈ 7. This value was used earlier to estimate the quasiparti-
cle residue, Z. Detailed fits of the steep Λ-shaped bands near My indicate
that its effective mass is only ≈ 4 times larger than that of the bare band,
while the M-shaped bands at zone centre require much larger renormalisa-
tion. This points to highly orbitally and k-dependent mass renormalisation
effects in Ca3Ru2O7, which DFT does not capture. First-principle stud-
ies that better capture many-body effects have have been performed on its
single-layer sister compounds [116, 227, 268], showing promise in capturing
such phenomena.

Nonetheless, our DFT calculations already offer sufficiently good agree-
ment with experiments to allow useful further insights. To begin with, the
DFT calculations also display a strong two-fold symmetry in the Brillouin
zone, indicating that the origin of this symmetry lies in the orthorhombic
nature of the structure, rather than it being driven by electronic interactions
as proposed in a recent study [263]. The authors of that paper make the
same claim regarding the asymmetry of the electron pocket around Mx seen
in the inset of Figure 5.8b. However, my non-interacting calculations also
predict that pocket to be asymmetrical, as seen from the different kF values
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Figure 5.10: Fermi surface at low temperatures. a Constant energy
cuts of the full Brillouin zone of Ca3Ru2O7 with a 2 meV energy integration
window. b Fermi surface map with the indicated surface projected Brillouin
zone outline. Small boomerang-shaped pockets observed near the BZ edge
along My − Γ, and weak-intensity circular pockets around the Mx point.
c A schematic of the Brillouin zone with the Fermi pockets. The inset
demonstrates the difference in the this Fermi surface, with two “boomerang”-
shaped hole pockets, and the one obtained from a two-band, dxz and dyz,
model, with a single star-shaped hole pocket, proposed by Kikugawa et
al. [252].

of the electron pocket along Mx − Γ and Mx −X in Figure 5.9. The calcu-
lations also successfully predict the Λ-shaped band along My−Γ, displaced
from the zone boundary, even though they place the band maximum below
the Fermi level, with its electron-like partner crossing EF instead. Finally,
the calculations show the M-shaped band top at the Brillouin zone centre
to be the result of several electron- and hole-like bands hybridising near
the Fermi level, producing this characteristic shape. This hybridisation will
feature heavily later in the Chapter, as it appears to play a crucial role for
much of the complex physics in the TS phase transition of Ca3Ru2O7.

For the moment, however, I will focus on the bands crossing the Fermi
level, as they are responsible for the electronic behaviour at low tempera-
tures. Transport measurements shown above indicate the low-temperature
electronic state of Ca3Ru2O7 is a very low carrier density Fermi liquid, show-
ing parabolic increase of resistivity with temperature (Figure 5.5), proven
by quantum oscillations measurements [252]. A constant-energy ARPES
map in Figure 5.10b allows us to image the Fermi surface directly. Along
Mx − Γ, an electron pocket appears around the Mx point. It is weak in in-
tensity, but just visible in the measured data. A narrow, boomerang-shaped
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hole pocket near My is formed as the top of the Λ-shaped band, which just
crosses the Fermi level and disperses diagonally towards Mx. This firmly es-
tablishes Ca3Ru2O7 at low temperatures as a low carrier density semimetal,
with both electron and hole carriers.

Such structure of the Fermi surface could account for the relatively large
absolute value of the Hall coefficient [256] below TS in Figure 5.5b. A
temperature-dependent evolution of the chemical potential, which may be
expected to have noticeable impact in such a system, can also explain the
non-monotonic behaviour of resistivity [251, 252], as well as why T 2 de-
pendence may not be established until very low temperatures. Quantum
oscillations in magnetotransport indicated small electron and hole Fermi
pockets [249, 252, 269], while the scale of the crossover from weak- to strong-
field magnetoresistance implies the presence of sharp corners in the Fermi
surface [252].

These observations were explained by Kikugawa et al. [252] in terms of
an effective two-band model of the Fermi surface, where only Ru dxz and
dyz bands cross the Fermi level. That model agrees with our schematic of
the Fermi surface in Figure 5.10c in all but one aspect, the exact shape and
connectivity of the hole-like Fermi pocket. The hole pockets in my results
are “boomerang”-shaped and centred away from the Brillouin zone edge,
resulting in two hole pockets within each Brillouin zone. In contrast to that,
this two-band model predicts that the two “boomerang” pockets near the
same My point are joined across the zone boundary into a single, larger hole
pocket centred at that My point, as illustrated in the inset to Figure 5.10c,
yielding only one full hole pocket per Brillouin zone. However, the gap
across the Brillouin zone boundary is too small to be easily detectable in
transport measurements, making the transport results consistent with the
ARPES maps and the three band model as well.

The band structure of Ca3Ru2O7 can be thought of as coming from a
square net layer of Ru atoms with O atoms bridging them. This is then dou-
bled for the bilayer, and doubled again for the minority- and majority-spin
due to the AFM magnetic order, with each of these causing a splitting on a
characteristic energy scale. The rotations of the octahedra cause a doubling
of the unit cell with a 45◦ rotation, leading to backfolding of the bands in
the reduced Brillouin zone. As a result, we have a complex band structure
of the t2g manifold around the Fermi level. Figure 5.11 shows my DFT cal-
culations for the whole Ru t2g manifold, with projected orbital character. I
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Figure 5.11: Orbital character of the bands in the Ru 4t2g. a The local
coordinate system for the orbital quantisation is chosen as that of the parent
tetragonal structure. This would align the coordinate system’s axes with the
Ru–O bonds of the octahedra, in absence of the any octahedral rotations or
tilts. b For clarity, the projections on the three Ru 4t2g orbital characters
are first shown only for the minority-spin bands calculated without spin-
orbit coupling. c The projections in the full LSDA+SOC calculations, with
the colour indicating spin orientation.

chose the coordinate system for the orbitals to be aligned with the tetrag-
onal parent unit cell, as those are parallel to the axes of the undistorted
octahedra. Therefore, a small degree of mixing of the pure orbital basis as
given by the octahedral crystal field at the Ru site can be expected due to
rotations and tilts of the octahedra. Orbitally dependent correlations could,
in reality, reduce the bandwidth of the dxy band as compared to the DFT
calculation, as in the case of the single-layer compound Ca2RuO4. There
it has been established that LDA underestimates the occupancy of the dxy
orbital, and that computational techniques which take interactions into ac-
count are necessary in order to get a reliable picture of orbital character
within the t2g manifold [226, 227, 270], showing the dxy orbital to be fully
occupied and not contributing to the Fermi surface.

Nevertheless, as noted above, the Fermi surface of Ca3Ru2O7 does not
agree with the predictions of such a two-band model. To understand this
discrepancy, I investigate the orbital character of the bands that form the
hole Fermi surface, i.e. the Λ-shaped band. The different behaviour of
the matrix elements with light polarisation in the two branches of the Λ-
shaped band along the My − Γ line, as seen in Figure 5.8c, would suggest
that these branches differ in their orbital composition. This is confirmed
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by the orbital character projections in my DFT calculations in Figure 5.11,
where one branch of the Λ-shaped band is indeed of dxz and dyz character,
while the other is purely dxy. The dxy band at the Fermi level separates the
hole pocket of the two-band model (inset of Figure 5.10c), into the experi-
mentally observed thin “boomerang”-shaped Fermi pockets. In Ca3Ru2O7,
therefore, bands containing contributions from all three t2g orbitals cross
the Fermi level, and contribute to the Fermi surface and to transport and
thermodynamic properties. The dxy orbital character also bears significant
weight in the flat states at zone centre. Those indeed do not cross the Fermi
level at low temperatures, but will have a vital role at the phase transition,
as is demonstrated below.

5.6 Temperature dependent electronic structure

With an understanding of the low-temperature electronic structure estab-
lished in Section 5.5, I now turn to its temperature dependence, and in par-
ticular, to the changes in the electronic structure across the isostructural
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Figure 5.12: Temperature dependence of the low-energy electronic
structure of Ca3Ru2O7. a A series of experimental dispersions along the
My − Γ direction for temperatures varying across both TS and TN phase
transitions. While dramatic changes occur at TS, we observe no qualitative
change to the band structure at TN. b,c Measured Fermi surfaces for the:
b T < TS and c TS < T < TN phases, demonstrating the appearance of a
large Fermi pocket around the zone centre at temperatures above TS.

102



Igor Marković 5 Electronically driven spin reorientation in Ca3Ru2O7

70 K
60 K
53 K
49 K
47.5 K
45 K
40 K
30 K

-60 -40 -20 0 20 40
E-EF (meV)

(ii) Γ

d

In
te
ns
ity

(a
rb
.u
.)

-60 -40 -20 0 20 40
E-EF (meV)

(i) kF

c

0.50.0-0.5
ky (Å-1)

In
te
ns
ity

(a
rb
.u
.) 70 K

60 K
53 K
49 K
47.5 K
45 K
40 K
30 K

b
-100

-50

0

E-
E F

(m
eV
)

My MyΓ
(i) (ii)

a

Figure 5.13: Temperature dependent key momentum- and energy-
distribution curves. a An example dispersion from Figure 5.12a, indi-
cating the integration regions for the extracted temperature-dependent dis-
tribution curves. b Temperature-dependent MDCs at the Fermi level from
the temperature dependent dispersions in Figure 5.12a. c,d Temperature-
dependent EDCs at: c kF of the Λ-shaped band, and d at Γ.

and spin-reorientation transition at TS. A series of temperature dependent
My−Γ dispersions are shown in Figure 5.12a, from which I extract some key
momentum- and energy-distribution curves in Figure 5.13. To improve the
signal-to-noise ratio, the distribution curves are integrated within a small
range around the desired position: ±2 meV for the MDCs, and ±8 mÅ−1

for the EDCs.

The bands display two main changes as the temperature of the sample
goes through TS. Firstly, their linewidths suddenly increase above the tran-
sition, and all the features in the dispersions in Figure 5.12a broaden. I can
best illustrate this on the Λ-shaped bands. Both the MDCs at EF (Fig-
ure 5.13b) and the EDCs at the kF of the Λ-shaped bands (Figure 5.13c)
show a well defined quasiparticle peak below TS. Although diminished close
to the transition temperature, those peaks persist up to TS. The EDCs
above the transition show no clear peak as the linewidth makes it too wide to
be distinguishable. In the MDCs at low temperatures, the Λ-shaped bands
give the most prominent peaks, with the neighbouring bands in the second
zone also visible, although with reduced intensity. Above the transition
these peaks broaden. However, they are still clearly visible as shoulder-
features located at the zone boundary. Even though these are not easily
discernible in dispersions and Fermi maps, I take this as evidence that the
small Fermi pockets of the low-temperature Fermi surface persist to high
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temperatures.

The other change is in the dispersion of the hole-like bands at the Bril-
louin zone centre. Below TS these are fully occupied, with an M-shaped
band top. However, above TS they cross the Fermi level, leaving no ob-
servable flat band at the Γ point. The EDCs at Γ therefore have a clear
quasiparticle peak at ≈ 15 meV below the transition, which completely dis-
appears above TS, giving way to broad background intensity with a Fermi
cutoff. The MDCs below the transition exhibit some intensity bleeding in
closer to the zone centre, coming from the local maxima of the M-shaped
bands due to their close proximity to the Fermi level and finite linewidth
of the bands. Above TS these turn into broad peaks with high intensity
where the bands now cross the Fermi level. In fact, these changes do not
only happen along the My − Γ high-symmetry line shown in Figure 5.12a,
but throughout the Brillouin zone. The hole-like band now crossing the
Fermi level at Γ therefore creates a new, large, hole-like Fermi surface in
the high-temperature regime, clearly seen in Figure 5.12c.

These measurements also provide insight into the controversial insulat-
ing phase in Ca3Ru2O7 which I have mentioned above [247, 257–259]. My
results demonstrate that Ca3Ru2O7 has a Fermi surface at all experimental
temperatures. I have observed no insulating phase between 30 K and TS,
and indeed no qualitative differences comparing that data to the electronic
structure measured at 6 K. The changes in the electronic structure and the
linewidths observed across TS do, however, directly imply an involvement of
the electronic sector in the phase transition, and can be expected to have a
significant influence on the transport properties at the phase transition. The
size of the Fermi pockets corresponds to the carrier concentration, while the
linewidths scale as their scattering rate, as described in Section 3.1.4. To
investigate their influence quantitatively, I estimate the transport properties
discussed before from my ARPES measurements.

In order to quantify the change in the linewidths, the dispersions from
Figure 5.12 are taken as series of MDCs at different energies, to which I
then fit Lorentzian peaks (as illustrated in Figure 3.7b). The full width at
half maximum, ∆kFWHM, of those peaks is proportional to the quasiparticle
scattering rate. I show examples of the fits, one for above and one for below
TS, as insets in Figure 5.14. Below the transition I have fit the higher-
intensity branch of the Λ-shaped band. We can note from Figure 5.12a that
the M-shaped bands show comparable linewidths, but they are more difficult
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Figure 5.14: Temperature dependence of the measured linewidths.
Full-width-half-maxima of Lorentzian peak fits to band features: Λ-shaped
bands forming the boomerang Fermi surfaces below TS, and the broad band
forming the large Fermi surface above TS. Typical fits for both temperature
regimes are indicated each side of the main graph.

to fit reliably due to multiple bands being in close proximity. Above the
transition I fit the dominant, hole-like bands close to the Fermi level as they
are the only features prominent enough to yield a reliable fit. I performed fits
on MDCs in a 20− 50 meV range below EF and then took an average value
to reduce the effects of noise as well as artificial changes of the linewidth
which can occur close to the Fermi level. The well defined quasiparticles
in the low-temperature phase show gradual broadening of spectral features
with increasing temperature, (Figure 5.14 - green symbols), characteristic of
electron-electron and electron-phonon scattering as discussed in Section 2.4.
At TS, the linewidths suddenly increase, and then show no further change
within experimental uncertainty as the temperature is increased into the
paramagnetic regime. As the linewidths of the spectral function directly
relate to the scattering rates, i.e. lifetimes of the respective states, this
change should have a considerable impact on the resistivity of Ca3Ru2O7.

The other big influence on resistivity comes from the carrier concentra-
tions, which correspond to the sizes of Fermi surface pockets, estimated in
Figure 5.15 for the two temperature regimes. Given the difficulty of exactly
judging the sizes of the Fermi pockets in the low-temperature phase due to
their small size and low intensity, I make a rough estimate from the mea-
sured Fermi surface maps. In Figure 5.15a, the electron pockets around Mx

were approximated as circles with a surface area of ≈ 0.0013 Å−2, or 0.09 %
of the Brillouin zone, while in Figure 5.15b, the boomerang-shaped hole
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Figure 5.15: Carrier density estimates for the two temperature
regimes. a,b Rough estimates of the sizes of the small Fermi pockets
in the low-temperature phase: a the electron pocket, b one “boomerang”-
shaped hole pocket. c The high-temperature Fermi surface with the green
points indicating the position of radial Lorentzian peak fits, estimating the
size and shape of the large Fermi pocket.

pockets were approximated as rectangles with a surface area of 0.0016 Å−2,
or 0.12 % of the Brillouin zone each. It is particularly difficult to make this
estimate for the hole Fermi pockets since the linewidth measured at the
Fermi level is greater than the width of the pocket itself. Thus our estimate
only represents a crude upper bound. Still, it is in good agreement with
the low measured frequencies of the Shubnikov-de Haas quantum oscilla-
tions [252, 269], which led to an estimate of the size of the Fermi surface
to be 0.2 % of the BZ [247, 249, 269]. The high temperature Fermi sur-
face is much larger, and in order to determine its size I employ Lorentzian
lineshape fits to MDCs in the radial directions of the Brillouin zone, as dis-
cussed in Section 3.1.4. By integrating the area enclosed by the fitted peak
positions, I arrive at the value of 0.33 Å−2, corresponding to approximately
25 % of the Brillouin zone size.

Using Luttinger’s theorem [125, 126], we can relate the size of the mea-
sured Fermi surface pockets to the filling of the bands crossing the Fermi
level. In the low-temperature phase, the sizes of electron and hole Fermi
pockets are nearly the same, indicating an integer filling. Using the DFT
calculations to obtain the number of occupied bands in the Ru t2g manifold
(Figure 5.11c), we see that this filling corresponds to 4 occupied t2g elec-
trons per Ru atom, as is expected for Ru4+ ions (Figure 5.4a). I use the
same method on the high-temperature Fermi surface, i.e. measure the size
of the pocket from the experiment and obtain the degeneracy of the hole-like
bands that form it from the DFT calculations. This leads to a conclusion
that the large Fermi surface which develops above TS contributes one hole
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per unit cell (Figure 5.2d). If the valence of the Ru ions doesn’t change
at the transition, another change of the Fermi surface is expected, which
compensates the electron count by adding one electron per unit cell. A
possible way to achieve this would be a shallow electron pocket of the same
size, centred at the Γ point, which could be difficult to detect experimen-
tally. This possibility is also suggested by the DFT calculation, which I will
discuss further below.

These extracted values of the carrier density, however, allow me to make
at least rough estimates of the Hall coefficients in the two temperature
regimes. Following Yoshida et al. [256], I estimate the Hall coefficients
using the weak-field formula for a two-dimensional system with isotropic
scattering rate:

RH =
(2π)3(c/2)

∑
i(±1)i

e
∑

i l
2
i

,

where c/2 is the distance between the perovskite bilayers which consti-
tute the 2D conductive sheets, c being the out-of-plane lattice parameter,
(±1)i is the sign of the charge of the carriers for the ith Fermi pocket,
and li is its circumference. The assumption of isotropic scattering is ex-
pected to hold better at low temperatures, where the scattering processes
are dominated by impurities, however it provides us with a rough estimate.
From our measured Fermi surfaces I obtain RH(8K) = −2 · 10−7 m3/C and
RH(52K) = 3 · 10−9 m3/C. The agreement with the values in Figure 5.5b is
remarkably good, with the measured Hall coefficient values well within the
uncertainty of our estimates of the sizes of the Fermi surface pockets. The
sharp change of the Hall coefficient at TS can therefore be explained by the
sudden appearance/disappearance of the large Fermi surface.

Within the Drude model, the resistivity depends on the ratio of the
carrier density and scattering rate [48]. In Ca3Ru2O7, the magnitude of
the changes across the phase transition at TS in either of those properties
individually, would each cause much larger changes to the resistivity than
observed in Figure 5.5a. However, occurring coincidentally their effects
largely cancel, resulting in a relatively modest resistivity step at TS.

5.7 Magnetic moment orientation dependent band hy-

bridisation

We have seen in the previous Section that the phase transition at TS, along
with being an isostructural and spin-reorientation transition, also has a dra-
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matic effect on the electronic structure of Ca3Ru2O7. In order to see how the
changes in the electronic structure relate to the other aspects of the phase
transition it is important to understand the origins of those changes, i.e.
what causes the band hybridisation which destroys the large Fermi surface
upon cooling through TS. To this end I have performed DFT calculations
based on the experimentally determined crystal structures for Ca3Ru2O7 at
different temperatures [217], as described earlier in Section 5.4.

I have already demonstrated good agreement of the electronic structure
calculated for the low-temperature phase with the experiment in Figure 5.8.
That calculation uses the experimental crystal structure measured at 8 K,
and the magnetic moment fixed along the crystal b axis, modelling the low-
temperature AFM-b state as illustrated in Figure 5.16a. The results are
reproduced in Figure 5.16b. The inset of Figure 5.16b shows the same cal-
culation without spin-orbit coupling. It demonstrates that the electron and
hole bands at Γ belong to minority- and majority-spin manifolds, respec-
tively, which means that the hybridisation gap which creates the M-shaped
top of the hole-like band below EF is spin-orbit derived.

To calculate the band structure above TS I use the experimental crys-
tal structure measured at 50 K and the magnetic moment fixed along the
crystal a axis, illustrated in Figure 5.16c, modelling the AFM-a state for
the intermediate (TS < T < TN) temperature range. In this configuration,
Figure 5.16d shows that the spin-orbit hybridisation of the hole-like and
electron-like bands at the zone centre is strongly suppressed, and the bands
cross through each other and through the Fermi level. This is in agreement
with the creation of a large Fermi surface around the Γ point seen in the
ARPES measurements in Figure 5.12. However, there is a potential discrep-
ancy with the measured results in the binding energy of the electron-like
band minimum at Γ. The calculations predict an electron pocket reaching
well below the Fermi level, for which there is no evidence in the measured
ARPES data in Figures 5.12 and 5.13. That said, we cannot exclude the
possibility of a shallow electron-like band existing very close to the Fermi
level above TS, especially given the large linewidths and the Fermi broaden-
ing effects at high temperatures. As mentioned before, the Luttinger count
and charge compensation would indeed suggest that might be the case.
Another contributing factor lies in the choice of the exchange-correlation
functional for the DFT calculation, and is discussed further below. Either
way, there is sufficient evidence to indicate that this band hybridisation is
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Figure 5.16: Spin-orbit hybridisation of bands at TS. a Schematic of a
single bilayer below TS. Arrows indicate the spin orientation on Ru (green,
S), and the direction of the local symmetry-breaking potential induced at
bilayer sites by the X−3 octahedral tilt mode (purple, E). b The corre-
sponding DFT band structure calculations along the My − Γ−Mx path in
the Brillouin zone: using the 8 K experimental structure and the magnetic
moment oriented along the b-axis. The inset shows the same calculation,
but without SOC, and with colour indicating spin direction. c Schematic of
the bilayer structure above TS. d The DFT calculation for the TS < T < TN

phase - using the 50 K experimental structure and the magnetic moment
oriented along the a-axis. e A DFT calculation using the 8 K experimental
structure, but with the magnetic moment oriented along the a-axis.

not present above TS, whether the electron band minimum is occupied or is
indeed just above the Fermi level.

We have seen that two other aspects of the transition occur concurrently
with the change in the Fermi surface: the isostructural change in unit cell
volume, and the reorientation of the magnetic moment within the ab plane.
Seeing how the electronic structure shows no appreciable change at the
Nèel ordering temperature (Figure 5.12a), one might expect that the band
hybridisation at TS is dictated by the structural aspect of the transition
described in Figure 5.3. For example, it could be thought to result from
a change in relative energies of relevant bands due to a distortion in the
octahedra. In order to test this, I have performed a calculation using the
experimental crystal structure measured at 8 K, i.e. the low-temperature
structure, but with the magnetic moment fixed along the crystal a axis,
as in the intermediate-temperature AFM-a magnetic phase. The resulting
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band structure shows no hybridisation between the bands at Γ, indicating
that it is in fact the direction of the magnetic moment which determines
whether the gap will form.

In order to better understand what effect the orientation of the magnetic
moment has on the development of band hybridisation at the zone centre,
I performed a series of DFT calculations with different magnetic moment
orientations. I used the same experimental structure (8 K) as a basis and
varied the spin direction in 15◦ increments in the ab, bc, and ac planes. The
results, presented in Figure 5.17a–d, reveal that the spin-orbit hybridisation
gap between the electron- and hole-like bands crossing at the Brillouin zone
centre, ∆, is in fact only closed when the magnetic moment is orientated
along the a axis. It gradually opens as S moves away from the a axis in
either the ab or the ac plane, and stays relatively constant at any angle in
the bc plane.

Because of the small numerical problems in my calculations mentioned
before, I was concerned about the reliability of precisely extracting small
gap values, and so I asked our DFT collaborator to reproduce the calcu-
lations on a denser k-mesh, shown in Figure 5.17e. They show the same
qualitative behaviour, but a smoother evolution of the gap value with the
angle. Furthermore, the functional dependence of the gap opening in the
ab and ac planes can be more reliably shown to be consistent with sin2(θ),
where θ is measured from the a axis, as illustrated by the fitted curves in
Figure 5.17e.

This functional dependence of the gap size on the angle of the spin
moment from the a axis points to the relevant term in the Hamiltonian
which mediates the band hybridisation having an S × a form. This would
be proportional to sin(θ), making the gap ∆ ∝ sin2(θ), as observed in the
experiment. Knowing that this gap comes from spin-orbit coupling, two
questions present themselves: which type of spin-orbit coupling has this
functional form, and what makes the a direction special for that spin-orbit
coupling?

In itinerant-electron systems, it is the Rashba spin-orbit coupling term
that carries this form, as described in Section 2.2. It is only present in
a polar environment and is proportional to the cross product of the elec-
tronic spin and the effective electric field representing the local symmetry
breaking potential, S × Eeff . This implies that inversion symmetry should
be broken on the Ru site with a polar axis along the a direction, so that
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Figure 5.17: Dependence of the gap on the orientation of the mag-
netic moment. a,b,c The three band structures are calculated for the 8 K
experimental crystal structure, but the magnetic moment oriented along the
three principal crystal axes: a a, b b and c c. d,e Calculations performed
by varying the direction of the magnetic moment in 15◦ increments in the
ab, bc, and ac planes: d my results, and e Dr. Helge Rosner’s results on
a dense k-mesh. The sin2 curve is fit to the data in e for the magnetic
moment rotating away from the a crystal axis in the ab or ac plane.

Eeff ‖ a. In fact, the local inversion symmetry breaking caused by the oc-
tahedral tilt mode, X−3 , described in Section 5.1, provides precisely such
an environment. It establishes local polar distortions of the lattice at the
octahedral bilayer sites, enabling the Rashba-type spin-orbit coupling for
electrons at those sites. When the spins of the electrons are parallel to the
local polar distortion, i.e. at temperatures above TS, the Rashba-type term
is vanishing and no hybridisation can occur, as depicted in Figure 5.16c. At
low temperatures, however, the magnetic moment reorients to the b direc-
tion, perpendicular to the local polar distortion, giving a finite Rashba term
(Figure 5.16a) and a consequent gap opening at the Fermi level. One might
ask why the same scenario does not work for the global polar distortion of
Ca3Ru2O7 (Figure 5.2c), given by the Γ−5 mode, which provides an effec-
tive symmetry breaking field along the b axis. That structural distortion
affects primarily the Ca atoms. Since the states at the Fermi level show
minimal Ca character in Figure 5.7a, those electrons do very little hopping
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Figure 5.18: Impact of different exchange-correlation functionals
on the DFT band structure. DFT calculated band structures along the
My–Γ–Mx path using LSDA (a,b) and PBE (c,d) functionals, with (a,c)
and without (b,d) including spin-orbit coupling. e A closer look at the
relevant bands at Γ near the Fermi level for the PBE calculations shows
that the bands hybridise with SOC, even without a direct band overlap.
All the results shown here are from the calculations of Dr. Helge Rosner.

over Ca sites, and therefore do not experience the effects of the global polar
distortion via the asymmetry of the hopping parameters.

There remains one problem with the comparison of our DFT calculations
with the measured ARPES dispersions that I should address. As I have
already mentioned above, the calculations for S ‖ a feature a relatively large
band overlap of the electron- and hole-like bands at Γ (Figure 5.16d,e), with
the bottom of the electron-like band reaching well below the Fermi level.
This is supported by the Luttinger theorem [125, 126], and the expectation
of 4 occupied electrons in the t2g manifold of Ru4+ ions (Figure 5.4a), as
described above. However, it is somewhat in contrast with the experimental
situation where we do not see any evidence of a band being present at the
Brillouin zone centre (Figure 5.12a). We can investigate the possible cause
for the lack of a prominent electron pocket at Γ further by performing our
calculations using a different exchange-correlation functional.

Figure 5.18 demonstrates differences in the calculated band structure
using LSDA and PBE functionals, with and without spin-orbit coupling.
The calculations are done for the low-temperature phase in order to show
the effect on the hybridisation. As is commonly observed for the GGA-
type functionals, our PBE calculations exhibit a more pronounced exchange
splitting of the majority- and minority-spin bands as opposed to the LDA
ones. This causes the bands, which cross near the Fermi level at Γ in
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the LSDA calculations, to separate fully in energy when using the PBE
functional, even when neglecting SOC. However, the bands still remain close
enough in energy that they can hybridise via spin-orbit coupling, which is
evident in the closer view in Figure 5.18e. The same physical phenomenon is
therefore predicted by the PBE calculations as by the LSDA ones, but with
the possibility of observing just the hole-like band in the unhybridised state,
given an appropriate shift of the Fermi level in the calculation. We expect
that the physical reality lies somewhere in between the pictures generated
by the two different functionals. There is most likely a finite, but shallow
band overlap occurring when there is no hybridisation. When hybridisation
is switched on, the level repulsion induced by it pushes the M-shaped band
top below EF.

5.8 Electronically driven spin-reorientation transition

With the insight obtained above into the interplay of the magnetic mo-
ment orientation and the electronic structure at the Fermi level, we can
reexamine our understanding of the TS phase transitions in Ca3Ru2O7. At
temperatures above the transition, magnetocrystalline anisotropy prefers
the magnetic moment to be oriented along the a crystal axis. As this aligns
with the local polar axis at the bilayer sites, the Rashba term in the Hamil-
tonian cannot hybridise the electron- and hole-like bands overlapping at the
Brillouin zone centre, resulting in the presence of the large Fermi surface.
The thermal occupation of electronic states above the Fermi level is large
enough that the energy gain from a spin-orbit gap ∆ which would open if
the spins were along b is outweighed by the magnetocrystalline costs of re-
orienting the spins. The easy magnetic axis at this temperature is therefore
set by magnetocrystalline anisotropy terms in the free energy.

Lowering the temperature further, the width of the Fermi function nar-
rows. This causes smaller occupation of the states above the Fermi level, as
schematically shown in Figure 5.19b, and the electronic energy gain from
opening a gap at the Fermi level increases. At TS it overcomes the magne-
tocrystalline anisotropy and the energy cost of the unit cell volume increase
dictated by magnetoelastic coupling. At this point the lowest energy state
becomes the one where the Rashba-type Hamiltonian hybridises the states
at the Fermi level and gaps out the large Fermi surface by rotating the or-
dered magnetic moments into the b direction. As a result, only the small
Fermi pockets remain, accompanied by an increase in the quasiparticle life-
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Figure 5.19: Model of the TS phase transition. a,c Band structures
calculated by DFT for the Ca3Ru2O7: a above, and c below TS. b Dia-
grammatic illustration of the thermal occupation of the bands above and
below TS demonstrating the source of the electronic energy gain at the tran-
sition.

times. This turns the material into a low-carrier density semimetal with
multiple carrier types, and accounts for the changes at TS observed in trans-
port properties. The magnetic order in the low-temperature phase becomes
AFM-b. As a result, the system must pay the energy cost of the magne-
toelastic coupling term, changing the lattice parameters and increasing the
unit cell volume.

5.9 Conclusion

In this Chapter, I have provided novel insights into the electronic structure
and phase transitions of Ca3Ru2O7, a strongly interacting system hosting
intertwined electronic, magnetic and lattice degrees of freedom. Our deter-
mination of the low-temperature electronic structure provides an improve-
ment in the understanding of the structure of the Fermi surface. The large
anisotropy of the boomerang shape of the hole Fermi pockets, and the in-
volvement of all three t2g orbitals at the Fermi level, point to the Ru 4dxy

orbital not being completely occupied as is the case in the single-layer com-
pound, Ca2RuO4.

We have observed a dramatic change in the low-energy electronic struc-
ture upon crossing the known isostructural and spin-reorientation phase
transition at TS = 48 K. The sudden increase in the number of carriers
above TS, with the concurrent decrease in the quasiparticle lifetimes, provide
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a good explanation for the complex temperature dependence of resistivity
and the Hall coefficient in this system.

The ARPES measurements reveal that the band structure transition at
TS, which mediates the above mentioned changes in the physical properties
of Ca3Ru2O7, comes from a band hybridisation which gaps a large Fermi
surface at low temperatures. Our ab initio calculations point to that hy-
bridisation being the result of a bulk Rashba-type spin-orbit coupling term
enabled by the octahedral tilt distortion and activated by the magnetic mo-
ment aligning perpendicular to the local symmetry breaking potential at the
Ru sites. This suggests the mechanism for the phase transition in which the
electronic energy gain from opening a gap increases with decreasing tem-
perature, and at TS outweighs the magnetocrystalline costs to reorienting
the spins, necessary for the hybridisation to occur.

This mechanism reveals a new source of magnetic anisotropy in metallic
materials, whereby the easy axis of the material can be altered by spin-
orientation dependent hybridisations at the Fermi level. It is plausible to
imagine this mechanism becoming relevant in various materials where inver-
sion symmetry is broken, whether in the bulk of the crystal, via heterostruc-
turing approaches, or at surfaces and interfaces, allowing for a Rashba-type
spin-orbit coupling term to develop.

One could also look to control the electronic transport properties via
external manipulation of the magnetic moment orientation. One way to
do this would be by applying an external magnetic field to reorient the
spins. However, if there is a considerable magnetoelastic component to the
transition as in Ca3Ru2O7, this should also be achievable with application of
pressure or strain, using the magnetoelastic energy to drive the transition,
as indicated by early magnetostriction experiments [250]. If a material could
be designed with these properties, but where the affected pocket comprises
the whole Fermi surface, this would constitute a novel type of a metal-
insulator transition in correlated magnets.
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6 | Conclusion
During my PhD I employed experimental, i.e. spin- and angle-resolved
photoemission spectroscopy, and theoretical, i.e. density-functional theory
and tight-binding modelling, approaches to study the electronic structure
of materials. My focus was on materials in which the combination of strong
spin-orbit coupling and particular crystal symmetries results in novel fea-
tures of the electronic structure. This thesis details my results on two such
quantum materials in strongly differing regimes of the electronic interaction
strength: NbGeSb, which is a weakly interacting system, and Ca3Ru2O7,
which hosts strong electronic interactions. For both materials I first estab-
lished and described the main properties of their electronic structure near
the Fermi level, before focusing on a particular feature where specific inter-
plays of crystal symmetries and spin-orbit coupling lead to novel phenomena
in the electronic sector.

Spin-orbit coupling has been shown to play a crucial role in developing
topological features of the band structure in non-interacting electron sys-
tems. In Chapter 4, NbGeSb, a member of a bulk Dirac nodal line semimetal
family, was found to host protected band crossings of topologically trivial
spin-split surface states appearing along a high-symmetry line of the sur-
face projected Brillouin zone. The surface states in question are created
by the breaking of the bulk nonsymmorphic symmetry at the surface of
the crystal, where they develop orbital angular momentum, and significant
spin-splitting as a result of a Rashba-type mechanism. Two such spin-split
pairs of surface states are inverted along the Brillouin zone boundary, which
coincides with a mirror plane of the system. The mirror symmetry, along
with time-reversal and global fourfold rotational symmetries, strongly con-
strains the allowed projections, as well as mixings, of the spin and orbital
angular momenta of the inverted bands. This results in a quartet of band
crossings, two of which remain protected while two develop highly asym-
metric gaps. Such crossing structure was shown to be understandable in
terms of a two-level model in both angular momentum sectors, causing the
crossing of bands with the same spin to be protected, while the crossings
of bands with opposite spin develop a pronounced hybridisation asymme-
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try. Our tight-binding model shows non-trivial winding of orbital angular
momentum which forms a chiral pseudospin, and we found the low-energy
description of the band structure around the crossing is topologically equiv-
alent to two dimensional analogues of Weyl points.

In contrast to NbGeSb, Ca3Ru2O7 is a strongly interacting system, and
one where crystal, magnetic and electronic structures all significantly in-
fluence each other. The interdependence of all these degrees of freedom is
evident in a phase transition where pronounced change in the electronic
structure at the Fermi level occurs simultaneously with an isostructural
change in the unit cell and a spin reorientation of the established antiferro-
magnetic order. I have demonstrated in Chapter 5 how this phase transition
arises due to an electronic energy gain from the opening a spin-orbit gap
in the electronic structure at the Fermi level. The hybridisation was shown
to come from a Rashba-type spin-orbit term which develops due to an an-
tipolar distortion present in the crystal structure, and is unlocked by the
reorientation of the antiferromagnetic order perpendicular to the polar axis
of that distortion. Via this mechanism, spin-orbit coupling effectively im-
poses a novel, “magneto-electronic” anisotropy dictating the details of the
magnetic structure.

The underlying feature is that the allowed orientations of angular mo-
menta in the presence of spin-orbit coupling are dictated by the details
of the crystal symmetry, as well as the allowed spin-orbit band hybridisa-
tions in the presence of magnetism. In NbGeSb this interplay leads to the
emergence of two-dimensional analogues of Weyl points and creates wind-
ing textures of spin and orbital angular momenta in the surface electronic
structure around them. In Ca3Ru2O7 it causes the spin-orbit coupling boot-
strapped with strong electron interactions to manifest in a phase transition
where the preexisting magnetic moments reorient into a direction set by
the crystal symmetry. These two materials represent very disparate elec-
tronic systems, yet I have demonstrated how the novel phenomena that I
describe in them originate from the same underlying idea of the interplay
between the spin-orbit coupling and the crystal symmetries. This interplay
can be seen as ubiquitous in spin-orbit coupled quantum materials, and an
important source of novel phenomena in their electronic structure.
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