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Abstract 1 

The fate and transportation of mercury in the marine environment are driven by combinations 2 

of anthropogenic atmospheric and aquatic sources, as well as natural geological inputs.  3 

Mercury bioaccumulates and biomagnifies up the food chain and can result in the accumulation 4 

of toxic concentrations in organisms even when the concentrations in the marine environment 5 

remain below the threshold level for direct toxicity. As a result, mercury exposure has been 6 

recognised as a health concern for both humans and top marine predators, including cetaceans. 7 

There appears to be no overall trend in the global measured concentrations reported in 8 

cetaceans between 1975 - 2010, although differences between areas show that the highest 9 

concentrations in recent decades have been measured in the tissues of Mediterranean 10 

odontocetes. There is increasing concern for the impacts of mercury in the Arctic marine 11 

ecosystem with changes in water temperatures, ocean currents and prey availability all 12 

predicted to impact the exposure of Arctic species to mercury.   The accumulation of mercury 13 

in various tissues has been linked to kidney and liver damage as well as other neurotoxic, 14 

genotoxic and immunotoxic effects.  These effects have been documented through studies on 15 

stranded and by-caught individuals as well as in vitro cell culture experiments. Demethylation 16 

of methylmercury and protection by selenium have been suggested as possible mercury 17 

detoxification mechanisms in cetaceans that can help to explain the very high concentrations 18 

measured in tissues of some species with no apparent acute toxicity. Thus, the ratio of selenium 19 

to mercury is of importance when aiming to determine the potential toxicity of the contaminant 20 

load at an individual level.  The long-term population level effects of mercury exposure are 21 

unknown, and continued monitoring of odontocete populations in particular is advised in order 22 

to predict the uptake and impact of mercury on marine food chains in the future.  23 

 24 
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1. Introduction 27 

Mercury (Hg) in the marine environment originates from both natural and anthropogenic inputs 28 

(Gworek, et al. 2016).  Natural inputs include volcanic activity, and the weathering of rocks 29 

and soils enriched with mercuric minerals (Gworek, et al. 2016), while anthropogenic inputs 30 

historically included a range of industrial processes including the manufacture of paints, 31 

pesticides and catalysts (Horowitz, et al. 2014).  Currently, approximately a quarter of the 32 

environmental mercury inputs are through mercury vapour as a by-product of coal-fired power 33 

stations (Chen and Driscoll 2018; Obrist, et al. 2018), and small-scale gold-mining operations 34 

which still use mercury to separate the pure metal from silt (Chen and Driscoll 2018; Obrist, et 35 

al. 2018). Since the 1950s, mercury has been recognised as a health concern for exposed 36 

humans (Ha, et al. 2017) and marine biota (Dietz, et al. 2013), and a recent review concluded 37 

that radical emission reductions need to be put in place on a global scale in order to significantly 38 

reduce exposure in both humans and wildlife (Sonke, et al. 2013). In August 2017, the 39 

“Minamata Convention on Mercury” was ratified by 91 countries with the aim of reducing 40 

global emissions and thus protecting human health and the environment. Continued monitoring 41 

of mercury in the marine environment is therefore required to determine whether new measures 42 

agreed by this treaty do, in fact, reduce the uptake and impact of mercury on marine food chains 43 

in the future. 44 

In this review, the transport and fate of mercury in the marine environment is discussed, with 45 

emphasis on its bio-magnification, the process by which mercury is transferred and 46 

accumulated up the food chain at higher concentrations, in cetaceans as marine top predators. 47 

Cetaceans have a limited ability to eliminate mercury, and therefore sequester it in their tissues 48 
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(Nigro and Leonzio 1996; Waggerman et al. 1998; Das et al. 2003; Monk et al. 2014). As a 49 

result, mercury concentrations in cetaceans may be between 10 and 100 times higher than those 50 

measured in other predators at the same trophic level that have a similar average life span and 51 

dietary intake, like tuna species for example (Nigro and Leonzio 1993). Cetaceans are therefore 52 

considered as sensitive and reliable tracers of environmental mercury contamination (Capelli 53 

et al. 2000). Here, the current understanding of the exposure to, and impacts of high mercury 54 

concentrations on cetacean health in terms of the effects on kidney and liver function, 55 

immunocompetence, and the nervous system in particular is reported. Key priorities for further 56 

research are identified, particularly within the framework of understanding how mercury 57 

exposure may play a role in contributing to the other cumulative anthropogenic stressors that 58 

can have population level impacts for cetaceans.   59 

 60 

2. The Mercury Cycle: Transportation and Fate 61 

Mercury exists in three forms: elemental (metallic), inorganic (e.g. mercury salts like mercuric 62 

sulphate (HgSO4) and mercuric chloride (HgCl2)), and organic (e.g. methylmercury (MeHg / 63 

CH3Hg+)) (Bjørklund, et al. 2017). Most of the mercury that enters the ocean directly from 64 

either land-based sources or the atmosphere (Fig. 1), is mercury in its elemental form.  65 

Elemental mercury can then be adsorbed onto sediment particles where, both as a result of 66 

chemical reactions and biological factors (such as the activity of sediment-bound, sulphate-67 

reducing bacteria), the organic forms of mercury, namely methylmercury and dimethylmercury 68 

are produced (King, et al. 2001; Mazrui, et al. 2016; Chouvelon, et al. 2018) (Fig. 1). Organic 69 

mercury is also produced from inorganic mercury within the water column itself (Cossa, et al. 70 

2009; Sunderland, et al. 2009) (Fig. 1). The methylation of mercury resulting from these abiotic 71 

and biotic processes is affected by a range of factors including pH, temperature, solar radiation, 72 
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organic matter remineralisation, and the availability of sulphates and organic carbon (Lee and 73 

Fisher 2017).   Overall, through a combination of these processes, methylmercury is the most 74 

common form of organic mercury in the marine environment and bio-magnifies most readily 75 

up the food chain (see below). The transportation and fate of marine mercury is therefore 76 

complex because of the size and open nature of the ecosystem, the multiple import and export 77 

pathways, the transformations between its elemental, inorganic and organic forms, and the 78 

diversity of marine habitats (Braune, et al. 2015). 79 

 80 

3. Bio-magnification: Mercury in Marine Food Webs 81 

Marine wildlife species are exposed to mercury largely through their diet because low 82 

concentrations in air and water lead to minimal transfer through dermal exposure and inhalation 83 

(Rodgers 1994; Hall, et al. 1997; Duffy, et al. 2001). Bacteria and phytoplankton are the main 84 

entry points for the uptake of mercury into marine food webs (Atwell, et al. 1998; Campbell, 85 

et al. 2005).  Mercury is then bio-magnified up the higher trophic levels to marine top predators 86 

including marine mammals and seabirds (Fig. 2). The rate of bio-magnification of mercury 87 

through the food chain has been estimated to be about 6.0 ± 3.7 times for each trophic level in 88 

polar marine food webs (Lavoie, et al. 2013), and 5.4 for each trophic level in tropical marine 89 

food webs (Kehrig, et al. 2013). In top predators, mercury concentrations are often higher in 90 

older and larger individuals because they consume larger prey that are, themselves, at a higher 91 

trophic position (Kehrig, et al. 2017).  92 

Methylmercury, and other organic mercury compounds, are highly lipophilic and are therefore 93 

transferred up the food chain into fish and other vertebrates more readily than other forms of 94 

mercury because they are more efficiently assimilated into tissues following absorption. 95 

Methylmercury is also relatively slowly eliminated from the body with a half-life of between 96 

10 and 15 days from different organs (Evans, et al. 2016). Once methylmercury is absorbed, it 97 
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enters the blood stream and is distributed quickly to various tissues and organs as it binds to 98 

cysteine in fluids mimicking methionine, which makes it easily transported across cell 99 

membranes by amino acid transporters (Clarkson, 1993). First, it is distributed to the liver, 100 

kidney and spleen, and is then later to muscle and the brain (Oliveira Ribeiro, et al. 1999). In 101 

contrast, inorganic mercury (e.g. mercuric chloride) is poorly absorbed in the vertebrate 102 

gastrointestinal tract and is mostly excreted fairly rapidly in urine and faeces following 103 

ingestion (Clarkson 1997). In additon, inorganic mercury does not bind as efficiently with 104 

cysteine and therefore does not travel around the body as efficiently as organic forms of 105 

mercury (Clarkson, 1993). However, methylmercury is slowly metabolised to inorganic 106 

mercury, and has also been shown to accumulate in various tissues and organs (Bridges and 107 

Zalups, 2010). 108 

 109 

4. Exposure in Cetaceans: Measured Concentrations and Temporal Trends 110 

4.1 Target Organs and Tissues 111 

The main target organ for mercury in cetaceans is the liver. Other tissues such as brain, kidney, 112 

blubber, muscle, blood, skin, teeth and even cetacean earplugs also contain measurable 113 

concentrations (Stavros, et al. 2007; Stavros, et al. 2008; Outridge, et al. 2009; Savery, et al. 114 

2013; Trumble, et al. 2013). Mercury concentrations in striped dolphins (Stenella 115 

coeruleoalba) and bottlenose dolphins (Tursiops truncatus) that stranded along the Italian coast 116 

were highest in the liver compared to the heart, kidney, muscle and lung of both species (8 - 117 

1,752 µg/g dry weight for striped and 10 - 1,404 µg/g dry weight for bottlenose dolphins) 118 

(Bellante, et al. 2012). A similar result was reported in the tissues of bottlenose, striped and 119 

Risso’s (Grampus griseus) dolphins from the Croatian waters of the Adriatic Sea where mean 120 

concentrations in the liver were 11 - 34 times higher than in the other tissues (Bilandžić, et al. 121 

2012).  Highest total mercury concentrations were also measured in the liver of a range of 122 
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cetacean species sampled from Japanese meat markets compared to raw blubber, muscle, 123 

intestine and tongue (Simmonds, et al. 2002).  124 

Monitoring mercury exposure in these target organs obviously requires lethal sampling, so 125 

there are increasing efforts to determine how these concentrations are related to concentrations 126 

in tissues accessible for sampling from live animals; skin and blubber (Reif, et al. 2017). 127 

Mercury concentrations were measured in the skin, blubber, liver and kidneys of four species 128 

of stranded and/or bycaught small cetaceans (common dolphin (Delphinus delphis), harbour 129 

porpoise (Phocoena phocoena), bottlenose dolphin and striped dolphin), and significant 130 

correlations were shown between all tissue types (Aubail, et al. 2013). In 2014, Monk and 131 

colleagues reported concentrations of mercury in the blubber of both live and dead-stranded 132 

individuals of a newly identified species of bottlenose dolphin (Tursiops australis), and the 133 

relatively high levels were attributed to chronic low dose exposure. These studies therefore 134 

demonstrate the potential use of blubber and skin from biopsy samples to make inferences 135 

about mercury exposure in live cetaceans.   136 

 137 

4.2 Highest Measured Concentrations 138 

A number of studies have reported the concentrations of total mercury (organic and inorganic) 139 

in the tissues of a wide variety of stranded cetacean species since the 1990s (for review see 140 

Marsili, et al. 2017). In terms of regional exposure, the highest concentrations in recent decades 141 

have been reported in the liver of striped dolphins from the Mediterranean Sea with a maximum 142 

of 5,374 µg/g dry weight in one individual (mean 514 µg/g d.w., n = 50, (Wafo, et al. 2014)). 143 

Individuals that stranded on the French coasts showed significantly higher levels compared to 144 

those from the other Mediterranean areas, and overall, individuals from the eastern 145 

Mediterranean basin showed the lowest concentrations. It has been hypothesised that the high 146 

mercury levels measured in Mediterranean dolphins originate from natural sources because of 147 
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the weathering of cinnabar ores throughout the Mediterranean Basin (André, et al. 1991), but 148 

other studies have suggested that the high concentration are as a result of industrial pollution 149 

(Bellante, et al. 2012). Liver and kidney concentrations of mercury were higher in 1990 - 1993 150 

than in 2007 - 2009 in Mediterranean striped dolphins, which suggests that measures to reduce 151 

emissions specifically in western European countries have been somewhat effective in reducing 152 

mercury pollution in open waters (Borrell, et al. 2014). 153 

Two short-finned pilot whales (Globicephala macrorhynchus) stranded on the coast of New 154 

Caledonia in the South Pacific also showed extremely high concentrations of total mercury up 155 

to 1,452 µg/g dry weight in the liver (Bustamante, et al. 2003).  Concentrations were up to 156 

1,980 µg/g wet weight in the livers of small odontocetes sold for human consumption in Japan 157 

(Endo, et al. 2002), and high concentrations (max. 1,571 µg/g wet weight) were also found in 158 

the liver of an adult female false killer whale (Pseudorca crassidens) from the Hawaiian Islands 159 

region (Hansen, et al. 2016). High concentrations were measured in the livers of a small number 160 

of bottlenose dolphins stranded in the Canary Islands between 1997 and 2013 (max. 700 161 

μg/g dry weight), and unlike in the western Mediterranean, displayed an increasing temporal 162 

trend over the sampling period (García-Alvarez, et al. 2015). 163 

A review of published concentration data from the literature was conducted by searching 164 

ScienceDirect, Google Scholar, and additional references from relevant articles.  The mean 165 

total mercury concentrations measured in cetacean livers reported in 101 technical reports and 166 

peer-reviewed articles published between 1972 and 2016 were collated (for the full list of 167 

references see the Supplementary Material Reference List). This produced a total of 284 liver 168 

total mercury measurements in 43 different cetacean species.  Values are reported here as µg/g 169 

dry weight either as reported in the original study, or converted to dry weight 170 

 using the correction factor (w.w. / d.w.) of 0.25 (Becker, et al. 1995). Across these studies, the 171 

means were calculated based on varying sample sizes ranging from multiple samples from just 172 
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one individual, up 129 individuals sampled in a single study. A number of studies separated 173 

samples based on age and sex class, while others also separated samples into discrete time 174 

periods. The separation of samples, and thus the reporting of mean total mercury concentrations 175 

was not consistent over the 101 studies. For this reason, these data were grouped here broadly 176 

by region and species group, and the mid-point of the data collection period used as a “time-177 

stamp”.  178 

Where there were more than 10 mean concentration measurements reported for a particular 179 

region (eg. of the 284 reported concentrations use here, there were 35 from the North Sea, while 180 

there were only 7 from the Baltic Sea), these were plotted by species group and over time (Fig. 181 

3). Overall, between 1975 and 2010, the highest concentrations have been measured in the 182 

Mediterranean, and the lowest in the Arctic (Fig. 3). The delphinids dominated the datasets 183 

from the majority of these eight regions, and there is no apparent change in reported 184 

concentrations over time across these regions (Fig. 3). Overall, the highest mercury 185 

concentrations have been reported particularly in odontocetes, and these may result in adverse 186 

health effects (see below).   187 

 188 

4.3 Arctic Species 189 

There is increasing concern for the impact of mercury in the Arctic marine ecosystem (Braune, 190 

et al. 2015) and its top predators, including cetaceans (Dietz, et al. 2013).  Specifically, mercury 191 

concentrations have been measured in the livers of belugas (Delphinapterus leucas) (5 - 53 192 

μg/g wet weight) (Lockhart, et al. 2005), narwhals (Monodon monocerus) (7 to 17 μg/g wet 193 

weight) (Braune, et al. 2015)), walruses (Odobenus rosmarus) (<3 μg/g wet weight) (Braune, 194 

et al. 2015)) and polar bears (Ursus maritimus) (~ 5 – 60 μg/g wet weight) (Routti, et al. 2011)). 195 

Liver concentrations have also been reported in Arctic phocids: ringed (Phoca hispida), 196 

bearded (Erignathus barbatus) and harbour (Phoca vitulina) seals (mean wet weight 197 
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concentrations of 0.2 μg/g, 0.1 μg/g and 2.2 μg/g for each species respectively) (Young, et al. 198 

2010). A significantly higher mean concentration of total mercury in western, compared to 199 

eastern Arctic marine mammals was first reported in 1995 by Wagemann and colleagues, and 200 

was attributed, partly, to geological differences in the sediments between the two regions 201 

(Westgate and Johnson 1995). Of particular concern is that even though direct anthropogenic 202 

inputs into the ecosystem are thought to be minimal, longitudinal studies monitoring mercury 203 

in the Arctic have shown that there has been an increase in some marine biota (Braune, et al. 204 

2015).  205 

The most extensively studied Arctic cetacean is the beluga. Teeth were collected from various 206 

regions of the Canadian Arctic to investigate temporal trends from the pre-industrial period in 207 

the 15th and 17th century up until 1993, and showed that much of the anthropogenic increase of 208 

mercury in Beaufort Sea belugas had already taken place by 1960 (Outridge, et al. 2009). In 209 

the central Canadian Arctic, between the late 1800s and the 1990s specifically, there was a 1.2 210 

to 5.5 fold increase in total mercury measured in teeth, but teeth from the 1920s - 40s contained 211 

similar mercury concentrations to those from the 1890s, suggesting that modern increases 212 

occurred after the early decades of the 20th Century (Outridge, et al. 2005).  Later, in the 1990s, 213 

liver mercury levels in Beaufort Sea belugas tripled in comparison with levels measured in the 214 

1980s, and were the highest relative to other Canadian Arctic beluga populations (Lockhart, et 215 

al. 2005). By the early 2000s, although concentrations were still higher than in the 1980s, 216 

mercury levels dropped and were comparable to other Arctic populations (Lockhart, et al. 217 

2005). Most recently, no changes in liver mercury concentrations were observed between 2002 218 

and 2012 for young belugas in the Beaufort Sea, but a significant decrease was seen in adults 219 

(Loseto, et al. 2015). It was concluded that these most recent declines do not follow trends in 220 

mercury emissions, and are not easily explained by diet markers, thus highlighting the 221 
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complexity of the relationships between foraging, food web dynamics and mercury uptake in 222 

this species (Loseto, et al. 2015). 223 

A number of studies have also investigated mercury concentrations in narwhals (Wagemann, 224 

et al. 1998; Wagemann and Kozlowska 2005; Braune, et al. 2015). The average concentration 225 

of methylmercury in narwhal skin is nearly identical to that measured in the skin of eastern 226 

Arctic belugas (~0.5 µg/g wet weight) (Wagemann, et al. 1998), and  between 1978 and 2004, 227 

narwhal liver mercury concentrations appear to have remained stable off Baffin Island (Braune, 228 

et al. 2015). There are few data regarding the mercury concentrations in Arctic baleen whales, 229 

but muscle samples from minke whales (Balaenoptera acutorostrata) taken as part of whaling 230 

operations in the Barents Sea in 2011, showed that total mercury concentrations varied from 231 

0.05 to 0.5 µg/g wet weight, all of which was methylmercury. Interestingly, mean 232 

concentrations were slightly lower than measured in animals sampled from the same area nine 233 

years earlier, in 2002 (Kleivane and Børsum 2003).  234 

While, overall, mercury exposure in Arctic cetaceans is lower than in other areas, how exposure 235 

will be affected by climate change is uncertain. Unprecedented changes have taken place in the 236 

Arctic over the last few decades in terms ocean warming and the resulting loss of sea ice. These 237 

environmental changes modify the planktonic ecosystem which has knock-on effects from the 238 

lowest to highest trophic levels. Large-scale environmental change could therefore trigger 239 

ecological responses including shifts in the availability, abundance and types of prey species, 240 

which in turn, can influence mercury exposure in Arctic cetaceans. The combination of 241 

environmental changes and shifts in diet could therefore make Arctic species especially 242 

susceptible to the cumulative effects of mercury exposure together with the other increasing 243 

anthropogenic pressures in these particularly vulnerable environments including increased 244 

shipping traffic, increased industrial fishing activities and anthropogenic noise for example. 245 

 246 
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5. Toxicity in Cetaceans 247 

5.1 Mercury Detoxification: Methylmercury Demethylation and Selenium Binding 248 

Marine mammals are capable of detoxifying methylmercury through the demethylation of 249 

methylmercury in the liver (Caurant, et al. 1996; Wagemann, et al. 1998) and its subsequent 250 

binding to selenium to form insoluble and toxicologically inert mercuric selenide (HgSe) 251 

crystals.  The toxicologically inert HgSe crystals then accumulate in the tissue. These crystals 252 

were first detected using a combination of electron microscopy and histology in cetacean liver 253 

samples (Martoja and Viale 1977; Martoja and Berry 1980; Nigro and Leonzio 1996). Later, 254 

Nakazawa and colleagues (2011) investigated the formation of HgSe in various other cetacean 255 

tissues and organs (kidney, lung, spleen, pancreas, muscle and brain) using micro-X-ray 256 

fluorescence imaging and micro-X-ray diffraction.  The authors confirmed the presence of 257 

HgSe in all the tissues examined suggesting that selenium could be involved in the 258 

detoxification process of mercury in tissues other than just the liver. It is hypothesised that this 259 

capacity to demethylate and sequester mercury with selenium in a non-toxic form may give 260 

cetaceans a greater tolerance to dietary mercury exposure than terrestrial animals, and therefore 261 

reduces some of the direct toxic effects of mercury in different organs and on various 262 

physiological processes described in detail below (Fig. 4).  263 

As individuals reach their adult size, they demethylate methylmercury from their diet more 264 

efficiently, and in the case of high mercury exposure, a close to 1:1 molar ratio of Hg:Se is 265 

maintained in adulthood (Sakamoto, et al. 2015; Hansen, et al. 2016).  In fact, many studies 266 

have reported a significant correlation between selenium and mercury concentrations in both 267 

cetacean liver and kidney samples, with molar ratios of close to 1 (Bustamante, et al. 2003; 268 

Yang, et al. 2007; Capelli, et al. 2008; Cáceres-Saez, et al. 2013; Hansen, et al. 2016) or below 269 

1 (Krone, et al. 1999).  It is thought that an animal with a liver molar excess of selenium (Hg:Se 270 
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< 1) is likely to be at lower risk of direct mercury toxicity, whereas an animal with a molar 271 

excess of mercury (Hg:Se > 1) is at greater risk (Hansen, et al. 2016). The toxicological 272 

significance for individuals and populations from studies reporting levels of mercury without 273 

associated selenium levels are therefore hard to interpret. Future monitoring efforts should 274 

always report mercury and selenium ratios to better understand which populations, or specific 275 

groups within populations are potentially most at risk of direct mercury toxicity. 276 

However, while selenium binding appears to act as a defensive mechanism against the direct 277 

toxic effects of mercury exposure, this binding process itself may cause other indirect 278 

physiological problems. As methylmercury has such a strong binding affinity for selenium, 279 

Spiller (2018) suggests that the previously suggested “protective effect” of selenium against 280 

mercury toxicity may in fact be backwards in that the effect of mercury is to produce a selenium 281 

deficient state. For example, as methylmercury sequesters selenium, it directly affects both the 282 

synthesis and activity of important selenium-dependent enzymes (selenoenzymes) (Ralston, et 283 

al. 2012). As a result, methylmercury is now recognised as a highly specific, irreversible 284 

inhibitor of selenoenzymes (Ralston, et al. 2012). Oxidative damage, particularly in the brain 285 

and neuroendocrine tissues, are prevented due to the activity of these selenoenzymes which 286 

inhibit many inflammatory mechanisms (Forceville 2006). Inhibition of their synthesis and 287 

their protective activities when selenium levels are depleted therefore appears to contribute to 288 

the neuro-toxic effects of methylmercury (Ralston and Raymond 2010).  289 

A recent study investigating the formation of HgSe clusters in the brain and the liver of long-290 

finned pilot whales supports this theory as it provided evidence of the depletion of bioavailable 291 

selenium (Gajdosechova, et al. 2016).  So, while cetaceans, and perhaps other top marine 292 

predators, have the capacity to demethylate mercury and then form toxicologically inert HgSe 293 

crystals, this protective effect is only maintained if equally high levels of selenium can also be 294 

maintained from the diet. It is therefore critical that an adequate selenium status can be 295 
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maintained in mammals exposed to high levels of mercury in order to mitigate its toxicity. This 296 

is a problem for cetaceans as top predators, as it has been shown that mercury bio-accumulates 297 

up the food chain at a higher rate than selenium (2.4 times for selenium and 5.4 times for 298 

mercury) (Kehrig, et al. 2013). A key research priority moving forward is thus a better 299 

understanding of these indirect effects of mercury toxicity caused by the generation of a 300 

potentially selenium-deficient state, and how they interact with the direct effects of mercury 301 

exposure itself.  A better understanding of these two toxicity pathways is imperative for future 302 

risk assessments of mercury exposure. 303 

 304 

5.2 Health Effects 305 

An understanding of the links between contaminant concentrations, including mercury, and 306 

health effects largely comes from studies on laboratory animals where the underlying cellular 307 

mechanisms that cause harm can be assessed in experimental set-ups in which mercury 308 

exposure to individuals or cell lines can be controlled.  The current understanding of these 309 

processes from various laboratory studies on model species and in humans is summarised 310 

below for context. To date, the only experimental studies on marine mammals, with regards to 311 

the effects of ingesting trace metal contaminated food items, were conducted on harp seals 312 

(Phoca groenlandica) in the 1970s (Freeman, et al. 1975; Ronald, et al. 1977). In these studies, 313 

seals were given a dietary intake of mercury of between 0.25 and 25.0 mg/kg body weight per 314 

day for 60 and 90 days. They showed a reduction in appetite and mass loss (Ronald, et al. 315 

1977), auditory damage and altered steroid metabolism (Ramprashad and Ronald 1977). 316 

In cetaceans, most work to date has focused on reporting measured concentrations of mercury 317 

in different tissues, rather than cause and effect relationships associated with different health 318 

effects. However, there is evidence from stranded and harvested animals that link tissue and 319 

organ mercury concentrations to specific pathologies (Fig. 4).  The direct effects of mercury 320 
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toxicity on key organs and processes are discussed below, and while few data are available to 321 

assess toxicity thresholds for environmentally-exposed wildlife, published effect thresholds for 322 

a small number of cetacean studies are summarized in Table 1. Future risk assessments for the 323 

effects of mercury exposure on cetaceans need to consider both these direct effect thresholds 324 

and the indirect effects associated with the generation of a selenium deficient state discussed 325 

above. 326 

 327 

5.2.1 Central Nervous System  328 

In mammals generally, methylmercury toxicity is manifested primarily as central nervous 329 

system damage (Das, et al. 2003). Transport of methylmercury around the body is facilitated 330 

by complexes formed with cysteine groups which are able to cross the blood–brain barrier and 331 

may accumulate in brain tissue (Roos, et al. 2010). Thus, mercury in the brain is often 332 

predominantly (Basu, et al. 2009), but not exclusively methylmercury (Squadrone, et al. 2015).  333 

Typically, damage results in sensory and motor deficits and behavioural impairment as animals 334 

become anorexic and lethargic (Das, et al. 2003; Oken, et al. 2005). These deficits are caused 335 

as methylmercury has the potential to block neurotransmitter release, interfere with the 336 

transport of amino acids and ions, bind to sulfhydryl groups and inhibit protein synthesis. 337 

Together, these effects result in the neuropathological damage including focal necrosis of 338 

neurons in regions of the cerebral cortex, which, overall, results in cerebral oedema 339 

(Nagashima 1997; Castoldi, et al. 2001). In fact, methylmercury exposure has been shown to 340 

result in the widespread loss of neurons and gliosis, with the hypertrophy of a number of 341 

different glial cells including astrocytes, microglia, and oligodendrocytes in the human and 342 

rodent cerebellum and midbrain, as well as the cerebral cortex (Mottet, et al. 1997). Of 343 

particular concern is that methylmercury is transferred across the placenta (Wagemann, et al. 344 



15 
 

1988) and concentrates in the fetal brain (Wolfe, et al. 1998) resulting in developmental 345 

alterations in the fetus and/or fetal death. 346 

New evidence suggests that despite previous assumptions regarding its poor ability to cross 347 

biological barriers, inorganic mercury, as well as methylmercury, can cross the blood-brain 348 

barrier (Evans, et al. 2016) and result in neurotoxic effects in mammals. In rats, it was observed 349 

that chronic, low-dose exposure to inorganic mercury resulted in a reduction in both balance 350 

and fine motor coordination (Teixeira, et al. 2018). In the same study, at the cellular level, it 351 

also resulted in the formation of mercury deposits and oxidative stress through a decrease in 352 

the total antioxidant capacity. It was concluded that exposure to continued, low-doses of 353 

inorganic mercury caused cell death through a combination of cytotoxicity and induction of 354 

apoptosis which resulted in a decreased number of neurons and astrocytes in the motor cortex 355 

(Teixeira, et al. 2018). This has potential implications for other mammals too, although the 356 

extent to which inorganic mercury can cause brain damage in other species requires further 357 

investigation.   358 

In cetaceans, odontocetes appear to be one of the most vulnerable groups, with high 359 

concentrations of mercury recorded in brain tissue with associated signs of neurochemical 360 

effects (Dietz, et al. 2013). In fact, belugas exhibit brain concentrations of total mercury that 361 

are an order of magnitude higher than those measured in polar bears and Arctic seals (Lemes 362 

et al. 2011). Threshold concentrations for total mercury for neurotoxic endpoints detected in 363 

laboratory animals and field observations established from the literature were collated by Krey 364 

and colleagues (2015) (Table 1), and were compared to measured concentrations in the brains 365 

of belugas. It was seen that they exceeded all four of these neurotoxicity thresholds (Krey, et 366 

al. 2015). Another study on belugas explored the relationships between mercury and selenium 367 

concentrations and neurochemical biomarkers in different brain regions (Ostertag, et al. 2014). 368 

It was found that methylmercury exposure is associated with neurochemical variation in the 369 
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cerebellum of belugas and that selenium may partially protect it from methylmercury 370 

associated neurotoxicity (Ostertag, et al. 2014).  Interestingly, while high concentrations of 371 

total mercury were measured in both the liver and the lymph nodes of 50 Atlantic bottlenose 372 

dolphins, no significant neuropathology was documented in these cases (Turnbull, et al. 1998). 373 

The authors therefore hypothesised that the dolphins have unique mechanisms for tolerating 374 

persistently high mercury concentrations that are neurotoxic in other mammals (Turnbull, et 375 

al. 1998). This, together with other evidence suggests that the high Se:Hg molar ratio in the 376 

brain of these species could, at least to some extent, protect the animals from mercury-377 

associated neurotoxicity (Krey, et al. 2015). 378 

 379 

5.2.2 Liver 380 

Unlike terrestrial animals, in marine mammals and seabirds, the main organ where mercury 381 

accumulates at the highest concentrations, as well as being demethylated, is the liver. Studies 382 

on humans have shown that at the cellular level, methylmercury-related toxic effects are 383 

thought to be caused by binding of methylmercury to the cysteinyl groups of proteins, which 384 

can have severe implications for the synthesis of cellular glutathione, and lead to oxidative 385 

damage (Choi, et al. 2017). Oxidative stress has thus been identified as an important reason for 386 

hepatotoxicity. The mechanisms of its toxicity have been suggested to also involve 387 

degeneration, and changes in the energy metabolism of renal cells, but these mechanisms are 388 

not fully understood (Choi, et al. 2017). Overall, hepatotoxicity occurs through cell death, 389 

mitochondrial dysfunction, endocrine disruption, and metabolic disorders though combinations 390 

of the deregulation of oxidative stress, intrinsic apoptotic pathways, and nuclear receptor and 391 

kinase activity (Choi, et al. 2017).  392 

Few studies have determined threshold concentrations for health effects in marine mammals, 393 

although it was first reported that concentrations around 60 μg/g total mercury (wet weight) in 394 



17 
 

the liver of marine mammals were damaging to hepatic processes (Law, et al. 1991). In another 395 

study using HgSe concentration data collected from the livers and respiratory systems of 25 396 

stranded bottlenose dolphins, it was calculated that the minimum body burden to produce mild 397 

lesions, specifically mild fatty liver, was 600mg for a 300kg dolphin (Rawson, et al. 1995). 398 

This is approximately 7 times the threshold required to cause mild lesions in humans. Chronic 399 

mercury accumulation has been associated with liver abnormalities in bottlenose dolphins 400 

(Rawson, et al. 1993; Rawson, et al. 1995). For example, a fourfold increase in active liver 401 

disease in the dolphins suggested a significant health effect associated with liver mercury 402 

concentrations above 61μg/g wet weight of tissue (Rawson, et al. 1993). In this study, deposits 403 

of a brown pigment, identified as lipofuscin, were observed in the livers of nine animals with 404 

high hepatic mercury levels (>60 µg/g wet weight).  405 

Lipofuscin is derived from damaged subcellular membranes, and these deposits were strongly 406 

correlated with mercury concentrations. As mercury inhibits the activity of lysosomal digestive 407 

enzymes, this reduces the degradation of proteins, which in turn, leads to excessive 408 

accumulation of lipofuscin within cells and results in cell death (Rawson, et al. 1995). 409 

Interestingly, while liver and kidney damage have been documented in bottlenose dolphins, 410 

lesions characteristic of acute or chronic mercury exposure were not found in harbour porpoises 411 

from the North and Baltic Seas with high mercury concentrations in the liver and kidney (upper 412 

range 449 μg/g and 160 μg/g wet weight, respectively) (Siebert, et al. 1999). The threshold for, 413 

and effects of hepatoxicity may therefore be somewhat species specific, and/or a function of 414 

mercury-selenium interactions which have not been reported in these studies. 415 

 416 

5.2.3 Kidneys 417 

In humans and other terrestrial mammals, the kidneys are the primary organs where mercuric 418 

ions accumulate after exposure to elemental, organic and inorganic forms of mercury (for 419 



18 
 

review see Zalups, 2000). While all forms of mercury are nephrotoxic, the inorganic forms of 420 

mercury are most acutely nephrotoxic (Zalups 2000). Specifically, mercuric chloride leads to 421 

acute tubular necrosis where the tubular epithelial cells that form the renal tubules of the 422 

kidneys die (Zawada, et al. 1998). As a result of the high bonding affinity between mercury 423 

and sulphur, interactions between mercuric ions and the thiol group(s) of proteins, peptides and 424 

amino acids including albumin, metallothionein, glutathione, and cysteine have been 425 

implicated in the mechanisms involved in the proximal tubular uptake, accumulation, transport, 426 

and toxicity of mercuric ions in the kidneys of mammals (Zalups 2000).  427 

In cetaceans, an increase in blood urea nitrogen was observed in bottlenose dolphins with 428 

increased mercury concentrations in both the skin and the blood suggesting a decrease in 429 

kidney function in these animals (Schaefer, et al. 2011). Varying doses of mercuric chloride 430 

were shown to induce apoptosis in vitro in cultured Atlantic Spotted Dolphin (Stenella 431 

plagiodon) renal cells (Wang, et al. 2001) (Table 1). In the same study, the protective effects 432 

of sodium selenite against the toxic effects of mercuric chloride were documented, and it was 433 

concluded that inhibition of mercury-induced apoptosis in renal cells, provided by selenium, 434 

may contribute to the in vivo protection in this organ. 435 

 436 

5.2.4 Immune System Function  437 

A large body of literature regarding in vitro experimental investigations has clearly shown that 438 

mercury compounds can have immunomodulatory effects (Moszczyński 1997). Specifically, 439 

both mercuric chloride and methylmercury have been shown to inhibit most lymphocyte 440 

functions including proliferation, expression of cell activation markers on the cell surface and 441 

cytokine production (Moszczyński 1997). In vivo studies on rats injected with mercuric 442 

chloride exhibit immunosuppression, and showed increased susceptibility to challenge with 443 

infectious agents or tumour cells (Moszczyński 1997). In marine mammals specifically, 444 
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methylmercury was shown to alter the in vitro synthesis of steroid hormones which play an 445 

important role in modulating both inflammatory and immune responses (Freeman and 446 

Sangalang 1977). These kinds of in vivo and in vitro studies have not been carried out to the 447 

same extent in cetaceans, but potentially similar immunosuppressive effects have been 448 

documented in various species using strandings data in case-controlled approaches to 449 

investigate the prevalence of infectious diseases in mercury-contaminated animals. 450 

Siebert and colleagues (1999) examined the possible relationship between mercury tissue 451 

concentrations and disease in harbour porpoises from the North and Baltic seas. Higher 452 

mercury concentrations were found in porpoises from the North Sea compared to the Baltic 453 

Sea and were associated with an increased prevalence of parasitic infection and pneumonia. 454 

Bennett and colleagues (2001) also used this indirect approach to investigate the hypothesis 455 

that increased exposure to toxic metals results in a lower resistance to infectious disease in 456 

harbour porpoises from the coasts of England and Wales. Mean liver concentrations of 457 

mercury, selenium, zinc and the Hg:Se ratio were significantly higher in the porpoises that died 458 

of infectious diseases compared to porpoises that died from physical trauma. As previously 459 

discussed, the authors concluded that the Hg:Se balance is a complex phenomenon that might 460 

be more important for the general health status of porpoises than absolute concentrations of 461 

mercury alone. Similarly, Mahfouz and colleagues (2014) also found that harbour porpoises 462 

stranded along the French coast between 2006 and 2013 that died from infectious disease had 463 

significantly higher hepatic concentrations of cadmium, mercury, selenium and zinc compared 464 

to healthy porpoises that died from physical trauma.   465 

In order to better understand the mechanisms of immunosuppression associated with high 466 

mercury concentrations, Pellissó and colleagues (2008) studied the effects of varying mercury 467 

exposure on bottlenose dolphin lymphocyte and phagocyte function in vitro.  A significant 468 

reduction in the lymphoproliferative response was found following exposure to just 1 mg/L of 469 
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mercury and decreased phagocytosis was observed at 5 mg/L (Table 1). The authors concluded 470 

that their results support the hypothesis that exposure to mercury could lead to a reduction in 471 

host disease resistance. Desforges and colleagues (2016) used a combination of field and 472 

laboratory data to determine effect threshold levels for suppression of lymphocyte 473 

proliferation. These were between 0.002 - 1.3 ppm for mercury and 0.009 - 0.06 ppm for 474 

methylmercury in polar bears and several pinniped and cetacean species combined.  475 

Finally, in another study on bottlenose dolphins, after controlling for age, a significant inverse 476 

relationship was observed between mercury concentrations measured in the blood, and several 477 

markers of endocrine function and hematologic parameters (Schaefer, et al. 2011). Specifically, 478 

an inverse relationship was observed between blood and skin mercury concentrations and 479 

thyroid hormone concentrations (total thyroxine and triiodothyronine), as well as absolute 480 

numbers of lymphocytes, eosinophils, and platelets (Schaefer, et al. 2011). Mercury is not 481 

specifically recognized as an endocrine-disrupting chemical, but it has been suggested that 482 

continuous exposure of the brain to mercury could affect the hypothalamic–pituitary axis which 483 

regulates thyroid activity, and thus the circulating concentrations of total thyroxine and 484 

triiodothyronine (Sin, et al. 1990). Further investigation of the roles of both mercury and 485 

selenium in the mechanisms that lead to reduced thyroid hormone production in marine 486 

mammals is necessary to confirm these results, and better interpret the implications for the 487 

reduced immunocompetence of individuals. 488 

 489 

5.2.5 Genetic Effects   490 

Mercury exposure has been recognised to have both mutagenic and teratogenic effects 491 

(Aggarwal, et al. 2014). Once inside the cell, damage is thought to be caused by methylmercury 492 

compounds that bind to sulfhydryl groups of glutathione, leading to the formation of free 493 

radicals that cause DNA damage. When these compounds bind to sulfhydryl groups in the 494 
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microtubules responsible for providing structure and shape to the cytoplasm, it leads to 495 

impairment of spindle formation which then causes chromosomal aberrations 496 

(structural abnormality in one or more chromosomes) and aneuploidy (an abnormal number of 497 

chromosomes) (for review see Aggarwal et al. 2014). In humans, the genotoxic effects of 498 

methylmercury compounds have been assessed by quantifying chromosome aberrations and 499 

polyploidy cells in cultures of whole blood exposed to varying mercury concentrations. The 500 

number of polyploidy cells increased with the increasing mercury concentration while the 501 

mitotic index, and thus the cells’ ability to divide normally, decreased at just 100 µg/L (Silva-502 

Pereira, et al. 2005). Mercury therefore has strong genotoxic and cytotoxic effects at low 503 

concentrations in humans.  504 

There is currently very little data on the extent to which mercury or methylmercury is genotoxic 505 

in cetaceans. Betti and Nigro (1996) evaluated the genetic effects of methylmercury in 506 

bottlenose dolphin lymphocytes in vitro using single cell microgel electrophoresis (the Comet 507 

assay). Lymphocytes were isolated from the blood of a single dolphin, and were exposed to 508 

methylmercury concentrations naturally occurring in the blood of wild dolphins in the 509 

Mediterranean (Betti and Nigro 1996). This induced DNA single-strand breaks and 510 

cytotoxicity in a dose-dependent manner. However, dolphin lymphocytes were more resistant 511 

to the genotoxic and cytotoxic effects of methylmercury than either human or rat cells (Betti 512 

and Nigro 1996).  This resistance was interpreted as an adaption to limit the damage caused by 513 

methylmercury exposure. Further in vitro testing is therefore required to fully assess the 514 

potential genotoxicity of methylmercury in cetaceans.   515 

 516 

 517 

 518 

 519 
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6. Conclusions and Future Directions 520 

Both natural and anthropogenic sources of mercury contribute to its accumulation in the tissues 521 

and organs of cetacean species around the world. This accumulation, together with the potential 522 

for toxic effects highlight how further monitoring of mercury in the environment, and in these 523 

top marine predators, is required to better understand its potential health effects and how these 524 

could ultimately lead to population-level impacts. Recent evidence demonstrating the potential 525 

use of blubber and skin samples from biopsies of live animals to quantify tissue mercury 526 

concentrations has important implications for large-scale population monitoring.  527 

Given the reported ‘protective’ effects of selenium binding, of particular importance in future 528 

monitoring efforts is the need to measure both selenium and mercury concentrations in tandem 529 

in order to obtain a more accurate indicator of what measured concentrations mean in terms of 530 

compromising cetacean health. There is still limited data regarding the mechanisms of toxicity 531 

specific to cetaceans, and while comparing mercury concentrations in cetaceans with 532 

concentrations in appropriate laboratory studies can be used as a tool for risk characterization, 533 

using published thresholds and established cellular mechanisms of mercury toxicity in other 534 

animals adds uncertainty regarding the assessment of risk to cetaceans. Future investigations 535 

should prioritise a better understanding of both the direct effects of mercury toxicity and the 536 

indirect effects associated with the development of selenium deficiency. An improved 537 

understanding is imperative in order to better evaluate risk to individual and population-level 538 

health. In addition, efforts have been focused on understanding mercury toxicity in isolation, 539 

whereas there are likely important health effects associated with exposure to several, possibly 540 

interacting contaminants (Filipak Neto, et al. 2008). More research is therefore needed before 541 

the effects of both mercury alone, and its cumulative health effects in combination with other 542 
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heavy metals and persistent organic pollutants for example, can be addressed adequately in top 543 

marine predators. 544 

A recent, highly comprehensive study investigated how the effects of climate change and other 545 

potential anthropogenic stressors are likely to modulate the bioaccumulation and bio-546 

magnification of mercury in marine ecosystems in the future (Eagles-Smith, et al. 2018). In 547 

terms of potentially the most vulnerable environments, further research is especially required 548 

to identify the changing underlying processes linking the biogeochemical cycle responsible for 549 

methylation rates in Arctic seawater and bioaccumulation through the Arctic food web which 550 

will ultimately affect top marine predators (Braune, et al. 2015).  551 

Marine mammal species, including cetaceans are thought to be good sentinels for human health 552 

for two main reasons; firstly, because they consume many of the same species of fish caught 553 

by commercial fisheries for human consumption, and secondly, they share similar life history 554 

traits including a high trophic level, low reproductive output and a long life-span. Together, 555 

these can make them particularly susceptible to the negative impacts of anthropogenic activities 556 

and environmental pollution and contamination. With the signing of the Minimata Convention 557 

on Mercury in 2017 there is a clearly an appetite for reducing the use and therefore the impact 558 

of mercury contamination at a global scale.  But without continued, long-term monitoring of 559 

concentrations in species of concern, or those that are important ecosystem indicators (such as 560 

the odontocete cetaceans), it will be impossible to determine if any mercury exposure 561 

mitigation measures have been successful, and predict how mercury will affect the marine 562 

environment into the future.  563 
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Table 1 – Reported thresholds for toxic effects of mercury exposure. N.B. Thresholds for 933 

neurotoxic endpoints have not been published specifically for cetaceans.  934 

Directly Toxic 

Effects 

Species Study 

System 

End Point Reported Exposure 

Threshold for 

Effects 

Reference 

Neurotoxicity: 

Central 

Nervous 

System 

Mouse, rat, 

mink, river 

otter, cat, 

dog, horse, 

pig, 

macaque, 

squirrel 

monkey, 

harp seal, 

polar bear 

in vivo  

 

clinical changes 

neuropathological changes 

neurochemical changes 

neurobehavioural changes  

Brain Concentration 

THg*: 

> 6.75 mg/kg w.w. 

> 4 mg/kg w.w. 

> 0.4 mg/kg w.w. 

> 0.1 mg/kg w.w. 

Krey et al. 2015* 

Hepatotoxicity: 

Liver 

Bottlenose 

dolphin 

in vivo liver disease Liver Concentration 

THg: 61μg/g wet 

weight 

Rawson et al. 

1993 

Bottlenose 

dolphin 

in vivo liver disease Whole Body Burden 

THg: 2mg/kg  

Rawson et al. 

1995 

Nephrotoxicity: 

Kidneys 

Atlantic 

spotted 

dolphin 

in vitro apoptosis of renal cells 20 μM HgCl2 Wang et al. 2001 

Immune 

System 

Function 

Bottlenose 

dolphin 

in vitro suppression of lymphocyte 

proliferation 

 

suppression of 

phagocytosis 

1mg/L Hg 

 

 

5 mg/L Hg 

Pellissó et al. 

2008 

Beluga in vitro suppression of lymphocyte 

proliferation 

0.067 ± 0.094 ppm 

Hg 

0.016 ± 0.0049 ppm 

MeHg 

Desforges et al. 

2016 

Genetic Effects Bottlenose 

dolphin 

in vitro DNA single-strand breaks 

and cytotoxicity 

0-1 µg/ml MeHg Betti and Nigro, 

1996 

 935 

* Authors conducted a literature review of threshold concentrations for toxic endpoints 936 

detected in laboratory animals and field observations in order to establish potential thresholds 937 

in marine mammals.  938 
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Fig. 1.  Mercury in the marine environment is cycled through biogeochemical processes with 942 

both anthropogenic and geological (natural) inputs from land-based sources, and deposition 943 
from the atmosphere. Mercury enters sediments through the actions of sediment-fixing 944 
bacteria. Methylmercury is produced through a combination of methylation of elemental 945 

mercury and inorganic mercury in sediments and in the water column itself through both abiotic 946 
and biotic processes.  Methylmercury then enters, and bioaccumulates up the food chain from 947 
zooplankton up to top marine predators, including cetaceans. 948 

Fig. 2. Total mercury concentrations in example marine species in the Mediterranean show 949 
how bio-magnification occurs up the food chain. Total mercury values in µg/g dry weight are 950 
indicated based on published concentrations (Cresson, et al. 2014; Wafo, et al. 2014; Živkovic, 951 
et al. 2017). The total mercury concentrations here include both inorganic and organic mercury, 952 
and are shown as examples of the most widely available published data for comparison, rather 953 

than methylmercury alone. 954 

 955 

Fig. 3. Mean total mercury concentrations measured in the livers of cetaceans worldwide 956 
between 1975 and 2010 collated from 101 reports and published peer-reviewed articles. N.B. 957 
The total mercury concentrations on the y-axes are on different scales as minimum and 958 
maximum reported values vary between regions.  959 
 960 

Fig. 4. Mercury exposure in cetaceans has the potential to cause neurotoxicity, nephrotoxicity, 961 

hepatotoxicity, immunotoxicity and genotoxicity. The main toxicology findings from in vivo 962 

and in vitro investigations in cetaceans are summarised together with the proximate 963 

mechanisms described in model species where cetacean data are lacking. 964 

 965 
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