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Abstract

Magnetic helicity conservation provides a convenient way to analyze specific properties (namely, the linkage and
twist) of reconnecting flux tubes and yield additional insight into the pre- and post-reconnection states of magnetic
structures in the solar atmosphere. A previous study considered two flux tubes with footpoints anchored in two
parallel planes. They showed that reconnection would add self-helicity equivalent to a half turn of twist to each flux
tube. We address a related and fundamental question here: if two flux tubes anchored in a single plane reconnect,
what are the resulting twists imparted to each of the reconnected tubes? Are they equal and do they have a simple
exact value independent of footpoint location? To do this, we employ a new (computationally efficient) method
which subdivides each flux tube into distinct elements and calculates the mutual helicity of many elemental pairs,
the sum of which determines the self-helicity of the overall flux tube. Having tested the method using a simple
analytical model, we apply the technique to a magnetohydrodynamic simulation where initially untwisted magnetic
flux tubes are sheared and allowed to reconnect (based on a previous reconnection model). We recover values of
self-helicity and twist in the final end state of the simulations which show excellent agreement with theoretical
predictions.

Unified Astronomy Thesaurus concepts: Magnetic fields (994); Solar magnetic reconnection (1504);
Magnetohydrodynamical simulations (1966); Magnetohydrodynamics (1964)

1. Introduction

Magnetic helicity is a powerful mathematical tool to analyze
the magnetic topology of specific structures in many different
physical systems. For example, the fact that helicity is
approximately conserved during magnetic reconnection events
has led to its wide use in plasma physics (Taylor 1974),
including terrestrial magnetospheric (Wright & Berger 1989) or
solar coronal phenomena (Hood et al. 2009; Priest et al. 2016).
The calculation of magnetic helicity itself also depends on the
specific application: the classic concept of a volume-integrated
quantity (Moffatt 1969) has since been adapted to analyze the
helicity of constituent flux elements (e.g., flux tubes; Berger &
Field 1984) or indeed individual field lines (Berger 1988;
Russell et al. 2015; Yeates & Hornig 2016). Developments like
relative helicity (Berger & Field 1984) have led to elegant or
relatable properties and interpretations, which also allow
further insight into the evolution of specific physical systems,
in our case, solar flares.

One of the key unanswered questions in solar physics
surrounds the formation of highly twisted flux ropes which
ultimately erupt as a solar flare and/or coronal mass ejection
(CME). The amount of twist seen in the preeruptive state is, in
many cases, often much smaller than that seen following the
propagation of the structure as an interplanetary CME
(Webb 2000; Démoulin 2008; Vourlidas 2014). This discre-
pancy between pre- and post-reconnection twist naturally
suggests magnetic helicity as a likely route to provide further
insight. Magnetic helicity conservation introduces an additional
constraint in the eruption process, as the slow buildup of
helicity prior to an eruption must also be reflected in the energy
and twist partitioning in the final post-eruption state (both in the
ejected and tethered features seen). Post-flare eruption config-
urations do not appear to relax to a potential state, as one might
expect (given the large amount of energy released from the

field during a flare); the presence of sheared post-flare loops
(e.g., Asai et al. 2004; Warren et al. 2011; Aulanier et al. 2012)
hint at some additional property playing a key role in the
redistribution process.
The application of magnetic helicity conservation as a way to

further constrain theoretical magnetic reconnection models in
the context of eruptive flares remains in relative infancy (while
also becoming a key aspect in understanding the large-scale or
global coronal evolution; e.g., Démoulin et al. 2002; Mackay &
van Ballegooijen 2006; Yeates & Mackay 2009; Mackay et al.
2011). A common assumption among recent applications to
eruptive flares is helicity equipartition; reconnection, and the
associated release of mutual helicity, is assumed to contribute
equally to the self-helicity of the reconnected flux tubes (e.g.,
Priest et al. 2016; Priest & Longcope 2017). This assumption
has proven to be valid in the context of magnetic reconnection
of flux tubes which extend between two parallel planes (Wright
& Berger 1989), but in a more solar-relevant framework (where
reconnecting tubes are anchored in the same plane), this is not
necessarily the case (Wright 2019). Indeed, Priest & Longcope
(2017) found that the total amount of self-helicity in the final
configuration depended upon the footpoint arrangement.
In the Priest & Longcope (2017) model, an arcade of

untwisted flux tubes (anchored in the same plane) was sheared
parallel to a polarity inversion line, yielding running reconnec-
tion along the arcade (in a manner consistent with observed
two-ribbon flare motions). This was termed “zipper reconnec-
tion.” Threlfall et al. (2018b) numerically modeled the shearing
and reconnection of a single pair of flux tubes (a “zippette”),
finding that the model is indeed capable of forming a large
twisted flux rope overlying a sheared arcade of field lines. In
order to further explore the concept of helicity partitioning in
the context of such results, Wright (2019) derived expressions
that describe the role of footpoint positions on the amount and
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partitioning of magnetic twist in flux tubes that are anchored in
the same plane and undergo reconnection.

The primary goal of this investigation is to further examine
the “helicity equipartition conjecture” by testing whether the
formulae of Wright (2019) can accurately predict the final
helicity and twist of a magnetohydrodynamic (MHD) flux tube
reconnection model, where the flux tubes are anchored in the
same plane. To achieve this, we develop and implement a new
practical method to determine the self-helicity and twist of a
(simulated) magnetic flux tube. The structure of our paper is as
follows: in Section 2 we outline some fundamental theoretical
concepts of magnetic helicity. Details of our practical
implementation, which relies upon some of these concepts,
takes place in Section 3, where we outline our method to
calculate flux tube self-helicity, subdividing each tube into
small elements and analyzing the mutual helicity of each
elemental pair. In Section 4 we describe the tests used to assess
our method, comparing our recovered helicity values to an
analytical model whose self-helicity is determined by a
controllable number of turns. Following these tests, Section 5
outlines our application of the method to an MHD reconnection
experiment, where two tubes are sheared and allowed to
reconnect, with our findings described in Section 5.3. Finally, a
discussion of our results is presented in Section 6, before
conclusions are presented in Section 7.

2. Theory

We exploit properties of relative helicity (Berger &
Field 1984) to study a system of magnetic flux tubes anchored
in the same plane as

( )å å= +

¹

H H H . 1
i

i
i j

i j

ij
,

Equation (1) breaks the total system helicity into the individual
(or self-)helicity of each flux tube combined with the mutual
helicity of each flux tube relative to the others.

If the system contains a single flux tube with a cross-
sectional flux Φi, then the self-helicity of that flux tube can be
calculated as

( ) · ( )ò= F = + F F = B dsH L T , . 2i i i
s

2 2

Here L is the mean net winding number of field lines contained
within the tube, T is the mean twist number of the field lines
about the tube axis, and  is the writhe number of the tube
axis (Equations (25) and (26) of Berger & Field 1984; Berger
& Prior 2006).

For the case of a flux tube with no writhe, T has a simple
interpretation: for a uniformly twisted tube, it corresponds to
the number of turns field lines make about the tube axis. If the
tube has a more complicated internal structure, we can still use
T as a useful nondimensional variable for quantifying the
average structre within the tube and also to define their mean
rotation angle f̃ p= T2 . We shall use T (in the sense of the
equivalent twist for a writheless flux tube) later to provide a
dimensionless measure of the self-helicity of a flux tube.

The mutual helicity can be determined by the relative
positions of appropriate footpoints (Berger 1986). For tubes
that start and end in the same plane, such as those considered in
this work (with examples in Figure 1), angles made by the
footpoints in the plane also depend on whether the tubes are

crossed or uncrossed, leading to mutual helicity contributions
of the form

( )
r n

p
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+
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2
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1 1
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2
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where Equation 3(a) represents a crossed configuration
(Figure 1(a)) and Equation 3(b) represents an uncrossed
configuration (Figure 1(b)).
Berger (1986) calculated these results by starting with two

well-separated tubes, which have zero mutual helicity. The
tubes are then brought together to the configurations in
Figure 1. During this process the footpoints rotate about each
other and causes a flux of helicity across the boundary. The
integral of this flux allows the mutual helicity of the final
configuration to be determined. Note that these results apply to
a planar boundary.

3. Helicity Calculation Method

The magnetic field of a large-scale flux tube like that in
Figure 2 can be broken down into a set of contiguous elemental
flux tubes which, for clarity, we call “flux tubules.” As was first
shown by Berger & Field (1984), the total self-helicity of the
large tube may alternatively be calculated by evaluating the
mutual helicities of a large number (N) of its constituent flux
tubules, each containing a fraction of the total flux (δf≈Φ/N);
in such a case, the total self-helicity (referred to as “internal
helicity” in Berger & Field 1984) of the flux tubules become
vanishingly small at large N, with a relative error∼1/N. As
illustrated by Figure 2, an effective twist can then be deduced
by equating the total mutual helicity of all the flux tubules with
the self-helicity of the composite large tube.
Our goal is to practically implement this approach to

calculate the self-helicity and twist of given flux tubes and
validate the technique on test tubes of known self-helicity. We
then apply the self-helicity calculation to an MHD simulation
of reconnecting flux tubes which allows us to answer
definitively whether the self-helicity obeys the equipartition
conjecture or the non-equipartition formulae of Wright (2019).

3.1. Calculating the Mutual Helicity of a Single Tubule Pair

Before applying the method to an entire flux tube, we will
first demonstrate the procedure used in calculating the mutual
helicity of a single tubule pair. The steps in this procedure are
illustrated by Figure 3.
First, we construct a Cartesian grid of positions within the

positive footpoint of the chosen flux tube, centered on the
location of the peak positive field strength at the base,

( )=B z 0z
max . A contour of magnetic field strength (shown as

a black oval on the left side of Figure 3) is used to define the
outside of the flux tube at the base of the domain. We set this
contour value to be 5% of Bz

max , in order to avoid
complications arising from tracing field lines in near-zero field
regions.1 We define grid points beyond this contour as being
“outside” the flux tube; such points are discarded. The grid

1 In flux tube models used in this investigation (including the model used to
test the method), the field outside the tube rapidly falls to zero. Field lines
traced at/near the tube edge (using an adaptive step size) can overstep into such
weak/zero field regions, leading to inaccurate field-line solutions, which must
be ultimately discarded from the helicity calculation.
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spacing, d d,x y, controls the number of grid points (N) in the
flux tube.

At every grid point, we apply a numerical integration routine
(which uses an adaptive step size to compare fourth- and fifth-
order Runge–Kutta–Fehlberg solutions of the magnetic field-
line equations, used in, e.g., Threlfall et al.
2017, 2018a, 2018b) to trace a field line from the positive to
negative footpoint of the flux tube. Field lines that also land
outside a 5% contour of the negative field strength,

( )- =B z 0z
max , at the second footpoint are also omitted (though

such instances are uncommon). The retained field lines
effectively form the axes of our tubules, and comprise the
entire flux tube volume. Each tubule associated with a field line
has a cross-sectional area determined by the grid spacing δxδy,

while the flux is calculated as the perpendicular base flux at the
starting point of each field line multiplied by this
area ( )d dF » =B z 0i z x y.
To account for extra windings of field lines between

footpoints, we create a new cylindrical coordinate system
aligned with our tubules; this new coordinate system is seen in
Figure 3. A new z-axis (ezc) is defined as the normal to a
vertical plane containing the average start and end positions of
each field-line pair; ezc has no z component (being located
within the horizontal plane at the base of the domain). At an
angle f to this axis, we create a series of planes, with fä [0,
π]. f=0 corresponds to a plane extending over the positive
tubule footpoints, while f=π corresponds to a plane
encompassing the negative tubule footpoints. The intercept of
the ith and jth field lines with each f plane is used to formulate
a wrapping angle αij of the jth field line around the ith field line
as a function of distance along the ith field line. αij could, in

Figure 1. Illustration of how angles ρ and ν are calculated, which depends on whether the tubes are (a) crossed and hence have mutual helicity calculated using
Equation 3(a) or (b) uncrossed and hence have mutual helicity calculated using Equation 3(b); note that the color of the tube indicates whether we refer to the ith (blue)
or jth (red) tube, while ρ and ν are determined by specific vectors linking i and j.

Figure 2. Total mutual helicity method of Berger & Field (1984). The self-
helicity of an individual flux tube may instead be expressed as the sum of
mutual helicities of many flux elements (small blue and red tubes) which
together comprise the flux tube. To the left of the dashed gray diagonal line, the
red and blue lines represent two field lines. These field lines form the axis of
thin elemental flux tubes shown to the right of the dashed line.

Figure 3. Method to calculate mutual tubule helicity. We calculate field-line
trajectories (blue and red curves) from Cartesian grid points overlaid onto the
positive footpoint of the flux tube, before calculating a new cylindrical
coordinate system based on the relative initial and final positions of every field-
line pair, allowing us to calculate rotation angles (α) of one field line about
another as a function of distance along the ith field line, si.
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principle, be interpreted directly as the twist of one field line
around the other. However, our aim here is to simply count the
number of complete turns of field line j around field line i: we
subtract the initial from the final value (a a-ij ij

final initial) and
evaluate the number of complete multiples of 2nπ (where n can
be positive or negative) that each field-line pair have turned
about:

⎢
⎣
⎢⎢

⎥
⎦
⎥⎥ ( )

a a

p
=

-
n

2
. 4

ij ij
final initial

As mentioned earlier, the mutual helicity of the tubes is
determined from starting with unlinked tubes and moving their
footpoints to the desired configuration. There is some
ambiguity here as simply knowing the relative locations of
the four footpoints does not account for the fact that the
footpoint of one tube may have wound around the footpoint of
the other tube an integer number of times without affecting the
final footpoint locations. The effect of this is to add an integer
number of links and an additional contribution to the mutual
helicity of nΦiΦj (Wright & Berger 1990; Demoulin et al.
2006).
The final step is to combine the number of complete turns, n,

with the footpoint angles (ρ and ν) and the fluxes of both
tubules to calculate the mutual tubule helicity. The definition of
angles ρ and ν changes depending on whether the tubes are
crossed or uncrossed (as shown in Demoulin et al. 2006 and
references therein). We modify the relevant formulae to
calculate the mutual tubule helicity in response to the number
of additional turns of tubule j about tubule i as follows:

( ) ( )a a
r n

p
= - F F

+
+ F FH nsgn

2
, 5aij ij ij i j i j

end start 1 1

( )
r n

p
=

-
F F + F FH n

2
, 5bij i j i j

2 2

where the mutual tubule helicity formula for crossed tubules,
Equation 5(a), now accounts for the sign of the change in
winding of j around i (which is accounted for in the sign of the
fluxes in Equation 5(b)).

Having now calculated the value of Hij for each tubule pair,
all that remains is to sum the individual Hij values (provided
¹j i) to calculate the total helicity of the flux tube. Dividing

this value by Φ2 for total flux ( )F =å Fi i generates the average
number of turns of twist performed by field lines within the flux
tube, or the average twist f̃.

It should be noted that our approach can only be applied to
suitably smooth or well-behaved magnetic fields. For example,
if a field line is highly contorted and doubles back to cross a
f = const. plane in Figure 3, then our method is not suitable,
and a more general and robust method to calculate Hij is
needed, such as that described in Figure 8 of Demoulin et al.
(2006). If the magnetic field is amenable to our method, it has
the advantage of allowing for computational efficiency. For
example, if we take the order of m numerical steps along a
tubule, the number of operations in our method scales as m,
whereas the general linkage integral scales as m2. Our approach
is most likely to be applicable to relaxed fields, although we
show it can also work for the time-dependent simulations in
Section 5.

4. Testing the Tubule Approach

Prior to any scientifically relevant application of this method,
we must first examine whether the method accuracy conforms
to the predicted value (1/N, first shown by Berger &
Field 1984) and what factors influence the results. To test the
method we created a simple analytical magnetic flux tube
model, which includes a region of (controllable) magnetic
twist.
In order to gauge the effectiveness of our practical

implementation, we applied the method detailed in Section 3
to the test model for a variety of uniform twists spanning
- < <T2 2. The exact value of helicity is given in terms of T
in Equation (2). The percentage difference between the value of
T imposed in the model and the value recovered by summing
the mutual tubule helicity, using 250 tubules, is within the error
of 1/N=1/250=0.4% for all values of T.
This technique relies upon field lines (tubules) forming

smooth arcs, distributing twist over large spatial length scales.
Increasing the number of turns in the test model creates large
amounts of twist over relatively short spatial scales. Such field
lines may cross a f=constant plane more than once and
requires a more general treatment than our method. We have
limited our tests to a relatively restricted range of T for this
reason and aim to apply our method in practice to weakly
twisted flux tubes or situations where the twist is broadly
distributed. This restriction is offset by the computational
savings of this approach.

5. Application to 3D MHD Reconnection Model

The final stage of this investigation is the application of our
mutual tubule helicity method to an MHD reconnection
experiment where two initially untwisted magnetic flux tubes
reconnect and form two new twisted flux tubes.
Our configuration is a refinement of the zippette reconnec-

tion model described in detail by Threlfall et al. (2018b). In that
model, a pair of untwisted magnetic flux tubes were sheared, in
order to generate a current sheet and leading to magnetic
reconnection. Threlfall et al. (2018b) found that this process
was capable of creating a large highly twisted flux rope linking
the farthest positive and negative sources in the system. A
second flux tube, lying underneath the highly twisted tube, was
anticipated but not resolved in their simulation. A visual
summary of the experiment phases can be found in Figure 4.
Subsequently, Wright (2019) estimated the helicity and twist of
the new connections formed in Threlfall et al. (2018b), based
upon the approximate footpoint locations of the end state of the
experiment.
In this investigation, we will recap several of the pertinent

details of a new experiment based on the work of Threlfall et al.
(2018b). This new experiment crucially results in the creation
of two new flux tubes, due to modifications of the shearing and
reconnection experiment phases. While highlighting these
modifications, we will attempt to avoid repetition of shared
aspects of the experimental setup; the remaining details can be
found in the previous publication.

5.1. MHD Equations and Initial Configuration

The magnetic field evolution is calculated by solving the
MHD equations using the Lagrangian remap code (Lare3D)
described in Arber et al. (2001). This solves the following
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equations:

· ( ) ( )r
r

¶
¶

+  =v
t

0, 6

· ( )r r
¶
¶

+  = - + ´
v

v v j B
t

p , 7

( ) ( ) ( )h
¶
¶

=  ´ ´ -  ´  ´
B

v B B
t

, 8

· · ( )g
s

¶
¶

+  = -  +v v
p

t
p p

j
, 9

2

for a plasma density ρ and pressure p, at a velocity v and
magnetic field B, subject to a current density m=  ´j B
for magnetic permeability m p= ´ -4 10 H7 m−1, electrical
conductivity σ, and magnetic diffusivity η=1/(μ σ) (with the
ratio of specific heats γ=5/3) and ensuring divergence-free
magnetic field solutions ( · =B 0). The dimensionless
variables solved by Lare3D are calculated assuming a magnetic
field strength B0, length L, and mass density ρ0. For ease of
comparison with Threlfall et al. (2018b), we will retain their
normalizing choices, hence B0=10 G, L=107 m, and
r = ´ -1.67 10 kg m0

12 3, leading to a typical Alfvén speed of
VA=690 km s−1 and typical time t=14.5 s. The reference
current density is ( )m= = ´ - -j B L 8 10 A m0 0

5 2 and the
reference magnetic diffusivity is h = ´ -6.9 10 m s0

12 2 1.
Henceforth we will quote lengths (L) in normalized units and
times (t) in Alfvén times, t = L VA A (based on the typical
Alfvén speed). We also retain the same computational domain
as that used in Threlfall et al. (2018b), ¯-  x8 8,

¯-  y8 8, and ¯ z0 20 (where barred quantities
represent dimensionless variables in the numerical domain).

Our initial condition comprises two untwisted flux tubes
with no writhe and constant cross section aligned with the
positive y-axis, which then relax to form an equilibrium. The
initial 3D configuration can be seen in Figure 5. The flux tubes
in this experiment are larger and spaced more widely apart than
those used in Threlfall et al. (2018b). The reason for this is that,
while forming an equilibrium, the flux tubes expand to fill the
rest of the computational domain (which contains no other
magnetic flux). This expansion caused an overlap of the two
sources (shown in, e.g., Figure 2 of Threlfall et al. 2018b),

requiring the omission of some flux in contours of base field
strength in order to distinguish two distinct flux tube entities. In
our new simulations, the wider tube separation allows us to
define each flux tube using lower thresholds of vertical field at
the base of the domain. Increasing the size of the flux tubes also
allows us to trace more field lines within their volume
compared to the Threlfall et al. (2018b) case.
In addition, our simulation uses a two-part magnetic

diffusivity consisting of a background value, ηb, and an
anomalous value, ηa (which is activated above a critical current
threshold, jcrit). In Lare3D, this takes the following form:

⎧⎨⎩
∣ ∣
∣ ∣

( )h
h

h h
=

<
+ 

j j

j j

,

.
10b

a b

crit

crit

Due to the excessive loss of magnetic flux from the sources due
to background diffusivity in Threlfall et al. (2018b), we reduce
the background resistivity ηb by an order of magnitude from
that investigation, hence ηb=10−5 and ηa=10−3. jcrit is
chosen to reconnect a large laminar current sheet between the
flux tubes.

5.2. Shearing and Reconnection Phase

Once in equilibrium, Threlfall et al. (2018b) sheared both
sources using a velocity profile at the base, which smoothly
ramped up (and down) in time using a tanh profile. The spatial
variation of this profile was applied using a sinusoidal variation
in x, which resulted in the cores of the sources moving apart as
desired, but also generated additional v-shape “wings” at the
edges of the sources (see e.g., Figure 3 of Threlfall et al.
2018b).
To limit the formation of similar wings on source profiles

during our driving phase, we use a more complex form of the

Figure 4. Adapted from Threlfall et al. (2018b). Cartoon illustration of the
basic configuration (seen from above) of the zippette reconnection experiment,
where two flux tubes reconnect and form new connections linking positive and
negative sources. Solid red lines indicate flux tubes, while filled/empty circles
indicate positive/negative source locations. The configuration in (a) is sheared
to form that seen in (b), whereupon a current sheet (formed between the pair of
flux tubes) reconnects, leading to (c) new connections between the flux sources
(noting that the angles ρ and ν which are required to calculate the mutual
helicity of the configuration are not the same (b) before and (c) after
reconnection takes place).

Figure 5. Initial 3D flux tube configuration, showing interpolated magnetic
field lines which illustrate the flux tubes (black), the axis of each (red), and the
ambient field (light blue).

5

The Astrophysical Journal, 898:1 (9pp), 2020 July 20 Threlfall, Wright, & Hood



driver, ( )v ty
base :

⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎧⎨⎩
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎫⎬⎭
⎧⎨⎩

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎫⎬⎭

( )

( )

=
-

-
-

-
-

-

+
+

-
+

v t
A t t

x x

x x

2
tanh

2000

2
tanh

2200

2

tanh
0.5

0.1
tanh

3.5

0.1

tanh
0.5

0.1
tanh

3.5

0.1
, 11

y
base

where A=0.007. Equation (11) improves flux retention/
conservation in the cores of the profiles during the driving
phase (compared to the previous experiment), while still
smoothly varying the spatial extent of the driver. Flux profile
shape examples at different times can be seen in Figure 6. It
should also be noted that by the end of the shearing phase, the
shape of the profiles at the base of the domain remains large
and roughly circular, unlike those seen in Threlfall et al.
(2018b).

The shearing phase of our experiment is performed in ideal
MHD; however, in Figure 6(b), a small region of weak
magnetic flux has changed connectivity during the shearing
phase. This can be attributed to numerical dissipation; once the
resistive terms are activated after the shearing phase, larger
regions of stronger magnetic flux are able to reconnect, as
indicated by the large patches of red and blue formed in the
positive sources seen in Figure 6(c) at the end of the
experiment.

The effects of these changes to the experimental setup can be
seen in the amount and linkage of magnetic flux between the
sources during and after the shearing phase. This is shown in
Figure 7. The key features of this image are (i) minimal loss of
total flux over time and (ii) a final state in which approximately
one-quarter of the total flux in each source is ultimately
reconnected.

These experimental improvements also lead to the identifica-
tion of two distinct flux tubes in the final state of the
experiment, shown in Figure 8. Unlike Threlfall et al. (2018b),
contours of the non-axial field form in the central x, z, and y z,
planes of the simulation, allowing us to identify two
reconnected flux tubes whose connectivity matches that
predicted in Figure 4(c). With both new flux tubes now

containing a significant amount of the total flux, we are able to
apply the mutual tubule helicity method to uncover the helicity
in each new tube, and, hence, compare the helicity and twist
with theoretical predictions (Wright 2019).

5.3. Helicity and Twist Findings

The theory underpinning our mutual tubule helicity method
and our earlier tests show that the number of flux elements used
are crucial in determining the approximate error of the helicity/
twist we calculate. We begin applying the method outlined in
Section 3 by tracing field lines from the positive footpoint of
the newly formed flux tubes, during each snapshot of the
experiment, beginning at the start of the shearing phase.
Figure 9(a) illustrates the number of field lines traced and their
connectivity. With a method error that is inversely proportional
to the number of field lines N comprising each tube, Figure 9(a)
illustrates that any estimates of helicity and twist in the
reconnected flux tubes are associated with the largest errors at
early times (when there are fewer reconnected field lines)
compared to the end of the experiment (t∼5000τA). For
example, at t=2200τA, approximately 55 field lines thread the
newly reconnected flux tubes and hence would be associated
with a 1.8% error if used to calculate the mutual tubule helicity,
compared to N≈150 at t=5000τA, whereupon the error falls
to 0.66%.

Figure 6. Variation of connectivity over time (for critical ∣ ∣ =B 0.04z , shown by green contours). Positive contours of Bz contain a grid of points for which field lines
have been calculated and colored according to where each field line terminates, blue if x<0 and red if x>0. Green crosses in the center of each source indicate
locations of min/max Bz.

Figure 7. Time evolution of magnetic flux linkage between positive and
negative sources in our MHD reconnection simulation both during and after the
shearing phase. The key to the quantities is given in the legend.
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With this in mind, we applied our mutual tubule helicity
technique to both flux tubes at various snapshots over the
course of the simulations, yielding the signed helicity and twist
evolution seen in the remaining panels of Figure 9.

Focusing on the recovered helicity values found in
Figure 9(b), the helicity of the large overlying flux rope (blue
dashed curve) appears well matched to the value calculated
using the footpoint angles following Wright (2019; blue solid
curve), particularly at later stages of the experiment. The sign
of the helicity is negative, which is indicative of left-handed or
counterclockwise twisting of the field lines that form the flux
rope, as observed in 3D images of the field-line rotation of the
upper tube in Figure 8. Meanwhile, the formulae of Wright
(2019) predict a negligible net helicity in the lower tube (solid
red curve); the recovered mutual tubule helicity (dashed red
curve) is nonzero, but remains small (particularly when
compared to the helicity of the overlying flux rope).

Dividing the helicities in Figure 9(b) by the square of the
relevant fluxes found in each flux tube yields the average
number of turns made by field lines over the length of each tube
(when deformed to have = 0), seen in Figure 9(c). Once
again, the formulae of Wright (2019) predict a specific number
of turns based on the angles made by the footpoints of the
reconnected tubes (seen as solid lines in Figure 9(c)). We see
that over time, the average twist in the overlying tube (dashed
blue) approaches the value given by Wright (2019; ∼−0.55
based upon the footpoint configuration at t=5000τA).
However, the value predicted for the underlying flux rope
(solid red line) is almost exactly zero, while the recovered twist
of the underlying flux rope appears to diverge away from this
value with time, achieving −0.03 turns by t=t 5000 A.

It is noteworthy that a comparison of the predicted (from
Wright 2019) and simulation twist at the end of the simulation

illustrates that the theory overestimates the number of turns by
0.03 for the upper tube, and underestimates the twist in the
lower tube by a similar amount. This is probably not a
coincidence and is most likely due to the fact that as the pre-
reconnection fluxes approach to reconnect, there is a little
deformation that introduces some twist and writhe. As
described in Wright (2019), the writhe and twist associated
with such deformations must also be accounted for. In fact, we
can surmise that the effect of bringing the tubes together to
reconnect is to add 0.03 of a turn to the lower tube and to
remove the same amount from the upper tube. See Figures 5(a)
and (b) of Wright (2019) for an example of this effect.

6. Discussion

We have described a new practical approach to calculate the
twist of a magnetic flux tube using mutual tubule helicity. Tests
seen in Section 4 show that the method accuracy agrees with
the original theoretical predictions of Berger & Field (1984),
with errors µ N1 , where N is the number of tubules (or field
lines) used to subdivide the flux tube.
When applied to an MHD experiment modeling an

observationally motivated case of flux tube reconnection in
Section 5, our method recovers values of helicity and twist that
closely match those predicted by Wright (2019). The key to
Wrightʼs helicity calculation is to recognize the importance of
the writhe of the reconnected fluxes and is quite general as
writhe is a property of the tube axis, not the cross-sectional
form of the flux. Wright provided illustrative examples of his
results using flux sheets to aid visualization. More recently,
illustrative examples using flux tubes have been provided by
Priest & Longcope (2020) for the case where the footpoints of
two uncrossed tubes form a parallelogram prior to
reconnection.

6.1. Potential Error Contributions

In both the test configuration (Section 4) and MHD
reconnection experiment (Section 5), the agreement between
the expected and recovered values is good but not exact. As
intimated above, the discrepancy is most likely due to the tubes
being deformed to come together and reconnect. However,
there are also possible errors associated with our numerical
model that we consider further below.
Our numerical field-line integration routine underpins our

technique and is a significant potential source of errors. We
opted to use an adaptive (rather than constant) step size when
solving the equations for each field line. This choice was made
in order to improve computational efficiency (in light of the
number of field lines required in order to yield an adequately
small value of N1 ). However, the range of possible step sizes
is critical and must remain relatively small, particularly for field
lines that arc back to land in the same plane. Rapid step-size
increases may lead to the code overshooting the original field
line at a given point, while potentially still achieving RK4/5
solutions that agree. Overshoot is particularly problematic at
the edge of the flux tube, requiring our tests to omit a thin shell
of weak field at the flux tube edge.
Omission of this thin shell means that we have only analyzed

the helicity of the majority of the central volume of the flux
tube. The thin flux shell may only make minimal contribution
to the total helicity, but in cases where multiple flux tubes
reconnect (as in Section 5), this weak outer shell of flux will

Figure 8. 3D magnetic field configuration, illustrating newly formed magnetic
flux ropes at the end of the experiment. Magnetic field lines (seen in black) link
a pair of regions of opposite magnetic polarity of Bz at the base, with an axis
indicated in red.
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initially be the most dynamic, being the first part of the tubes to
undergo reconnection; omission of this shell may therefore lose
information about the helicity/twist at the earliest stages of
reconnection. A potential remedy to this problem might be to
solve field-line equations using a different geometry. Cylind-
rical field-line equation solutions (rather than our Cartesian
approach, for example) could yield more accurate and faster
results for field lines that are anticipated to smoothly form
rounded arcs. Such arcs are more difficult to describe using
Cartesian coordinates and hence require a much more careful
choice of step size to balance accuracy with computational
efficiency.

Finally, we must also take care to consider only field lines
that morphologically adhere to our coordinate system. As
mentioned in Section 4, field lines that contain many turns over
a short spatial distance may become multivalued in the
cylindrical coordinate system outlined in, e.g., Figure 3. In
such cases, we must allow the twist to propagate along the
structure or consider an alternative approach to calculate the
self-helicity.

In the presence of nonzero η, helicity is not generally
conserved and changes according to ·ò h= - j BdH dt dV2 .
This relation suggests that in the final snapshot
D » ´ -H H 7.5 10 3, and so is conserved to better than 1%
and indicates that the small discrepancy between predicted and
simulation helicities is real and due to a small amount of twist
and writhe introduced to the pre-reconnection tubes as they
approach the reconnection site.

6.2. Alternative Measures of Twist

Liu et al. (2016) consider the structure and evolution of
magnetic flux ropes in terms of twist. They define w, the twist
number of a given field line, and g, the twist number of a field
line about the axis of the flux rope. These two measures
become the same for field lines near the tube axis, but not
elsewhere. As Liu et al. (2016) were interested in the relation
between twist and flux rope instability, g is the traditional key
parameter used in classifying the behavior. However, this
requires the accurate identification of the flux rope axis, and
this is by no means trivial in simulation fields. They argue that
w and its spatial variation can be used as a good indicator of
the flux rope axis and so is employed as a proxy for g. (w is

easy to compute on any field line without knowledge of the flux
rope structure and location of the rope axis.)
Guo et al. (2017) also study magnetic flux ropes in terms of

twist, writhe, and helicity. They use the formulation of Berger
& Prior (2006) to evaluate the twist and then estimate the self-
helicity of the flux rope by multiplying the twist by the axial
flux squared. They found this estimate agreed best with the
volume integral of the relative helicity density for just the
current-carrying part of the rope. This is probably because the
twist density is μ0jP/4πB (Equation (16) of Berger &
Prior 2006) and will generally be largest at the axis of a flux
rope. They also ignored the contribution of writhe to the self-
helicity (which is relatively small), but will affect the value
they infer based upon twist alone.
The mutual tubule summation we employ will give the exact

value of the self-helicity of the large composite flux tube (in the
limit of a large number of tubules). If the self-helicity is divided
by the axial flux squared, we arrive at a useful dimensionless
number L that is the mean net winding number which is
conserved by ideal plasma motion. The mean net winding
number is related to the twist and writhe by = + L T ,
where  is the writhe of the tube axis (Berger & Field 1984
and references therein). Hence, we can imagine deforming the
tube ideally so that it has ⟶= 0 = = FT L Hi i

2. This is
the sense in which we are using T in Figure 9(c).

7. Conclusions and Future Work

We have presented a numerical simulation for the reconnec-
tion of fluxes anchored to a single plane. Our results give a
clear answer to the question of whether the twist in the
reconnected fluxes can be described using helicity equipartition
(Priest et al. 2016; Priest & Longcope 2017) or the non-
equipartition formulae of Wright (2019): the non-equipartition
formulae provide an excellent guide to estimating the self-
helicity and twist of the reconnected fluxes in our simulations.
Moreover, our simulation exhibits extreme non-equipartition of
helicity, with one tube having virtually no twist.
Our work has shown that mutual tubule helicity provides an

accurate, reliable, and practical way to calculate the self-
helicity (and hence the average twist) of magnetic flux tubes in
experiments that involve flux tube formation or reconnection,
even in situations where the apparent twist of magnetic
structures may be difficult to otherwise obtain. We have

Figure 9. (a) Number and connectivity of field lines over time; the line style of each trend indicates field lines that retain their original connectivity (dotted lines) or
form new connections following reconnection (dashed lines), while the colors indicate the source into which the field-line connects (either blue for field lines landing
in L− or red for field lines landing in R−). The key to each specific trend is provided in the legend. The temporal evolution of (b) the self-helicity and (c) the equivalent
mean twist of the flux tubes in our simulations contains error bars for the mutual tubule helicity method, calculated using the 1/N error of the model. The dashed lines
represent values calculated using the mutual tubule helicity method described in Section 3, the dotted lines show the values for the unreconnected tubes, and the solid
lines show the predicted values found in Wright (2019). The color of each line is chosen to match Figures 5 and 6, illustrating whether the field lines land in the left
(blue) or right (red) negative sources (for key, see legend).
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described the theory behind the mutual tubule helicity approach
and our implementation and testing of this method in detail.
Tests show that, in cases where the twist of the magnetic field is
spread over a large spatial extent of a given flux tube, the error
in the method agrees with theoretical predictions and is
proportional to 1/N, the number of tubules into which the tube
is broken up. Applying this tool to high-resolution MHD
simulations of magnetic flux tube formation and reconnection
shows that this approach is capable of recovering self-helicity
values that were predicted by pre- and post-reconnection
footpoint configurations (Wright 2019) to a high degree of
accuracy. If the magnetic field is sufficiently smooth, we have
presented a computationally efficient method for evaluating the
helicity. For more complex magnetic fields, other more general
formulations are required (see, e.g., Demoulin et al. 2006),
although these are more computationally intensive. There are
many configurations outlined in theoretical descriptions of
magnetic helicity during reconnection, many of them in the
same plane (Wright 2019). It would be meritorious to study to
what extent this method agrees with such predictions, in which
MHD reconnection takes place in other, more general footpoint
configurations, before expanding this type of investigation to
study flux tube configurations based on observed natural
magnetic structures (for example, like those seen in the active
solar corona).

The authors gratefully acknowledge the financial support of
STFC through the Consolidated grant, ST/N000609/1, to the
University of St Andrews. This work used the DIRAC 1,
UKMHD Consortium machine at the University of St
Andrews, the DiRAC Data Centric system at Durham
University, operated by the Institute for Computational
Cosmology, and the DiRAC Data Analytic system at the
University of Cambridge, operated by the University of
Cambridge High Performance Computing Service. These
systems are operated on behalf of the STFC DiRAC HPC
Facility (www.dirac.ac.uk). The equipment was funded by BIS
National E-infrastructure capital grants (ST/K00042X/1 and
ST/K001590/1), STFC capital grants (ST/K00087X/1, ST/
H008861/1 and ST/H00887X/1), and DiRAC Operations

grants (ST/K003267/1 and ST/K00333X/1). DiRAC is part
of the National E-Infrastructure.

ORCID iDs

James Threlfall https://orcid.org/0000-0001-6690-0923
Andrew N. Wright https://orcid.org/0000-0002-9877-1457
Alan W. Hood https://orcid.org/0000-0003-2620-2068

References

Arber, T. D., Longbottom, A. W., Gerrard, C. L., & Milne, A. M. 2001, JCoPh,
171, 151

Asai, A., Yokoyama, T., Shimojo, M., et al. 2004, ApJ, 611, 557
Aulanier, G., Janvier, M., & Schmieder, B. 2012, A&A, 543, A110
Berger, M., & Field, G. 1984, JFM, 147, 133
Berger, M. A. 1986, GApFD, 34, 265
Berger, M. A. 1988, A&A, 201, 355
Berger, M. A., & Prior, C. 2006, JPhA, 39, 8321
Démoulin, P. 2008, AnGeo, 26, 3113
Démoulin, P., Mandrini, C. H., van Driel-Gesztelyi, L., et al. 2002, A&A,

382, 650
Demoulin, P., Pariat, E., & Berger, M. A. 2006, SoPh, 233, 3
Guo, Y., Pariat, E., Valori, G., et al. 2017, ApJ, 840, 40
Hood, A. W., Browning, P. K., & van der Linden, R. A. M. 2009, A&A,

506, 913
Liu, R., Kliem, B., Titov, V. S., et al. 2016, ApJ, 818, 148
Mackay, D. H., Green, L. M., & van Ballegooijen, A. 2011, ApJ, 729, 97
Mackay, D. H., & van Ballegooijen, A. A. 2006, ApJ, 641, 577
Moffatt, H. K. 1969, JFM, 35, 117
Priest, E. R., & Longcope, D. W. 2017, SoPh, 292, 25
Priest, E. R., & Longcope, D. W. 2020, SoPh, 295, 48
Priest, E. R., Longcope, D. W., & Janvier, M. 2016, SoPh, 291, 2017
Russell, A. J. B., Yeates, A. R., Hornig, G., & Wilmot-Smith, A. L. 2015, PhPl,

22, 032106
Taylor, J. B. 1974, PhRvL, 33, 1139
Threlfall, J., Hood, A. W., & Browning, P. K. 2018a, A&A, 611, A40
Threlfall, J., Hood, A. W., & Priest, E. R. 2018b, SoPh, 293, 98
Threlfall, J., Neukirch, T., & Parnell, C. E. 2017, SoPh, 292, 45
Vourlidas, A. 2014, PPCF, 56, 064001
Warren, H. P., O’Brien, C. M., & Sheeley, N. R. J. 2011, ApJ, 742, 92
Webb, D. F. 2000, JASTP, 62, 1415
Wright, A. N. 2019, ApJ, 878, 102
Wright, A. N., & Berger, M. A. 1989, JGR, 94, 1295
Wright, A. N., & Berger, M. A. 1990, JGR, 95, 8029
Yeates, A. R., & Hornig, G. 2016, A&A, 594, A98
Yeates, A. R., & Mackay, D. H. 2009, ApJ, 699, 1024

9

The Astrophysical Journal, 898:1 (9pp), 2020 July 20 Threlfall, Wright, & Hood

http://www.dirac.ac.uk
https://orcid.org/0000-0001-6690-0923
https://orcid.org/0000-0001-6690-0923
https://orcid.org/0000-0001-6690-0923
https://orcid.org/0000-0001-6690-0923
https://orcid.org/0000-0001-6690-0923
https://orcid.org/0000-0001-6690-0923
https://orcid.org/0000-0001-6690-0923
https://orcid.org/0000-0001-6690-0923
https://orcid.org/0000-0002-9877-1457
https://orcid.org/0000-0002-9877-1457
https://orcid.org/0000-0002-9877-1457
https://orcid.org/0000-0002-9877-1457
https://orcid.org/0000-0002-9877-1457
https://orcid.org/0000-0002-9877-1457
https://orcid.org/0000-0002-9877-1457
https://orcid.org/0000-0002-9877-1457
https://orcid.org/0000-0003-2620-2068
https://orcid.org/0000-0003-2620-2068
https://orcid.org/0000-0003-2620-2068
https://orcid.org/0000-0003-2620-2068
https://orcid.org/0000-0003-2620-2068
https://orcid.org/0000-0003-2620-2068
https://orcid.org/0000-0003-2620-2068
https://orcid.org/0000-0003-2620-2068
https://doi.org/10.1006/jcph.2001.6780
https://ui.adsabs.harvard.edu/abs/2001JCoPh.171..151A/abstract
https://ui.adsabs.harvard.edu/abs/2001JCoPh.171..151A/abstract
https://doi.org/10.1086/422159
https://ui.adsabs.harvard.edu/abs/2004ApJ...611..557A/abstract
https://doi.org/10.1051/0004-6361/201219311
https://ui.adsabs.harvard.edu/abs/2012A&A...543A.110A/abstract
https://doi.org/10.1017/S0022112084002019
https://ui.adsabs.harvard.edu/abs/1984JFM...147..133B/abstract
https://doi.org/10.1080/03091928508245446
https://ui.adsabs.harvard.edu/abs/1986GApFD..34..265B/abstract
https://ui.adsabs.harvard.edu/abs/1988A&A...201..355B/abstract
https://doi.org/10.1088/0305-4470/39/26/005
https://ui.adsabs.harvard.edu/abs/2006JPhA...39.8321B/abstract
https://doi.org/10.5194/angeo-26-3113-2008
https://ui.adsabs.harvard.edu/abs/2008AnGeo..26.3113D/abstract
https://doi.org/10.1051/0004-6361:20011634
https://ui.adsabs.harvard.edu/abs/2002A&A...382..650D/abstract
https://ui.adsabs.harvard.edu/abs/2002A&A...382..650D/abstract
https://doi.org/10.1007/s11207-006-0010-z
https://ui.adsabs.harvard.edu/abs/2006SoPh..233....3D/abstract
https://doi.org/10.3847/1538-4357/aa6aa8
https://ui.adsabs.harvard.edu/abs/2017ApJ...840...40G/abstract
https://doi.org/10.1051/0004-6361/200912285
https://ui.adsabs.harvard.edu/abs/2009A&A...506..913H/abstract
https://ui.adsabs.harvard.edu/abs/2009A&A...506..913H/abstract
https://doi.org/10.3847/0004-637X/818/2/148
https://ui.adsabs.harvard.edu/abs/2016ApJ...818..148L/abstract
https://doi.org/10.1088/0004-637X/729/2/97
https://ui.adsabs.harvard.edu/abs/2011ApJ...729...97M/abstract
https://doi.org/10.1086/500425
https://ui.adsabs.harvard.edu/abs/2006ApJ...641..577M/abstract
https://doi.org/10.1017/S0022112069000991
https://ui.adsabs.harvard.edu/abs/1969JFM....35..117M/abstract
https://doi.org/10.1007/s11207-016-1049-0
https://ui.adsabs.harvard.edu/abs/2017SoPh..292...25P/abstract
https://doi.org/10.1007/s11207-020-01608-0
https://ui.adsabs.harvard.edu/abs/2020SoPh..295...48P/abstract
https://doi.org/10.1007/s11207-016-0962-6
https://ui.adsabs.harvard.edu/abs/2016SoPh..291.2017P/abstract
https://doi.org/10.1063/1.4913489
https://ui.adsabs.harvard.edu/abs/2015PhPl...22c2106R/abstract
https://ui.adsabs.harvard.edu/abs/2015PhPl...22c2106R/abstract
https://doi.org/10.1103/PhysRevLett.33.1139
https://ui.adsabs.harvard.edu/abs/1974PhRvL..33.1139T/abstract
https://doi.org/10.1051/0004-6361/201731915
https://ui.adsabs.harvard.edu/abs/2018A&A...611A..40T/abstract
https://doi.org/10.1007/s11207-018-1318-1
https://ui.adsabs.harvard.edu/abs/2018SoPh..293...98T/abstract
https://doi.org/10.1007/s11207-017-1060-0
https://ui.adsabs.harvard.edu/abs/2017SoPh..292...45T/abstract
https://doi.org/10.1088/0741-3335/56/6/064001
https://ui.adsabs.harvard.edu/abs/2014PPCF...56f4001V/abstract
https://doi.org/10.1088/0004-637X/742/2/92
https://ui.adsabs.harvard.edu/abs/2011ApJ...742...92W/abstract
https://doi.org/10.1016/S1364-6826(00)00075-4
https://ui.adsabs.harvard.edu/abs/2000JASTP..62.1415W/abstract
https://doi.org/10.3847/1538-4357/ab2120
https://ui.adsabs.harvard.edu/abs/2019ApJ...878..102W/abstract
https://doi.org/10.1029/JA094iA02p01295
https://ui.adsabs.harvard.edu/abs/1989JGR....94.1295W/abstract
https://doi.org/10.1029/JA095iA06p08029
https://ui.adsabs.harvard.edu/abs/1990JGR....95.8029W/abstract
https://doi.org/10.1051/0004-6361/201629122
https://ui.adsabs.harvard.edu/abs/2016A&A...594A..98Y/abstract
https://doi.org/10.1088/0004-637X/699/2/1024
https://ui.adsabs.harvard.edu/abs/2009ApJ...699.1024Y/abstract

	1. Introduction
	2. Theory
	3. Helicity Calculation Method
	3.1. Calculating the Mutual Helicity of a Single Tubule Pair

	4. Testing the Tubule Approach
	5. Application to 3D MHD Reconnection Model
	5.1. MHD Equations and Initial Configuration
	5.2. Shearing and Reconnection Phase
	5.3. Helicity and Twist Findings

	6. Discussion
	6.1. Potential Error Contributions
	6.2. Alternative Measures of Twist

	7. Conclusions and Future Work
	References



