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Abstract

Research into, and design and construction of mobile systems and algorithms
requires access to large-scale mobility data. Unfortunately, the research commu-
nity lacks such data. For instance, the largest available human contact traces con-
tain only 100 nodes with very sparse connectivity, limited by experimental logis-
tics. In this paper we pose a challenge to the community: how can we collect
mobility data from billions of human participants? We re-assert the importance of
large-scale datasets in communication network design, and claim that this could
impact fundamental studies in other academic disciplines. In effect, we argue
that planet-scale mobility measurements can help to save the world. For exam-
ple, through understanding large-scale human mobility, we can track and model
and contain the spread of epidemics of various kinds.

1 Introduction

Human mobility traces are critically important to many disciplines in addition to com-
puter networking, ranging from epidemiology [7] to urban planning [30]. Unfortu-
nately, existing traces of human mobility are flawed: using traditional social science
methods to collect data has proven difficult [32] and traces collected using technol-
ogy methods have suffered from a variety of limitations. These include small size (the
largest is 100 nodes [15]), short duration (the longest is 9 months [10]) and high locality
(many scenarios limited to campus and conference environments [6]). These datasets
may not be enough for large mobile system evaluations, and are definitely insufficient
for epidemiology, where planet-wide measurements are needed to track the spread of
disease.

As members of the networking community, we have both the tools and methods to
conduct large-scale mobility data collection. Furthermore, our contributions will not
only benefit the wireless and mobile networking research communities, but will impact
fundamental research in other areas allowing more features about human behaviour to



be uncovered. We believe that the situation is analogous to that of complex networks
research, which has flourished since 1989 when the first large datasets from the Internet
(and subsequently the World Wide Web) became available [2]. To achieve similar im-
provements in mobile networking and other related fields, relevant large-scale datasets
must be made available.

In this paper we challenge the community to collect large-scale human mobility
traces. We highlight some of the issues in the hope that the community can help find
good solutions. In the meantime, we propose some solutions intended to form the basis
of initial efforts; the main aim is to raise these issues to gain community support to
meet this challenge and make the topic /ot in the networking community.

2 Importance of large-scale mobility data

As mentioned above, large-scale datasets are useful for many aspects of research. In
this paper we focus only on two of them: mobile system design and validation, and
epidemiological studies.

2.1 System design and validation

After its first use in the evaluation of Dynamic Source Routing [19], the random way-
point model (RWP) became the de facto standard mobility model in the mobile net-
working community. For example, of the 10 papers in ACM MobiHoc 2002 which
considered node mobility, 9 used RWP [33]. This trend has changed dramatically over
recent years after the introduction of real mobility traces for evaluation: of the 10
papers considering node mobility in MobiHoc 2008, 7 used real mobility traces for
evaluation.

The community has realized that unrealistic models are harmful for scientific re-
search. Although real traces may suffer from limited numbers of participants, coarse
granularity, and short experimental duration, they at least reflect some aspects of real
life. Thanks to the popularity of Online Social Networks (OSNs), we can now gather
large-scale data about the topology and membership information of millions of OSN
users and use these to study aspects of the social networks [21, 24]. But where is the
large-scale dataset for evaluating, for instance, inter-city ad-hoc communication using
mobile computing? Or even a single city-wide mobile communication system? We
have very few empirical hints for this. Without the help of real data, we cannot even
know whether this kind of system is possible. Even if we extrapolate large-scale mobil-
ity traces from small-scale traces, the problem of validating the extrapolation remains.

Instead of using mobility traces directly to run trace-driven simulations, a possi-
ble approach is to extract characteristics from the data and build more realistic mo-
bility models. Much work has been done in modeling human mobility for mobile ad
hoc network simulation [5]. Researchers have proposed more realistic models by in-
corporating obstacles [18], social information [25], and clustering features observed
in realistic mobility scenarios [27]. Analysis of real traces has demonstrated power-
law inter-contact time distributions with cut off [6, 20], levy-flight patterns consisting
of lots of small moves followed by long jumps [28], heterogeneous centralities [11]



(i.e., popularity) and clustering structure [15]. But again, these results are from small-
scale datasets and are limited to specific scenarios with limited time durations. Some
researchers have extrapolated from these by assuming, for instance, that the way people
move in a city is correlated to the centrality distribution of the city graph [30], but this
has yet to be verified empirically. Gonzalez et al. [13] extracted levy-walk properties
from large-scale mobile phone usage. The limitation is that the conclusions were drawn
based on analysis of an extremely coarse-grained dataset, where mobile user location
was recorded only up to 12 times per day. Researchers may argue that human behavior
should be scale-free in different dimensions, but we need more data for further verifi-
cation. Moreover, since the data from the [13] study was not released, it is impossible
to verify or build on their findings.

We need large-scale human mobility data of high spatio-temporal granularity to
verify the properties we mentioned above. Following analogous progress in related
fields, it seems likely that we will uncover many more features from such data. We
believe that this is crucially important for the mobile computing community.

2.2 Epidemiological Studies

Moving beyond social science, the communication network community has also aided
research in many other academic disciplines. For instance, our (computer scientists)
methodology and data made the modeling of human dynamics [31] and the develop-
ment of the field of complex network research [3] possible. Large-scale mobile data
can further enable the study of epidemic disease spreading. The current state-of-the-
art in epidemic modeling uses data from the International Air Transport Association
(IATA) commercial airline traffic database to determine travel between airports and to
provide coarse-grained estimates of global spreading patterns [7], as well as data of
transportation and commuting patterns in urban areas, which can be used to model a
metapopulation mechanism of spreading [8]. Researchers cannot develop more micro-
scopic models of epidemic spreading because of the lack of large-scale fine-grained
empirical data.

To take a topical example, consider the current HIN1 outbreak. Scientists have
urged governments to map the spread of HIN1 more accurately in order to predict the
number of people who may die from it [12]. Current predictions indicate that one in
200 people who get HIN1 badly enough to need medical help could go on to die, but
given that vaccines may not be ready until later than hoped, accurate predictions are
crucial. Any estimates about HIN1 are subject to a wide margin of error (not everyone
who catches it develops symptoms). More accurate mapping of the spread of the virus
must be carried out if it is to be effectively managed. Monitoring doctors and hospitals
is insufficient since not everyone who is infected with HIN1 will become ill enough to
report their case to a doctor.

Figure 1 shows the process of the spreading of epidemics by the mobility of humans
from a subpopulation (e.g., a city) to another subpopulation. When a susceptible (S)
individual is in contact with a infectious (I) individual (symptomatic or asymptomatic),
it will be infected with a certain rate and enter the latent class. When the latent period
ends, the individuals become infectious (i.e., able to transmit the infection). After the
infectious period, all infectious individuals enter the recovered class. If an infectious
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Figure 2: Confirmed number of HIN1 cases worldwide on 19 May 2009 (from GLEaMviz.org).

individual moves to another city, the subpopulation in the new city will also be in-
fected. Using the IATA data, scientists can roughly model the migration of population
across countries. But we need much better granularity of data, instead of assuming a
homogeneous mixing in each subpopulation.

Consider the HIN1 epidemic in early 2009 (cf. Figure 2). It first started in Mexico
and then spread to other countries by human mobility. Figure 2 shows that the worst
countries besides Mexico are its neighbors (USA and Canada). Spain was the worst in
Europe as it has a lot of connections with Mexico. However there is a clear need for
more accurate data to build fine-grained models, capable of predicting the dynamics of
disease spreading.

Mobile computing can help to fight epidemics in at least two ways:

Case 1: If we can track real-time or nearly real-time human health status, we
can provide advice and precautions for each users, accurately estimate the number
of asymptomatic infectious individuals, predict the spreading process, identify the
hotspots of the pandemic, and effectively isolate the infectious victims. This may be
possible by using a personalised epidemic software. Users can self identify their health
status (e.g., cough, cold) and embed this status in a Bluetooth service. Users periodi-



cally run Bluetooth service discovery and log the devices discovered, the health status
of each encountered user, and if possible also their geographical locations. Users can
upload their log files to the server, which analyses results and provide effective feed-
back.

Case 2: If we do not have the health status of each users but only the contact
log and the geographical location of certain encounters, we can understand the mixing
properties of each subpopulation, model contact and mobility processes, and identify
the social hotspots. With this understanding, we can accurately predict and emulate the
spreading of diseases.

3 Challenges in collecting data

3.1 High experimental cost

In general the cost of conducting large-scale mobility experiments is high. It includes
equipment, software, human resources and generating incentives for people to partici-
pate. For example, for the iMote experiments, carried out by the Haggle Project [15],
the development, the hardware cost, the participation incentives and the human re-
sources spent on assembling and distributing devices and monitoring the experiments
add up to $12,000 for a small-scale experiment (only 50 participants). This is clearly
not scalable to experiments involving billions of people.

3.2 Privacy and government regulations

The law in many jurisdictions strictly regulates privacy and thus making large-scale
data collection even more challenging [14]. Before data collection can begin, an ex-
plicit consent of participants is required, substantially increasing the administrative
burden. Further, telephone operators are restricted in what customer data they can
store, for how long, and for what purpose, and the dissemination of such data is even
more tightly controlled. This dramatically increases the difficulty of obtaining data
from operators, which otherwise is a good way to reduce collection cost and increase
dataset size.

3.3 Lack of motivating applications

It is clear that giving out hardware for large-scale experiments does not scale. Instead
we must rely on useful or interesting applications to motivate participation of users that
already own their own hardware. For example, there are many applications developed
for iPhones but no key application exists that enables large-scale data collection. An
application able to scale up to millions of users while collecting data would be incredi-
bly valuable to the research community (as well as economically!). Equal value might
be obtained through many applications with smaller (but still large) user communities:
it is not a strict requirement that such a large dataset consist of a single community, and
indeed, it might be valuable in avoiding bias if the overall billion-sized dataset were
composed of numerous smaller (multi-million sized) components.



3.4 Lack of business models

To motivate a large amount of participation, we need good business models. They can
motivate operators to share their data, and users to participate in experiments. If all
parties (operators, users and researchers) can benefit from participating in a system, it
is more likely to succeed.

3.5 Lack of organisation

CAIDA (caida.org) exists to aid Internet traffic data collection, but there is no such or-
ganisation or group for data collection in mobile or wireless networks. The closest is
CRAWDAD (crawdad.org), but that was established only to archive wireless data and,
though it has performed this role well, it does not currently coordinate or lead data col-
lection. An organisation for initiating, motivating, and coordinating mobile data col-
lection would be extremely valuable. If such an organisation cannot be founded then,
given the distributed and large-scale nature of the problem, crowd-sourcing might be
utilised to achieve the same goal.

4 What can we do?

Here we propose the following guidelines that should help researchers and practitioners
to collect large-scale mobility data.

4.1 Build common research platform and novel applications

Currently there are several research groups involved in human mobility measurements [4,
6, 20, 28, 29]. We observe that more and more researchers are moving into the mo-
bility data collection area, e.g. the field of geosocial networking research has recently
become very popular. In order to motivate researchers to create a crowdsourcing ef-
fect, we propose the development of an open platform for social network and mobility
experiment. Researchers can create their own OSNs for their projects by defining the
fields of users profiles according to the experiment needs, e.g. name, email addresses,
and Bluetooth ID. Separate projects can have different users, but the platform itself will
merge the database from all projects. When a new project starts the central server in-
forms all users about this project and invites them to participate. The user interface and
format for each project are similar, and projects can be merged on the platform. The
difference is that each project has a database, and manages its own data independently.
This will save a lot of effort and administrative hassle when collecting and interpreting
data, and conducting experiments.

In order to convince users to join those new OSNs we need novel, inciting applica-
tions. Consider an application that should help to solve a common sociological prob-
lem in metropolitan cities, i.e., the isolation. Thanks to embedded short-range radios
(Bluetooth) mobile devices are able to detect other devices in proximity. In fact they
can sense people we meet everyday within the radio range and also detect the duration
of the proximity - this helps to notice the familiar strangers around us. We suggest a
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platform including both mobile phone software and a web-based application, allowing
the users to build an OSN based on the proximity information detected. Mobile users
can create a profile page on the web server by registering their Bluetooth ID. The pro-
file page can be similar to a Facebook page, but having additional features, allowing
the user to preview statistics about the people he met, and propose related strategies
for subsequent encounters. The user can request addition of a particular owner of a
Bluetooth ID to his friend list as on Facebook. This could open a completely new way
of socializing, e.g. a user could use his mobile phone to detect someone whom he sees
on the subway everyday, but to whom he is too scared to talk. This could enable him
to initiate contact, while leaving the other party in control of any communication. This
application scenario may seem socially unlikely in the Western world but it is a com-
mon pattern in Asia. But note that a single Asian population, however large, is also
unrepresentative: many suitable applications, encouraging participation from different
continents, countries and cultures, may be necessary. Recently, researchers have run
experiment and collected data in the wild using Apple’s App Store [23]. This is an
encouraging evidence of this approach to us.

4.2 Collaborate with local government and media

Local governments are powerful entities for assisting with data collection. They can
help to push applications into reality. Some governments seek to develop infrastructure
and facilities to improve people’s life in cities. By collaborating with these govern-
ments, we can quickly access the resources and deploy the facilities. The local media
can be also a good way to gather mobility information as they are often interested in
new technologies, wanting to use them in future campaign activities. For example,
to market the movie Artificial Intelligence, an augmented reality game based on the
movie, called Beasts, was created. The game was conceived as an elaborate murder
mystery played out across hundreds of websites, email messages, faxes, fake adver-
tisements, and voicemail messages, and involved over three million active participants.
Collaborating in such activities can gain us datasets of millions of people. The UK
government for the HINT case can also be a good collaborator for the data collection.

4.3 Request more data from various operators

We have two ways to request data from the operators: either access to anonymised
data e.g., via collaborative research projects; or full access to data as a commercial
partner, e.g., by providing commercial value to the operator through data analysis. An
example of the former is the access of the Google metropolitan Wi-Fi dataset [1]. This
might be possible if the data can help to improve their services or provide them better
revenues, e.g., understanding human mobility may help in Wi-Fi hotspot deployment
and placement. For the latter approach, good examples are applications like Qiro (www.
giro.net) or SenseNetworks (www.sensenetworks.com), both of which use collaboration with
operators to access location information to provide additional services to the users.
Qiro uses information from T-Mobile, E-Plus, Vodafone and O2 to help users to locate
nearby friends, and facilities such as bicycle rental. Recently, several research groups
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Table 1: Novel mobility data on-line sources

Name Type Scale (March | API
2010)
Flickr photo >90’000’000 Yes
(www.flickr.com) sharing geotagged
photos
Foursquare geosocial >200°000 users | Yes

(www.foursquare.com) networking

Geocaching (www. | GPS cache | >990°000 geo- | No

geocaching.com) hunt caches

Nokia Sports | outdoor >2’500°000 No

Tracker activities users

(sportstracker.

nokia.com)

Twitter (twitter.com) micro- blog- >5’500°000 Yes
ging users

were able to obtain some useful data from the operators [13] [17], which add successful
stories to this approach.

4.4 Leverage on existing location-based service providers

Novel and useful communication and networking applications can be one efficient way
to motivate participation. For example SenseNetworks provides mobile application for
real-time nightlife discovery and social navigation, answering the question: “Where is
everybody going right now?” So far it has attracted around 100’000 users in North
America. Unfortunately, as with other companies, the data are not available to the
public but it seems that developing useful applications might be a viable way to col-
lect large-scale datasets for research purpose. Another example are applications de-
signed to encourage users to share their mobile phones [22] or calling minutes and text
messages [16]. Such applications provide incentives for usage and could be used to
motivate participation in experiments.

4.5 Exploit the generosity of on-line, geo-aware masses

Together with the proliferation of GPS-enabled devices and location-based services we
observe that more and more people are tagging their shared content with geographical
information. Geotagged data is very often public, therefore the problem related to
privacy does not exist as users usually opt-in for such services. Also, the geo-scope of
this data is becoming worldwide and as such it is a good source for experimenting with
planet-scale mobility. There are different types of services that could be exploited for
careful mobility analysis (cf. Table 1).

So far only few research groups have identified the opportunity in exploiting such
data [9, 26]. What we need is a common framework for combining the data from
different on-line sources, such that we will be able to create detailed mobility profiles
for cities, groups (cf. Figure 3).
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Figure 3: Place popularity among Nokia Sports Tracker users in Helsinki (zoomed view of SW side of
Helsinki). Opacity level of each red-coloured cell corresponds to the number of location updates generated
by athletes between July 2007 and September 2008.

5 Conclusion

In this paper we challenge the networking community to collect planet-scale human
mobility datasets. We explained why such datasets are important for networking re-
search and how they could impact fundamental research in other academic disciplines.
We identified the challenges and difficulties, and further proposed potential methods to
achieve this goal.

We in no way claim that we have the ideal strategies for collecting and managing
such data: we would go so far as to say that this is an impossible mission for a single
research group. Our intent is to draw the attention of the community to this problem,
enabling the collective intelligence of the whole community to be brought to bear on
these crucial problems.

With these kind of datasets, we believe that we will completely change the under-
standing of human dynamics, potentially opening many new fields of academic study,
as the availability of Internet and web data allowed the study of complex networks and



systems to flourish, further impacting the understanding of biological structures.We
urge the community to address these challenges to make this possible, and in doing so
perhaps we can help to save the people from worldwide epidemics.
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