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S1 - PUMP-PROBE OPTICAL SETUP

The probe beam (λprobe = 830 nm, MDL-III-830-800mW diode from Changchen New

Industries Optoelectronics Technology Co., Ltd.) was polarized and collimated onto a spatial

light modulator (SLM) (HSP512 from Boulder Nonlinear Systems). The image displayed

on the SLM was relayed on the back aperture of a 30x ashperic lens (f = 6.2mm), to focus

the light on the sample. This configuration allowed correlating the change in phase of the

pixels of the SLM to the direction of light impinging onto the sample [1]. The scattered

light was collected by a 20x objective from Newport (f = 9.0mm, NA= 0.40), with a field

of view of 400 µm in diameter, and imaged onto a CCD camera (Basler acA1920-25gm).

To ensure the collection of only scattered photons, two cross polarizers were used on either

side of the sample, with a measured fraction of collected light of 26%. The pump beam

(λpump = 488 nm) was focused on the back focal plane of the input objective, creating a

collimated beam 40µm in width, collinear to the probe beam.

FIG. 1. Pump-Probe Optical setup with wavefront shaping of the probe beam by SLM.

S2 - LINEAR ABSORPTION OF SILICA AEROGEL

The linear absorption of the used SA sample was estimated measuring the optical trans-

mission of the sample for different angles and unpolarized, collimated light, and shown in

fig. S2.
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FIG. 2. Transmission characteristics of the SA for the pump and probe wavelengths.

From the values of α it is possible to evaluate the scattering mean free path (lpump =

1/αpump = 1.9 mm; lprobe = 1/αprobe = 5.9 mm) and transport mean free path (tpump =

lpump/(1− g) = 2.1 mm; tprobe = lprobe/(1− g) = 6.5 mm), where for the directionality factor

we assumed the value g = 0.1, as typical of silica aerogel samples [2]. Therefore we can

conclude that the experiments were completed in the weakly scattering regime.

FIG. 3. Transmission characteristics of the SA at the probe wavelength (left axis) and pump power

(right axis) vs time.

To exclude pump induced absorption of the aerogel, we characterized the transmission

of the sample at the probe wavelength vs time, for different values of the pump. Fig. S3
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shows that the normalized transmission for a collimated probe increases marginally when

the sample is collinearly pumped. This is in keeping with the fact that the aerogel has

a defocusing nonlinearity, therefore it becomes slightly less dense, and thus less scattering

medium.

S3 - CONSTRUCTION OF THE TRANSMISSION MATRICES

The process for forming the TM from raw image data is outlined in figure S4. The 2D

pixels of the CCD (M pixels) and of the SLM (N pixels) are mapped in a MxN TM matrix.

To improve the SNR in the CCD images, we sum the total black-white intensity values over

8x8 pixels, giving a measurement range between 0 and 16383, rather than 0 to 255.

The phase of each pixel of the SLM is tuned in turn in the range (−π, π), keeping the

other pixels at −π and the corresponding CCD image is acquired. The light impinging on

the constant area of the SLM interferes with that of the tuned pixel, to access the complex

values of the transmission channel. This process produces a stack of 3D images for each

SLM pixel, as shown in panel c).

The intensity of each pixel in the stack changes with the phase of the SLM pixel in a

cosine function. The amplitude and phase of the relative elements of the TM are given

by the peak-to-peak value of the cosine function and by the offset respect to the reference

phase, respectively, as seen in panels d-e). A typical complex TM is shown in panel f).

FIG. 4. Process outline for the determination of the Complex Transmission Matrices.
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S4 - TRANSMISSION MATRICES IN THE NONLINEAR REGIME

To model the transfer matrix in the presence of an external perturbation, it is convenient

to use a Green function formalism [3] [4]. Following this approach, the field distribution in

a scattering medium can be described by |E〉 = K|E0〉, where E0 is the incident field and

K = 1 − Ges is a generalized propagator, where 1 is the unitary matrix and the Green

function G is such that

(D + e)G = 1. (1)

Here, D(r) = −∇×∇× and e = eb + es is the operator

〈r|e|r′〉 = k20ε(r)δ(r− r′) (2)

associated to the relative permittivity ε(r) = εb(r) + εs(r), where εb(r) = 1 is the permit-

tivity of the homogenous background medium and εs(r) is the permittivity of the scattering

medium.

In position r representation the propagator can be written as

〈r|K|r′〉 = 1δ(r− r′)− k20ε(r′)〈r|G|r′〉. (3)

and its matrix elements are

kmn = 〈m|K|n〉. (4)

In the presence of the perturbation due to the pumping, the perturbed propagator is

K′ = 1−G′e′ (5)

with G′ the perturbed Green’s function such that

(D + eb + es + e′)G′ = 1, (6)

and e′ is the operator associated to the perturbed permittivity ∆ε(r), where ε(r) = εb(r) +

εs(r) + ∆ε(r). The state in the presence of perturbation |E′〉 can then be expressed in terms

of the state without perturbation |E〉 and the input state |E0〉 as operator multiplication

|E′〉 = K′|E〉 = K′K|E0〉. (7)

Correspondingly, the transmission matrix elements kNL
mn in the presence of the nonlinear

perturbation can be written as a matrix multiplication

kNL
mn = k′mqkqn (8)
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where we omitted the sum over the repeated symbol q. By using (5), the element of the

rotation matrix k′mq is written as

k′mq = δmq + wmq, (9)

with δmq the Kronecker symbol and the perturbation elements

wmq = −〈m|G′e′|n〉. (10)

The element of the perturbed matrix can then be written as

kNL
mn = kmn + wmqkqn = kmn + wm1k1n + ...+ wmNkNn. (11)

Eq. (11) can be interpreted as follows: in the absence of perturbation light is channelled

- with amplitude proportional to kmn - from the channel n to the channel m; in the presence

of the perturbation, further contributions arise from other channels. For example, the light

channeled from n to 1 with amplitude k1n also contributes to the signal in the channel

m with amplitude wm1. This may be described by stating that nonlinearity add furthers

channels for light by scattering from one unperturbed channel to another.

Eq. (11) can be written following [5]:

kNL
mn = kmn

1 + ξmn√
1 + 2φ2

NL

= kmne
ıκmnφNL (12)

being ξmn a complex Gaussian variable with zero mean and (for small perturbations φNL)

〈|ξmn|2〉 = 2φ2
NL, and defining the modal dependent coefficients by

κmnφNL = arg(1 + ξmn) ' =(ξmn) (13)

such that φNL represents the average phase shift of the mode, and 〈|κmn|2〉 = 1. Additionally,

as the overall transmission of the sample changes in a negligible way, the transmission matrix

is such that

〈|kNL
mn|2〉 = 〈|kmn|2〉. (14)

Theoretical estimate of the perturbation — To obtain a theoretical estimate of the

parameter φNL we make use of eqs. (11) and (12) to show that

2φ2
NL = 〈|ξmn|2〉 = 〈|

∑
q

wmqkqn
kmn

|2〉 = 〈|
∑
q

wmq|2〉 = 2〈

[
=

(∑
q

wmq

)]2
〉, (15)
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which means that φNL represents the standard deviation of a Gaussian variable (the sum

of many complex variables), which is independent of the mode indices m and n as is true for

the average of kmn. Therefore, the bracket in (15) can be taken as average over the modes

and the disorder realizations.

From eq. (10) we have∑
q

wmq =
∑
q

〈m|G′e′|q〉 '
∑
q

〈m|Ge′|q〉 (16)

Where we have used G′ ' G as we are interested in the lowest order approximation with

respect to e′.

By using the modal representation of the Green function [3]

G = c2
∑
j

|j〉〈j|
ω2 − ω2

j

, (17)

where we adopt the canonical orthonormal set, gives∑
q

wmq =
∑
q

〈m|c2e′|q〉
ω2 − ω2

m

=
∑
q

ω2

ω2 − ω2
m

∫
∆ε(r)φm(r)∗ · φq(r) dr (18)

where in the last equation we used the position representation.

A further simplification can be obtained by observing that eq. (18) is the sum of N terms

which all are of the order of
∫

∆ε(r)φm(r)∗ ·φm(r) dr if ∆ε(r) is a perturbation that involves

most of the sample and couples all the modes, and if the modes are not strongly localized.

In this approximation we can write∑
q

wmq ' N
ω2

ω2 − ω2
m

∫
∆ε(r)φm(r)∗ · φm(r) dr (19)

We recall one can write

1

ω2 − ω2
m

= PV

[
1

ω2 − ω2
m

]
+
ıπ

2ω
δ(ω − ωm) (20)

with PV the principal value. As ξmn is the sum of many random contributions, the real and

the imaginary part will be Gaussian variables with the same variance.

Averaging (19) over all the modes (the average quantities are expected to be modal

independent), by summing w.r.t. to the index m and dividing by N we have

=

(∑
q

wmq

)
' πω

2

∫
∆ε(r)ρ(r, ω) dr (21)
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where we used the expression for the LDOS

ρ(r, ω) =
∑
m

δ(ω − ωm)φm(r)∗ · φm(r) (22)

Finally we have

φ2
NL =

1

2
〈|
∑

wmq|2〉 = 〈

[
=

(∑
q

wmq

)]2
〉 ' π2ω2

4
〈
(∫

∆ε(r)ρ(r, ω) dr

)2

〉. (23)
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