SETS OF UNIVERSAL SEQUENCES FOR THE SYMMETRIC GROUP AND ANALOGOUS SEMIGROUPS

J. HYDE, J. JONUŠAS, J. D. MITCHELL, AND Y. H. PÉRESSE

Abstract

A universal sequence for a group or semigroup S is a sequence of words w_{1}, w_{2}, \ldots such that for any sequence $s_{1}, s_{2}, \ldots \in S$, the equations $w_{n}=s_{n}, n \in \mathbb{N}$, can be solved simultaneously in S. For example, Galvin showed that the sequence $\left(a^{-1}\left(a^{n} b a^{-n}\right) b^{-1}\left(a^{n} b^{-1} a^{-n}\right) b a\right)_{n \in \mathbb{N}}$ is universal for the symmetric group $\operatorname{Sym}(X)$ when X is infinite, and Sierpiński showed that $\left(a^{2} b^{3}\left(a b a b^{3}\right)^{n+1} a b^{2} a b^{3}\right)_{n \in \mathbb{N}}$ is universal for the monoid X^{X} of functions from the infinite set X to itself.

In this paper, we show that under some conditions, the set of universal sequences for the symmetric group on an infinite set X is independent of the cardinality of X. More precisely, we show that if Y is any set such that $|Y| \geq|X|$, then every universal sequence for $\operatorname{Sym}(X)$ is also universal for $\operatorname{Sym}(Y)$. If $|X|>2^{\aleph_{0}}$, then the converse also holds. It is shown that an analogue of this theorem holds in the context of inverse semigroups, where the role of the symmetric group is played by the symmetric inverse monoid. In the general context of semigroups, the full transformation monoid X^{X} is the natural analogue of the symmetric group and the symmetric inverse monoid. If X and Y are arbitrary infinite sets, then it is an open question as to whether or not every sequence that is universal for X^{X} is also universal for Y^{Y}. However, we obtain a sufficient condition for a sequence to be universal for X^{X} which does not depend on the cardinality of X. A large class of sequences satisfy this condition, and hence are universal for X^{X} for every infinite set X.

1. Introduction

Let F be a free group, let $w \in F$, and let G be a group. We say that the word w is group universal for G if for all $g \in G$ there exists a group homomorphism $\phi: F \longrightarrow G$ such that $(w) \phi=g$. For example, Oré [20] showed that every element of the symmetric group $\operatorname{Sym}(X)$ on an infinite set X is a commutator, that is, $x^{-1} y^{-1} x y$ is a universal word for $\operatorname{Sym}(X)$ when X is infinite. More generally, every element is a commutator in any Polish group with a comeagre conjugacy class [14]. There are many such groups in addition to the symmetric group; for example, the automorphism group of the countable random graph; see [14] for further examples.

Something much stronger than Óre's Theorem holds for the symmetric group: any word w, which is not a proper power of another word, in any free group F is group universal for $\operatorname{Sym}(X)$. Silberger [23], Droste [6], and Mycielski [19] proved some special cases of this theorem, the proof of which was completed by Lyndon [15] and Dougherty and Mycielski [4]. Droste and Truss [5] proved that certain classes of words are group universal for the automorphism group of the countably infinite random graph.

Roughly speaking, if w is a group universal word for G, then the equation $w=g$ can be solved for all $g \in G$. It is natural to extend this to solving simultaneous equations. If F is a free group and $w_{1}, w_{2}, \ldots \in F$, then given any sequence $g_{1}, g_{2}, \ldots \in G$, is it possible to find a homomorphism $\phi: F \longrightarrow G$ such that $\left(w_{i}\right) \phi=g_{i}$ for all $i \in \mathbb{N}$? The sequence $w_{1}, w_{2}, \ldots \in F$ is group universal for G if such a homomorphism exists for all $g_{1}, g_{2}, \ldots \in G$.

In [11], Galvin showed that $\left(a^{-1}\left(a^{n} b a^{-n}\right) b^{-1}\left(a^{n} b^{-1} a^{-n}\right) b a\right)_{n \in \mathbb{N}}$ is universal for the symmetric group on an infinite set. Truss [25] showed that Galvin's proof works essentially unchanged for the groups of homeomorphisms of the Cantor space, the rationals \mathbb{Q}, and the irrationals $\mathbb{R} \backslash \mathbb{Q}$. In $[13]$, the present authors showed that there is an 2-letter universal sequence for the group $\operatorname{Aut}(\mathbb{Q}, \leq)$ of order-automorphisms of the rationals \mathbb{Q}. In [7], Droste and Shelah consider a more general notion of universality than that defined here. As a special case, it follows from the result in [7] that if X and Y are sets such that $|X|,|Y|>2^{\aleph_{0}}$, then a finite sequence is universal, in our sense, for $\operatorname{Sym}(X)$ if and only if it is universal for $\operatorname{Sym}(Y)$. In Corollary 2.3 , we extend this result to infinite universal sequences.

Let A be a finite set, called an alphabet, and let A^{+}denote the free semigroup consisting of all of the non-empty words over A with multiplication being simply the concatenation of words.

Definition 1.1. Let S be a semigroup and let A be any alphabet. Then an infinite sequence of words $w_{1}, w_{2}, \ldots \in A^{+}$is semigroup universal for S if for any sequence $s_{1}, s_{2}, \ldots \in S$ there exists a homomorphism $\phi: A^{+} \longrightarrow S$ such that $\left(w_{n}\right) \phi=s_{n}$ for all $n \geq 1$.

Suppose that G is a group. Since the free semigroup on a finite alphabet A is a subsemigroup of the free group on A, it follows that every semigroup universal sequence for G is also a group universal sequence for G. On the other hand, every group universal sequence over A for G is a semigroup universal sequence for G over $A \cup A^{-1}$. So, broadly speaking, the notion of semigroup universal sequences includes the corresponding notion for groups, and as such we will restrict ourselves to considering only semigroup universal sequences.

The existence of a universal sequence over a finite alphabet for a semigroup S implies that S has several further properties. For instance, if S is such a semigroup and X is any generating set for S, then there exists an $n \in \mathbb{N}$ such that every element of S can be given as a product over X of length at most n. This is known as the Bergman property after Bergman's seminal paper [2]; see also [16, 18]. A group G with the Bergman property automatically satisfies Serré's properties (FA) and (FH); see [14]. There are, of course, many groups which have no universal sequences. For example, since every group with a universal sequence has property (FA), any group with \mathbb{Z} as a homomorphic image has no universal sequences.

The question of whether a universal sequence exists for a given semigroup has a long history, which predates Óre's Theorem [20]. In 1934, Sierpiński [21] showed that $\left(a b^{n-1} c d^{n-1}\right)_{n \in \mathbb{N}}$ is a universal sequence for the semigroup of continuous functions on the closed unit interval $[0,1]$ in \mathbb{R}, and in 1935, [22] showed that $\left(a^{2} b^{3}\left(a b a b^{3}\right)^{n+1} a b^{2} a b^{3}\right)_{n \in \mathbb{N}}$ is universal for the semigroup X^{X} of functions from the infinite set X to itself where the operation is composition of functions. Several further universal sequences are known for X^{X} when X is infinite, such as $\left(a b a^{n+1} b^{2}\right)_{n \in \mathbb{N}}$; see Banach [1]. It can be shown that universal sequences are preserved by homomorphisms of semigroups, and a, more or less straightforward, counting argument shows that every semigroup with a universal sequence is of cardinality at least continuum. It follows that a semigroup with a countable homomorphic image has no universal sequences. Some more recent results about universal sequences of semigroups include [8, Theorem 31], [9, Theorem 37], and [10, Theorem 6.1]. See [18] and the references therein for further background on universal sequences for semigroups.

Given that a universal sequence for a given semigroup S exists, it is natural to attempt to classify all of the universal sequences for S. For instance, given that universal words for the symmetric group $\operatorname{Sym}(X)$ on any infinite set X are completely classified, we might ask for a classification of universal sequences for $\operatorname{Sym}(X)$. We do not provide such a classification, but
in Section 2, we show that if X is any infinite set and Y is any set containing X, then every sequence that is universal for the symmetric group $\operatorname{Sym}(X)$ on X is universal for $\operatorname{Sym}(Y)$. The converse holds when $|X|$ is greater than $2^{\aleph_{0}}$. It is, however, not known whether it remains true if $|X| \leq 2^{\aleph_{0}}$, see Question 2.5. We also show that the analogous results hold for the symmetric inverse monoids.

In the context of clones of polymorphisms, the natural equivalent of words are terms. In [17], McNulty gave a sufficient condition for such a sequence of terms to be universal. A special case of our main result in Section 3 and of McNulty's result, is Corollary 3.4. Taylor [24] showed that the question of whether or not a term is universal for the clone of polymorphisms is undecidable.

The question of describing universal words for X^{X}, and whether or not such words depend on the cardinality of X, is Problem 27 in [3]. As a partial result in the direction of solving this problem in Section 3, we give a natural sufficient condition under which a sequence over a 2-letter alphabet is universal for X^{X}. A special case of this condition is any sequence of distinct words w_{1}, w_{2}, \ldots where no w_{i} is a subword of any $w_{j}, i \neq j$, and no proper prefix of any w_{i} is a suffix of any w_{j}. We will show in the next proposition that the apparent restriction to 2-letter alphabets is, in fact, not a restriction at all.

Throughout the paper we use the convention that a countable set can be finite or infinite.
Proposition 1.2 (cf. Problem 27 in [3]). Let S be a semigroup and let A be an alphabet such that there is a universal sequence for S over A. Then for every countable alphabet B there exists a function $\phi:\left(B^{+}\right)^{\mathbb{N}} \longrightarrow\left(A^{+}\right)^{\mathbb{N}}$ such that $\left(w_{1}, w_{2}, \ldots\right) \in\left(B^{+}\right)^{\mathbb{N}}$ is universal for S if and only if $\left(w_{1}, w_{2}, \ldots\right) \phi \in\left(A^{+}\right)^{\mathbb{N}}$ is universal for S.

Proof. By assumption, there exists a universal sequence $\left(w_{1}, w_{2}, \ldots\right) \in\left(A^{+}\right)^{\mathbb{N}}$ for S. If $\left(u_{1}, u_{2} \ldots\right)$ is a sequence over $B=\left\{b_{1}, b_{2}, \ldots\right\}$, then for every $m \in \mathbb{N}$ we define $v_{m} \in\left(A^{+}\right)^{\mathbb{N}}$ to be the word obtained by replacing every occurrence of every letter b_{j} in $u_{m} \in B^{+}$by the word $w_{j} \in A^{+}$. We define ϕ by $\left(u_{1}, u_{2}, \ldots\right) \phi=\left(v_{1}, v_{2}, \ldots\right)$.

If $\left(u_{1}, u_{2}, \ldots\right)$ is universal for S over B, then for any choice of $s_{1}, s_{2}, \ldots \in S$ there is a homomorphism $\Phi: B^{+} \longrightarrow S$ such that $\left(u_{i}\right) \Phi=s_{i}$ for all i. Since $\left(w_{1}, w_{2}, \ldots\right)$ is universal there is a homomorphism $\Psi: A^{+} \longrightarrow S$ such that $\left(w_{j}\right) \Psi=\left(b_{j}\right) \Phi$ for all $j \in\{1, \ldots, n\}$. Then $\left(v_{i}\right) \Psi=\left(u_{i}\right) \Phi=s_{i}$ for all i, and so $\left(v_{1}, v_{2}, \ldots\right)$ is universal also.

On the other hand, if $\left(v_{1}, v_{2}, \ldots\right)$ is universal, then for every choice of $s_{1}, s_{2}, \ldots \in S$ there is a homomorphism $\Phi: A^{+} \longrightarrow S$ such that $\left(v_{i}\right) \Phi=s_{i}$ for all i. If $\Psi: B^{+} \longrightarrow S$ is the natural homomorphism extending $\left(b_{j}\right) \Psi=\left(w_{j}\right) \Phi$ for all j, then $\left(u_{i}\right) \Psi=\left(v_{i}\right) \Phi=s_{i}$ for all i, and thus $\left(u_{1}, u_{2}, \ldots\right)$ is universal.

We conclude this section with some standard definitions and notation. A monoid is a semigroup M with an identity, that is an element $1_{M} \in M$ such that $1_{M} m=m 1_{M}=m$ for all $m \in M$. A submonoid of a monoid M is a subsemigroup containing the identity 1_{M} of M. Any semigroup can be made into a monoid by adjoining an identity as follows. If S is a semigroup and $1_{S} \notin S$, define an operation on $S^{1}=S \cup\left\{1_{S}\right\}$ which extends the operation of S by $s 1_{S}=1_{S} s=s$ for all $s \in S^{1}$. The set S^{1} with this operation is a monoid. An element 0_{S} of a semigroup S is called a zero if $0_{S} s=s 0_{S}=0_{S}$ for all $s \in S$. A zero can be adjoined to a semigroup S in much the same way as an identity; we denote this by S^{0}. The free monoid A^{*} is obtained from A^{+}by adjoining an identity ε, usually referred to as the empty word. If $w=a_{1} \cdots a_{n} \in A^{*}$ and $i, j \in\{1, \ldots, n\}$ are such that $i \leq j$, then $a_{1} \cdots a_{i-1}$ is a prefix of w,
$a_{j+1} \cdots a_{n}$ is a suffix of w, and $a_{i} \cdots a_{j}$ is a subword of w. The empty word ε is a prefix and a suffix of every word.

The analogue of the symmetric group in the context of semigroups is the full transformation monoid X^{X} consisting of all functions from the set X to X under composition of functions. Every semigroup is isomorphic to a subsemigroup of some full transformation monoid; see [12, Theorem 1.1.2].

An inverse semigroup is a semigroup S such that for all $x \in S$ there exists a unique $x^{-1} \in S$ such that $x x^{-1} x=x$ and $x^{-1} x x^{-1}=x^{-1}$. A partial permutation on a set X is a bijection $f: A \longrightarrow B$ between subsets A and B of X. The set A is the domain of f and is denoted $\operatorname{dom}(f)$; the set B is called the range and is denoted $\operatorname{ran}(f)$. If $f: X \longrightarrow Y$ is a partial permutation and $Z \subseteq X$, then the restriction of f to Z is the partial permutation $\left.f\right|_{Z}: Z \longrightarrow Y^{\prime}$ where $Y^{\prime}=\{(z) f: z \in Z\}$ defined by $\left.(z) f\right|_{Z}=(z) f$ for all $z \in Z$. Under the usual composition of binary relations, the set $I(X)$ of all partial permutations on X is an inverse semigroup; $I(X)$ will be referred to as the symmetric inverse monoid on X. The Wagner-Preston Representation Theorem [12, Theorem 5.1.7] states that every inverse semigroup is isomorphic to an inverse subsemigroup of $I(X)$ for some set X. It is possible to define the notion of an inverse semigroup universal sequence, which is analogous to the notions for groups and semigroups. We have already argued that group and semigroup universal sequences are interchangeable, and a similar argument applies to inverse semigroups. For the sake of brevity we refer to semigroup universal sequences as universal sequences.

2. The role of $|X|$ for universal sequences in $\operatorname{Sym}(X)$ and $I(X)$

In this section, we consider a class of semigroups which includes the symmetric groups and symmetric inverse monoids on arbitrary infinite sets. In particular, let α be either an arbitrary infinite cardinal or 0 , and let X be any set. Then we denote by $I(X, \alpha)$ the inverse subsemigroup of $I(X)$ consisting of all the partial permutations f of X such that $|X \backslash \operatorname{dom}(f)|,|X \backslash \operatorname{ran}(f)| \leq \alpha$. Note that $I(X, 0)=\operatorname{Sym}(X)$, the symmetric group on X, and that $I(X, \alpha)$ is the whole of $I(X)$ for any $\alpha \geq|X|$. Recall that an infinite cardinal λ is regular if it cannot be expressed as the union of strictly less than λ many sets each of cardinality strictly less than λ.

The main theorem of this section is the following.
Theorem 2.1. Let X and Y be sets, and let α be any infinite cardinal number or 0 . Then the following hold:
(i) if $\aleph_{0} \leq|X|<|Y|$ and $\alpha \in\{0,|Y|\}$, then every sequence that is universal for $I(X, \alpha)$ is also universal for $I(Y, \alpha)$;
(ii) if $2^{\aleph_{0}}<|X|<|Y|, \alpha<|X|$ or $\alpha \geq|Y|$, and $|X|$ is a regular cardinal, then every sequence that is universal for $I(Y, \alpha)$ is also universal for $I(X, \alpha)$.

Proof. (i). Let w_{1}, w_{2}, \ldots be a universal sequence for $I(X, \alpha)$ over some countable alphabet A, and let $s_{1}, s_{2}, \ldots \in I(Y, \alpha)$ be arbitrary. It follows from [13, Proposition 2.1(ii)], w_{1}, w_{2}, \ldots is also universal for $I(X, \alpha)^{|Y|}$.

We define S to be the inverse semigroup generated by $\left\{s_{1}, s_{2}, \ldots\right\}$. Then S is countable and the sets $\left\{(z) s: s \in S^{1}\right\}$, where $z \in Y$, partition Y into $|Y|$ many countable sets. We refer to these sets as the blocks of S on Y. Define a partition $\left\{X_{y}: y \in Y\right\}$ of Y such that each X_{y} is a union of blocks and $\left|X_{y}\right|=|X|$, this is possible since the blocks are countable
and X is infinite. For every $y \in Y$, let $\mu_{y}: X_{y} \longrightarrow X$ be any bijection. It follows that $f: S \longrightarrow I(X, \alpha)^{|Y|}$ defined by $(s) f=\left(\mu_{y}^{-1} s \mu_{y}\right)_{y \in Y}$ is an injective homomorphism.

Define a map $g: I(X, \alpha)^{|Y|} \longrightarrow I(Y)$ by

$$
\left(\left(b_{y}\right)_{y \in Y}\right) g=\bigcup_{y \in Y} \mu_{y} b_{y} \mu_{y}^{-1}
$$

Since the sets X_{y} partition $Y,\left(\left(b_{y}\right)_{y \in Y}\right) g$ is a well-defined partial permutation of Y. We will show that if α is either $|Y|$ or 0 , then, in fact, g is contained in $I(Y, \alpha)$. If α is $|Y|$, then $I(Y, \alpha)=I(Y)$, as required. Suppose that $\alpha=0$. Then for every $\left(b_{y}\right)_{y \in Y} \in I(X, \alpha)^{|Y|}$ and every $y \in Y$

$$
\left|X_{y} \backslash \operatorname{dom}\left(\mu_{y} b_{y} \mu_{y}^{-1}\right)\right|=\left|X \backslash \operatorname{dom}\left(b_{y}\right)\right|=0
$$

and similarly

$$
\left|X_{y} \backslash \operatorname{ran}\left(\mu_{y} b_{y} \mu_{y}^{-1}\right)\right|=\left|X \backslash \operatorname{ran}\left(b_{y}\right)\right|=0
$$

Hence the domain and range of $\left(\left(b_{y}\right)_{y \in Y}\right) g$ are both Y, and so $\left(\left(b_{y}\right)_{y \in Y}\right) g \in I(Y, \alpha)$. Hence $g: I(X, \alpha)^{|Y|} \longrightarrow I(Y, \alpha)$ is a homomorphism, and $(s) f g=s$ for all $s \in S$.

Since w_{1}, w_{2}, \ldots is a universal sequence for $I(X, \alpha)^{|Y|}$, there exists a homomorphism ϕ : $A^{+} \longrightarrow I(X, \alpha)^{|Y|}$ such that $\left(w_{n}\right) \phi=\left(s_{n}\right) f$ for all n, and so $\phi \circ g: A^{+} \longrightarrow I(Y, \alpha)$ is a homomorphism and $\left(w_{n}\right) \phi \circ g=\left(s_{n}\right) f g=s_{n}$, as required.
(ii). Let w_{1}, w_{2}, \ldots be a universal sequence for $I(Y, \alpha)$ over some countable alphabet A, and let $s_{1}, s_{2}, \ldots \in I(X, \alpha)$ be arbitrary.

As in part (i) we denote the inverse subsemigroup of $I(X, \alpha)$ generated by $\left\{s_{1}, s_{2}, \ldots\right\}$ by S, and let Ω be the set of blocks of S on X. We define an equivalence relation \sim on Ω as follows: for $U, V \in \Omega$ we write $U \sim V$ if there is a bijection $\phi: U \longrightarrow V$ such that $s_{n} \circ \phi=\phi \circ s_{n}$ for all $n \in \mathbb{N}$. In other words, $U \sim V$ if and only if the inverse semigroup S has the same action on U and V, up to relabelling the points.

If $U \in \Omega$, then $|U| \leq \aleph_{0}$ and since $|X|>\aleph_{0}$, it follows that $|\Omega|=|X|$. Since a countable semigroup has at most $\aleph_{0}^{\aleph_{0}}=2^{\aleph_{0}}$ distinct (partial) actions on a given countable set, it follows that there are at most $2^{\aleph_{0}}$ equivalence classes of \sim. Since $|\Omega|=|X|>2^{\aleph_{0}}$ and $|X|$ is a regular cardinal, Ω cannot be written as a union of $2^{\aleph_{0}}$ sets of cardinality strictly less than $|X|$. Hence there exists an equivalence class E of \sim such that $|E|=|X|$.

For a fixed $U \in E$, we define Y^{\prime} to be the disjoint union of $Y \times U$ and X and also for each n we define $t_{n}: Y^{\prime} \longrightarrow Y^{\prime}$ by

$$
(x) t_{n}= \begin{cases}(x) s_{n} & x \in X \\ \left(y,(z) s_{n}\right) & x=(y, z) \in Y \times U\end{cases}
$$

Obviously t_{n} is a partial permutation, and we will show that $t_{n} \in I\left(Y^{\prime}, \alpha\right)$. There are two cases to consider, when $\alpha=|Y|$ and when $\alpha<|X|$. If $\alpha=|Y|$, then $I\left(Y^{\prime}, \alpha\right)$ consists of all partial permutations on Y^{\prime}, and so $t_{n} \in I\left(Y^{\prime}, \alpha\right)$. The other case is significantly more complicated.

Claim 2.2. If $\alpha<|X|$, then $t_{n} \in I\left(Y^{\prime}, \alpha\right)$ for all $n \in \mathbb{N}$.
Proof. We define

$$
Z=\bigcup_{m \geq 1}\left(X \backslash \operatorname{dom}\left(s_{m}\right)\right) \cup\left(X \backslash \operatorname{ran}\left(s_{m}\right)\right)
$$

Since Z is a countable union of sets with cardinality at most $\alpha,|Z| \leq \alpha$.

If $V, W \in E$ and $V \cap Z \neq \varnothing$, then we will show that $W \cap Z \neq \varnothing$ also. Since $V, W \in E$, there exists a bijection $\phi: V \longrightarrow W$ such that $s_{n} \phi=\phi s_{n}$ for all $n \in \mathbb{N}$. Suppose that $x \in V \cap Z$. Then by the definition of Z there exists $m \in \mathbb{N}$ such that $x \notin \operatorname{dom}\left(s_{m}\right)$ or $x \notin \operatorname{ran}\left(s_{m}\right)$. If $x \notin \operatorname{dom}\left(s_{m}\right)$, then $x \notin \operatorname{dom}\left(s_{m} \phi\right)=\operatorname{dom}\left(\phi s_{m}\right)$. But $x \in \operatorname{dom}(\phi)=V$, and so $(x) \phi \notin \operatorname{dom}\left(s_{m}\right)$. In other words, $(x) \phi \in W \cap Z$, which is consequently non-empty. The case that $x \notin \operatorname{ran}\left(s_{m}\right)$ is dual.

So, if $V \cap Z \neq \varnothing$ for some $V \in E$, then $W \cap Z \neq \varnothing$ for all $W \in E$. Hence since elements of E are pairwise disjoint it follows that

$$
\alpha<|X|=|E| \leq\left|\bigcup_{V \in E} V \cap Z\right| \leq|Z| \leq \alpha
$$

a contradiction. Hence $V \cap Z=\varnothing$, or equivalently,

$$
V \subseteq \bigcap_{m \geq 1} \operatorname{dom}\left(s_{m}\right) \cap \operatorname{ran}\left(s_{m}\right)
$$

for all $V \in E$. Thus if $m \geq 1$ then $\left.s_{m}\right|_{U}: U \longrightarrow U$ is surjective, and since every element of $I(X, \alpha)$ is injective, s_{m} is a permutation on U. Hence it follows that $Y^{\prime} \backslash \operatorname{dom}\left(t_{n}\right)=X \backslash \operatorname{dom}\left(s_{n}\right)$ for all $n \in \mathbb{N}$. In particular, $t_{n} \in I\left(Y^{\prime}, \alpha\right)$ for all $n \in \mathbb{N}$, as required.

Since $w_{1}, w_{2}, \ldots \in A^{+}$is universal for $I(Y, \alpha)$ and $|Y|=\left|Y^{\prime}\right|$, it follows that w_{1}, w_{2}, \ldots is universal for $I\left(Y^{\prime}, \alpha\right)$ also. Thus there is a homomorphism $\Phi: A^{+} \longrightarrow I\left(Y^{\prime}, \alpha\right)$ such that $\left(w_{n}\right) \Phi=t_{n}$ for all $n \in \mathbb{N}$. We define $X^{\prime}=\left\{(x) f: x \in X, f \in\left(A^{+}\right) \Phi\right\} \cup X \subseteq Y^{\prime}$. Since ($\left.A^{+}\right) \Phi$ is countable and $|X|>\aleph_{0}$, it follows that $\left|X^{\prime}\right|=|X|$.

Let T be the inverse subsemigroup of $I\left(Y^{\prime}, \alpha\right)$ generated by $\left\{t_{1}, t_{2}, \ldots\right\}$ and let Ω^{\prime} be the set of blocks of T acting on $X^{\prime} \backslash X$. Since $|E|=|X|$ and $\left|\Omega^{\prime}\right| \leq|X|$, there exists a bijection $b: E \longrightarrow \Omega^{\prime} \cup E$. We will show that for every $V \in E$ there exists a bijection $\phi_{V}: V \longrightarrow(V) b$ such that $t_{n} \phi_{V}=\phi_{V} t_{n}$ for all $n \in \mathbb{N}$. If $(V) b \in E$, then this follows immediately from the definition of E and since $\left.t_{n}\right|_{X}=s_{n}$. Suppose that $(V) b \in \Omega^{\prime}$. If $(x, y) \in(V) b \subseteq X^{\prime} \backslash X \subseteq Y^{\prime} \backslash X=Y \times U$, then

$$
(V) b=\{(x,(y) s): s \in S\}=\{x\} \times U
$$

since U is a block of the action of S on X. Since $U, V \in E$, there exists bijection $\phi: V \longrightarrow U$ such that $\phi s_{n}=s_{n} \phi$ for all $n \in \mathbb{N}$. Define $\phi_{V}: V \longrightarrow\{x\} \times U$ so that $(a) \phi_{V}=(x,(a) \phi)$. Since ϕ is a bijection, so too is ϕ_{V}. If $n \in \mathbb{N}$ and $a \in V$ are arbitrary, then

$$
\text { (a) } \phi_{V} t_{n}=(x,(a) \phi) t_{n}=\left(x,(a) \phi s_{n}\right)=\left(x,(a) s_{n} \phi\right)=(a) s_{n} \phi_{V}=(a) t_{n} \phi_{V} .
$$

We define $\psi: X \longrightarrow X^{\prime}$ by

$$
\psi=\bigcup_{V \in E} \phi_{V} \cup 1_{X \backslash \bigcup_{W \in E} W}
$$

Note that ψ is injective, $\operatorname{dom}(\psi)=X$, and $\operatorname{ran}(\psi)=\left(\bigcup_{W \in E}(W) b\right) \cup\left(X \backslash \bigcup_{W \in E} W\right)=X^{\prime}$. The last equality holds since b is a bijection from E to $\Omega^{\prime} \cup E$ and so by definition of Ω^{\prime}

$$
\bigcup_{W \in E}(W) b=\bigcup_{A \in \Omega^{\prime} \cup E} A=\left(X^{\prime} \backslash X\right) \cup B,
$$

where $B=\bigcup_{A \in E} A \subseteq X$. Hence ψ is a bijection. We will show that $\psi t_{n}=s_{n} \psi$ for all $n \in \mathbb{N}$. Suppose that $x \in X$. Then either $x \notin V$ for all $V \in E$ or $x \in V$ for some $V \in E$. In the first case, $(x) \psi t_{n}=(x) t_{n}=(x) s_{n}$ and since $(x) s_{n} \notin V$ for all $V \in E$, it follows that $(x) \psi t_{n}=$
$(x) s_{n}=(x) s_{n} \psi$, as required. In the second case, $(x) \psi t_{n}=(x) \phi_{V} t_{n}=(x) t_{n} \phi_{V}=(x) s_{n} \phi_{V}$, and since $(x) s_{n} \in V,(x) s_{n} \phi_{V}=(x) s_{n} \psi$.

Define $\Lambda: A^{+} \longrightarrow I(X, \alpha)$ by $(w) \Lambda=\left.\psi(w) \Phi\right|_{X^{\prime}} \psi^{-1}$ for all $w \in A^{+}$. By the definition of X^{\prime}, the partial permutation $(w) \Phi$ maps X^{\prime} to X^{\prime}, and so $(w) \Lambda$ is a partial permutation of X. Also

$$
|X \backslash \operatorname{dom}((w) \Lambda)|=\left|X^{\prime} \backslash \operatorname{dom}((w) \Phi)\right| \leq\left|Y^{\prime} \backslash \operatorname{dom}((w) \Phi)\right| \leq \alpha
$$

and similarly $|X \backslash \operatorname{ran}((w) \Lambda)| \leq \alpha$. Hence $(w) \Lambda \in I(X, \alpha)$. Finally, let $u, v \in A^{+}$. Then

$$
(u v) \Lambda=\left.\left.\psi(u) \Phi\right|_{X^{\prime}} 1_{X^{\prime}}(v) \Phi\right|_{X^{\prime}} \psi^{-1}=\left.\left.\psi(u) \Phi\right|_{X^{\prime}} \psi^{-1} \psi(v) \Phi\right|_{X^{\prime}} \psi^{-1}=\Lambda(u) \Lambda(v)
$$

and so Λ is a homomorphism. Furthermore,

$$
\left(w_{n}\right) \Lambda=\psi\left(w_{n}\right) \Phi \psi^{-1}=\psi t_{n} \psi^{-1}=s_{n}
$$

and hence w_{n} is universal for $I(X, \alpha)$.
Corollary 2.3. Let X and Y be infinite sets such that $|X|<|Y|$. Then the following hold:
(i) every sequence that is universal for $\operatorname{Sym}(X)$ is universal for $\operatorname{Sym}(Y)$;
(ii) if $2^{\aleph_{0}}<|X|$, then every sequence that is universal for $\operatorname{Sym}(Y)$ is universal for $\operatorname{Sym}(X)$. In particular, if $2^{\aleph_{0}}<|X| \leq|Y|$, then the universal sequences for $\operatorname{Sym}(X)$ coincide with those for $\operatorname{Sym}(Y)$.

Proof. Part (i) follows immediately from Theorem 2.1(i), when $\alpha=0$.
For part (ii), it suffices to show that the regularity condition in part (ii) of Theorem 2.1 can be removed. Let w_{1}, w_{2}, \ldots be a universal sequence for $\operatorname{Sym}(Y)$, let λ denote the successor cardinal of $2^{\aleph_{0}}$, and let Z be any set of cardinality λ. Then λ is a regular cardinal, and so Theorem 2.1(ii) implies that w_{1}, w_{2}, \ldots is universal for $\operatorname{Sym}(Z)$. Therefore since $|X| \geq \lambda=$ $|Z|$, it follows from part (i) that w_{1}, w_{2}, \ldots is universal for $\operatorname{Sym}(X)$.

The proof of the next corollary is analogous to that of Corollary 2.3, if $\alpha=|Y|$ and we observe that $I(X, \alpha)=I(X)$ and $I(Y, \alpha)=I(Y)$.
Corollary 2.4. Let X and Y be infinite sets such that $|X|<|Y|$. Then the following hold:
(i) every sequence that is universal for $I(X)$ is universal for $I(Y)$;
(ii) if $2^{\aleph_{0}}<|X|$, then every sequence that is universal for $I(Y)$ is universal for $I(X)$.

In particular, if $2^{\aleph_{0}}<|X| \leq|Y|$, then the universal sequences for $I(X)$ coincide with those for $I(Y)$.

Question 2.5. Can the assumption that $|X|>2^{\aleph_{0}}$ be removed from Theorem 2.1(ii) and the corollaries following it?

3. A SUFFICIENT CONDITION FOR THE UNIVERSALITY OF SEQUENCES FOR X^{X}

In this section, we give a sufficient condition for a sequence over a 2-letter alphabet to be universal for X^{X} for any infinite X. This might be seen as a small step towards obtaining a description of the set of all universal sequences for X^{X}, if such a description exists; and towards resolving the following open question, which was the original motivation behind the results in this section.
Question 3.1. Let X and Y be infinite sets. Is the set of universal sequences for X^{X} equal to the set of universal sequences for Y^{Y} ?

Throughout this section, we denote by A a fixed alphabet $\{a, b\}$. Let $\mathbf{w}=\left(w_{1}, w_{2}, \ldots\right)$ be a sequence of elements of A^{+}, and let S be a submonoid of A^{*} such that:
(1) if $w_{n}=$ suuvs' where $s, s^{\prime} \in S$, and $u, v \in A^{*}$, then $v \in S$;
(2) if $w_{m}=s v t$ and $w_{n}=t^{\prime} v s^{\prime}, m \neq n$, where $s, s^{\prime} \in S$ and $t, t^{\prime}, v \in A^{*}$, then $v \in S$;
where $m, n \in \mathbb{N}$. For every sequence \mathbf{w} of elements of A^{+}there is at least one submonoid of A^{*} satisfying these conditions, namely A^{*} itself.

We will show that for every sequence w in A^{+}there exists a least submonoid of A^{*} with respect to containment satisfying (1) and (2). It can be shown that an arbitrary intersection of submonoids satisfying these three conditions, also satisfies the conditions. However, we opt instead to give a construction of this least submonoid, which we will make use of later.

We define $S_{0}=\{\varepsilon\}$ where ε denotes the empty word, which is the identity element of A^{*}. For some $n \geq 0$, suppose that we have defined a submonoid S_{n} of A^{*}. Define

$$
\begin{aligned}
X_{n} & =\left\{v \in A^{*}: w_{i}=s v u v s^{\prime} \text { for some } i \in \mathbb{N}, s, s^{\prime} \in S_{n} \text { and } u \in A^{*}\right\} ; \\
Y_{n} & =\left\{v \in A^{*}: w_{i}=s v t, w_{j}=t^{\prime} v s^{\prime} \text { for some distinct } i, j \in \mathbb{N}, s, s^{\prime} \in S_{n} \text { and } t, t^{\prime} \in A^{*}\right\} .
\end{aligned}
$$

and set $S_{n+1}=\left\langle S_{n}, X_{n}, Y_{n}\right\rangle$. We define $S_{\mathbf{w}}=\bigcup_{n \in \mathbb{N}} S_{n}$. Since $S_{0} \leq S_{1} \leq S_{2} \leq \ldots$ by definition, S_{w} is a submonoid of A^{*}.

The next proposition is a straightforward consequence of the construction of S_{w}.
Proposition 3.2. Let $\mathbf{w}=\left(w_{1}, w_{2}, \ldots\right)$ be an arbitrary sequence of elements of A^{+}. Then S_{w} is the least submonoid of A^{*} satisfying conditions (1) and (2).

The main result of this section is the following.
Theorem 3.3. Let $\mathbf{w}=\left(w_{1}, w_{2}, \ldots\right)$ be a sequence of words in A^{+}such that there are no $s, t, v \in A^{*}$ such that $w_{n}=$ stv with st, $t v \in S_{\mathbf{w}}$ for all $n \in \mathbb{N}$. Let $p_{n}, s_{n}, u_{n} \in A^{*}$ be such that $w_{n}=p_{n} u_{n} s_{n}$, and p_{n} and s_{n} are respectively the longest prefix and the longest suffix of w_{n} so that $p_{n}, s_{n} \in S_{\mathrm{w}}$. Suppose that u_{n} is a subword of w_{m} if and only if $n=m$ and that u_{n} is not a subword of p_{n} for all n. Then $\left(w_{1}, w_{2}, \ldots\right)$ is a universal sequence for X^{X}, where X is any infinite set.

We note that the assumption on the sequence \mathbf{w} in the above theorem implies that $w_{n} \notin S_{\mathbf{w}}$ for all $n \in \mathbb{N}$. As a corollary to Theorem 3.3 we obtain the following result.
Corollary 3.4. Let X be an infinite set and let $w_{1}, w_{2}, \ldots \in A^{+}$be such that no proper prefix of w_{n} is a suffix of any w_{m}, and w_{n} is not a subword of $w_{m}, m \neq n$. Then $\left(w_{1}, w_{2}, \ldots\right)$ is a universal sequence for X^{X}.
Proof. It follows from the construction of $S_{\mathbf{w}}$ where $\mathbf{w}=\left(w_{1}, w_{2}, \ldots\right)$, that $X_{0}=Y_{0}=\{\varepsilon\}$. Hence $S_{\mathbf{w}}=\{\varepsilon\}$, and so we are done by Theorem 3.3.

Two examples of sequences satisfying the hypothesis of Corollary 3.4 are $\left(a b a^{n+1} b^{2}\right)_{n \in \mathbb{N}}$ and $\left(a^{2} b^{3}\left(a b a b^{3}\right)^{n+1} a b^{2} a b^{3}\right)_{n \in \mathbb{N}}$ of Banach and Sierpiński mentioned in the introduction. There are further sequences satisfying the hypothesis of Theorem 3.3 but not that of Corollary 3.4. For example, it can be shown that if $w_{n}=a b a(a b)^{n+1} b a b \in A^{+}$for all $n \in \mathbb{N}$, then $\left(w_{1}, w_{2}, \ldots\right)$ satisfies the hypothesis of Theorem 3.3, even though $a b$ is both a prefix and a suffix. In fact, $X_{0}=Y_{0}=\{\varepsilon, a b\}$ as each word contains a^{2} exactly once, thus no prefix with more than 4 letters can be a suffix. Then $S_{1}=\langle a b\rangle$ and again for the same reason as above $X_{1}=Y_{1}=\{\varepsilon, a b\}$. Hence $S_{\mathbf{w}}=\langle a b\rangle$ and the hypothesis of Theorem 3.3 can be easily verified.

Before presenting the proof of Theorem 3.3 we prove a technical result about $S_{\mathbf{w}}$.

Lemma 3.5. Let $\mathbf{w}=\left(w_{1}, w_{2}, \ldots\right)$ be an arbitrary sequence of elements of A^{+}such that $a, b \notin S_{\mathbf{w}}$. Then either $w_{1}, w_{2}, \ldots \in a A^{*} b$ and $S_{\mathbf{w}} \subseteq a A^{*} b \cup\{\varepsilon\} ;$ or $w_{1}, w_{2}, \ldots \in b A^{*} a$ and $S_{\mathrm{w}} \subseteq b A^{*} a \cup\{\varepsilon\}$.
Proof. We begin by showing that $w_{n} \in a A^{*} b$ for all $n \in \mathbb{N}$ or $w_{n} \in b A^{*} a$ for all $n \in \mathbb{N}$. Suppose that $w_{m} \in a A^{*}$ and $w_{n} \in A^{*} a$ for some $m, n \in \mathbb{N}$. Then, by conditions (1) and (2), $a \in S_{\mathrm{w}}$, which contradicts the assumption of the lemma. Hence if there exists $m \in \mathbb{N}$ such that $w_{m} \in a A^{*}$, then $w_{n} \in A^{*} b$ for all $n \in \mathbb{N}$. Similarly, if $w_{m} \in b A^{*}$, then $w_{n} \in A^{*} a$ for all $n \in \mathbb{N}$. Hence together these imply that $w_{n} \in a A^{*} b$ for all $n \in \mathbb{N}$ or $w_{n} \in b A^{*} a$ for all $n \in \mathbb{N}$, as required. Assume without loss of generality that $w_{n} \in a A^{*} b$ for all $n \in \mathbb{N}$. Since $S_{0}=\{\varepsilon\}$, it suffices to show that $X_{n} \cup Y_{n} \subseteq a A^{*} b \cup\{\varepsilon\}$ for all $n \geq 0$. Suppose that $n \geq 0$ is arbitrary.

If $x \in X_{n}$, then there exists $m \in \mathbb{N}$ such that $w_{m}=s x u x s^{\prime}$ for some $s, s^{\prime} \in S_{n}$ and $u \in A^{*}$. If $x \in A^{*} a$, then since $w_{m} \in a A^{*} b$ there exists $q \in A^{*}$ such that $w_{m}=a q a s^{\prime}$. Hence $a \in S_{\mathrm{w}}$ by (1), a contradiction. Hence $x \in A^{*} b \cup\{\varepsilon\}$, and, by symmetry, $x \in a A^{*} \cup\{\varepsilon\}$, as required. Suppose that $y \in Y_{n}$. Then there exist distinct $m, k \in \mathbb{N}$ such that $w_{m}=s y t=a q$ and $w_{k}=t^{\prime} y s^{\prime}$ where $s, s^{\prime} \in S_{n}$ and $q, t, t^{\prime} \in A^{*}$. If $y \in A^{*} a$, then $w_{k}=q^{\prime} a s^{\prime}$ for some $q^{\prime} \in A^{*}$ and so $a \in S_{\mathrm{w}}$ by (2), a contradiction. Hence $y \in A^{*} b \cup\{\varepsilon\}$ and by symmetry $y \in a A^{*} \cup\{\varepsilon\}$.

Lemma 3.6. Let $\mathbf{w}=\left(w_{1}, w_{2}, \ldots\right)$ be a sequence of words in A^{+}such that there are no $s, t, v \in A^{*}$ such that $w_{n}=$ stv with st,tv$\in S_{\mathbf{w}}$ for all $n \in \mathbb{N}$. Then there exsits $u_{n} \in A^{+}$ such that $w_{n}=p_{n} u_{n} s_{n}$ where p_{n} and s_{n} are the longest prefix and suffix, respectively, of w_{n} belonging to $S_{\mathbf{w}}$, for all $n \in \mathbb{N}$.
Proof. If sum of the lengths of s_{n} and p_{n} is bigger or equal to the length of w_{n}, then there exists $s, t, v \in A^{*}$ such that $w_{n}=s t v, p_{n}=s t$, and $s_{n}=t v$, which is a contradiction. Otherwise there is $u_{n} \in A^{+}$as required.

Proof of Theorem 3.3. First suppose that $a \in S_{\mathbf{w}}$. We consider three cases: there is $n \in \mathbb{N}$ such that b does not appear in $w_{n} ; b$ appears at least twice in at least one w_{n}; and for all $n \in \mathbb{N}$ the letter b appears exactly once in w_{n}. In the first case, $w_{n}=a^{i} \in S_{\mathrm{w}}$ for some $i \geq 1$, a contradiction. In the second case, $w_{n}=a^{i} b u b a^{j}$ for some $i, j \geq 0$ and some $u \in A^{*}$. Then $b \in S_{\mathrm{w}}$ by (1), and so $S_{\mathrm{w}}=A^{*}$, a contradiction. In the final case, $w_{n}=a^{i_{n}} b a^{j_{n}}$ for some $i_{n}, j_{n} \geq 0$ and all $n \in \mathbb{N}$. Then $b \in S_{\mathbf{w}}$ by (2), again a contradiction. Therefore $a \notin S_{\mathbf{w}}$ and the symmetric argument shows that $b \notin S_{\mathrm{w}}$. For the rest of the proof we assume that $a, b \notin S_{\mathrm{w}}$. By Lemma 3.5 we may assume that $w_{1}, w_{2}, \ldots \in a A^{*} b$ and $S_{\mathrm{w}} \subseteq a A^{*} b \cup\{\varepsilon\}$.

Denote by $F(A)$ the free group with A being the set of generators. Let Y be any set such that $|Y|=|X|$. Since $F(A)$ is countable and Y is infinite, we may assume that X is the set of eventually constant sequences over $F(A) \cup Y$ such that the first element is in $F(A)$. For convenience write the sequences from right to left, namely

$$
\begin{aligned}
X=\left\{\left(\ldots, x_{1}, x_{0}\right):\right. & x_{0} \in F(A), x_{i} \in F(A) \cup Y \text { for } i \geq 1, \text { and there is } K \in \mathbb{N} \\
& \text { such that } \left.x_{K}=x_{k} \text { for all } k \geq K\right\} .
\end{aligned}
$$

We proceed by proving a series of claims.
Claim 3.7. $u_{n} \in a A^{*} b$ for all $n \in \mathbb{N}$.
Proof. Let $n, m \in \mathbb{N}$ be distinct. Suppose that $u_{n} \in b A^{*}$. Then $u_{n}=b u$ for some $u \in A^{*}$, thus $w_{n}=p_{n} b u s_{n}$. Since $w_{m} \in a A^{*} b$ there is some $v \in A^{*}$ such that $w_{m}=a v b$, and so condition (2) implies that $b \in S_{\mathbf{w}}$, a contradiction. Hence $u_{n} \in a A^{*}$ and by symmetry $u_{n} \in A^{*} b$.

By construction $S_{\mathbf{w}}$ is generated by $G=\bigcup_{n \geq 0} X_{n} \cup Y_{n}$, a set of subwords of words in \mathbf{w}. Let G_{n} be the set of all words in G of length at most n. Recall that we say that a generating set T is irredundant if v is not an element of the monoid generated by $T \backslash\{v\}$ for every $v \in T$. Let $T_{0}=T_{1}=G_{1}=\{\varepsilon\}$. Then T_{1} is irredundant and $T_{0} \subseteq T_{1} \subseteq G_{1}$. For some $n \in \mathbb{N}$, suppose that we defined T_{n} such that T_{n} is an irredundant generating set for the monoid generated by G_{n} and $T_{n-1} \subseteq T_{n} \subseteq G_{n}$. Since S_{w} is a submonoid of A^{*}, it follows that $x y$ cannot be a shorter word than any of x or y for all $x, y \in S_{\mathbf{w}}$. If $x \in G_{n+1} \backslash G_{n}$ and $x \notin\left\langle T_{n}\right\rangle$ then $T_{n} \cup\{x\}$ is still irredundant. In fact, by above x cannot be used to generate any word in T_{n} as x is of length $n+1$ and every word in T_{n} is of length at most n. Since $G_{n+1} \backslash G_{n}$ is finite we can repeat this until an irredundant generating set T_{n+1} for the monoid generated by G_{n+1} is obtained. By the construction $T_{n} \subseteq T_{n+1} \subseteq G_{n+1}$. Therefore T_{n} satisfying the conditions above exists for all $n \in \mathbb{N}$. Let $T=\bigcup_{n \in \mathbb{N}} T_{n}$. Then it is routine to verify that T is an irredundant generating set for $S_{\mathbf{w}}$. We note that T only needs to be a monoid generating set, and so we may assume that $\varepsilon \notin T$.

Claim 3.8. For each $v \in T$, there are $t, t^{\prime} \in S_{\mathbf{w}}$ and $n, m \in \mathbb{N}$ such that $t v$ is a prefix of p_{n}, and $v t^{\prime}$ is a suffix of s_{m}.

Proof. Note that by construction, $T \subseteq \bigcup_{n \in \mathbb{N}} X_{n} \cup Y_{n}$. Suppose $v \in T \cap X_{k}$ for some $k \in \mathbb{N}$. Then $w_{n}=t v u v t^{\prime}$ for some $n \in \mathbb{N}, t, t^{\prime} \in S_{k}$, and $u \in A^{*}$. Hence $t v, v t^{\prime} \in S_{\mathbf{w}}$, and so it then follows from the maximality of p_{n} and s_{n} that $t v$ is a prefix of p_{n}, and $v t^{\prime}$ is a suffix of s_{n}. If $v \in T \cap Y_{k}$ for some $k \in \mathbb{N}$, then $w_{n}=t v q$ and $w_{m}=q^{\prime} v t^{\prime}$ for some $n, m \in \mathbb{N}, q, q^{\prime} \in A^{*}$, and $t, t^{\prime} \in S_{k}$. Hence $t v, v t^{\prime} \in S_{\mathbf{w}}$, and so $t v$ is a prefix of p_{n}, and $v t^{\prime}$ is a suffix of s_{m}.

Claim 3.9. For all $v \in T$ and all $n \in \mathbb{N}$, a prefix of v is not a suffix of u_{n}, and a suffix of v is not a prefix of u_{n}.

Proof. Let $v \in T$ and $n \in \mathbb{N}$ be arbitrary. By Claim 3.8 there are $t, t^{\prime} \in S_{\mathbf{w}}$ such that $t v$ is a prefix of p_{m} and $v t^{\prime}$ is a suffix of s_{k} for some $m, k \in \mathbb{N}$. Then there is $r \in A^{*}$ so that $w_{m}=t v r u_{m} s_{m}$. Suppose that q is a non-trivial prefix of v which is also a suffix of u_{n}. First, consider the case where $m=n$. Then $q \in S_{\mathbf{w}}$ by (1) as $w_{m}=t q h q s_{m}$ for some $h \in A^{*}$. If $m \neq n$, then, since $w_{m}=t v r u_{m} s_{m}$ and $w_{n}=p_{n} u_{n} s_{n}$ where $t, s_{n} \in S_{\mathbf{w}}$, it follows from (2) that $q \in S_{\mathbf{w}}$. Hence in both cases $q \in S_{\mathbf{w}}$, which contradicts the maximality of s_{n}.

The case where q is non-trivial suffix of v which is a prefix of u_{n} follows in an almost identical way, using $w_{k}=p_{k} u_{k} r^{\prime} v t^{\prime}$ for some $r^{\prime} \in A^{*}$.

Claim 3.10. For every $v, v^{\prime} \in T$, if a non-trivial prefix q of v is a suffix of v^{\prime}, then $q=v=v^{\prime}$.
Proof. Let $v, v^{\prime} \in T$ be arbitrary. Suppose that $v=q r$ and $v^{\prime}=r^{\prime} q$ for some $r, r^{\prime} \in A^{*}$ and $q \in A^{+}$. By Claim 3.8 there are $t, t^{\prime} \in S_{\mathbf{w}}$ and $n, m \in \mathbb{N}$ such that $t v$ is a prefix of p_{n}, and $v^{\prime} t^{\prime}$ is a suffix of s_{m}. If $n=m$ then there is $x \in A^{*}$ such that $w_{n}=t v x v^{\prime} t^{\prime}=t q r x r^{\prime} q t^{\prime}$, and so $q \in S_{\mathbf{w}}$ by (1) since $t, t^{\prime} \in S_{\mathbf{w}}$. If $n \neq m$, then $w_{n}=t v x=t q r x$ and $w_{m}=x^{\prime} v^{\prime} t^{\prime}=x^{\prime} r^{\prime} q t^{\prime}$ for some $x, x^{\prime} \in A^{*}$. Since $t, t^{\prime} \in S_{\mathbf{w}}$, (2) implies that $q \in S_{\mathbf{w}}$. Hence $q \in S_{\mathbf{w}}$ in both cases.

Since $v \in T$, by Claim 3.8 there are $n, m \in \mathbb{N}, l, l^{\prime} \in S_{\mathbf{w}}$ so that $l v$ is a prefix of p_{n} and $v l^{\prime}$ is a suffix of s_{m}. As in the previous paragraph, if $n=m$ then there is $x \in A^{*}$ such that $w_{n}=l v x v l^{\prime}=l q r x q r l^{\prime}$, and so $r \in S_{\mathbf{w}}$ by (1) since $l q, l^{\prime} \in S_{\mathbf{w}}$. If $n \neq m$, then $w_{n}=l v x=l q r x$ and $w_{m}=x^{\prime} v l^{\prime}=x^{\prime} q r l^{\prime}$ for some $x, x^{\prime} \in A^{*}$. Since $l q, l^{\prime} \in S_{\mathbf{w}}$, (2) implies that $r \in S_{\mathbf{w}}$. Hence $r \in S_{\mathbf{w}}$ in both cases. Since T is irredundant, $q, r \in S_{\mathbf{w}}$, and $q r \in T$, it follows that $r=\varepsilon$. The same argument for v^{\prime} implies that $r^{\prime}=\varepsilon$, and so $q=v=v^{\prime}$.

Let $f_{1}, f_{2}, \ldots \in X^{X}$. We will construct a homomorphism $\Phi: A^{+} \rightarrow X^{X}$ such that $\left(w_{n}\right) \Phi=$ f_{n} for all $n \in \mathbb{N}$. In order to do that we will require the following auxiliary functions $\alpha, \beta, \gamma \in$ X^{X} defined as follows:

$$
\left(\ldots, x_{1}, x_{0}\right) \alpha=\left(\ldots, x_{0}, a\right) \quad \text { and } \quad\left(\ldots, x_{1}, x_{0}\right) \beta=\left(\ldots, x_{0}, b\right) .
$$

If $x_{i-1} \ldots x_{0}=v \in T$ for some $i \geq 1, x_{j} \in A^{+}$for all $j \in\{0, \ldots i-1\}$, and $x_{i} \in F(A)$, we define

$$
\left(\ldots, x_{1}, x_{0}\right) \gamma=\left(\ldots, x_{i+1}, x_{i} v\right)
$$

and otherwise define $\left(\ldots, x_{1}, x_{0}\right) \gamma=\left(\ldots, x_{1}, x_{0}\right)$.
Suppose there are $i, i^{\prime} \in \mathbb{N}$, such that $i \geq i^{\prime}, x_{i-1} \ldots x_{0}=v$, and $x_{i^{\prime}-1} \ldots x_{0}=v^{\prime}$ for some $v, v^{\prime} \in T$, and so that $x_{j} \in A^{+}$for all $j \in\{0, \ldots, i-1\}$. Then v^{\prime} is a suffix of v. By Claim 3.10 this is only possible if $v=v^{\prime}$. Hence γ is well-defined. Let $\Psi: A^{+} \longrightarrow X^{X}$ be the canonical homomorphism induced by $(a) \Psi=\alpha$ and $(b) \Psi=\beta \circ \gamma$. We will later use Ψ to define the required Φ.
Claim 3.11. For $v \in a A^{*}$ such that no prefix of v is a suffix of a word in T, there are $z_{1}, \ldots, z_{k} \in A^{+}$such that $z_{1} \ldots z_{k}=v$ and $\left(\ldots, x_{1}, x_{0}\right)((v) \Psi)=\left(\ldots, x_{1}, x_{0}, z_{1}, \ldots, z_{k}\right)$ for every $\left(\ldots, x_{1}, x_{0}\right) \in X$.
Proof. Let $v \in a A^{*}$ be such that no prefix of v is a suffix of a word in T, and let $v=y_{1} \ldots y_{m}$ for some $m \in \mathbb{N}$ and $y_{1}, \ldots, y_{m} \in A$. Then $y_{1}=a$, and so $\left(\ldots, x_{1}, x_{0}\right) \alpha=\left(\ldots, x_{1}, x_{0}, y_{1}\right)$ for all $\left(\ldots, x_{1}, x_{0}\right) \in X$. Suppose that for some $i \in\{1, \ldots, m-1\}$ there are $j \in \mathbb{N}$ and $z_{1}, \ldots, z_{j} \in A^{+}$ such that $\left(\ldots, x_{1}, x_{0}\right)\left(\left(y_{1} \ldots y_{i}\right) \Psi\right)=\left(\ldots, x_{1}, x_{0}, z_{1}, \ldots, z_{j}\right)$ for every $\left(\ldots, x_{1}, x_{0}\right) \in X$ and $y_{1} \ldots y_{i}=z_{1} \ldots z_{j}$. We proceed with an induction on i.

In order to prove the inductive step, there are two cases to consider, either $y_{i+1}=a$, or $y_{i+1}=b$. Suppose that $y_{i+1}=a$. Since Ψ is a homomorphism, $\left(\ldots, x_{1}, x_{0}\right)\left(\left(y_{1} \ldots y_{i+1}\right) \Psi\right)=$ $\left(\ldots, x_{1}, x_{0}, z_{1}, \ldots, z_{j}, a\right)$ for all $\left(\ldots, x_{1}, x_{0}\right) \in X$ and $z_{1} \ldots z_{j} a=y_{1} \ldots y_{i+1}$, as required.

Suppose that $y_{i+1}=b$. Then $\left(\ldots, x_{1}, x_{0}\right)\left(\left(y_{1} \ldots y_{i+1}\right) \Psi\right)=\left(\ldots, x_{1}, x_{0}, z_{1}, \ldots, z_{j}, b\right) \gamma$ for all $\left(\ldots, x_{1}, x_{0}\right) \in X$ and $z_{1} \ldots z_{j} b=y_{1} \ldots y_{i+1}$, as Ψ is a homomorphism. Since $y_{1} \ldots y_{i+1}$ is a prefix of v, by the assumption it cannot be a suffix of any word in T. Thus $z_{1} \ldots z_{j} b \notin T$ and if $x_{0}, \ldots, x_{t} \in A^{+}$then $x_{t} \ldots x_{0} z_{1} \ldots z_{j} b \notin T$ for all $t \in \mathbb{N}$. Hence either γ acts as the identity on $\left(\ldots, x_{1}, x_{0}, z_{1}, \ldots, z_{j}, b\right)$, or there is $k>1$ such that $z_{k} \ldots z_{j} b \in T$. In the later case

$$
\begin{aligned}
\left(\ldots, x_{1}, x_{0}\right)\left(\left(y_{1} \ldots y_{i+1}\right) \Psi\right) & =\left(\ldots, x_{1}, x_{0}, z_{1}, \ldots, z_{j}, b\right) \gamma \\
& =\left(\ldots, x_{1}, x_{0}, z_{1}, \ldots, z_{k-2}, z_{k-1} z_{k} \ldots z_{j} b\right),
\end{aligned}
$$

and $z_{1} \ldots z_{j} b=y_{1} \ldots y_{i+1}$. In both cases there are $j \in \mathbb{N}$ and $z_{1}, \ldots, z_{j} \in A^{+}$such that $\left(\ldots, x_{1}, x_{0}\right)\left(\left(y_{1} \ldots y_{i+1}\right) \Psi\right)=\left(\ldots, x_{1}, x_{0}, z_{1}, \ldots, z_{j}\right)$ for every $\left(\ldots, x_{1}, x_{0}\right) \in X$ and $y_{1} \ldots y_{i+1}=z_{1} \ldots z_{j}$, which proves the inductive step. Hence the claim holds by induction.
Claim 3.12. Let $v \in S_{\mathbf{w}}$. Then $\left(\ldots, x_{1}, x_{0}\right)((v) \Psi)=\left(\ldots, x_{1}, x_{0} v\right)$ for all $\left(\ldots, x_{1}, x_{0}\right) \in X$ and $(v) \Psi$ is a bijection.
Proof. Let $v \in T$. Then $v \in a A^{*} b$ as $S_{\mathbf{w}} \subseteq a A^{*} b \cup\{\varepsilon\}$, and so $v=v^{\prime} b$ for some $v^{\prime} \in a A^{*}$. By Claim 3.10 any proper prefix of v, and hence any prefix of v^{\prime}, is not a suffix of any word in T. Hence by Claim 3.11 there exists $j \in \mathbb{N}$ and $z_{1}, \ldots, z_{j} \in A^{+}$such that $\left(\ldots, x_{1}, x_{0}\right)\left(\left(v^{\prime}\right) \Psi\right)=$ $\left(\ldots, x_{1}, x_{0}, z_{1}, \ldots, z_{j}\right)$ for all $\left(\ldots, x_{1}, x_{0}\right) \in X$ and $z_{1} \ldots z_{j}=v^{\prime}$. Since $v=z_{1} \ldots z_{j} b$, Ψ is a homomorphism, and $x_{0} \in F(A)$, it follows that

$$
\begin{equation*}
\left(\ldots, x_{1}, x_{0}\right)((v) \Psi)=\left(\ldots, x_{1}, x_{0}, z_{1}, \ldots, z_{j}, b\right) \gamma=\left(\ldots, x_{1}, x_{0} v\right) . \tag{3.1}
\end{equation*}
$$

Clearly, $\left(\ldots, x_{1}, x_{0}\right) \mapsto\left(\ldots, x_{1}, x_{0} v^{-1}\right)$ is the inverse map of $(v) \Psi$. Therefore, we are done, as T is a generating set for $S_{\mathbf{w}}$.

In order to define the required Φ, we need a final auxiliary function $\delta \in X^{X}$, defined as follows. If there exist $n, i \geq 1$, such that $x_{i-1} \cdots x_{0}=u_{n}, x_{0}, \ldots, x_{i-1} \in A^{+}$, and $x_{i} \in F(A)$, then we define

$$
\left(\ldots, x_{1}, x_{0}\right) \delta=\left(\ldots, x_{i+1}, x_{i} p_{n}^{-1}\right) f_{n} \circ\left(\left(s_{n}\right) \Psi\right)^{-1}
$$

and we define $\left(\ldots, x_{1}, x_{0}\right) \delta=\left(\ldots, x_{1}, x_{0}\right)$ otherwise. Note that $\left(\left(s_{n}\right) \Psi\right)^{-1}$ is defined by Claim 3.12. Suppose there are $i, i^{\prime}, n, n^{\prime} \in \mathbb{N}, i \geq i^{\prime}$ such that $x_{i-1} \ldots x_{0}=u_{n}$ and $x_{i^{\prime}-1} \ldots x_{0}=$ $u_{n^{\prime}}$ where $x_{j} \in A^{+}$for all $j \in\{0, \ldots, i-1\}$ and $x_{i}, x_{i^{\prime}} \in F(A)$. Then $u_{n^{\prime}}$ is a suffix of u_{n}. On the other hand, if $n^{\prime} \neq n$, then $u_{n^{\prime}}$ is not a subword of w_{n} (by assumption in the statement of the theorem) and hence not of u_{n} either. Hence $n=n^{\prime}$, and so $i=i^{\prime}$, and δ is well-defined.

Let Φ be the canonical homomorphism induced by $(a) \Phi=\alpha$ and $(b) \Phi=\beta \circ \gamma \circ \delta$.
Claim 3.13. If $v \in S_{\mathbf{w}}$, then $(v) \Phi=(v) \Psi$.
Proof. Suppose that $v=y_{1} \ldots y_{m} \in T$ where $y_{i} \in A$ for all $i \in\{1, \ldots, m\}$. Since $S_{\mathbf{w}} \subseteq a A^{*} b \cup$ $\{\varepsilon\}$, it follows that $y_{1}=a$, and so $\left(y_{1}\right) \Phi=\alpha=\left(y_{1}\right) \Psi$. Suppose $\left(y_{1} \ldots y_{i}\right) \Phi=\left(y_{1} \ldots y_{i}\right) \Psi$ for some $i \in\{1, \ldots, m-1\}$. We proceed by indution on i.

It follows from the inductive hypothesis that $\left(y_{1} \ldots y_{i+1}\right) \Phi=\left(y_{1} \ldots y_{i}\right) \Psi \circ\left(y_{i+1}\right) \Phi$. If $y_{i+1}=a$, then $\left(y_{i+1}\right) \Phi=\left(y_{i+1}\right) \Psi$, proving the first case of the inductive step. Suppose that $y_{i+1}=b$, then $\left(y_{i+1}\right) \Phi=\left(y_{i+1}\right) \Psi \circ \delta$, and so $\left(y_{1} \ldots y_{i+1}\right) \Phi=\left(y_{1} \ldots y_{i+1}\right) \Psi \circ \delta$. If $i+1<m$, then $y_{1} \ldots y_{i+1}$ is a proper prefix of v. By Claim 3.10 for any $j \in\{1, \ldots, i+1\}$ the proper prefix $y_{1} \ldots y_{j}$ of v is a not a suffix of any word in T. Since $y_{1} \ldots y_{i+1} \in a A^{*}$, by Claim 3.11 there exists $j \in \mathbb{N}$ and $z_{1}, \ldots, z_{j} \in A^{+}$such that $z_{1} \ldots z_{j}=y_{1} \ldots y_{i+1}$ and $\left(\ldots, x_{1}, x_{0}\right)\left(\left(y_{1} \ldots y_{i+1}\right) \Psi\right)=\left(\ldots, x_{1}, x_{0}, z_{1}, \ldots, z_{j}\right)$ for all $\left(\ldots, x_{1}, x_{0}\right) \in X$. If $i+1=m$, then $y_{1} \ldots y_{i+1}=v \in S_{\mathbf{w}}$, and so $\left(\ldots, x_{1}, x_{0}\right)\left(\left(y_{1} \ldots y_{i+1}\right) \Psi\right)=\left(\ldots, x_{1}, x_{0} y_{1} \ldots y_{i+1}\right)$ for all $\left(\ldots, x_{1}, x_{0}\right) \in X$ by Claim 3.12. Hence in any case there are $j \geq 0, z_{0} \in A^{*}$, and $z_{1}, \ldots, z_{j} \in A^{+}$such that $z_{0} \ldots z_{j}=y_{1} \ldots y_{i+1}$ and for all $\left(\ldots, x_{1}, x_{0}\right) \in X$

$$
\begin{equation*}
\left(\ldots, x_{1}, x_{0}\right)\left(\left(y_{1} \ldots y_{i+1}\right) \Psi\right)=\left(\ldots, x_{1}, x_{0} z_{0}, z_{1}, \ldots, z_{j}\right) \tag{3.2}
\end{equation*}
$$

We will show that δ acts as the identity on $\left(\ldots, x_{1}, x_{0}\right)\left(\left(y_{1} \ldots y_{i+1}\right) \Psi\right)$ for all $\left(\ldots, x_{1}, x_{0}\right) \in$ X. Fix $\left(\ldots, x_{1}, x_{0}\right) \in X$, and let $z_{0}, \ldots, z_{j} \in A^{+}$be as in (3.2). Suppose that there are $k, n \geq 1$ such that $x_{k-1}, \ldots, x_{1}, x_{0} z_{0} \in A^{+}, x_{k} \in F(A)$, and $x_{k-1} \ldots x_{0} z_{0} \ldots z_{j}=u_{n}$. Then $z_{0} \ldots z_{j}=y_{1} \ldots y_{i+1}$ is both a prefix of v and a suffix of u_{n}, contradicting Claim 3.9. If $k>0$ and $z_{k} \ldots z_{j}=u_{n}$, then u_{n} is a subword of v for some $n \in \mathbb{N}$. By Claim 3.8 there are $t \in S_{\mathbf{w}}$ and $m \in \mathbb{N}$ such that $t v$ is a prefix of p_{m}, and so u_{n} is a subword of p_{m}. Moreover, by the assumption of the theorem $m=n$, contradicting by the hypothesis of the theorem. Hence δ acts as identity on $\left(\ldots, x_{1}, x_{0} z_{0}, z_{1}, \ldots, z_{j}\right)$, proving that $\left(y_{1} \ldots y_{i+1}\right) \Phi=\left(y_{1} \ldots y_{i+1}\right) \Psi$, and so the inductive step. It then follows by induction that $\left(y_{1} \ldots y_{i}\right) \Phi=\left(y_{1} \ldots y_{i}\right) \Psi$ for all $i \in\{1, \ldots, m\}$. In particular, if $i=m$, then $(v) \Phi=(v) \Psi$. Since $v \in T$ is arbitrary and T is a generating set for $S_{\mathbf{w}}$, it follows that $(v) \Phi=(v) \Psi$ for all $v \in S_{\mathbf{w}}$.
Claim 3.14. $\left(u_{n}\right) \Phi=\left(u_{n}\right) \Psi \circ \delta$ for all $n \in \mathbb{N}$.
Proof. Let $n \in \mathbb{N}$, and let $u_{n}=y_{1} \ldots y_{m}$ where $y_{1}, \ldots, y_{m} \in A$. We will now show that $\left(y_{1} \ldots y_{m-1}\right) \Phi=\left(y_{1} \ldots y_{m-1}\right) \Psi$. Since $y_{1}=a$ by Claim 3.7, it follows that $\left(y_{1}\right) \Phi=\alpha=\left(y_{1}\right) \Psi$. Suppose $\left(y_{1} \ldots y_{i}\right) \Phi=\left(y_{1} \ldots y_{i}\right) \Psi$ for some $i \in\{1, \ldots, m-2\}$. Then $\left(y_{1} \ldots y_{i+1}\right) \Phi=$ $\left(y_{1} \ldots y_{i}\right) \Psi \circ\left(y_{i+1}\right) \Phi$. If $y_{i+1}=a$, then $\left(y_{i+1}\right) \Phi=\left(y_{i+1}\right) \Psi$, and so the inductive hypothesis is satisfied. Suppose $y_{i+1}=b$. Then $\left(y_{i+1}\right) \Phi=\left(y_{i+1}\right) \Psi \circ \delta$. Hence $\left(y_{1} \ldots y_{i+1}\right) \Phi=$
$\left(y_{1} \ldots y_{i+1}\right) \Psi \circ \delta$. By Claim 3.9, for every $j \in\{1, \ldots, i+1\}$ the proper prefix $y_{1} \ldots y_{j}$ of u_{n} is not a suffix of any word in T. By Claim $3.7, y_{1} \ldots y_{j} \in a A^{*}$, and so by Claim 3.11 there exists $j \in \mathbb{N}$ and $z_{1}, \ldots, z_{j} \in A^{+}$such that $\left(\ldots, x_{1}, x_{0}\right)\left(\left(y_{1} \ldots y_{i+1}\right) \Psi\right)=\left(\ldots, x_{1}, x_{0}, z_{1}, \ldots, z_{j}\right)$ for all $\left(\ldots, x_{1}, x_{0}\right) \in X$ and $z_{1} \ldots z_{j}=y_{1} \ldots y_{i+1}$.

Suppose that $z_{k} \ldots z_{j}=u_{t}$ for some $k \in\{1, \ldots, j\}$ and $t \in \mathbb{N}$. Then u_{t} is a subword of u_{n}, and so of w_{n}. Hence $t=n$ by the hypothesis of the theorem, and thus u_{n} is a proper subword of u_{n}, which is a contradiction. Suppose that $u_{t}=x_{k} \ldots x_{0} z_{1} \ldots z_{j}$ for some $k \geq 0$ and $t \in \mathbb{N}$ such that $x_{0}, \ldots, x_{k} \in A^{+}$. Then $z_{1} \ldots z_{j}$ is a prefix of u_{n} and a suffix of u_{t}, and so $z_{1} \ldots z_{j} \in S_{\mathbf{w}}$, since S_{w} satisfies condition (2). But then $w_{n}=p_{n} u_{n} s_{n}=\left(p_{n} z_{1} \ldots z_{j}\right)\left(y_{i+2} \ldots y_{m}\right) s_{n}$ with $p_{n} z_{1} \ldots z_{j} \in S_{\mathbf{w}}$, and this contradicts the maximality of the length of p_{n}. So δ acts as the identity on $\left(\ldots, x_{1}, x_{0}, z_{1}, \ldots, z_{j}\right)$. Hence $\left(y_{1} \ldots y_{i+1}\right) \Phi=\left(y_{1} \ldots y_{i+1}\right) \Psi$. By induction $\left(y_{1} \ldots y_{m-1}\right) \Phi=\left(y_{1} \ldots y_{m-1}\right) \Psi$. Finally, $\left(u_{n}\right) \Phi=\left(u_{n}\right) \Psi \circ \delta$, as $y_{m}=b$.

Let $n \in \mathbb{N}$. It follows from Claim 3.12, Claim 3.13, Claims 3.14, and the fact that Φ is a homomorphism, that for all $\left(\ldots, x_{1}, x_{0}\right) \in X$

$$
\begin{aligned}
\left(\ldots, x_{1}, x_{0}\right)\left(w_{n}\right) \Phi & =\left(\ldots, x_{1}, x_{0}\right)\left(\left(p_{n}\right) \Psi \circ\left(u_{n}\right) \Psi \circ \delta \circ\left(s_{n}\right) \Psi\right) \\
& =\left(\ldots, x_{1}, x_{0} p_{n}\right)\left(\left(u_{n}\right) \Psi \circ \delta \circ\left(s_{n}\right) \Psi\right) .
\end{aligned}
$$

It follows from Claims 3.7, 3.9 and 3.11 that there are $z_{1}, \ldots, z_{k} \in A^{+}$such that $z_{1} \ldots z_{k}=u_{n}$ and

$$
\begin{aligned}
\left(\ldots, x_{1}, x_{0}\right)\left(w_{n}\right) \Phi & =\left(\ldots, x_{1}, x_{0} p_{n}\right)\left(\left(u_{n}\right) \Psi \circ \delta \circ\left(s_{n}\right) \Psi\right) \\
& =\left(\ldots, x_{1}, x_{0} p_{n}, z_{1}, z_{2}, \ldots, z_{k}\right) \delta \circ\left(s_{n}\right) \Psi .
\end{aligned}
$$

Finally, by the definition of δ

$$
\begin{aligned}
\left(\ldots, x_{1}, x_{0}\right)\left(w_{n}\right) \Phi & =\left(\ldots, x_{1}, x_{0} p_{n}, z_{1}, z_{2}, \ldots, z_{k}\right) \delta \circ\left(s_{n}\right) \Psi \\
& =\left(\ldots, x_{1}, x_{0}\right) f_{n} \circ\left(\left(s_{n}\right) \Psi\right)^{-1} \circ\left(s_{n}\right) \Psi \\
& =\left(\ldots, x_{1}, x_{0}\right) f_{n} .
\end{aligned}
$$

Therefore $\left(w_{n}\right) \Phi=f_{n}$, and since n was arbitrary, $\left(w_{1}, w_{2}, \ldots\right)$ is a universal sequence.
Acknowledgements. The authors would like to thank Manfred Droste for pointing out that the condition that $|X|$ is a regular cardinal was not required in Corollaries 2.3. The authors also thank the anonymous referee for their helpful comments and corrections.

References

[1] S. Banach. Sur un theorème de m. sierpiński. Fund. Math., 25:5-6, 1935.
[2] G. M. Bergman. Generating infinite symmetric group. Bull. London Math. Soc., 38:429-440, 2006.
[3] G. M. Bergman. Problem list from algebras, lattices and varieties: a conference in honor of Walter Taylor, University of Colorado, 15-18 August, 2004. Algebra Universalis, 55(4):509-526, 2006.
[4] Randall Dougherty and Jan Mycielski. Representations of infinite permutations by words. II. Proc. Amer. Math. Soc., 127(8):2233-2243, 1999.
[5] M. Droste and J. K. Truss. On representing words in the automorphism group of the random graph. J. Group Theory, 9(6):815-836, 2006.
[6] Manfred Droste. Classes of universal words for the infinite symmetric groups. Algebra Universalis, 20(2):205-216, 1985.
[7] Manfred Droste and Saharon Shelah. On the universality of systems of words in permutation groups. Pacific J. Math., 127(2):321-328, 1987.
[8] James East. Generation of infinite factorizable inverse monoids. Semigroup Forum, 84(2):267-283, 2012.
[9] James East. Infinite partition monoids. Internat. J. Algebra Comput., 24(4):429-460, 2014.
[10] James East. Infinite dual symmetric inverse monoids. Periodica Mathematica Hungarica, Jul 2017.
[11] Fred Galvin. Generating countable sets of permutations. J. London Math. Soc. (2), 51(2):230-242, 1995.
[12] John M. Howie. Fundamentals of semigroup theory, volume 12 of London Mathematical Society Monographs. New Series. The Clarendon Press Oxford University Press, New York, 1995. Oxford Science Publications.
[13] J. Hyde, J. Jonušas, J. D. Mitchell, and Y. Péresse. Universal sequences for the order-automorphisms of the rationals. J. Lond. Math. Soc. (2), 94(1):21-37, 2016.
[14] Alexander S. Kechris and Christian Rosendal. Turbulence, amalgamation, and generic automorphisms of homogeneous structures. Proc. Lond. Math. Soc. (3), 94(2):302-350, 2007.
[15] Roger C. Lyndon. Words and infinite permutations. In Mots, Lang. Raison. Calc., pages 143-152. Hermès, Paris, 1990.
[16] V. Maltcev, J. D. Mitchell, and N. Ruškuc. The Bergman property for semigroups. J. Lond. Math. Soc. (2), 80(1):212-232, 2009.
[17] George F. McNulty. The decision problem for equational bases of algebras. Ann. Math. Logic, 10(3-4):193259, 1976.
[18] J. D. Mitchell and Y. Péresse. Generating countable sets of surjective functions. Fund. Math., 213(1):6793, 2011.
[19] Jan Mycielski. Representations of infinite permutations by words. Proc. Amer. Math. Soc., 100(2):237-241, 1987.
[20] Oystein Ore. Some remarks on commutators. Proc. Amer. Math. Soc., 2:307-314, 1951.
[21] W. Sierpiński. Sur l'approximation des fonctions continues par les superpositions de quatre fonction. Fund. Math., 23:119-120, 1934.
[22] W. Sierpiński. Sur les suites infinies de fonctions définies dans les ensembles quelconques. Fund. Math., 24:209-212, 1935.
[23] D. M. Silberger. Are primitive words universal for infinite symmetric groups? Trans. Amer. Math. Soc., 276(2):841-852, 1983.
[24] Walter Taylor. Some universal sets of terms. Trans. Amer. Math. Soc., 267(2):595-607, 1981.
[25] J. K. Truss. private communication, 2009.

