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Abstract

In past decades, much progress has been achieved in understanding the origin and evolution of coronal mass
ejections (CMEs). In situ observations of the counterparts of CMEs, especially magnetic clouds (MCs) near the
Earth, have provided measurements of the structure and total flux of CME flux ropes. However, it has been difficult
to measure these properties in an erupting CME flux rope, in particular in a preexisting flux rope. In this work, we
propose a model to estimate the toroidal flux of a preexisting flux rope by subtracting the flux contributed by
magnetic reconnection during the eruption from the flux measured in the MC. The flux contributed by the
reconnection is derived from geometric properties of two-ribbon flares based on a quasi-2D reconnection model.
We then apply the model to four CME/flare events and find that the ratio of toroidal flux in the preexisting flux
rope to that in the associated MC lies in the range 0.40–0.88. This indicates that the toroidal flux of the preexisting
flux rope makes an important contribution to that of the CME flux rope and is usually at least as large as the flux
arising from the eruption process for the selected events.

Unified Astronomy Thesaurus concepts: Solar corona (1483); Solar coronal mass ejections (310); Solar
flares (1496)

1. Introduction

Coronal mass ejections (CMEs) represent rapid eruptions of
magnetized plasma in the solar corona, and may be observed as
structures that are brighter than the background in white-light
coronagraph images (Hundhausen et al. 1984). In a very short
period of time, CMEs are accelerated from several kilometers
per second to speeds that are sometimes over 1000 km s−1, and
they propagate into interplanetary space with a constant or
slightly varying speed (Zhang et al. 2001). CMEs propagating in
interplanetary space are also called interplanetary coronal mass
ejections (ICMEs; Burlaga et al. 1982; Klein & Burlaga 1982),
some of which are termed “magnetic clouds” (MCs) when they
possess a rotation of the magnetic field (Burlaga 1991) and a
decrease in proton and electron temperature (Gosling et al. 1987;
Richardson & Cane 1995). When MCs arrive at the Earth, they
may interact with the magnetosphere and cause geomagnetic and
ionospheric storms, even destroying satellite navigation and
space communications (Gosling 1993).

CMEs often include a magnetic flux rope, namely, a
coherent structure with all magnetic field lines twisting around
a central axis, supported by internal helical bright structures
within CMEs observed by the Large Angle and Spectrometric
Coronagraph (LASCO) (Chen et al. 1997; Dere et al. 1999). It
is even believed that the flux rope sometimes exists prior to
the eruption, and hence it is called a preexisting flux rope. The
evidence for a preexisting flux rope includes (see the review
by Cheng et al. 2017 and references therein) filaments (e.g.,
Kuperus & Raadu 1974; Demoulin & Priest 1989; Priest
et al. 1989; Aulanier & Demoulin 1998; Guo et al. 2010), coronal

cavities (e.g., Wang & Stenborg 2010), sigmoids (e.g., Green &
Kliem 2009; Liu et al. 2010; James et al. 2018), and hot channels
(e.g., Zhang et al. 2012; Cheng et al. 2013, 2014).
Eruptive flares are closely related to CMEs (Munro et al.

1979; Sheeley et al. 1983; Webb & Hundhausen 1987; St. Cyr
& Webb 1991; Harrison 1995) and appear as a sudden
brightening in the solar atmosphere across almost all of the
electromagnetic spectrum (Benz 2008). The brightening often
appears as two flare ribbons in the lower atmosphere, which are
believed to correspond to the feet of reconnected field lines
connecting opposite polarities of the magnetic field. It is worth
mentioning that the morphology of the two ribbons sometimes
appears as two “J”s. The field lines of the newly formed flux
rope are suggested to anchor at the hooked part of J-shaped
ribbons, while the footpoints of flare loops mainly lie on the
straight parts (Janvier et al. 2014; Aulanier & Dudík 2019).
Regardless of whether the two ribbons of eruptive flares present
a double “J” or not, their evolution usually has two stages
(Qiu 2009; Qiu et al. 2010). During the first stage (zipper
phase), which has been modeled by Priest & Longcope (2017),
the flare ribbons have a zipper motion, during which small
patches of the chromosphere brighten on both sides of the
polarity inversion line (PIL), and then they spread in a direction
parallel to the PIL with a speed ranging from 10 to 100 km s−1

and quickly form a pair of ribbons (Qiu 2009; Liu et al. 2010;
Qiu et al. 2010, 2017; Cheng et al. 2012). During the second
stage (main phase), the two ribbons separate from each other in
a direction perpendicular to the PIL (Wang et al. 2003; Fletcher
et al. 2004; Qiu et al. 2004). The separation speed varies from
tens of km s−1 (Švestka et al. 1982; Wang et al. 2003) or even
110 km s−1 (Xie et al. 2009) at the beginning to about 1 km s−1

in the later stages (Wang et al. 2003). At the same time, a row
of hot arcades joining the two ribbons slowly rises as the
ribbons separate.
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During the eruption, magnetic reconnection plays an
important role in continuously building up extra flux around
a preexisting flux rope, which is named the flux rope envelope
in the following. A classical model involving magnetic
reconnection is the 2D CSHKP model, which well explains
the separation motion of two-ribbon flares (Carmichael 1964;
Sturrock 1966; Hirayama 1974; Kopp & Pneuman 1976).
Subsequently, Shibata (1999) and Lin & Forbes (2000)
interpreted CMEs by introducing a flux rope in this model. It
is argued that, once the flux rope erupts, it stretches the
overlying field and induces magnetic reconnection between two
antiparallel legs of the stretched field lines. The reconnection
rapidly produces the twisted flux rope envelope, finally forming
a CME above the reconnection site and the post-flare loops
below, whose footpoints map to the two flare ribbons (Priest &
Forbes 2002). Such a model is only able to interpret the flares
well with two straight ribbons. As the reconnection occurs
between two legs of field lines at higher and higher altitudes,
the post-flare loops rise with their footpoints separating from
each other, which is the separation motion of flare ribbons. In
this 2D model, the closed fluxes that are formed during the
reconnection go totally to the poloidal flux of the CME flux
rope (e.g., Lin et al. 2004; Qiu et al. 2007). This means that the
toroidal flux of the CME flux rope is completely contributed by
the preexisting flux rope.

However, in a real CME flux rope, the toroidal flux originates
both from the preexisting flux rope and the reconnection process
because the overlying field is sheared. Thus the CSHKP model
should be modified to incorporate the real situation. The quasi-
2D reconnection model, where the reconnection occurs between
sheared overlying field lines, is an extension of the CSHKP
model. It was proposed by Priest & Longcope (2017), and also
mentioned in van Ballegooijen & Martens (1989), Longcope &
Beveridge (2007), and Green et al. (2011). A similar process,
i.e., the reconnection between sheared overlying field lines, was
implemented by Manchester et al. (2004), Aulanier et al. (2012),
and Threlfall et al. (2018) in their simulations. In the quasi-2D
reconnection model, the flare ribbons are still straight and also
separate from each other as the post-flare loops rise. However,
unlike the CSHKP model, both the flux rope envelope and the
post-flare loops formed in the quasi-2D reconnection are
anchored on the flare ribbons, and the newly formed twisting
field lines that constitute the flux rope envelope are no longer
self-closed. The envelope flux actually has two components: one
is the poloidal component, the other is parallel to the axis of the
magnetic flux rope, thus making a contribution to the toroidal
flux of the CME flux rope. In this paper, based on the quasi-2D
reconnection model, we propose a model to estimate the toroidal
flux of the preexisting flux rope for eruptive events whose flare
ribbons show primarily a separation motion, and apply it to four
CME/flare events. In Section 2, we present our model. In
Section 3, we quantify the model parameters and apply the
method to observations. A summary and discussions are given in
Section 4.

2. Model for Estimating the Toroidal Flux of a Preexisting
Flux Rope

2.1. Quasi-2D Reconnection Model

We first introduce the quasi-2D reconnection model
(Figures 1 and 2) proposed by Priest & Longcope (2017) and
Threlfall et al. (2018), which grew out of earlier work by van

Ballegooijen & Martens (1989) and Green et al. (2011). In the
left panel of Figure 1, the line P+P− represents the preexisting
flux rope and other lines represent the sheared overlying field
above P+P−. When P+P− rises up, O1+O1− reconnects with
O2+O2−, forming a field line O1+O2− twisting around P+P−
and an arcade O2+O1− lying below P+P−. A similar process
occurs between O3+O3− and O4+O4−, and forms a twisted field
line O3+O4− and an arcade O4+O3−. O1+O2− and O3+O4−
constitute the flux rope envelope, and no further reconnection
occurs between them. Note that the lines O1+O1−, O2+O2− and
so on are parallel to each other when they indicate the
connections between concentrated sources, but actually the
field lines in the corona are not completely parallel since they
are sheared, as seen in 3D plots of Threlfall et al. (2018).
Figure 2 shows the configuration of the flux rope before and
after the quasi-2D reconnection, which is similar to that in
Figure 1 but with a 3D view. Indeed, reconnection is likely to
occur when the shear is great enough and the magnetic energy
of the final state is sufficiently smaller than that of the initial
state that the initial state is unstable or reaches a state of
nonequilibrium.
It should be mentioned that Priest & Longcope (2017) also

pointed out an extra reconnection process, which is an
extension to the quasi-2D reconnection model. During the
extra reconnection process, the field lines in the flux rope
envelope formed by the quasi-2D reconnection could further
reconnect with each other, and finally form a new envelope in
which field lines twist around the preexisting flux rope and
anchor at the ends of two flare ribbons, near the footpoints of
the preexisting flux rope (such as points O1+ and O4− for the
flux rope envelope in the right panel of Figure 1). The flare
ribbons are still straight, an inheritance from those in the quasi-
2D reconnection model. It is interesting that the new flux rope
envelope and the corresponding straight flare ribbons are very
similar to the simulation results by Aulanier & Dudík (2019).
In their work, the flare ribbons would also be mostly straight
rather than J-shaped if the reconnection only occurs among
the overlying field lines. This is because the field lines of the
corresponding flux rope envelope anchor only at the tip of the

Figure 1. A sketch of the quasi-2D reconnection model. Left and right panels
represent magnetic structures before and after reconnection, respectively. The
overlying field O1+O1− (O3+O3−) reconnects with O2+O2− (O4+O4−),
producing a twisted field line O1+O2− (O3+O4−) enveloping the preexisting
flux rope P+P− and an arcade (represented by the dashed line) O2+O1− (O4+O3−)
lying below P+P−. O1+O2− and O3+O4− constitute the flux rope envelope. A
condition for this change is that the magnetic energy of the final state is smaller
than that of the initial state, so that the change is energetically possible.
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hook, but not the whole hook, which is close to the end of the
straight part.

In this study, we estimate the toroidal flux of the preexisting
flux rope by subtracting the toroidal flux of the flux rope
envelope from that of the whole CME flux rope. We first need to
estimate the toroidal flux of the flux rope envelope, which is
mainly contributed by the quasi-2D reconnection but possibly
reduced by an extra reconnection (see a detailed discussion in
Section 2.2). However, it is almost impossible to determine how
far the extra reconnection could proceed and how much it could
reduce the toroidal flux of the flux rope envelope. Regardless of
this, we can still approximately estimate the toroidal flux of the
preexisting flux rope based on the quasi-2D reconnection
process. The reason is that the quasi-2D reconnection is the
primary reconnection process in the main-phase reconnection
model of Priest & Longcope (2017). If not considering the
possible reduction in the toroidal flux of the flux rope envelope
caused by the extra reconnection, the estimated toroidal flux of
the preexisting flux rope based on the quasi-2D reconnection
could be regarded as a lower limit to the actual value. In
addition, although many previous studies showed that the flare
ribbons may be double J-shaped rather than straight, it is
demonstrated that the hooks of J-shaped ribbons are related to
the field lines formed by the reconnection between the field lines
of the flux rope and inclined ambient arcades. Nevertheless, such
a reconnection does not change the toroidal flux of the flux rope
(Aulanier & Dudík 2019). This implies that it is reasonable to
estimate the toroidal flux of the flux rope by only considering the
straight part of the flare ribbons (e.g., the flare ribbons in
the quasi-2D reconnection model). In the following, we adopt
the quasi-2D reconnection model to quantify the toroidal flux
of the preexisting flux rope and then apply it to observations.

2.2. The Toroidal Flux

In the following, based on the quasi-2D reconnection model,
we first introduce the model for estimating the toroidal flux of
the flux rope envelope. As shown in Figure 3, the orange
rectangles represent a pair of newly formed flare ribbons during
the time interval dt and the orange twisted lines represent the flux
rope envelope formed by the quasi-2D reconnection. To better
show the flux rope envelope, we do not draw the flare loops,
which are simultaneously formed by the quasi-2D reconnection
and also anchor on the flare ribbons, and the preexisting flux
rope in the figure. It is assumed that the magnetic field is uniform
at the two ribbons and the twisted lines are parallel to each other
(when they indicate the connections between two footpoints
rather than the real field lines). The length of flare ribbons is L
and the distance between the two ribbons is w. We refer to the
direction along the flare ribbons as the parallel direction and that
orthogonal to them as the perpendicular direction. The
inclination angle of the field lines of the flux rope envelope to
the perpendicular direction is the shear angle θ, and the offset
between the two flare ribbons along the parallel direction is the
shear distance s=w×tan(θ). We consider any cross section of
the flux rope envelope perpendicular to the axis of the magnetic
flux rope as marked by the black solid line in Figure 3, assuming
that the axis of the magnetic flux rope is parallel to the PIL.
The magnetic flux passing through any such cross section is the
toroidal flux of the flux rope envelope. It is obvious that only the
field lines anchored between A and B can cross through that
particular section. Denoting the signed magnetic flux of the flare
ribbons by Δfr (referred to the reconnection flux for the time
interval dt), the magnetic flux in the region between A and B is
then Δfr×s/L (usually s<L). Since during the quasi-2D

Figure 2. A sketch of the quasi-2D reconnection model with a 3D view. The upper and lower panels show magnetic structures before and after the reconnection,
respectively. The black curves represent the preexisting flux rope, and the gray regions represent its two footpoints. The neighboring overlying field lines (gray solid
curves in the upper panel) reconnect with each other, forming the flux rope envelope (orange solid curves in the lower panel) twisting around the preexisting flux rope
and the flare loops (orange dashed curves in the lower panel) whose footpoints map two flare ribbons (orange rhomboids in the lower panel). The number of the
overlying field lines that are drawn in the figure is different to that in Figure 1.
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reconnection, the flux should be equally allocated to the newly
formed upper and lower magnetic structures (i.e., the flux rope
envelope versus the post-flare loops), only half of the flux in the
region between A and B goes into the toroidal flux of the flux
rope envelope. In summary, the toroidal flux contributed by flare
reconnection during the time interval dt is Δfr×s/2L.

We further take into account the temporal evolution of flare
ribbons by considering a pure separation motion but no
elongation of the ribbons in this quasi-2D model. In Figure 4,
the blue rectangles represent the whole flare ribbons formed
during the CME eruption. The green and yellow regions
represent instantaneous flare ribbons brightened during dti and
dtj, respectively. During such an evolution of the flare ribbons,
the shear distance s and the ribbon length L are generally
unchanged. Denoting the total reconnection flux during the
whole flare process by fr, the total toroidal flux from the flare
reconnection is then fr×s/2L. Thus the total toroidal flux of
the CME flux rope ft can be represented by

f f f= +
s

L2
, 1t t r0( ) ( )

where (ft)0 represents the toroidal flux of the preexisting
flux rope.

It is obvious that the extra reconnection occurring among the
twisted field lines of the flux rope envelope formed by the
quasi-2D reconnection would produce a certain flux to form
new post-flare loops, which means that some toroidal flux
would be removed from the flux rope envelope. Thus, the
toroidal flux of the flux rope envelope should somewhat reduce
after the extra reconnection. This means that the quasi-2D
model would overestimate the toroidal flux of the flux rope
envelope. That in turn shows that the toroidal flux of the

preexisting flux rope we derived is underestimated, and thus
regarded as a lower limit.
To estimate the value (ft)0, we should measure the total

toroidal flux of the CME flux rope ft, the total reconnection
flux fr, the shear distance s, and the flare ribbon length L. In the
following, we show how to determine these parameters in
detail, and apply the method to four CME/flare events.

3. Method and its Application to Four Events

3.1. Event Selection

We select events suitable for study from three lists of MC-
associated CMEs provided by Qiu et al. (2007), Hu et al.
(2014), and Wood et al. (2017). All events in the three lists are
carefully examined. The events that are appropriate for our
study should satisfy the following two criteria: (1) the source
region contains a preexisting flux rope; and (2) the flare ribbons
mainly present a separation but no obvious zipper motion, and
they are morphologically straight without obvious hooks. It
should be noted that, observationally, there are no strictly
straight ribbons since the PIL is usually curved rather than
straight; the latter criterion is thus replaced by the requirement
that the curved flare ribbons are mostly parallel to the PIL. We
finally select four events to meet these criteria. Identifications
of the association between flares, CMEs, and MCs are given by
Lynch et al. (2005) and Qiu et al. (2007) for cases 1 and 2,
Lugaz et al. (2012) and Hu et al. (2014) for case 3, and Wood
et al. (2017) for case 4. The first three events are all
accompanied by filament eruptions. The fourth event possesses
a diffuse filament and a hot-channel-like structure before its
eruption. These features suggest that the pre-eruptive config-
urations are most likely flux ropes (Zhang et al. 2012; Cheng
et al. 2013, 2014; Ouyang et al. 2017). As shown in Figure 5,
the motion pattern and morphology of flare ribbons also

Figure 3. A sketch of the flare ribbons and the flux rope envelope anchored at
the two flare ribbons. The orange rectangles represent the newly formed flare
ribbons during a time interval dt, and the orange twisted lines represent the flux
rope envelope formed by quasi-2D reconnection. The black solid line refers to
one cross section of the flux rope envelope. AB marks the section of the left-
hand ribbon where the field lines crossing the cross section are anchored. The
length of the flare ribbons is L, the distance between the two flare ribbons is w,
the inclination angle between the field line direction and the perpendicular
direction is the shear angle θ, and the shear distance of the two flare ribbons
is s.

Figure 4. A sketch of the evolution of the flare ribbons and the flux rope
envelope. Blue rectangles represent the whole flare ribbons. Green (yellow)
rectangles represent the newly formed flare ribbons during dti (dtj), and dark
green (brown) lines represent the flux rope envelope anchored in the ribbons
(like the orange twisted lines in Figure 3). At the time interval dti (dtj), the
distance between flare ribbons is wi (wj), the flare ribbon length is L, the shear
angle is θi (θj), and the shear distance is s.
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basically conform to the above criteria. In addition, for the four
events, we do not see obvious hooked structures in the flare
ribbons. It is worth mentioning that some faint hooked
structures probably exist but are undetectable. Considering
that the brightness of flare ribbons is closely related to the
reconnection rate, the undetectable hooks, if they exist, should
be produced by a weak reconnection. It means that less
magnetic flux is involved in the reconnection. Thus, neglecting
the undetectable hooks will not change our results. In Table 1,
we list the basic information on all events including the flare
magnitude, location of source region, flare start time, and
ICME arrival time.

3.2. Measuring Total Reconnection Flux

The method of measuring the reconnection flux was first
proposed by Forbes & Priest (1984) and applied to flare
observations by Poletto & Kopp (1986), Fletcher & Hudson
(2001), Qiu et al. (2002, 2004, 2007), and Asai et al. (2002).

Observationally, the flare ribbons are determined by identifying
the regions whose intensity lies above a threshold. The
reconnection flux is then calculated by integrating the magnetic
flux within the flare ribbons. For our four events, the flare
ribbons are determined by using the UV images observed by
the Transition Region and Coronal Explorer (TRACE, Handy
et al. 1999) or the EUV (or UV) images observed by the
Atmospheric Imaging Assembly (AIA; Lemen et al. 2012) on
board Solar Dynamics Observatory (SDO, Pesnell et al. 2012).
The magnetic flux in the ribbons is calculated using the
photospheric magnetograms from the Michelson Doppler
Imager (MDI; Scherrer et al. 1995) on board Solar and
Heliospheric Observatory (SOHO) or the Helioseismic and
Magnetic Imager (HMI; Scherrer et al. 2012) on board SDO. In
addition, the uncertainty of the total reconnection flux mainly
comes from the imbalance of the flux in the positive and
negative flare ribbons, as well as the uncertainty in identifying
the flare ribbons.

Figure 5. (a) MDI line-of-sight magnetogram overlaid by two evolving flare ribbons for case 1. The evolution of the flare ribbons at the TRACE 1600 Å passband is
denoted by the changing color. (b) Same as panel (a) but for case 2. (c) HMI line-of sight magnetogram overlaid by the flare ribbons at the AIA 304 Å passband for
case 3. (d) Same as panel (c) but for case 4 derived from the AIA 1600 Å images. The intensity thresholds for the four events in panels (a)–(d) are 9, 7, 9, and 7 times
the background intensity, respectively. The red curves represent the PILs for these events.
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Table 1
Parameters of Four CME/Flare Events

No. Typea Source Region Flare Start Timeb ICME Arrival Time fr ft_MC d/L θ (ft)0 (ft)0/ft
(1021 Mx) (1021 Mx) (deg) (1021 Mx)

1 FL(X17.) S16E04 2003 Oct 28 11:10 2003 Oct 29 09:00 23±2 4.59±0.81 0.20 30±2 1.82±0.87 0.40±0.20
2 FL(M3.9) N03E08 2003 Nov 18 08:31 2003 Nov 20 10:00 3.6±0.5 0.76±0.01 0.24 23±10 0.40±0.19 0.52±0.25
3 FL(B1.1) N19W12 2010 May 23 16:30 2010 May 28 19:05 0.27±0.03 0.32±0.02 0.19 38±27 0.28±0.04 0.88±0.15
4 FL(M3.9) N12W26 2011 Oct 2 00:37 2011 Oct 5 08:00 1.2±0.2 0.26±0.03 0.33 16±12 0.14±0.10 0.54±0.38

Notes.
a FL=flare.
b The flare start time refers to the time when GOES X-ray flux starts to increase.
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Figure 5 shows the evolution of the flare ribbons for the four
cases overlaid on the MDI (or HMI) line-of-sight magneto-
grams. For the first three cases, the total reconnection fluxes
and the corresponding errors are provided by Qiu et al. (2007)
and Hu et al. (2014), and the ranges of intensity thresholds are
also described in their papers. For the last case, the total
reconnection flux and the corresponding error are calculated by
ourselves, and the range of intensity thresholds is 5–8 times the
intensity of the quiet Sun at the wavelength of 1600Å. The
total reconnection fluxes of the four cases and their errors are
listed in Table 1.

3.3. Estimating the Toroidal Flux of CME Flux Ropes

Assuming that MCs do not dissipate in interplanetary space,
the toroidal flux of the CME flux rope ft near the Sun can be
approximated by that of the MC ft_MC. We use the Grad–
Shafranov (GS) reconstruction method (Hu & Sonnerup 2002)
to derive the 3D structure of the near-Earth MCs. It is usually
believed that the GS reconstruction is able to accurately
describe the MC based on a reasonable theory and initial
parameters of plasma and magnetic field data. During the
reconstruction process, the MC is not forcibly assumed to be
force-free and its cross section is not required to be a specific
shape. In the past decade, this method has been widely used to
analyze the properties of MCs, especially their relation to
remote-sensing observations (e.g., footpoints of the flux rope,
flare ribbons, CMEs) (Qiu et al. 2007; Yurchyshyn et al. 2007;
Hu et al. 2014; Wang et al. 2017).

The GS method assumes that the MC is a 2.5D structure and
then its 2D section can be determined from the in situ 1D data.
The GS method is based on the GS function:

m
¶
¶

+
¶
¶

= -
A

x

A

y

dP

dA
. 2t

2

2

2

2 0 ( )

where the z-axis is along the axis of MCs such that ∂/∂z≈0 and
the x-axis is along the projection of the satellite trajectory in a
section perpendicular to the z-axis. The quantity A x y z,( ) ˆ is the
magnetic vector potential for the transverse magnetic field
B x y,( ). As a single-variable function of A, Pt(A) is the transverse
pressure satisfying m= +P p B 2t z

2
0, where p is the plasma

pressure and mB 2z
2

0 is the axial magnetic pressure. The fact that

the quantities p and mB 2z
2

0 are both functions of A allows us to
determine the z-axis. Once the z-axis has been determined, the
distribution of A(x, y) is obtained by solving the GS function using
the 1D observational data, and the axial magnetic field distribution
Bz(x, y) is obtained over the A(x, y) solution domain. The
transverse magnetic field can then be derived from B(x, y)=(∂A/
∂y,−∂A/∂x) and the toroidal flux is given by f =t_MC

ò òB dx dyz evaluated over the boundary A=Ab. The boundary
A=Ab is determined where Pt transits from single-valued to
multi-valued with A. It should also be noted that the toroidal flux
obtained for MCs with this method may correspond to a lower
limit. The reason is that the GS reconstruction is strictly restricted
to 2.5D cases, i.e., the axis being straight, in which only the flux
of the MC main body is calculated. More details on the GS
reconstruction can be found in Hu & Sonnerup (2002), Sonnerup
et al. (2006), and Hu (2017).

For the four events in our study, we use the Advanced
Composition Explorer (ACE) or Wind data as inputs to solve
the GS function. For the four cases, the temporal variations of
the in situ measurements are given in Figure 6, and the
reconstruction results are shown in Figure 7. The uncertainty of
the total toroidal flux ft_MC mostly comes from the uncertainty
of the z-axis during the reconstruction process. Thus, we
perform multiple reconstructions by varying the z-axis orienta-
tion within a certain range defined by the residue map and
make an average of toroidal fluxes derived from them. The
error of ft_MC is then computed as the standard deviation. The
toroidal fluxes ft_MC and the corresponding errors for the four
cases are listed in Table 1.

3.4. Measuring Geometric Parameters of Flare Ribbons

The parameter s/2L can be derived by measuring the
geometric parameters of flare ribbons. The shear distance s is
estimated from the ribbon distance w and the shear angle θ,
such that s/2L=tan(θ)×w/2L. According to our model, the
parameter s/2L remains constant during the flare process,
which means that it can be determined through the flare ribbons
at any moment. Here, we use the flare ribbons at a later phase.
The flare ribbons at the different polarities usually appear to

be distinct in length. The lengths of the positive and negative
ribbons are denoted by L1 and L2, respectively. For each
polarity, we select points uniformly placed along the ribbon
and measure their distances to the PIL. The average distance for
each flare ribbon is denoted by d1 and d2, respectively. We then
calculate the quantities d/L≈(d1/L1+d2/L2)/2 and w/
2L≈d/L by assuming that the distance of each ribbon from
the PIL is half the distance between the two ribbons.
The shear angle θ is estimated by measuring the inclination

angle of post-flare loops to the direction perpendicular to the
PIL. As two reconnected overlying field lines that we consider
are very close, the orientation of the post-flare loop is almost the
same as that of the envelope field line. The post-flare loops were
observed by the Extreme Ultraviolet Imaging Telescope (EIT;
Delaboudinière et al. 1995) on board SOHO (Domingo et al.
1995) or the AIA on board SDO. Figure 8 displays the post-flare
loops for case 3 at 20:12 UT on 2010 May 23. The red lines
connecting the footpoints of the post-flare loops indicate the
orientations of the loops, and the blue lines are along the local
PIL direction. The complementary angle of the inclination angle
between red and blue lines gives the local shear angle. The final
shear angle θ is calculated as the average of the local shear
angles, and its error is estimated to be the standard deviation.
The geometric parameters and corresponding errors for all

cases are listed in Table 1. It should be noted that for cases 2
and 4, one of the two ribbons is slightly irregular in shape due
to the complex magnetic field distribution. In these two cases,
we only measure the quantity d/L for the regular ribbons.

3.5. Toroidal Flux of Preexisting Flux Ropes

Using the formula (ft)0=ft−fr×s/2L, we calculate the
value (ft)0 and derive the ratio (ft)0/ft, which are shown in
Figure 9 and Table 1. The errors of (ft)0 and (ft)0/ft primarily
come from the uncertainties in the quantities ft, fr, and θ.
One finds that the ratio (ft)0/ft lies in the range 0.40–0.88.

Considering that the quasi-2D model may underestimate the
toroidal flux of the preexisting flux rope, our result shows that
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the preexisting flux rope makes a considerable contribution to
the toroidal flux of the CMEs for these events. In addition, as
shown in Figure 9, it seems that there is a negative correlation
between the ratio (ft)0/ft and the flare magnitude, which implies
that the ratio may become smaller as the flare becomes stronger.

4. Summary and Discussions

In this paper, we quantify the toroidal flux of preexisting flux
ropes of CMEs. Based on a quasi-2D reconnection model, we
propose a formula describing the variation of the toroidal flux:
ft=(ft)0+fr×s/2L. We then apply it to four CME/flare

Figure 6. In situ measurement of MCs. Each panel shows, from top to bottom, magnetic field strength (black) and X(red), Y (green), and Z (blue) components in GSE
coordinates, plasma bulk flow speed, proton density (blue) and proton temperature (black), plasma β, and plasma pressure (black) and axial magnetic field pressure
(red). Panels (b)–(d) also show electron temperature (right axis; brown) and ratio of electron temperature to proton temperature (red) in the third and fourth subpanels.
Panels (a)–(d) are for cases 1–4.
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events with two-ribbon structures that primarily exhibit a clear
separation motion during the eruption. To derive the quantity
(ft)0 and the ratio (ft)0/ft, we measure the total reconnection
flux and geometric parameters of the flare ribbons, and then
estimate the total toroidal flux of the CME flux ropes by
reconstructing the magnetic field of near-Earth MCs. For these
events we study, the ratio (ft)0/ft is found to be in the range
0.40–0.88, which implies that the toroidal flux of preexisting
flux ropes provides an important contribution to that of
the CMEs.

The toroidal flux of preexisting flux ropes is closely related to
the initiation of CME eruptions. The proposed initiation
mechanisms for CME eruptions include reconnection-based

models (Antiochos et al. 1999; Moore et al. 2001), ideal
instabilities such as torus instability (Kliem & Török 2006) and
kink instability (Török et al. 2004), catastrophe (Forbes &
Isenberg 1991), and force imbalance (Mackay & van Ballegooijen
2006). It has been suggested that under a certain overlying field, a
preexisting flux rope would experience a catastrophe when its
toroidal flux increases to a critical value (Zhang et al. 2016,
2017a, 2017b). In fact, the catastrophe of a preexisting flux rope
would occur when the ratio between its toroidal flux and the flux
of the overlying field, (ft)0/fov (fov represents the flux of the
overlying field), reaches a limit. In previous studies, several
methods have been proposed to quantify the toroidal flux of
preexisting flux ropes, and estimate the ratio of that to the active

Figure 7. Cross sections of reconstructed MCs. The black curves represent the contours of Bz. The white point denotes the axis of MC. The boundary of MC is marked
by the white curve. White arrows display the direction of magnetic field, with the arrow length indicating the field strength.
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region flux, (ft)0/fAR (here the active region flux is denoted by
fAR), which is closely related to the ratio (ft)0/fov. The flux
rope insertion model implemented by Bobra et al. (2008), Su
et al. (2009), and Savcheva & van Ballegooijen (2009) gave a
value for (ft)0/fAR of 10%–14%. Applying the same strategy to
several events, Savcheva et al. (2012) derived the average ratio
(ft)0/fAR of about 36%, with the smallest value being about
16%. Without resorting any specific model, the canceled flux can
also be used to estimate the flux of preexisting flux ropes. In the
work by Green et al. (2011) and Yardley et al. (2016, 2018), the
ratio of the canceled flux to the active region flux, fc/fAR,
ranges from ∼40% to ∼60%. Since the canceled flux is only
injected partially into the preexisting flux rope (Green et al.
2011), the ratio (ft)0/fAR for the cases of Green et al. (2011)

and Yardley et al. (2016, 2018) can be corrected to be 20%–

40%, given that the ratio (ft)0/fc could be about 60%–70%
(Savcheva et al 2012).
For comparison, the ratio (ft)0/fAR for cases 1, 2, and 4 in

this study from active regions is 3%–5%, which is smaller than
the ratio derived by the above two methods. Such a small ratio
may be caused for the following reasons. On one hand, the
toroidal flux of the MC may be underestimated by the GS
reconstruction method, as discussed in Section 3.3. The flux of
MCs may also decrease during their propagation in inter-
planetary space (Dasso et al. 2007; Wang et al. 2018). Both
factors imply that we may underestimate the toroidal flux of a
CME flux rope near the Sun. On the other hand, we may
overestimate the toroidal flux of the flux rope envelope by
using the quasi-2D reconnection model, as discussed in
Section 2.2. Therefore, the toroidal flux of the preexisting flux
rope, i.e., the toroidal flux of the CME minus that of the flux
rope envelope, should be somewhat higher than what we have
obtained here. In addition, for these three cases, the overlying
field that participates in the reconnection process may be only a
small part of the whole field of the active region, thus resulting
in a small ratio (ft)0/fAR.
It should also be mentioned that we assume that the local

shear angles of different post-flare loops are equally weighted
when estimating the average shear angle. However, different
loops are rooted in regions with different magnetic fluxes. This
implies that including the weight of the flux could improve our
results in principle. However, this is impractical at present since
the footpoints of the post-flare loops are not well observed. We
expect that observations with a higher spatial resolution can
help address this issue in the future.
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