Optical coherence elastography for cellular-scale stiffness imaging of mouse aorta

Wijesinghe, Philip, Johansen, Niloufer, Curatolo, Andrea, Sampson, David, Ganss, Ruth, et al.
Optical coherence elastography for cellular-scale stiffness imaging of mouse aorta

Philip Wijesinghe1,2, Niloufer J. Johansen3, Andrea Curatolo2, David D. Sampson1,4, Ruth Gans5, and Brendan F. Kennedy2,5
1 Opti+Biomedical Engineering Laboratory, 2 BRITElab, Harry Perkins Institute for Medical Research, 3 Laboratory for Vascular Biology and Journal Targeting, Harry Perkins Institute for Medical Research, 4 Centre for Microscopy, Characterisation and Analysis, 5 School of Electrical, Electronic and Computer Engineering, The University of Western Australia, Perth, WA 6009, Australia.

INTRODUCTION

► Cellular-scale imaging of the mechanical properties of tissue has helped to reveal the biophysical origins of disease
► Cellular-scale resolution has yet to be achieved in intact tissue volumes
► We demonstrate optical coherence elastography toward volumetric imaging of stiffness at a 15-μm resolution in intact aorta from a mouse model of hypertension

OPTICAL COHERENCE MICROSCOPE

► Measures time-of-flight of light waves scattered from tissue microstructure.
► Three-dimensional
► Label-free
► Sub-2 μm resolution over 1x1x0.1 mm field of view

COMPRESSION ELASTOGRAPHY

► Elastography - mapping tissue mechanics into an image.
1. Tissue is loaded and imaged.
2. Local strain is calculated from the slope in tissue displacement.
3. Stress is calculated by consulting stress layer's pre-characterised stress-strain curve.
4. Stiffness (Young's Modulus) is calculated as stress / strain

MOUSE MODEL

► Mouse model: Regulator of G protein signalling (RGS5)-knock out (ko); vs. wild type (wt).
RGS5 linked to vascular stiffness, contractility and remodelling. RGS5 deficiency → hypertension, medial hypertrophy, fibrosis.

RESULTS

Wavy appearance is likely to be the elastin as part of the elastin lamellae, interleaved with vascular smooth muscle cells

OCE identifies micro-structural features

Regional differences may manifest as phenotypic differences in vSMC: Ratio of elastin to smooth muscle decreases away from the heart, stiffness increases away from the heart with age; young aorta is more homogeneous

RGSS likely has a role in normalising stiffness

We have developed a system for 3D mapping of tissue structure (sub-2 μm resolution) and stiffness (15 μm resolution) over 1x1x0.1 mm field of view.

It has potential in elucidating the role and control of stiffness in cardiovascular function, and aid the development of targeted treatment strategies

REFERENCES


DISCUSSION

► RGS5 is under epigenetic control
Regional differences may manifest as phenotypic differences in vSMC:
Ratio of elastin to smooth muscle decreases away from the heart, stiffness increases away from the heart with age; young aorta is more homogeneous

Aorta in RGS5-ko mice is stiffer to wt, particularly near the aortic arch; in RGS5-ko mice, aorta stiffness with proximity to the heart.

ACKNOWLEDGMENTS

We would like to acknowledge Wes M. Allen for assisting with aorta imaging. PW is supported by the William and Martine Schoenich Postgraduate Scholarship.