The effect of food type on the portion size effect in children aged 2–12 years: A systematic review and meta-analysis

PII: S0195-6663(18)30325-8
DOI: https://doi.org/10.1016/j.appet.2019.01.025
Reference: APPET 4179

To appear in: Appetite

Received Date: 9 March 2018
Revised Date: 21 January 2019
Accepted Date: 28 January 2019

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
The effect of food type on the portion size effect in children aged 2-12 years: A systematic review and meta-analysis.

S Reale¹, J Hamilton¹, R Akparibo¹ M. M. Hetherington³, J. E. Cecil⁴, S. J. Caton¹*

¹ Public Health, School of Health and Related Research, University of Sheffield, UK
² Health Economics and Decision Science, School of Health and Related Research, University of Sheffield, UK
³ School of Psychology, University of Leeds, UK
⁴ School of Medicine, Population and Behavioural Health Sciences, University of St Andrews, UK

*Correspondence: Dr S J Caton, School of Health and Related Research, Public Health, Regent Court, 30 Regent Street, Sheffield, S1 4DA

slreale1@sheffield.ac.uk; jean.hamilton@sheffield.ac.uk; r.akparibo@sheffield.ac.uk; m.hetherington@leeds.ac.uk; jc100@st-andrews.ac.uk; S.caton@sheffield.ac.uk
Abstract

Visual cues such as plate size, amount of food served and packaging are known to influence the effects of portion size on food intake. Unit bias is a well characterised heuristic and helps to determine consumption norms. In an obesogenic environment where large portions are common place, the unit or segmentation bias may be overridden promoting overconsumption of both amorphous or unit foods. The aim of this review was to investigate the impact of offering unit or amorphous food on the portion size effect (PSE) in children aged 2 to 12 years.

A systematic search for literature was conducted in Medline, PsycInfo and Web of Science in February 2018. A total of 1197 papers were retrieved following the searches. Twenty-one papers were included in the systematic review, of which 15 provided requisite statistical information for inclusion in a random effects meta-analysis.

Increasing children’s food portion size by 51-100% led to a significant increase in intake (SMD=0.47, 95% CI: 0.39 – 0.55). There was no evidence to suggest that increases in consumption were related to food type (p= 0.33), child age (p=0.47) or initial portion size served (p=0.14). Residual heterogeneity was not significant (p=0.24).

The PSE was demonstrated in children aged 2 to 12 years when offered both unit and amorphous food items. The effect was not restricted by food type, child age or influenced by initial portion size served. Of the studies included in the meta-analysis between study heterogeneity was low suggesting minimal variation in treatment effects between studies, however, more research is required to understand the mechanisms of the PSE in preschool children. Future research should determine feasible methods to downsize portion sizes served to children.
Keywords: Portion size, Consumption, Systematic Review, Meta-analysis, Unit, Amorphous, Children

Background

Parents are often perceived as role models for their children’s health related behaviours (1). They shape their children’s food preferences, consumption and general diet quality due to modelling behaviours (2) and the type and quantity of food they make available within the household (3). However, when it comes to determining an acceptable portion size for children, most parents describe various strategies for determining portion size, however, few mothers said they use actual measurements or expert recommendations (4). Instead, contextual factors such as time of day, proximity to last eating occasion, adult portion sizes or package size are considered (4,5). Whilst appropriate portion sizes are typically given for adults on pre-packaged foods, this is not adjusted for children’s age or stage of development, often leading to an overestimation in the amount children require. Since the 1970’s, food portion sizes and the size of serving utensils and equipment used to prepare food have increased (6). This may promote overeating and change perceptions of portion size norms (7).

Children’s eating patterns track into later life, therefore, early experience is critical for setting the foundations of healthy eating (8). As infants develop they move from appetite driven by internal cues to becoming more susceptible to external cues which can override self-regulation (9) and lead to eating in the absence of hunger (10). Exposure to large food portion sizes is one environmental cue that has been positively associated with an increase in energy intake. When individuals are presented with a larger than normal portion size they tend to consume larger amounts, thus their total energy intake increases (11–15). This is known as the portion size effect (PSE), which has been reported to affect consumption in adults and children from as young as two years old (16–18). A meta-analysis including 65
studies and 109 observations revealed that doubling the amount of food served to children and adults leads to an average increase in food intake of 35% (19). Increased portion sizes of high energy dense (HED) foods may play a role in contributing to the rising prevalence of overweight and obesity. For example, when manipulated over 2 (11), 4 (20) and 11 days (12) the PSE has been associated with a sustained increase in energy intake, without compensatory behaviours (21).

One explanation that has been offered to explain the PSE is that people consider a single unit to be an appropriate amount to eat. Consumption norms promote the tendency to consume one unit of food in its entirety, assuming that the unit is of some minimal size. This is known as unit bias, which has been found to influence the quantity consumers eat regardless of the unit size offered (22). Subtle visual cues pertaining to the portion size of foods are also thought to contribute to how much one consumes. For example, both adults and children perceive circles of a given size as being larger when surrounded by smaller sized circles in comparison to larger circles (23), such that the context in which an object is presented can affect judgement of its size (24). This is known as the Delboeuf illusion (25). Both children and adults demonstrate greater difficulty in judging the portion size of amorphous foods compared to unit foods. This may be because unit foods have a distinct shape whereas amorphous foods take the shape of its container (26). When children make judgements about food size it tends to be influenced by food diameter and height, rather than mass or volume (27), therefore when amorphous foods were doubled in size in a laboratory setting, children seemed largely unaware of this change (28).

Food shape is a potentially important dimension underlying the PSE as the amount of food available appears to impact portion size judgement which may in turn affect the amount of food children consume. In one study children served themselves on average 238.9kcal more of unit food compared with amorphous food, leading to a 102.73 kcal increase in
consumption (29). However, it is unclear if this was a result of food shape or children’s preference for the unit food items. The aim of this systematic review and meta-analysis was to investigate the impact of offering unit or amorphous food on the PSE in children aged 2 to 12 years.

Methods

This systematic review and meta-analysis was registered with the International Prospective Register of Systematic Reviews (PROSPERO) (record # CRD42016035321) and conducted in two phases. Phase 1 included an extensive systematic review of literature, conducted to identify whether food type interacts with portion size to influence intake in young children aged 2-12 years. No restrictions were applied to the publication date. The search was limited to peer-review journal articles published in English (see Table 1). Phase 2 comprised a meta-analysis, including studies identified from the systematic review process that contained the required statistical information.

Search Strategy

Initially a scoping search was conducted in MEDLINE to map out the literature that exists on children’s susceptibility to the PSE and to establish whether any current review had been undertaken on the topic. The scoping search was divided into a series of concepts (population, exposure, comparison), and alternative terms were formed. Search terms were adapted during the scoping search to include key words used in relevant studies and additional free-texts search terms were added to our initial MESH search terms. Using the revised search strategy, searches in MEDLINE, PsycInfo and Web of Science databases were conducted in February 2018. Search terms were combined as follows: (portion* NEAR/4 (food* or meal* or snack*
or eat* or consum* or diet*)) AND (portion* NEAR/4 (size* or large* or small* or reference or big or medium)) AND (child* or infant* or schoolchild*). To identify papers not captured by our database searches, we performed additional citation follow up searches by scanning through the reference list of the included studies.

Selection of studies

Papers were included in this review based on their relevance to address the review question based on the priori outcome measure: an objective measurement of food consumption (grams or kcal) and exposure to various food portion sizes. The first author screened titles, abstracts and full papers to determine their relevance using the preferred reporting for systematic reviews and meta-analyses (PRISMA) guidelines (30). A second independent reviewer (RA) cross checked all the included and excluded papers, to ensure that no relevant papers were excluded. Any disagreements about the inclusion of papers were resolved via discussions between authors.

The studies included in the systematic review met all the inclusion criteria and none of the exclusion criteria (see Table 1). Where publications included several dependent measures, only the outcomes that met the inclusion criteria were included. Studies were included if the participants were under the age of 12 and had been exposed to varying portion sizes of food. Papers that did not meet the inclusion criteria were excluded.
Table 1: Inclusion and Exclusion Criteria for review of studies

<table>
<thead>
<tr>
<th>Inclusion</th>
<th>Exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>Children aged 12 years and below. No restrictions on ethnicity, socioeconomic class or gender.</td>
</tr>
<tr>
<td>Intervention/ Exposure</td>
<td>Exposed to multiple portion sizes of food. Portion size served measured objectively (grams or kcal)</td>
</tr>
<tr>
<td>Outcome</td>
<td>Amount of food consumed to be measured objectively (grams or kcal)</td>
</tr>
<tr>
<td>Study Type</td>
<td>Quantitative (quasi-experimental, observational) primary data, published in English in a peer review journal. Full length text. No restriction on publication date or sample size. Lab based and in natural environments</td>
</tr>
</tbody>
</table>

Data extraction and quality assessment

The first author extracted information related to the outcome measure (food intake) and exposure (initial and manipulated portion size). This was crosschecked by a second independent reviewer (RA) to reduce bias. The following information was extracted using a standardised checklist: study design, recruitment method, study location and time, participants (age, sex, ethnicity, socioeconomic status) type of food served, amount of food served (grams or kcal), amount of food consumed (grams or kcal) at each portion size, and study limitations. Some authors did not provide information regarding the amount (grams or kcal) consumed in each portion size condition (31,32). In these cases the lead author was contacted for the relevant information.
Assessment of study quality was undertaken for all studies using a checklist based on a combined measure previously used by Downs and Black (33) and the National Institute of Clinical Excellence (34), and adapted for use in the assessment of quality of studies (35). The scale was chosen based on its appropriateness to appraise a variety of study designs and it has been used previously to grade the quality of studies in a similar systematic review that explored parental styles, feedings styles and feeding practices (36). The quality assessment tool contained 11 items that were scored on a Likert scale using values of 0 = no, 1 = partly and 2 = yes to provide each paper with a total score out of 22 to reflect its quality (35). Papers were rated on their chosen study design, methodology, analysis and interpretations of findings and were sensitive to portion size research. For example, questions relating to baseline hunger, portion size and food liking were included. Two independent authors (SR, RA) scored all the papers, and a third reviewer scored 10% (SC). Minor disagreements were resolved through discussion.

Definition of exposure categories
Baseline portion size varied across studies, according to participant age and food type, and the majority of studies considered multiple experimental groups. Therefore, the PSE was assessed for multiple different magnitudes of portion size increase. Each experimental group was described using the percentage increase in portion size (note that individual studies may contain multiple experimental groups). These experimental groups were categorised according to six exposure groups to describe the percentage increase in portion size from baseline: 0-50%, 51-100%, 101-150%, 151-200%, 201-250%, 250-300%, with a further seventh category used to describe situations when the percentage increase in portion size was not clear.
Meta-analysis

Exposure groups whereby baseline portion size was increased by 51-100% were included in the meta-analysis. Inclusion of only one portion size group per study was necessary in order to avoid introducing correlation due to multiple comparisons (37; section 16.5.4).

To allow comparison across different measurement scales (kcal, g), standardised mean differences (SMDs) were calculated (37).

Synthesis

The SMDs were synthesised using a random effects model, which allows for heterogeneity between studies due to differences in individual study protocols. Heterogeneity was explored by considering potential effect modifiers using meta-regression (37,38). Three potential effect modifiers were considered in isolation as past research has suggested these may be influential in the PSE (16,19,31): baseline portion size, mean child age and food type.

Analyses were conducted in the R (39) statistical software package, using the “metafor” package (40). Some studies described more than one experimental group (including different age groups and different food types). A multilevel model was therefore used, with random effect (RE) at the study level. Results are presented in a forest plot, showing the overall pooled result for the primary meta-analysis (without inclusion of moderators) (Figure 2), as well as the pooled estimates according to food type served.

After synthesis, SMD’s were re-expressed using familiar metrics (41) for ease of interpretation. The average (mean) daily energy intake from a representative sample of children aged 4-10 years old (42) was re-expressed in terms of proportionate (%) and absolute change (kcal) following increases to food portion size. Further details on this method are reported in a Cochrane review (43).
Assessment of reporting biases

Funnel plots were created to detect possible reporting biases in the meta-analysis (44). The results were interpreted via visual inspection. In the absence of bias the funnel will resemble a symmetrical inverted funnel, whereas asymmetry or skewness indicates bias.

Results

The search returned 1197 articles, and after duplicates were removed (n=294) 903 papers were screened (Figure 1). Hand searches of the reference list identified 21 potential qualified papers. However, after applying the inclusion criteria at the abstract level, only 2 papers qualified. Overall, 57 full text articles were screened. Thirty-six articles were excluded due to the age of the participants, the study design or where portion size had not been manipulated. In total, 21 articles, reporting on 23 studies and 39 conditions/exposure groups, met the eligibility criteria and were included in the systematic review (16,18,50–59,28,60,31,32,45–49) of which 14 articles reporting on 14 studies and 24 conditions/exposure groups, provided requisite statistical information for inclusion in a random effects model meta-analysis (16,18,52–55,28,45–51).
Figure 1: PRISMA flow diagram of search results, screening and included articles
Study characteristics

The characteristics of the studies included are presented in Table 2. Both male and female participants of cross cultural and varying socioeconomic backgrounds, between the ages of 2 and 12 years were included. The sample size ranged between 17 (32,53) and 225 (48). Most studies (n=17) were conducted in the USA (16,18,53–58,60,28,32,45,46,49–52). One study was conducted in the Netherlands (48), one in China (59), one in Belgium (47) and another in Singapore (31). Both laboratory (n=11) and natural environments (n=10), such as day care centres and nurseries were used.

Studies assessed food intake when the portion size of food was amorphous in presentation (n =13) (16,28,56,59,60,31,32,47,51–55), unit (n=7) (18,47,48,50,51,57,58) or both amorphous and unit (n=3) (45,46,57). Two studies (47,51) included both unit and amorphous items, however these were manipulated at separated eating occasions, therefore they feature as individual exposure groups in both the amorphous and the unit section. With the exception of three studies, serving soup (52) and a rice, vegetable and protein mix (31,59) all studies providing an amorphous meal used a pasta dish such as macaroni and cheese (16,28,32,51,54–56,60). Unit food items included chicken nuggets (58), hash browns (49), popcorn (47), fruit (18) and vegetables (48).

Most studies included an exposure group which enhanced food portion size by 51-100% relative to baseline (n=15) (16,18,51–55,58,32,45–50) (Table 3, Appendix 1). Four studies also looked at a 150% (45,46,49,55) and a 300% serving (50) (Table 4, Appendix 1). Three studies (52,56,59) examined smaller increases in portion size < 50% or manipulated portion size unique to the individual using self-serve methods (31,58,60), thus food intake was examined for a variety of portion sizes and serving methods.
Studies reported intake by weight (grams, n = 16) (18,28,55–60,31,32,46–48,50,52,54) or energy (kcal, n = 5) (16,45,49,51,53). The time at which food was served varied between studies (snack time (n=3), lunch (n=9), evening meal (n=7), or over a 24-hour period (n=2)). However, most studies (n=16) accounted for hunger levels by taking a subjective measure of hunger (n = 4) (47,48,55,59), provided a set meal before consumption (n = 5) (32,50,52,53,56), or requested that parents restricted their child’s intake of food and drink 2-3 hours prior to the testing session (n = 6) (16,18,49,54,57,60).

Quality assessment

The maximum score that could be achieved was 22. The scores ranged between 17 (58) and 21 (31) providing evidence of reasonable quality across studies. Studies tended to score highly for their rigorous research design and adequately drawn conclusions. However, studies tended to score lower on the question regarding ethical considerations as very few studies provided sufficient detail which may be due to word restrictions. No studies were excluded from the systematic review based on their quality score.

Portion Size Effects

Amorphous foods

Nine (16,28,32,47,51–55) of the included studies reported that increasing the reference portion of an amorphous food by 51-100% significantly affected intake (p < .05). Children aged 2-9 years consumed significantly more soup (52), macaroni cheese (16,28,32,54,55), cereal (51), chocolate pudding, applesauce (53) and popcorn (47) when the portion size was doubled. However, children aged 5 years did not consume significantly more macaroni and cheese in the double (M=239, SD = ±118kcal) compared with the reference (M=226, SD =
portion (±125kcal) portion condition (p > .05) when served alongside fixed, but generous, portions of
carrot, cookies and applesauce (51).

Four studies (16,31,55,59) examined differences in intake based on age. One study reported
that differences in amount consumed were not related to the age or sex of the children (16).
Contrastingly, Rolls et al. (55) found that doubling the portion size of macaroni and cheese
did not significantly impact consumption in children aged 3-4 (M= 44.80, SE= ±12.30g vs.
M= 54.60, SE = ±15.80g, p >.05), although it did significantly impact intake in children aged
4-6 (M = 76.70, SE= ±14.80g vs. M=122.70, SE= ±21.60g, p < .002). Similar findings were
observed when the portion size of amorphous food was increased by < 50% (Smith, 2013) or
tailored to the individual (31). Increasing the portion size of a rice, vegetable and protein mix
by 30% had no impact on intake in children ≤ 4 years old, yet children ≥ 6 years old
consumed 36% more (p < .01) (59). Child age was also found to interact with serving method
to influence the amount served and thus consumed at a lunch meal. Total serving and intake
of macaroni and cheese were highest in the 150% condition compared with teacher and child-
serve days but comparisons were only significant for children ≥ 6 years (p ≤ 0.04), and not
the younger children (3-5 years; p ≥ 0.17) (31).

Two studies manipulated the portion size of macaroni and cheese by enlarging the portion
size by <50% (56) or using self-serve methods (60) did not compare effects by age. Leahy et
al., (56) found that increasing pureed vegetable content in pasta by 20g significantly
increased vegetable consumption in children aged 3-5, such that they consumed an additional
half serving of vegetables. Similarly, when macaroni and cheese increased in 60g increments
from 60 to 400g, children aged 3-5 were reported to consume significantly more with each
portion size increase. This positive association between portion size and consumption was
also observed when children were able to self-serve. On average children consumed an
additional 0.56 kcal of macaroni and cheese for each additional gram served (60).
When the portion size of unit foods were increased between 51 and 100%, six (18,47–51) of the included studies reported a significant effect on intake (p < .05), similar to those that doubled the portion size of amorphous items (16,47,52–55,60). Children increased consumption of carrots (47%) (50), cucumber (54%) (48) and cookies (28%) (47) when doubled in portion size and served on their own as a singular food type. Children also increased consumption of unit foods when a variety of items were served together, such as chicken nuggets, hash browns, green beans and brownie (49), or when unit foods were served alongside a fixed portion of an amorphous item (18) or fixed portions of unit items (51). For example, children consumed 72% more fruit (p < .0001) and 38% more vegetables (p < .01) when the portion size was doubled and served alongside a fixed portion of pasta (310g) that fell between the 75th and 90th percentile of intake for children aged 2-5 years (61).

Furthermore, children aged 5 consumed 34% more chicken nuggets when served alongside a fixed, but generous, portion of corn and bread roll (51). However, when the same sample of children were served a double portion of crackers, intake was unaffected. Similarly, Aerts and Smit (47) reported that children aged 3-6 did not significantly increase consumption of baby carrots at morning snack time when the reference portion was increased by 63%.

When children were able to self-serve unit foods for lunch in kindergarten, children opted for an average of 3.49 chicken nuggets (58). On fixed portion days children were served 4 chicken nuggets. This significantly affected intake (p < .009) such that children consumed 10% more on fixed portion days when more units were served compared to self-selected days when children served themselves less units.
When the portion size of unit and amorphous items were increased by 51-100% within the same meal or snack occasion, three (45,46,57) of the included studies reported a significant impact on intake (p < .02).

When unit and amorphous items were doubled within one meal (45,46,57) significant increases in consumption were recorded. However, not all food items contributed to the increase in total energy intake. For example, Kling et al., (46) showed that serving a double portion of macaroni and cheese, chicken, vegetables, applesauce and ketchup increased intake of macaroni and cheese (31%), applesauce (64%) and ketchup (49%) (p < 0.02). Intake of chicken and vegetables remained similar between portion size condition. Similar findings were observed when fruit and vegetable side dishes were doubled in portion size (57). Total intake increased (p < .01), due to a 43% increase in applesauce (p < .01); carrot (p =.60) and broccoli (p = .74) consumption did not differ between conditions. Furthermore, when the portion size of macaroni and cheese, corn, applesauce and cookies was doubled in a laboratory total energy intake increased (p < 0.01) (45). The overall effect on total energy intake was due to an increase in the HED macaroni and cheese (21% increase across conditions) and cookies (a 60% increase across conditions) rather than the other food items.

Meta-analysis

Studies included in the meta-analysis

A total of 14 papers, contributing 14 unique studies and 24 conditions/ exposure groups testing the effect of a 51-100% increase in portion size on food intake in children aged 2-12 years old were included in the meta-analysis. Of the 21 papers (contributing 23 studies and 39 conditions/ exposure groups) initially considered for inclusion in the meta-analysis, one study was excluded as the portion size was not increased by 51-100% (56) and five articles contributing 6 studies did not use a clear definition of portion size increase (31,57–
Furthermore, two studies were excluded since evidence of plate clearing was detected (Savage et al. 2012 (32) and Aerts et al. 2017 (47) (study A)). Plate clearing was defined on the basis that the children consumed more than or equal to 90% of what was offered (62). Note that although Aerts study A (47) was removed due to plate clearing, there was no evidence of plate clearing in Aerts study B (47) and so this study was retained for the analysis. Moreover in the Savage et al. paper (32) the reference portion size was unusually small. More detail on this is provided in the discussion section and in Appendix 1, Table 4.

Results of the meta-analysis

Results of the primary meta-analysis and the meta-regression including food type as a moderator are shown in Figure 2. When children aged 2 – 12 years were offered unit, amorphous or both unit and amorphous food items the pooled SMD was 0.47 (95% CI: 0.39-0.55) indicating a statistically significant PSE (Figure 2). The pooled SMD indicates that a portion size increase of 51-100% is associated with an SMD of 0.47, which can be re-expressed as equivalent to a 13% (186kcal) increase in average daily energy intake.

The test for residual heterogeneity was not significant (Q = 27, df = 23, p = 0.24) suggesting minimal variation in treatment effects between studies.

Three effect modifiers were explored including, initial portion size, mean age and food type (unit, amorphous and, unit and amorphous), testing each one in isolation in a meta-regression. Inclusion of the continuous covariate for initial portion size (in grams for all studies) was found to be non-significant (coefficient = -0.0004, 95% CI: -0.0009 - -0.0001, p = 0.14). Indicating the initial portion size does not impact upon the portion size effect.

Mean study group age was missing for one study (54), however the age range was given as 5-6 years, and so mean age was assumed to be 5.5 years. Inclusion of a continuous covariate for
mean age was not significant (coefficient = 0.02, 95% CI: -0.03 - 0.06, p = 0.47), suggesting that the portion size effect is not associated with age.

The impact of food type was assessed by including food type as a moderator with 3 levels (amorphous; unit; amorphous and unit). The PSE was found to be statistically significant in all subgroups, with the largest pooled SMD for unit (SMD = 0.53, 95% CI: 0.41 - 0.66), then unit and amorphous (SMD = 0.47, 95% CI: 0.32 - 0.62) and amorphous (SMD = 0.39, 95% CI: 0.25 - 0.43). (Figure 2). The overall test for food type as a moderator was not statistically significant (p = 0.33).

Visual analysis of the funnel plot demonstrated relatively good symmetry suggesting the absence of reporting bias (Figure 3).
Figure 2: Forest plot of random effects meta-analysis for all exposure groups, and according to food type served.
Figure 3: Funnel plot to detect possible reporting bias
Discussion

The purpose of this review was to investigate the impact of offering unit or amorphous food (i.e. food type) on the PSE in children aged 2 to 12 years old. The meta-regression did not reveal a significant difference in the magnitude of the PSE based on food type served, child age or initial portion size served. Overall, the PSE was observed across studies, at all eating occasions, including breakfast, lunch, dinner and snacks, and for all food types.

The analysis revealed no complex interplay between the PSE and the type of food served. However, several studies were removed from the meta-analysis. For example, in one study portion size did not increase by 51-100% (56) and several studies were unclear about the magnitude of the portion size increase (31,57–60). The reference and enlarged portion sizes served in the Savage et al., (32) study were much smaller, and thus not comparable to the other included studies. The reference and enlarged portion size used in this study were smaller than the average quantity of macaroni and cheese consumed by children aged 2-5 years in the USA, as demonstrated in the Continuing Survey of Food Intakes by Individuals (61). The small portion sizes offered may explain why children appeared to consume all (90% or more) that was offered to them. Similarly, children in one of the studies (study A) in the Aerts et al. paper (47) demonstrated plate clearing; the children consumed all of the popcorn that was offered to them in both the reference and large portion size conditions.

As a result this study was also excluded from the meta-analysis. A decision to keep in the second study (study B) from the Aerts et al. (47) article was made due to the absence of plate clearing. The inclusion of Savage et al. (32) and Aerts et al. (47) studies may have produced an inflated, artificial SMD thus not producing a true effect.

Increasing children’s portion size by 51-100% produced a significant PSE. It is possible that children were unable to detect changes to the portion sizes on offer irrespective of food type.
(28). Alternatively, children this age typically clean the plate or eat most of what is offered as an expectation placed on them by parents. Given that children are known to eat all that is served to them (5) and are encouraged to clear their plate (63) parents and caregivers may promote overconsumption. Recent survey data suggests that parents are unaware of age appropriate portion sizes for their children and often provide larger portions than deemed suitable (64), which may inhibit self-regulation. Interestingly, when children self-served from a regular and large serving dish, they served and thus consumed more from the larger serving dish (60). These findings extend previous research suggesting that large food portion sizes not only stimulate intake when served directly to children, but also when children are allowed to serve themselves. These actions may be acquired through experience from parents or from social norms set by decades of increasingly large food portion sizes on offer in the marketplace (6).

In a previous meta-analysis Zlatevska et al. (19) identified the PSE to be curvilinear with a possible ceiling effect, perhaps due to an increase in salience and reliance on internal cues. Similar findings have been reported in a study examining the magnitude of the PSE when all components of a meal with varying energy densities were increased in size (65). For example, as food portion sizes got larger participants consumed an increasingly smaller proportion of the amount served and the strongest predictor of food intake was the portion size offered. However, the results of the current meta-analysis do not fully support these findings. The initial portion size did not significantly affect the PSE. This finding might be due to the relatively small number of studies included in the meta-analysis. Moreover, the initial portion size moderator analysis did not account for type of food used. This might be of potential interest in future investigations since there might be a relationship between portion size and energy density, whereby larger portion sizes may be less energy dense than small ones.
The largest increases in consumption were observed when unit foods increased by 51-100% in portion size. According to the ‘unit bias’ mechanism consumers associate a single serving as being an appropriate amount to eat, regardless of its size (e.g. one sandwich) (22). As such, people tend to eat one unit of food. Moreover, when multiple smaller units are on offer, as demonstrated in the included studies, consumers may justify the need to consume multiple units or additional items due to their smaller size (66).

It is possible that other unaccounted factors also contribute to the PSE. For example, when children were presented with multiple food items, not all items contributed to the PSE (46,57) and serving method was also shown to be influential. Children increased intake of some foods but not others when presented with a variety. These findings have been observed elsewhere in the literature (45), with children increasing intake of their preferred foods, which were high in energy density and palatability (e.g., cookies, when served in combination with less preferred foods of low energy density; LED). These findings suggests that in order for children to consume more LED foods such as fruit and vegetables, food preference and the competing foods on offer should be taken into account (46). For example, some studies have reported that portion size had no effect on vegetable consumption when vegetables were provided as part of a main meal (57). Yet when vegetables were served before the main meal, in the absence of competing foods, the PSE was observed for both unit (carrot) (50) and amorphous (vegetable based soup) (52) vegetables. Therefore, it is possible that children’s familiarity and preference for the competing foods on offer influences the PSE. Thus, the PSE may encourage intake of healthy, core foods such as fruits and vegetables if served in isolation.

Children of all ages within the review demonstrated susceptibility to the PSE by consuming larger amounts when provided with larger food portion sizes. Previous research has shown
that infants and pre-school children have the ability to self-regulate energy intake in controlled laboratory conditions (67,68) suggesting a developmental shift in children’s susceptibility to the PSE. However, the current review suggests that external cues (e.g. portion size) may become more influential in determining how much to eat and thus may promote energy intake in children from the age of 2 years old. Therefore, younger children may not be protected against the effects of portion size, as previously thought (68).

Implications

This review demonstrates that children aged 2-12 years are responsive to the PSE, irrespective of food type or child age. This could have serious long-term implications for children’s health given that eating patterns track into later life (8). Ubiquitous exposure to large portion sizes of HED foods has the potential to promote overconsumption especially given that large food portion sizes are becoming increasingly accessible within the food environment (6). Research has demonstrated that modest increases in fruit and vegetable portion sizes can improve children’s intake of these nutrient dense, LED foods (18) therefore it is possible that downsizing methods could reduce intake of HED foods. Based on these outcomes, a pilot investigation (ClinicalTrials.gov NCT03339986) (69) was designed to explore the efficacy and acceptability of two portion control strategies on intake of HED snacks in preschool children, with a focus on downsizing, since the amount of food served appears to be a central determinant in the amount children consume e.g. (29).

Strengths, Limitations and future research

This review extends current evidence on the effect of large food portion sizes on children’s dietary intake (19,43) and makes a significant contribution to the literature by examining
three moderators in isolation, including the impact of food type. Furthermore, this review revealed that children as young as two years of age are susceptible to the PSE which highlights the developmental stage where intervention is warranted. A funnel plot was created to detect reporting bias of the studies included in the meta-analysis. Visual inspection revealed good symmetry suggesting the absence of reporting bias.

Limitations have been identified at different levels of the review; study selection, study design and analysis. While the review identified a large selection of studies that manipulated the portion size of food served to children, the search strategy was limited to the inclusion of peer-reviewed articles published in English. Therefore, it is possible that studies published in other languages or as part of a thesis, were excluded. Furthermore, many of the laboratory-based studies used a convenience sample of children attending the university nursery. This resulted in parents having an above average level of education and household income (28,32,52,56). Nevertheless, this review included studies conducted in natural environments where the sample was often diverse (49–52,54,56).

Some studies were excluded based on providing insufficient information regarding consumption. Most of the included studies observed the effects of enlarged portion sizes on children’s intake at one meal or snack occasion which automatically biases the outcome towards children consuming more. The inclusion of smaller portion sizes would allow the effects of downsizing to be observed. Furthermore, if these studies were conducted over a longer time frame then possible dietary adjustments or compensatory behaviours could be examined.

The unit and amorphous subgroup was small, contributing little information with which to estimate the between study standard deviation thus resulting in wide confidence intervals.
Future research should aim to determine feasible methods parents can adopt to ensure their children are receiving portion sizes in line with nutritional guidelines. Research suggests that intake can be controlled via portion size, however to date these strategies have not been translated into feasible interventions (70) nor have the effects of downsizing been observed. Research should ideally be conducted within a natural environment such as at home or preschool, to enhance ecological validity. Focusing on low-income parents would be beneficial as this population is at greater risk of obesity (71) and are often underrepresented in child feeding research (72).

Conclusion

This review suggests that children aged 2-12 years consume larger quantities of food when provided with larger food portion sizes. It is likely that the PSE is not affected by food type, although further work is required to consolidate this finding. The portion size served to children appears to be a central determinant in the amount consumed. Therefore, the need for portion control interventions is warranted. Future research should consider feasible and acceptable methods to control the portion sizes caregivers offer to their young children by observing the effects of downsizing strategies.

List of Abbreviations:

PSE = Portion size effect
HED= High energy dense
PROSPERO = International prospective register of systematic reviews
PRISMA = Preferred reporting items for systematic reviews and meta-analyses
SMD= Standard mean difference
SD = Standard Deviation
RE = Random effects
LED = Low energy dense

Declarations:
Ethics approval and consent to participate: Not applicable
Consent for publication: Not applicable
Availability of data and materials: All data analysed during this review are included in this published article
Competing interests: The authors declare that they have no competing interests
Funding: This work was supported by the Biological and Biotechnology Sciences Research Council Diet and Health Research Industry Club (BB/M027384/1)
Authors contributions:
SR identified the review question, conducted the searches and extracted the data. SR, SJC, RA quality appraised the included studies. JS ran the meta-analyses. SR, SJC, RA, JS, MMH and JC contributed to the writing of and approved the final manuscript.

Acknowledgements
Mark Clowes, Information specialist, University of Sheffield for advising the research team on their search strategy

References
and control theories of parental influence. Health Educ Res [Internet]. 2004 Jun 1
[cited 2018 Feb 22];19(3):261–71. Available from:

3. Cullen KW, Baranowski T, Owens E, Marsh T, Rittenberry L, de Moor C. Availability,
Accessibility, and Preferences for Fruit, 100% Fruit Juice, and Vegetables Influence
22];30(5):615–26. Available from:
http://journals.sagepub.com/doi/10.1177/1090198103257254

qualitative study of parents’ perceptions and use of portion size strategies for preschool
Available from:

children are predicted by parental characteristics and the amounts parents serve

[Internet]. 2003 Jan 22 [cited 2018 Feb 22];289(4):450. Available from:

7. Lando AM, Lo SC. Single-Larger-Portion-Size and Dual-Column Nutrition Labeling
May Help Consumers Make More Healthful Food Choices. J Acad Nutr Diet [Internet].
sciencedirect-com.sheffield.idm.oclc.org/science/article/pii/S2212267212018187

8. Cashdan E. A sensitive period for learning about food. Hum Nat [Internet]. 1994 Sep
[cited 2018 Feb 22];5(3):279–91. Available from:
http://link.springer.com/10.1007/BF02692155

intakes of children after preloads: adjustment, not compensation. Am J Clin Nutr

25. Delboeuf J. Note sur certaines illusions d’optique: Essai d’une theorie psychophysique
de la maniere dont l’oeil apprecie les distances et les angles. Bull l’Academie R des
Sci [Internet]. 1865;(2):195–216. Available from:
https://scholar.google.com/scholar_lookup?hl=en&publication_year=1865a&pages=19
5-
216&author=J+Delboeuf&title="Note+sur+certaines+illusions+d%27optique%3B+ess
da+d%27une+théorie+psychophysique+de+la+maniére+don+l%27oeil+apprécie+les+
distances+et+les+angles

Portion-size estimation training in second- and third-grade American Indian children.

27. Piaget J, Inhelder B, Szeminska A. The child’s conception of geometry [Internet]. New
http://www.worldcat.org/title/childs-conception-of-geometry/oclc/183310

28. Fisher JO, Rolls BJ, Birch LL. Children’s bite size and intake of an entrée are greater
with large portions than with age-appropriate or self-selected portions. Am J Clin Nutr
[Internet]. 2003 May 1 [cited 2018 Jun 25];77(5):1164–70. Available from:
https://academic.oup.com/ajcn/article/77/5/1164/4689815

29. Disantis, Katherine I., Birch, Leann., Davey, Adam., Serrano, Elena., Zhang, Jun.,
Bruton, Yasmeen., and Fisher J. Plate Size and Children’s Appetite: Effects of Larger
Dishware on Self-Served Portions and Intake. [cited 2018 Feb 23]; Available from:
http://pediatrics.aappublications.org/content/pediatrics/early/2013/04/03/peds.2012-
2330.full.pdf

30. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic
reviews and meta-analyses: The PRISMA statement. Int J Surg [Internet]. 2010 [cited
9191(10)00040-3/pdf

31. Mccrickerd K, Leong C, Forde CG. Preschool children’s sensitivity to teacher-served
portion size is linked to age related differences in leftovers. Appetite [Internet]. 2017
com.sheffield.idm.oclc.org/S019566631630945X/1-s2.0-S019566631630945X-
32. Savage JS, Fisher JO, Marini M, Birch LL. Serving smaller age-appropriate entrée portions to children aged 3–5 y increases fruit and vegetable intake and reduces energy density and energy intake at lunch. Am J Clin Nutr [Internet]. 2012 Feb 1 [cited 2018 Feb 22];95(2):335–41. Available from:
https://academic.oup.com/ajcn/article/95/2/335/4576737

http://jech.bmj.com.sheffield.idm.oclc.org/content/jech/52/6/377.full.pdf

34. Excellence NI for clinical. HC 503-II National Institute for Health and Clinical Excellence (NICE). [cited 2018 Feb 23]; Available from:
https://publications.parliament.uk/pa/cm200607/cmselect/cmhealth/503/503ii.pdf

http://journal.frontiersin.org/Article/10.3389/fpsyg.2015.01849/abstract

42. NDNS. NDNS: results from years 7 and 8 (combined) - GOV.UK [Internet]. NDNS. 2018 [cited 2018 Aug 29]. Available from: https://www.gov.uk/government/statistics/ndns-results-from-years-7-and-8-combined

55. Rolls BJ, Engell D, Birch LL. Serving Portion Size Influences 5-Year-Old but Not 3-Year-Old Children’s Food Intakes. J Am Diet Assoc [Internet]. 2000 Feb 1 [cited 2018...

37
Table 2: Summary of included papers (The table is split into three sections by type of food that was manipulated; amorphous v unit v unit and amorphous)

<table>
<thead>
<tr>
<th>Author and Date</th>
<th>Aims of Study</th>
<th>Participant and sample</th>
<th>Methods</th>
<th>Manipulated Food Items</th>
<th>Findings</th>
<th>Quality Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amorphous Food Items</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aerts and Smits 2017 (study A) (47)</td>
<td>To identify if children’s snack intake is influenced by portion size and snack sweetness</td>
<td>28 children (16 boys and 12 girls) aged 6-7 years from four schools in Belgium.</td>
<td>A between subject design Morning snack time at school</td>
<td>Sugared and salted popcorn. Reference condition: 30g. Large condition: 60g.</td>
<td>Children ate significantly more popcorn from the large portion compared to the small portion. This relationship was observed for both sugared and salted popcorn; however the effect was more prominent in the sugared condition.</td>
<td>20</td>
</tr>
<tr>
<td>Fisher, 2007 (16)</td>
<td>The aim of the research was to systematically study the effects of age on children's responsiveness to large and self-selected portions</td>
<td>75 children (44 boys and 31 girls) in three age groups: 2-3, 5-6 and 8-9 years old. Non-Hispanic white</td>
<td>A between-subjects design (age group) with a within-subject component (PS) Evening meal in a laboratory</td>
<td>Macaroni and cheese with an energy density of 1.42 kcal/g. Reference condition: 200g (age 2-3) 250g (age 5-6) 450g (age 8-9). The amount provided in the reference condition was doubled for the large condition</td>
<td>Children consumed an average of 29% more in the large condition compared to the reference. The difference did not vary by age, order or preference for the food. Older children consumed more food than the younger children.</td>
<td>18</td>
</tr>
<tr>
<td>Fisher et al., 2003 (28)</td>
<td>To determine the effects of repeated exposure to a large portion of an entrée on preschool-aged children’s awareness of portion size, self-</td>
<td>30 children (16 boys and 18 girls) aged 2.9-5.1 years attending a full-day day-care programme at The Pennsylvania</td>
<td>A within-subject crossover design Lunch meal in a laboratory</td>
<td>Macaroni and Cheese. Reference condition: 125g (< 4 years) and 175g (> 4 years). The amount provided in the reference condition was doubled for the large condition</td>
<td>Doubling the portion size of the entrée increased the children’s entrée by 25% and total energy intake by 15%. Increases in entrée intake were not significantly related to sex, age, or the order in which the 2 portion sizes were served</td>
<td>19</td>
</tr>
<tr>
<td>Fisher et al., 2007a (54)</td>
<td>To test the effects of portion size and ED on children's food and energy intakes at a meal</td>
<td>53 children (25 boys, 28 girls) aged 5-6 years old. Diverse ethnicity</td>
<td>A 2 (PS) × 2 (ED) within-subject factorial design</td>
<td>Macaroni and Cheese with an energy density of 1.32 v 1.84 kcal/g. Reference condition: 250g. The amount provided in the reference condition was doubled for the large condition</td>
<td>Children consumed 33% more of the entrée in the large portion conditions than in the reference conditions. The entrée ED did not interact with portion size to influence gram intake of the entrée</td>
<td></td>
</tr>
<tr>
<td>Fisher et al., 2007b (51)</td>
<td>To observe the effect of large portions on daily energy intake in 5-y-old Hispanic and African American children from low-income families</td>
<td>58 children (24 boys, 35 girls) aged 5 attending a Head start programme in Houston. African American and Hispanic</td>
<td>A within-subject design</td>
<td>The amount served in the reference condition was: 453 kcal macaroni and cheese and 160 kcal oat ring cereal. The amount provided in the reference condition was doubled for the large condition</td>
<td>Doubling the portion size of macaroni and cheese did not impact intake, however doubling the portion size of cereal led to a 51% increase in intake</td>
<td></td>
</tr>
<tr>
<td>Fisher et al., 2013 (60)</td>
<td>This research experimentally tested effects of the amount of entree available and serving spoon size on children’s self-served entree portions and intakes at dinner meals</td>
<td>60 children (27 boys, 33 girls) aged 4-6 years. Ethnically diverse.</td>
<td>A 2 (PS) × 2 (serving spoon size) within-subject design.</td>
<td>Macaroni and Cheese with an energy density of 1.55kcal/g. Reference condition: 275g. The amount provided in the reference condition was doubled for the large condition. Fixed portion of unsweetened applesauce (112g) baby carrots (39g), Chocolate chip cookies (33g) and On average, children served 40% more entree when 550 g of the entree was available in the serving dish than when 275 g was available (91.9±14.7 vs 65.6±14.7 g; P<0.0001). Children consumed an additional 0.56 kcal of the entree and an additional 0.54 kcal total energy at the meal for every gram of macaroni and cheese served.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Objective</td>
<td>Participants</td>
<td>Design</td>
<td>Treatment</td>
<td>Findings</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Leahy et al., 2008 (56)</td>
<td>To determine how incorporating extra vegetables in a meal impacts intake</td>
<td>61 (30 boys and 31 girls) aged 3.1-5.6 years attending full day day-care. Diverse ethnicity</td>
<td>A 2 (PS) × 2 (ED) within-subject factorial design</td>
<td>Lunch meal in a laboratory</td>
<td>Vegetable intake significantly increased when the portion size was increased. Children ate half a serving more in the large versus reference portion size condition</td>
<td></td>
</tr>
<tr>
<td>Looney and Raynor 2011 (53)</td>
<td>To investigate the impact of portion size and energy density on intake, both grams and kilocalories, of snacks in preschool-aged children</td>
<td>17 (7 boys and 10 girls) aged 2-5 years attending full-day preschool at the Early Learning Center on the University of Tennessee Knoxville campus</td>
<td>A 2 (PS) × 2 (ED) within-subject factorial design</td>
<td>Snack at preschool</td>
<td>A significant main effect of portion size occurred, with greater energy consumed in the large as compared to small portion, however, there was no main effect of energy density or interaction of energy density and portion size on energy intake</td>
<td></td>
</tr>
<tr>
<td>McCrickerd, Leong and Forde, 2017 (31)</td>
<td>To determine whether teacher-served portions impact children’s food intake when increased in size</td>
<td>22 (11 boys and 11 girls) aged 3-6.8 years attending preschool</td>
<td>A within subject design</td>
<td>Lunch meals at preschool</td>
<td>Children served and consumed similar amounts when they served themselves or were served by their teachers. However, when their teacher served them a 150% serving, they ate significantly more.</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Objective</td>
<td>Participants</td>
<td>Design</td>
<td>Meal</td>
<td>Portion Sizes</td>
<td>Findings</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
<td>--</td>
<td>-------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Rolls et al., 2000 (55)</td>
<td>To examine the effects of portion size on children's food intake</td>
<td>32 (14 boys and 18 girls) in two age groups: 3-4.1 (mean age =3.6) and 4.3-6.1 (mean age = 5.5) years attending a day care programme</td>
<td>A within subject design</td>
<td>Lunch meal in a day care centre</td>
<td>Macaroni and cheese with an energy density of 1.4kcal/g Reference condition: 150g (age 3-4.1) and 225g (age 4.3-6.1). Medium condition: 263g (age 3-4.1) and 338g (age 4.3-6.1). Large condition: 376g (age 3-4.1) and 450g (age 4.3-6.1).</td>
<td>Older pre-schoolers consumed more macaroni and cheese when served the large portion than when served the smaller portion. In contrast, for younger children, portion size did not significantly affect food intake</td>
</tr>
<tr>
<td>Savage et al., 2012 (32)</td>
<td>To assess whether a linear increase in portion size influences preschool-aged children's intake of the entrée and of other foods served with the entrée, including fruit and vegetables</td>
<td>17 (7 boys and 10 girls) age 3-5 years attending pre-school</td>
<td>A within subject design</td>
<td>Lunch meal in a pre-school</td>
<td>The amount served in the reference condition was 100g of macaroni and cheese. The portion size was increased by 60g in each condition, with the largest serving being 400g</td>
<td>Children consumed more energy from the entrée and more total energy as the portion size increased. Children consumed a decreasing amount of the other foods served with the entrée as the entrée portion size increased. Milk intake was unaffected by variations in the entrée portion size.</td>
</tr>
<tr>
<td>Study</td>
<td>Aim of the research</td>
<td>Subjects</td>
<td>Design</td>
<td>Proc.</td>
<td>Findings</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---------------------</td>
<td>----------</td>
<td>--------</td>
<td>-------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Smith et al., 2013 (59)</td>
<td>The aim of the research was to evaluate the association between age and the effects of portion size on food intake in Chinese children in a field-based setting</td>
<td>172 (93 boys and 78 girls) aged 4-6 separated into two age groups. Attending kindergarten in Kunming, Yunnan Province, China</td>
<td>A between-subjects design (age group) with a within-subject component (PS) Lunch meal in a pre-school</td>
<td>The amount served in the reference condition was 150 g (age 4) and 261 g (age 6) of rice, vegetables and a protein mix. The small and large portion sizes were 30% lighter and 30% heavier than the reference portion size, respectively</td>
<td>Age was associated with a change in food intake. Only the 6-year-old age group ate significantly more with each increase in portion size. The 4 year old age group ate more in the reference and large portion compared to the small portion, however they did not eat more in the large compared to the reference</td>
<td></td>
</tr>
<tr>
<td>Spill et al., 2011 (52)</td>
<td>To determine the effects of serving different portion sizes of a low-energy-dense, vegetable-based soup on children's energy and vegetable intake within a meal and over the next eating occasion</td>
<td>72 (41 boys and 31 girls) with a mean age of 4.7 ± 0.1 attending one of two daycare centers on the University Park campus of The Pennsylvania State University</td>
<td>A within subject crossover design Lunch time in a day-care centre.</td>
<td>The amount served in the reference condition was 225 g of tomato soup. The small and large portion sizes were 33% lighter and 33% heavier than the reference portion size, respectively</td>
<td>Intake of tomato soup was significantly affected by the portion size that was served. Doubling the portion size from 150 to 300 g led to a significant increase in soup consumption by 23%, however the middle portion size was not significantly different than intake from either of the other portions</td>
<td></td>
</tr>
<tr>
<td>Aerts and Smits 2017 (study B) (47)</td>
<td>To examine intake when children are served a small and large portion of a nutritious and less nutritious snack</td>
<td>55 children (19 boys, 26 girls) aged 3 to 6 years old from four classes in two schools in Belgium.</td>
<td>A 2 (portion size) X 2 (snack type) within subject design Morning snack at school</td>
<td>The first snack was baby carrots (35 kcal/100g) served in a regular 80 g and large portion size 130 g. The second snack was ladyfinger cookies (400 kcal/100g) served in a regular 30 g and</td>
<td>Children consumed significantly more cookies when offered the large versus regular portion. However, children did not consume significantly more carrots from the large compared to the regular portion.</td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>Study Title and Authors</td>
<td>Objective</td>
<td>Sample Description</td>
<td>Study Design</td>
<td>Description</td>
<td>Findings</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------------</td>
<td>-----------</td>
<td>--------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>Fisher et al., 2007b (51)</td>
<td>To observe the effect of large portions on daily energy intake in 5-year-old Hispanic and African American children from low-income families</td>
<td>58 children (24 boys, 35 girls) aged 5 attending a Head start programme in Houston. African American and Hispanic</td>
<td>A within-subject design</td>
<td>Lunch meal in a laboratory</td>
<td>The amount served in the reference condition was: 185 kcal graham crackers and 368 kcal chicken nuggets. The amount provided in the reference condition was doubled for the large condition</td>
<td>Doubling the portion size of crackers did not impact intake, however doubling the portion size of chicken nuggets led to a 34% increase in intake</td>
</tr>
<tr>
<td>Kral et al., 2014 (49)</td>
<td>To compare energy intake at a meal in normal-weight and obese children when the portion size of energy-dense foods and a sugar-sweetened beverage was systematically increased</td>
<td>50 (24 boys and 26 girls) aged 8-10 years old. Half of normal body weight and half classified as obese. Diverse ethnicity</td>
<td>A within-subject design with weight status as a between-subjects factor and portion size as a within-subjects factor</td>
<td>Evening meal in a laboratory</td>
<td>The amount served in the reference condition was: 540kcal chicken nuggets, 378kcal hash browns, 94kcal ketchup, 31kcal green beans, 420kcal brownies and 100kcal fruit punch. 150 and 200% of this amount was served in the moderate and large portion conditions</td>
<td>Overall, children consumed significantly more in the moderate and large condition compared to the reference amount. Planned comparisons showed that obese children consumed significantly more calories during the meal compared to normal-weight children in all conditions</td>
</tr>
<tr>
<td>Mathias et al., 2012 (18)</td>
<td>To examine whether larger portions increase children’s intake of both fruits and vegetables.</td>
<td>30 children (12 boys, 18 girls) aged 4 to 6 years old. Half were classified as overweight or obese.</td>
<td>A 2 (vegetable PS) x 2 (Fruit PS) within-subjects design.</td>
<td>Fixed portions of rotini pasta and tomato sauce (310g), 2% milk (244g) and a side of light ranch dressing (31g) were offered in all conditions. Only the portion sizes of the drained canned peaches in light syrup and cooked broccoli were manipulated (75 v 150g)</td>
<td>Children consumed 41±6 g or 70% more fruit in the large portion conditions than in the reference conditions (59±5 g vs 101±9 g; P<0.0001), which corresponds to a two-fifths-of-a-serving increase. Children also consumed 12±4 g (37%) more of the vegetable side dish in the large portion conditions than in the reference conditions (32±6 g vs 44±9 g; P<0.01).</td>
<td></td>
</tr>
</tbody>
</table>

43
<table>
<thead>
<tr>
<th>Study</th>
<th>Objective</th>
<th>Participants</th>
<th>Design</th>
<th>Food Served in Reference Condition</th>
<th>Intake Differences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ramsay et al., 2013 (58)</td>
<td>To compare kindergarteners’ intake of food from a school lunch meal when they are pre-served a larger entrée portion to when they are allowed to choose from three preplated entrée portion sizes</td>
<td>114-121 kindergarten children attending a Kinder centre</td>
<td>A within subject design</td>
<td>Lunch meal at preschool</td>
<td>The amount served in the reference condition was: 4 chicken nuggets. On self-serve days children had a choice of 2, 3 or 4 nuggets. On non-choice days 4 nuggets were served whereas not all Kindergarteners selected the largest nugget portion on choice lunches. This resulted in a significant decrease in chicken nugget intake between choice and nonchoice days</td>
</tr>
<tr>
<td>Spill et al., 2010 (50)</td>
<td>To determine the effects of serving preschool children different portions of a vegetable as a first course at lunch on vegetable consumption and energy intake at the meal</td>
<td>51 (22 boys and 29 girls) aged 3-6 (mean 4.4 ± 0.1y) enrolled in daycare at the Bennett Family Center at the University Park campus of The Pennsylvania State University</td>
<td>A within subject crossover design</td>
<td>Lunch time in a day-care centre.</td>
<td>The amount served in the reference condition was 30 g of carrots. This was doubled and tripled for the moderate and large portion size conditions. Doubling the portion size led to a significant increase in carrot consumption by 47% whilst tripling the portion size led to a significant increase in carrot consumption by 54%</td>
</tr>
<tr>
<td>van Kleef et al., 2015 (48)</td>
<td>To investigate whether unit and portion size can be exploited to seduce children to eat more snack vegetables</td>
<td>255 (112 boys and 142 girls) aged 8 to 13 years. Attending primary school in the centre of the Netherlands</td>
<td>A 2 (PS) × 2 (unit size) within-subject design</td>
<td>Morning snack at pre-school</td>
<td>The amount served in the reference condition was approximately one third of a cucumber (127g). The amount served in the large condition was approximately two-thirds of a cucumber (248g). Participants being presented with the large portion size ate about 54% more cucumber relative to the small portion size.</td>
</tr>
</tbody>
</table>
Unit and Amorphous Foods

<table>
<thead>
<tr>
<th>Study</th>
<th>Aim</th>
<th>Sample Size</th>
<th>Design</th>
<th>Meal Setting</th>
<th>Calories Provided</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kling et al., 2016 (46)</td>
<td>To examine the independent and combined effects on children's intake of changing the portion size and ED of all components of a meal</td>
<td>120 children (61 boys, 59 girls) aged 3-6 (mean 4.4 ± 0.1y) attending a childcare centre</td>
<td>A within subject crossover design</td>
<td>Lunch meal in childcare centre</td>
<td>The experimental meal consisted of chicken (grilled breast or breaded nuggets), macaroni and cheese, a green vegetable (broccoli or peas), applesauce, ketchup, and milk. A 395g serving was provided in the reference condition. A 150 and 200% serving were provided in the medium and large condition. There was a significant effect of portion size ($P < 0.0001$) but not ED ($P = 0.22$) on the weight of the meal consumed. Compared to the 100% portion size conditions, meal intake was 21% (60 ± 7 g) greater in the 150% portion size conditions and 26% (74 ± 7 g) greater in the 200% portion size conditions (both $P < 0.0001$).</td>
</tr>
<tr>
<td>Kral et al., 2010 (57)</td>
<td>To examine the effects of doubling the portion size of F&V side dishes on children's intake of F&V at a meal</td>
<td>43 (22 boys and 21 girls) aged 5-6 years old. Diverse ethnicity</td>
<td>A within-subject design</td>
<td>Evening meal in a laboratory</td>
<td>The amount served in the reference condition was: 75g broccoli, 75g carrots and 122g applesauce. The amount provided in the reference condition was doubled for the large condition. Doubling the portion size of F&V side dishes resulted in a significant increase in the total weight of F&V consumed. This resulted in a significant decrease in intake of the main entrée.</td>
</tr>
<tr>
<td>Mooreville et al., 2015 (45)</td>
<td>To evaluate associations of young children's susceptibility to large food portion sizes with child appetite regulation traits and weight status</td>
<td>100 (45 male and 55 female) aged 5-6 years. Non-Hispanic black. Normal weight (n=66) and obese (n=34)</td>
<td>A within-subject design with repeated measures</td>
<td>Evening meal in a laboratory</td>
<td>The amount served in the reference condition was: 220g pasta, 84g corn, 127g applesauce and 25g cookies.150, 200% and 250% of this amount was served in the moderate, large and extra-large portion conditions. Total energy intake significantly increased from the reference portion to the 250% condition. The effect of portion size condition on total energy intake, however, did not vary by child weight status</td>
</tr>
</tbody>
</table>
Appendix 1

Table 3: Summary of evidence categorised by magnitude of portion size increase

<table>
<thead>
<tr>
<th>Magnitude increase of portion size</th>
<th>Systematic review</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Articles</td>
</tr>
<tr>
<td>0-50%</td>
<td></td>
</tr>
<tr>
<td>51-100%</td>
<td>15</td>
</tr>
<tr>
<td>101-150%</td>
<td></td>
</tr>
<tr>
<td>151-200%</td>
<td></td>
</tr>
<tr>
<td>201-250%</td>
<td></td>
</tr>
<tr>
<td>250-300%</td>
<td></td>
</tr>
<tr>
<td>Not defined</td>
<td></td>
</tr>
</tbody>
</table>
Table 4: Portion sizes served and quantities consumed for each exposure group (mean ± SD)

<table>
<thead>
<tr>
<th>Study</th>
<th>Group</th>
<th>Food Type</th>
<th>Measure</th>
<th>Mean age</th>
<th>Participant count</th>
<th>PS1</th>
<th>Amount consumed PS1</th>
<th>PS2</th>
<th>Amount consumed PS2</th>
<th>Portion size group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mooreville 2015*</td>
<td>Unit and Amorphous</td>
<td>kcal</td>
<td>5.4±0.5 (range: 5-6)</td>
<td>100</td>
<td>548</td>
<td>407.2±175.6</td>
<td>886</td>
<td>465.3±210.9</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Kling 2016</td>
<td>HED</td>
<td>Unit and Amorphous</td>
<td>grams</td>
<td>4.4±0.1 (range: 3-5)</td>
<td>120</td>
<td>395</td>
<td>280±120.50</td>
<td>592</td>
<td>357±153.36</td>
<td>1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>LED</td>
<td>Unit and Amorphous</td>
<td>grams</td>
<td>4.4±0.1 (range: 3-5)</td>
<td>120</td>
<td>395</td>
<td>283±109.54</td>
<td>592</td>
<td>331±142.41</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Kral 2010</td>
<td>Unit and Amorphous</td>
<td>grams</td>
<td>(range: 5-6)</td>
<td>43</td>
<td>272</td>
<td>-</td>
<td>544</td>
<td>-</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Aerts 2017 (Study B)</td>
<td>LED</td>
<td>Unit</td>
<td>grams</td>
<td>4.67±0.86 (range: 3-6)</td>
<td>55</td>
<td>80</td>
<td>41.44±29.96</td>
<td>130</td>
<td>48.87±41.04</td>
<td>2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>HED</td>
<td>Unit</td>
<td>grams</td>
<td>4.67±0.86 (range: 3-6)</td>
<td>55</td>
<td>30</td>
<td>25.45±8.56</td>
<td>48</td>
<td>32.69±15.78</td>
<td>2</td>
</tr>
<tr>
<td>van Kleef 2015</td>
<td>One unit</td>
<td>Unit</td>
<td>grams</td>
<td>10.1±1.3 (range:8-12)</td>
<td>255</td>
<td>127</td>
<td>84.2±51.3</td>
<td>248</td>
<td>136.6±95.6</td>
<td>2</td>
</tr>
<tr>
<td>Source</td>
<td>Unit</td>
<td>grams</td>
<td>Multiple units</td>
<td>Unit</td>
<td>10.1±1.3 (range: 8-12)</td>
<td>255</td>
<td>127</td>
<td>96.7±41.9</td>
<td>248</td>
<td>142.1±95.7</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------</td>
<td>-------</td>
<td>----------------</td>
<td>------</td>
<td>------------------------</td>
<td>-----</td>
<td>-----</td>
<td>-----------</td>
<td>-----</td>
<td>-------------</td>
</tr>
<tr>
<td>Kral 2014*</td>
<td>kcal</td>
<td>9.6±0.8 (range: 8-10)</td>
<td>50</td>
<td>1463</td>
<td>838±285</td>
<td>2195</td>
<td>947±292.1</td>
<td>2926</td>
<td>928.5±285.0</td>
<td>2</td>
</tr>
<tr>
<td>Mathias 2012</td>
<td>Veg</td>
<td>grams</td>
<td>5.4±0.2 (Range:4-6)</td>
<td>30</td>
<td>75</td>
<td>32±32.86</td>
<td>150</td>
<td>44±49.30</td>
<td>101±49.30</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Fruit</td>
<td>grams</td>
<td>5.4±0.2 (Range:4-6)</td>
<td>30</td>
<td>75</td>
<td>59.0±27.39</td>
<td>150</td>
<td>36.2±18.57</td>
<td>38.1±22.85</td>
<td>4</td>
</tr>
<tr>
<td>Spill 2010</td>
<td>grams</td>
<td>4.4±0.2 (range: 3-5)</td>
<td>51</td>
<td>30</td>
<td>24.7±7.86</td>
<td>60</td>
<td>36.2±18.57</td>
<td>90</td>
<td>38.1±22.85</td>
<td>4</td>
</tr>
<tr>
<td>Ramsay 2013</td>
<td>units</td>
<td>114-121</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fisher 2007b</td>
<td>kcal</td>
<td>5</td>
<td>58</td>
<td>185</td>
<td>94±66</td>
<td>370</td>
<td>115±92</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chicken nuggets</td>
<td>kcal</td>
<td>5</td>
<td>58</td>
<td>368</td>
<td>267±96</td>
<td>736</td>
<td>357±143</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aerts 2017</td>
<td>grams</td>
<td>6.43±0.68 (range: 6-7)</td>
<td>26</td>
<td>30</td>
<td>27.15±7.51</td>
<td>60</td>
<td>56.5±12.25</td>
<td>60</td>
<td>42.63±11.95</td>
<td>2</td>
</tr>
<tr>
<td>(Study A)</td>
<td>grams</td>
<td>6.43±0.68 (range: 6-7)</td>
<td>28</td>
<td>30</td>
<td>23.89±10.08</td>
<td>60</td>
<td>42.63±11.95</td>
<td>60</td>
<td>42.63±11.95</td>
<td>2</td>
</tr>
<tr>
<td>Savage 2012</td>
<td>grams</td>
<td>4.3±0.5 (range: 6-7)</td>
<td>17</td>
<td>100</td>
<td>95.2±5.96</td>
<td>160</td>
<td>153.4±8.11</td>
<td>160</td>
<td>153.4±8.11</td>
<td>2</td>
</tr>
</tbody>
</table>

49
<table>
<thead>
<tr>
<th>Study</th>
<th>Age</th>
<th>Form</th>
<th>Grams</th>
<th>Calories</th>
<th>Time (min)</th>
<th>Caloric Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith 2013</td>
<td>4</td>
<td>Amorphous</td>
<td>4.1±0.4</td>
<td>94</td>
<td>150*</td>
<td>256±75</td>
<td>179±73</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Amorphous</td>
<td>6.1±0.2</td>
<td>77</td>
<td>261*</td>
<td>325±118</td>
<td>252±118</td>
</tr>
<tr>
<td>Spill 2011</td>
<td></td>
<td>Amorphous</td>
<td>4.7±0.1</td>
<td>72</td>
<td>150</td>
<td>108.4±51.76</td>
<td>122.1±76.37</td>
</tr>
<tr>
<td>Looney & Raynor 2011</td>
<td></td>
<td>Amorphous</td>
<td>3.8±0.6</td>
<td>17</td>
<td>150</td>
<td>84.2±30.8</td>
<td>99±52.5</td>
</tr>
<tr>
<td>Fisher 2007b</td>
<td></td>
<td>Pasta</td>
<td>5</td>
<td>58</td>
<td>453</td>
<td>226±125</td>
<td>239±118</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cereal</td>
<td>5</td>
<td>58</td>
<td>160</td>
<td>108±59</td>
<td>163±101</td>
</tr>
</tbody>
</table>

(range: 3-6)
<table>
<thead>
<tr>
<th>Study</th>
<th>Age</th>
<th>Amorphous</th>
<th>Units</th>
<th>Number</th>
<th>Calories</th>
<th>Grams</th>
<th>Number</th>
<th>Calories</th>
<th>Grams</th>
<th>Number</th>
<th>Calories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fisher 2007a</td>
<td></td>
<td>Amorphous</td>
<td>grams</td>
<td>5.5 (range: 5-6)</td>
<td>53</td>
<td>250</td>
<td>158±80.08</td>
<td>500</td>
<td>210±80.08</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Fisher 2007</td>
<td>Age 8-9</td>
<td>Amorphous</td>
<td>kcal</td>
<td>8.7±0.4 (range: 8-9)</td>
<td>25</td>
<td>450</td>
<td>361±173</td>
<td>900</td>
<td>407±258</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Age 5-6</td>
<td>Amorphous</td>
<td>kcal</td>
<td>5.6±0.5 (range: 5-6)</td>
<td>25</td>
<td>250</td>
<td>223±83</td>
<td>500</td>
<td>290±145</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 2-3</td>
<td>Amorphous</td>
<td>Kcal</td>
<td>2.6±0.5 (range: 2-3)</td>
<td>25</td>
<td>200</td>
<td>133±82</td>
<td>400</td>
<td>145±113</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fisher 2003</td>
<td></td>
<td>Amorphous</td>
<td>Grams/kJ</td>
<td>4±0.5 (range: 2-5)</td>
<td>30</td>
<td>150</td>
<td>1578±686.8</td>
<td>300</td>
<td>1922±910.4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Fisher 2013</td>
<td></td>
<td>Amorphous</td>
<td>grams</td>
<td>4.9±7.2 (range: 4-6)</td>
<td>60</td>
<td>Self-serve</td>
<td>65.6±113.87</td>
<td>Self-serve</td>
<td>91.9±113.87</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Leahy 2008</td>
<td>HED</td>
<td>Amorphous</td>
<td>grams</td>
<td>4.4±0.1 (range: 3-5)</td>
<td>61</td>
<td>10.1</td>
<td>5.3±1.56</td>
<td>30.1</td>
<td>15.6±6.25</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>McCrickerd 2017</td>
<td>Varied</td>
<td>Amorphous</td>
<td>grams</td>
<td>4.9 (range: 3-6)</td>
<td>22</td>
<td>self-serve</td>
<td>175.0±74.00</td>
<td>Teacher serve</td>
<td>175.23± 84.24</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Varied ED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Teacher-serve large</td>
<td>236.59±117.41</td>
<td>7</td>
</tr>
<tr>
<td>Matched ED</td>
<td>Amorphous grams</td>
<td>4.9 (range: 3-6)</td>
<td>22</td>
<td>Self-serve</td>
<td>245.77±120.93</td>
<td>Teacher-serve</td>
<td>234.50 ± 112.36</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rolls 2000</td>
<td>Age 4-6</td>
<td>Amorphous grams</td>
<td>5 (range: 4-6)</td>
<td>16</td>
<td>225</td>
<td>76.7±59.2</td>
<td>338</td>
<td>100.7±74.8</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>450</td>
<td>122.7±86.4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Age 3-4</td>
<td>Amorphous grams</td>
<td>3.6 (range: 3-4)</td>
<td>16</td>
<td>150</td>
<td>44.8±49.2</td>
<td>263</td>
<td>54.6±63.2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>376</td>
<td>39.6±36.8</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key: portion size increase 1 = 0-50%, 2 = 51-100%, 3 = 101-150%, 4 = 151-200%, 5 = 201-250%, 6 = 251-300%, 7 = self-serve, * second servings allowed, * approximate SD