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Abstract 

A unique combined and multi-disciplinary wavelength multiplexed spectrometer is described. It is 

furnished with high-sensitivity imaging plate detectors, the power to which can be gated to 

provide time-resolved data. The system is capable of collecting spectrally resolved luminescence 

data following x-ray excitation (radioluminescence, RL or X-ray excited optical luminescence, 

XEOL), electron irradiation (cathodoluminescence, CL) and visible light from LEDs 

(photoluminescence, PL). Time-resolved PL and CL data can be collected to provide lifetime 

estimates with half-lives from s timeframes. There are temperature stages for the high and low 

temperature experiments providing temperature control from 20 to 673 K. Combining irradiation, 

thermal ramping and TR-PL allows spectrally-resolved thermoluminescence (TL) and optically 

stimulated luminescence (OSL). The design of two detectors with matched gratings gives optimum 

sensitivity for the system. Examples which show the advantages and multi-use of the 

spectrometer are listed. Potential future experiments involving lifetime analysis as a function of 

irradiation, dose and temperature plus pump-probe experiments are discussed. 
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1. Introduction 

Luminescence offers one of the most sensitive routes to understand the distortions and imperfections in 

insulating and semiconducting solids. The method benefits from the fact that emission spectra, 

temperature dependence and excited state lifetimes all differ, providing not only characterisation of 

different types of defect, but also evidence for distortions and clustering in the local environment of those 

structures. Additionally, luminescence can be excited by a wide range of energetic methods, from site 

selective photon excitation (PhotoLuminescence, PL, e.g. Friis et al. 2010), surface techniques with low 

energy electrons (CathodoLuminescence, CL, Townsend & Rowlands 2000) to bulk ionization methods using 

x-rays (either termed RadioLuminescence, RL or X-ray Excited Optical Luminescence, XEOL, Friis et al. 2011) 

or particle irradiation (IonoLuminescence, IL or Ion Beam Luminescence, IBL, e.g. Finch et al. 2004). 

Furthermore, one can selectively release charge from particular defect sites after irradiation as a function 

of temperature, thus providing the site specific information encoded in ThermoLuminescence (TL, Yang et 

al. 1998, Karali et al. 2000). 

Modern optical detectors with high sensitivity and very low background noise levels mean that responses 

from impurity or defect sites can be detected well below parts per million (ppm) concentrations. 

Luminescence spectroscopies are therefore a particularly valuable family of techniques to characterize 

defect structures in materials, even at low concentrations. Because of the applicability of luminescence 

across disciplines, the relevant literature is spread across many sciences including condensed matter 

physics, radiation dosimetry, chemistry, geology, geography and archaeology (Wang & Townsend 2013). 

The only caveat is that, because of the diversity of applications and user expertise, not all the literature 

reports data that have been consistently or correctly processed and this may generate apparent differences 

that are artefacts of the experimental and data processing methods (Wang & Townsend 2013). With such a 

wide range of luminescence methods and extreme sensitivity to the target material, it is essential to make 

several types of measurement on a single sample to understand fully the information encoded in 

luminescence data. Consequently one requires a system which has programmable temperature control 

from e.g. 20 to 673 K, and that can apply all the excitation methods to excite PL, CL, RL and TL. Note also 

that previous systems often are only capable of ramping the temperature upwards, as for TL, but controlled 

cooling is equally valuable since it can separate contributions of TL from ramped CL/RL/PL and also reveal 

hysteresis and single event phase transitions (e.g. Yang & Townsend 2000).  For some methods either 

steady state or modulated excitations are required, and from the latter we extract lifetime as well as 

emission spectral data. 

The purpose of this article is to describe a unique luminescence system designed to address these technical 

and instrumental challenges. Its detectors have been developed in a partnership with the manufacturer 

(Photek Ltd) to provide state-of-the-art photon sensitivity combined with fast gating of the power to allow 

time-resolved spectroscopies. The instrument measures several types of luminescence spectroscopy, 



including simultaneous multiple excitation, in both continuous wave and pulsed excitation modes as a 

function of temperature from 20-673 K. We illustrate the capabilities of the system with novel data from a 

selection of industrially relevant materials. We also outline potential future applications. 

  

2. Design of the System 

2.1  Introduction and History 

In the early 1990s a system dedicated to the measurement of TL was designed with detection of 

wavelength multiplexed luminescence made possible by the use of photon imaging detectors (Luff & 

Townsend 1993) and housed at the University of Sussex, UK. The high f number optics (f/2.2) allowed the 

use of low heating rates for the TL so that there were minimal uncertainties between the heating stage 

temperature and the emission region at the surface of the samples (Ege et al. 2007). This was highly 

effective and, in addition to recording spectrally resolved TL over the wide temperature range, there were 

unexpected bonuses in peak temperature shifts related to pairing and clustering of impurities, or their 

association with different defect species (e.g. Kurt et al. 2001, Maghrabi et al. 2013). Since different 

polymorphs usually show different emission spectra, it was possible to detect phase transitions very rapidly 

in a dynamic heating or cooling run (Yang & Townsend 2001). Not only did this reveal hysteresis, but it 

showed a wide range of previously unsuspected crystalline transformations in materials as diverse as KTP, 

SrTiO3, fullerenes and superconductors (see Wang et al. 2012 for a review). CL was used to probe the role 

of contaminants and surface relaxations (Rowlands et al. 1998). Dramatic changes in intensity were noted 

not only for phase transitions of the host materials, but also driven by phase transitions within inclusions of 

nanoparticles of impurities (or added dopants). This emphasises that there are very long range interactions 

from such inclusions that modify the entire sample. The Sussex system provided some of the most exciting 

and innovative discoveries in luminescence science of the last 25 years (e.g. Yang et al. 1998, Kurt et al. 

2001, Wang et al. 2011, 2015). 

On the retirement of Townsend, the system was brought to St Andrews, where new detector systems were 

installed, several improvements were made and new software was written. There is now a need to describe 

the modified system with its enhanced sensitivity and greater capabilities. Rather than describe the history 

of modifications to the system, we provide here a description in its current state, without differentiating 

between the original design and our subsequent modifications (Luff & Townsend 1993). 

 

2.2 The Sample Chamber, Light Path and Stages 

The system comprises a central chamber made out of aluminium (typically 3 cm thick) and brass (5 mm 

thick) to reduce x-ray leakage (Fig. 1). A USB webcam inside the chamber allows visualisation of the sample 



on the stage. A two-stage vacuum system roughs down to 10-1 mbar (10 Pa) with an Edwards Rotary Pump 

and harder vacuum down to 10-6 mbar (0.1 mPa) using a Edwards 100/300 650 W Diffstak diffusion pump. 

The vacuum status is monitored using Edwards VSK1B vacuum switches and two Edwards APG100 active 

pirani gauge heads. The vacuum switches close when the vacuum is below a threshold (typically 10 mbar = 

1 kPa) and the active vacuum heads provide output voltages between 0-6 V as an exponential function of 

vacuum. These voltages are monitored using a Velleman K8055 USB Experimental Interface board 

(http://www.velleman.eu/products/view/?country=be&lang=en&id=351346) and converted to an estimate 

of vacuum – the digital input channels are connected to the vacuum switches and other microswitches 

around the instrument. 

The two-stage vacuum system is controlled by switching mains power on and off to the pumps (rotary and 

diffusion pumps) using a Measurement Computing USB-ERB08 Electromechanical Relay Interface 

(http://www.mccdaq.com/usb-data-acquisition/USB-ERB08.aspx).  The ERB08 unit also operates the helium 

compressor, controls venting of the sample chamber during sample change and the safety interlock on the 

x-ray generator. The stage mounted is detected using microswitches and the program then automatically 

communicates with the appropriate stage. The system is interlocked for radiation safety and protection of 

the detectors. 

To cover the entire spectrum from the UV to the IR, two detectors operate simultaneously, targeting the 

UV-Blue and visible-near IR regions, referred to as the ‘blue’ and ‘red’ detectors respectively. Each is 

housed in separate detector housings, either side of the chamber (Fig. 1). The light from the sample is 

focussed by two sets of two fused silica (‘Spectrosil B’) plano-convex lenses, a combination which provides 

1:1 imaging of the sample on the entrance slits of the spectrometers. The lenses seal directly to the sample 

chamber, eliminating the need for additional windows in the sides of the chamber. In the case of the ‘UV-

blue’ detector (see below), fused silica elements are necessary to enable UV transmission, but a further 

advantage of this material is its good resistance to radiation darkening. Since the lenses receive a 

considerable dose over time from scattered radiation in the chamber, fused silica is used for both lens 

combinations, even in the ‘red’ detector where UV is not measured. Lens combinations, rather than single 

lenses, are necessary to match the high f number of the spectrometers (f/2.2). Between the lenses and the 

entrance slits are lightproof boxes that accept standard (50 mm x 50 mm) filters. The entrance slits to the 

spectrometers can be swapped to modify the signal strength and spectral resolution, but the typical 

analysis takes place with 500 m slits providing a typical wavelength precision of ~2 nm but widths of 125, 

250 and 1000 m are available. Manual shutters are placed in the light paths after the filter boxes. 

The focal position of the spectrum is a function of wavelength, and hence the distances from the sample to 

each detector are different, optimised for the central wavelength region that each detector analyses (Luff & 

Townsend 1993). The light is diffracted by American Holographic Chemspec 100S gratings of the Rat-field 

http://www.velleman.eu/products/view/?country=be&lang=en&id=351346
http://www.mccdaq.com/usb-data-acquisition/USB-ERB08.aspx


holographic type; one is used nominally for the range 200-450 nm (ref: 446.02/L) with a dispersion of 8 

nm/mm and the other (ref: 446.14/L) from 400-800 nm with a dispersion of 12 nm/mm. The numerical 

aperture is f/2.2. The peak efficiency of each grating occurs at ~350 nm and ~730 nm, chosen near the 

centre of each spectral range, biased to enhance signals where the red photocathode sensitivity is falling 

steeply.  

Second-order scattering of lower wavelengths into the first order spectrum will occur for the red grating 

detector, therefore a  GG400 Schott Glass 400 nm long pass filter is permanently inserted into the light 

path of the red detector to remove the short wavelength signals (Fig. 1). The filter is not entirely opaque 

between 397-400 nm and for samples with a strong signal in this region, we observe a small second order 

response between 795-800 nm. Rather than attempt difficult corrections for this artefact, we accept that 

this remains in processed spectra of samples that are strong in the UV-Blue. The two detectors provide two 

separate sets of spectral data with a substantial overlap from which subsequent data processing creates a 

single composite UV-IR spectrum.  

The chamber is furnished with two stages for cryogenic (20-300 K) and high-temperature (300-673 K) 

measurement. A third stage operating from -40 to +400oC is also available for samples which have TL 

transitions around room temperature. The cryostage enters from below the chamber and the high 

temperature stage at the front; each has a blanking plate to isolate the chamber when the other stage is in 

use. The stage is a Cryophysics M22 cryostage, cooled by a CTI Cryogenics 8200 water-cooled Helium 

Compressor and heated with nichrome wire. Temperature is controlled by a Eurotherm 2404 controller 

connected to a Au-Fe thermocouple. The maximum ramp rate is 0.1 K s-1. The cryostage is operated only 

when the sample has been in vacuum (<10-5 mbar = <1 mPa) for some hours, to avoid frosting of the 

sample. The higher temperature heating stages have a Nichrome strip 12 x 50 x 0.7 mm and a 

chromel/alumel thermocouple controlled by a Eurotherm 818P controller with switching accomplished by a 

Eurotherm thyristor unit model 462. The maximum ramp rate of the high temperature stage is 3 K s-1.  

 

2.3 The Detectors 

The diffraction gratings deliver a strip of light onto the detector, such that the position of the photon arrival 

is a function of wavelength. The detectors are imaging plate detectors (ipds) manufactured to our 

specifications in a collaboration with Photek Ltd (www.photek.co.uk). Ipds were chosen to provide state-of-

the-art sensitivity whilst also allowing sub-s switching of the power to the detector plate for time-resolved 

luminescence experiments (see below). Cooled detectors were not favoured to avoid frosting of the 

detector – the difficulties associated with keeping the detector under vacuum or dry nitrogen were 

considered to overwhelm the benefits of lower dark current. IPDs use standard PM tube photocathode 

materials; however electron multiplication is provided by microchannel plates (MCP) rather than a dynode 

http://www.photek.co.uk/


chain. Charge clouds emerging from the channels are proximity focused onto a resistive anode. The current 

flow resulting from the original photon event is measured at four points on the resistive anode, enabling 

the position of the photon arrival and its arrival time to be reconstructed. Each ipd has a separate power 

unit and communicates to the master computer via USB. The ‘blue’ detector is a bialkali photocathode ipd; 

the ‘red’ detector is a S25 based photocathode – each detector type was chosen to maximise signal and 

minimise noise in the relevant spectral range. The dark current on each detector was typically 2.4 x 10-4 

(blue) and 1.6 x 10-2 Hz nm-1 (red) but we observe a halo effect such that the dark current is lower in the 

centre and enhanced towards the edges. Following discussions between St Andrews and Photek, this 

foreshortening of the image was ameliorated against by an optional software patch. A fuller description of 

the imaging plate detectors is given in Supplementary Information 1. The position on the ipd is calibrated 

against wavelength using Hg, Kr emission lines and laser pointer sources and the output from the detectors 

are both raw images and reconstructed wavelength. Blackbody radiation in the infrared is seen as a 

background in all runs using the high-temperature stage above ~600 K and becomes progressively more 

intense as temperature rises to the maximum (673 K).  

The system and detectors used here exploit the high sensitivity and dynamic range of photocathode 

detectors. However, they have a weakness in that their performance falls at long wavelengths. By contrast 

one can use CCD signal collection which functions into the near infrared region. Our system has sufficient 

access ports that in principle it is simple to add a fibre optic link to a longer wavelength CCD spectrometer 

for those materials which require such data. We have used CCD systems successfully during the recording 

of ion beam excited luminescence (Townsend 2012) and synchrotron-based XEOL (Taylor et al. 2013). 

 

2.4 Sample Excitation 

Three forms of excitation are available; 1) a Philips MCN-101 ceramic x-ray tube placed at the rear of the 

chamber, 2) an electron gun (taken from a Jeol electron microscope) on the top and 3) LEDs inserted inside 

the chamber and controlled by power sources externally. The x-ray and electron gun sources were 

controlled manually by units in the electronic rack. The x-ray controller is not operated above 30 kV and 15 

mA to avoid x-ray leakage; typical operating conditions are 20 kV and 4 mA, providing dose rates of 1.8 Gy 

min-1. The electron gun operates between 10 and 25 kV acceleration voltage with a typical beam current of 

200 nA and a spot size typically with a diameter of 3 mm, providing an incident power density of ~1 kW m-2. 

The beam is focussed using the electron optics inherited from the electron microscope source, controlled 

by external power supplies. Beam position (x-y) is tweaked using external magnetic fields generated by 

solenoids controlled by power supplies; beam pulsing is achieved by sudden increases in the current 

applied to these, flipping the beam off the sample. The LEDs are sourced either from RadioSpares (uk.rs-

online.com) or Roithner LaserTechnik GmbH (www.roithner-laser.com) and controlled via an amplifier built 

http://www.roithner-laser.com/


in-house and operated by a logic signal to be either on or off. Emission wavelengths down to 300 nm have 

been used although deeper UV LEDs are now available. Continuous wave photoluminescence (PL) is difficult 

since the excitation would saturate the sensitive detector plates. It can be achieved with the use of notch 

or long pass filters, or by exciting in the UV and only using data from the Visible-NIR detector. Time-

resolved PL is achieved without the use of filters by <ms switching of the LEDs coupled to rapid switching of 

the detectors.  

 

2.5 System Software  

Software was written in-house using LabVIEW 2016 (www.ni.com/labview/) to operate from a Graphical 

User Interface (GUI). All automated components of the system are controlled by LabVIEW drivers but some 

were provided in other languages (e.g. visual basic or C) and adapted using LabVIEW wrappers. LabVIEW 

drivers for the stages are downloaded from National Instruments and adapted for the present system. The 

Eurotherm 818 controller (high temperature stage) uses a version of an older 808 driver by enabling extra 

commands compatible with the 818. The Eurotherm 2404 controller (low temperature heating stage) is 

successfully operated via a generic 2400 series driver. Both controllers work via RS232 protocol, operated 

via USB using a 4-way USB-RS232 converter.  

The detectors come with Photek software (Image32) which can be operated directly or controlled from 

LabVIEW using wrappers provided by Photek. Photon arrivals are accumulated over preset integration 

periods, assigning a position on the imaging plate and a time stamp to every photon arrival. The output is a 

16-bit monochrome image covering the entire detector area. Photon arrival events outside the rectangular 

area illuminated by the grating are rejected. Direct image transfer from the Photek software to LabVIEW 

results in the loss of the most significant bit in the data, and hence the program writes the image data to 

the hard drive from Image32 and reads it back into LabVIEW as a 16-bit image using routines in the 

LabVIEW Image Module. For continuous wave (CW) measurements, the time stamps are ignored and the 

two-dimensional image from each detector is converted to a 1D spectrum by summing individual pixel 

values onto the wavelength axis.  

For time resolved (TR) analysis, excitation is pulsed and photon arrivals in the ‘off’ cycle are analysed as a 

function of wavelength and arrival time. Since the power to the ipd is switched off during this cycle, time-

resolved photoluminescence (TR-PL) is possible without any filters since the intense light from the LED 

arrays do not encounter the detector whilst the voltage is on, thereby avoiding damage to the detector. TR 

analysis uses LED (time-resolved PL, TR-PL) or electron beam excitation (TR-CL). The electron beam is 

pulsed by flicking the beam off the sample using an electromagnet on the column; LEDs are controlled by 

pulsing the power to them. We observe ~1 s phosphorescence from standard LEDs after the power is 

stopped. Although nano-LEDs with rapid switching are available, we have found it more convenient to use 

http://www.ni.com/labview/


cheaper standard LEDs and insert a software delay (typically 3 s) between the end of the ‘on’ excitation 

signal and powering up the detectors. Blank measurements with the delay show no sign of the primary 

excitation in TR-PL. Photon arrival times during data acquisition are binned over multiple iterations 

producing a 16-bit rectangular image with wavelength on one axis and numbers of photons per time bin on 

the other. Time bin widths are software controlled but are typically 250 ns, 200 bins and integration times 

of 5 minutes provide data that we have processed successfully (see below) to provide estimates of lifetime 

in the s to s range. 

Longer (seconds to hour length) lifetimes are measured using a ‘phosphorescence’ routine in LabVIEW 

whereby repeated CW spectra are collected and then amalgamated to create a 2D image. The outputs from 

this type of analysis emulate those of TR analysis so that the same software routines are applied.   

 

2.6 Offline Data Processing and Manipulation 

We store data as raw files and system corrections are performed off line. This allows alternative system 

corrections and data manipulation to be performed retrospectively without the need to reconstruct raw 

images. We have preferred this approach particularly since offline processing software is regularly 

improved. The data from the individual detectors are corrected first by subtracting the dark current (as a 

function of wavelength and exposure time), then dividing by the system responses of the two ipds (Fig. 2, 

provided by Photek). The gratings are blazed for optimum efficiency in the centre of the range and fall to 

about 50% grating efficiency at half and double the blaze angle. We model the grating efficiencies as a 

parabolic function of log of wavelength centred on the blaze wavelength. Because we focus on the central 

portions of each grating, the efficiency across the majority of the data range is >90%, and might reasonably 

be considered essentially constant. However there is a significant dip below 250 nm, and an inconsistency 

between the efficiencies of the two gratings in the overlap region. We therefore correct the data using our 

grating efficiency model. Although this is a first order correction, it amplifies the deeper UV data and 

improves the fitting of the two spectra (R2 are increased, see below). The effects of the transmission of the 

quartz lenses (and the 400 nm long pass filter in the red detector) are also accommodated. The two spectra 

are matched in the overlapping spectral region, typically 420-480 nm, avoiding the edge regions of both 

spectrometers where the dark current is high and image foreshortening is observed. Because of the steric 

effects of the sample and different focus distances to the two imaging plates, the amount of light arriving at 

the two detectors is never perfectly matched in intensity. We scale the two images with respect to each 

other to accommodate, with the overlap region comprising a linear combination of the two images. We 

calculate a fit index (R2) to express how the two images match with linear scaling. Where significant signal is 

present, R2 values >95% are observed. Analysis of single emission band profiles in energy space give 

Gaussian fits, suggesting that our system corrections provide accurate and undistorted final profiles. At 



temperatures above 600 K (~320°C), significant blackbody radiation is observed in the spectra at 800 nm 

which increases and creeps to shorter wavelengths with increasing T. The blackbody radiation from the 

stage is often many orders of magnitude greater that the luminescence signals from the samples, hence the 

data for the high temperature stage are deleted where significant blackbody radiation occurs in a sample 

blank.  

The final outputs are transferred automatically to ORIGIN for plotting and standard 3D and contour plots 

(used in the present study) are generated automatically. These are typically contoured with ‘hot’ colours to 

express higher counts and ‘cold’ colours as lower ones (e.g. Figures 3, 4). However in recognition of the 

many in the science community who are colour blind (including one of us), the software also generates 

monochrome contour-based outputs which we present in Supplementary Information 2. Examples of the 

raw and processed data formats are attached to the present article as Supplementary Information 3. 

 

3 Examples of Luminescence Data 

We present data below from a cross-section of materials designed to explore and test the accuracy and 

capabilities of the system. We have used both well-characterised samples, whose data can be related to the 

open literature, and a selection of more challenging materials which provide novel observations and 

provide insights into the future capabilities of the system and the types of scientific questions that this 

system might address. Data are collected using both the high temperature and cryogenic stages. 

3.1 TL and Dosimeter Materials  

GR200 is one of the most commonly used dosimeters for the personal radiation dosimetry. High 

Temperature TL data for GR200 were collected in the temperature range from 20 to 400 °C after 2 Gy x-

irradiation (Figure 3). In order to minimize temperature gradients across the sample, a heating rate if 0.1 K 

s-1 is usually employed. In this example, the TL of the sample occurs at 188°C with a wavelength maximum 

at 381 nm. As can be seen from Figure 3, the TL of this material is particularly effective dosimeter material 

using conventional TL (spectrally unresolved) since its peak emission in the blue/near UV is close to the 

optimum quantum efficiency of a photomultiplier tube (PMT, typically ~400 nm). However many 

commercial TL systems use PMTs with glass windows which are opaque in the UV and also contain infrared 

filters to protect the photocathode, but which also partially attenuate the target signal. As a result, despite 

the extra dimension of spectral resolution, our system performs favourably in terms of its UV sensitivity 

compared to commercial systems.  

Figure 4 shows a 3D plot of TL from a MgSiO4:Tb dosimeter material (Tawara et al. 2011). The Tb emission 

lines are dominant and extend across the UV and visible. The irradiation was 100 Gy and the heating rate 

was 0.25 K s-1 over the temperature range from 25 to 400 °C. We observe emissions at 379, 417, 440, 483, 



550, 583 and 621 nm (consistent with the published spectrum of McAllister 1966) and maxima at 35, 133 

and 293°C. This material is a particularly useful test since the spectrum is the product of the two separate 

detectors and are ‘stitched’ together to provide a single spectrum. The wavelengths of the example 

demonstrate that not only can the system readily resolve the Tb emission lines, but also the data obtained 

from the two separate detector units are successively resolved into a single spectrum. The wavelength 

peaks are consistently within a few nm of the expected values, the reported accuracy of the spectrum.  

Figures 3 and 4 show that TL can be readily observed, not only providing the glow peak temperature, but 

also spectral resolution (cf. Wang et al. 2017). We readily observe TL in less sensitive dosimeter materials, 

including alumina (Chithambo et al. 2015), quartz, feldspar and sodalite (Finch et al. 2016). We improve 

signal-to-noise in the least sensitive materials by increasing the initial dose (longer x-irradiation times) 

and/or the temperature ramp rate. Faster ramp rates produce more photons per second, and therefore a 

better signal to noise for weak signals, although a discrepancy between the temperatures of the sample 

and the thermocouple may be evident at the highest ramp rates. 

Figure 5 shows the Low Temperature TL of pink sodalite (Na8Al6Si6O24Cl2). The data show four glow peaks at 

66, 105, 190 and 232 K. However the 66 and 232 K TL peaks occur at 690 nm whereas the 105 and 190 K 

peaks predominantly lie in the UV and blue (309 and 411 nm). The spectroscopic resolution of the system 

allows the shift in the wavelength of the TL to be observed, something that is absent from conventional 

spectrally-unresolved TL. This material is discussed further below. 

 

3.2 XEOL and Phosphors 

X-irradiation delivers photons with energies equivalent to the binding energies of core electrons. X-

irradiation liberates core electrons and the subsequent luminescence (XEOL or RL) derives from energy 

cascades as electrons fall into the empty core electron states. To explore the efficacy of the system at 

measuring XEOL, we present data for a natural sodalite. XEOL often provides relatively bright signals 

compared to TL. Each pixel on the detector plate has a maximum bin depth of 216 counts, and bright 

samples saturate the bins. Furthermore, very fast accumulation is associated with non-linearity in the 

relationship between counts and brightness and the very brightest signals trip the internal protection 

software for the detector, switching the power to the detectors off. For these reasons, brighter materials 

are accommodated by reducing integration times (making sure individual pixels in the image do not 

saturate) and/or light attenuation including a) smaller slits before the gratings and/or b) the use of pinholes 

and neutral density filters. Normally we repeat experiments which have used the highest bit of any pixel on 

the image. 



For dimmer materials, we integrate for longer, and increase the slit width before the gratings, accepting 

that this results in a loss of wavelength resolution. The system is normally operated with 500 m slits but 

these can be opened to 1000 m, broadly increasing signal 4-times.  Dimmer materials such as diamond, 

quartz and feldspar have been successfully measured on the system, but here we present novel data for 

the framework silicate sodalite (Finch et al. 2016). XEOL data can be obtained as a function of temperature 

and incident power (e.g. Wang et al. 2015). The XEOL as a function of temperature of a pink sodalite (AF-

07-35) is presented in Figure 6. This shows a strong broad band in UV-blue with a less intense peak in the 

red-NIR. A feature of the data are notable peaks in the red-NIR band at 66 and 105 K and localised 

broadening of the UV-blue band at 105 and 190 K, observed as a stripe across the data at that temperature. 

Comparison of the XEOL of the sample (Figure 6) with the TL (Figure 4) show that these features correspond 

to TL peaks in the sodalite. The XEOL data are collected at a relatively fast ramp rate (0.1 K s-1) to allow the 

spectrum to be collected in a convenient timeframe. However, with continuously increasing temperature, 

the data produced are actually a composite of the XEOL and TL behaviour, which we call ‘XEOLTL’. Normally 

we infer the isolated XEOL behind the TL without further experimentation, but the TL contribution to the 

data can be diminished by a) slowing the temperature ramp rate b) inserting pauses at each temperature 

before the light is measured or c) measuring the XEOL during the cooling cycle. 

The sodalite data are of particular interest, since the 66 and 232 K TL occur in the red-NIR region (Figure 4), 

whereas XEOL at the same temperature is dominated by the UV-Blue emission (Figure 6). We interpret this 

to indicate that there is coupling of the trap (in both energy and spatial senses) and the recombination site. 

Observations such as this provide not only direct evidence for the coupling of electron traps and 

recombination centres, but also potentially insights into the physical nature of traps in dosimeter materials.  

 

3.3 Structural Phase Changes 

Luminescence data have long been used to study imperfections and to characterize lattice distortions since 

the signals are sensitive to changes of structure (particularly point symmetry) and composition. Previous 

work has included intentionally added probe ions, such as lanthanides, to sense distortions in local crystal 

fields caused by modified structural environments. An underexploited extension of this approach is to use 

luminescence to monitor crystalline phase changes. Figure 7 shows XEOL of a SrTiO3 crystal from 20 to 300 

K with the heating rate of 0.1 K s-1 (Wang et al. 2015). Very strong changes in wavelength and intensity of 

the luminescence accompany the region between 50 and 80 K, the temperature window in which SrTiO3 

undergoes phase transitions (Hasegawa et al. 2000). The temperature profile of the NIR emission shows a 

maximum at 78 K and a point of inflexion in intensity at 180 K (Figure 7). We also show the first derivative 

of those data with respect to Temperature (dI/dT). Phase transition temperatures are most closely 



approximated by maxima in the first derivatives of intensity – here the transition appears as a two stage 

process with a maximum at 73 K, within a few K of the published inversion temperature (70 K). 

Phase transitions are often associated with strong TL, and we have designed the system so that contrasts in 

luminescence lifetime can also be explored.  All of these methods are sensitive probes of structural state in 

which phase transitions are particularly evident. 

 

3.4 PL and Luminescence Lifetime Measurement  

The instrument measures light emitted from X- or electron-irradiation in continuous mode, i.e. the 

excitation and detectors are on simultaneously. Photoluminescence (PL) can be measured in continuous 

wave mode by closing off one of the detectors (e.g. the UV-Blue) and exciting in that range, whilst 

measuring the response in the Visible-NIR spectrometer, or by the use of notch filters.  However, thanks to 

fast switching of the power to the detectors and by pulsing the laser diodes, the light emitted from the 

sample is measured while the laser diode is in the ‘off’ cycle. No filters are necessary and the spectra 

measured can include the wavelength of the excitation. The acquisition rates of the detectors are such that 

only luminescence with lifetimes in s or longer can be measured. The data can be acquired as a single 

spectrum, providing a single snapshot of the luminescence spectrum a few s after the commencement of 

the off cycle. Such data are useful where light intensities are poor and merely an impression of the longer 

(>1 s) lifetime components of a PL spectrum is sufficient. However it is usually more informative to collect 

multiple time slices from the spectra, providing a 3D graph comprising wavelength (x), time (y) and light 

intensity (z) which can be expressed in either contour or 3D graphical formats (Figure 8). Intensities are 

system corrected so that different parts of the spectrum can be directly compared. The instrument set-up 

allows different lifetimes to be measured simultaneously in different parts of the spectrum. For example, 

the time-resolved luminescence at 145 K of a CaSO4:Tm,Li phosphor has been studied using PL excitation 

with 460 nm LEDs (Figure 8). The decay of Tm3+ luminescence is clear, resulting from the Tm3+: 1G4→3H6, 

1G4→3F4 and 3F3→3H6 transitions whose wavelengths are at 477, 655 and 698 nm respectively (Giri et al. 

2008). Visual analysis of the graph shows the presence of a broad band around 620 nm and the Tm3+: 

3F3→3H6 doublet at 698 nm that are constant through the timeframe of the experiment.  Time slices can be 

extracted from the data and modelled to provide estimates of decay lifetimes (Figure 8d). The half-life of 

the blue emission is consistent with a single exponential decay lifetime () of 582±3 s. Lifetimes in the ms 

range are commonly reported for f-f transitions within Tb3+ (e.g. Kroon et al. 2014), although this can be 

reduced by coupling the local environment, particularly inter-lanthanide energy transfer (e.g. Padlyak & 

Drzewiecki 2013). The orange emission comprises two components, one of which is long (>2.5 ms) and the 

other is similar to the lifetime of the blue emission (Figure 8d). The key point is that the system can resolve 



in a single session the lifetimes of all the emissions in the spectra range and provide independent lifetime 

estimates.  

 

4 Future Directions 

The new system is designed to allow novel luminescence experiments to be performed. Earlier data have 

shown that the signals generated by PL, CL or RL independently not only offer different spectra (as 

expected) but, when two excitation sources are combined, the resultant signal is not the sum of the two 

separate processes (Townsend PD, unpubl data, 2018). The opportunities for these more subtle probes 

have now been implemented in the layout of the experimental sample chamber, including pump-probe 

experiments where one excitation is continuous and another is pulsed. Such experiments explore, for 

example, the luminescence of excited states. The software currently collects the data from one cycle (either 

‘off’ or ‘on’) and protects the detector by switching the power off for the other. A pump-prime experiment 

can be achieved by two separate configurations, each measuring the ‘off’ and ‘on’ cycles separately, so long 

as the excitation is invisible to the detector (by stimulating in e.g. the IR or by exciting in the UV and 

switching the UV-Blue detector off). In such an experiment, there is no reason why the detector could not 

remain on for both cycles, but binning the data separately such that the responses of both off and on cycles 

are provided as independent images. This would allow data from both cycles to be collected simultaneously 

in a single experimental run. Although the existing software is currently not configured to allow this, Photek 

have indicated that such an upgrade is relatively easy.  

The time-resolved capabilities of the system open a wide range of photoluminescence spectroscopies. 

Triplet states with wavelengths similar to those of the excitation can be measured (normally long pass 

filters remove data close to the excitation wavelength) and we can compare and contrast in real time direct 

excitation (where the luminescence is measured at energies below excitation) with stimulation and up-

conversion (which are slow, i.e. >s lifetimes and where the spectrum is analysed at energies above the 

energy of the incident light). Spectrally resolved Optically Stimulated Luminescence – a spectrally resolved 

variant of a widely used method in retrospective dosimetry – is feasible.  

The ability to quantify spectra in the time domain allows luminescence lifetime to become a parameter in 

the characterisation of our materials. Our current methods for analysing time-resolved data are manual 

and automated analysis is necessary to analyse larger volumes of data. Fitting of spectra as surfaces is 

being developed, so that fluorescence emissions which overlap in both lifetime and wavelength can be 

resolved. Such data will be important in separating the competing luminescence from e.g. the same ion on 

non-equivalent crystallographic sites. In addition, where the wavelength of the emission is consistent with 

one emission band, but analysis of lifetime indicates both fast and slow components, this may indicate 

coupling of the luminescence centre with a non-radiative defect (i.e. Förster resonance). Such data provide 



insights into e.g. defect clustering and the distribution of ions over non-equivalent sites.  Experiments 

which include analysis of wavelength, lifetime, temperature and light intensity create substantial 4D 

datasets, which require data reduction to be readily understandable. We are developing software to allow 

lifetimes to be extracted automatically from such data and then compared from one run to the next as a 

function of temperature, exploring the dependence of lifetime and wavelength on temperature. We have 

no doubt that the flexibility of the system will allow other experiment types to be achieved. 
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6. Figures 

 

 

Figure 1: Schematic of the Luminescence System Chamber and Detector Arrangement. Detection is via 

two separate detector housings, which cover the region 250-550 nm (‘Blue Detector’) and 400-850 nm 

(‘Red Detector’). The light paths to each detector are slightly different to make sure that each is focussed 

onto the ipd. Excitation of the sample comes from the top. The lenses, filter boxes, shutters and slits are 

common to both detectors but only labelled on one side for clarity. The 400 nm long pass filter is present 

only on the ‘red’ detector.  

 

 



 

Figure 2: Relative Quantum Efficiencies (QE) of the ipd Detectors. The UV-blue detector is shown as a 

dashed blue line and the ‘red’ detector as a solid red line. Data are shown on both log and linear y-axis 

scales so that the relative efficiencies in the visible and the IR can both be understood. The bialkali ipd used 

on the UV-Blue detector has better performance in the UV, whereas the S25 detector has better 

performance in the visible and infrared. 

 



 

 

Figure 3: High Temperature TL of GR200 dosimeter material expressed as a 3D graph. Data are system 

corrected and the region of the spectrum where significant blackbody radiation is observed (above 320°C at 

800 nm and moving diagonally across the graph) has been deleted. The strong TL emission centred at 381 

nm and 188°C is clearly visible. Such data are an improvement over conventional TL measurements which 

have no spectral component.  

 



 

Figure 4: High Temperature TL of Mg2SiO4:Tb expressed as a contour plot.  Tb emissions at 376, 417, 438, 

483, 550, 586 and 621 nm are observed and TL glow peaks occur at 35, 133 and 293°C.  

 

 



 

Figure 5: Low Temperature TL of pink sodalite (AF-07-35) as a contour map. Data are system corrected 

and expressed as arbitrary intensity using the colour scheme on the right. A variety of TL glow peaks are 

observed at 66, 105, 190 and 232 K, whose responses occur at different wavelengths. The 66 and 232 K TL 

peaks occur at 690 nm whereas the 105 and 190 K peaks predominantly occur in the UV and blue (309 and 

411 nm).  

 

 

 



 

Figure 6: XEOL and TL composite data from pink sodalite (AF-07-35). Where fast ramp rates are employed, 

XEOL data from the instrument are composites of XEOL and TL. The small peaks in intensity (particularly 

evident at 690 nm and 66 K) are TL responses (Figure 4) added to the XEOL, better called the XEOLTL 

response. The true isolated XEOL can be achieved by slowing ramp rates down substantially (although this 

increases the acquisition times and the data density), or by taking the spectra on the cooling cycle.  

 

 

  



 

Figure 7: XEOL data from SrTiO3 at 15 kV and 4 mA X-generation. The same data are shown as a 3D graph 

(top left) and a contour plot (bottom left). The NIR emission at ~794 nm is close to the wavelength limit of 

the system and the long wavelength part of the emission is truncated. The temperature dependence of the 

NIR band is shown bottom right. The intense broad band centred at 568 nm has a sharp maximum at 54 K 

whereas the NIR band at 794 nm has sharp peaks at 24 and 78 K and a minimum at 54 K – precisely the 

temperature at which the 568 nm band is strongest. The very sudden loss of the orange band on warming 

to 60 K and the intense NIR band which peaks at 78 K encompass the temperature of a phase transition in 

SrTiO3 which is expressed very clearly in the data. Phase transitions are often particularly evidence in the 

first derivative of the data (top right) and we infer the two peaks in the first derivatives define different 

stages of the phase transition.  

 



 

Figure 8: Time-resolved PL of CaSO4:Tm,Li at 155 K. The luminescence intensity as a function of 

temperature and wavelength is shown in contour (A) and 3D graph formats (C). The decay of the emissions 

as a function of time is clear for particularly the 477 and 654 nm emissions. A broad emission between 698 

and 710 nm is essentially constant over the lifetime of the experiment. The decay profiles of the 477 and 

654 nm emissions are fitted in C. The blue component fits a single exponential decay (R2=0.998) whose 

slope corresponds to a decay half-life of 582±3 s; the orange band is initially consistent with this lifetime 

but the flattening of the data as time increases indicates an additional, longer lifetime component. The 

intensity of the 697-710 nm region is essentially constant throughout the experiment, showing its half-life is 

>> 5 ms. 


