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Highlights 

 The N-alkyl amino acid moiety is widespread in Nature. 

 A number of commercial products related to health contain the N-alkylated amino acid moiety. 

 Biocatalysis can provide more efficient and sustainable methods of accessing the N-alkyl amino 

acid moiety than traditional methods.  

 Several new enzyme classes comprising N-methyl transferases and dehydrogenases can be 

used for the synthesis of N-alkyl amino acids. 

 

Abstract 

N-alkylated-α-amino acids are useful building blocks for the pharmaceutical and fine chemical 

industries. Enantioselective methods of N-alkylated-α-amino acid synthesis are therefore highly 

valuable and widely investigated. While there are a variety of chemical methods for their synthesis, 
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they often employ stoichiometric quantities of hazardous reagents such as pyrophoric metal hydrides or 

genotoxic alkylating agents, whereas biocatalytic routes can provide a greener and cleaner alternative 

to existing methods. This review highlights the occurrence of the N-alkyl-α-amino acid motif and its 

role in nature, important applications towards human health and biocatalytic methods of preparation. 

Several enzyme classes that can be used to access chiral N-alkylated-α-amino acids and their substrate 

selectivities are detailed. 
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1. The occurrence of N-alkyl-α-amino acids 

N-α-Alkylation represents one mechanism by which nature can modulate the activity of chiral α-amino 

acids. The most abundant are N-methyl-α-amino acids, encountered sometimes as the monomer, but 

more frequently, embedded within complex peptide or non-peptide natural products. Perhaps the most 

well studied natural N-methyl-α-amino acids are sarcosine (1) (N-methyl-α-L-glycine), N,N-

dimethylglycine (2) and betaine (3) (also known as glycine betaine) (Fig. 1). All three metabolites are 

ubiquitous in nature, produced by plants, animals and microorganisms. Each of these metabolites has 

valuable biological properties that have been the subject of much interest for potential commercial 

exploitation. Sarcosine (1), currently used as a dietary supplement and as a non-specific glycine 

transport inhibitor, also holds promise as an adjuvant therapy with sodium benzoate for the treatment 

of schizophrenia (Lin et al., 2017) and depression, as recently discussed in a review (Mathew, 2013). 

N,N-Dimethylglycine (2), which is also used as a dietary supplement, reportedly improves immune 

responses, acts as an athletic performance enhancer, displays anticonvulsant activity and may have use 

as an antidepressant in patients with autism (Lee et al., 2017). According to a recent review by Wilcken, 

glycine betaine (3) is used pharmaceutically in anhydrous form as Cystadane®, an adjunctive treatment 

for homocystinuria and can offer numerous other benefits to human health such as attenuation of liver 

injury (Wilcken, 2017).  

A broad range of betaines, of which glycine betaine (3) represents just one example, exist in nature and 

their main function is to act as osmolytes. They are produced in particularly high abundance (up to 4M 

concentrations) by organisms such as cyanobacteria, lichen, marine algae and salt tolerant plants 

(Chambers and Lever, 1996). Some examples of naturally occurring betaines include the marine indole 

alkaloids 5,6-dibromo-L-hypaphorine (4) and plakohypaphorine D (5), which also display antioxidant 

and antihistaminic activity respectively (Netz and Opatz, 2015).  
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Ribosomal peptides are of huge importance to the pharmaceutical industry, representing over sixty 

marketed drugs (Wegmuller and Schmid, 2014; Zompra et al., 2009). These range from short, 

chemically synthesised peptides of up to twenty residues, to peptides of up to 100 residues that are 

typically produced using recombinant DNA technology in mammalian, yeast or bacterial host systems. 

Ribosomal peptides and proteins frequently undergo post-translational modification via a broad variety 

of transformations (Nesterchuk et al., 2011) and the so-called ribosomally-synthesized and post-

translationally-modified peptides (RiPPs) have recently been comprehensively reviewed (Arnison et 

al., 2013). Post-translational modification at the α-nitrogen atom of N-terminal amino acid residues of 

linear ribosomal peptides (N-α-modification) is a common example of post-translational modification, 

typically occurring through N-acylation and less commonly through N-methylation (Ann et al., 1987). 

The N-methylation of side-chain residues of histone proteins has been extensively studied over the past 

20 years (Murn and Shi, 2017), whereas the role of methylation in other proteins and peptides, including 

N-α-methylation, is still largely unknown (Clarke, 2013; Erce et al., 2012). However, many of these 

peptides appear to function by interacting with proteins, often as part of extensive macromolecular 

complexes such as the epigenome and interactome.  

N-α-Methylation can have a profound effect on the biological activity of peptides. For example, 

cypemycin is a naturally occurring bacterial peptide that contains post-translational modifications, 

including N-α-dimethylation and displays potent antimicrobial activity and in vitro activity against 

mouse leukemia cells. Unlike cypemycin, its demethylated counterpart, prepared biosynthetically by 

deletion of the gene responsible for methylation, was inactive when tested towards growth inhibition of 

the gram-positive bacterium Micrococcus luteus (Claesen and Bibb, 2010). In contrast, with the 

intention of improving the stability of the antimicrobial peptide Nisin, which is used widely in the food 

industry, tandem N-α-monomethylation and lysine side-chain dimethylation, using the N-

methyltransferases (NMT) from the cypemycin biosynthetic pathway (CypM), resulted in a 

trimethylated derivative that displayed a 4 and 8-fold increase in minimum inhibitory concentration 

(MIC) towards Lactococcus Lactis HP (ATCC11602) and Bacillus subtillis 168 (ATCC6633) 

respectively (Zhang and van der Donk, 2012).  

Cyclic peptides are important in medicinal chemistry because they offer a number of advantages over 

acyclic peptides such as improved stability towards proteases, better membrane penetration and reduced 

toxicity due to enhanced receptor selectivity resulting from reduced conformational flexibility (Ripka 

et al., 1998). Cyclosporin A (6), which contains seven backbone N-methyl groups, represents an 

excellent example of a conformationally constrained cyclic non-ribosomal peptide (NRP). Approved 

by the FDA in 1983, it was still one of the top 100 selling brand name drugs in 2016 (Smith et al., 2016), 

marketed by Allergan under the trade name Restasis.  
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N-Methyl-α-amino acids are also found embedded into small non-peptoidal secondary metabolites. For 

example, 4-dimethylallyl-L-abrine (7) is a key intermediate in the biosynthesis of ergot alkaloids (Fig. 

1) (Rigbers and Li, 2008). 

 

 

 

Fig. 1. N-Methylated glycine primary metabolites of the folate cycle. 

Alkyl groups other than methyl can also be naturally incorporated into N-alkyl-α-amino acids. For 

example, opines are produced by a wide variety of organisms including bacteria, plants, and animals 

including humans (Kung and Wagner, 1970; Schrittwieser et al., 2015).  

The primary role of opines in many organisms is in anaerobic respiration (Grieshaber et al., 1994). In 

fact, the opine pathway is thought to be the oldest of four anaerobic respiration pathways, resulting from 

the high amino acid abundance and low oxygen levels present in primordial times and is still of key 

importance to organisms, such as marine invertebrates, that inhabit hypoxic environments (Harcet et 

al., 2013; Livingstone et al., 1983). There has also been extensive investigation into the role of opines 

in plant cancers, such as crown gall and hairy root disease, where pathogenic bacteria genetically modify 

plant cells by transferring bacterial plasmids to the plant chromosome, thereby facilitating the 

production of opines for use as nutrients and reducing microbial competition (Dessaux et al., 1993). 

The ability of these bacteria to transfer DNA to other organisms has met with significant interest, 

whereas, to the best of our knowledge there is little information on the bioactivity of opines or opine 

derivatives themselves. 
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A number of different opine families exist, most having a structure resulting from the reductive 

amination of an α-amino acid with an α-ketoacid, as typified by octopine (8). However, there are many 

other classes, such as opines that utilise alternative keto acids, or that utilise sugars rather than keto 

acids (Fig. 2) (Dessaux et al., 1993). One particularly interesting aspect of opines is that the majority 

contain one amino acid of common L-(S)-stereochemistry and the other with D-(R)-stereochemistry, 

where the unusual D-(R)-stereocentre is formed during the enzyme catalysed condensation reaction. 

However, L,L-(S,S)-opines, such as L,L-(S,S)-succinamoprine, have also been identified (Chilton et al., 

1985). A more complex example is that of a new class of bacterial opine metallophores, such as 

staphylopine (9) produced by Staphylococcus aureus, that play a key role in pathogenesis by 

sequestering metals from their host (Song et al., 2018). These are biosynthesised from three amino acids 

by the action of R-selective 3-amino-3-carboxypropyltransferase (nicotianamine synthase) catalysed N-

alkylation followed by S-selective coupling of the resultant product to a further α-ketoacid by an opine 

dehydrogenase (McFarlane et al., 2018; McFarlane and Lamb, 2017). 

 

Fig. 2. Some examples of naturally occurring opines. 

Other N-α-alkyl groups of amino acids seem to be quite rare or are perhaps embedded into biosynthetic 

pathways that have yet to be elucidated. One such example that has been identified is (S)-N-

carboxyethyl arginine (10) which is an intermediate in the biosynthesis of clavulanic acid (Elson et al., 

1993), a commercial β-lactamase inhibitor that is frequently administered with penicillin antibiotics to 

minimise drug resistance.  This unusual functionality is introduced by the rare thiamine diphosphate 

(ThDP) dependent carboxyethylation of arginine by the N2-(2-carboxyethyl)arginine synthase (CEAS) 

enzyme (Caines et al., 2009).  

2. Preparation of N-alkyl-α-amino acids 

The chemical synthesis of N-alkyl-α-amino acids is usually performed by N-alkylation processes, which 

employ genotoxic alkylating agents, or reductive amination, utilizing stoichiometric quantities of 

hazardous hydrides which requires complex work-up procedures and the generation of significant waste 

(Aurelio et al., 2004; Aurelio and Hughes, 2009; Baxter, 2004; Chruma et al., 1997).  Various 

asymmetric reductive amination methods have also been reported (Arceo and Melchiorre, 2012; Chen 
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et al., 2009a; Kuang and Distefano, 1998; So et al., 2012), but they each suffer from limitations such as 

narrow substrate range, use of heavy metals, or the requirement to pre-form the imine to avoid ketone 

reduction (Aurelio et al., 2004). Biocatalysis offers a less hazardous and wasteful alternative to 

traditional chemical synthetic methods. Therefore, given the wide variety of natural products that 

contain N-alkyl-α-amino acids, it is not surprising that many enzyme classes, such as N-

methyltransferases and several dehydrogenases, have the potential to be used for N-alkyl-α-amino acid 

synthesis. The use of these enzymes for N-alkyl-α-amino acid synthesis is an emerging field and is the 

focus of this section. 

2.1. N-methyltransferases 

N-Methyltransferases (NMT, EC 2.1.1), are ubiquitous in nature and are responsible for the methylation 

of a broad range of natural products including the N-α-methylation of many of the amino acids, peptides 

and proteins mentioned above.  

These enzymes are highly versatile and depending on their function, can be either highly substrate 

selective or promiscuous, producing mono-, di- or trimethylated products. For example, in mammalian 

systems, sarcosine (1) is produced by the selective mono-methylation of glycine (11) by S-

adenosylmethionine (SAM) dependent glycine sarcosine methyltransferase (GSMT), whereas N,N-

dimethyl glycine (2) and glycine betaine (3) are only accessible from choline (Ducker and Rabinowitz, 

2017). A similar pathway is followed in most other organisms, but there are some rare examples of 

bacteria, that inhabit hypersaline environments, which can produce glycine betaine (3) via a sequential 

3-step methylation of glycine using GSMT, sarcosine dimethylglycine methyltransferase (SDMT) and 

dimethylglycine methyltransferase (DMT) respectively (Scheme 1) (Zou et al., 2016). 

 

Scheme 1. Biosynthesis of glycine betaine from glycine by sequencial methylation that is known to occur 

in some halophilic bacteria. 
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A few examples of broad substrate spectrum NMTs, that are capable of direct conversion of amino 

acids to betaines, have also recently been reported. For example, histidine betaine, an intermediate in 

the biosynthesis of ergothioneine, is produced directly from histidine in Mycobacterium smegmatis 

solely by the histidine betaine synthase, EgtD (Vit et al., 2015). Unfortunately, EgtD only accepts 

histidine as substrate, but genome searching identified numerous homologues in bacterial and fungal 

genomes. Based on this search, the EgtD homologue from Aspergillus nidulans, recombinantly 

expressed in E. coli, showed a preference for tyrosine, although histidine, dihydroxyphenylalanine and 

phenylalanine were tolerated with lower efficiency. In contrast, the halophilic methanoarchaeon 

Methanohalophilus portucalensis strain FDF1T contains NMTs capable of both stepwise and direct 

glycine betaine formation (Chen et al., 2009b). Examples of individual NMTs involved in the stepwise 

conversion and direct conversion of amino acids to betaines have also been heterologously expressed 

in E. coli in an active form (Lai and Lai, 2011).  

NMTs involved in the terminal N-α-methylation of peptides and proteins are common and are usually 

promiscuous towards the peptide sequences they accept, often N-α-methylating a range of peptides to 

different extents and sometimes their sidechains as well. For example, CypM, which is the NMT 

responsible for the introduction of the N-α-dimethylation functionality of cypemycin has been 

demonstrated to methylate a range of short heptapeptides that resemble the N-terminus of the natural 

substrate, as well as the unrelated antimicrobial peptides, nisin and halodracin (Zhang and van der Donk, 

2012). However, this is not always the case as demonstrated by the very selective PZN 

methyltransferase. This enzyme is highly selective towards the N-α-dimethylation of the highly post-

translationally modified peptide desmethylplantazolicin to afford plantazolicin (PZN), an antibiocobial 

peptide with bacteriocidal activity toward strains of Bacillus anthracis, the causative agent of anthrax 

(Lee et al., 2013).  

In contrast to ribosomal peptides, NRPs are backbone N-methylated by methylation domains at the 

terminal N-α-position of amino acids or peptides, attached to the same non-ribosomal peptide synthase 

(NRPS) at peptidyl carrier protein (PCP) regions through thioester linkages (Mori et al., 2018). 

However, with the aim of improving titres, a second mechanism was recently found when investigating 

the biosynthetic pathway to the fungal metabolite cycloaspeptide E5 (12) that displays interesting 

insecticidal activity (de Mattos-Shipley et al., 2018). Unexpectedly, the NRPS required directly 

incorporates N-methyl phenylalanine that is pre-formed by an NMT. This allowed the titre of (12) to be 

greatly increased by direct feeding of N-α-phenylalanine to the fermentation. Unfortunately, the NRPS 

accepted a very narrow range of alternative substrates, although N-methyl-para-fluorophenyl alanine 

was accepted, allowing access to the difluorinated analogue (13) (Fig. 3). Searching the NCBI database 

for homologues of the cycloaspeptide E NMT gene, PscyA, the same authors rapidly identified a 

homologue involved in the biosynthesis of the fungal metabolite ditryptophenaline (14). Taking the 
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same feeding approach, a difluorinated analogue of ditryptophenaline (15) was also prepared, implying 

that numerous fungal NMTs capable of N-α-methylating amino acids probably exist.  

 

Fig. 3. Some NRPs and their fluorinated analogues that can be prepared through introduction of intact N-

α-methylamino acids to the fermentation process. 

SAM and its analogues are expensive to use in stoichiometric quantities, which has hampered the use 

of NMTs in in-vitro preparative biotransformations. This has led to methods of in-situ generation from 

cheap materials, such as the tandem use of SalL, an enzyme which catalyses the alkylation of 5’-deoxy-

5-chloroadenosine with methionine and its S-alkyl analogues (Sadler et al., 2017). Whereas the use of 

these approaches is still at an early stage, they hold much promise for the future as methods of green 

and sustainable O-, N- and C-alkylation. 

2.2. Dehydrogenases 

While there are many enzymes which can carry out reductive amination using ammonia, few examples 

are known to employ alkyl amines (Hummel and Groger, 2012; Schrittwieser et al., 2015; Sharma et 

al., 2017). Classes of enzymes that are now known to perform this transformation include opine 

dehydrogenases (ODHs), N-methyl amino acid dehydrogenases (NMAADHs), ketimine reductases 

(KIREDs), pyrroline-5-carboxylate reductases (P5CRs) and imine reductases (IREDs), each of which 

is discussed below.  

2.2.1. Opine dehydrogenases  

Opine dehydrogenases (ODHs) are oxidoreductases whose natural role is to catalyse the reductive 

amination of α-keto acids with amino acids to provide N-carboxylalkyl amino acids (Scheme 2), a class 

of compounds known informally as opines. Octopine dehydrogenase (OcDH, EC 1.5.1.11) was the first 

ODH to be identified in 1959, when Van Thoai et al. synthetized D-octopine (8) in vitro from arginine 

and pyruvic acid in the presence of various enzyme preparations from marine invertebrates (Van Thoai 

and Robin, 1959). A decade later the same group purified the NADH dependent OcDH from mussels 

of Pecten maximus (Van Thoai et al., 1969). 
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Scheme 2. ODH type catalysed reactions. 

Other examples have since been identified in the soil bacteria, Agrobacterium tumefaciens (Heidekamp 

et al., 1983) and Arthrobacter sp. strain 1C (Asano et al., 1989; Dairi and Asano, 1995). Asano et al. 

assessed the substrate specificity of ODH using various amines against pyruvate as the α-keto acid. L-

Methionine proved to be the favoured substrate followed closely by L-isoleucine, L-valine, L-

phenylalanine, L-leucine, L-alanine, L-threonine, L-cysteine, L-serine, glycine and L-asparagine. A few 

other amino acids such as β-alanine or L-histidine were not tolerated and no product was observed 

(Asano et al., 1989). The same group also examined the preparative potential of the ODH from 

Anthrobacter sp. strain 1C and found it to give a different substrate selectivity pattern (Kato et al., 

1996). The enzyme was cloned and recombinantly expressed in E. coli and shown to accept a wide 

range of amino acids as amine donors on reaction with pyruvic acid (Table 1).  Interestingly, (S)-

phenylalaninol (26), a non-zwitterionic amine, was tolerated as the amine donor and to the best of our 

knowledge, is the only example of a non-amino acid amine donor accepted by a wild-type enzyme of 

this class. Glyoxylate and 2-ketobutyrate were also accepted when reacted with L-isoleucine and L-

valine, suggesting that the substrate scope could be extended.  The reductive amination of this ODH 

proceeds with high D-(R)-stereoselectivity (>99%) that is common to many, but not all enzymes of this 

class. This is in contrast with the strict L-(S)-selectivity of other enzymes capable of N-alkylating α-

amino acids. 

Table 1. Selected substrate specificity of D-(R)-selective opine dehydrogenase from Arthrobacter sp. strain 

1C in reaction with pyruvate (16). 
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Amine donor Relative activity Amine donor Relative activity 

 

17 

100 
 

18 

21 

 

19 

84  

20 

0.7 

 

21 

72 
 

22 

4 

 

23 

53 
 

24 

22 

 

25 

24  

26 

0.6 

 

27 

16 
 

28 

36 

 

ODHs are usually highly substrate specific, as demonstrated by the ODH from Pecten maximus which 

accepts pyruvic acid (16) and arginine as substrates (Smits et al., 2008). Other amino acid donors such 

as canavanine (25%), cysteine (1.2%), L-alanine (<1%), ornithine (<1%) and norvaline (<1%), display 

reduced or negligible activity. Another example is the OcDH from Mytilus galloprovincialis, which 

accepts alanine with approximately 10-fold less activity than arginine (88% versus 9%) (Vazquez-

Dorado et al., 2011). 

In invertebrates there are many types of ODH that have been identified such as alanopine 

dehydrogenases (EC 1.5.1.17; AlDH) (Storey, 1983); β-alanopine dehydrogenases (EC 1.5.1.26; β-

AlDH) (Kan-no et al., 1999; Sato et al., 1987); strombine dehydrogenases (EC 1.5.1.22; StDH) (Dando, 

1981) and tauropine dehydrogenases (EC 1.5.1.23; TaDH)(Gaede, 1986). It should be noted that these 

classifications are based on their preferred substrate specificity, and there is cross reactivity between 

ODH classes as many of these enzymes accept substrates of other classes, but with lower activities.  

This can be seen from the work of Sato et al. who tested a variety of ODHs from different marine 
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organisms towards various amino acid donors and demonstrated that most display a range of activities 

(Sato et al., 1993). AlDHs, for example, primarily operate on alanine. However Storey et al. tested the 

substrate specificity of AlDH from Aphrodite aculeata and found thatseveral other amino acids were 

accepted, including glycine, serine and threonine, and a relatively broad range of keto acids (Table 2) 

with varying efficiencies (Storey, 1983).  

Table 2. Selected keto acids specificity of AlDH from Aphrodite aculeate in reaction with L-alanine. 

 

Keto acid VMAX Amine donor VMAX 

 

16 

100 
 

29 

21 

 

30 

26 
 

31 

107 

 

The value of these enzymes came to the attention of Codexis Inc. as a potential imine reduction platform 

if the substrate scope could be broadened to include other ketones and amines. They performed  

extensive engineering on Anthrobacter sp. opine dehydrogenase to expand the accepted substrate scope 

and identified mutants capable to tolerating substrates such as butylamine, cyclopentanone and an 

expended range of keto acids (Scheme 3) (Chen et al., 2013). However, these findings have not been 

disclosed outside of a patent and many details, such as the level of activity, enantioselectivity and exact 

sequences of the enzyme mutants, remain unclear. 
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Scheme 3. Examples of reactions carried out by evolved opine dehydrogenases. 

2.2.2. N-Methyl amino acid dehydrogenases  

N-Methyl amino acid dehydrogenases were first discovered in 1970 by Kung and Wagner (Kung and 

Wagner, 1970). They reported the formation of N-methylalanine when cell free extracts of 

Pseudomonas MS were treated with methylamine. In 1975, the same group managed to purify and 

characterise the enzyme, which they named N-methyl amino acid dehydrogenase for its ability to 

catalyse the reductive amination of pyruvate and methylamine (Scheme 4) (Lin and Wagner, 1975). N-

Methyl amino acid dehydrogenases (NMAADHs, EC 1.5.1.1 and EC 1.5.1.21) are also known as Δ1-

piperideine-2-carboxylate/Δ1-pyrroline-2-carboxylate reductases (dPkAs), Pip2CRs or Pyr2CRs. 

 

Scheme 4. NMAADHs from Pseudomonas MS producing N-methylalanine. 

Substrate and cofactor specificity were also explored to determine whether other keto acids or amine 

sources could be accepted by the enzyme. When NADPH was substituted with NADH, conversions 

dropped from 100% to 4% for the reaction of pyruvate with methylamine. Other keto acids such as 

oxaloacetate and α-ketobutyrate were tolerated with diminished efficiency (64% and 14% respectively, 

relative to pyruvate) in the reaction with methylamine, whilst glyoxalate, hydroxypyruvate and α-

ketoglutarate were not tolerated. Ethylamine and dimethylamine were not tolerated as substrates in the 

presence of pyruvate and crucially, little activity was observed towards ammonia.  

Mihara et al. later found that the NMAADH from Pseudomonas putida ATCC12633 is also capable of 

performing the reductive amination between a number of additional α-keto acids and methylamine 

(Mihara et al., 2005). After it was cloned and expressed in E. coli, the enzyme displayed moderate 

activity towards fluorinated, aromatic and aliphatic pyruvate derivatives, but hydroxy and branched 

chain derivatives such as α-oxoisovalerate  (42) were inert, with pyruvate being the best keto acid tested 

(Table 3). 

Table 3. Reductive amination of some pyruvates with methylamine (36) with Pseudomonas putida 

NMAADH. 
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Keto acid Relative activity Keto acid Relative activity 

 

16 

100 
 

38 

27 

 

39 

52 
 

40 

6 

0 

41 
30 

 

42 

0 

 

Table 4 shows the relative activity of Pseudomonas putida NMAADH towards the reductive amination 

of phenylpyruvate (41) with a range of amines, with methylamine (36) being the most effective by a 

large margin (Mihara et al., 2005). An increase of one carbon to (43) gives a large decrease in activity. 

As the chain length increases the activity continues to decrease, however the enzyme does tolerate large 

amines (such as spermidine (49)) to a small degree. Interestingly, this enzyme is inactive with ammonia 

and therefore does not form primary amines.  

Table 4. The relative activity of Pseudomonas putida NMAADH.  

 

Amine 
Relative 

activity 
Amine 

Relative 

activity 

 

36 
100  

43 
4.4 

 

44 

0.74  

45 
0.16 

 

46 

0.12 
 

47 
<0.06 

 

48 
0  

49 

<0.06 
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In 2004, the Esaki group demonstrated the synthetic utility of this enzyme by successfully producing 

N-methyl-L-phenylalanine on a 1.6 g scale with good yield and high enantiomeric excess by using 

NMAADH from Pseudomonas putida and glucose dehydrogenase from Bacillus subtilis (Muramatsu 

et al., 2004). Further studies from the same group have shown that NMAADHs can also accept a wide 

range of cyclic imino acids such as Δ1-piperideine-2-carboxylate and Δ1-pyrroline-2-carboxylate 

(Yasuda et al., 2006). Cyclic imino acids were produced spontaneously from their corresponding α-

keto-ω-amino acids which, in turn, produced from their corresponding α,ω-diamino acids using amino 

acid oxidases. One of their best examples is highlighted in Scheme 5 where (S)-(53) was obtained in 

high yield tandem use of lysine oxidase and NMAADH.  

 

Scheme 5. Lysine degradation pathway steps incorporating NMAADHs.  

Further studies have shown that NMAADHs from Pseudomonas putida can reduce a number of 2,3,4,5-

tetrahydropyridine-6-carboxylate compounds containing oxygen or sulphur within the ring. (Esaki et 

al., 2008) Δ1-Piperideine-2-carboxylate and Δ1-pyrroline-2-carboxylate reductases have been also 

demonstrated to be involved in the catabolism of D-lysine and D-proline (Muramatsu et al., 2005). 

Recently, researchers from GSK have demonstrated that both keto acid and amine substrate scope can 

be further expanded with excellent enantioselectivities by using NMAADHs from Pseudomonas putida, 

P. syringae and P. fluorescens (Table 5) (Hyslop et al., 2018). 

Table 5. Example of NMAADH catalysed reductive amination. 

 

ACCEPTED M
ANUSCRIP

T



15 

 

Amine 

Conversions of NMAADHs 

Pseudomonas  

putida 

Pseudomonas  

syringae 

Pseudomonas  

fluorescens 

 

36 

97 98 98 

 

43 
16 6 5 

 

54 

12 6 5 

 

55 

92 52 58 

 

56 

59 27 29 

 

2.2.3. Ketimine reductases  

Ketimine reductases (KIREDs, EC 1.5.1.25) are another class of enzyme that can carry out the reductive 

amination of imino acids.  They were first discovered in mammalian tissues such as rat kidney, brain, 

liver, testes, heart, skeletal muscle and spleen (Meister, 1962; Meister et al., 1957)  and rabbit liver 

(Meister and Buckley, 1957) and have been shown to catalyse the conversion of Δ1-piperideine-2-

carboxylate and Δ1-pyrroline-2-carboxylate  to their corresponding saturated cyclic amino acids (Table 

6, Entries 1-2). Even though KIREDs perform the same natural reaction as NMAADHs, they are 

structurally distinct (Hyslop et al., 2018). Plant extracts from Pisum sativum and Phaseolus radiatus 

also catalyse the conversion of Pyr2C (52) to pipecolic acid (53), but detailed studies of the plant tissues 

were not performed. The activity of the plant extracts was found to be of the same order of magnitude 

as that observed with rat liver (Meister et al., 1957).  

These enzymes, later found to also reside in pig kidney (Nardini et al., 1988a) and in brain μ-Crystallin 

(CRYM) (Hallen et al., 2011), have also been shown to reduce a variety of naturally occurring sulphur 

containing cyclic imino acids (Table 6). These compounds are found in varying concentrations within 

the human brain, although the relative activities of KIREDs towards these sulfur containing compounds 

was not specified (Hallen et al., 2015a). 

Interestingly, both NADH and NADPH appear to be accepted equally in the case of pig kidney KIRED 

and cerebral l-crystallin/KIRED, but NADPH is the preferred cofactor for cerebellum KIRED. All 

KIREDs display a strict enantio-preference for the formation of L-alkyl-α-amino acids.  

Table 6. KIRED substrate scope. 
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Substrate Enzyme Source Product Reference 

 

52 

Mammalian 

tissues 
 

53 

(Meister and Buckley, 1957) 

(Meister et al., 1957)  

(Meister, 1962) 

Pig kidney (Nardini et al., 1988a) 

Bovine Crebellum (Nardini et al., 1988b) 

 

54 

Mammalian 

tissues 
 

55 

(Meister and Buckley, 1957) 

(Meister et al., 1957) 

(Meister, 1962) 

  

56 

CRYM/ Lamb 

forebrain 

 

57 

(Hallen et al., 2011) 

 

Pig kidney (Nardini et al., 1988a) 

Bovine Crebellum (Nardini et al., 1988b) 

 

58 

Pig kidney 

 

59 

(Nardini et al., 1988a) 

Bovine 

Cerebellum 

(Nardini et al., 1988b) 

 

60 

Pig kidney 

 

61 

(Nardini et al., 1988a) 

Bovine 

Cerebellum 

(Nardini et al., 1988b) 

 

62 

Cerebellum 

 

63 

(Hallen et al., 2014) 

 

Hallen et al. further extended the substrate scope of the KIREDs by demonstrating that human ketimine 

reductase/CRYM, recombinantly expressed in Escherichia coli and purified, could catalyse the 

synthesis of four N-functionalised L-alkyl-α-amino acids (Table 7) (Hallen et al., 2015b). The relative 
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rates quoted in Table 7 are shown in comparison to piperideine-2-carboxylate and as can be seen, the 

rates for the acyclic keto acids are far lower, but still significant.  

Table 7. Conversions of N-Functionalised amino acids synthesised using KIRED.  

 

Ketone  Amine  Relative rate 

 

16 

 
36 

25 

 

16 

 
43 

24 

 

64 

 
36 

16 

 

41 

 
36 

12 

 

The biocatalytic utility of KIREDs has recently been further demonstrated by Hyslop et al. (2018). 

Three recombinant KIREDs, which were cloned and expressed well in E. coli, were used to prepare a 

variety of phenylalanine derivatives on reaction with amines such as methylamine, propargylamine and 

benzylamine with pyruvate (Table 8). Conversions ranged from 32-81% in the case of methyl amine 

and were low to moderate when propargyl amine was used as amine donor (19-26%). Cyclopropyl 

amine was also accepted in good conversions (up to 79%) at 10 mM keto acid concentration. 

Table 8. Enzymatic reductive amination conversions for phenylpyruvic acid (41) catalysed by KIREDs. 
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Amine 

Relative activity 

Rattus 

norvegicus 

Homo  

sapiens 

Bos  

taurus 

 

36 
51 81 32 

 

43 
5 9 2 

 

54 

16 30 10 

 

55 

19 24 26 

 

56 

43 79 29 

2.2.4. Imine reductases  

Imine reductases carry out the reduction of cyclic imines but have also been exploited in reductive 

amination reactions (Aleku et al., 2017; Cosgrove et al., 2018; Roiban et al.; Roth et al.; Velikogne et 

al., 2018). Despite the number of diverse IREDs reported, to the best of our knowledge, there is only 

one example demonstrating activity towards an α-keto acid. Aleku et al. screened the AspRedAm 

towards multiple substrates including pyruvate (16), in the presence of methylamine and 

propargylamine (Scheme 6) (Aleku et al., 2017).  However, in the presence of a large excess of the 

amine donor (>4 equivalents) only modest activities were observed of 3% for methylamine (36) and 

4% for propargylamine (55).  

 

Scheme 6. IRED catalysed reductive amination of pyruvate (16) with ethylamine (43). 

As research into the IRED field continues to expand rapidly, with many examples of new enzymes and 

evolution projects, it is likely that more effective examples will be identified in the coming years. 
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2.3. Other enzyme classes 

There are a few other examples of some specific enzymes able of forming N-functionalized amino acids. 

Pyrroline-5-carboxylate reductases (P5CRs, EC 1.5.1.2) are a class of enzymes involved in the 

biosynthesis of proline, which is formed following reduction of pyrroline-5-carboxylate (Singh et al., 

2013). They are perhaps the least characterised of the oxido-reductases described in this chapter in spite 

of their substrate similarity to that of NMAADHs and KIREDs (Yura, 1959). While several P5CR 

examples have been identified, none have been used in preparative synthesis. The P5CR from 

Neurospora crassa has been recently screened towards a panel of substrates and accepts methylamine, 

ethylamine, allylamine and propargylamine with conversions varying from 2% up to 82% (Hyslop et 

al., 2018). While only one enzyme has been demonstrated to have this activity, there is potential to 

further explore this enzyme class for amino acid synthesis activity. 

Ammonia lyases (AL, EC 4.3.1) are enzymes commonly found in plants and fungi, which carry out 

either the deamination of amino acids to α,β-unsaturated carboxylic acids and ammonia or the reverse 

amination process (Lovelock and Turner, 2014). These enzymes accept ammonia as their amine source, 

but there are very few examples of any other amines being accepted. Viergutz et al. demonstrated that 

a wild type PAL (from P. crispum) was able to deaminate N-methyl phenylalanine (62), but did not 

carry out the reverse reaction at a detectable rate (Viergutz et al., 2003). Additionally, this PAL did not 

accept 4-nitro-N-methyl phenylalanine or 4-nitro-N,N-dimethyl phenylalanine in either direction.  

Preparation of N-substituted aspartic acids via enantiospecific conjugate addition of N-nucleophiles to 

fumaric acids has been successfully demonstrated by Gani et al. using methylaspartase (Saeed Gulzar 

et al., 1997). Aspartate ammonia lyase is another enzyme type which proved to be an excellent catalyst 

for the synthesis of N-substituted aspartic acids. In this context Weiner et al. demonstrated the 

enantioselective AspB-catalyzed addition of methylamine to fumarate (Weiner et al., 2008). 

3. Conclusions 

N-functionalised amino acids are versatile building blocks for the pharmaceutical and fine chemical 

industries and are particularly important starting materials for peptide drugs. There are now a variety of 

preparative biocatalytic options to access these materials in enantiopure form, therefore offering a 

cleaner and greener alternative to chemical synthetic methods which often employ heavy metal 

catalysts, toxic reagents, environmentally unfriendly solvents and the extensive use of protecting 

groups. We anticipate they will supplant current chemical methods as improved, engineered enzyme 

variants for these transformations become available. 
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