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Abstract 12 

Marine Protected Areas (MPAs) are an important tool for the conservation of seabirds. However, 13 

mapping seabird distributions using at-sea surveys or tracking data to inform the designation of MPAs 14 

is costly and time-consuming, particularly for far-ranging pelagic species.  Here we explore the 15 

potential for using predictive distribution models to examine the effectiveness of current MPAs for 16 

the conservation of seabirds, using Britain and Ireland as a case study. A distance-weighted foraging 17 

radius approach was used to project distributions at sea for an entire seabird community during the 18 

breeding season, identifying hotspots of highest density and species richness. The percentage overlap 19 

between distributions at sea and MPAs was calculated at the level of individual species, family group, 20 

foraging range group (coastal or pelagic foragers), and conservation status. On average, 32.5% of 21 

coastal populations and 13.2% of pelagic populations overlapped with MPAs, indicating that pelagic 22 

species (many of which are threatened) are likely to have significantly less coverage from protected 23 

areas.  We suggest that a foraging radius approach provides a pragmatic and rapid method of 24 

assessing overlap with MPA networks for central place foragers. It can also act as an initial tool to 25 

identify important areas for potential designation. This would be particularly useful for regions 26 

throughout the world with limited data on seabird distributions at sea and limited resources to collect 27 

this data. Future assessment for marine conservation management should account for the disparity 28 

between coastal and pelagic foraging species to ensure that wider-ranging seabirds are afforded 29 

adequate levels of protection.  30 
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1. Introduction 33 

Even though most of the world’s oceans continue to be impacted by humans (Game et al., 2009; 34 

Halpern, 2008), just over 4% of their area is currently protected (UNEP-WCMC and IUCN, 2016). 35 

There is an urgent need to speed up the identification and designation of Marine Protected Areas 36 

(MPAs) given that one of the Aichi targets is to protect 10% of the oceans by 2020 (Secretariat of the 37 

Convention on Biological Diversity, 2014; Watson et al. 2014). Seabirds provide an important focus 38 

for the development of protected areas. As is true for all marine top-predators, they are threatened by 39 

a suite of impacts, particularly from fisheries and pollution, and are in urgent need of protection in 40 

many parts of the world (Croxall et al., 2012). The use of Important Bird Areas (IBAs) to delineate 41 

candidate MPAs for the conservation of seabirds globally has been encouraged by conservation 42 

bodies (BirdLife International, 2010; Lascelles et al., 2012). In the European Union (EU), as of 2014, 43 

59% of areas identified as marine IBAs have been designated as either Special Protected Areas 44 

(SPAs) or Special Areas of Conservation (SACs) (BirdLife International, 2014). However, only 3.9% 45 

of the total EU marine area is designated for marine SPAs, similar to global levels of coverage, and 46 

much lower than the 12.5% designated for terrestrial SPAs (Ramirez et al., 2017). One of the reasons 47 

that designation of MPAs in Europe and elsewhere has been slow is that the costs and challenges of 48 

identifying biodiversity hotspots are prohibitive for many marine regions. In this paper we develop a 49 

simple modelling approach that can be used to quickly identify areas of importance for seabird 50 

communities, and assess coverage by existing protected areas. 51 

Protected areas for seabirds usually focus on the locations of important breeding colonies, either at the 52 

nesting sites themselves or through seaward extensions in the waters immediately surrounding the 53 

colony (BirdLife International, 2010). The use of IBAs based on short-range colony extensions works 54 

well for coastal foragers (McSorley et al., 2003; Wilson et al., 2009) – especially when individual 55 

colonies hold a high proportion of the total population – as the designated protected areas often 56 

encompass the majority of the colony’s range. These coastal MPAs, however, are less effective for  57 

protecting pelagic species, whose ranges cover large areas, often crossing national boundaries (Game 58 

et al., 2009; Grémillet and Boulinier, 2009; Hyrenbach et al., 2000). At the same time, pelagic species 59 

are more threatened than coastal species, and many of the greatest threats, such as by-catch, occur in 60 

feeding grounds offshore (Croxall et al., 2012).  Designation of MPAs in these areas, using a multi-61 

species and multi-colony approach, can help ensure appropriate conservation management practices 62 

are put in place (Ballard et al., 2012; Nur et al., 2011; Ronconi et al., 2012).  63 

Ideally identifying important areas for seabirds should be done with empirical data since foraging 64 

areas are patchy and difficult to locate, especially for pelagic species. For example, recent work has 65 

identified multiple global hotspots for pelagic species using existing tracking data (Lascelles et al., 66 

2016). In general, however, tagging studies rarely collect information from more than one or two 67 
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colonies or species at a time (but see Dean et al., 2015 and Wakefield et al., 2017), and data is 68 

generally only collected for a limited time span within seasons, across seasons, and across years. 69 

Large-scale studies of multiple species from multiple colonies take a long time and enormous 70 

resources (Block et al., 2011; Grecian et al., 2016). Furthermore, although empirical data from aerial 71 

and ship surveys are highly valuable, even the European Seabirds at Sea database (amassing data from 72 

over 35 years) contains large gaps in coverage (Dunn, 2012; Stone et al., 1995). Replication within 73 

areas over time is limited and yet foraging areas can shift from year to year (Robertson et al., 2014), 74 

variability that is likely to increase with climate change (Grémillet and Boulinier, 2009). In many 75 

circumstances, therefore, predictive distribution modelling is likely to be a more cost effective and 76 

realistic approach for identifying biodiversity hotspots at an ecosystem level. 77 

In recent years, an approach using colony census data together with foraging ranges of seabirds, who 78 

are central place foragers during the breeding season, has been used to identify hotspots for individual 79 

species (Grecian et al., 2012; Soanes et al., 2016; Thaxter et al., 2012). Predicted distributions from 80 

these models correlate well with GPS tracking and at-sea survey data for northern gannets (Morus 81 

bassanus) in Britain and Ireland (Grecian et al., 2012), and six other species globally (Soanes et al., 82 

2016). Use of the method led to designation of the first MPA in Namibia for African penguins 83 

(Spheniscus demersus) (Ludynia et al., 2012). The foraging range approach is one of the 84 

recommended methods for identifying marine IBAs (BirdLife International, 2010), and may be 85 

particularly useful in regions where distribution data is lacking and the cost of at-sea surveys would 86 

be prohibitive, such as the South East Atlantic or South West Pacific (Kot et al., 2010). This relatively 87 

simple method predicts a baseline distribution which can then be further refined using data on species 88 

specific foraging behaviours or other ecological factors to identify concentrated patches. However, it 89 

has yet to be applied on a large regional scale, for multiple colonies or for multiple species.  90 

In this study we use the foraging range approach to produce projected distributions for all seabird 91 

species breeding in Britain and Ireland, identifying potential hotspots of high abundance. We then 92 

assess overlap with marine protected areas at a species, family and foraging range group (coastal or 93 

pelagic foragers) level. The location of at-sea distribution hotspots will vary according to colony 94 

location and we hypothesise that the level of coverage by protected areas will be higher for coastal 95 

species, which would be better covered by seaward colony extensions than pelagic species. Finally, 96 

we discuss the validity and potential for using the foraging range approach globally. 97 

2. Methods 98 

2.1.  Data collation 99 

Open-access data for all seabird species breeding in Britain and Ireland were used to generate 100 

projected distributions (see Table 1). Data on colony locations and population sizes were extracted 101 

from the JNCC Seabird Monitoring Programme (SMP) Database [at www.jncc.gov.uk/smp] to create 102 

http://www.jncc.gov.uk/smp
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individual data sets for the 25 species that breed in Britain and Ireland. Most colonies have been 103 

counted at least as recently as the Seabird 2000 survey (Mitchell et al., 2004), however colony counts 104 

for some species were incomplete and were supplemented with information from BirdWatch Ireland 105 

and RSPB annual reports where available (Doyle et al., 2015; Daly et al., 2015; Burke et al., 2015). In 106 

the final dataset used for this study ~3% of colonies have not been censused in the last 30 years, these 107 

are all mainly colonies in remote regions. Additional colony data for locally threatened species (e.g. 108 

roseate tern) were provided with the permission of RSPB, however these distributions are not 109 

included here due to the sensitive nature of the data.  110 

Maximum foraging range estimates were taken from reviews (Thaxter et al., 2012 and Jovani et al., 111 

2015), and more recent studies (Kane, A. Pers. Comm.; Thaxter et al., 2013; Wakefield et al., 2013) 112 

(see Table 1). The best available estimate was taken for each species, either from direct (e.g. GPS 113 

tracking), indirect (e.g. time-activity data loggers) or survey data (boat, aerial, or land-based). In 114 

general, values for foraging range obtained from direct and indirect estimates do not vary significantly 115 

(Camphuysen et al., 2006; Thaxter et al., 2012) suggesting that where tracking data is not available 116 

other methods can provide useful estimates of foraging ranges. Maximum foraging range was used to 117 

ensure that all potential usage areas were accounted for, even though densities of birds at the edge of 118 

the ranges would be very low. Whilst some studies using the foraging radius approach have used the 119 

mean of all maximum foraging ranges, maximum foraging ranges from multiple colonies are not 120 

available for all species in Britain and Ireland. In reality maximum distances are likely to vary quite a 121 

lot around the coasts and the use of the maximum recorded foraging range here is a conservative way 122 

to incorporate all of this variation.  The validity of this approach is considered further in the 123 

discussion, including selected post hoc analyses using mean maximum foraging ranges. 124 

2.2. Generating projected distributions 125 

Using the steps below, and as set out in Figure A.1 in the supplementary information, projected at-sea 126 

distributions for individual colonies were generated following a similar process to Grecian et al. 127 

(2012). Maps of colony locations and population size can be seen in Figure 1a for sample coastal and 128 

pelagic species, and in the supplementary information for all species.  The distribution maps are 129 

plotted on a 5 x 5 km grid and show the number of individuals predicted to occur in each grid square, 130 

if 50% of the colony is foraging at-sea at a given time. This accounts for the assumption that on 131 

average, one half of a breeding pair will remain at the nest at any one time (e.g. during incubation and 132 

early chick rearing). The proportion of the population at sea (and subsequent numbers of birds in each 133 

grid square) at any one time will vary with both time of day and season. However, the relative 134 

importance of each grid square will remain the same and the same hotspots will be identified. 135 

Step 1: Create a grid surface (5 x 5km grid) where values in each grid square represent the distance 136 

from the focal colony. 137 
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Step 2: Plot colony centred radii based on maximum foraging range for each species. Any land 138 

occurring within the foraging area is excluded to define the total available foraging area for the 139 

colony. Birds were assumed to only travel over sea, and therefore land was made too expensive to 140 

cross in the model. Maximum foraging range was used to ensure coverage of the majority of a 141 

colony’s foraging area. However, it can be assumed that due to additional behaviours the individuals 142 

from a colony will not be spread evenly across this area, and steps 3 and 4 correct for this.  143 

Step 3:  Invert and normalise the grid square values, so that they all have a value of between 0 and 1 144 

with the highest values being found closest to the colony. These values are now the probability of a 145 

bird occurring in a given grid square, with probability decreasing linearly as distance from colony 146 

increases. 147 

Step 4: Weight values in each grid square by the inverse log distance from the colony. This weights 148 

the areas closer to the colony of higher importance to account for non-foraging behaviours such as 149 

washing/preening or rafting (Wilson et al., 2009). 150 

Step 5: Normalise values so that the sum of all grid squares is equal to 1 i.e. 100 % of the at-sea 151 

population. 152 

Step 6: Multiply proportions in each grid square by the total at-sea population (e.g. 50% of the 153 

breeding population). This generates the predicted number of individuals occurring per grid square. 154 

These steps were repeated for each individual colony and the distributions were then summed to 155 

generate a projected distribution map for the entire region (e.g. Britain and Ireland). A number of 156 

colonies in the dataset were located at a further distance inland than the reported maximum foraging 157 

range, therefore at-sea distributions were not created for these colonies. Most of these colonies were 158 

gulls (see Table 1 for specifics) and can be presumed to be mainly foraging over land (Rock 2016). 159 

Table 1 contains details of all of the coastal colonies included in the analysis. 160 

Distributions were summed across species to assess the overall distribution of all species collectively, 161 

as well as eight family groups (e.g. terns, gulls, see Appendix B for full list) and two foraging range 162 

groups (coastal vs. pelagic foragers). For the purpose of this study species with a maximum foraging 163 

range of less than 75 km were defined as coastal and those with a maximum foraging range of 75 km 164 

or greater were defined as pelagic. There is no clear bimodal distinction between the two groups, 165 

however a cut off of 75 km generates groups of comparable size (Coastal = 12; Pelagic = 13). The 166 

groupings also reflect the foraging ecology of the species, with Terns, Cormorants and most Gulls in 167 

the coastal group and species such as gannet and Manx shearwater that are known to occur well off-168 

shore in the pelagic group.   169 
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In order to assess species richness from the grouped distribution, the number of species occurring 170 

within each grid square was calculated.  171 

2.3. Calculating protected area overlap 172 

Coverage of protected areas for individual species was quantified by calculating the percentage of the 173 

at-sea population estimated to occur within the spatial boundaries of a protected area. Spatial data for 174 

the boundaries of all protected areas with marine components in Britain and Ireland were obtained 175 

from the World Database on Protected Areas (IUCN and UNEP-WCMC, 2016). These were then split 176 

into three types: (1) Special Protected Areas (SPAs); (2) OSPAR convention (Convention for the 177 

Protection of the Marine Environment of the Marine Environment of the North-East Atlantic) MPAs; 178 

and (3) all protected areas (PAs) combined (also including SPAs and OSPAR MPAs). This allowed a 179 

comparison between protected area types which often include seabirds as their designation criteria to 180 

meet EU requirements (SPAs which are specifically for protection of birds and OSPAR MPAs which 181 

are designated for a wider range of taxa) and all other protected area types recognised in Britain and 182 

Ireland. All individual protected area polygons were merged to generate one polygon for each type 183 

(e.g. one polygon for all SPAs) to avoid double-counting birds that occurred in grid squares where 184 

protected areas overlap.  185 

A Wilcoxon rank sum test was used to assess the difference in percentage overlap for (1) foraging 186 

group (coastal or pelagic) and (2) conservation status (Least Concern or Near Threatened and above). 187 

These comparisons were carried out for percentage overlap of SPAs, OSPAR MPAs and all PAs 188 

combined. All analyses were carried out in R version 3.2.1 (R Development Core Team, 2016). Maps 189 

of the distributions were created using the R package ‘ggplot2’ version 2.00 (Wickham 2009).    190 

3. Results 191 

Projected distributions for all seabird species breeding in the UK and Ireland individually (Figure 1b 192 

for a sample of species, and supplementary information for all species) and in family groups (Figure 193 

1c for a sample of family groups, and supplementary information for all family groups) were 194 

generated. The distributions generated show the average number of individuals per 5 x 5 km grid cell 195 

predicted to be at-sea during the breeding season.  196 

Grouped distributions were produced for all coastal species (Figure 2a), all pelagic species (Figure 2b) 197 

and all species combined (Figure A.5, supplementary information). Hotspots of abundance for coastal 198 

species are spread around Britain and Ireland, with the east coast of Ireland, the south-east coast of 199 

England and the Shetland Islands shown as being particularly important. Conversely, for pelagic 200 

species, Scotland is of greatest importance. At the family level, considerable variation also occurs. For 201 

example, most tern hotspots are spread around the east coasts of Britain and Ireland whereas 202 
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Procellariidae hotspots are clumped on the west coasts where they have easy access to distant foraging 203 

areas. A map of species richness was produced showing the potential number of species occurring 204 

within each grid square based on the projected distribution for all species combined (Figure 3).  205 

Overlap between projected seabird distributions and currently designated protected areas (SPAs, 206 

OSPAR MPAs, and all PAs) ranged from under 7% of the at-sea population contained in all protected 207 

areas (European storm-petrel) to over 70% of the at-sea population (Mediterranean gull) (Figure 4). 208 

See Table B.1 in the supplementary material for a breakdown of overlap by species and family group.  209 

Values are likely to vary with the time of day, but remain representative for the time period when the 210 

majority of foraging takes place. 211 

Overall, the percentage of a population covered by a protected area was significantly higher for 212 

coastal species (mean = 32.5%) than for pelagic species (mean = 13.2%) (p < 0.001, Table 2). This 213 

difference was also significant when considering SPAs (mean coastal = 18.1% and mean pelagic = 214 

2.4%, p < 0.001), or OPSAR MPAs (mean coastal = 25.5% and mean pelagic = 11.9%, p = 0.001) 215 

individually. Non-threatened species had a higher coverage from protected areas than threatened 216 

species (mean non-threatened = 25.0% and mean threatened = 14.3%). This relationship was 217 

significant for overlap with SPAs (p = 0.01), but just fell short of significance at the a = 0.05 level for 218 

overlap with OSPAR MPAs (p = 0.09) or all PAs combined (p = 0.07) (Table 2). 219 

 220 

4. Discussion 221 

4.1 General patterns of distribution 222 

Projection based models using foraging ranges and colony sizes have previously been used to estimate 223 

and map densities of seabirds at sea for single or small numbers of species (Grecian et al., 2012; 224 

Ludynia et al., 2012; Soanes et al., 2016). Here we applied this approach for an entire seabird 225 

community in a major area for seabirds in Europe. Patterns of distribution varied remarkably between 226 

species. In particular a clear distinction is seen between hotspots for coastal versus pelagic species, 227 

which are reflected in the distribution of breeding colonies (Mitchell et al., 2004). Naturally the 228 

models show that abundance hotspots are located nearest the colonies or groups of colonies with the 229 

largest population sizes. Even though some seabirds will travel long distances away from the colony 230 

to forage, it should still follow that the largest colonies will be located where access to resources 231 

minimizes the cost of travel to reach resources (e.g. Sandvik et al., 2016), and where direct 232 

competition from other colonies is low (Furness & Birkhead, 1984). This basic principle of optimal 233 

foraging means that a projection based model such as ours is well suited for capturing the majority of 234 

space use by central place foragers (Ashmole 1963).  235 
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4.2 Protected area overlap 236 

The analysis of overlap between protected areas and projected at-sea distributions found large 237 

variation in coverage amongst species, ranging from 7% (European storm-petrel) to 70% 238 

(Mediterranean gull) of at-sea population contained in protected areas. In particular, we found a 239 

significantly higher proportion of coastal birds were covered by protected areas compared to pelagic 240 

birds, many of which are threatened globally, suggesting that they are afforded better protection from 241 

designated MPAs. This result is explained by the fact that most MPAs (particularly marine 242 

components of SPAs) are developed as extensions from the coast, often surrounding an important 243 

colony for a particular seabird species. This pattern occurred even though the projected distributions 244 

are weighted so that proportionally more birds are found closer to the colony than at the edge of their 245 

foraging ranges, which will affect pelagic foragers more heavily. It is clear that due to the large 246 

foraging ranges of pelagic species, coastal colony-centred marine protected areas will not provide 247 

sufficient coverage to adequately protect them (see Game et al. 2009 on the lack of pelagic protected 248 

areas). While OSPAR MPAs seem to afford better protection to pelagic species than SPAs, the 249 

percentage overlap is still significantly lower than for coastal species.  250 

Our analyses also suggest that current marine SPAs afford better protection to species with a 251 

conservation status of ‘Least Concern’ compared to those ranked as ‘Near Threatened’ or above. The 252 

level of coverage is also higher for ‘Least Concern’ species in OSPAR MPAs and all MPAs 253 

combined, but not significantly so. This reflects the fact that all species ranked ‘Near Threatened’ or 254 

above are also pelagic foragers, which have lower coverage by MPAs. For example, the Atlantic 255 

puffin is listed as a species of conservation priority in Europe (European Commission, 2010) and is 256 

categorised as Endangered on the European Red List (BirdLife International, 2015); however, our 257 

results show that it has less protection than many species of Least Concern. Less than 20% of the at-258 

sea population is covered by protected areas, with only a small fraction of this contributed by SPAs. 259 

Thus, these analyses highlight the limitations of assuming that protected areas near colonies are 260 

necessarily going to serve the species that need most protection, particularly as the majority of 261 

foraging by pelagic species will occur in offshore areas (Game et al., 2009; McGowan et al., 2017). 262 

An important next step would be to assess which type of protected area (e.g. fixed or dynamic pelagic 263 

MPAs) would be more effective for these species, using additional information on foraging behaviour 264 

on a species by species basis and spatial prioritisation tools to inform future planning.  265 

4.3 Predictive models of seabird biodiversity 266 

A range of methods have been used to predict seabird distribution at sea, but all show that distance to 267 

colony is usually the most important factor (Chivers et al., 2013; Ford et al., 2007; Louzao et al., 268 

2012; Skov et al., 2008). Some studies (see below) have explored how the use of different foraging 269 

ranges (e.g. maximum, mean maximum or mean) affects the potential accuracy of the predicted 270 
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distributions. For gannets, Grecian et al. (2012) found that varying the foraging range used in models 271 

by ± 25% had no effect on how well the projected distributions correlated with at-sea survey data, and 272 

elected to use maximum foraging range in the final model. Studies by Perrow et al. (2015) and Soanes 273 

et al. (2016) suggest that the use of the mean of all maximum foraging range estimates may be more 274 

appropriate to ensure that an area proposed for conservation is not unfeasibly large. This may be true 275 

when the foraging radius approach is used to delineate a home range area (km
2
) for protection, 276 

whereas for this study the final projected distributions are expressed in density of birds per grid 277 

square. The use of maximum foraging radius here allows the hotspots of highest abundance to be 278 

highlighted without completely discarding areas at the extremes of a species range where birds may 279 

still be foraging. Applying a log decay weighting to the distributions, as in step 4 of the methods, 280 

results in low densities of birds at the edge of the distributions, approaching zero individuals. 281 

Furthermore we conducted a posthoc analysis of MPA overlap using mean maximum foraging range 282 

for a short-, mid- and long-range forager, with values taken from Thaxter et al. (2012). The maximum 283 

and mean maximum overlaps were as follows: (northern gannet, 709 km range = 9.56% overlap and 284 

229.4 km range = 12.55% overlap; black-legged kittiwake, 120 km range = 12.51% overlap and 60 285 

km range = 13.86% overlap; common tern, 30 km range = 34.21% overlap and 15.2 km range = 286 

27.55% overlap).  Thus use of maximum versus mean maximum made little difference and use of 287 

maximum values in this approach is justified. 288 

One limitation of projection models is that they cannot account for all factors that explain where 289 

animals are found, and inevitably the predicted and true distributions will diverge. For example, 290 

density dependent segregation is likely to occur between colonies for all species (Furness & Birkhead, 291 

1984; Wakefield et al., 2013), and within-colony segregation between breeders, non-breeders, and 292 

juveniles, or by sex may also occur (Fayet et al., 2015; Stauss et al., 2012: Votier et al., 2017).  More 293 

importantly, however, spatio-temporal variation in oceanic, meteorological, and ecological factors 294 

leads to patchy resource distribution and variable prey availability (Scales et al., 2014; Schneider, 295 

1990; Gibb et al., 2017). These factors are likely to be especially important since they can vary within 296 

(Grémillet et al., 2008) and across (Robertson et al., 2014) years, and over long periods of time 297 

(Behrenfeld et al., 2006), issues that will also confound empirical data. Despite these limitations, 298 

however, simple projection models could be an important tool in seabird conservation for several 299 

reasons. First, dynamic oceanic and ecological factors cannot easily be included in a universal model 300 

of seabird distribution because such information is lacking for most species in most areas, even in our 301 

study area where seabirds have been studied relatively intensively. Moreover, in most cases it is 302 

unrealistic to expect these data to become available in the near future, because spatio-temporal 303 

variation is so difficult and costly to capture at any spatial scale, let alone at the scale of the marine 304 

environment for an entire community of species. Second, modifications to the model on a species-305 

specific basis would need to greatly improve accuracy to be considered useful, at the cost of 306 
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sacrificing general applicability for all species. Work to date suggests that model performance is not 307 

improved dramatically when additional data on resource abundance (Grecian et al., 2012) or 308 

bathymetric preference (Soanes et al., 2016) have been included. Third, the approach has already been 309 

shown to produce good correlations with distributions obtained from at-sea surveys or GPS tracking 310 

in a number of species in different regions (Grecian et al., 2012; Ludynia et al., 2012).  Although we 311 

are only just beginning to validate our model using a variety of different kinds of empirical data 312 

(Critchley et al. in prep), visual comparison of our predictive distributions with the European Seabirds 313 

at Sea (ESAS) database outputs (Dunn, 2012; Stone et al., 1995) shows good agreement where there 314 

is sufficient coverage by ESAS. At the very least, this suggests that the foraging radius approach can 315 

be used to provide an important baseline distribution in poorly surveyed regions of the world, with the 316 

potential to include additional ecological factors where available to further refine distributions on a 317 

species by species basis. Finally, for a tool to be effective across multiple species and utilised by 318 

regulatory bodies, it should be simple to use and implement, which is true of the projection model 319 

approach.  320 

Conclusion 321 

The projected distribution maps generated in this study have identified both the species and areas that 322 

are currently lacking sufficient protection through establishment of protected areas during the 323 

breeding season, using a simple but universally applicable method. In particular, the combined species 324 

distributions allow us to see where hotspots with a large number of species are found, highlighting 325 

sites for further investigation. Although pelagic species are the most threatened group of seabirds 326 

globally, they were also the least well protected in our study area, where most MPAs are in coastal 327 

locations. Future assessment for marine conservation planning should account for at-sea distribution 328 

to ensure that wider-ranging seabirds are afforded sufficient levels of protection. Designation of 329 

MPAs does not per se confer protection, but appropriate management of activities within them, e.g. 330 

regulation of fisheries/petroleum exploration, can result in positive conservation outcomes at the 331 

broader ecosystem level. Utilisation of distribution maps that show hotspots of both bird density and 332 

species richness in offshore waters should enable effective conservation measures to be put in place 333 

that benefit multiple species, either through fixed or dynamic MPAs (Game et al., 2009; Hays et al., 334 

2016). Our approach relies on good abundance estimates for individual colonies, which themselves 335 

can be extremely challenging and costly to generate. However, these challenges are likely to be 336 

considerably less than those for collecting detailed tracking or at-sea survey data, though naturally 337 

both approaches are valuable and complementary. The foraging radius method used here is therefore 338 

likely to be particularly useful in regions around the world where little data on at-sea distributions 339 

currently exist.   340 

 341 
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Tables & figures 

 

Table 1  

Summary for each species of the number of colonies in Britain and Ireland; total population size (individuals) from 

most recent colony counts; European conservation status; proportion of the European population contained in Britain 

and Ireland; maximum foraging range (km); and foraging range group (pelagic or coastal). European conservation 

status is taken from the IUCN Red List of Threatened Species (Choudhury et al., 2016). European population size was 

taken as the maximum estimate from the IUCN (Choudhury et al., 2016). The proportion estimated is therefore the 

minimum potential percentage of the biogeographical population contained in Britain and Ireland.  Maximum foraging 

range was taken from a review by Thaxter et al. (2012) with a few exceptions, see table footnotes. Species with a 

maximum foraging range of less than 75 km were defined as coastal and those with a maximum foraging range of 

75km or greater were defined as pelagic.  

Species 

Number 

of 

colonies 

Population 

size 

(individuals) 

European 

conservation 

status 

Proportion of 

European 

population (%) 

Maximum 

foraging 

range (km) 

Foraging 

range 

group 

Arctic skua  

Stercorarius parasiticus 
643 4740 Least concern 4.23 75 Pelagic 

Arctic tern  

Sterna paradisaea 
959 116472 Least concern 6.43 30 Coastal 

Atlantic puffin  

Fratercula arctica 
405 869690 Endangered 7.50 200 Pelagic 

Black guillemot  

Cepphus grylle 
1323 38529 Least concern 5.19 15

c
 Coastal 

Black-headed gull
a 
 

Larus ridibundus 
415 184240 Least concern 7.44 40 Coastal 

Black-legged kittiwake  

Rissa tridactyla  
538 704028 Vulnerable 15.96 120 Pelagic 

Common guillemot 

Uria aalge 
506 1271624 

Near 

threatened 
41.56 135 Pelagic 

Common gull
a
 

Larus canus 
1330 48110 Least concern 4.76 50 Coastal 

Common tern
b
 

Sterna hirundo 
376 35468 Least concern 3.11 30 Coastal 

European shag 

Phalacrocorax aristotelis 
1238 61798 Least concern 39.36 17 Coastal 

European storm-petrel 

Hydrobates pelagicus 
107 178138 Least concern 17.29 336

d
 Pelagic 

Great black-backed gull 

Larus marinus 
2010 36528 Least concern 13.73 60

c
 Coastal 

Great cormorant
b
 

Phalacrocorax carbo 
290 27084 Least concern 3.00 35 Coastal 
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Great skua 

Stercorarius skua 
700 16016 Least concern 46.42 219 Pelagic 

Herring gull
a
 

Larus argentatus 
2633 278340 

Near 

threatened 
17.82 92 Pelagic 

Leach's storm-petrel 

Oceanodroma leucorhoa 
16 96714 Least concern 17.68 120 Pelagic 

Lesser black-backed gull
a
 

Larus fuscus 
907 180790 Least concern 26.79 181 Pelagic 

Little tern 

Sterna albifrons 
63 3424 Least concern 3.23 11 Coastal 

Manx shearwater 

Puffinus puffinus 
43 658798 Least concern 83.92 330 Pelagic 

Mediterranean gull
a
 

Larus melanocephalus 
16 1026 Least concern 0.16 20 Coastal 

Northern fulmar 

Fulmarus glacialis 
2643 1075514 Endangered 15.36 580 Pelagic 

Northern gannet 

Morus bassanus 
27 576088 Least concern 42.05 709

e
 Pelagic 

Razorbill 

Alca torda 
679 178773 

Near 

threatened 
17.53 95 Pelagic 

Roseate tern 

Sterna dougallii 
5 3060 Least concern 52.76 30 Coastal 

Sandwich tern 

Sterna sandvicensis 
64 34166 Least concern 11.58 54 Coastal 

a 
Gull colonies that were located at a distance of greater than 5 km from the coast were classified as inland, following 

criteria set out by Mitchell et al. (2004) and excluded from analysis.  

b 
For common tern and great cormorant a number of colonies were located at a distance greater than the maximum 

foraging range; these were excluded from analysis.  

c
 Maximum foraging range taken from review by Jovani et al. (2015) 

d 
Maximum foraging range taken from unpublished GPS tracking data from High Island, Co. Galway, Ireland (Kane, 

A., Pers. Comm.)  

e
 Maximum foraging range taken from Wakefield et al. (2013)  
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Table 2 Results of Wilcoxon rank sum tests to assess differences in percentage overlap for (1) foraging group (Coastal or Pelagic) and (2) conservation status 

(Least Concern or Near Threatened and above). Significant results are shown in bold. Mean percentage overlap contained within SPAs, OSPAR MPAs and 

all PAs combined is shown for each group.   

 

  % overlap with predicted distributions   % overlap with predicted distributions 

Foraging group SPAs OSPAR MPAs All PAs Conservation status SPAs OSPAR MPAs All PAs 

Coastal 18.13% 25.45% 32.49% Least Concern 12.45% 20.27% 25.04% 

Pelagic 2.43% 11.89% 13.21% Threatened  2.11% 12.48% 14.29% 

  Result of Wilcoxon Rank Sum test (p-value)   Result of Wilcoxon Rank Sum test (p-value) 

coastal > pelagic <0.001 0.0012 <0.001 least concern > threatened 0.01 0.09 0.07 
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Figure 1 Maps for example coastal (Phalacrocoracidae) and pelagic (Procellariidae) family groups occurring in 

Britain and Ireland showing a) colony location and population size for a sample species, b) projected at-sea 

distributions for a sample species, and c) projected at-sea distribution for the family group. Maps for all species 

and groups can be found in Figures A.1, A.2 and A.3 in the supplementary material.  Details of the species 

contained within each family group can be found in Table B.2 

 

a b c 
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Figure 2 Maps showing the projected distributions for a) all coastal species and b) all pelagic species, with 

protected areas overlaid (white polygons). The colour scale shows predicted density (individuals per 5 x 5 km 

square) if 50% of the colony is at-sea at a given time, and values are consistent across both maps. Grid squares 

with over 500 individuals are red and grid squares containing less than 0.01 are blue.  

a b 
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Figure 3 A map of species richness showing the potential number of species occurring within each 5 x 5 km 

grid square based on the projected distribution for all species combined. 
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Figure 4 Percentage of predicted at-sea population contained within a currently designated protected area for:  

green = Special Protected Areas (SPAs); light blue = OSPAR Marine Protected Areas; and navy blue = All 

protected areas combined. Red stars indicate species that have a European Conservation status of ‘Near 

threatened’ or higher. Percentage values are not additive as there is spatial overlap between the different 

protected area types. See Table B.1 in the supplementary material for a complete list of the percentage values.  


