A comparison between preference judgments of curvature and sharpness in architectural façades

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Architectural Science Review</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>ASRE-2018-0091.R2</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Original Article</td>
</tr>
<tr>
<td>Keywords:</td>
<td>architectural façades, curvature, aesthetics, visual comfort, image analysis</td>
</tr>
<tr>
<td>Façades</td>
<td>A</td>
</tr>
<tr>
<td>---------</td>
<td>----</td>
</tr>
<tr>
<td>A</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 1. The table reports the dominance matrix for the paired-comparison task.
A comparison between preference judgments of curvature and sharpness in architectural façades

Word count: 5.976 (including bibliography: 7.547)
A comparison between preference judgments of curvature and sharpness in architectural façades

Can curvature drive preference for architectural façades and their perceived familiarity, complexity, stability or approachability? In this study we aimed to investigate if the well-known preference for curvature can be extended to the architectural domain. We generated four different versions of the same reference building, varying only the amount of curvature of the façade. Twenty-four participants 1) made a preference forced-choice task between pairs of stimuli; 2) ranked all stimuli from the most to the least preferred; 3) evaluated each stimulus on different psychological variables. Multidimensional scaling on forced choices showed that the curved façade was the most preferred. Multidimensional unfolding on the ranking task showed that the majority expressed higher preferences for the curved facades compared to sharp-angled and rectilinear ones. Ratings on different psychological variables gave supporting evidence for curvature significantly influencing liking and approaching judgments. We then processed the stimuli with a dynamical model of the visual cortex and a model that characterises discomfort in terms of adherence to the statistics of natural images. Results from these image analyses matched behavioural data. We discuss the implications of the findings on our understanding of human preferences, which are intrinsically dynamic and influenced by context and experience.

Keywords: architectural façades; curvature; aesthetics; visual comfort; image analysis

Introduction

Architects frame space, design geometries and study buildings’ proportions to convey ideas and emotionally engage the visitor. The 20th century unbuilt project of the Italian architects P. Lingeri and G. Terragni (1938), the Danteum, is a striking example of a building planned to have no other function except to tell the story of Dante’s Divine Comedy (Figure 1). The idea that the structure and shape of the environment we live in can influence our social behaviour and our affective state can be traced up to Vitruvius (15 B.C.). Principles of utilitas (functionality), firmitas (stability) and venustas.
(aesthetics) influenced the most prominent architects and artists of Italian Renaissance: Alberti, Palladio, Brunelleschi, Borromini, Bramante and Leonardo da Vinci. Vitruvian terms like order, proportion and symmetry are still a reference point for experts nowadays. For example, in the Design Quality Indicator (DQI; Gann, Salyer & Whyte, 2003) authors started directly from the three old Vitruvian principles to develop the three modern concepts of: function, build-quality and impact.

Figure 1. From left to right: perspective of the Hell, the Purgatoire and the Heaven rooms of the Danteum’s project by P. Lingeri, G. Terragni (1938, Archivio Pietro Lingeri, Milano). Retrieved from: http://www.fupress.net/index.php/oi/article/viewFile/19687/18808

In the contemporary era, we can outline two main trends characterising architecture design: 1) the ‘modernist’ approach, inspired by the creed ‘form ever follows function’ (Sullivan, 1896) that prioritises the function of a building over its aesthetics; and 2) the ‘human-centred design’ approach, characterised by the effort to capture and potentially predict the impact of architecture and urban design on human behaviour (Shaftoe 2008; Gutman 2009; Zhang & Dong, 2009). Since the 70’s, approaches like organic architecture (Wright, 1958; Hildebrand, 1991, 1999), bio-architecture (Aguilar, 2003) and biomimicry (Gendall, 2009) started to flourish, combining the use of sustainable resources to basic configurations developed from existing natural shapes and promoting the buildings’ integration in nature. Theoretical frameworks interpreting environmental preference for landscapes and built environments (Appleton, 1992, 1996; Hildebrand,
Curvature and sharpness in architectural façades

58 1991) stressed the potential positive impact that particular combinations of shapes might
59 have on users’ emotional experience of space (Lidwell et al. 2010; Lippmann 2010).
60 The main aim of this study is to investigate the role of geometry in the architecture
61 domain, with a particular focus on the influence of curvature in driving human’s
62 preferences. We will outline key findings from literature to create a theoretical context
63 for relevant issues that can be extended to the field of architectural design and urban
64 planning.

65 The curvature effect

66 In psychology, the ‘curvature effect’ is a well-known and consistent
67 phenomenon (Bar & Neta, 2006, 2007; Silvia & Barona, 2009; Leder et al., 2011;
68 Palumbo et al., 2015; Bertamini et al., 2016; Vartanian et al., 2013, 2015), yet still not
69 well understood.

70 In their classical studies, Bar and Neta (2006, 2007) showed that objects and
71 abstract shapes were preferred in their curved version compared to the sharp-angled one
72 and a significantly greater activation of the amygdala for the sharp-angled objects
73 compared to their curved version (Bar & Neta, 2007). Due to the neutral valence of their
74 stimuli, the authors interpreted the amygdala activation as threat-related, suggesting that
75 sharp-angled contours convey a sense of threat per se and that preference for curvature
76 is a by-product of disliking sharpness (Bar & Neta, 2007). However, this interpretation
77 has been challenged by other studies using different methodologies, addressing implicit
78 associations and approach/avoidance responses to curvature (Palumbo et al., 2015). In
79 their second experiment, Palumbo et al. (2015) showed that participants were faster and
80 more accurate when the task was to move a human-stick figure towards curved shapes,
81 but there was no difference in the RTs when the task was to approach or avoid sharp-
angled shapes. The authors conclude that curvature might be preferred for its intrinsic aesthetically pleasing properties, but also be influenced by the emotional valence of positive, safe and female concepts shown to be implicitly associated with curved shapes—as they showed in the first experiment (Palumbo et al., 2015).

In the extensive review on the theme, Gómez-Puerto, Munar and Nadal (2016) identify two main approaches that shaped the research of the past two centuries:

1) the first one, focusing on the physical properties and the perceptual mechanisms involved in preference for curvature, explaining the phenomenon from a sensorimotor-based or a valuation-based perspective;

2) and the other oriented towards the investigation of the origins and the possible function of this preference, divided between culturally influenced or biologically determined explanations.

Moreover, research has shown that preference for curvature can be mediated by the emotional valence of the stimuli (Leder at al., 2011), participants’ expertise (Silvia and Barona, 2009) and cultural context or aesthetic Zeitgeist (Leder & Carbon, 2005; Carbon, 2010). Hess and colleagues (2013) showed that abstract sharp-angled shapes could also modulate perceived aggressiveness of a face as well as our social behaviour. While assembling a puzzle, participants tended to judge the resulting faces as more aggressive if the puzzle was made by sharp-angled compared to curved elements. In the second experiment they showed that participants were more likely to make an aggressive decision in a role-playing trust game if sharp-angled shapes compared to curve shapes decorate the experimental setting. Gómez-Puerto et al. (2016) conclude that there is enough evidence in the field to support preference for curvature as being both the result of a learnt process as well as an evolved one.
Preference for curvature in architecture: what do we know so far?

Experimental research reported contrasting results also when using architecture images. In the fMRI studies conducted by Vartanian and colleagues (2013, 2015), participants looked at images of architectural interiors and then judged them on different psychological variables. The study reported that curved interiors were more likely to be perceived as beautiful compared to rectilinear ones, but the geometry was not a critical factor for approachability decisions. Neuroanatomical results showed that looking at curved spaces activated the anterior cingulate cortex (ACC) exclusively, a brain region which is known to be linked to reward and being a core circuit for aesthetic processing. In contrast, rectilinear interiors did not show a significant amygdala activation, as previously found by Bar and Neta (2007). The authors put forward the hypothesis that, in architecture, sharp-angled contours may have lost their threatening valence, as an effect of mere exposure (Marks & Dar, 2000; Zajonc, 2001).

If we exclude the studies by Vartanian et al. (2013, 2015), there is a very limited number of researches that explicitly controlled for the amount of curvature/sharpness of the stimuli involved, especially when representing an artificial environment. Leder and Carbon (2005) tried to isolate the cultural influence on preference for curvature using a series of sketches inspired by actual car design, manipulating their complexity, innovativeness and amount of curvature. Their findings confirmed the role of curvature in significantly influencing attractiveness ratings, with a relatively small impact of participants’ design knowledge. In another study on car design, Carbon (2010) provided empirical evidence for the dynamic nature of this preference by explicitly instructing participants about the cultural context and historical design tends (Zeitgeist effect).

After adaptation to futuristic car design, perceived innovativeness became a better predictor for participants’ liking judgments compared to curvature (Carbon, 2010).
Curvature and sharpness in architectural façades

Research in environmental psychology has not provided conclusive results about the importance of geometry in architecture either. In the meta-analysis conducted by Dosen & Ostwald (2016) only five out of the thirty-four analysed studies directly manipulated the geometry of the space, using environments’ computational simulations.

In a recent study, Shemesh et al. (2016) validated a new methodology combining psychological and neurophysiological measures (EEG) with Virtual Reality (VR) in order to capture in a more controlled way the dimension of spatial interaction with the environment. This is one of the very first studies, to the best of our knowledge, directly controlling for the global geometry and the symmetry of the architectural space presented in the experiment. They created four types of virtual environments, controlling for curvature and symmetry. They analysed the EEG data using a two-steps manifold learning technique: the first step identified the EEG channels relevant for geometry processing (Lederman & Talmon, 2015); while the second step analysed the activity of those selected channels (Talmon et al. 2015). The study showed encouraging results for differentiating brain activity in response to the different geometries. The authors found that curvature, but not symmetry, had a significant impact on VR users’ preference overall, with a significant effect of participants’ design expertise: non-experts rated curved spaces as more interesting compared to experts.

It is important to point out how previous research showed contrasting results on the role of expertise in modulating preference for curvature: Silvia and Barona (2009) reported a significant interaction between expertise and curvature: in the first experiment with simple polygons the effect was stronger for novices; while in the second experiment, that used more complex shapes, experts showed a greater preference for curvature. Mass et. al. (2000) reported that architectural façades judged as beautiful were also perceived as intimidating by lay people (Maass et al., 2000), and Cotter et al.
Curvature and sharpness in architectural façades

(2017) showed how preference for curvature is linked with art expertise and openness to experience personality trait.

What can we learn from image analysis?

One of the key arguments used by the biologically determined explanations is that curved lines are more occurring in nature. From this assumption derives that sharp-angled shapes are perceived as threatening because they are difficult to find in organic environments (Gómez-Puerto et al., 2016). We know that natural images, namely images of natural scenes, have special statistical properties, and that these properties can be processed more efficiently by the human visual system (Field, 1987; Geisler 2007).

Based on these characteristics, Penacchio and Wilkins (2015) developed an algorithm that robustly predicts visual discomfort in terms of adherence to the statistics of natural images: the more an image deviates from the statistics of natural images, the more likely it is to be judged as uncomfortable to look at. Repetitive patterns such as high contrast gratings, whose image statistics strongly deviate from the statistics of natural images, are particularly uncomfortable to look at, especially if the spatial frequencies involved correspond to those best perceived by the human visual system (Fernandez & Wilkins, 2008; Juricevic, Land, Wilkins, & Webster, 2010; Penacchio & Wilkins, 2015).

Computational models suggest that detrimental patterns and images with unnatural statistics are processed less efficiently by the brain as they cause a denser response (more neurons firing at the same time) in the visual system (Hibbard & O’Hare, 2014; Penacchio et al., 2016), which can be at the origin of visual discomfort. Le et al. (2016) reported that images of urban scenes with statistical properties that deviate from the typical statistical properties of natural scenes were associated with a higher haemodynamic response in the visual cortex. They also found that judgments of visual discomfort from real scenes were matched to judgments from images of these scenes,
suggesting that this measure could be integrated into the design practice of urban scenes to avoid constructions with detrimental consequences for brain metabolism, and also for health and wellbeing.

Literature offers useful insights about curved shapes driving our preferences for built environments and objects surrounding us, but also highlights the need to investigate the role played by individual differences (e.g.: personality traits) and explicit knowledge (e.g.: expertise) in modulating this effect. We can highlight four limits of the body of research reported so far, relevant when trying to generalise these findings to the architecture domain:

(1) most of research used very simple or abstract stimuli;
(2) often the stimuli are presented on computer screens, making difficult to generalise results to real spatial interaction with architectural geometries;
(3) the studies measured primarily liking judgments;
(4) there are technical issues in the control for global and local amount of curvature introduced in more complex stimuli, especially when representing architectural spaces, as usually researchers in psychology do not have expertise on 3D modelling.

We suggest that those limits can be addressed directly engaging in a dialog with professional architects, defining research questions relevant for both psychological science and architecture design. Collaborating with experts in architecture allows to create stimuli more ecologically valid and to have a better control the geometry of the built space, rather than trying to match or modify pictures of already existing buildings. We believe that a multidisciplinary approach is needed when studying complex phenomena like the curvature effect, to explain its multiple aspects and implications.
Starting from those preliminary considerations, in the present study we wanted to test the robustness of the ‘curvature effect’ not only exploring judgements of façades as isolated stimuli, but also directly comparing different versions of the same building (controlling for local and global features). We collected preferences with three different methods: a forced-choice task, ratings on a series of psychological variables for each façade and a classification task.

Material and Methods

Participants

Twenty-four female participants gave informed consent before taking part in the experiment. All were volunteers and were recruited from the student population of the School of Education of University of Roma Tre. All had normal or corrected-to-normal vision. The experiment was conducted in accordance with the Declaration of Helsinki (2008). Preference for curvature has been shown not to be subjected by gender differences (Frantz & Miranda, 1975; Jadva et al., 2010; Palumbo et al., 2015), so we have evidence to support the fact that having a sample made of all women will not bias our data.

Stimuli

We adopted a similar approach to Leder and Carbon (2005) and controlled for both global and local features of our stimuli, gradually increasing the amount of curvature introduced in the architectural façade. Knowing that positive emotional valence modulates the preference for curved objects (Leder et al., 2011), we wanted to control the affective valence associated with the architectural style of our stimuli. Previous studies (Mastandrea, Bartoli & Carrus, 2010; Chirumbolo, Brizi et al., 2014;
Mastandrea, & Maricchiolo, 2014) showed that lay people find easier to implicitly
associate figurative art, classical architecture and design objects to positive concepts
compared to abstract art and modern architecture. We choose as reference building the
Oratorio dei Filippini (Oratory of Saint Phillip Neri, 1637-1650) by Francesco
Borromini (Figure 2), one of the most representative architects of the Baroque style,
close to the classical buildings used in previous research investigating affective valence
of architecture design (Mastandrea, Bartoli & Carrus, 2010).

Figure 2. Engraving of the façade of Francesco Borromini’s Oratorio dei Filippini by
Domenico Barrière (1658). Retrieved from:
https://commons.wikimedia.org/wiki/File:Borromini_Drawing_01.jpg

Following the terminology guidelines proposed by Gómez-Puerto, Munar and
Nadal (2016), we will refer to the characteristics of our stimuli as curved and sharp-
angled. We availed ourselves of the expertise of the architect S. Lamaddalena to create
the stimuli for this study, using the professional software application AutoCAD (version
2.0, 2015). Together with her, we defined the architectural features to manipulate in the
stimuli as follows:
Curvature and sharpness in architectural façades

1. global: the overall shape and outline of the façade;

2. local: windows, columns and other decorative elements on the façade.

The final stimuli developed from these concepts consisted of four simplified 2D models of the reference building, whose global and local architecture features varied reflecting the following characteristics:

- A, curved;
- B, mixed;
- C, rectilinear;
- D, sharp-angled.

All religious references in the façades were removed, to avoid interactions with participants’ religious affiliation.

One of the main predictions deriving from Berlyne’s classical work on aesthetic experience, is that people tend to prefer medium levels of complexity (Berlyne, 1970), and we know from previous findings that sharp-angled shapes are judges as more complex compared to curved ones (Bertamini et al., 2016). Taking in account those evidences, we hypothesised the mixed façade (B) to be judged as having a medium level of complexity and, consequently, to be preferred over the other versions –being also the closest to the original design of the reference building. Bertamini et al. (2016) found that preference for patterns od simple lines was higher for the curved version, followed by rectilinear and sharp-angled. The rectilinear façade (C) was created as a control condition, in the attempt to replicate the findings by Bertamini et al. (2016) in the architecture domain.
Curvature and sharpness in architectural façades

Figure 3. The four architectural façades we used in our study. In alphabetical order: curved (A), mixed (B), rectilinear (C) and sharp-angled (D) version.

Procedure

In order to simulate a more ecological situation, we presented the images of architectural façades on a big projection screen rather than on a small computer monitor. The experimental apparatus consisted of a 150 cm x 170 cm projection screen in a darkened classroom. All participants were seated at approximately 250 cm from the screen. Stimuli were presented using an Epson Eh-tw5650 projector (2.500 lumen, full HD, contrast at 60.000:1) and occupied 176° of visual angle. During the experiment...
participants were not allowed to talk with each other and two researchers supervised the
room to guarantee the tasks to be performed accurately and independently.

Being aware of the conflicting results reported on expertise in preference for
curvature (Silvia & Barona, 2009), we decided to control for expertise even if people in
our sample did not have any formal training in art. According to the model of aesthetic
appreciation outlined by Leder et al. (2004), we know that art interest plays an
important role in aesthetic appreciation. Before starting the experimental session, we
asked participants to self-assess their level of art interest on a five-point Likert scale
(where 5 = “Very much” and 1 = “Not at all”), as a way of quantifying expertise
among non-experts.

The current study consisted of three experimental blocks. Each block was
associated with a customised printed grid, as described below in more detail. The main
aim of our procedure was to test if preference for curvature is task-independent.

The first block consisted of a two-alternatives forced choice task. We presented
for 3 seconds each of all the possible six combinations of the four façades, without
repetitions: AB; CD; BC; AD; CA; DB. Each façade was presented three times in total
and the order was counterbalanced, to make sure that each version appeared at least
once on the left-hand side of the projection screen. After the stimuli disappeared the
screen was blanked, and participants were asked to record their preferred façade on a
printed grid. The grid consisted of six rows, one for each repetition, and were divided
into two cells. If participants preferred façade presented on the left-hand side of the
screen, they were asked to tick the left cell on the printed grid; if they preferred the
façade on the right-hand side, to tick the right cell.

During the second block, participants performed a multiple rating task. They
were asked to rate each façade using a five-point Likert scale (where 1 = “not at all”, 2
Curvature and sharpness in architectural façades

The façades were presented on screen one at a time and were identified by a letter previously assigned by the researchers, as illustrated in Figure 3. Participants were asked to collect ratings on a customised printed grid for five psychological dimensions: liking, familiarity, complexity, stability and approach. Participants performed the liking ratings first, to assure that liking would not be affected by the other measures.

Finally, in the third block participants had to perform a rating task. The four façades were presented all at the same time on screen, arranged as shown in Figure 3. Each stimulus was identified by the same letter as the one used in the second. The customised grid consisted of four squares, arranged in a row. Participants had to fill the squares with the letters identifying each stimulus, arranging the façades from the most (=1) to the least (=4) preferred.

Data analysis and Results

Due to the nature of our procedure, we report the results from the three different experimental blocks separately.

First block: two-alternatives forced choice

The results of the two-alternatives forced choice experiment are summarized in the dominance matrix reported in Table 1: each positive entry represents the number of

1 Original items in Italian were: 1 = “per niente”, 2 = “poco”, 3 = “abbastanza”, 4 = “molto” and 5 = “moltissimo”

2 Original items in Italian were: “Quanto ti piace questo edificio?” “Quanto ti è familiare questo edificio?” “Quanto è complesso questo edificio?” “Quanto è stabile questo edificio?” “Quanto questo edificio ti invita ad entrare?”

https://mc.manuscriptcentral.com/asre
times the row façade was preferred to the column façade, and main diagonal elements
are conventionally set to zero. All the corresponding off-diagonal elements satisfy a
constant sum property (e.g.: all pairs of corresponding entries \((i,j)\) and \((j,i)\) sum up to
24), resulting in the sum of row and column totals for each façade being also constant.
Thanks to this way of representing data, we can easily obtain the façades preference
order by the row totals of the dominance matrix, that is –from the most to the less
preferred:

- A (curved);
- B (mixed);
- D (sharp-angled);
- C (rectilinear).

A second consequence of the previous properties is that symmetry is not
interesting in this matrix, but it is worthwhile to focalize on the skew-symmetric
information. The skew-symmetry of each pair of façades is the difference of the
corresponding frequency in the matrix by the value 12, which in our experiment
corresponds to the situation of equilibrium (12 subjects prefer one façade and other 12
subjects prefer the other one).

<table>
<thead>
<tr>
<th>Façades</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-</td>
<td>21</td>
<td>22</td>
<td>21</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>-</td>
<td>19</td>
<td>17</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>5</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>7</td>
<td>18</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 1. The table reports the dominance matrix for the paired-comparison task.
The skew-symmetric component of a dominance matrix can be depicted by a method of asymmetric multidimensional scaling proposed by Bove (2011, 2012), which adapted the idea originally proposed by Okada & Imaizumi (1987) for asymmetric proximities to skew-symmetric data. This method represents the architectural façades as points in a two-dimensions diagram. Both the façade preference orders and the imbalances are represented: the former as circles with different radii (larger circles correspond to higher ranks of preference), the latter as the distances between points (larger distances correspond to lower equilibrium). Results are shown in Figure 4.

The size of the circles shows the overall preference order: A, B, D, C. Façade A is the most preferred and is liked equally more than B, C and D. Façades B and D have the smallest imbalance between each other, so they are represented as closer on the plane. Façade C is the last on the preference order with no ray. It is dominated by all the other façades, but much more by A and B that are positioned further away from it.

Figure 4. Asymmetric multidimensional scaling representation for data in Table 1.
Second block: multiple rating tasks

Five one-way repeated measure ANOVAs were conducted on rating values for each of the five psychological variables we measured (liking, approach, complexity, stability and familiarity), with façade version (A, B, C and D) as independent variable. There was no significant difference for familiarity ratings (F(3,69)= 2.375, \(p = .078 \) NS), suggesting that the simple design of our stimuli did not interfere with the perceived familiarity of the architectural style of the façades. All the other psychological dimensions had a statistically significant main effect: liking (F(3,69)= 13.077, \(p = .000 \)), approach (F(3,69)= 12.375, \(p = .000 \)), complexity (F(3,69)= 13.162, \(p = .000 \)) and stability (F(3,69)= 3.060, \(p = .034 \)).

Post hoc tests using the Bonferroni correction revealed that liking (1.8 ± 0.35), approach (2.08 ± 0.37) and complexity (2.3 ± 0.22) mean ratings for the rectilinear façade –C— were statistically significantly lower than mean ratings for the other façades (\(p < .05 \)). It is relevant to report the façades’ rating order for each of the measured variables, from the most to the least rated:

- A, D, B, C for liking and approach;
- D, A, B, C for complexity;
- C, B, A, D for stability.
Figure 5. The graphs show the average score obtained by each building across the five variables. From top to bottom, left to right: liking, approach, complexity, stability and familiarity—bottom middle—. Error bars represent confidence intervals.
Third block: ranking task

The analysis of the frequencies we collected for the ranking task confirmed the preference order showed in the two-alternatives forced choice task as the ranking order was A, B, D and C. Table 2 reports the number of times each façade (row) was chosen in an order position (column) by participants.

<table>
<thead>
<tr>
<th></th>
<th>First</th>
<th>Second</th>
<th>Third</th>
<th>Fourth</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>15</td>
<td>5</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>13</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>6</td>
<td>13</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 2. The table reports the frequencies of order choices in the ranking task.

Besides, we analysed the (24×4) preference data matrix with multidimensional unfolding technique (Borg & Groenen, 2005) to explore possible relationships between subjects and façades. The results from this analysis are shown in Figure 6, where numbers represent the subjects and letters represent the façades.

According to the properties of the unfolding representation, the subjects tend to be closer to the façades for which they expressed a higher rank in the task. Overall, façade A – curved – and to a less extent façade B – mixed – are the two main buildings around which the gather majority of the subjects is placed, including the one with the highest self-reported artistic interest. Subjects 4, 9 and 15 preferred façade D, but their artistic interest rank was of 2, corresponding to a medium-low level. Only one subject (subject 14) preferred façade C, but had also the lowest level of artistic interest, corresponding to no artistic interest at all.
Figure 6. Multidimensional unfolding representation for rank order scores (Subject artistic interest level labels: none, little, enough, much).

Results from Image analysis

We used a model developed in Penacchio and Wilkins (2015) to analyse the stimuli. According to Fourier analysis, images can be decomposed into a sum of waves with different orientations, amplitudes and wavelengths –or spatial frequency. The amplitude of these waves as a function of spatial frequency is called the amplitude spectrum of an image. Natural images consistently have a very specific relationship between amplitude and spatial frequency: amplitude is proportional to the inverse of spatial frequency, a property often referred to as $1/f$, where f stands for spatial frequency. This means that low frequencies have much more energy (or contrast) than high frequencies in natural images and that the fall-off statistically obeys the $1/f$ rule. The model we used essentially computes the extent to which an image amplitude spectrum departs from $1/f$.

https://mc.manuscriptcentral.com/asre
410 The model can also take into account anisotropy, the excess of energy that horizontal
411 and vertical frequencies have in natural scenes and to which the visual system has
412 adapted across evolution. Finally, when comparing the amplitude spectrum of an image
413 to the typical amplitude spectrum of natural images, the model can give more weight to
414 the spatial frequencies the human visual system is most sensitive to, namely frequencies
415 around three cycles per degree (Campbell, 1968). Given an image, the model therefore
416 provides a single number, called residual, that measures the extent to which the image
417 deviates from the natural spectrum of natural images for a visual system differentially
418 sensitive to some spatial frequencies. The lower the residual, the more similar to natural
419 images the stimulus is. The model based on fundamental principles in efficient coding is
420 a good predictor of visual discomfort (Penacchio & Wilkins, 2015).

421 The four different versions of the model (depending on whether anisotropy and
422 the human sensitivity to different spatial frequencies are taken in to account) gave the
423 same order of departure from natural images (i.e., the same order for the residuals): A
424 (4.4), B (6), D (7.4), C (9). (The numbers reported here correspond to the residuals for
425 the most general version of the model, see Penacchio and Wilkins, 2015.) The same
426 order was also predicted by a mathematical model of the cortex. We processed the
427 images with a mechanistic neurodynamical model of the visual cortex that includes the
428 fundamental machinery underlying contextual modulation, namely excitatory and
429 inhibitory neurons sensitive to different orientations as found in the primary visual
430 cortex and lateral connections between them (Zhaoping Li 2002, Penacchio et al. 2013).

431 The activity of this mechanistic model, which has been shown to encode comfortable
432 images with a sparse activity (requiring only few neurons to fire strongly at the same
433 time, as the visual cortex does in the presence of natural images) and uncomfortable
434 images with a dense activity (Penacchio et al. 2016), ranked A, B, D and C, in
conformity with the model based on Fourier analysis, and in line with a general theory of aesthetics based on the sensory coding of natural stimuli (Redies, 2007) and in line with the behavioural data.

Discussion

Our findings confirmed that curvature influenced preferences also for the stimuli representing architectural façades created for this study. Multidimensional scaling and unfolding provided graphical representations to easily detect preference order, size of asymmetry and relationships between subjects and stimuli (Maydeu-Olivares & Bockenholt, 2009; Piccolo, 2006). When participants directly compared different versions of the same building, the curved façade was the most preferred, followed by the mixed, sharp-angled and rectilinear, both in the two-alternatives forced choice (2AFC) and the ranking task. In both cases, the rectilinear stimulus was the least preferred and not the sharp-angled stimulus, as found in the previous study by Bertamini et al. (2016), that used patterns of simple lines. It is important to report that previous findings showed that different exposure time can modulate the curvature effect (Bar and Neta, 2006, 2007; Bertamini & Palumbo, 2016, Munar et al., 2015). The focus of the present study was to replicate those previous findings in the architecture domain. The aim for future research is to include different exposure time, to investigate the critical time span in which curvature has a significant effect in driving aesthetic preference, in modulating affective or emotional state and in influencing social behaviour.

The four architectural façades generated for this study were processed with the model described above (Penacchio and Wilkins, 2015) and with a dynamical model of the visual cortex (Penacchio, Otazu & Dempere-Marco, 2013, Penacchio et al. 2016). The order of stimuli preference was related in both models and matched to the
behavioural data collected in this study and previous findings (Redies, 2007; Penacchio and Wilkins, 2015).

The hypothesis that preference for curvature derives from the optimal stimulation of the visual system might by itself explain this effect (Gómez-Puerto et al. 2016). We suggest creating a link between the statistical properties of natural scenes and that preference for curvature might have evolved from human interaction with natural environments. In support of this hypothesis, we report the interesting experimental investigation on the Snake Detection Hypothesis conducted by LoBue (2014). The author suggested that faster snake detection might not necessarily be due to perceiving threat but, more easily, to the basic perceptual mechanisms involved in detecting the curvilinear shape of those animals. Results from this study showed that participants were faster in detecting simple curvilinear shapes – so called snake-like stimuli— compared to their rectilinear counterpart, even in the absence of any threat-related information (LoBue, 2014). Our results seem to suggest that the image analysis approach used in the current study could be a valid way of quantifying curvature, which seems to be connected with predicted levels of image discomfort. We hope to better validate this methodology in future research, processing a richer set of stimuli and architectural styles, to investigate this link and its interaction with culture and expertise.

Results from individual ratings on liking, approachability, complexity, stability and familiarity showed a slightly different pattern and generated interesting insight. Both for liking and approachability the curved façade reported the highest ratings, followed by the sharp-angled version, which gained the second position over the mixed façade compared to the ranking and forced-choice tasks. The sharp-angled façade was judged as being the most complex, while the rectilinear the most stable. Previous findings reported that curvature did not affect approach-avoidance decisions for
Curvature and sharpness in architectural façades

architectural interiors (Vartanian et al., 2013, 2015), however this was not the case for our study. We advance three possible explanations for these findings:

1) people might judge exterior prospects in a different way compared to interior living spaces and a better understanding of the psychological variables involved in approach-avoidance decisions is needed, in order to revise classical explanations—like perspective-refuge theory—and to stimulate interdisciplinary research;

2) the curved and the sharp-angled façades—those two showing the deepest gap between the central part and the extremes lateral corners of the façade—might have been perceived as physically projecting more towards the viewer compared to the other two versions, increasing the perceived approachability of the building for curved and sharp-angled version (see Fig. 2);

3) the rating order might have been influenced by the affective valence of the global and local features manipulated in our stimuli, in agreement with previous findings on aesthetics and on the meaning of rectangular shapes (McManus & Wu, 2013; Palumbo et al., 2015).

Results from this study present two main implications on future research:

(1) they provide empirical support for the hypothesis that preference for curvature might be stronger if compared to rectilinear rather than to sharp-angled features or stimuli presenting different amount of curvature;

(2) they shed light on the nature of human preferences, intrinsically dynamic and influenced by context and experience.

We should be cautious to generalise our results as they are on a very small sample of architectural stimuli, making hard to draw any more general conclusions. Following an emerging approach in current research of controlling the aesthetic qualities of stimuli (Leder & Carbon, 2005; Shemesh et al., 2016), future studies will
Curvature and sharpness in architectural façades

510 aim to produce a more varied sample of architectural styles in order to investigate
511 perceived approachability of interiors compared exteriors architectures, the role of
512 buildings’ function and cross-cultural differences, including measures like perceived
513 innovativeness, interest (Carbon and Leder, 2005) or embodiment.
514
515 It is not hard to imagine that negative aesthetic reactions might be voluntarily
516 induced by architects when designing buildings, using particular shapes and geometry.
517 The ‘Jewish Museum Berlin’ (1989-2001) designed by Daniel Libeskind is an example
518 of an architecture design that aims to induce a sense of fear, discomfort and dramatic
519 absence in the visitor rather than liking or positive feelings. Knowing the critical role
520 played by expertise in influencing curvature preference we suggest that architectural
521 design practice might benefit from collaborating with scientific research, to better
522 predict human perceptual as well as emotional reactions to the shape and geometry of
523 buildings, aiming to plan better cities.

524 Disclosure statement
525 No potential conflict of interest was reported by the authors.

526 ORCID
527 Nicole Ruta: https://orcid.org/0000-0001-5300-2913
528 Stefano Mastandrea: https://orcid.org/0000-0001-5128-1525
529 Olivier Penacchio: https://orcid.org/0000-0002-1544-2405
530 Giuseppe Bove: https://orcid.org/0000-0002-2736-5697

531 References
Curvature and sharpness in architectural façades

Curvature and sharpness in architectural façades

Curvature and sharpness in architectural façades

Penacchio, Olivier, Arnold J. Wilkins, Xavier Otazu, and Julie M. Harris. 2016, August. "Inhibitory function and its contribution to cortical hyperexcitability and visual discomfort as assessed by a computation model of cortical function." In *Perception* 45,
Curvature and sharpness in architectural façades

655 pp. 272-272. Olivers Yard, 55 City Road, London EC1Y 1SP, England: Sage

656 Publications LTD.

https://mc.manuscriptcentral.com/asre
Curvature and sharpness in architectural façades

<table>
<thead>
<tr>
<th></th>
<th>First</th>
<th>Second</th>
<th>Third</th>
<th>Fourth</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>15</td>
<td>5</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>13</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>6</td>
<td>13</td>
<td>2</td>
</tr>
</tbody>
</table>

higher res version

199x57mm (300 x 300 DPI)
160x35mm (300 x 300 DPI)
199x130mm (300 x 300 DPI)