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Abstract 14 

The comparison of spatial patterns is a fundamental task in geography and quantitative spatial 15 

modelling. With the growth of data being collected with a geospatial element we are witnessing 16 

an increased interest in analyses requiring spatial pattern comparisons (e.g., model assessment, 17 

change analysis). In this paper we review quantitative techniques for comparing spatial 18 

patterns, examining key methodological approaches developed both within and beyond the 19 

field of geography. We highlight the key challenges using examples from widely known 20 

datasets from the spatial analysis literature. Through these examples we identify a problematic 21 

dichotomy between spatial pattern and process – a widespread issue in the age of big geospatial 22 

data. Further, we identify the role of complex topology, the interdependence of spatial 23 

configuration and composition, and spatial scale as key (research) challenges. Several areas 24 

ripe for geographic research are discussed to establish a consolidated research agenda for 25 

spatial pattern comparison grounded in quantitative geography. Hierarchical scaling and the 26 

modifiable areal unit problem are highlighted as ideas which can be exploited to identify pattern 27 

similarities across spatial and temporal scales. Increased use of ‘time-aware’ comparisons of 28 

spatial processes are suggested, which properly account for spatial evolution and pattern 29 

formation. Simulation-based inference is identified as particularly promising for integrating 30 

spatial pattern comparison into existing modelling frameworks. To date, the literature on spatial 31 

pattern comparison has been fragmented and we hope this work will provide a basis for others 32 

to build on in future studies. 33 
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1. Introduction 40 

 The comparison of maps is a fundamental part of how geographers try to understand 41 

the world. Quantifying spatial distributions and patterns, and comparing across regions or over 42 

time is central to many types of geographical research and applications.  To illustrate, Figure 1 43 

presents two maps from the recent Intergovernmental Panel on Climate Change (IPCC) 44 

Synthesis Report (IPCC, 2014) which shows recorded surface temperature change (1986-2005) 45 

and projected changes (2081-2100). We are confronted with two simultaneous map comparison 46 

tasks. First, we make comparisons locally within a map, noticing spatial differentiation within 47 

both observed and projected temperature regimes – noting in particular the rapid warming in 48 

polar regions. Second, we compare the maps globally, recognizing large magnitude shifts in 49 

temperature across most continents in the projected scenario compared to the period of 50 

observed temperature changes. In making these interpretations broadly, we mask uncertainties 51 

associated with more precise questions of change, such as which populations are likely to be 52 

most impacted by increasing temperatures, where should conservation resources be allocated, 53 

are countries in the global North more impacted than the global South, were the data collected 54 

equally in all regions, and countless other geographic questions. These maps are included in 55 

the IPCC report designed as guidelines for policy and decision-makers. The recognition and 56 

quantification of spatial change through comparison of spatial patterns, both globally and 57 

locally, represents an important and under-recognized research area for geography which we 58 

aim to review, critique, and contextualize.  59 

<Figure 1 here > 60 

Many of the origins for studying changes and differences in spatial patterns arose during 61 

geography’s quantitative revolution. Today the sheer volume of geographically referenced data 62 

is providing new opportunities for geographers to compare spatial patterns across space, and 63 

time. Recent geographical data-intensive research streams include geocomputation (Openshaw 64 

& Abrahart, 1996); geospatial big data (Li et al., 2016), human dynamics (Shaw, Tsou, & Ye, 65 

2016), and geographic data mining (Miller & Han, 2009).  Long-term archives of satellite 66 

imagery, crowdsourced geospatial databases, and open data portals are now being developed 67 

and maintained for a variety of subject areas. Despite the amount of data-intensive geographic 68 

research taking place, geographers have not consolidated methods and models for performing 69 

spatial pattern comparisons which facilitate replication, identification of broader trends and 70 

underlying spatial process dynamics, and local anomalies.  71 

In this paper we review existing quantitative techniques for comparing spatial patterns 72 

and discuss commonly encountered issues. We briefly cover basic concepts and terminology 73 
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associated with spatial patterns before moving on to a review of selected techniques, and 74 

provide illustrative examples that highlight strengths and shortcomings of current methods. We 75 

conclude with some thoughts on the research needs for spatial pattern comparison (SPC) in 76 

geography today. In doing so we hope to provide some coherency and unity to the SPC research 77 

which is fractured across fields, and identify research opportunities for geographers interested 78 

in quantitative spatial analysis.   79 

2. Characteristics of Spatial Pattern Comparison Problems 80 

2.1 Characteristics of spatial patterns 81 

As geographers, we typically ascribe meaning to spatial patterns as the outcomes of multiple 82 

and interacting spatial processes (O’Sullivan & Unwin, 2010). Isolation of processes 83 

themselves outside of laboratory or simulation environments is impossible at most 84 

geographically-relevant scales, so while detecting change in a spatial pattern can reveal 85 

changes in underlying processes, it is not sufficient to reveal those dynamics. Complicating 86 

matters, pattern itself acts on and perturbs the processes generating patterns (Turner, 1989). 87 

Even the term spatial pattern can itself imply multiple and conflicting phenomena. Here we 88 

use a definition (see Box 1 for a glossary of terms and definitions that will be used throughout) 89 

based on that of Dale (2000), that a spatial pattern is the scale-dependent predictability of the 90 

physical arrangement of observations.  91 

< Box 1 (Glossary) Here > 92 

2.2 Spatial representation 93 

Spatial data are abstractions of reality, with ‘features’ (i.e., the things we demarcate, 94 

categorize, and label in the world) represented by points, lines, polygons (areas), and 95 

continuous spatial lattices (irregular or regular) in a digital mapped form. These are the core 96 

spatial data types available in a geographic information system (GIS) and there exists relatively 97 

few other ways to represent spatial phenomenon in a GIS (Roberts & Robertson, 2016). The 98 

representation of complex physical and societal characteristics (in spatial data) influences how 99 

feature or attribute data can be characterized, visualized and subsequently analysed (Miller & 100 

Wentz, 2003). Nearly all examples of SPC that will be discussed in this paper represent what 101 

can be termed ‘diagonal’ comparisons (referring to a matrix of spatial data types; e.g., see 102 

O’Sullivan & Unwin, 2010, p. p26), that is, for example, point-point and lattice-lattice 103 

comparisons.  104 

2.3 Statistical properties 105 

Methods for SPC can also be characterised as being entity-based or attribute-based. 106 

Entity-based comparison consider only the locations of objects in the two maps, and are strictly 107 
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limited to spatial comparisons of points, lines, and polygons (areas). Attribute-based 108 

comparisons simultaneously consider patterns associated with both location and attributes. 109 

With attribute-based comparisons, whether the attribute type is continuous or categorical also 110 

impacts how a spatial comparison is framed. Most attribute-based comparisons are associated 111 

with fixed spatial arrangements (i.e., the locations are the same in both maps), but this need not 112 

be the case. 113 

SPC methods can further be broken down along dimensions of spatial pattern that they 114 

compare, whether local or global aspects of pattern, or the abundance (composition) or 115 

arrangement (configuration) of mapped values (Figure 2). At the global level, SPC can be 116 

undertaken by either computing a single univariate measure, such as Moran’s I index of spatial 117 

autocorrelation (Cliff & Ord, 1973), individually on each map; or by computing a bivariate 118 

measure that simultaneously compares values in two maps. In the first case, only a coarse 119 

understanding of spatial pattern change can be inferred, for example a change from complete 120 

spatial randomness to spatially clustered. One of the challenges with the former approach, is 121 

that both local-to-global scaling and composition vs configuration are highly interdependent 122 

concepts, posing challenges for robust statistical significance testing. Some specific measures 123 

have been proposed for disentangling global and local spatial structure such as the Oi statistic 124 

(Ord & Getis, 2001), however these have not been widely adopted. Similarly, composition and 125 

configuration are also interdependent, and several authors have highlight the need to compare 126 

measures of spatial configuration only in the context of spatial composition (Cushman, 127 

McGarigal, & Neel, 2008; Long, Nelson, & Wulder, 2010; Remmel & Csillag, 2003). In 128 

bivariate comparison measures, these issues are partially overcome, as the distributional issues 129 

associated with comparison are resolved by reduction of the parameter space to a single metric 130 

(e.g., the root mean square error or the Kappa statistic).  131 

2.4 Types of questions 132 

Finally, SPC can be characterised as one of three types of question: change, similarity, 133 

and association. Each type of SPC question can be specified in terms of the constraints and 134 

variability in space, time, and theme of the patterns being investigated (Sinton 1978). Studies 135 

of change involve cases where space and theme are fixed and time varies. The goal of change 136 

analysis is often to identify whether change has occurred (globally), where such changes are 137 

located (locally), and whether changes represent a significant change (Boots & Csillag, 2006; 138 

Remmel & Csillag, 2003). Similarity questions involve situations where space is varied and 139 

theme is fixed (time can be fixed or varying). Similarity tasks are prominent in the image 140 

retrieval literature, and have been framed as SPC problems in many cases involving satellite 141 
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imagery (e.g., Yang & Newsam, 2013). Studies of associations involve cases where space is 142 

fixed but theme varies (again time can be fixed or varying). Questions concerning spatial 143 

associations are common in both the physical and social sciences (e.g., Austin et al., 2005; 144 

Jones, Rendell, Pirotta, & Long, 2016).  145 

A distinct and popular application for SPC is in spatial model assessment. Models that 146 

produce mapped outputs can be compared to reference data to assess model fit, or across model 147 

frameworks and parameterizations. Early examples of using SPC for model assessment include 148 

Cliff (1970) and Sokal et al. (1983), who both characterized model outputs with spatial 149 

autocorrelation statistics. Spatially explicit model assessment is critical as it can reveal patterns 150 

in error structures not evident in error statistics (e.g., Plouffe, Robertson, & Chandrapala, 151 

2015). SPC for model assessment, has seen more recent interest in the area of categorical spatial 152 

data (e.g., land cover maps; Hagen-Zanker & Martens, 2008; Visser & de Nijs, 2006). 153 

Examining the spatial pattern of model outputs as a complementary measure of model quality 154 

underscores the importance of spatial pattern/process in environmental modelling (see Bennett 155 

et al., 2013).  156 

<Figure 2 here> 157 

3. General approaches for Quantitative Spatial Pattern Comparison 158 

3.1 Visual spatial pattern comparison 159 

The human visual system excels at recognizing shapes and patterns. Our brains are able 160 

to process information on shapes and patterns independently from context (Marr, 1985). Thus, 161 

to date a large body of work on SPC has involved visual comparisons, and most commonly this 162 

involves the presentation of maps side-by-side as a tool for visual SPC (see, for example, Figure 163 

1 above). Comparing patterns in maps has led to some significant geographical insights, for 164 

instance, Wegener’s work on continental drift theory was largely initiated by identifying 165 

similar patterns in maps of the coastlines of Africa and South America (Wegener 1966). 166 

However, comparing spatial patterns is visually challenging, as the human visual system is not 167 

well adapted to judging spatial correspondence between two variables on side-by-side maps 168 

and is more sensitive to the color classification scheme (e.g., Lloyd & Steinke, 1977; Steinke 169 

& Lloyd, 1983). Moreover, MacEachren (1995, p. 403) suggests that we would expect visual 170 

comparisons of maps to be more successful when changes are compositional (e.g., symbol size, 171 

color) then with configuration changes (e.g., shape, and orientation).   172 

Perception of patterns in maps is a function of our perceptual attention (i.e., where, and 173 

for how long we look), also termed saliency. When comparing maps, cosaliency represents the 174 

importance of locations in side-by-side comparisons, and cosalient features in map pairs may 175 
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not correspond to salient features in individual maps (Jacobs, Goldman, & Shechtman, 2010). 176 

Within the cartographic literature a number of techniques for enhancing visual map comparison 177 

tasks have been developed (See Ch. 9 in MacEachren, 1995 for example). Many newer 178 

techniques have abandoned side-by-side comparisons in favor of overlay techniques, and 179 

implement tools such as translucents, swiping, and lenses (Lobo, Pietriga, & Appert, 2015). 180 

However, it is widely acknowledged that visual SPC is challenging, most notably in assessing 181 

changes in spatial configuration, a problem that continues to hinder both visual and quantitative 182 

assessments of SPC. 183 

3.2 Comparing spatial point patterns 184 

Tobler (1965) studied the correspondence between pairwise point patterns of the 185 

locations of birth for a sample of married couples in Japan using a comparison measure which 186 

he termed the affine correlation statistic. The approach was innovative in terms of its attempt 187 

to draw on Pearsons correlation coefficient, but was limited to cases where two patterns had 188 

the same number of points and the points are naturally paired. Ecologists were early adopters 189 

of statistical methodologies for comparing bivariate point patterns, notably the work of 190 

Anderson (1992) who drew on seminal methods from Diggle (2003), to compare one point 191 

pattern to another with the bivariate extension of the K-function.  192 

In biology, tight coupling of spatial and physical factors that drive the control and 193 

function of cellular functions and processes demands rigorous methods to detect differences in 194 

pattern. Myers (2012) highlights the increasing need for quantitative approaches for SPC in 195 

microscopy resulting from new forms of medical imaging data that are often used to derive 196 

spatial point patterns. Many proposed approaches have bene tailored to specific biological 197 

applications (e.g., Bell & Grunwald, 2004; Burguet & Andrey, 2014) however opportunities 198 

exists for  generalization to other, more complex, classes of spatial data.  199 

3.3 Comparing line and polygon data 200 

There are fewer methods available for comparative analysis of line and polygonal 201 

pattern data. Within the geographical literature, line and polygonal spatial representations tend 202 

to be treated as features rather than patterns, with emphasis of methods on the proximity and 203 

orientation relations between pairs of objects, and summarizing such metrics over the dataset 204 

provide a measure of global similarity. Maruca and Jacquez (2002) provide polygon 205 

comparison statistics called area-based association measures, which essentially quantify the 206 

degree of correspondence based on area overlap between two of polygon pattern datasets. 207 

Proximity relations for linear data have been explored in the context of spatial data accuracy 208 
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assessment, such as buffering a reference line and comparing the proportional overlap of a test 209 

line (e.g., Goodchild & Hunter, 1997).  210 

Graph analysis provides a large body of theory and methods for characterizing 211 

networks, which is a common way to represent spatial line data in geographic applications. 212 

These network representations can be compared through measures of including centrality, 213 

connectivity, degree and others. However, often the geographical context is ignored to focus 214 

on topological properties. The uptake of these methods in a spatial context has been greatest in 215 

landscape research, examining structural (e.g. configurational) properties of a matrix of habitat 216 

patches (i.e., nodes) and their spatial connectivity (i.e., edges) (Bunn, Urban, & Keitt, 2000; 217 

Urban & Keitt, 2001; Urban, Minor, Treml, & Schick, 2009). Similarly, landscape ecologists 218 

are interested in SPC of maps of land cover types, using indices of diversity, fractal dimension, 219 

and shape (e.g., Mladenoff, White, Pastor, & Crow, 1993). However, these comparisons are 220 

focused on comparing the measures of pattern in one map to another, rather than on bivariate 221 

methods. Robertson et al. (2007) provide a comparison framework adapted from Sadahiro and 222 

Umemura (2001) for studying temporal changes in spatial polygons which focuses on problems 223 

where the spatial locations of polygons move through time (e.g., a forest fire). Here, changes 224 

are characterized as events derived from topological and proximity relations of two polygon 225 

patterns.  226 

3.4 Comparing patterns in spatial lattices 227 

 There are many more methods for comparing patterns on spatial lattices, and here we 228 

refer to the case where the spatial structure of the lattice does not differ between the two maps 229 

(e.g., the spatial units are the same). One of the first applied quantitative analyses comparing 230 

spatial patterns was that of Robinson and Bryson (1957) who looked at the spatial correlation 231 

between precipitation and population in Nebraska by mapping regression residuals to describe 232 

the spatial correspondence – a technique which has since been employed for assessing spatial 233 

models (e.g., Hengl, Heuvelink, & Stein, 2004). Cliff (1970) looked at the correspondence of 234 

Hägerstrand’s (1967) innovation diffusion data, comparing empirical data to theoretical 235 

simulations, which represents the first example where the spatial autocorrelation of the 236 

difference between maps (tested using joint counts based on whether the difference was 237 

positive or negative) was used as a measure of spatial correspondence. Spatial autocorrelation 238 

analysis of residual differences as proposed by Cliff (1970) remains influential today (e.g., 239 

Wulder, Boots, Seemann, & White, 2004). 240 

Several contemporary authors have proposed varied approaches for quantifying spatial 241 

associations, predominantly for use with continuous-valued lattice datasets (e.g., attributes in 242 
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counties). Sokal and Wartenberg (1983) used spatial correlograms (from Moran’s I and Geary’s 243 

C) to characterize similarity in gene-frequency surfaces between simulated populations under 244 

an isolation-by-distance model. Hubert et al. (1985) propose a spatial cross-product statistic in 245 

an attempt to distinguish spatial pattern similarity from attribute similarity. Specifically, Hubert 246 

et al., demonstrate how various map patterns can arise when holding Pearson’s correlation 247 

coefficient constant, confounding spatial comparison problems. Global statistics (like the 248 

correlation coefficient) are insensitive to variations in local spatial patterning. Haining (1991) 249 

proposed spatial adjustments for the Pearson and Spearman correlation coefficients by 250 

adjusting the significance test of the statistic to account for spatial structure (measured as spatial 251 

autocorrelation) present in the data.  252 

Cumulative distribution functions have been proposed for SPC problems because they 253 

are able to consider the shape of the underlying empirical distributions (Syrjala, 1996). Wong 254 

(2001) proposes a local cumulative distribution function as a means to use the widely employed 255 

cumulative distribution function in a spatially-local comparison. In analysis of neighbourhoods 256 

and their social characteristics, comparisons of both geographic and multivariate demographic 257 

characteristics has led to use of self-organizing maps to link social factors and spatial patterns 258 

(Spielman & Thill, 2008), and approach which decomposes spatial and thematic properties into 259 

separate ‘map’ spaces, which can then be visualized and explored for patterns.    260 

Additional methods for SPC have focused on the development of local forms of spatial 261 

analysis (Boots & Okabe, 2007; Fotheringham & Brunsdon, 1999). Fotheringham et al. (2002) 262 

propose a geographically weighted correlation coefficient as a spatially-local tool for studying 263 

bivariate associations extending Pearsons correlation coefficient to local analysis. A further 264 

extension of the locally weighted correlation coefficient was presented by Lee (2001) which, 265 

combines Pearson’s R with a bivariate Moran’s I into a single statistic that simultaneously 266 

considers correlation and autocorrelation. A spatially-local version of the statistic is also 267 

presented along with a formal statistical testing framework (Lee, 2001). Robertson et al. (2014) 268 

extend an image comparison metric - the structural similarity index (SSIM; Z. Wang, Bovik, 269 

Sheikh, & Simoncelli, 2004) - for comparing spatial patterns within a spatial model assessment 270 

framework. Further, separation of local patterns into the first order, second order and pattern 271 

components provides significant opportunity for studying differences in local spatial patterns.  272 

Computer scientists have also been intensively developing methods for image matching 273 

and comparison, which is analogous to the comparison of raster data. For example, Scharstein 274 

(1994) used an image shifting approach based on localized gradient field to assess how well 275 

two image patterns align. Comparative histogram-binning methods such as the Earth-mover’s 276 
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Distance (Rubner, Tomasi, & Guibas, 2000) use multi-dimensional histograms that describe 277 

colour and texture and define distance measures in these spaces to characterize similarity of 278 

images. Applications of these methods in geographic contexts, most notably for retrieval and 279 

characterization of satellite imagery, are increasing (Jasiewicz, Netzel, & Stepinski, 2014; 280 

Kranstauber, Smolla, & Safi, 2016; Shao, Zhou, Zhang, & Hou, 2014).  281 

The above methods focus predominantly on comparisons of continuous value attribute 282 

data on a lattice, but there is a great deal of work on comparing categorical lattices as well. The 283 

Kappa statistic tests agreement between lattices relative to what would be expected by chance, 284 

and its widespread use in remote sensing is thought to be due to its familiar interpretation, even 285 

when its mathematical underpinnings are poorly understood or erroneous (Pontius Jr & 286 

Millones, 2011). Hagen-Zanker (2009) extended the statistic to use fuzzy relations between 287 

categories and spatial location similarities as a bivariate SPC tool for categorical lattices. 288 

Pontius Jr and Millones (2011) argue for a new type of comparison measure that considers both 289 

quantity and allocation disagreement in mapped categories.  Pontius Jr and Millones emphasize 290 

that a valid metric for spatial comparison should a) avoid compressing the two dimensions of 291 

pattern into one metric, and b) characterize disagreement rather than agreement.      292 

4. Issues in SPC analysis 293 

4.1 Examples 294 

To demonstrate the challenges associated with SPC we have hand-picked a set of five examples 295 

(see Table 1 and Figure 3). For each example, we have chosen a representative and current 296 

technique for quantitative SPC associated with each data type. In all cases we have selected a 297 

single global statistic for comparison. Through the use of basic comparison statistics as a 298 

starting point, we highlight some the challenges associated with SPC analysis.  299 

< Table 1 Here>   300 

<Figure 3 here>   301 

4.2. Highlight problems in spatial pattern comparisons 302 

Problem 1: Pattern vs Process 303 

Perhaps the biggest challenge emerging from the ‘big data’ revolution is that of 304 

connecting the analysis of patterns in the data with the underlying processes that we are 305 

interested in studying (Miller & Goodchild, 2015). As an example, consider the comparison of 306 

the red oak and white oak patterns. The results suggest there is evidence of a relationship 307 

between the spatial patterns of the two species, but we do not have any theory to support this 308 

at the process level. Perhaps there is inter-species attraction due to seed dispersal, shading 309 

characteristics, or interactions with forest disturbance agents (e.g., wildfire, insects). Note also 310 
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that this is really of question of spatial interaction at the process level, which manifests in 311 

spatial similarity at the pattern level. It is unclear how likely this similarity is under independent 312 

spatial processes governing the distribution of red and white oaks. Static spatial patterns are 313 

inherently limited in their ability to describe dynamic processes. More data does not necessarily 314 

improve this limitation and may in fact add additional noise.  315 

Problem 2: Topological Complexity 316 

Comparison of topological characteristics of spatial data is typically reduced to 317 

comparison of connectivity matrices or graphs. In the example comparing node degree for 318 

OSM street networks for Waterloo, Canada and St. Andrews, Scotland. Spatial non-stationarity 319 

in road network density in Waterloo was present, whereby node degree of the dense parts of 320 

the network in the downtown area more difficult to observe in contrast with the less dense parts 321 

of the network in rural outlying areas, which tended to have four-node intersections. The 322 

similarity in node degree in the two networks was masked partially by the dis-similarity in 323 

network densities. While computing the node-degree values is straightforward, the results here 324 

highlight the difficulty in isolating one component of pattern to compare. Typically, the overall 325 

comparison of pattern similarity for the HVS is a composite of several dimensions of spatial 326 

pattern. Developing metrics or aggregate indicators of similarity of spatial patterns therefore 327 

hinges on identifying the key dimensions of pattern for a specific comparison task. Comparing 328 

topological properties may be an example where ‘spatial intuition’ and computed values are 329 

misaligned, as slight spatial changes can have large impacts on topology (e.g, undershoots in 330 

routing problems).  331 

 Topology is also confounded by spatial representation decisions in maps when 332 

visualizing comparisons. The visual assessment of pattern similarity between the mountain 333 

pine beetle polygons is certainly impacted by a number of classical cartographic pitfalls, such 334 

as a failure to include a reference basemap, map graticule, grid lines, or even a scale bar. 335 

However, a much more challenging problem arises when comparing objects that exhibit such 336 

a highly complex topology (such as the infestation polygons with irregularly shaped borders, 337 

holes, and multiple polygon parts). Had these two infestation polygons exhibited regularly 338 

shaped boundaries the comparison process would be easier (both visually, but also 339 

computationally). But complex topological shapes, including less binary gradients and 340 

boundaries, are the norm in environmental applications (Gustafson, 1998), and are salient in 341 

many anthropogenic examples (Batty & Xie, 1994). Thus, characterizing the similarities 342 

between complex shapes and patterns in a single (or multiple) index remains an ongoing 343 

challenge in SPC. 344 
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Problem 3: Composition vs Configuration 345 

The description of spatial patterns can be decomposed into two unique but 346 

interdependent components: composition and configuration (Boots, 1982, 2003). To 347 

generalize, composition refers strictly to the aspatial properties of the elements of a spatial 348 

pattern (e.g., the type, number, and statistical properties of what is being mapped), while 349 

configuration refers to the strictly spatial arrangement of these elements (i.e., the where). 350 

Consider the Plum Island Ecosystem maps in Figure 2 (g-h). The most basic description of 351 

configuration refers to homogeneous (no variation exists) vs. heterogeneous (i.e., the observed 352 

pattern varies across space) spatial patterns. In practice, assessing configuration involves 353 

quantifying the level and nature of heterogeneity in mapped data and a wide set of terminology 354 

and techniques are available. These terms are typically both data and application specific; and 355 

can be used differently depending on the context of the analysis. 356 

Dependency between composition and configuration of spatial patterns is demonstrated 357 

in Figure 4. Previous research has demonstrated that the potential for different spatial 358 

configurations to arise is largely dependent on the composition of elements in the map (Remmel 359 

& Csillag, 2003; X. Wang & Cumming, 2011). Thus, quantifying SPC is complex due to the 360 

potential for changes in configuration to arise solely due to changes in composition (i.e., Figure 361 

4), confounding inferences into SPC (Long et al., 2010; Remmel & Csillag, 2003; X. Wang & 362 

Cumming, 2011). Indices for SPC must be able to simultaneously consider and disentangle the 363 

level of compositional and configurational change to be effective. 364 

<Figure 4 here> 365 

Problem 4: Spatially Global Indices  366 

To date, most approaches for SPC are spatially global, producing a single statistic for 367 

the entire study area (indeed all five of the indices we employed fall into this category). With 368 

large-area and ‘big’ sources of spatial data, this can be misleading as global statistics fail to 369 

adequately capture spatial non-stationarities in observed patterns. However, spatially local 370 

analysis of big data also poses challenges since outputs require some interpretation, a non-371 

trivial task with increasingly large datasets. With spatial-temporal local models, more 372 

sophisticated geovisual analytics may be required to understand the complex output stemming 373 

from local analysis of large mapped datasets (Foley & Demšar, 2012). But relying on visual 374 

interpretations can be challenging given the characteristics of many modern large datasets (i.e., 375 

coverage over broad-scales, with fine spatial resolution). Visualization as a tool for SPC (see 376 

Section 2.2) can be challenging with large datasets, due to maps being portrayed at a minimum 377 
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resolution that is beyond our perceptual limits. Geographic knowledge discovery (Miller & 378 

Han, 2009) approaches may be suitable for performing SPC in large geographic databases.  379 

A further challenge commonly encountered is that a single output statistic may not be 380 

sufficient for performing SPC with complex spatial patterns. For example, the negative 381 

correlation identified in the Georgia data may not be consistent across the entire state, and a 382 

spatially sensitive correlation measure (e.g., see p. 172 in Fotheringham et al., 2002) would 383 

shed further insight into the spatial variation in correlation. With increasingly large datasets 384 

(big data), moving the analysis scale from the global to the spatially local scale is necessary to 385 

capture how spatial pattern comparisons vary across space. 386 

4. Moving the Spatial Pattern Comparison Research Agenda Forward 387 

4.1 Comparing maps as spatial processes 388 

Csillag and Boots (2005) advocate a process-based framework for comparing spatial 389 

patterns and identify two underlying questions that we, as geographers, should be seeking to 390 

answer in all SPC related-tasks: 1) Could the observed differences in spatial patterns have 391 

arisen purely by chance? and 2) Could the observed spatial patterns have been generated by the 392 

same process?. Pearl (2009) makes the case for a clear discrimination between associative and 393 

causative statistical analysis where associative analysis considers any relationship that can be 394 

defined by joint distribution of two variables and a causative relationship is one that cannot be 395 

defined by the joint distribution alone. With respect to SPC nearly all methods would fall into 396 

the former category, whilst Csillag and Boots (2005) make the emphatic case for models that 397 

fit squarely into the latter. One of the potential areas where new models are providing avenues 398 

for new insight along this causative line of thinking is through the development of complex 399 

simulations which can be used to test spatially explicit hypotheses (O’Sullivan & Perry, 2013).  400 

Spatial analysis theory considers a map as a single realization of a stochastic spatial 401 

process, and thus inference regarding two static maps, if treated independently, yields a sample 402 

size of two. Spatial inferences pertain to the underlying process, though the particulars of what 403 

a mapped pattern represents have been debated (e.g., Summerfield, 1983). Cressie (1993) cites 404 

two basic contexts for doing spatial modelling; when a spatial process has reached temporal 405 

equilibrium and its spatial properties describe causative components of that process, and when 406 

short-term causal effects are aggregated over a fixed time period and expressed spatially. 407 

Comparing spatial patterns disconnected from their generative (temporal) processes incurs a 408 

high risk of finding differences resulting from natural variability. Explicit incorporation of time 409 

into an SPC framework may provide a way to both handle big spatial data and still reason about 410 

generating processes. Two ways we may be able to develop this are to 1) develop comparative 411 
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tools for continuous spatial evolution, and 2) undertake spatial multi-pattern comparisons; both 412 

which imply a more explicit treatment of spatial processes.     413 

Simulations provide an attractive framework for SPC as they allow experimentation 414 

with model parameters, incorporation of nonlinear dynamics and feedbacks, and flexibility in 415 

the types of model output (e.g., maps) that are generated. Two dominant approaches to 416 

simulating spatial patterns and processes are widely used; individual-based models (IBMs), 417 

and spatial-covariance models (SVMs). IBMs provide complete flexibility to specify all 418 

important dynamics of the geographical system under investigation, which can then be used to 419 

draw patterns from the model. Generating reference distributions for SPC metrics can be part 420 

of model sensitivity testing. For example, evaluating the model’s sensitivity to parameter 421 

uncertainty from the perspective of spatial pattern is an interesting application area for SPC ., 422 

Emergent spatial patterns play a central role in developing, parameterizing, and extracting 423 

knowledge from IBMs (Grimm et al., 2005), and exemplar spatial patterns for specific 424 

processes can be used to find model parameter values through inverse fitting procedures that 425 

depend on a pattern comparison metric (Burnham & Anderson, 2002; Wiegand, Revilla, & 426 

Knauer, 2004). Such an approach has been recently tested in a more formal framework that 427 

provides model selection of parameter values and structure by ‘approximate Bayes’ methods 428 

(van der Vaart, Beaumont, Johnston, & Sibly, 2015). The extension of these new approaches 429 

for constructing, fitting, and assessing IBMs to incorporate explicitly spatial metrics is an 430 

exciting research opportunity for SPC.  431 

SVMs instead require specification of the form of spatial pattern that results from the 432 

model (or process that generates it), which might more accurately reflect observed data, but 433 

tend to have less mechanistic meaning. Remmel et al. (2002) used a conditional autoregressive 434 

(CAR) model to simulate three types of landscapes and to compare landscape pattern indices 435 

under each landscape-type scenario. The resulting distributions provide reference for 436 

interpreting differences between two LPI values when performing landscape. Long et al. (2012) 437 

used simulations from a space-time model that incorporated a similar spatial covariance 438 

structure (CAR prior) to model the probability of spread of a binary infection process on a 439 

lattice. These types of spatial simulations are now widely employed in model testing, 440 

comparison, and evaluation where simulated data is used to compare spatial parameter 441 

estimates from different model specifications to a known underlying spatial process (e.g., 442 

Fotheringham & Oshan, 2016). Currently, visual comparisons and aspatial metrics are the de 443 

facto standard for SPC in this context (e.g., Wheeler, 2010) however the specification of SPC 444 
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metrics are equally important in the SVM approach, and could perhaps serve as a point of 445 

reference for comparing inferences obtained from different modelling frameworks .  446 

 4.2 Spatially local analysis 447 

There is a clear need for robust spatially sensitive metrics, which seems like a surprising 448 

thing to be championing given widely available tools for local spatial analysis. However, these 449 

tools are largely appropriate only with spatial lattices (regular and irregular) and have failed to 450 

be adopted more broadly. In a growing number of applications and decision-making contexts, 451 

rigorous definitions of pattern similarity need to be adopted (e.g., Churchill et al., 2013; Sakieh, 452 

Amiri, Danekar, Feghhi, & Dezhkam, 2015). When numeric or categorical data are obtained 453 

over comparable spatial units and the SPC task pertains to how that data are spatially 454 

configured across those units, measures of spatial pattern such as Moran’s I, Geary’s C, or local 455 

variants can be employed. Waller (2014) provides a convincing argument for the need for 456 

explicitly spatial statistical thinking in approaching analysis of geographical data, citing 457 

common research motivations such as assessing fit of spatial models or spatial assessment of 458 

statistical performance. Methods for SPC reviewed here can directly contribute to development 459 

of a spatial statistical approach to science by providing tools for the robust comparison of 460 

spatial patterns.   461 

 Yet the methods needed to answer comparative questions are often lacking. To 462 

demonstrate this, a linear regression performed between ‘% rural’ and ‘% with a college 463 

degree’ from the Georgia dataset, and the residuals were retained and shuffled across the 464 

counties randomly (Figure 5). Two very different spatial patterns emerge which have identical 465 

error statistics (MAE 0, RMSE 4.46). A reasonable question might be to ask whether the 466 

differences are due to chance or the result of different underlying spatial processes, or rather, 467 

what are the chances of obtaining I= -0.169 and I = 0.274 from this configuration of spatial 468 

units and values, if the underlying processes are the same. Given the exact distribution of 469 

Moran’s I (Tiefelsdorf & Boots, 1995) we can compute probabilities of observed patterns based 470 

on a null hypothesis of no spatial structure, but cannot use these results to compare two patterns 471 

directly. Tiefelsdorf (1998) gives a conditional expectation of Moran’s which allows 472 

comparison of competing spatial process hypotheses as expressed through the spatial weights 473 

matrix. Clifford et al. (1989) provide a t-test for comparing spatial structure in the context of a 474 

correlation coefficient, yet do not give us a tool to understand if the spatial process giving rise 475 

to the two patterns is the same or not.  476 

<Figure 5 here> 477 

4.3 Scale and MAUP 478 
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Spatial scale is often determined either arbitrarily or by a fixed set of intervals – both 479 

in terms of grain and extent. This is critical for SPC because scale is intimately tied to the 480 

definition of and observation of spatial patterns (Levin 1992; Dale 2000). The infinite number 481 

of scales available for both making observations (i.e. grain) as well as observing patterns (i.e., 482 

extent), and the inter-relatedness of these constructs, makes comparison tasks challenging. Not 483 

all scales are created equal for a given problem, and a set of characteristic scales are optimal 484 

for analysis (Wiens, 1989). Big data provides opportunities for linking spatial processes across 485 

scales, especially if data evolve over time. Previously, issues of scale in geographical analysis 486 

tended to focus on the modifiable areal unit problem, whereby ‘scale effects’ are assessed by 487 

varying aggregation units (e.g., Jelinski, Wu, & Wu, 1996). For SPC problems, variances due 488 

to scale may be a critical aspect of pattern-observation and thus comparison. Sémécurbe et al. 489 

(2016) provide an example of using multifractal analysis that quantifies MAUP to better 490 

understand spatial heterogeneities in population density in France, developing a typology of 491 

settlement patterns.   492 

Yan and Li (2015) stress the need for both mathematical and psychological 493 

justifications in the definition of spatial similarity measures (i.e., linking similarity to the HVS). 494 

For the case of automated map generalization, a hierarchical scheme of maps, layers, groups, 495 

and objects (i.e., points, lines, areas) is presented which define the fundamental units for which 496 

spatial similarity relations are sought. The relations for comparing spatial objects at different 497 

scales are distinct from the comparison of patterns. In the Yan and Li system, object properties 498 

(size, shape, area etc.) and object group properties (topology, distance, correction etc.) may be 499 

a way to integrate dimensions of similarity at the pattern or regional scale.  500 

4.4 Guidance for performing SPC 501 

We provide six simple guidelines for researchers wishing to compare spatial patterns in their 502 

own applications.  503 

1. Visual comparisons are useful – comparing two maps visually is a crucial first step in 504 

the exploratory spatial data analysis process. 505 

2. Quantitative measures are necessary – the subjectivity of the visual comparison process 506 

means that any visual comparison should be further explored using a quantitative 507 

comparison metric.  508 

3. Local SPC measures are preferred – global SPC measures are subject to all the issues 509 

associated with global spatial analysis procedures (Fotheringham & Brunsdon, 1999).  510 
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4. Quantifying dissimilarity is better – indices that focus on characterizing differences in 511 

patterns, over similarities in pattern are more likely to provide meaningful inferences 512 

(Pontius Jr & Millones, 2011).  513 

5. Consider multiple elements of spatial pattern – spatial patterns have a variety of 514 

characteristic components. Comparison measures capable of disentangling different 515 

elements of spatial pattern within the SPC context are more informative than summary 516 

measures.  517 

6. Don't forget processes – understanding the linkages between processes and patterns is 518 

the most challenging part of spatial analysis. Quantified pattern (dis)similarities may 519 

be related to unknown confounding processes.  520 

 521 

5 Conclusions 522 

SPC is a complex task, which is difficult to automate, has a mixture of computational 523 

and psychological components, and is increasingly required as geography and other fields 524 

exploit bigger and more varied spatial datasets. Here we have reviewed the literature on SPC 525 

that comes from a wide array of disciplines where applied problems have developed specific 526 

comparison methods, lacking any coherent conceptual or theoretical framework. Our review 527 

has focused on comparing spatial patterns of similar spatial representations (e.g., point-point, 528 

lattice-lattice), there are however significant prospects for developing new methods for ‘off-529 

diagonal’ comparisons (e.g., point-polygon, line-lattice etc.). Many of the classical problems 530 

of geography such as pattern vs process, scale, MAUP, and topology become exacerbated in 531 

SPC. The spatial patterns we observe in maps are determined partially by spatial representation, 532 

aspatial characteristics, data collection components, the truly spatial component, and some 533 

element of randomness. More research into how these various components interact to create 534 

spatial distributions we observe, through simulation and empirical data catalogs, would bolster 535 

our ability to develop spatial modeling tools that support SPC.  536 

 537 
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Box 1: Glossary of terms. 

 

Spatial Pattern Comparison -  a numerical assessment of the (dis)similarity between two (or 

more) mapped datasets.  

Spatial Pattern - scale-dependent predictability of the physical arrangement of observations 

Spatial Process – model that produces spatial patterns with a known probabilistic function  

Global Statistic – summary statistic that quantifies a property of spatial distribution with a 

single value 

Local Statistic - summary statistic that quantifies a property of a spatial distribution at each 

location and sums to a global statistic 

Composition – dimension of a spatial pattern that relates to the abundance of mapped values 

Configuration – dimension of a spatial pattern that relates to the arrangement of mapped 

values
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Table 1: Example datasets and methods for exploring issues in spatial pattern comparison analysis. 

Data Source (R Package) Method (Reference) Range Interpretation Result 

Point Lansing Woods (spatstat; 

Baddeley & Turner, 2005) 

NN Correlation 

(Stoyan & Stoyan, 1994) 

0 – 1 Proportion of NN in other group. 

0 = all NN from same group 

1 = all NN from other group 

0.64 

Polyline Waterloo vs St Andrews 

(osmar; Eugster & 

Schlesinger, 2013) 

Average Deg. Of 

Intersections 

0 – n Average number of roads connecting at 

each intersection (for each of W and 

StA) 

W =2.56  

SA = 2.48 

Polygon MPB Infestation (stampr; 

Long, Robertson, & Nelson, 

n.d.) 

Area of intersection Index 

(Maruca & Jacquez, 2002) 

0 – 1 Proportion of overlap 

0 = no overlap 

1 = perfect overlap/alignment 

0.10 

Lattice 

(categorical) 

Plum Island Ecosystem 

(lulcc; Moulds, Buytaert, & 

Mijic, 2015) 

Kappa Coefficient (K_hat) 

statistic 

 

0 – 1 % of agreement in categories relative 

to chance.  

0 = same as chance 

1 = perfect agreement 

0.88 

Lattice 

(continuous) 

Georgia Degree vs Rural 

(spgwr; Bivand, Yu, Nakaya, 

& Garcia-Lopez, 2015) 

Pearson Correlation 

coefficient 

 

-1 – 1 -1 = perfect negative correlation 

0 = no correlation 

1 = perfect positive correlation 

-0.62 
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Figures 

 

Figure 1: IPCC temperature changes globally, a) recorded observations and b) projections. 
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Figure 2: Four dimensions of spatial pattern important for spatial pattern comparison. 
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Figure 3: Example datasets used to explore different issues in spatial pattern comparison 

analysis. All data was sourced from spatial packages in the statistical software R. Data in a) 

and b) were sourced from the ‘spatstat’ package; c) and d) were sourced from OpenStreetMap 

using the ‘osmar’ package; e) and f) were sourced from the ‘stampr’ package; g) and h) were 

sourced from the ‘lulcc’ package; and i) and j) were sourced from the ‘spgwr’ package. 

Please see the text for appropriate references. 
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Figure 4: Example of composition and configuration metric dependency on random (uniform) 

landscapes with a) 30% composition and b) 80% composition. Edge density values for 100 

random landscapes are given in c) with the sample landscapes highlighted. 

  



5 
 

 

 
 

Figure 5: Low and high spatial autocorrelations of model residuals with identical values of 

root-mean squared error. 

 


