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Abstract	29 

The 2016 Mars Utah Rover Field Investigation (MURFI) was a Mars rover field trial 30 

run by the UK Space Agency in association with the Canadian Space Agency’s 2015/2016 31 

Mars Sample Return Analogue Deployment mission. MURFI had over 50 participants from 32 

15 different institutions around the UK and abroad. The objectives of MURFI were to 33 

develop experience and leadership within the UK in running future rover field trials; to 34 

prepare the UK planetary community for involvement in the European Space 35 

Agency/Roscosmos ExoMars 2020 rover mission; and to assess how ExoMars operations 36 

may differ from previous rover missions. Hence, the wider MURFI trial included a ten-day 37 

(or ten-‘sol’) ExoMars rover-like simulation. This comprised an operations team and control 38 

center in the UK, and a rover platform in Utah, equipped with instruments to emulate the 39 

ExoMars rovers remote sensing and analytical suite. The operations team operated in ‘blind 40 

mode’, where the only available data came from the rover instruments, and daily tactical 41 

planning was performed under strict time constraints to simulate real communications 42 

windows. The designated science goal of the MURFI ExoMars rover-like simulation was to 43 

locate in-situ bedrock, at a site suitable for sub-surface core-sampling, in order to detect 44 

signs of ancient life. Prior to “landing”, the only information available to the operations 45 

team were Mars-equivalent satellite remote sensing data, which were used for both 46 

geologic and hazard (e.g., slopes, loose soil) characterization of the area. During each sol of 47 

the mission, the operations team sent driving instructions and imaging/analysis targeting 48 

commands, which were then enacted by the field team and rover-controllers in Utah. 49 

During the ten-sol mission, the rover drove over 100 m and obtained hundreds of images 50 

and supporting observations, allowing the operations team to build up geologic hypotheses 51 
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for the local area and select possible drilling locations. On sol 9, the team obtained a 52 

subsurface core sample that was then analyzed by the Raman spectrometer. Following the 53 

conclusion of the ExoMars-like component of MURFI, the operations and field team came 54 

together to evaluate the successes and failures of the mission, and discuss lessons learnt for 55 

ExoMars rover and future field trials. Key outcomes relevant to ExoMars rover included a 56 

key recognition of the importance of field trials for (i) understanding how to operate the 57 

ExoMars rover instruments as a suite, (ii) building an operations planning team that can 58 

work well together under strict time-limited pressure, (iii) developing new processes and 59 

workflows relevant to the ExoMars rover, (iv) understanding the limits and benefits of 60 

satellite mapping and (v) practicing efficient geological interpretation of outcrops and 61 

landscapes from rover-based data, by comparing the outcomes of the simulated mission 62 

with post-trial, in-situ field observations. In addition, MURFI was perceived by all who 63 

participated as a vital learning experience, especially for early and mid-career members of 64 

the team, and also demonstrated the UK capability of implementing a large rover field trial. 65 

The lessons learnt from MURFI are therefore relevant both to ExoMars rover, and to future 66 

rover field trials. 	67 
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1. Introduction	68 

The Mars Utah Rover Field Investigation “MURFI 2016” was a Mars rover field analogue 69 

investigation run by the UK Space Agency (UK SA) in collaboration with the Canadian Space 70 

Agency (CSA). MURFI 2016 was facilitated and made possible by the CSA’s 2015/2016 Mars 71 

Sample Return Analogue Deployment mission (see Osinski et al., “Mars Sample Return 72 

Analogue Deployment (MSRAD) Overview”, this issue, submitted). MURFI 2016 took place 73 

between 22nd October and 13th November 2016 and consisted of a field team including an 74 

instrumented rover platform (Figure 1), at a field site near Hanksville (Utah, USA; Figure 2), 75 

and an ‘operations Team’ based in the Mission Control Centre (MOC) at the Harwell Campus 76 

near Oxford in the UK. A key aspect of the investigation was a short 10-sol (a sol is a martian 77 

day, simulated or otherwise) ExoMars rover-like mission, which aimed to simulate (within 78 

time and budget constraints) the rover payload, tactical planning and operations of the 79 

ExoMars rover mission, a European Space Agency and Roscosmos rover mission (ESA) to 80 

Mars that will launch in 2020. 81 
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 82 

Figure 1. The MURFI 2016 rover: a ‘Q14’ platform with PanCam emulator ‘AUPE’ (Harris et al., 2015) 83 

attached. The large “eyes” contain the filter wheels for the PanCam emulator. Field team for scale. 84 

Image credit: Mike Curtis-Rouse 85 
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 86 

Figure 2. Location of study area. a) Utah state map (above) showing major interstate roads (red) and 87 

county boundaries (white) overlain on a 100 m/pixel topographic hillshade map. The black box shows 88 

the location of the close-up view in (b). b) Close-up view showing MURFI study area as black box and 89 

location of nearest town (Hanksville). Image credit: Utah AGRC/GoogleEarth/Wikipedia.   90 

1.1 MURFI investigation objectives 91 

MURFI 2016 had three primary objectives: (i) to develop the logistical and leadership 92 

experience in running field trials within the UK; (ii) to provide members of the Mars science 93 

community (especially early career scientists) with rover operations experience, and hence 94 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

to build expertise that could be used in the 2020 ExoMars rover mission (Vago et al., 2017), 95 

or other future rover missions, and (iii) by running an ExoMars rover-like mission simulation 96 

to explore how operations for the ExoMars rover (which aims to drill up to 2 m into the 97 

subsurface), might differ from past experiences from, for example, the twin Mars 98 

Exploration Rovers (MERs; e.g., Crisp et al., 2003) and the Mars Science Laboratory (MSL; 99 

e.g., Grotzinger et al., 2012). 100 

Because MURFI 2016 was the first UK SA led Mars rover analogue trial, it was crucial 101 

to learn how UK systems and institutions could best implement rover trials in general. This 102 

included aspects of planning, logistics, field safety, MOC setup and support, 103 

communications, personnel management and science team development. Whilst the 104 

starting points for many aspects were based on past experience from previous trials (e.g., 105 

Dupuis et al., 2016; Moores et al., 2012; Osinski et al., 2017; Woods and Shaw, 2014) and 106 

rover operations experience within the team (mainly on MSL), the focus was on ‘learning 107 

through experience’.  108 

Although the UK has a well-developed planetary science community, there have 109 

been no successful UK-led or ESA-led planetary rover or lander missions. The most recent 110 

UK-led mission, Beagle2 (e.g., Pullan et al., 2004) failed to operate, although recent images 111 

suggest it at least landed safely on the surface (Bridges et al., 2017a). Hence, there have 112 

been few opportunities for UK scientists, especially for early career scientists, to be involved 113 

in planetary surface mission operations. To some extent, this also applies to many European 114 

planetary scientists. MURFI 2016 was therefore partly designed to provide rover tactical 115 

operations experience for members of the UK planetary science community and a learning 116 

experience that would be useful in the context of the ExoMars rover, into which the UK has 117 

made significant scientific, industrial, and financial investment. 118 
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The ExoMars rover is a partnership between the European Space Agency (ESA) and 119 

the Russian Roscosmos agency. The mission will launch in 2020 and has the explicit goal of 120 

looking for signs of past life (Vago et al., 2017, 2015). It has a mass of 310 kg and is expected 121 

to travel several kilometers during its seven-month mission (Vago et al., 2017). The ExoMars 122 

rover drill has the capability of sampling from both outcrops and the subsurface, with a 123 

maximum reach (i.e. depth) of 2 m. The subsurface sampling capability means that material 124 

that has escaped alteration by the martian surface environment (e.g., Kminek and Bada, 125 

2006; Parnell et al., 2007; Summons et al., 2011) can be sampled, providing the best chance 126 

to sample well-preserved chemical biosignatures for analysis. The ExoMars rover (Vago et 127 

al., 2017) will be different to the preceding MSL and MER rover missions in that it has the 128 

capability for the deepest sub-surface sampling of any Mars rover to date. However, a 129 

trade-off of this drill capability is the lack of an instrumented robotic arm. This means that 130 

any information relevant to understanding the geological context of the landing site must be 131 

obtained from stand-off instruments (at least, up to the point at which a drill sample is 132 

obtained and ingested into the rover for in-situ analysis). Having the best possible 133 

understanding of the geology of the landing site is vital for making the best decisions about 134 

where to drill, as drilling is potentially a time consuming and hazardous procedure.  135 

Testing how the ExoMars instruments work together to characterise the landing site 136 

at various scales can only be done by field testing of the system as a whole, rather than by 137 

utilising instruments individually. Moreover, by using a rover-based instrument suite, an 138 

estimate of the number of individual rover-driving commands, or sol-to-sol manoeuvres, 139 

necessary to implement different studies could be made. This was the key reason for using 140 

an instrumented rover platform, rather than deploying the MURFI instruments 141 

independently.     142 
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1.2 MURFI investigation overview 143 

To meet the objectives set out above, certain ‘philosophical’ decisions were made. Firstly, 144 

because of the focus on gaining operations experience, it was decided to simulate a rover 145 

mission ‘as a whole’, rather than testing specific instruments or methods. Therefore, the 146 

investigation included an ‘ExoMars rover-like’ sub-mission, with the instruments and rover 147 

capabilities chosen based on (i) availability in the limited time frame available for MURFI 148 

planning (there was only a few months between the confirmation that the trial would 149 

proceed and the date we needed to be in the field), and (ii) being as close as possible to 150 

those of the ESA ExoMars 2020 rover (Vago et al., 2017). This ‘ExoMars rover-like’ mission 151 

therefore became the primary focus of the whole MURFI investigation. With reference to 152 

the ExoMars rover surface reference mission (Vago et al., 2017) MURFI simulated, at a 153 

rather accelerated pace, a possible early ~ 10 sols of the ExoMars rover operations, 154 

including setting a strategic target to approach based on observations, characterisation of 155 

local outcrops to advance scientific hypotheses, and finally, characterisation and selection of 156 

a specific drill site. In addition to the tactical operations associated with these sols of 157 

activity, the MURFI team were also tasked with performing a landing site analysis using 158 

Mars-equivalent remote sensing data, in order to set out possible strategic targets for the 159 

mission prior to ‘landing’. The team also performed localisation – a key daily task during MSL 160 

and MER operations – of the ‘sol 0’ location of the rover, based on the first image data 161 

returned by the rover and the pre-existing satellite remote sensing data.  162 

Secondly, the ExoMars-like mission part of MURFI 2016 was run as a “blind” mission 163 

from the perspective of the MOC science team. The team were not permitted to see any 164 

information other than Mars-equivalent remote sensing data, or data returned by the rover 165 

itself. For the MOC team, this also meant blocking the social media accounts of the field 166 
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team members, disallowing access to online remote sensing services, and requesting MOC 167 

team members to do no background research into the geology of the field site. Those 168 

members of the team with pre-existing knowledge of the site were chosen to form the field 169 

team, supporting the operations in Utah. 170 

Thirdly, for the ExoMars-like mission, tactical operations were performed on a daily 171 

basis, utilising the seven hour time difference between the UK (UTC) and western USA Utah 172 

(UTC-7 hrs) to allow daily uplink cycles to be simulated in a similar way to that of a real rover 173 

mission. Each day, the MOC team received data from the rover from the previous sol’s 174 

activities at around 08:00 UK time. To simulate real tactical operations, they were allowed a 175 

limited period to analyze the data returned and to create the plan for that sol’s commands, 176 

with upload time at 13:00 UK time. This plan was then transmitted to the field site via an ftp 177 

(file transfer protocol) link, such that the commands were available for the field team to 178 

download and begin to implement as soon as there was enough daylight and sufficiently 179 

warm temperatures for activity to commence in the field. This allowed the field team and 180 

the MOC team to work asynchronously, making the best use of time while still allowing 181 

normal working patterns for both teams. Operations were not shifted each day to simulate 182 

the difference between ‘Mars-time’ and ‘Earth-time’, as this was felt to be a level of 183 

simulation that was not required to meet the MURFI objectives, and would complicate 184 

timings in the field.  185 

Finally, the MURFI ExoMars rover-like mission itself was given a science goal for the 186 

team to meet within the 10 sol time limit.  Mirroring the real ExoMars rover science goal  187 

“to search for signs of past and present life on Mars” (Vago et al., 2017), the MURFI ExoMars 188 

rover-like mission goal, was: “to locate suitable areas in the field site that have sedimentary 189 

geology indicative of an ancient habitable environment, then to drill into the surface to 190 
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acquire a sample from those materials and, finally, to examine this sample with the 191 

analytical instruments available onboard the rover.” Key elements of the mission goal were 192 

(i) the necessity to sample ‘ancient’ environments, which was interpreted by the team to 193 

mean sampling in-situ bedrock within the stratigraphy, rather than loose surficial fines of 194 

poorly-known provenance; (ii) the requirement to drill, which also meant that the drill site 195 

would have to be well characterised prior to drilling; and (iii) the interpretation of ‘habitable 196 

sedimentary geology’ to mean deposits laid down in water in a low-energy environment 197 

such as a lake or slow moving water –given the MURFI field site, this meant looking for fine-198 

grained or clay-rich materials within the stratigraphy.  199 

 200 

2.	Field	site	and	Mission	Operations	Center	(MOC)	201 

2.1 Field site  202 

The Utah field site (Figure 2) was chosen based on the collaboration with the CSA and its 203 

Mars-like local geology. It was used by the CSA in 2015 for Mars Rover trials (Dupuis et al., 204 

2016), and in 2016, several teams (see, for example, Hipkin et al., 2017) used the site, each 205 

with their own designated working areas. The description that follows provides an overview 206 

of the geology of the site, but to maintain the integrity of the trial, this information was not 207 

allowed to be seen by the MURFI MOC team prior to the ExoMars rover-like mission. 208 

The field site is in the Canyonlands section of the Colorado plateau, a geologically 209 

stable terrain that represents a crustal block of relatively undeformed rock covering an area 210 

of 337,000 km
2
. The plateau is bounded by the Basin and Range province to the west and 211 

the Uintas Mountains and Rocky Mountains to the northeast and east. To the south west, 212 
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the plateau is bounded by the Mogollon highlands. The stratigraphy of central Utah is 213 

dominated by Mesozoic rocks (with large inliers of Permian-age strata), which represent a 214 

predominantly continental succession, with several significant marine incursions (Stokes, 215 

1986). The area local to Hanksville consists of Jurassic- to Cretaceous-age strata, with dips < 216 

10°, recording continental conditions during the Jurassic. The field study site is within the 217 

Late-Jurassic (Kimmeridgian) Morrison Formation. This Formation is divided into three 218 

Members: The Tidwell Member, which represents lakes and mudflats; The Saltwash 219 

Member, which represents coarse alluvial sediments (average 63% net sand), and the 220 

Brushy Basin Member, which represents finer-grained (average 10% net sand) alluvial 221 

deposits (Heller et al., 2015). The study site was located solely within, but near the base of, 222 

the Brushy Basin Member, which locally has an exposed thickness of ~100 m.  223 

Outwardly, the Brushy Basin Member is predominantly slope-forming, characterised 224 

by weathered interlayered and interfingering white and red-brown soil profiles which form 225 

rilled slopes which weather and erode to angles up to ~30 degrees. In flat-lying areas, these 226 

weathered soil profiles are overlain by superficial pebble-lags of more resistant material, 227 

such as jasper and quartz derived from the Morrison and other local formations. The soil 228 

profiles reflect the underlying sediments. The red-brown units comprise very fine-sands, and 229 

silt-grade sediments that are well cemented, and commonly contain climbing-ripple strata 230 

and horizontal laminations. The white units are medium-grained sandstones which are well 231 

sorted and poorly cemented.  232 

In the study area, slope-forming sections of outcrop can be capped by cliff-forming 233 

units between 2-5 m thick. These units are characterized by cross-bedded sandstones and 234 

angular matrix-supported conglomerates, within channelized fluvial architectural 235 

components. When viewed in planform, these cliff-forming cap rocks have high aspect-236 
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ratios (widths of 20-50 m, and lengths of hundreds of metres to kilometres) and are 237 

curvilinear. These features have been described as inverted channels and are documented 238 

throughout the Morrison Formation (Clarke and Stoker, 2011; Williams et al., 2009, 2007).  239 

Light-colored, very poorly sorted, structureless layers of bentonitic volcanic ash, 5 – 240 

20 cm thick can be found at various levels in the silty flood plain deposits and are 241 

interpreted as airfall deposits due to the lack of laminations within the layers. They have U-242 

Pb zircon ages of 149 Ma (Kowalis et al., 1998; Kowallis et al., 2007). The presence of clays is 243 

evidenced by the shrink-swell weathering of the mud- to silt-grade material, as well as the 244 

presence of well-developed desiccation cracks in the present-day ground surface. These 245 

clays might have been sourced from the volcanic ash layers (Heller et al., 2015). The 246 

Morrison Formation contains abundant macroscale ‘biosignatures’ in the form of fossils and 247 

ichnofossils. Overall, the palaeoenvironment of the Brushy Basin Member is characterised as 248 

the distal part of a distributive alluvial fan system that drained toward the north-east from 249 

the system’s fan apex on the Mogollon Highlands (Owen et al., 2015). 250 
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 251 

Figure 3. Characteristic sedimentary facies encountered during field reconnaissance of the MURFI 252 

study area. a) Numerous small outcrops of silty to very fine sand (red/purple in color) were common, 253 

particularly in areas of reddish soil. b) Fine- to medium-grained quartz-rich sandstone found cropping 254 

out from lighter colored soil. Both the red silt-to-very fine sand and white fine-medium sands were 255 

highly fractured and showed onion skin weathering or cracked textures. The white sands were often 256 

trough cross laminated, and found in isolated, elongated exposures which could be interpreted as 257 

barforms, fining to the northwest. c) Cross-bedded pebbly conglomerate from the upper platform of 258 

‘Big Mesa’ – an inverted fluvial channel section in the MURFI study area. d) Texture of the pebbly 259 

conglomerate in c) showing the very poor sorting and polymictic composition, with sub-rounded to 260 
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sub-angular clasts within a quartz-rich matrix. The smallest black and white divisions of the scale bar 261 

are 1 cm in each photograph. Image credit: Robert Barnes and Steven Banham.    262 

 2.2 Field logistics 263 

The MURFI base camp was intentionally co-located close to the area of science operations 264 

for several reasons: (i) to reduce transit time between accommodation and working areas, 265 

(ii) to ensure that equipment deployed was secured at all hours of the day, and (iii) to 266 

facilitate collaboration with the other agencies who were working nearby. The basecamp 267 

was divided into three areas; sleeping, food preparation and storage, and operations (Figure 268 

4).  269 

 270 

Figure 4. MURFI basecamp showing key locations. Image credit: Mike Curtis-Rouse 271 

 272 
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The base camp was designed to accommodate a maximum of 16 people, this being based 273 

not on the number of sleeping tents deployable (essentially unlimited) but on the capability 274 

of the local infrastructure to support such numbers. The base camp command tent provided 275 

a variety of different functions: (i) science operations including command and control of the 276 

platform, (ii) operational planning for the mission and as a meeting space, (iii) social and 277 

eating space for the team, (iv) storage of equipment, including the rover platform and 278 

instruments, and (v) acting as an emergency shelter in the event of extreme weather. 279 

Local electrical power was provided by a single phase gasoline generator which was 280 

situated 100 m from the basecamp. This was used to provide lighting, charge batteries and 281 

laptops, and heat water as needed.  Charging of the platform batteries was performed at 282 

the closest motel (~ 30 min drive), where two rooms were rented to provide this function, 283 

and additionally to give people the opportunity to shower and wash on a rotating basis. The 284 

motel rooms were also used to provide secure storage of complimentary equipment that 285 

was not kept at the field site, and again offer alternative shelter in extreme weather.  286 

Communications at the field site were split into three types: local cell phones, where 287 

signal permitted, satellite phones which were hired in Salt Lake City to provide emergency 288 

communications at all times, and finally a share of the CSA satellite uplink for data transfer 289 

to and from the UK.  290 

A variety of equipment was procured and disseminated to personnel on arrival in 291 

Utah; this included basic sleeping equipment (e.g. cold weather sleeping bags, inflatable 292 

mats and pillows), and additionally emergency equipment including first aid kits, whistles, 293 

compasses and head-torches. This kit ensured that all personnel had the basic necessities to 294 

survive should conditions change.  295 
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Prior to the mission commencing, a comprehensive risk assessment was conducted 296 

to cover all eventualities, this included an evaluation of the potential medical situations 297 

which could arise, emergency, as well as routine. The general strategy in the event of a 298 

critical medical situation, was to evacuate the respective personnel to a primary medical 299 

facility e.g. Price General Hospital by ground vehicle. This thus influenced the type of vehicle 300 

selected and numbers available to the mission; all were four wheel drive and by necessity 301 

off-road capable. There would always be one more vehicle than was needed and the spare 302 

vehicle would always be fueled and located at the base camp. In the event of a critical 303 

medical situation at night or during adverse weather e.g. monsoon, then a designated heli 304 

pad was marked out adjacent to the base camp and illumination systems available close by 305 

to assist landing. The base camp GPS coordinates were logged with the local Bureau of Land 306 

Management, the local state police and the venom safety unit (in the event that evacuation 307 

of personnel due to snake bite was needed). 308 

 309 

2.3 The Rover Mission Operations Centre (MOC) 310 

The MOC was located at the Satellite Applications Catapult’s operations center at Harwell, 311 

United Kingdom. The MOC contained eight computer workstations, each with space for two 312 

workers, configured in a two-tiered ‘control room’ style, as well as several breakout rooms. 313 

The main focus of the MOC was a large multi-panel video wall, comprising 18 large HD 314 

monitors (Figure 5). Multiple outputs from the MOC workstations could be presented at 315 

various sizes on the video wall, allowing easy comparison of the different datasets. In 316 

addition, the very high specification PC used to drive the video wall could be used directly to 317 
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allow the display of datasets (e.g. remote sensing products) across the whole screen in very 318 

high definition.  319 

 All workstations were linked using a local area network, with shared network folders 320 

used as document stores, data stores and file-sharing working space. Also, an external ftp 321 

site, visible both from the MOC and by the field team, was used to receive incoming data 322 

from the field, and to communicate with the field team. This ftp site was also used to back-323 

up all data produced by the MOC team each night after operations.  324 

 325 

Figure 5. MOC setup. a) The large video wall. The desktop view of one workstation could be stretched 326 

over the whole wall, as here, or several workstation desktops could be split across the screen ‘on the 327 

fly’. b) The tiered workstations for the SWT stations. Image credit: Andrew Griffiths. 328 
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3. Field	equipment	329 

3.1 Rover platform 330 

The rover platform comprised a ‘Q14’ robot from Advanced Robotics Concepts (ARC; Figure 331 

1). The platform, together with in-field engineering support was provided by the Oxford 332 

Robotics Institute. With active 4-wheel steering and drive, and a passive dynamic 333 

suspension system, the rover provides a reasonable payload capacity and good mobility 334 

over a range of terrains within a relatively low mass package, thus simplifying deployment of 335 

the rover to the field location. The rover mass without payload is approximately 30kg and it 336 

can carry up to 40kg of payload. The MURFI rover was not intended to match the ExoMars 337 

rover’s capabilities, being smaller and four – rather than six – wheeled, but instead to 338 

provide a suitable mobility platform to carry out the trial. 339 

The primary navigation sensor comprised a ‘Point Grey Bumblebee XB3’ stereo 340 

camera mounted mid-way up the central rover mast. The platform was also fitted with a 341 

Lord Microstrain 3-DM-GX4-45 inertial sensor, which was primarily utilized for automatic 342 

logging and reporting of the platform orientation during imaging sessions. The 4-wheel 343 

steering capability enabled MOC team path planning to be simplified to construction of the 344 

paths as a series of linear drives linked by point turns. 4-wheel steering also means that 345 

wheel-slip is much reduced compared with simpler differential steering platforms, reducing 346 

the impact of the rover on the terrain and minimizing track deposition. 347 

3.2 Rover Instrumentation 348 

The Pasteur payload (Vago et al., 2017)of the ExoMars Rover consists of 11 panoramic, 349 

contact, and analytical instruments. Of this suite, four were emulated for MURFI and were 350 
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either integrated onto the rover platform, or available as standalone instruments that could 351 

be operated in the same way, as perceived by the MOC team, as if integrated into the rover. 352 

The instruments emulated were the stereo-panoramic/high resolution camera imaging suite 353 

‘PanCam’ (Coates et al., 2017), the infrared spectroscopy instrument, ‘ISEM’ (Infrared 354 

Spectrometer for ExoMars; Korablev et al., 2017), the close-up imaging camera, ‘CLUPI’ 355 

(CLose UP Imager; Josset et al., 2017) and the Raman spectroscopy system (Rull et al., 2017) 356 

that is part of the ExoMars rover’s Analytical Laboratory Drawer. In addition, the MURFI 357 

investigation could simulate ExoMars’s drill capabilities. 358 

 For PanCam emulation, the Aberystwyth University PanCam Emulator (AUPE; Harris 359 

et al., 2015) was used, mast-mounted on a pan-tilt unit on the rover mast. AUPE allows 360 

stereo capture across a suite of multispectral filters (Cousins et al., 2012) and high 361 

resolution imaging of distant features using the High Resolution Camera (HRC; for MURFI 362 

this was a single panchromatic sensor; but for ExoMars this will be a color Bayer sensor). 363 

AUPE is an assembly of off-the-shelf, commercial scientific cameras, matching closely the 364 

specifications of PanCam, and consists of the Wide Angle Cameras (WACs) and the HRC. The 365 

WACs provided the primary means for obtaining color panoramas, and provided stereo-pair 366 

images for 3D reconstruction and visualization of the rover environment via the PRoViDe 367 

pipeline and PRo3D software (Barnes et al., 2017). For multispectral imaging, a MacBeth 368 

ColorChecker was included in scenes for calibrating images to reflectance units at the MOC. 369 

The narrow-angle optics of the HRC are coaligned with the right WAC, such that high 370 

resolution images may be obtained in subframes, via control of the pan-tilt unit. In addition 371 

to PanCam, the ExoMars rover includes panchromatic navigation cameras to collect black 372 

and white images and image mosaics. This capability was simulated on MURFI using the 373 
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AUPE WACs, operating using a panchromatic filter. This allowed the MOC team to request 374 

images at a lower data cost than the RGB triplet images of AUPE. 375 

The Infrared Spectrometer for ExoMars (Korablev et al., 2017) was emulated with an 376 

ASD Inc. FieldSpec3, with 1° field of view fore-optics, mounted on the AUPE optical bench. 377 

This allowed near-infrared reflectance spectra to be obtained for mineral identification. 378 

Whilst ISEM covers the infrared spectrum at 1.1 - 3.3 µm, with 3.3-28 nm resolution, the 379 

FieldSpec3 infrared portable spectroradiometer spans visible and a  smaller portion of 380 

infrared, at 0.35 - 2.5 µm, with 10 nm resolution above 1 µm. During MURFI, we did not 381 

seek to match the wavelength range of ISEM exactly – we did not truncate the spectrum 382 

below 1.1 µm prior to transmission to the MOC, for example – but this could be put in place 383 

for future trials. A Spectralon target was used for in situ calibration, such that 384 

measurements were recorded in units of surface reflectance, rather than radiometrically. 385 

For CLUPI emulation, a Sigma SD15 DSLR camera with a macro lens was used to 386 

provide high-resolution color images comparable to the CLUPI instrument. The Sigma SD15 387 

uses the same 2652x1768 pixel Foveon X3 z-stacking color detector as the CLUPI flight 388 

instrument, with a matching 11.9°x8.0° FoV macro lens. The drill body, to which CLUPI will 389 

be attached on the ExoMars rover, was not included in the MURFI payload, so the CLUPI 390 

emulator was attached to an articulated Photo Variable Friction Arm so that it could either 391 

be clamped to the front of the rover platform, or used as a standalone instrument. In either 392 

case, the operation of the arm was restricted to match the viewing geometries available to 393 

CLUPI, such that orientation of the camera was primarily controlled by the movement of the 394 

rover. 395 

To simulate the ExoMars rover’s ability to drill to depths of up to 2 m and obtain a 396 

core sample, the field team were equipped with a hand-held core drill and hand tools to 397 
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extract an ExoMars-like core from a depth specified by the MOC team. This allowed sub-398 

surface samples to be extracted and then analyzed by instruments representing those in the 399 

Analytical Laboratory Drawer of the ExoMars rover (Vago et al., 2017). 400 

Of the analytical instruments in the ExoMars rover Pasteur suite, only the Raman 401 

Laser Spectrometer (“RLS”; Rull et al., 2017) was emulated in MURFI. Two Raman 402 

instruments were used: a portable ‘Deltanu Rockhound’ spectrometer and a benchtop 403 

Raman Laser Spectrometer prototype, developed by the University of Leicester in 404 

preparation for the ExoMars rover mission. Raman spectroscopy is a molecular 405 

identification technique based on the vibrational modes of molecules. It is a fast, non-406 

destructive analytical tool that is capable of acquiring chemical and molecular structure 407 

information from unprepared samples (Smith and Dent, 2013). The Deltanu Rockhound 408 

spectrometer was used to simulate the functionality of miniaturised Raman instruments, 409 

such as RLS on the ExoMars rover. The Rockhound instrument uses a 785nm laser to 410 

produce a laser spot of 50 μm, equivalent to the spot size of RLS (Rull et al., 2017). The 411 

prototype system uses a 100 mW laser at a wavelength of 532 nm (the same as that on RLS) 412 

and produces a laser spot size of 50-150 μm. The system spectrograph and CCD detector 413 

generate a spectral range of  200-4000 cm
-1

 at a resolution of 3 cm
-1

, comparable to that of 414 

the ExoMars rover RLS instrument, which will operate with spectral range of 100-4000 cm
-1

 415 

and a resolution of 6-8 cm
-1 

(Díaz et al., 2011). The Raman spectra acquired allowed for 416 

precise mineral identification of samples retrieved by the core-drill, and the capability to 417 

find signatures of organic molecules. 418 

 The primary ExoMars ‘geology instruments’ lacking from the MURFI payload 419 

included the ground penetrating radar (WISDOM; Ciarletti et al., 2017) and the fuller suite of 420 

instruments within the drill package and in the Analytical Laboratory Drawer. We hope to 421 
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include emulators for these instruments in the future – especially WISDOM, which provides 422 

sub-surface information – but to meet the overall goals of MURFI 2016 within the limited 423 

time available for planning, only the stand-off instruments that allow characterization of the 424 

geological setting and determination of drill location, and the Raman spectrometer, were 425 

used in this trial. 426 

 427 

 428 

Figure 6. The MURFI rover platform showing the rover instruments. The main imaging instruments 429 

were rover-mounted, but the spectrometers were mainly used demounted from the rover for the 430 

convenience of the field team. The ISEM emulator could be used mounted or demounted. See Figure 431 

1 for scale.  Image credit: Mike Curtis-Rouse 432 

 433 
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4. ExoMars	rover-like	mission	operations	434 

The MURFI 2016 campaign was carried out over a 3 week period (Figure 7). In the field, the 435 

first week (week 0) of the mission was dedicated to field camp setup and testing of 436 

instruments and the platform. In week 0 at the MOC, ‘landing site’ mapping and hazard 437 

evaluation from remote sensing data was conducted. Weeks 1 and 2 consisted of the 438 

‘ExoMars rover-like’ portion of the mission itself. The first two days of week 1 were used for 439 

tactical operations rehearsals, which then continued into the 10 Sol mission. During week 3, 440 

the field team disassembled the camp and began homeward travel, while two members of 441 

the MOC team joined the CSA team (Osinski et al., 2017)  to observe their operations. 442 

 443 

Fig. 7. MOC mission timeline overview.  444 

4.1 Roles in MOC and in field 445 

The structure of the MOC staff was determined in in consultation with advisers who had 446 

experience of the NASA MSL mission and previous CSA trials (Dupuis et al., 2016; Osinski et 447 

al., 2017). However, out of necessity, the operations structure was also shaped by 448 

availability of personnel. The roles of the MOC team and field team are summarized in 449 

tables 1 and 2 respectively. The MOC personnel swapped in an out of the team based on 450 
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availability, with the total number of team members in the MOC usually being between 8 451 

and 12 people.  452 

The field team consisted of up to eight people during the investigation, including 453 

field geologists, rover and instrument specialists, and logistic and leadership personnel.  454 

 455 

Mission scientist 

(MS) 

The MS was a fixed position held by one person throughout the 

investigation. The MS was “in simulation” (although sometimes “out of 

simulation” discussions with the MM were necessary) and was 

responsible for the set up and commissioning of the MOC, the overall 

scientific direction of the mission, including long-term planning and 

strategy, and for MOC leadership.  

Mission 

manager (MM) 

The MM was a fixed, technical position, held by one of two people 

across the trial. The MM was the only MOC member who was “out of 

simulation”. MM was responsible for logistics, safety, and leadership in 

the MOC, for direct communication with the field team, and for setting 

daily mission constraints (such as data volume allowed). The MM also 

ensured each daily plan was uploaded to the field team FTP site. 

Science working 

team chair 

(SWTC) 

The SWTC held responsibility for making sure that the tactical plan was 

delivered each day. SWTC was appointed from early and mid-career 

scientists on the team to give experience of leadership roles. Hence, 

the SWTC position was held by five different people across the 10 day 

ExoMars rover-like mission. 

Traversability, The TML team (usually one or two people) was responsible for all 
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Mapping and 

Localisation 

(TML) 

remote sensing and drive-planning tasks, as well as daily localization of 

the rover. TML was responsible for keeping GIS maps of the rover up to 

date and advising on safety of planned drives. 

Instrument 

scientists 

Instrument scientists formed the largest part of the team (usually 2-4 

people per day) and were responsible for daily image processing, 

analysis and reporting to the larger science team. The AUPE scientists 

were busy daily, but some other instruments were not used each day. 

A consequence of this was that demands on the team were not equally 

divided between instrument teams.  

Planner The planner documented the daily tactical planning and targets chosen 

for analysis during planning, and ensured that mission constraints (e.g. 

data volume) were not breached. In addition, the planner was 

responsible for creating the final version of the tactical plan and 

handing it over to the MM by the daily deadline 

Rapporteur The rapporteur recorded daily minutes in the MOC, including notes on 

discussions and decision making processes. These minutes were used 

to assist the planner during the often hectic tactical meetings, as well 

as being useful after the investigation to evaluate decisions and assess 

how well the team worked together. 

Advisors and 

observers 

Two senior scientists with tactical mission planning experience from 

the MSL mission were present during part of the ExoMars rover-like 

mission to provide advice and instruction. An observer from the 

European Space Agency was also present for several days. 
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Science Working 

Team (SWT) 

Due to the limited number of people who could be involved in the 

wider investigation, the SWT comprised the entire membership of the 

MOC, aside from “out of simulation” visitors and the MM. Every team 

member was welcome to contribute to the discussions, as chaired by 

the daily SWTC. 

Table 1. MOC team responsibilities.  456 
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Mission 

Commander 

The mission commander was responsible for all logistical, leadership, 

safety, and operation aspects in the field, as well as for communication 

with the MM at the MOC. 

Geology lead The geology lead was responsible for documenting the local geology 

prior to the ExoMars rover-like mission, and, most importantly, for 

deciding where to place the rover to provide a starting point that 

would allow the MOC team a reasonable chance of meeting the 

mission goal. 

Field team The field team was primarily responsible for collecting data from the 

field instruments based on the daily plan communicated from the 

MOC. Additional tasks, such as collecting samples and testing other 

instruments were performed once the daily plan for the ExoMars 

rover-like mission was executed. 

Platform lead The platform lead was responsible for ensuring that the rover platform 

operated safely. This role was vital to ensure that the MOC team did 

not inadvertently command the rover to do something that could 

cause it damage. 

Platform team The platform team (2-4 people) were responsible for deploying, 

controlling and maintaining the rover platform. 

Table 2. Field team responsibilities. 457 
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4.2 Mission schedule 458 

4.2.1.	MOC	team	schedule		459 

The field team positioned the rover at the ‘landing point’ on Sol 0, in a location they decided 460 

would maximize the possibilities for the mission, and from that point onwards a new tactical 461 

plan was generated each sol by the SWT (the sol N plan). The daily planning deadline was 462 

13:00 UK time, meaning that the time zone difference between the UK and Utah allowed 463 

the field team to receive the command plans early in the morning and execute it, and then 464 

to return data to the UK before the start of the next sol’s tactical planning schedule. The 465 

first five sols of the mission consisted of using the rover instruments to characterize the 466 

local geology and drives towards outcrops. The next three sols were devoted to 467 

characterizing a possible drill target, with the command to drill being given on sol 8. Post-468 

drilling observations and CLUPI/Raman analyses of the drill sample were returned on sol 9 469 

for later analysis. This is probably a much more rapid drilling time than is likely for a deep 470 

drill on ExoMars, but simulating a slower drill process was not deemed useful for the MURFI 471 

mission. No planning was done on sol 9 and it was used to discuss the final data sets 472 

returned and for a MOC-team debrief. 473 

The MOC SWT followed the same fixed schedule each day (Table 3). The day began 474 

with the Mission Scientist designating roles within the team, a report from the Mission 475 

Manager, including ‘flagging’ problems or issues on the rover or for the field team, and 476 

confirmation of the rover data that had been downlinked from the field. After a period of 477 

data processing, tactical planning discussion began, and the sol N plan proposed, discussed, 478 

and finalized. After the planner submitted the Sol N plan to the Mission Manager the 479 

commands were ‘uplinked’ to the field team. After a lunch break, the SWT returned and 480 
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begun more wide-ranging, free-form science discussions based on the data obtained in the 481 

mission so far. Later in the afternoon another formal planning session, led by the Mission 482 

Scientist, began. During this session, the current longer term plan was discussed and 483 

modified, as well as an outline sol N+1 plan created for use as the basis for the following 484 

day’s sol N planning. Daily activity at the MOC was completed by the MS and MM creating 485 

an archive backup copy of all the documentation and data generated during the day. After 486 

dinner, the MS produced a summary of activities and targets from the day for distribution to 487 

all team members, and various team members updated blog posts and social media 488 

accounts. 489 

During the daily planning cycle, several formal documents were produced and 490 

archived to keep a record of the operations. These are numbered in Table 3 and included: 491 

(1) Sol N Rover Status Report: localization results and GIS shapefiles provided by the TML 492 

team, and data downlink lists from the MM.  493 

(2) Interpreted Data Reports: results from the previous sol’s activities, such as annotated 494 

‘screen grabs’ of images. Presented by the instrument scientists to further science and 495 

planning discussions.  496 

(3) Sol N Target Overview Document: produced during the planning meeting by Planner and 497 

SWTC to demonstrate locations of targeted observations planned for the day. This included 498 

screenshots images showing the expected field of view of desired observations and target 499 

names. These helped the field team to obtain the correct data in case of confusion over the 500 

plan.  501 

(4) Sol N Plan Summary: produced by SWTC to include all aspects of the sol N plan as agreed 502 

by the SWT.  503 
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(5) Sol N Plan for Uplink: Sol N plan, including all drive commands and targeting locations, to 504 

be uplinked to the field team, produced in a specific format by Mission Manager, assisted by 505 

the Planner, and checked against daily constraints.  506 

(6) Sol N+1 Plan: outline-level document, prepared by Planner, describing the proposed plan 507 

for sol N+1 activities.  508 

(7) Strategic Plan: a ‘living document’, updated daily by the Mission Scientist, that 509 

summarized sol-by-sol activity to date, proposed activity within the next 3 sols, and 510 

milestones and stage-gates necessary to meet the overall mission goals.  511 

(8) Rapporteurs Minutes: describes the day’s discussions for later use. 512 

Other documents and presentations focussing on the scientific interpretations were created 513 

and presented to the team by members of the SWT as and when necessary. 514 

Time 

(local) 

Item Responsibility 

07.45 Catch-up meeting for MM and MS –discuss 

designation of roles for the day.  

Mission Scientist and 

Mission Manager. 

08.00-8.15 Kick-off team meeting “outside sim” – 

designation of roles for the day, essential 

info from Mission Manager (e.g., fire alarm 

tests, IT issues etc, early closure of facilities, 

absences of team members). 

All MOC team. 

08.15-08.45 Sol N tactical planning meeting preparation 

and data processing time (1).  

Instrument scientists, TML 

team, Mission Manager  

08.45-11.30 Sol N tactical planning discussions (2). SWTC to chair. All SWT input 

into discussion. 
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11.30-11.45 Documentation prep time.  

11.45-12.30 Sol N tactical planning final meeting (3). SWTC and Planner to lead. 

TML produces drive plan. All 

SWT to input into discussion.  

12.30-13.00 Sol N Mission plan checking and agreement 

(4). 

SWTC to chair, Planner, 

Mission Scientist, Mission 

manager. 

 

Deadline: 

13.00 

Mission plan for sol N sent to Utah field 

team (4). Set to arrive no later than 6am 

Utah local time so dependent on time-

difference. 

Mission Manager. 

13.00-14.00 Lunch.  

14.00-15.00 Science team discussion, analysis, hypothesis 

generation. 

SWT, Mission scientist to 

chair.  

15.00-~15.30 Sol N+1 planning discussion meeting (5). SWTC 

~15.30-16.30 Strategic planning meeting and Sol N+1 plan 

finalization (6). Strategic plan updated (7). 

Daily documents archived, including 

rapporteurs minutes (8). 

Mission Scientist, SWTC, 

Planner. 

evening Handover activities for incoming team 

members. 

Mission Scientist, 

incoming/outgoing team 

members. 

Table 3. Daily schedule during the ExoMars rover-like mission. Numbers in parentheses refer to 515 

formal documents produced during the day, as described in the text. 516 
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4.2.2	Field	team	schedule	517 

The field team arrived in Utah on 24
th

 October, and the basecamp was fully operational by 518 

the 28
th

 October. The field team spent several days ensuring the rover and instrumentation 519 

were fully functional, as well as performing geological reconnaissance of the operations 520 

area, and deciding where to position the rover to maximise the return from the exercise. 521 

The field team began regular daily operations (Table 4) on sol 1 of the ExoMars rover-like 522 

mission, as the first daily tactical plan was uploaded to the field team from the ROC. 523 

Time 

(local) 

Item 

07:00  Incoming data received from UK. Data were collected in Hanksville or via 

the CSA downlink, depending on bandwidth and location of personnel. 

08:00  Mission Commander coordinates with MM at the MOC to ensure that 

information was correct and the day’s activities achievable (considering 

local conditions). 

09:00  Daily briefing and planning chaired by Mission Commander.  

10:00-16:00  Daily mission activities performed following tactical plan.  

16:00  Data collated and prepared for upload to UK. 

17:00  Data package sent back to UK / instrument and platform maintenance. 

18:00 Review of the day’s activities at base camp. 

Table 4. Field team daily schedule 524 

4.3 Data processing and/or software 525 

The majority of the data returned to the MOC by the field team was images. These included 526 

daily NavCam (panchromatic WAC images taken using the visible light filter) panoramas, and 527 
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targeted observations using the WAC RGB and multi-spectral filters, the CLUPI emulator, or 528 

the HRC. Various commercial and open-source software packages were used to display and 529 

mosaic image data, or visualise stereo images in 3D, including ESRI ‘ArcGIS’, ‘Hugin’ (derived 530 

from “Panorama Tools”; Dersch, 2007), and AgiSoft ‘Photoscan’. Also, stereo panoramas 531 

acquired through the left and right WACs were uploaded to an ftp processing pipeline set up 532 

by Joanneum Research, and automatically converted into 3D digital outcrop models using 533 

the PRoViP tool. The resultant 3D Ordered Point Clouds (OPCs; Traxler et al., 2018) were 534 

visualized in PRo3D; a software tool developed specifically for quantitative geological 535 

analysis of OPCs created from stereo rover-derived images(Barnes et al., 2018). PRo3D 536 

enabled immersive, real-time visualization of the 3D rendered image data for scientific 537 

purposes (e.g., Balme et al., 2017; Barnes et al., 2018), allowing for free roaming of a virtual 538 

representation of the rover’s environment. Measurement tools built-in to the software 539 

allowed for the true scale and distances of objects to be measured, up to a distance of 540 

about 20 m from the Rover, beyond which the errors become higher. This will be similar for 541 

the real ExoMars Rover This was important for planning drives, identifying targets and for 542 

avoiding obstacles. It should be noted that these 3D rendering and analysis techniques are 543 

still in the early stages of testing, and validation of the processing techniques and PRo3D are 544 

ongoing, so MURFI was also a useful trial for this system.  545 

The multispectral WAC data were processed using ENVI software and the ISEM 546 

emulator reflectance spectra were processed and analyzed using ‘The Spectral Geologist’ 547 

software. Satellite remote sensing data were used to generate a variety of mapping 548 

products (see section 5.1) both before and during the ExoMars rover-like mission. ESRI 549 

ArcGIS software was used extensively for processing, display and digitising of these data. 550 
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 551 

Figure 8. PRo3D example outputs. a) Near-field view showing annotations made onto the PRo3D 552 

scene. b) Distance measurements, useful for drive planning, made using PRo3D – in this case, to the 553 

‘weekday rocks’ using sol 1 data. 554 
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5. ExoMars	rover-like	mission	summary	555 

5.1 Preliminary Landing Site Assessment  556 

In line with the objective to simulate an ExoMars rover-like mission, a subset of the SWT 557 

conducted a preliminary assessment of the ‘landing site’ area in week 0. The aim of the 558 

preliminary landing site assessment was to understand the local geology of the area in order 559 

to build working hypotheses for the palaeoenvironments represented by the bedrock 560 

geology at this site. An assessment of the nature and distribution of hazards, in line with 561 

scientific and engineering criteria of the ExoMars rover mission, was also made, as well as 562 

identification of possible science targets for the rover. Crucially, this task was conducted 563 

within the simulation, and so the mapping team were allowed no prior knowledge of either 564 

the chosen site area, or the start point for the rover mission. 565 

To conduct this preliminary landing site assessment we produced a variety of Mars-566 

equivalent data sets from the available terrestrial data sets (Table 5). No additional 567 

knowledge (e.g. higher resolution aerial photographs, more extensive areas of color or 568 

spectral data) of the mission landing site was allowed or considered, to make the process 569 

similar to the ongoing assessment of the ExoMars landing sites (Bridges et al., 2017b). These 570 

data sets were used to (1) create a reconnaissance photo geological map, (2) assess slope 571 

and other traversability hazards and (3) build working hypotheses for the origin of the 572 

geological units and therefore to identify science targets for the rover based on these 573 

hypotheses.  574 

The preliminary analysis was performed by five team members who had Mars 575 

remote sensing experience. All targets, units, contacts etc. were digitized using ArcGIS 576 
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software, and outputs produced for the wider team to analyse. The various maps produced 577 

were displayed and referred to often during the ExoMars-like mission trial.  578 
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Mars dataset 

emulated (spectral 

range and pixel 

size) 

Earth data used 

(spectral range 

and pixel size) 

Processing ‘Mars like data’ 

(spectral range and 

pixel size) 

HiRISE
1
 (RED, RGB; 

0.25 m) 

World View 2
2
 

(0.39 m RGB) 

Export Red channel 

Clip central RGB strip  

0.39 m RED 

0.39 m RGB 

HiRISE Digital 

Terrain Model 

(DTM)
3
  (~1 m) 

NAIP*
4
  5 m DTM 

[3]  

none 5 m DTM 

CTX
5
 

(Panchromatic; 6 

m) 

NAIP*
6
 1 m RGB Merge RGB (grey scale 

function) to grey scale, 

resample to 6 m/pixel  

6 m Panchromatic 

CTX DTM (~20 m) NAIP 5 m DTM [3] Resample to 20 m  20 m DTM 

HRSC
7
 (12.5 m 

Panchromatic, 50 

m RGB) 

LANDSAT 8
8
 

bands 4; Red 3; 

Green, 2; Blue, 

(30 m/pixel) and 

8; Panchromatic 

(15 m/pixel) 

Composite RGB bands, 

Resample to 50 m/pixel, 

rescale pixels from 16 bit 

to 8 bit, pansharpen 8 bit 

RGB with 8bit 

panchromatic data  

15 m RGB 

THEMIS
9
 IR 

daytime surface 

temperature 

(12.17 µm – 12.98 

LANDSAT 8 band 

11 (11.5 µm – 

12.51 µm, 30 

m/pixel) 

Band 11, resample to 

100 m/pixel, rescale 

pixels from 16 bit to 8 bit  

100 m (11.5 µm-

12.5 µm) 
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µm; 100 m) 

CRISM
10

 (400 nm – 

4000 nm 

wavelength range; 

16m) 

HYPERION
11

 (250 

nm – 2500 nm; 30 

m/pixel) 

Resample pixels to 32 m  ½ spectral range & 

spatial resolution 

Table 5: Mars like data sets made from available terrestrial counterparts*NAIP = National 579 

Agriculture Imagery Program. 
1
High Resolution Imaging Science Experiments (McEwen et al., 580 

2007), 
2
DigitalGlobe (https://www.satimagingcorp.com/satellite-sensors/worldview-2/), 581 

3
Kirk et al. (2008), 

4
NAIP DTM (https://gis.utah.gov/data/elevation-terrain-582 

data/#AutoCorrelatedDEM), 
5
ConText Imager (Malin et al., 2007) 

6
NAIP RGB 583 

(https://www.fsa.usda.gov/programs-and-services/aerial-photography/imagery-584 

programs/naip-imagery/), 
7 

High Resolution Stereo Camera (Neukum and Jaumann, 2004) 585 

8
US Geological Survey (https://landsat.usgs.gov/landsat-8), 

9 
THermal EMission

 
Imaging 586 

Spectrometer (Christensen et al., 2004), 
10 

Compact Remote Imaging Spectrometer for Mars 587 

(Murchie and the CRISM Science Team, 2007), 
11

US Geological Survey 588 

(https://eo1.usgs.gov/sensors/hyperion) 589 

5.1.1	Physiography	of	the	Landing	Site	590 

The study area mapped using the Mars-like data is shown in (Figure 9). Elevation in the 591 

study area ranges between ~ 1,430 and 1,350 m. There is a 40-50 m high scarp at the 592 

western edge of the study area, but the majority of the study area is a gently undulating 593 

plain. Across the plain, there are a series of semi-continuous mesas and ridges which are up 594 

to ~ 15 m high. Local drainage is defined by ephemeral stream and alluvial deposits, which 595 

drain towards the east, and has exposed much of the underlying stratigraphy. 596 
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 597 

Figure 9. The MURFI field site area mapped using Mars-like remote sensing data (cf. black box 598 

showing study area in figure 2b). An area ~ 2 by 3 km was mapped. a) A simulated HiRISE image 599 

(Worldview 2), including the central color strip and the lateral greyscale areas. b) 5 m resolution DTM 600 

showing topography. Note that this DTM actually has lower resolution than the best Mars DTM data 601 
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(5 m/pixel vs 1 m/pixel). Graticule and grid show WGS (World Geodetic System) 1984 latitude and 602 

longitude and UTM (Universal Transverse Mercator) zone 12N projection scale information. Image 603 

credits: see Table 5. 604 

 605 

5.1.2	Photogeological	mapping.		606 

The photogeological map (Figure 10) covered an area of 2 x 1.75 km and was digitized at 1: 607 

1,000 scale over three days in the style of the USGS astrogeology program (Tanaka et al., 608 

2011). The mapping used a HiRISE-equivalent base layer, with color data available only in 609 

the central portion. CTX, HRSC, and THEMIS equivalents (Table 5) were used for regional 610 

context. Hyperion data were only available later in the mission: CRISM-like summary 611 

products were generated but did not provide significant additional information that altered 612 

the mapping.  613 

At the time of mapping, the SWT did not know where in the mapped region the 614 

rover would ‘land’, hence it was important to build up a consistent geological interpretation 615 

for the region. This ‘rapid mapping’ approach has relevance to the ExoMars rover mission as 616 

quickly building up a good understanding of the local geology will be important for guiding 617 

the initial drive direction of the rover following disembarkation from the landing platform.  618 

The MURFI mapping produced a proposed stratigraphy (Figure 11) divided into 10 619 

units organized into four formations: (i) and (ii) the Upper and Lower Layered Formations, 620 

(iii) the Resistant Formation, and (iv) the Dark Formation. Henceforth, we only describe the 621 

units and relationships that were close to the actual landing point and relevant to the 622 

MURFI ExoMars rover-like mission, rather than trying to provide complete detail of the 623 

wider map. 624 
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 625 

Figure 10: Subset of the photogeological map of the landing site region. Reds = Layered (scarp and 626 

plains-forming) Formations, Blues = Resistant Formation, Browns = Dark Formation, Green = out-of-627 

situ rubbly boulder and debris, White = Anomalously Bright Unit (a distinctive unit in the Layered 628 

Formations). Blue lines = modern alluvial deposits and green lines = targets. Additionally Pinks 629 

indicate anthropogenic features, such as a dam structure in the north of the region. Graticule and 630 

grid show WGS1984 and UTM zone 12N; pale blue gridlines are 1 km apart. 631 
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 632 

Figure 11. Proposed stratigraphy based on remote sensing mapping. Zigzag lines indicate 633 

unconformities or poorly constrained contacts. Ma = Modern alluvial material. Br = Blocky rubble 634 

unit; Dd = Dark dappled unit (part of the Dark Formation), Rp = Resistant Plateau Unit (part of the 635 

Resistant Formation), uLs and uLp are upper Layered Formation Units (Scarp and Plains-forming 636 

respectively), Ab = Anomalously Bright Unit (part of Layered Formation), Ri = Resistant Interbedded 637 

Unit, Ds and Dh are part of the Dark Formation (Smooth and Hummocky respectively), lLs and lLp are 638 

Lower Layered Formation Units (Scarp and Plains-forming respectively). 639 

 640 

The Resistant Formation consists of three units characterised by a tendency to crop 641 

out as ridges or flat caps on top of mesas and plateaus. Sub-curvilinear ridges of resistant 642 

material from this formation are set within the stratigraphy and form the ‘Resistant 643 

Interbedded Unit’ (Ri). Examples of this unit were found on top of mesas and hills close to 644 

the MURFI rover landing point. Based on the mapping and the geomorphology observed in 645 

the highest resolution images, we interpreted them to be resistant materials composed of 646 
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the upper parts of inverted fluvial channels. Hence, our hypothesis was that they were 647 

fluvial sandstones or similarly coarse-grained sedimentary materials.  648 

The upper and lower Layered Formations are each formed of horizontal to gently 649 

dipping layers with varying albedo and meter- to decameter-scale repeating layering that is 650 

continuous across much of the study area. These units were interpreted to be sedimentary 651 

material, with the variations in color reflecting paleoenvironmental conditions (proposed to 652 

be related to types of iron-minerals present). Also located within the Layered Formation are 653 

the ‘Anomalously Bright Units’ (Ab), which appear similar to the other layered unit, only 654 

brighter and with a spatially restricted outcrop pattern (contrary to the rest of the Layered 655 

Formation in which layers strike across the whole mapping area). Our interpretation for 656 

these materials was that they were part of the same fluvial assemblage as the inverted 657 

channels, as they were often found directly beneath the Resistant Interbedded Unit, within 658 

curvilinear ridges. We concluded that these represented quiescent fluvial sub-environments 659 

such as flood plains or channel overspill deposits, and hence would have finer grains sizes 660 

and possibly more clay rich assemblages.   661 

The overall conclusion of the mapping was the following working hypothesis: that 662 

parts of the study area comprised a fluvial assemblage, including both channel fill (now seen 663 

in inverted relief on top of mesas and hills) and quiescent fluvial deposits such as flood 664 

plains facies (now seen as spatially continuous layered scarp, or undulating plains).  665 

5.1.3	Hazards.		666 

As part of the preliminary landing site assessment, rover traversability hazards were 667 

evaluated. This exercise is directly relevant to the ExoMars rover mission; very similar 668 

analyses were performed at the landing ellipse scale for ExoMars landing site selection, and 669 
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detailed traversability maps will be needed as soon as the landing position of the ExoMars 670 

rover is determined to allow for drive planning.  671 

The resulting hazard maps (Figure 12a) were used to place constraints on the routes 672 

the rover could traverse and which targets were accessible. Four types of hazard were 673 

identified and mapped:  674 

(i) Slopes: areas of steeper ground where it was either not possible to drive the rover 675 

or where it was more likely to encounter impassable breaks in slope. As the 5 m resolution 676 

of the Digital terrain Model (DTM; Figure 9b) is poorer than the HiRISE DTMs available for 677 

Mars, it was difficult to assess true slope at the shorter baselines that could most seriously 678 

affect rover movement. Instead, we mapped out slopes across the study using the 5 m/pixel 679 

DTM to produce a color-coded slope map to inform traversability. Across the study area the 680 

majority of slopes are < 10°. Locally steeper slopes around scarps, mesas, ridges may 681 

impede access to outcrops of high scientific interest.  682 

(ii) Loose material: numerous areas of loose material are found in the area, including 683 

modern ephemeral fluvial channels deposits and talus slope material. We conservatively 684 

decided that the low-relief modern channels visible in mapping were a loose sediment 685 

hazard, as well as having possibly 10-50 cm steps at the dry channel margins, so all these 686 

regions were ruled as being hazardous. 687 

(iii) Blocky debris: we included blocks shed from the Resistant Formation materials as 688 

a mapped unit. However, more examples of these exist in the area of the layered plains. 689 

Where these can be identified from orbit they can be avoided, but boulders below the 690 

resolution of satellite imagery will also be a possible hazard and can only be identified from 691 

the rover.  692 
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(iv) Bushes/Boulders: The unit Dd appears to have dark patches which may be 693 

boulders, as judged by shadows and bright regions on their sunward side. However. many 694 

more had diffuse margins, a possibly organized spatial distribution, and occur at low 695 

elevation near areas of modern fluvial channels. This suggests they may be small bushes. 696 

Both terrain types pose a hazard to the rover so were classed as hazardous. 697 
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 698 

Figure 12 – Hazard and science target mapping. a) Hazards within the wider mapping region. 699 

Modern Alluvial hazards are outlined in blue. In the background, slopes < 5˚ are colored green, slope 700 

5˚ -10˚ are yellow, slopes of 10-15˚ are orange, and slopes >15˚are red. The brown area is the ‘Dark 701 

Dappled Unit’, Ddu – interpreted to be densely covered with boulders and vegetation. White box 702 
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shows position of Figure 12b. b) Possible science targets in the central portion of the remote sensing 703 

map region. Dark greens show Resistant Formation outcrops or float rocks that could be rover 704 

accessible, mid-green are other possible bedrock outcrops, and bright green show the edges of the 705 

Layered Plains Unit or the Anomalously Bright Unit (Abu). The blue lines show modern alluvial 706 

hazards. Backgrounds image is a HiRISE-like image (Worldview 2). Graticule and grid show WGS1984 707 

and UTM zone 12N. Image credits: see Table 5. 708 

5.1.4	Science	targets.		709 

As a result of the reconnaissance mapping, four types of science target were identified and 710 

their locations recorded on the map (Figure 12b). Based on discussions in the SWT, these 711 

target categories represented our evaluation of what would be the highest priority science 712 

targets when the mission began. 713 

(1) Resistant outcrops: identified to test the working hypothesis that the Resistant 714 

Interbedded Unit was channel-fill exposed in inverted relief. This could be partially tested by 715 

remote observation if all examples proved inaccessible. 716 

(2) Resistant float rocks: these targets provided opportunities to investigate the 717 

sedimentology of outcrops that were otherwise inaccessible. Close-up analysis of these 718 

could be used to investigate the sedimentology of the resistant outcrops from which they 719 

have fallen.  720 

(3) Scarp-forming Layered Units: as possible ancient flood plains deposits, a key priority 721 

was to assess their grain size via close-up analysis of bedrock examples of this material. 722 

Furthermore, these strata might have a geochemistry that varies between darker (reddish 723 

color, possibly Fe
3+

-rich) and brighter (whitish or pale grey, possibly Fe
3+

-poor). This might 724 

reflect changes in environment, depositional style, or later alteration. Hence another goal 725 
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was to determine if this variation is associated with deposition or post-depositional 726 

diagenesis. 727 

(4)  Anomalously bright regions associated with resistant materials, but within the 728 

Layered Formation: these outcrops might represent diverse paleo-environments, or extrema 729 

in the diversity of the interpreted geochemical variation expressed in the Layered 730 

Formations. 731 

(5)  Bedrock in the Layered Formation: if our working hypothesis was supported by rover 732 

observations, then finding competent, in-situ examples of these types of terrain would 733 

provide the ideal target for a drill sample. 734 

5.2 Traversability, Mapping and Localization (TML)  735 

Driving instructions for the rover were generated as ‘waypoint files’ describing rover-736 

relative positions for the rover to travel to, and the final azimuth for the rover. Drives were 737 

planned daily by the MOC SWT, with the waypoint files then being created by the TML team 738 

and uploaded as part of the daily tactical plan. To keep planning simple, drives were planned 739 

as a series of linear paths linked by point turns. At each waypoint, the location and direction 740 

of the rover was specified in the waypoint files, to put it in the best position for imaging or 741 

other tasks.  742 

While driving, the rover operated autonomously. To ensure the rover actually drove 743 

the planned track, the rover utilised its XB3 stereo cameras linked to the Oxford Visual 744 

Odometry application (Churchill, 2012) which generates frame-by-frame estimates of the 745 

rover’s motion. This is the same visual odometry algorithm as will be used on the ExoMars 746 

mission (Shaw et al., 2013; Woods et al., 2014) 747 
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In any rover mission it is imperative to know where the rover is, both relative to 748 

science targets and potential hazards, but also to its previous position to determine how 749 

successful the last commanded drive has been. This was especially important on the first sol 750 

of the mission. To localize the rover, we used distal and proximal trigonometry based on 751 

objects seen on the horizon or in the near field, and that could be located in remote sensing 752 

images. Where possible, proximal localization and planning within the meter-scale 753 

workspace was done using the PRo3D tool described above. The 3D scenes were created 754 

from AUPE panchromatic mosaics acting in ‘NavCam’ mode. The PRo3D scene close to the 755 

rover was used to characterize the workspace surface topography and hence fine tune the 756 

rover position for drill core acquisition.  757 

For targeting of the instruments on certain locations, a naming convention was 758 

adopted, analogous to the conventions used on MSL and other missions. Features large 759 

enough to be identified from orbital remote sensing analysis were given non-genetic names 760 

(e.g. “Big Mesa”). Features and targets identified from rover data were named after UK 761 

towns/villages with a population of fewer than 10,000 residents (e.g. ‘Wimblington’) using a 762 

name-randomiser tool and database. The TML team had ownership of this tool and were 763 

responsible for generating target names. Figure 13 shows the localisation and driving results 764 

of the MURFI ExoMars rover-like mission, and examples of targets determined during 765 

planning. 766 
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  767 

Figure 13. Localisation and drive calculations for the MURFI ExoMars rover-like mission, including 768 

some of the key targets and their locations. Note the Sol 5 localisation recalculation that resulted in 769 

the rover positioning being moved ~ 5 m to the west. Graticule and grid show UTM zone 12N so blue 770 

lines are 100 m apart. Dark lines are 2 m contours based on the 5 m DTM. Image credits: see Table 5.  771 

5.3 Daily mission operations log 772 

The following describes the sol-to-sol activities of the MURFI ExoMars rover-like mission. In 773 

general, each sol’s tactical plan involved a science block (targeted observations using one or 774 
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all of the standoff instruments), then a drive block. A NavCam emulator panorama 775 

acquisition was included as a standard post-drive imaging command. The post-drive 776 

panoramas were either 180° or 360° depending on data volume available and/or planning 777 

needs, and allowed choice of the next sol’s targets from the panorama.  778 

Sol	1.	(3rd	November	2016)	–	first	drive.	779 

The rover was placed at its landing site by the field team. The only data available to the SWT 780 

was a full-color, stereo, 360° WAC panorama (Figure 14). The TML team produced an 781 

accurate localization result using triangulation based on features identified in the panorama 782 

and the satellite remote sensing images. This located the rover within the study area, at a 783 

point ~ 70 m north of a large mesa (named “Big Mesa” by the team) and facing north. A 784 

small collection of ~ meter-sized boulders (named ‘the Weekday Rocks’ – Monday through 785 

Friday, by the team) was seen to the southeast. Targets chosen during Sol 1 tactical planning 786 

included: (i) ‘Byfield’: HRC imaging of pebble-rich ground near the rover (hypothesized sheet 787 

wash deposits), (ii) ‘Fiskerton’: HRC, WAC multispectral and ISEM emulator targeting of 788 

pebble-free soils near the rover, aiming to determine composition and texture, (iii) 789 

‘Ochiltree’: HRC observations of mud cracks near the rover,  (iv) HRC mosaic of the eastern 790 

part of the distant ‘Big Mesa’ to look for possible sedimentary structures, (v) ‘Thursday’: 791 

HRC of one of the weekday rocks to look for possible layering, and (vi) ‘West Butte’: HRC 792 

single images of a smaller butte in the middle distance and a boulder near the rover.  793 

 The overall strategic plan for the mission was discussed in the SWT, with the 794 

conclusion that heading south towards the largest vertical exposure gave the best chance 795 

for understanding the local geological setting. Hence, the Sol 1 drive plan included turning 796 

the rover 180° and then heading south 10m to bring the rover alongside the boulders. The 797 
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SWT were cautious about hitting the boulders in case the rover turn manoeuvre (or initial 798 

localisation) was inaccurate, so only a short drive, finishing before the boulders, was 799 

planned.    800 

 801 

Fig 14. a) AUPE full color, stereo panorama data returned after sol 0. b) Position of rover at start of 802 

Sol 1, as determined by the TML team. Image credits: see Table 5. 803 

Sol	2.	(4th	November	2016)	–	moving	towards	science	targets	804 

Data returned on Sol 2 showed that the rover had successfully avoided the Weekday Rocks 805 

and moved ~ 10 m south towards the Big Mesa. The SWT wished to characterise ‘Bourton, a 806 

small patch of high albedo material immediately south of the rover, for which two working 807 

hypotheses existed: (i) an inlier of high albedo bedrock, and (ii) an area of higher albedo 808 
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surficial material. The team did not want to ‘waste’ a sol examining this area further if it was 809 

surficial material, but if it were bedrock this could provide a promising target for drilling. It 810 

was also suggested that this material could be a possible rover traversability hazard if it 811 

were loose sand. The outcome of discussion in the SWT was that a two-part drive, first to 812 

the edge of Bourton, then skirting to the east and then southeast of it, was appropriate. An 813 

untargeted right-looking imaging sequence of the centre of Bourton using WAC, HRC and 814 

ISEM emulator acquisition was planned to occur before the second drive. If Bourton was 815 

found to be bedrock, the rover could then retrace its drive back to this area on future sols. 816 

Additional pre-drive targets included several HRC mosaics of the buttes and mesa in the 817 

area to search for sedimentary structures, and an HRC/ISEM emulator study of a bright 818 

patch of soil and a small rock (possibly bedrock) near the rover. 819 

Sol	3.	(5th	November	2016)	820 

No operations (scheduled rest day). We note that the provision of rest days will be very 821 

unlikely in the early part of the ExoMars rover mission. 822 

Sol	4.	(6th	November	2016)	–	targeted	instrument	analyses	823 

Due to scheduled changeovers in the field Platform Team, no driving was possible on sol 4. 824 

The returned HRC and WAC data showed strong evidence for the Big Mesa being composed 825 

of sedimentary material, based on observations of albedo, texture and layering at smaller 826 

scale than visible in the remote sensing data. HRC images showed inclined strata, 827 

interpreted as being cross-bedding in the Resistant Formation materials, both in situ and in 828 

debris at the base of the slopes. The data also showed further patches of high albedo 829 

material to the east and north of the Big Mesa. The SWT proposed these to be bedrock 830 

examples of the Anomalously Bright Unit of the Layered Formation, and so might be 831 
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possible future targets for drilling. The data obtained on sol 2 revealed that Bourton was 832 

composed of surficial material so sol 4/5 drives were planned towards the south to bring the 833 

rover into an area with more outcrop and drill targets. The targeting strategy was to build 834 

up more information about the geology by observing outcrops in the local area. Sol 4 targets 835 

included (i) HRC mosaic of ‘Painswick Patch’ the bright terrain west of Big Mesa, (ii) 836 

Wimblington, an area of jumbled debris north of Big Mesa, and (iii) ‘Weeting’ and 837 

‘Swanland’ patches of brighter terrain on the rover’s southward drive path. 838 

Sol	5.	(7th	November	2016)	–	long	drive	towards	region	of	interest	839 

The plan for sol 5 included further HRC and WAC imaging of the Painswick Patch area and 840 

two HRC and ISEM emulator analyses of possible bedrock outcrops nearby (‘Cransford’ and 841 

‘Dunoon’). The previous sol’s imaging allowed a long drive to be planned as the absence of 842 

drive obstacles was quite clear. Hence, a 30 m drive south to the edge of Painwick Patch was 843 

planned. 844 

Sol 5 contained a few examples of logistical and communication problems. First, the 845 

planned drive for sol 5 brought the rover to the edge of the MURFI ‘working space’, agreed 846 

between the UK SA and CSA field teams. The working spaces were relatively close together 847 

for communications and logistics reasons. Unbeknownst to the MOC team, the CSA rover 848 

was working just a few tens of meters further south and there were worries that the 849 

presence of two field teams working so close to one another would compromise both 850 

investigations. The field team did not know that this was likely to be the last long drive 851 

performed by the MOC team, as the strategic plan for sols 6-9 included detailed studies of 852 

the locations near the rover to prepare for drilling, rather than further long drives. The 853 

problem was resolved after field and MOC team communicated directly via satellite phone, 854 
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reassuring the field team that the MURFI rover would not be progressing much further 855 

south into the CSA workspace. This incident demonstrates the need for well-defined 856 

working spaces and reinforces the necessity of readily available communications between 857 

MOC and field. 858 

A second issue that arose on this sol was that the TML team became concerned that 859 

a localisation error could have propagated throughout the entire mission, potentially 860 

putting the rover 10-20 m from where the SWT thought it was. However, re-localising 861 

revealed that the rover was within 5 meters of the previous estimate. Nevertheless, this 862 

recalculation put increased pressure on the tactical planning time window. 863 

Sol	6.	(8th	November	2016)	–	characterizing	possible	drill	site	864 

Sol 6 saw a change in the pace of the mission: the team transitioned from “observing and 865 

driving” to “characterising and deciding about drill sites”. The SWT were aware that sol 6 866 

would be the last driving sol, if drill workspace characterisation was to be performed on sol 867 

7, and the command to drill being given on sol 8. This meant that tactical planning on this 868 

day would finalise which of the several possible drill sites were chosen.  869 

At the start of the sol, the rover was positioned close to the Cransford outcrop, 870 

which appeared to be composed of finely layered sedimentary material with recessive 871 

interbeds. Other possible targets included ‘Outwood’, an area that appeared to be a small 872 

patch of Layered Formation material, and ‘Skinningrove’, a target in the Painswick Patch 873 

bright terrain. After much debate, the SWT decided that Skinningrove would be the drill 874 

location, so a 12 m drive to the southeast was planned. Prior to the drive, both Cransford 875 

and Outwood were targeted with ISEM emulator and HRC, to better constrain their 876 
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lithologies and potential for future drilling, and an HRC mosaic was taken of the 877 

Skinningrove area.  878 

Sol	7.	(9th	November	2016)	–	positioning	for	drilling	879 

Following the sol 6 drive, the rover was correctly positioned at the Skinningrove target in an 880 

area of loose sediment with a light cover of small (cm-scale) pebbles and cobbles. The aim of 881 

the sol 7 plan was to characterize the location in detail, prior to making a decision exactly 882 

where to drill. It became clear during tactical planning that being able to position the rover 883 

on a precise spot would be difficult, but was required – we did not want to choose a drill 884 

location with a large cobble or surface fracture that could damage the drill. Although the 885 

rover has good visual odometry capabilities, this technique is less accurate if turning, so the 886 

SWT felt that specifying a drill position based on mast instrument data, and then asking the 887 

rover to drive more than a few tens of centimeters to reach it, was too inaccurate. Given 888 

that the drill is attached to the rover body (at least, it will be for ExoMars rover and so this 889 

was assumed for the purposes of the trial), rather than being on a robotic arm, the contact 890 

point of the drill with the ground cannot be imaged directly with ExoMars’ mast 891 

instruments. This means that, without moving the rover, the specific drill location can only 892 

be imaged with CLUPI, which is mounted on the drill casing (Josset et al., 2012) or  using 893 

HRC via the ‘Rover Inspection Mirror’ (Coates et al., 2017).  894 

The SWT devised a CLUPI-based tactical plan that enabled a reasonably large area of 895 

ground near the rover to be imaged, but which retained the ability for the rover to return to 896 

the chosen location precisely. The plan involved moving the rover backwards ten times in 10 897 

cm steps, acquiring a vertically-targeted CLUPI emulator image at each step. The aim was to 898 

create a long swathe-like mosaic of CLUPI images that would allow the surface to be 899 
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analyzed, and so that any location chosen in that swathe could be returned to simply by 900 

driving the rover forward with no turns (the most accurate driving mode) a certain distance. 901 

In addition to this CLUPI emulator mosaic, several ISEM emulator measurements of the 902 

surface near the rover were planned in order to analyze the mineralogy of the surface 903 

materials. The final targeting request was for an early morning full color WAC mosaic of the 904 

Big Mesa to image it in optimal lighting conditions.  905 

Sol	8.	(10th	November	2016)	–	drilling	and	observation	of	drill	tailings	906 

Sol 8 was the last sol of daily tactical planning. The CLUPI emulator mosaic returned 907 

following sol 7 activities revealed that a small miscalculation was made in the drive 908 

distances, such that each drive step was a few cm longer than the field of view of the CLUPI 909 

emulator images. Hence, the image mosaic was more of a ‘ladder’ than a swathe. 910 

Nevertheless, the ‘CLUPI ladder’ was still fit for purpose, and allowed a drill location (target 911 

name: ‘Poddington’) to be identified that was clear of large clasts and on a straight forward 912 

path for the rover. The tactical plan for sol 8 was complex: the first science block involved 913 

pre-drive imaging with HRC and ISEM emulator of Poddington and acquisition of an early 914 

morning WAC color image of Big Mesa, as a final ‘press-release’ style image. Next, a short 915 

forward drive of 20 cm was commanded, followed by CLUPI emulator imaging of the 916 

Poddington drill site. The next set of commands was the drill and sample sequence, and 917 

then CLUPI emulator imaging of the drill tailings. This was followed by a second reverse-918 

direction drive of 20 cm, and then by a second science block including ISEM emulator, HRC 919 

and multispectral WAC imaging of the drill tailings to provide information about the 920 

composition and texture of the subsurface material. Finally, the drill core was imaged using 921 

CLUPI and analyzed with the Raman spectrometer.  922 
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 923 

Figure 15. Target examples. a) Sol 1 targeting example showing HRC field of views and target names 924 

and codes superposed on a portion of the sol 0 color panorama. b) The sol 2 HRC ‘drive-by’ image of 925 

the Bourton area – this image showed that Bourton was surficial materials and not bedrock. c) 926 

PRo3D scene of the local workspace near the rover as the SWT prepared to select the final drill site. 927 

PRo3D allowed size and distance to be measured accurately. The two dark circles to the left of the 928 

image were vegetation. d) Images from the ‘CLUPI Ladder’ superposed on a plan view, re-projected 929 

WAC color image. The red circles shows the chosen drill target location and the black line the drive 930 

distance required to reach that point. 931 
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Sol	9.	(11th	November	2016)	–	post	drill	analysis	932 

On sol 9, the data from sol 8 were returned and analyzed by the SWT. The returned core 933 

samples were rather friable, and broke into several sub-rounded pieces during extraction. 934 

Nevertheless, Raman analysis was still possible, and analysis of the drill-hole debris cone 935 

was also performed. 936 

 937 

Figure 16. Results of drilling. a) Small parts of drill core obtained. Scale bar lower left is in mm. The 938 

CLUPI emulator image of the drill core pieces showed that they contained many fine sand-sized 939 
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grains, and were not mudstone as had been predicted. b) The ‘drill tailings’ that resulted from the 940 

drilling. This debris pile was actually constructed by the field team to mimic a real drill-core debris 941 

cone as the majority of the depth of the excavation was made using a spade, not a deep drill-corer 942 

for reasons of field efficiency. Only the final few centimeters of the excavation was done with a corer. 943 

The debris material was obtained from the bottom of the excavation to provide a realistic material 944 

sample.  945 

 946 

6.	Rover	science	results	947 

During the 9 sols of the ExoMars rover-like mission, the MURFI platform traversed ~100 m 948 

and made multiple observations and measurements that were discussed and analyzed by 949 

the SWT. These discussions built upon the current working hypotheses from the pre-mission 950 

satellite mapping. The MOC team quickly realized that the majority of the bedrock and float 951 

rocks were easily identifiable as sedimentary rocks. In order to remain true to the 952 

simulation, the MOC team had to overcome certain challenges, such as how to estimate 953 

grain sizes and bedding thicknesses, key factors in determining geological provenance. For 954 

example, the size of float rocks were estimated from CLUPI emulator images which also 955 

included the rover wheel (of known width), and the heights of larger outcrops were 956 

correlated to the topographic measurements recorded from satellite data.  957 

6.1 Key mission observations from stand-off instruments 958 

6.1.1.	Imaging	instruments	959 

The following observations and interpretations were made by the MOC SWT: 960 
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(1) The loose float rocks (e.g. Figure 17a) that occur on the plains are compositionally 961 

immature and poorly-sorted rounded pebble fragments up to 2-3 cm in diameter (fine to 962 

coarse gravels), with occasional larger clasts (rarely larger than cobble size). They are likely 963 

water-lain sediments from laterally unconfined modern flood event(s), although it could not 964 

be determined whether they were from proximal or distant sources. The grain size of the 965 

local soils also could not be determined, but the presence of surface mud cracks indicates 966 

that soils were at least partially composed of mud-grade material. It was also unclear 967 

whether the local soils had largely been transported (e.g., through flood events) or were the 968 

altered surfaces of bedrock, although the SWT generally favored the first interpretation 969 

based on the observations of extensive modern drainage morphologies in the area. 970 

 971 
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Figure 17. Example science observations and interpretations. a) AUPE image of float rocks and 972 

surface texture. Note rover wheel for scale. b) HRC image of resistant material on top of Big Mesa. 973 

Layering can be seen, as well as probable crossbedding (inset). This material was therefore 974 

interpreted to be a sandstone. c) HRC image mosaic showing more possible cross-bedding (inset) in 975 

the ‘Wimblington’ target area. The SWT were not convinced this outcrop was in-situ, however. 976 

  977 

(2) A resistant and blocky material occurs on top of ridges and buttes within the study area 978 

(Figurer 17b), and the same materials are seen as piles of rubble at the base of scarps (e.g., 979 

locations designated as Big Mesa, Wimblington, and Cransford) as seen in Figure 17c. The 980 

location of this material correlates with the Resistant Formation observed in the pre-mission 981 

satellite mapping. The Resistant Formation generally sits on top of a more erodible layered 982 

material (correlating to the Layered Formation observed in the pre-mission satellite remote 983 

sensing mapping), which it has possibly protected from erosion. Within the Resistant 984 

Formation, both cross-stratified and planar bedding are visible, which are probably up to 985 

tens of cm thick (Figure 17b). Although the cross-bedding generally appears tabular, the 986 

possibility of it being trough cross-bedding could not be ruled out with the available data. 987 

The presence of cross-stratification indicates that much of the Resistant Formation is 988 

sandstone, and therefore of probable fluvial or aeolian origin. Whether the sandstone was 989 

fluvial or aeolian could not be determined without further grain size analysis, and no 990 

diagnostic pebble-grade or larger materials were observed. Fluvial sandstones would be 991 

consistent with the conclusions from satellite mapping, and support the idea that the 992 

sinuous ridge landforms were inverted fluvial channels. Wavey, non-parallel bedding of 993 

lamination-scale was also observed at Cransford, as well as recessive interbeds (Figure 18a-994 

c). The recessive interbeds here and elsewhere could be eroded mudstones/siltstones or 995 
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finer-grained sandstones, suggesting that the Resistant Formation may have been deposited 996 

in a variety of different sedimentary environments. 997 

(3) Within the Layered Formation that is exposed at the edges of Big Mesa and the more 998 

distant ridges (Figure 18d), layering is visible at the scale of the outcrops (meter-scale), but 999 

finer scale bedding or laminations are not observable. Color variations (Figure 18e) between 1000 

white and dark – sometimes reddish – layers within the Layered Formation suggest 1001 

geochemical (e.g., Fe
3+

 content) or lithological variations between the layers, possibly due to 1002 

different depositional environments. However, AUPE multispectral data (Figure 19) revealed 1003 

spectral consistency across the face of Big Mesa, despite the apparent color differences. The 1004 

dominant spectral feature observed was the Fe
3+

 crystal field absorption band 1005 

superimposed on a steep ferric absorption slope between 350 and 1000 nm. These features 1006 

are present in all layers in Big Mesa. 1007 
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 1008 

Fig. 18. Examples of science outcomes. a) HRC image of a portion of the ‘Cransford’ target, a layered 1009 

outcrop of areas of soil overlying areas of apparently in-situ bedrock. The bedrock areas comprised 1010 

15-20 cm thick (based on PRo3d measurements) layered exposures, each composed of thickly 1011 

laminated or finely bedded material interpreted to be sandstone. b) HRC image of another part of 1012 

Cransford showing recessive interbeds. c) HRC image of a third area in Cransford, showing possible 1013 

cross cutting, non-parallel bedding (arrowed), and possible subtly undulating bedding (right of arrow) 1014 

d) WAC color mosaic of Big Mesa, showing the Resistant Formation (top, and materials shed to the 1015 

sides) and the Layered Formation (lower part of outcrop, showing bands of whitish, brown and red 1016 
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material; interpreted to be much finer material), making up for the majority of the scene. At the far 1017 

right of the scene are similarly colored layers in the distance. Note that sun-angle was consistently 1018 

poor for imaging Big Mesa. e) Color-stretch close-up of the layering in Big Mesa, showing at least 1019 

four different tonal-types, and highlighting the modern rill-forms that incise the outcrop. Big Mesa is 1020 

~ 22 m high. 1021 

 1022 

Figure 19. WAC Multispectral results. a) Enhanced color AUPE WAC image of Big Mesa showing 1023 

location of Region of Interest (ROI) targets. b) Principal Component Analysis (PCA) false-color Left-1024 

WAC AUPE image using RGB filters, revealing Big Mesa to comprise spectrally-similar material. c) 1025 

AUPE spectra extracted from the three ROI targets, all with a strong absorption at 530 nm and a 1026 

weak absorption at ~800 nm.  1027 

 1028 

Much of the surface of the Layered Formation had been modified by modern erosional 1029 

processes, and many rills incise it (Figure 18e). Most surfaces are covered in weathering 1030 

products (and even when the field team scraped away this surface they found significant 1031 

alteration to several cm’s depth). Hence, it was difficult for fresh surfaces to be analsyed. 1032 

The SWT working hypothesis by mission-end was that the Layered Formation is made up of 1033 

mudstones, clays, or marls, which are all formed in low-energy environments. The Layered 1034 

Formation was thus considered to have formed in a more effective environment for 1035 

preserving biomarkers and organic materials than the Resistant Formation (probably a 1036 
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sandstone) and therefore sampling material from the Layered Formation was the agreed 1037 

goal for the drilling. The overall paleoenvironmental working hypothesis for the site, based 1038 

on both the satellite remote sensing and rover observations, was that the Resistant 1039 

Formation represents the deposits of an ancient fluvial channel, while the Layered 1040 

Formation represents an associated flood plains environment.  1041 

6.1.2	Spectrometer	results	1042 

Data from the ISEM emulator (Figure 20) revealed ~ 2.21 and ~ 2.34 µm absorption bands in 1043 

material analyzed from the accessible, Anomalously Bright unit in the ‘Painswick Patch’ area 1044 

chosen for drilling. The 2.21 µm feature is characteristic of Al-bearing phyllosilicates such as 1045 

montmorillonite and kaolinite, whereas the 2.3 µm band is typical for Fe/Mg-bearing 1046 

smectite clays such as nontronite and saponite (e.g., Bishop et al., 2008). While it is not 1047 

possible to distinguish between these phases using these bands alone, the strength of the 1048 

absorptions and their presence in the majority of targets analyzed suggest that 1049 

phyllosilicates form a core component of the Anomalously Bright Unit. Finally, ISEM 1050 

emulator data (Figure 20) identified the same Fe
3+

 absorption band at 0.53 µm as the ferric 1051 

absorption slope identified in the AUPE multispectral data from Big Mesa (Figure 19c). This 1052 

spectral consistency further supports the hypothesis that the brighter surficial material has 1053 

the same source as the surrounding mesas.  1054 
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 1055 

Figure 20. ISEM emulator reflectance spectra in the short-wave infrared (left) and visible to 1056 

near-infrared regions (right) for a variety of targets. Fiskerton is a ground-surface target of 1057 

soils containing mud-cracks analyzed on sol 1; Marnhull is a small boulder set within soils, 1058 

Mountfield an area of anomalously high albedo soils, and Bourton a large patch of high 1059 

albedo material analyzed during the ‘drive-by’ analysis – all were analyzed on sol 2; 1060 

Skinningrove is an area of ground containing the drill site, analyzed on sol7. 1061 

6.2  Drill site selection and science outcome 1062 

The last commanded activities of the ExoMars rover-like mission were to drill into the 1063 

‘Skinningrove’ target in the high albedo Painswick Patch area, and to analyze the returned 1064 

sample. Based on rover observations, the SWT developed three working hypotheses to 1065 

explain this material and its relationship to the Layered Formation: (i) it is bedrock, and part 1066 

of the Layered Formation; (ii) it is surficial material, possibly an evaporite formed above a 1067 

low permeability layer, and (iii) it is surficially altered bedrock (a combination of the first 1068 

two hypotheses). The detection of montmorillonite, which can form as a weathering 1069 
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product, here was important, as it was consistent with either of the latter two working 1070 

hypotheses. The SWT thought that the third option was most likely, and chose this area for 1071 

the drill site: the justification for this decision being that if this area contained clay-rich 1072 

mudstones (accessible at the surface or just beneath the weathered surface) they would 1073 

then be an ideal environment for biomarker preservation and concentrating organic 1074 

material, making them good sites for drilling (as discussed in Vago et al., 2017). 1075 

The core returned was observed with the CLUPI emulator instrument and then 1076 

analyzed using the Raman spectrometry instruments. In the CLUPI emulator images, the 1077 

core extracted did not appear to be a mudstone, or other very fine grained rock, as 1078 

translucent rounded grains were visible – suggestive of quartz sand grains. Although the 1079 

core was visibly friable (being fractured into small pieces, and not maintaining a core-like 1080 

shape), it was impossible to tell how competent the material really was, so the inference, 1081 

based on CLUPI images, was that this material was a poorly-cemented sandstone. 1082 

As the final action of the MURFI ExoMars rover-like mission, Raman spectrometry of 1083 

the core sample was performed on site. The sample was divided into three pellets, each of 1084 

which were measured with 30 acquisitions using 1 second acquisition times. The Raman 1085 

spectra showed two distinct minerals within the sample material (Figure 21). Each pellet 1086 

showed a strong quartz band with the characteristic sub bands. The main band of calcite 1087 

was visible with drill core 2, also showing the clearest sub bands to confirm the 1088 

identification. Further observation points on the sample surface did not reveal any other 1089 

distinct mineralogy, showing either quartz or calcite or a combination of the two. 1090 
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 1091 

Figure 21.  Representative Raman spectra from the three drill core pellets. Spectra have background 1092 

and fluorescence subtraction with all negative values set to 0. Wavenumber 466 cm
-1

 indicates 1093 

quartz, will 1088/1089 cm
-1

 indicates calcite.  1094 

 1095 

The results from both the CLUPI and Raman emulator instruments supported the inference 1096 

that the drill core was a quartz-rich sandstone, not the predicted mudstone or siltstone. 1097 

Hence, we assumed that either the assumptions made about the bright material composing 1098 

the Layered Formation were incorrect, or that the drill did not penetrate into bedrock 1099 

associated with the Layered Formation, instead sampling a more modern deposit, such as a 1100 

salt pan or poorly cemented juvenile sediments. However, post-mission laboratory-based 1101 

Scanning Electron Microscope-Energy Dispersive X-ray (SEM-EDX) analyses of the core 1102 

samples showed different results: SEM-EDX analyses on the drill core confirmed the calcite 1103 

and quartz identification and, in addition, revealed the presence of substantial amounts of a 1104 

Potassium/Aluminium-rich clay – possibly Illite. These results suggest that the sample 1105 

consists of fine grained quartz sand, cemented by both abundant calcite and clay, so 1106 

potentially a more interesting astrobiological target than first thought. However, given the 1107 
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limitations of the MURFI instrument suite, it was still not possible to determine if this 1108 

material was bedrock derived, or simply a poorly consolidated recent deposit, perhaps some 1109 

form of salt and clay pan which encloses fine sand. 1110 

For the purposes of MURFI, the extraction and Raman analysis of the sample was 1111 

considered mission success. With more time, and perhaps a fuller range of emulated 1112 

instruments, it is likely that similar conclusions could have been drawn from the MURFI 1113 

analyses as those obtained from the lab-based analysis, and perhaps even a better 1114 

understanding of the lithology of the sample material. This conclusion once again highlights 1115 

the difficulties of performing sample acquisition and analysis remotely, compared with 1116 

laboratory-based analyses using more flexible and more easily deployed analytical tools.  1117 

7.	Public	Engagement	1118 

Public engagement during the MURFI investigation was carried out directly by the MURFI 1119 

team with assistance from the UK SA and the UK Science and Technology Facilities Council 1120 

(STFC). Mission planning from the outreach perspective also included engaging with the 1121 

CSA, and in particular obtaining clearance and support to use the MURFI mission patch. 1122 

The use of the MURFI logo and mission patch (Figure 22) was one of the successes of 1123 

the mission. The value of a good logo cannot be understated, as it provided both a vehicle 1124 

for the whole team to get behind, and also a key mechanism for engaging with the public. 1125 

The mission patch was also included by the UK SA and STFC as part of their ‘National 1126 

Colouring Book Day’ contribution during the summer of 2017, encouraging children to 1127 

reimagine the patch design and learn about the missions behind it. 1128 
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 1129 

 1130 

Fig. 22 The MURFI 2016 Logo, including annotations describing the design philosophy. 1131 

 1132 

During the ExoMars mission phase a blog was generated which saw over 20 posts and 5000 1133 

views from 1000 visitors in 24 countries to the site (https://murfiblog.wordpress.com/). 1134 

Additionally, the field trial used a Twitter hashtag (#MURFI). Again the mission name and 1135 

logo proved extremely valuable in making connections to the wider public. The twitter feed 1136 

had over 185 posts by 77 different users across the UK planetary science community, 1137 

achieving a reach of 352,105, and nearly 800,000 impressions. Media coverage of the 1138 

mission included mentions and feature articles published online through the BBC, The 1139 

Guardian, New Scientist, Space.com, the UK SA blog, Medium, the TED Blog, and Science 1140 

Made Simple, whilst the BBC’s Sky at Night filmed the MOC operations for their November 1141 

Mars edition. 1142 

There were several visits to the MOC by a variety of different organisations. This was 1143 

encouraged by the location of the MOC within the larger building – the MOC has a 1144 

transparent wall (although this can be made opaque) such that operations could be 1145 
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observed by any visitors to the building. Some of the organisations visiting, planned or 1146 

otherwise, included chancellors of several universities, the Chilean Minster for Science, two 1147 

NASA technologists, observers from ESA and numerous other organisations based on the 1148 

Harwell Campus. 1149 

At the field site in Utah, visitors included representatives of several other space 1150 

agencies, representation from Salt Lake City, US government departments and military units 1151 

in the vicinity, as well as many tourists in the region, both US and foreign.  1152 

8.	Discussion	and	lessons	learnt	1153 

The MURFI trial was very successful both in terms of delivering a mission-like operations 1154 

experience and learning about the logistics of planning future rover field trials. The site 1155 

chosen for the trial allowed a range of activities and had a suitable variation of geological 1156 

features to make it interesting. MURFI benefitted greatly from being a joint activity with the 1157 

CSA MSRAD trials, and their logistical assistance was a large part of MURFI’s success.  1158 

 1159 

8.1 Use of rover-based instrumentation during the MURFI ExoMars 1160 

rover-like mission 1161 

The way the team used the MURFI instruments provides insight for how the instrument 1162 

suite might be used during the ExoMars rover mission, and also for future field trials. Like 1163 

rover missions sent to Mars, the acquisition of stereo NavCam panoramas at the end of 1164 

each drive was vital for planning target acquisitions for the next sol, especially when data 1165 

downlink limits precluded the use of full color stereo AUPE panoramas. The MURFI SWT 1166 

requested multi-filter AUPE images only of smaller areas, when there was a science need for 1167 
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multispectral data, or when there was sufficient data downlink availability. HRC was widely 1168 

used in the MURFI ExoMars rover-like mission. The use of HRC image mosaics of the 1169 

Resistant Unit allowed inferences about the lithology to be made from observations of the 1170 

bedding. HRC mosaics were used to analyze the landscape in the medium to far field, and 1171 

individual HRC images were also used in the near field to analyze the local area to prepare 1172 

for drilling, or obtain more detailed information about outcrops. HRC was a vital tool for 1173 

MURFI, and its variable focal length made it useful for both strategic level decision-making 1174 

(which general direction to head in) and for daily tactical planning (where exactly to set the 1175 

rover to obtain a drill core). Single HRC images were also used to check the location and 1176 

orientation of the rover against panorama images.  1177 

The team made extensive use of downward-looking CLUPI images for drill targeting, 1178 

but sideways looking CLUPI images were also used to examine outcrops and the landscape 1179 

in general, when rover pointing allowed. The high resolution and full color capability of 1180 

CLUPI images were particularly suited for analyzing outcrops to determine grain size and 1181 

detailed sedimentary structure. 1182 

 Although almost all observations were made via targeted, precise direction of the 1183 

instruments based on their position within the NavCam mosaic or a PRo3D scene, the SWT 1184 

also commanded a single untargeted imaging session of the Bourton area as part of a ‘drive-1185 

by’ tactical plan: this was very useful for testing ways to maximize the efficient use of 1186 

limited time resources. 1187 

Overall, we found that the stand-off instruments used on MURFI had complementary 1188 

strengths and different weaknesses, such that targeting them as a suite gave a huge benefit. 1189 

We feel that rehearsals and trials such as the MURFI ExoMars rover-like mission, in which 1190 

the instruments were together, and with targeting performed holistically across a wide 1191 
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working group, are vital for allowing a rover team to work out how to operate efficiently 1192 

and effectively. 1193 

8.2 MURFI ExoMars rover-like mission: assessment of geological 1194 

interpretations and planning decisions made by the SWT 1195 

8.2.1.	Initial	satellite	remote	sensing	mapping	1196 

The hypotheses built using the Mars-equivalent satellite remote sensing data were vital for 1197 

the mission and provided a framework to test other observations against. After the MURFI 1198 

mission, we compared the satellite remote sensing observations with field observations 1199 

provided by the MURFI field team, the results of past studies of the geology of the MURFI 1200 

site in the literature, and direct observations made during a post-mission visit to the MURFI 1201 

site by some members of the SWT. The interpretations made from the satellite remote 1202 

sensing broadly matched those made by the field team, as well as the conclusions from the 1203 

literature: the overall interpretation of the landscape comprising inverted fluvial channels 1204 

and flood plains deposits was confirmed. 1205 

The prediction made from satellite remote sensing of layered plains with 1206 

interbedded resistant layers was also broadly correct, matching previous observations of the 1207 

Brushy Basin  Member of the Morrison Formation (Heller et al., 2015). One hypothesis put 1208 

forward during satellite remote sensing mapping was that the Layered Formation is a 1209 

mudstone, with significant geochemical variation. However, this was not supported by 1210 

either the MURFI drill results or rover observations (which found many the Anomalously 1211 

Bright Unit to be composed of sandy material, and little variation in WAC multispectral 1212 

images across the colored layers). Furthermore, based on MURFI rover data, the color 1213 

differences in the Layered Formations did not appear to be strongly associated with 1214 
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significant differences in mineralogy or the depositional environment. However, the color 1215 

differences are actually indicative of palaeosol weathering variations that reflect complex 1216 

variations in local and regional paleoclimate and paleoenvironment (Demko et al., 2004). It 1217 

is possible that similar conclusions could have been reached using the MURFI instruments 1218 

and platform, given a long enough mission and the collection of multiple samples. However, 1219 

it is unlikely that orbital remote sensing analyses using Mars-like data alone could be 1220 

expected to tease out these details. Lesson learnt: geology is complicated, and satellite 1221 

remote sensing conclusions can obscure these complications. However, a combination of 1222 

satellite remote sensing and rover-scale observations is needed to interpret the geology of 1223 

landing sites correctly (see also, for example, Stack et al., 2016).  1224 

The difference in the image resolution between satellite remote sensing data and 1225 

rover observations meant that detail was easily overlooked at the start of the mission. For 1226 

example, the initial direction in which to drive was determined mainly on satellite remote 1227 

sensing interpretations, primarily that Big Mesa outcrops might show lithological, 1228 

geochemical or mineralogical variation, and possible layered bedrock. However, several 1229 

small outcrops visible in the initial panorama and close to the rover would have provided 1230 

clearer indicators of the palaeoenvironment. These outcrops were actually visible in the 1231 

Mars-like remote sensing data, but the small-scale of mapping required to cover the whole 1232 

landing site meant that they were amalgamated into a larger unit, rather than being 1233 

highlighted as specific bedrock areas. Lesson learnt: to provide the best possible chance to 1234 

make good strategic decisions, large-scale geological, science target and hazard mapping 1235 

using full-resolution satellite images of the area around the landing location should be 1236 

conducted as rapidly as possible, as soon as the landing location is known.  1237 
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The initial landing site assessment included analysis of rover-scale hazards such as 1238 

slopes, modern fluvial channels, loose materials, and boulders and rocks. Even with the sub-1239 

meter pixel size images available, we could not measure the distribution of loose material or 1240 

small cobble-grade rocks (potentially relevant to rover traversability), as they are below the 1241 

pixel size. During post mission field observations we were consistently surprised by the 1242 

distribution and diversity of surface textures (some traversable, some not) compared with 1243 

the satellite remote sensing images. For example, in the field we have observed soft ground 1244 

with a lag of 2-3 cm diameter pebbles, cloddy friable ground, and regions of densely packed 1245 

cobble-sized clasts, all of which appeared featureless, although of different colours, in the 1246 

highest resolution satellite data. Lesson learnt: a robust practical understanding of the rover 1247 

platform traversability capabilities, tested against as wide a variety of analog surfaces as 1248 

possible, is essential, because even 25 cm/pixel (HiRISE) data provide little information about 1249 

the true surface type. Hence, stand-off ground-based observations will be more important 1250 

for determining whether or not an area is traversable. 1251 

8.2.2.	Rover-based	observations		1252 

The interpretations made from the satellite remote sensing data were broadly supported by 1253 

observations from the rover-based instruments, and in general our working hypotheses 1254 

developed during MURFI were supported by post-mission fieldwork and previous field 1255 

studies. As mentioned above, the largest area of misinterpretation was in the identification 1256 

of the layered terrains as being probable mudstones, when post-mission field work showed 1257 

that they contain many examples of sand-grade materials and only mud/silt-stone beds to a 1258 

much lesser extent. Lesson learnt: grain size of a sedimentary rock – a vital measurement for 1259 
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inferring depositional environment – is difficult to measure from a rover, and nearly 1260 

impossible from orbit. 1261 

Another area where, post-mission, the MURFI field team advised the MOC SWT that 1262 

a mistake had probably been made, was in the failure of the SWT to better investigate a 1263 

rocky ridge only a few meters to the northwest of the landing site as their first priority. In 1264 

fact, the SWT did not request any further targeted data of this feature other than the 1265 

original sol 0 panorama. Post-mission field work confirmed that this feature, composed of 1266 

cross-bedded sandstones and conglomerates, would have provided definitive information 1267 

about the palaeoenvironment (i.e., this was a fluvial sandstone, so deposited in a river). This 1268 

omission was partly due to the perception that the variety of textures seen in the larger Big 1269 

Mesa outcrop to the south would provide answers about more elements of the landscape, 1270 

but also due to the smaller features appearing to be composed of out-of-situ blocks in the 1271 

panorama. In fact, the SWT should probably have realized that even if these blocks were not 1272 

in-situ, their meter-scale size meant that they probably were local to emplacement source, 1273 

and so could have provided important information. Lesson learnt: small outcrops can 1274 

provide important information, and spectacular, larger outcrops can deflect attention from 1275 

more important targets. A balance must be struck that can probably only be determined 1276 

during the mission itself – but field trials can give important training for making these 1277 

decisions. 1278 

A similar issue identified by the field team was that, although the SWT used HRC 1279 

image targeting very effectively to search for sedimentary structures, several opportunities 1280 

to identify sedimentary structures and layering – and even cross-bedding – were missed.  1281 

One example of this was a feature called ‘West Butte’, in which the HRC targeting missed 1282 

the cross bedding hinted at in the WAC panorama. Lesson learnt: even though tactical 1283 
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planning is time-constrained, all images should be examined carefully to avoid loss of 1284 

potentially informative targeting opportunities. Making time for whole-team science 1285 

discussions during a planning day is vital. 1286 

Post-mission, some of the MOC SWT ‘walked the MURFI traverse’ in the field. One of 1287 

the biggest surprises was how close targets appeared when viewed in situ, compared with 1288 

when examined in panorama images returned by the rover. This was partly compensated 1289 

for by using PRo3D, but it was still very hard to get a correct sense of scale and distance. 1290 

This problem also probably contributed to the rocky-ridge and West Butte issues mentioned 1291 

above. Lesson learnt: the projection of panorama summary products can be misleading, and 1292 

wider use of 3D visualization, and even virtual reality viewing platforms, should be made.  1293 

8.3 Lessons learned from MURFI for ExoMars rover operations. 1294 

The mission style, pre-mission geological mapping, the instrument suite deployed, and data 1295 

returned during the MURFI ExoMars rover-like mission were sufficiently close to the real 1296 

ExoMars rover payload and mission to give the team insight into how the ExoMars rover 1297 

might operate. A key responsibility of the ExoMars science team will be to characterize the 1298 

local geology well enough to provide the mission with the best possible targets for sampling, 1299 

such that science questions can be answered to further the overall objectives.  1300 

The satellite remote sensing mapping provided vital context for the MURFI ExoMars 1301 

rover-like mission, and, once the landing site point was determined, provided specific 1302 

constraints about how the mission might progress, as it highlighted possible science targets 1303 

and likely hazardous areas. Also, although the satellite remote sensing mapping was done in 1304 

a very short time period, the relatively small size of the area mapped and the high degree of 1305 

planetary mapping experience available within the team allowed useful maps to be 1306 
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generated quickly. Almost complete HiRISE coverage of both candidate ExoMars landing 1307 

sites is now available, so very high resolution mapping should be possible for ExoMars once 1308 

the landing location is known.  Lesson Learnt: once the rover landing position is known, 1309 

rapid, high quality geological mapping, at full HiRISE-resolution scale, will provide a vital 1310 

resource for shaping the mission.  1311 

A corollary to the previous point is that although the satellite remote sensing 1312 

interpretations were broadly correct, the rover-based measurements demonstrated some 1313 

mistakes or misidentifications in the satellite image based mapping. Also, the initial 1314 

decisions of the SWT to head south to Big Mesa, rather than focussing on small outcrops 1315 

nearby was perhaps a mistake, and may have been exacerbated by the satellite remote 1316 

sensing focus on mapping the whole study area before the precise landing position was 1317 

known, and so by necessity omitting some detail in the local area. Lesson Learnt: satellite 1318 

remote sensing can only provide certain types of information, and a combination of wider 1319 

context mapping, and very highly detailed local mapping is preferred. Still, care must be 1320 

taken to examine ground-based images before making decisions based on satellite remote 1321 

sensing data.  1322 

During the ExoMars rover-like mission, a challenge that quickly became apparent on 1323 

MURFI was that of discriminating grain size without an arm-mounted, close-up imager. 1324 

Although HRC was often used to search for sedimentary structures, both at centimeter scale 1325 

in the near field and decimeter scale in the far field, it cannot resolve grains smaller than 1326 

fine sand, even in the nearest field. This was a challenge when, for example, trying to 1327 

discriminate whether observed cross bedding was occurring in an aeolian or fluvial 1328 

sandstone. CLUPI, although possessing the required spatial resolution has a more limited 1329 

field of view, with fixed positions with respect to the rover. Thus, obtaining close-up images 1330 
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of specific outcrop targets required rover movements, costly in power, time and planning 1331 

resources. While this is not an insurmountable problem, it is an important lesson to learn: as 1332 

the rover approaches outcrops, positioning it at the end of the drive in such a way that 1333 

CLUPI will have the best opportunity for immediate observation will be important to save 1334 

‘wasted’ days of planning and rover movement. Here, the MURFI team felt that HRC played 1335 

a complementary role: targets that would be imaged with CLUPI can be identified from 1336 

range the sol before the rover approached. Also, the availability of Pro3D terrain models 1337 

was a great help in planning these sorts of drives. Lesson learnt: CLUPI can be used in a 1338 

variety of modes that will be useful for understanding the local geology. However, the lack of 1339 

close-up imager on an arm could be a challenge. The challenge can be lessened by careful 1340 

rover positioning at the end of outcrop-approach drives, and use of HRC and 3D models of 1341 

the workspace can assist greatly. 1342 

 As the drill is fixed to the rover body, positioning the drill precisely requires rover 1343 

drives. If a post-drive CLUPI image of the surface drill target area shows the rover is already 1344 

appropriately positioned, this will not be a problem. However, to obtain images of a wider 1345 

area required rover drives to return to the identified spot. For MURFI, we did not have 1346 

sufficient information about the driving precision of the ExoMars rover, so to minimise days 1347 

spent on the imaging, planning, driving, re-imaging cycle, the MURFI team used a series of 1348 

CLUPI images and very short rover drives to build up a mosaic of images showing the 1349 

context for the drill location. If the ExoMars rover can return precisely to previous points, 1350 

then this may not be necessary, but if precision driving is a challenge, or if the desired drill 1351 

target is small, then the use of this type of multiple CLUPI imaging could be helpful. The 1352 

WISDOM ground penetrating RADAR was not emulated for MURFI, so data from this 1353 

instrument would also have to be taken into consideration in planning drill locations.  Lesson 1354 
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learnt: the ‘CLUPI ladder’ technique could be useful for the ExoMars rover to identify the 1355 

exact spot for drilling, while also making it easy for the rover to return to that spot. 1356 

 Several MURFI tactical decisions were made to avoid ‘wasting days’. This included 1357 

the Bourton ‘drive-by’ imaging, learning to position the rover so that CLUPI would have a 1358 

good field of view, and using the ‘CLUPI ladder’ to avoid multiple small ‘drive, observe, 1359 

decide’ cycles. Given the high ‘per sol’ cost of a Mars rover mission (both in terms of actual 1360 

financial cost, and in terms of counting down days until mission success) every day is vital. 1361 

Lesson learnt: a rover field trial team using a realistic mission instrument suite and a realistic 1362 

mission goal can develop important practices that could improve the efficiency of the real 1363 

mission. 1364 

Finally, the decision made to drill at the Poddington location within the Painswick 1365 

Patch area was based on the MOC SWT presumption from mapping and spectral data that 1366 

the brighter materials seen here (the Anomalously Bright Unit in the mapping) were part of 1367 

the Layered Formation and so were phyllosilicate-bearing, very fine-grained, fluvial deposits 1368 

(thought to be flood plains facies) that should have been ideal preservation materials for 1369 

biosignatures. The decision was also made under extreme time pressure, as the command 1370 

to drill had to be fitted into the mission schedule. However, the core materials returned 1371 

were friable, apparently containing sand grade materials, rather than being competent, 1372 

finer mudstones or silt stones, and were considered by the team to be less high-value 1373 

targets for an astrobiology mission than hoped for (i.e., not an organic-rich mudstone). 1374 

Ultimately, laboratory studies showed that the drill sample did contain calcite and clay 1375 

minerals, again reinforcing the difficulties in interpreting rover-derived data quickly during 1376 

tactical planning: the MURFI mission only simulated < 10 sols of a wider mission. However, it 1377 

was still not clear if the drill samples returned were weathered or friable bedrock, or porrly 1378 
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cemented, recently emplaced sediments. Better geological knowledge could have been 1379 

derived from a longer, more thorough study of the site. This result demonstrates how 1380 

important adequate geological assessment of the landing site will be to avoid ‘wasting’ 1381 

drilling cycles within the mission. Lessons learnt: (i) understanding local-scale geology is 1382 

difficult, even with Mars-like remote sensing data and a suite of excellent rover-based 1383 

instruments. To avoid drilling in the ‘wrong place’, the local geology must first be very well 1384 

characterized, and this can require extensive data analysis and discussion within the team, 1385 

as well as critical reanalysis of satellite data-based hypotheses. (ii) The results of the MURFI 1386 

drilling also reinforce the benefits of end-to-end rehearsals of the sample acquisition and 1387 

analysis chain, including laboratory analysis of representative drill samples to provide 1388 

feedback to the rover-based interpretations. 1389 

8.4 Lessons learned from MURFI for implementing future field trials 1390 

As a UK-led Mars rover field trial, the completion of the MURFI mission was itself a success, 1391 

and a key element of the mission was learning where things had ‘failed’ or ‘gone wrong’, so 1392 

as to enhance the ability of the UK to run future field trials. At the end of the mission, a 1393 

debrief workshop was held at which participants aired their views about the success or 1394 

otherwise of the mission. All felt the mission was successful in delivering its goal of 1395 

providing a ‘realistic’ rover operations experience to the participants. Several areas for 1396 

improvement were noted. One of the biggest problems identified was that few of the team 1397 

could commit several weeks as one block of time, hence travel and accommodation proved 1398 

a greater than anticipated logistical challenge. Some participants also felt that swapping 1399 

roles so often was both stressful and inefficient, as they felt there was insufficient time to 1400 

learn the role adequately to deliver what was needed. Others, however, felt that 1401 
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experiencing different aspects of the tactical planning was rewarding, and that it was 1402 

important to explore the strengths and weaknesses of team members in a mission setting, 1403 

outside of the ‘comfort zone’ of everyday scientific working. Lesson learnt: future trials 1404 

should ensure less frequent changes of role and require participants to commit to longer, but 1405 

not too long, time blocks (e.g. 4 days). 1406 

 The choice of early- to mid-career scientists for SWTC meant that postdocs and 1407 

research fellows were able to experience this leadership role. Of the five team members 1408 

who spent time as SWTC, all agreed that it had helped them learn about their ability to lead 1409 

a team under pressure, and given them ideas for how to improve their leadership skills. The 1410 

postgraduate students who participated in the mission were keen that the MURFI 1411 

investigation should be repeated, as they also were keen to try the SWTC role. Lesson 1412 

learnt: keep active daily leadership roles for early/mid-career team members. 1413 

 The available preparation time for MURFI was limited, and many participants felt 1414 

badly prepared for their roles. This was especially true for those who were not able to 1415 

attend the sol 1 rehearsal days prior to the official sol 1 planning meeting. Some found the 1416 

technical aspects a challenge (e.g., processing data), while others did not quite understand 1417 

the rationale of the ExoMars rover-like mission (e.g., why drilling from bedrock was required 1418 

rather than sampling surficial fines from obviously fluvial environments). This was partly due 1419 

to the disparate skills-base in the team, including as it did geologists, astrobiologists, 1420 

planetary scientists and instrument specialists. Although written instructions were available, 1421 

documentation sent out to the team beforehand, and some degree of mentoring and 1422 

handover time was provided by more experienced SWT members, daily tactical planning 1423 

was a high-pressure environment that sometimes made it hard to learn specific skills. All 1424 

team members agreed that attending a training workshop beforehand would have been 1425 
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very useful for preparing the team better. Lesson learnt: practical training is necessary to 1426 

reinforce written instructions for optimum team performance. Future trials should provide a 1427 

1-2 day training workshop for all team members that focussed both on the overall rationale, 1428 

and on providing technical training. 1429 

 A challenge inherent in the MURFI ExoMars rover-like mission, and agreed by all in 1430 

the SWT, was that image processing each morning was difficult and time consuming, and 1431 

that too few of the team had experience operating the PRo3D software, which is itself still in 1432 

final stages of development. The production of panoramas and the presentation of the 3D 1433 

workspace terrain models would benefit from dedicated technical staff. Again, this was 1434 

partly due to the rapid rate at which MURFI was organized, and also by a lack of trained 1435 

team members able to take on this role. Also, localization was performed each day, yet on a 1436 

real mission this job would likely be performed outside of the science team. Lesson learnt: if 1437 

resources permit, localization, data preparation and data visualization, are best done by 1438 

dedicated technical operators, rather than by SWT members.  1439 

The MOC was seen as being an excellent facility, and the large video wall, with the ability 1440 

to accept feeds from various different workstations, was very useful. However, the two-1441 

tiered seating arrangement made it hard to communicate between the rows, especially 1442 

when team members were referring to the video wall while speaking. In the future, some 1443 

kind of communication system or a horseshoe shape arrangement would be better. Lesson 1444 

learnt: communication within the team is vital, and MOC setup is important for facilitating 1445 

this. 1446 

The field site was perceived to be very Mars-surface relevant, overall the logistics and 1447 

planning worked well, and the time difference meant that both teams could work full days 1448 

on the mission without resorting to antisocial working times. The main improvement that 1449 
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could have been made was more robust field-to-MOC communications. Lesson learnt: a 1450 

field site with good cell-phone coverage, mobile wifi, or a regular use of satellite telephone 1451 

communication is vital. 1452 

9.	Conclusions	1453 

MURFI demonstrated that the UK has a planetary science and engineering 1454 

community capable of performing a challenging Mars rover trial. MURFI also demonstrated 1455 

the benefits of the bilateral collaboration with CSA. While primarily a ‘trial for future trials’, 1456 

MURFI 2016 was also a vital training activity for the science team and, perhaps most 1457 

importantly, produced operations insights that could be relevant to ExoMars rover. 1458 

The team learned very quickly to work together, due to the time pressure and 1459 

common goals, and the changing roles meant there were new challenges for members 1460 

every day. However, this role-changing also caused problems, and issues arose which could 1461 

have been avoided if roles changed less often, and also perhaps if objectives, priorities and 1462 

constraints had been more clearly laid out. An important learning outcome for many in the 1463 

MOC team was having to perform tactical operations under a tight deadline, with little time 1464 

to examine the data in full. During debrief meetings, it was found that the MURFI 1465 

experience was particularly valued by early career scientists, so future rover field trials 1466 

should aim to include and inspire as many junior members of the community as possible, 1467 

and especially provide them leadership roles where they can learn ‘on the job’ while still 1468 

benefitting from experienced mentors within the team. Providing experience working as a 1469 

team in this environment was one of the biggest perceived successes of MURFI.  1470 

The MOC set-up, schedule, and mission guidelines and the field location and 1471 

logistical arrangements were all well-suited to a rover mission-simulation trial and, although 1472 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

some improvements could be made, the facilities and logistics provide a template for future 1473 

field trials. Also, the extensive documentation produced on a daily basis allowed the mission 1474 

to be analyzed at a later date. The biggest logistical improvements that could be made for a 1475 

future rover trial would be the provisions of a 1-2 day training workshop for all team 1476 

members prior to mission-start, additional on-site technical support, better field to MOC 1477 

communications, more end-to-end sample acquisition training, and more post-mission 1478 

sample analysis and feedback. 1479 

The MURFI ExoMars rover-like mission showed that mission simulation or rehearsal 1480 

field trials will be useful for the ExoMars rover mission for several reasons: (i) to understand 1481 

how to operate the instruments as a suite, making best use of their complementary 1482 

strengths and mitigating weaknesses, and especially learning how to interpret the local 1483 

geology correctly, and to identify potential drill sites, using stand-off instruments alone,  (ii) 1484 

to build an operations planning team that can work well together under strict time-limited 1485 

pressure, (iii) to develop new processes and workflows that could save time or improve 1486 

productivity when implemented on the real ExoMars rover mission, (iv) to understand the 1487 

limits and benefits of satellite mapping and the differences in scale between satellite and 1488 

rover images and data, and  (v) to practice the efficient geological interpretation of outcrops 1489 

and landscapes from rover-based data by comparing the outcomes of the simulated mission 1490 

with post-trial, in-situ field observations.A vital input to the MURFI mission was the satellite 1491 

remote sensing mapping, and the hazard and science target identification. However, due to 1492 

the large area covered by the mapping, it could not be performed at a scale equivalent to 1493 

the full resolution of the best satellite remote sensing images. This also cannot be done for 1494 

the ExoMars rover until its landing position is known, given the > 100 km by 20 km landing 1495 

uncertainty ellipse. When localization has been performed, though, rapid high-fidelity 1496 
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geological and hazard mapping of the area around the landing point at full HiRISE resolution 1497 

will provide an extremely important resource that can be then be built upon using ground-1498 

based observations as the mission progresses.   1499 

We conclude by noting that although MURFI 2016 was the UK SA’s first Mars Rover 1500 

trial, others have been run by various agencies (e.g., Arvidson et al., 2002; Woods and Shaw, 1501 

2014), and the lessons learned in them have allowed Mars rover operations to be rigorously 1502 

planned (e.g., section 5.3 of Grotzinger et al., 2012) and successfully performed. In fact, it 1503 

could be argued that much of the Mars rover operations knowledge and expertise residing 1504 

within the global community was developed during the MER (e.g., Arvidson et al., 2006; 1505 

Biesiadecki et al., 2006; Squyres et al., 2004) and MSL experiences (e.g., Vasavada et al., 1506 

2014). However, while some of the MURFI lessons learnt are generic (e.g., the need for 1507 

rapid, high quality remote-sensing mapping, while understanding the scale disparity 1508 

between remote sensing and field observations), they are still important for a team to learn, 1509 

and important for each new mission to learn – only through hands-on experience can such 1510 

knowledge be embedded.  1511 
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Highlights 

MURFI: a UK Space Agency Funded Mars Rover trial 

Field site in Utah, USA; Rover control centre in Harwell, UK 

Includes a 9-sol ExoMars Rover-like mission element 

ExoMars rover-like instrument suite and platform 

‘Lessons learnt’ relevant to future trials and future ExoMars Rover operations 

 


