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Abstract
Metastatic spread—the dissemination of cancer cells from a primary tumour with sub-
sequent re-colonisation at secondary sites in the body—causes around 90% of cancer-
related deaths. Mathematical modelling may provide a complementary approach to help
understand the complex mechanisms underlying metastasis. In particular, the spatiotem-
poral evolution of individual cancer cells during the so-called invasion-metastasis cas-
cade—i.e. during cancer cell invasion, intravasation, vascular travel, extravasation and
metastatic growth—is an aspect not yet explored through existing mathematical models.

In this thesis, such a spatially explicit hybrid multi-organ metastasis modelling frame-
work is developed. It describes the invasive growth dynamics of individual cancer cells
both at a primary site and at potential secondary metastatic sites in the body, as well
as their transport from the primary to the secondary sites. Throughout, the interac-
tions between the cancer cells, matrix-degrading enzymes (MDEs) and the extracellular
matrix (ECM) are accounted for. Furthermore, the individual-based framework mod-
els phenotypic variation by distinguishing between cancer cells of an epithelial-like, a
mesenchymal-like and a mixed phenotype. It also describes permanent and transient
mutations between these cell phenotypes in the form of epithelial-mesenchymal transition
(EMT) and its reverse process mesenchymal-epithelial transition (MET). Both of these
mechanisms are implemented at the biologically appropriate locations of the invasion-
metastasis cascade. Finally, cancer cell dormancy and death at the metastatic sites are
considered to model the frequently observed maladaptation of metastasised cancer cells
to their new microenvironments.

To investigate the EMT-process further, an additional three-dimensional discrete-
continuum model of EMT- and MET-dependent cancer cell invasion is developed. It
consists of a hybrid system of partial and stochastic differential equations that describe
the evolution of epithelial-like and mesenchymal-like cancer cells, again under the consid-
eration of MDE concentrations and the ECM density. Using inverse parameter estimation
and sensitivity analysis, this model is calibrated to an in vitro organotypic assay experi-
ment that examines the invasion of HSC-3 cancer cells.
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Chapter 1

Introduction

According to statistics published by the World Health Organization (Ferlay et al., 2015),
it is highly unlikely for any person’s life to—directly or indirectly—stay untouched by
cancer. In 2012, there were 32.6 million people worldwide living with the disease (within
five years of diagnosis), 14.1 million new cases of cancer, and 8.2 million cancer deaths.
These figures show that there is an urgent need to improve our understanding of this
complex disease and to enhance the effectiveness of cancer treatment.

In recent years, new technologies have allowed us to gather vast amounts of data on
cancer and to gain insight into its mechanisms of evolution. This has resulted in great
advances in the treatment of some of the over 200 cancer types. However, the mechanisms
underlying secondary—so-called metastatic—tumour spread are still poorly understood.
Yet, metastatic spread causes around 90% of all cancer-related deaths (Hanahan and
Weinberg, 2000; Gupta and Massagué, 2006). Therefore, to improve patient survival, we
must further our understanding of metastatic spread and its driving forces.

Hanahan and Weinberg (2000) attempted to systematise the immense complexity
involved in the disease of cancer in their seminal paper Hallmarks of cancer by giving
an overview of the acquired features of cancer cells that are common across all forms
of cancer. Its follow-up paper Hallmarks of cancer: the next generation (Hanahan and
Weinberg, 2011)—at the time of writing this—led the list of the most cited articles in
the journal Cell (Elsevier B.V., 2006), indicating how influential the hallmarks of cancer
are, and how well-perceived by the scientific community. One hallmark of cancer, tissue
invasion and metastasis, is at the centre of the mathematical models proposed in this
thesis.

Developing a mathematical modelling framework can enhance the understanding of
the processes underpinning cancer invasion and metastatic spread. Mathematical models,
in combination with biomarker diagnostics and imaging data, could then be used to
individualise cancer treatment. They can aid the prediction of the disease evolution
as well as the search for an optimal treatment approach for a particular patient. This
approach of patient-specific therapy is described schematically in Figure 1.1.

The history of weather forecasting provides an analogy that explains how the difference
between traditional and patient-specific cancer treatment emerges, cf. Franssen (2018).
Traditionally, the only possible way to predict the future weather was to closely examine
data from the past. While this is certainly preferable to spending no thought on weather
prediction at all, current forecasting techniques are a lot more useful. Much of the
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Figure 1.1: Personalising cancer treatment through computational modelling.
In a diverse cohort of cancer patients, different patients respond to different treatment ap-
proaches. Modern imaging technologies, methods image analysis and staining techniques
combined with spatial, cell-based computational models like the one proposed in this pa-
per can in the future be used to help identify the best available treatment for each cancer
patient.

accuracy of today’s weather forecasting results is owed to complex computational models.
These use algorithms to ‘crunch’ large data sets—in stark contrast to traditional weather
forecasting. Similarly, clinicians traditionally have treated cancer patients by examining
and classifying their type of cancer to then choose a treatment according to what has
worked for patients with similar disease states in the past. This proves fruitful in a subset
of patients but others either do not respond to the treatment at all, experience overall
adverse effects or unexpectedly relapse after they seem to have been cured. The reason for
the mixed occurrence of wanted and unwanted outcomes is that each cancer patient and
each tumour has a unique genetic make-up, implying a unique response to any treatment
applied.

This thesis gives examples of modelling techniques that could be further developed in
order to advance cancer treatment to one where modern diagnostic techniques together
with computational models are used in a clinical setting, as shown in Figure 1.1. As in
the case of weather forecasting, computational models are indispensable when it comes
to making future predictions from large amounts of data on a patient’s disease outcome.
Firstly, they give us insight into how a tumour is likely to develop. Secondly, accurate
models also allow us to theoretically try out treatments in a non-invasive manner and
within a short time frame. The simulation outcomes of individually parametrised relevant
mathematical models for a particular patient can then inform clinicians. This enables
them to choose the best possible modes of treatment, the optimal order of application,
their best timing and the optimal dosage to be used.

Collaborations between clinical oncologists and mathematicians are already in place
in an effort to, for instance:

• predict the response of solid tumour growth to radiotherapy, while taking into
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account the effects of hypoxia and the cell cycle, as well as optimise the scheduling
for combined radiotherapy-chemotherapy treatment (Powathil et al., 2013);

• optimise the efficacy of potential targeted therapies on bone metastatic prostate
cancer (Cook et al., 2016);

• simulate glioma growth and invasion in an anatomically accurate brain domain
(Massey et al., 2018);

• predict the optimal dosing regimen through a mathematical model of tumour uptake
for cancer immunotherapy (Ribba et al., 2018).

These are only three examples of how mathematical modelling can be used to aid in
a clinical setting. Because cancer is such a complex disease, the aspects that could
be incorporated in physiologically accurate predictive models are vast. Focussing on
separate aspects of cancer growth to subsequently build multiscale models to predict
growth outcomes in particular scenarios is thus the most feasible approach.

This thesis will thoroughly examine the mathematical modelling of the ability of can-
cer cells to invade tissue and to spread to secondary sites in the body. To obtain physio-
logically realistic modelling outcomes, space is taken into account explicitly throughout.

In Chapter 2, we provide the biological foundation knowledge required to understand
the invasion of cancer cells into the surrounding tissue and their metastatic spread through
the body. We include a detailed description of healthy tissue dynamics and describe how
its homeostasis is disturbed during cancerous growth by considering the hallmarks of
cancer, cf. Hanahan and Weinberg (2000, 2011). We continue by explaining invasion
and metastatic spread—the hallmark of cancer the models in this thesis are concerned
with—in detail. In particular, we highlight the role of epithelial-mesenchymal transition
(EMT) and its reverse process mesenchymal-epithelial transition (MET) in the invasion-
metastasis cascade. Finally, we describe an in vitro invasion study that we later simulate
using the model developed in Chapter 6.

In Chapter 3, we review existing models of cancer invasion and metastasis. The former
includes both spatially local and non-local models and the latter models that describe
the acquisition of a metastatic phenotype in cancer cells as well as those that investigate
metastatic growth dynamics.

In Chapter 4, we present a mathematical modelling framework that captures for the
first time the interconnected processes of invasion and metastatic spread of individual
cancer cells in a spatially explicit manner—a multi-grid, hybrid, individual-based ap-
proach. This framework accounts for the spatiotemporal evolution of mesenchymal- and
epithelial-like cancer cells, membrane-type-1 matrix metalloproteinase (MT1-MMP) and
the diffusible matrix metalloproteinase-2 (MMP-2), and for their interactions with the
extracellular matrix. Using computational simulations, we demonstrate that our model
captures all the key steps of the invasion-metastasis cascade, i.e. invasion by both hetero-
geneous cancer cell clusters and by single mesenchymal-like cancer cells; intravasation of
these clusters and single cells both via active mechanisms mediated by matrix-degrading
enzymes (MDEs) and via passive shedding; circulation of cancer cell clusters and single
cancer cells in the vasculature with the associated risk of cell death and disaggregation
of clusters; extravasation of clusters and single cells; and metastatic growth at distant
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secondary sites in the body. By faithfully reproducing experimental results, our simu-
lations support the evidence-based hypothesis that the membrane-bound MT1-MMP is
the main driver of invasive spread rather than diffusible MDEs like MMP-2.

In Chapter 5, we extend the metastasis model introduced in Chapter 4 to account
for the roles of EMT and MET in the invasion-metastasis cascade. In addition to can-
cer cells of epithelial and of mesenchymal phenotype, we now also include those of an
intermediate partial-EMT phenotype. Furthermore, we allow for the switching between
these phenotypic states via EMT and MET at the biologically appropriate steps of the
invasion-metastasis cascade. Finally, we account for the adaptivity of cancer cells to the
tissue microenvironment in an organ-specific manner and differentiate between the tis-
sues of the organs involved in the simulations. This way, we create a first multi-organ
mathematical model that explicitly accounts for EMT processes in individual cancer cells
in the context of the invasion-metastasis cascade.

In Chapter 6, we introduce a three-dimensional mathematical model to describe the
transition from collective to individual cancer invasion strategies by formulating a coupled
hybrid system consisting of partial and stochastic differential equations that describeas
the evolution of epithelial-like and mesenchymal-like cancer cells.

In Chapter 7, we provide perspectives on how the models introduced in this thesis
could be developed further. The extensions of the metastasis modelling framework intro-
duced in Chapters 4 and 5 are discussed jointly. As a particular extension to this mod-
elling framework, an evolutionary game-theory (EGT) approach to capturing interactions
of cancer cells of different phenotypes in various tumour-microenvironments is introduced
in the form of an initial model. Samples of the dynamics of interactions between cancer
cells of various phenotypes in different microenvironments are presented through simu-
lation results. Finally, ideas for extensions to the three-dimensional hybrid-continuum
model of EMT-/MET-dependent cancer cell invasion from Chapter 6 are outlined.
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Chapter 2

Cancer invasion and metastasis:
Biological background

Throughout this thesis, we will focus on solid tumours—and, in particular, carcinomas
as a subcategory of solid tumours. Solid tumours are all tumours that usually do not
contain liquid areas or cysts. Differing by the tissue they have arisen from, carcinomas,
lymphomas, and sarcomas are examples of solid tumours, whereas leukemias generally
are not (Urs et al., 2008; National Cancer Institute, 2017). Carcinomas are the subclass
of solid tumours that arise from epithelial tissue, as we further explain in Section 2.1.1.
They constitute between 80% and 90% of all cancer cases (Institute, 2017) and they
account for over 80% of cancer-related deaths in the Western world.

We will start by outlining the composition of healthy tissue and explain how home-
ostasis is maintained in Section 2.1. We proceed by describing how tumours are classified
and which capabilities their cells have acquired that allow them to proliferate and thrive.
In Section 2.2, we take a closer look at the ten hallmarks of cancer. Tissue invasion
and metastasis are two of these acquired capabilities by cancer cells, which are so closely
linked that they are summarised as one hallmark of cancer. This hallmark is central to
the mathematical models reviewed in Chapter 3. Moreover, it is the centrepiece of our
mathematical models proposed in Chapters 4, 5 and 6. Accordingly, in Section 2.3, we will
explain the underlying biology of the so-called invasion-metastasis cascade in more detail.
In Section 2.4, we explore the roles of EMT and MET in cancer invasion and metastatic
spread. This provides further biological background information for the models intro-
duced in Chapters 5 and 6. Finally, in Section 2.5, we explore an in vitro invasion study
by Nurmenniemi et al. (2009). This builds the foundation for the three-dimensional hy-
brid discrete-continuum model of EMT-/MET-dependent cancer cell invasion presented
in Chapter 6—there we use this hybrid model to predict the organotypic invasion assay
results from these experiments.

The content of this section draws its information primarily from Hanahan and Wein-
berg (2000, 2011) as well as from Chapters 5, 8 and 13 of the textbook The biology of
cancer by Weinberg (2013).
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2.1 Healthy tissue
Traditionally, research biologists have considered the entities which tissue consists of sep-
arately or in smaller functional units when studying them. This approach has advanced
science greatly but, by the end of the twentieth century, it had become increasingly clear
that healthy and cancerous tissue is more than the sum of disconnected functional units.
Today, it is broadly accepted that, in order to understand tissue, we need to study it as
an ecosystem that accounts for the interaction of different cell types and the stroma.

2.1.1 Epithelial and connective tissue

There are four types of tissue arising in all vertebrates (McGuire and Beerman, 2012;
Starr et al., 2010):

• epithelial tissue, which covers and lines organs, cavities and body surfaces such as
the intestines or the skin;

• connective tissue, which connects body parts and grants stability;

• muscle tissue, which is essential for movement; and

• nervous tissue, which can detect stimuli and transfer information.

Epithelial tissue and connective tissue typically grow adjacent to one another, sepa-
rated by a thin, tough layer called basal lamina, as Figure 2.1 demonstrates. Following
Chapter 20 of Essential Cell Biology by Alberts et al. (2013), we now consider the archi-
tecture of these tissues more closely.

Figure 2.1: Schematic cross-section through the epithelium and adjacent con-
nective tissue. The top-most epithelial tissue consists of epithelial cells (grey) connected
by cadherins (black). These cells bind to the underlying connective tissue via integrins
(black). The connective tissue consists of ECM (yellow), collagen fibres (red) and fibrob-
lasts (brown) (Alberts et al., 2013). Reproduced with permission from Garland Science/
Taylor & Francis LLC.
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Figure 2.2: Collagen fibre composition. The top shows a schematic description
of collagen fibre composition. The electron micrograph of embryonic chick skin tissue
at the bottom, originally published in Ploetz et al. (1991), corresponds to the schematic
description of connective tissue in Figure 2.1. Collagen fibres run through the connective
tissue with an angle of approximately 90◦ between them. The fibroblast cell in the centre
secretes collagen and other ECM macromolecules (Alberts et al., 2013). Reproduced with
permission from Garland Science/Taylor & Francis LLC.

As illustrated in Figure 2.1, cells in the epithelial tissue, which lines all internal cavities
in the body and covers external surfaces such as the skin, are tightly linked to one another
by junctions since they function as a barrier. Epithelial tissue sheets can be simple,
i.e. only one cell layer thick—as the one depicted in the schematic representation in
Figure 2.1—or stratified, meaning that they are many cell layers thick, as in the epidermis.
They are only selectively permeable, which allows them to export waste and uptake
nutrients; to keep some molecules out while letting others in; to prevent fluid loss and
the invasion of microorganisms; and to detect environmental signals with their receptors.

Epithelial cell junctions have a variety of functions such as providing strong me-
chanical attachment of the epithelial cells, ensuring leakproofness, and enabling chemical
communication. They can be classified according to the binding proteins involved:

• Adherens junctions and desmosomes bind epithelial cells to one another. Their
corresponding transmembrane proteins belong to the family of cadherins and bind
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to identical cadherin molecules of their neighbouring cells. In Figure 2.1, these
cadherins are shown in black between the epithelial cells.

• Hemidesmosomes bind epithelial cells to the basal lamina by proteins called inte-
grins. In Figure 2.1, integrins are represented in black where the epithelial tissue
meets the basal lamina.

The ability of cells to adhere to one another via hetero- and homophilic bonds together
with their ability to adhere to the ECM gives healthy tissue its stability and shape.

The basal lamina—a thin, tough layer consisting of ECM—is attached to the epithelial
tissue by integrins. It is mainly composed of a protein called laminin, to which the
integrins of epithelial cells can adhere, as well as of type-IV collagen.

While epithelial tissue consists mainly of cells, the basal lamina and connective tis-
sue predominantly consist of ECM. The ECM is a mesh of secreted proteins and other
molecules that surrounds most cells in tissues and provides structure for the spaces be-
tween cells. This matrix constantly undergoes remodelling according to the environment’s
demand. This ensures that, for example, in a wound or during development the rate of
remodelling is comparatively high.

Connective tissue, as depicted in Figure 2.1, consists predominantly of ECM. Scattered
into the ECM of connective tissue are cells called fibroblasts (or osteoblasts in the bone).
They produce ECM macromolecules and collagen. This strength varies depending on
which type and quantity of collagen a tissue contains as well as on which other molecules
coexist. Depending on the connective tissue composition, it can be dense and hard like
in bone, flexible like in cartilage, or soft like the jelly inside of the human eye.

Throughout connective tissue, collagen—a fibrous protein that provides strength for
the tissue—is found. It the most prominent type of protein in the human body—over
a quarter of our body’s protein mass is collagen. The collagen molecules themselves are
typically of a long, stiff, triple-stranded helical structure as Figure 2.2 shows. Certain
types of collagen further pack together into ordered polymers, collagen fibrils, which may
or may not assemble into even thicker collagen fibres as in the case of our connective
tissue cross-section in Figure 2.1.

2.1.2 Ensuring tissue homeostasis

To assure adequate tissue composition, or homeostasis, appropriate proportions of cell
types within the tissue need to be maintained, superfluous and damaged cells discarded,
and missing cells replaced. To describe how this is achieved in healthy tissue, we will first
explain how growth signals are transmitted to cells and then examine proliferation—the
balance between cell loss from cell differentiation or cell death and cell divisions—itself
more closely.

Highly effective regulatory circuits control proliferation, and thus ensure homeostasis,
in healthy tissue environments. The quantity and quality at which growth-promoting
mitogenic factors are produced in the tissue and released is tightly regulated by feedback
mechanisms—as a result of intercellular communication of neighbouring cells of various
types. Once released, these growth-promoting signals initiate and steer the cell growth-
and-division cycle (or cell cycle), which is depicted schematically in Figure 2.3. In the
absence of these mitogenic growth signals, the vast majority of normal cells will not

8



Figure 2.3: The cell cycle. Schematic
representation of the sequence of stages a cell
passes through in preparation for cell division
(Weinberg, 2013). Reproduced with permis-
sion from Garland Science/Taylor & Francis
LLC.

proliferate. However, the safety net to prevent uncontrolled proliferation in normal cells
extends beyond this: Even if growth factors surround a cell, signalling proteins such as
transforming growth factor-β (TGF-β) can inhibit proliferation by overruling mitogenic
signalling. Finally, there are further extra-cellular signals that can force a cell into a
post-mitotic state, implying that it will never be able to replicate again.

All these signals surrounding a cell are received by receptors on its surface—Figure 2.4
provides an impression of the complexity of this process. Figure 2.5 shows schematically
how the so-called cell cycle clock, the master governor of decisions located in the cell’s
nucleus, processes these extracellular signals together with intracellular signals to decide
about the cell’s fate.

If—after receiving the corresponding stimulating signals—a cell is due to divide, the
cell cycle, shown in Figure 2.3, is initiated. This cycle is divided into four phases: In
the first growth phase (G1), the size of the cell increases. The cell then copies its DNA
during the synthesis (S) phase. It prepares for division in the second growth phase (G2)
to subsequently divide in the mitotic (M) phase. The G1, S and G2 phase together make
up the so-called interphase. The M phase is further divided into four stages (prophase,
metaphase, anaphase and telophase) to describe phases within cell division, as shown on
top of Figure 2.3. In addition to these four active phases of the cell cycle, cells can exist
in an aforementioned fifth state—the quiescent (G0) state.

Furthermore, there are highly regulated mechanisms in healthy tissue to induce the
controlled cell death, so-called apoptosis. This process is, again, coordinated by signals,
which either stem from within a cell or are delivered to its surface receptors externally.

The controlled growth dynamics described above have developed over millions of years
and ensure proper tissue architecture and function. Interestingly, it remains largely ob-
scure which mitogenic signals exactly operate in healthy tissue. The same applies to
the question where their precise origins lie and by which mechanisms their release is
controlled. However, it is evident that the processes involved are highly specific and
regulated with regards to space and time (Hanahan and Weinberg, 2011).
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Figure 2.4: A schematic representation of how cells communicate with their
surrounding. Growth factor ligands surrounding the cell bind to receptors in the cell’s
surface. These deliver signals through the plasma membrane into the cytoplasm, where
a complex cascade of signal-transducing proteins passes on the signals further into the
nucleus. Here, the cell cycle clock shown in Figure 2.5 decides which of the responses
shown in yellow at the bottom of the figure is currently required. Published in Weinberg
(2013) and reproduced with permission from Garland Science/Taylor & Francis LLC.
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Figure 2.5: The cell cycle clock. The master governor of decisions located in the cell’s
nucleus processes intra- and extracellular signals to decide whether the cell will proliferate,
become quiescent or post-mitotic (Weinberg, 2013). Reproduced with permission from
Garland Science/Taylor & Francis LLC.
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2.2 Cancerous tissue and the hallmarks of cancer
Most solid tumours start with mutations of key genes either in one or in a small group of
the more than 1013 healthy cells in the human body (Bianconi et al., 2013). In carcinomas,
these mutations first occur in cells of the epithelium. The resulting acquired features of
these mutated cells cause an imbalance in the formerly homeostatic tissue.

Hanahan and Weinberg (2000, 2011) postulate that tumourigenesis is a multistep
process, during which formerly normal cells acquire several common capabilities, the
hallmarks of cancer, which make them increasingly malignant. Further, they suggest
that this process is subject to Darwinian evolution in the sense that, over time, the
fittest cells survive in a given tissue environment. It is hypothesised that the hallmarks
acquired by successfully mutated cells grant them a competitive edge over the healthy
cells in their microenvironment in this selective process.

Figure 2.6: The eight hallmarks of cancer together with their two enabling
characteristics. As suggested by Hanahan and Weinberg (2000, 2011). Modified and
reproduced with permission from Elsevier.

The eight hallmarks of cancer together with two enabling characteristics suggested by
Hanahan and Weinberg to date are shown in Figure 2.6. These are:

• sustaining proliferative signalling,

• evading growth suppressors,
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• activating invasion and metastasis,

• enabling replicative immortality,

• inducing angiogenesis,

• resisting cell death,

• deregulating cellular energetics, and

• avoiding immune destruction.

Furthermore, two characteristics that enable the acquisition of the hallmarks in the first
place are:

• genome instability and mutation, and

• tumour-promoting inflammation.

The mathematical models in this thesis examine the third hallmark in the list above, can-
cer cell invasion and metastasis. The remainder of this chapter is dedicated to explaining
the involved processes in more detail.

It remains undisputed that cancer cells with a more aggressive phenotype—i.e. a
phenotype with a larger number of mutation-acquired hallmarks—have a better chance
at successfully invading, as suggested in Hanahan and Weinberg (2000, 2011); Weinberg
(2013). Yet, the hypothesis that successful cancer cells will need to have acquired all
hallmarks of cancer prior to their invasion and metastatic spread has recently become
a subject undergoing discussion in the scientific community. Two suggested models of
metastatic dissemination have been proposed—the ‘traditional’ linear progression model
and the more recently suggested parallel progression model.

The latter model arose due to findings in carcinomas, e.g. in the breast (Hüsemann
et al., 2008; Harper et al., 2016), the lung (Podsypanina et al., 2008) and the pancreas
(Rhim et al., 2012), which indicated that so-called disseminated tumour cells (DTCs) that
have spread to secondary sites in the body can be found in previously unexpectedly early
stages of neoplastic transformation rather than only once the later stages of the multi-
step progression of primary tumours are reached. Yet, it is currently unclear whether,
as assumed by the parallel progression model, these detected early DTCs ever become
potent enough to develop into full-blown malignant metastatic tumours.

The linear progression model denies that this is possible. It proposes that, since
successfully metastasising cancer cells disseminate at late stages of the primary tumour
formation, the degree of genetic divergence between successful DTCs and the tumour at
the metastatic site is small.

While there are arguments and evidence for and against either theory, cf. Lambert
et al. (2017) and the references therein) neither hypothesis can be proven to hold ex-
clusively at present. Indeed, a current review of comparative genomic studies between
primary and secondary tumours by Turajlic and Swanton (2016) concluded that, even
within the same patient, ‘the two models are not mutually exclusive and are part of a
biological continuum’.
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2.3 Cancer cell invasion and metastatic spread
Abnormally rapid cell proliferation is one of the most notable results of the acquired hall-
marks of cancer, which can lead to the formation of a small nodule of cancer cells. Over
time, this nodule can expand, while acquiring increasingly aggressive mutations, into a
full avascular tumour with a diameter of up to approximately 0.1–0.2 cm (Folkman, 1990).
Further growth is limited by the diffusion of nutrients (e.g. oxygen). To expand beyond
this size, cancer cells provoke the formation of new blood vessels by secreting chemicals—
collectively known as tumour angiogenic factors (TAFs) (Folkman and Klagsbrun, 1987).
This neovascularisation process is called (tumour-induced) angiogenesis. The resulting
vasculature serves the tumour’s increased metabolic needs by transporting the required
nutrients. The newly formed blood vessels additionally benefit the tumour in the sub-
sequent vascular growth phase, when the cancer cells become invasive so that gradients
in nutrients, oxygen and ECM drive cancer cells away from the primary tumour mass.
If cancer cells successfully intravasate into the newly grown blood vessels and survive in
the vessel environment (where they are exposed to risks such as attacks by the immune
system and shear stress in the blood flow), they can extravasate and relocate at distant
sites in the body. At these new sites, nutrients and space are less of a limiting factor to
growth. The described sequence of steps of the successful redistribution of cancer cells
from a primary location to a secondary location is known as metastatic spread. It can lead
to the formation of secondary tumours, called metastases, at sites in the body away from
the primary tumour. In the first instance, however, the successfully extravasated cancer
cells occur either as single DTCs or as small clusters of cancer cells, called micrometas-
tases. These DTCs and micrometastases may remain dormant but have the potential
to proliferate into vascularised metastases at the secondary sites at some later point in
time. The full process described here, which is shown schematically in Figure 2.7, is also
known as the invasion-metastasis cascade (Fidler, 2003; Talmadge and Fidler, 2010).

In what follows, we will describe the significance of the invasion-metastasis cascade
and then continue by describing the steps that can enable a small primary nodule of cancer
cells to spread to distant sites throughout the body and colonise there. The information
is largely based on Chapter 14 of Weinberg (2013), unless stated otherwise.

2.3.1 Why invasion and metastasis matter

Expanding and deepening our understanding of the invasion-metastasis cascade is of
vital importance in order to e.g. increase cancer patient survival. Approximately 10% of
cancer-related deaths are caused by often asymptomatic primary tumours alone that, for
example, have grown to a size at which they affect organ function by exerting physical
pressure. Locations where obstructions by primary tumours typically turn problematic
are the lungs, the liver, the pancreas and the colon. If detected early, many localised
primary tumours can be treated successfully, e.g. by resection or chemotherapy. An
incentive for modelling local tumour invasion is, for example, that to prevent a relapse
after excision of a detected tumour, as little as possible healthy tissue but all cancerous
tissue should be removed. At the time of writing this, the gold-standard histopathology
techniques consist of post-operatively processing and staining tissue samples to then
embed them in wax blocks before cutting them into slim slices to be able to mount
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Figure 2.7: A schematic overview of the invasion-metastasis cascade. Single
mesenchymal-like cancer cells and heterogeneous clusters of mesenchymal- and epithelial-
like cancer cells break free from the primary tumour and invade the surrounding tissue (top
left). They can intravasate via active MDE-mediated and passive mechanisms (upper left,
epithelium of vessel). Once in the vasculature, circulating tumour cell (CTC) clusters may
disaggregate (centre) and CTCs may die. Surviving cells may extravasate via the walls of
the microvasculature to various secondary sites in the body. Successful colonisation there
is rare but can result in either DTCs or micrometastases (bottom right), which have the
potential to develop into full-blown metastases.

them on slides. These stained two-dimensional slices are then viewed using traditional
microscopes. This process typically takes days. Hence, the surgery team will only post-
operatively have a better idea of whether they have excised sufficient tissue. Mathematical
models of local cancer invasion may, for instance, aid the estimation of the tissue to be
resected—see e.g. Anderson et al. (2000).

Although this alone is an incentive to model cancer growth, it is to be noted that the
other 90% of cancer-related deaths arise due to metastases growing at distant sites away
from the primary tumour (Hanahan and Weinberg, 2000; Gupta and Massagué, 2006).
This is because once cancer cells have begun to spread throughout the body, it becomes
increasingly difficult to detect them. DTCs and secondary (micro-)metastases also typ-
ically consist of more aggressive phenotypes, making it increasingly difficult to treat a
patient at this stage. Hence prognosis is often very poor. Besides, metastasis ‘remains
the most poorly understood component of cancer pathogenesis’ according to Chaffer and
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Weinberg (2011).
Mathematical modelling can be a useful tool to capture and unravel the complexity of

the invasion-metastasis cascade by enhancing our insight into details that are currently
not fully understood. Ultimately, resulting predictive models may also help to advance
treatment success through personalised medicine directly if they are used in a clinical
setting to inform oncologists.

2.3.2 Local cancer cell invasion

When the cancer cells are invading the tissue surrounding the primary tumour, they
have to overcome structural obstacles. The cells need to make their way through the
fairly rigid ECM, which mainly consists of various tissue-bound macromolecules such as
structure-providing collagens (mainly of type-I), as well as of fibronectin, vitronectin and
laminin, which influence the spreading, motility and adhesion of cancers cells. Often, the
cancer cells additionally have to penetrate the even more rigid basal laminae of blood
vessels and potentially of the primary sites they originate from.

The two main mechanisms used by cancer cells to overcome these hurdles, which have
been discussed in detail by, for example, Friedl and Wolf (2003), are protease-dependent
and protease-independent invasion.

Protease-dependent invasion earns its name from collagen-cleaving proteinases, and
more specifically MDEs. MDEs are involved in the non-pathogenic remodelling of healthy
tissue but are overexpressed by some cancer cell types. The cleaving of collagen allows
all types of cancer cells to subsequently invade along the paths created. Hundreds of
proteolytic enzymes have been identified in the human genome to date. Two types of
such proteolytic enzymes over-expressed in cancer cells are urokinase-type plasminogen
activator (uPA) and matrix metalloproteinases (MMPs), a family of zinc-dependent en-
dopeptidases MDEs (Egeblad and Werb, 2002). MMPs consist of 23 proteolytic enzymes
(Jackson et al., 2010) and are able to degrade the vast majority of surrounding tissue in
humans (Kleiner and Stetler-Stevenson, 1999). While some members of the MMP family
paradoxically have been shown to prevent tumour invasion in animal models (Noël, 2012),
we will focus on those which definitely aid cancer cell invasion. Amongst these, we further
distinguish between soluble MMPs, like MMP-2 or MMP-9, which the cancer cells secrete
into the surrounding ECM, and six membrane-bound MMPs (MT-MMPs) MT1-/MT2-
/MT3-/MT4-/MT5-/MT6-MMP, which remain attached to the cell membrane. Amongst
the latter, MT1-MMP (also known as MMP-14) has, to our knowledge, been investigated
most to date (Itoh, 2015). It has been shown that this membrane-bound MMP plays a
key role in both cancer cell invasion through interstitial type-I collagen tissues and the
breaching of cancer cells through basement membranes, which mainly consist of type
IV collagen (Mook et al., 2004; Poincloux et al., 2009). MMP-2 and MMP-9 are well-
investigated soluble MMPs with the ability to degrade the similar types of tissue, except
for type IV collagen (Itoh, 2015). Apart from in their active form, both exist in their
inactive forms pro-MMP-2 and pro-MMP-9. For the activation of MMP-2—the soluble
MMP we will focus on throughout the rest of the thesis—two MT1-MMP monomers and
tissue inhibitor of metalloproteinase 2 (TIMP2), which belongs to a family of four pro-
tease inhibitors that can collectively inhibit all known MMPs, is needed. The formation of
a complex of a MT1-MMP dimer, TIMP2 and pro-MMP-2 allows for MMP-2 activation,
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Figure 2.8: MMP-2 activation by MT1-MMP. A complex of a MT1-MMP dimer,
TIMP2 and pro-MMP-2 is required to activate MMP-2. Reproduced from Itoh (2015)
under Creative Commons License.

as Figure 2.8 shows in more detail.
Protease-independent invasion relies on cancer cells changing from a mesenchymal-

like to an amoeboid-like shape—a process called mesenchymal-amoeboid transition. This
increases the morphological plasticity of the cells and enables them to squeeze through
the collagen-like pores, rather than needing to solely rely on ECM degradation.

It has been shown by Sabeh et al. (2009) that cancer cells cannot migrate unless the
proteinases have cleared the collagen prevalent in normal tissue of its covalent cross-links,
and that protease-dependent invasion on its own is a sufficient invasion mechanism. In
their experiments, multicellular spheroids of HT-1080 fibrosarcoma cells were embedded
in three-dimensional gels of native type-I collagen in order to create conditions reflecting
those found in interstitium of the human body. As can be seen in the panels in the
left column of Figure 2.9, the HT-1080 cancer cells successfully invaded the surrounding
ECM within three days by using soluble MMP-1 and MMP-2, as well as membrane-bound
MT1-MMP to cleave the type-I collagen. Silencing MMP-1 and MMP-2 simultaneously
still resulted in cancer cell infiltration in a ‘starburst’ fashion, as shown in the second
column of panels in Figure 2.9. Silencing MT1-MMP, however, resulted in the failure of
ECM invasion over the three days, as shown in the third column. Only by electroporating
MT1-MMP-silenced cancer cells with an expression vector for mouse MT1-MMP, which
is resistant to the silencing mechanism of human HT-1080 cells, the cancer cells became
invasive again. These results were further found to extend to experiments where actual
human mammary gland explants were used instead of reconstituted cross-linked collagen
gels. Again, both MDA-MB-231 and SUM-159 breast cancer cells invaded into the stromal
microenvironment of the initial tumour extensively within three days in the cases of no
silencing and of simultaneous MMP-1- and MMP-2-silencing but not in the case of MT1-
MMP-silencing (unless counteracted by mouse MT1-MMP). Invasion distances of breast
cancer cells into the surrounding tissue in each case are shown in Figure 2.10.

In the context of the study, it was found that protease-dependent invasion is neces-
sary and sufficient for cancer cell invasion. Hence, we focus solely on this mechanism
throughout the rest of this thesis.
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Figure 2.9: Invasion of multicellular spheroids of HT-1080 fibrosarcoma cells
into 3D gels of native type-I collagen. Over a three day period, the HT-1080 cells
successfully infiltrated the ECM without silencing of MMPs but also when MMP-1 and
MMP-2 are silenced simultaneously, as the first two columns show, respectively. When
MT1-MMP is silenced, cancer cells cannot invade (third column) unless this silencing is
counteracted by mouse MT1-MMP, which escapes the human-specific MT1-MMP siRNA
introduced in the third column. Modified and reproduced from Sabeh et al. (2009) with
permission from Rockefeller University Press.

Figure 2.10: Invasion of MDA-MB-231 and SUM-159 breast cancer cells into
human mammary gland explants. In real human breast tissue, the pattern regarding
invasion distance of two types of cancer cells into the ECM is the same as that of HT-
1080 cells invading into reconstituted gels in Figure 2.9. Modified and reproduced from
Sabeh et al. (2009) with permission from Rockefeller University Press.
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Figure 2.11: Schematic representation of EMT (left to right). As an outcome
of EMT, the cell-cell adhesion, which is predominantly enforced via E-cadherin, gap junc-
tions and tight junctions between formerly epithelial-like cancer cells, is reduced together
with their expression of epithelial integrins. These are replaced by the expression of cell-
matrix adhesion-enhancing molecules like N-cadherin and integrins that are specific to ex-
tracellular components on the cell membrane. Moreover, the actin cytoskeleton remodels
into stress fibres that accumulate at the areas of cell protrusions. Also, epithelial cytok-
eratin intermediate filaments are increasingly replaced by vimentin. This combination of
changes enhances invasiveness. Further, cancer cells become more potent at degrading the
basement membranes of organs and vessels, as shown towards the right of the figure, as
well as the ECM in general. This allows the mesenchymal-like cancer cells to invade the
surrounding stroma. During MET, which is explained graphically by reading the figure
from right to left, these phenotypic changes are reversed. Reproduced from Micalizzi et al.
(2010) with permission from Springer.

Cancer cells of two phenotypes are often distinguished—epithelial-like cancer cells
and mesenchymal-like cancer cells. These cancer cell types arise due to an observed
tradeoff between a cell’s invasiveness and its ability to proliferate, also known as the
go-or-grow dichotomy, which was observed in the context of astrocytomas, a type of
brain cancer originating in a particular kind of glial cell called astrocyte (Giese et al.,
1996; Tamaki et al., 1997; Khoshyomn et al., 1999). The mesenchymal-like cancer cells
resemble mobile cells in embryo development and are therefore more motile. These cancer
cells can invade and intravasate individually. Due to their loss of cell-cell adhesion as well
as their expression of MDEs. Epithelial-like cancer cells, on the other hand, cannot invade
effectively without the coexistence of MDE-secreting mesenchymal-like cancer cells. This
is because cancer cells with an epithelial-like phenotype do not express MDEs. They are
also comparatively less motile. However, the epithelial-like cell type is more proliferative
and its role should not be ignored in the invasion-metastasis cascade. Also, mesenchymal-
like cancer cells have been suggested to be able to develop from epithelial-like cancer cells
via a process termed the epithelial-mesenchymal transition (EMT) (Kalluri andWeinberg,
2009), which is shown schematically in Figure 2.11 and explained in detail in Carragher
et al. (2006); Friedl and Wolf (2003); Gadea et al. (2008); Wolf et al. (2003a,b, 2007). The
reverse process, mesenchymal-epithelial transition (MET), is additionally hypothesised to
be involved in metastatic spread, for instance by contributing to the colonisation of DTCs
at secondary sites (Gunasinghe et al., 2012). Section 2.4 elucidates the role of EMT and
MET, and of the resulting cell phenotypes, in each of the steps of the invasion-metastasis
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cascade in further detail.
Mesenchymal-like and epithelial-like cancer cells have been observed to invade most

effectively in a setting where both cancer cell types are present. This gives rise to the hy-
pothesis of a second protease-dependent invasion mechanism in addition to mesenchymal-
like cancer cells invading individually. Friedl et al. (2012), amongst others, have shown
that collective migration of cohesive cell cohorts is an important invasion mechanism for
cancer cells. The theory is that clusters consisting of cancer cells of heterogeneous pheno-
types may invade the ECM together. Figure 2.7 shows the invasion of single mesenchymal-
like cells versus collective groups of cells.

2.3.3 Intravasation

Once suitably mutated single cancer cells and oligoclonal clusters derived from the same
primary tumour (Aceto et al., 2014) have invaded the tissue far enough to find themselves
adjacent to a lymph or blood vessel (whether in the form of or individually), they can
potentially intravasate into the blood system through the basal laminae of blood vessels.
The exact mechanism of intravasation into the vasculature is still unclear, mainly because
it shows to be difficult to establish tumour models in which intravasation and cancer cell
shedding can be observed (Bockhorn et al., 2007). While there is experimental evidence
suggesting that a subset of cancer cell lines may only be able to access the blood vessels
indirectly via prior intravasation into the lymph vessels, the spread to distant sites in the
body ultimately happens by dissemination through the blood vessels (Wong and Hynes,
2006; Lambert et al., 2017). Also, two main intravasation modes —active versus passive
intravasation—are proposed in the biological literature. These are likely not mutually
exclusive (Cavallaro and Christofori, 2001; Bockhorn et al., 2007; Jie et al., 2017). The
active intravasation hypothesis postulates that cancer cells crawl towards and into vessels
actively with the help of MDEs while being led by chemokine and nutrient gradients.
Passive intravasation, on the other hand, implies a more accidental shedding of cancer
cells via newly formed immature vessels, which are fragile and may collapse due to trauma
or under the physical pressure caused by rapid tumour expansion.

The following overview of evidence for active and passive mechanisms in cancer cell
intravasation was collected by Bockhorn et al. (2007). It highlights that there exists evi-
dence for both the active and passive intravasation hypothesis. In Bockhorn et al. (2007),
each of the bullet points below is supported by up to five studies.

Evidence for active intravasation:

• cytoskeletal activity associated with metastasis;

• integrin upregulation involved in metastasis;

• accumulation of mutations needed for metastasis;

• transient, microenvironment-induced changes in gene profile;

• MMPs produced by metastatic cells;

• tumour microenvironment can induce migration-related pathways via hypoxia and
other stresses.
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Evidence for passive intravasation:

• most shed cells are non-viable;

• shed cells are not clonogenic;

• blood vessels have fragile walls;

• solid stress collapses vessels;

• loss of cell-cell and cell-matrix adhesion associated with shedding and metastasis;

• tumour microenvironment confers survival advantages to random cells via hypoxia
and other stresses.

A particular focus of this thesis is the role of mesenchymal-like cancer cell phenotypes
in contrast to epithelial-like phenotypes—Can cells of one phenotype intravasate without
the presence of the other?

A study by Tsuji et al. (2009), the results of which are visually explained in Fig-
ure 2.12, sheds some light on this question. Using a mouse model, the study examined
cancer cells that had undergone EMT—and were thus of mesenchymal phenotype—and
cancer cells of epithelial phenotype with regards to their intravasation success. Suc-
cessful intravasation was measured as the cells’ ability to penetrate blood vessels once
they had been transplanted into the mice subcutaneously. While tumours consisting of
mesenchymal-like cancer cells only were able to intravasate (top row of Figure 2.12), those
consisting of epithelial-like cancer cells only were not (third row of Figure 2.12). Simul-
taneous subcutaneous injection of the two cell types resulted in successful intravasation
of both cell types (fifth row of Figure 2.12).

The difference between mesenchymal-like and epithelial-like cancer cells, as described
in Section 2.3.2 together with the above-explained differentiation between active and
passive intravasation gives rise to three entry modes of cancer cells into the vasculature.
These are further explained in Francart et al. (2018):

• Single MDE-expressing mesenchymal-like cancer cells actively enter the blood ves-
sels and thereafter disseminate as single circulating tumour cells (CTCs).

• Cancer cells of epithelial and of mesenchymal phenotype cooperate in the sense
that mesenchymal-like cancer cells allow epithelial-like cancer cells to enter the
vasculature together with or shortly after them. Mesenchymal-like cells express the
MDEs required to degrade the vessels’ basal laminae. This allows for co-invasion
of the epithelial-like cancer cells in the vicinity. Thus, both mesenchymal-like and
epithelial-like cancer cells enter the blood system jointly as a cluster.

• Any single cancer cell or cancer cell clusters near a ruptured blood vessel intravasate
via the passive entry mode.

These entry mechanisms are depicted—left to right—in Figure 2.7 along the upper left
blood vessel wall.
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Figure 2.12: Visual representation of results from mouse model by Tsuji
et al. (2009) suggesting synergetic effects of cells of mesenchymal and ep-
ithelial phenotypes in metastatic spreading. (A) Mesenchymal-type cells alone
did intravasate into the bloodstream but did not form lung metastases; (B) Epithelial-
type cells alone were unable to intravasate but, if injected directly into the bloodstream,
could extravasate and metastasise; (C) Jointly subcutaneously injected epithelial-like and
mesenchymal-like cells invaded the tissue locally, intravasated, extravasated and success-
fully colonised as metastases; (D) Proposed synergetic model of cancer cell metastasis:
Mesenchymal-like cells invade into surrounding tissue clearing the path for cells of ep-
ithelial phenotype to invade and intravasate. Cell types jointly enter the circulation but
only the epithelial-like cancer cells can successfully colonise at distant organs. Reproduced
from Tsuji et al. (2009) with permission from the American Association for Cancer Re-
search.
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Figure 2.13: Cancer cells in the blood system. Once single cancer cells or cancer cell
clusters have intravasated, several mechanisms—both to aid the cancer cells (e.g. platelets
covering cell surface, neutrophils that enhance extravasation through NET expression, and
MMP secretion) and to destroy them (e.g. physical stresses; attacks by NK cells)—come
into action. Reproduced from Lambert et al. (2017) with permission from Elsevier Inc.

2.3.4 Travel through the vasculature and extravasation

Successful intravasation into the vasculature by no means implies that the respective
cancer cells will succeed in metastasising. Cancer cells encounter further obstacles in the
bloodstream. In fact, as Figure 2.13 shows, single CTCs and CTC clusters are exposed to
physical stresses, which include hydrodynamic flow, loss of attachment to a substrate and
shear stress. Other obstacles involve the human immune system—in particular, natural
killer (NK) cells, which kill some of the cancer cells in the bloodstream—as well as anoikis,
programmed cell death induced by lack of appropriate attachment anchorage-dependent
cells to the ECM (Gilmore, 2005). These factors lead to a significant decrease in the num-
ber of cancer cells that reach the metastatic site from the primary tumour. Further, these
factors frequently cause cancer cell clusters to disaggregate during the travel through the
vasculature, as shown in the centre of Figure 2.7. This generally leads to smaller CTC
clusters and an increased number of single CTCs. Other cells in the bloodstream as-
sist the cancer cells. Platelets coat the surfaces of cancer cells, which prevents NK cells
from recognising and destroying them. Neutrophils have a similar effect and additionally
support the extravasation of cancer cells. As depicted in the middle of the lower vessel
wall shown in Figure 2.13, neutrophils can express neutrophil extracellular traps (NETs),
which entangle cancer cells. This is suggested to enhance the cancer cells’ survival poten-
tial, as well as the probability that they will adhere to endothelial cells and extravasate.
Neutrophils also secret various MMPs upon arrest, which aid the extravasation of the
cancer cells by cleaving the vessel wall. Transendothelial migration (TEM) is further pro-
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voked by bioactive factors (e.g. vascular endothelial growth factor (VEGF), MMPs and
ADAM12), which are secreted by activated platelets and by cancer cells. These factors
can act on cancer cells themselves, on monocytes and on endothelial cells. Inflamma-
tory monocytes promote TEM by differentiating into metastasis-associated macrophages
(MAMs) that reside in the parenchyma of the potential secondary sites. Finally, it has
recently been found by Strilic et al. (2016) that cancer cells can induce necroptosis of
healthy endothelial cells, as shown on the bottom right of Figure 2.13, which allows the
cancer cells to extravasate without TEM. More in-depth information on the biological
background of extravasation can be found in Lambert et al. (2017).

Whether a certain cancer cell phenotype is required for successful extravasation at
secondary sites is unclear. As a result of the aforementioned mouse study by Tsuji et al.
(2009) shown on the bottom left of Figure 2.12, it was proposed that mesenchymal-like
cancer cells may fail to adhere to the target organ endothelium due to their reduced adhe-
sive properties. Diepenbruck and Christofori (2016) argue instead that mesenchymal-like
cancer cells can arrive at metastatic sites but that MET is required for them to out-
grow as macrometastases. Upon closer examination, it becomes evident that this would
not necessarily contradict the findings of the mouse model by Tsuji et al. (2009), which
checked for metastasis—rather than newly arrived DTCs and/or micrometastases—when
the primary tumour had reached 20% of the bodyweight of the mice. Further, NETs may
entangle cells of both phenotypes and the mesenchymal phenotype may have the advan-
tage of MMP-expression upon extravasation.

2.3.5 Metastatic growth

A successfully extravasated single cancer cell or cluster of cancer cells can either con-
tribute to self-seeding to an existing metastasis or to the primary tumour, or it can settle
as a potential initial seed of a new metastasis (Pantel and Speicher, 2016). However,
even if cancer cells have extravasated successfully into the parenchyma of a potential new
metastatic site, success in growing into a full-blown secondary tumour is not guaranteed.
As illustrated in Figure 2.14, extravasated cancer cells can be grouped into the three
stages—single DTCs, small avascular micrometastases and (macro-)metastases. While
newly extravasated single cancer cells and cancer cell clusters may progress through all
of these stages, it is much more likely for them to die or to remain dormant during one
of the first two phases. Here, for single cancer cells, remaining dormant means that the
cell neither proliferates nor dies and for micrometastases, dormancy implies that there
is an actively controlled balance between apoptosis and proliferation (Chambers et al.,
2002). While some dormant DTCs and micrometastases may never cause a problem in a
patient’s life and while it is difficult to deliver a formal proof that a detected metastasis
has developed directly from a dormant DTC or micrometastases, a correlation between
existing micrometastases in the bone marrow at the time of breast cancer diagnosis and
relapse due to metastatic spread has e.g. been identified by Braun et al. (2005). However,
by far most of all cancer cells arriving in the tissue of the new metastatic site never become
metastases but die in the process. To give a rough idea of the probability that a cancer
cell, which has already intravasated successfully, will ultimately develop into a micro-
or macrometastasis, we can quote the result of an experimental study by Luzzi et al.
(1998). The authors investigated the proportions of melanoma cells that formed micro-
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Figure 2.14: Possible fates of extravasated cancer cells. Once single CTCs arrive
at secondary sites and extravasate (left), they can continue to exist as single DTCs (mid-
left), grow into small avascular micrometastases (mid-right) or even into vascularised
(macro-)metastases (right). At the two pre-vascularised stages, only a small subset of
cells will proceed to the respective next stage. The remaining DTCs or micrometastases
die or remain dormant, where ‘dormancy’ refers to cells that neither die nor proliferate
in the case of single cells and to zero net growth under active proliferation and apoptosis
in the case of micrometastases. DTCs and micrometastases are not clinically detectable
and some macrometastases are not either. Reproduced from Chambers et al. (2002) with
permission from Nature Publishing.

and macrometastases after the melanoma cells were injected intraportally to target mouse
livers. It was found that 2.04% of the injected single cancer cells formed micrometas-
tases after 3 days but after 13 days only 0.07% of the initially injected cancer cells were
still present as micrometastases. Additionally, it was observed that 0.018% ± 0.017% of
initially injected cancer cells had formed macrometastases after 13 days. These survival
probabilities for single CTCs may, according to Valastyan and Weinberg (2011), even be
an overestimation. CTC clusters were described to have between 23 and 50 times the
metastatic potential of single CTCs (Aceto et al., 2014). Note, however, that this is only
a rough estimate and will depend on other factors such as the particular cancer cell lines
and the secondary sites involved, as explained in detail below.

There are many unsolved questions regarding the exact mechanisms that determine
the sites of successful metastatic colonisation. At the time of writing, no recurrent genetic
mutations that allow for successful colonisation have been found. However, three central
requirements that could be important for successful metastatic colonisation were proposed
in Lambert et al. (2017):

• the development of a supportive microenvironmental niche;

• the capacity to fabricate adaptive colonisation programmes, which are often spe-
cialised to the organs;

• the ability to seed and to sustain a population of tumour-initiating cells.

The first point was addressed as far back as 1889, when the British surgeon Stephen Paget
noted, after having treated many breast cancer patients, that the location of metastatic
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spread is by no means random. He laid the groundwork for the seed and soil hypothesis by
postulating that cross-talk between selected cancer cells (the ‘seeds’) and specific organ
microenvironments (the ‘soil’) drives metastatic spread:

When a plant goes to seed, its seeds are carried in all directions; but they can
only live and grow if they fall on congenial soil. While many researchers have
been studying ‘the seeds’, the properties of ‘the soils’ may reveal valuable
insights into the metastatic peculiarities of cancer cases (Paget, 1889).

This seed and soil hypothesis still stands over 100 years later, emphasising the depen-
dence of secondary tumour survival on the local microenvironment in the secondary site’s
stroma. Additionally, in the current state of research it is suggested that, while tumours
actively recruit this stroma once they are local, it may also be the case that so-called
pre-metastatic niches establish prior to DTC arrival. A primary tumour itself may even
play an important role in niche establishment by secretion of signalling factors with sys-
temic effects on pre-metastatic niche formation, as well as on the primary tumour’s own
expansion and on growth activation in previously latent micrometastases (McAllister and
Weinberg, 2014).

Regarding the second point suggested by Lambert et al. (2017), some organ-specific
metastatic programs have been discovered to date (Nguyen et al., 2009; Sethi and Kang,
2011; Obenauf and Massagué, 2015). These organ-specific programs explain how cancer
cells spread into organs such as the lungs (Chen et al., 2011), the brain (Valiente et al.,
2014), the bones (Weilbaecher et al., 2011), or the liver (Loo et al., 2015). However,
the programmes discussed in these publications likely only explain a small proportion
of survival mechanisms of cancer cells in their new microenvironment. The majority of
mechanisms remain undiscovered to date.

The final pre-requisite suggested by Lambert et al. (2017) for successful colonisation
at the metastatic site involves cells, whose defining trait is the ability to initiate tumour
growth. Several types of cancer cells—such as those involved in breast, ovarian, colorectal,
renal and pancreatic cancer—are suggested to acquire this distinguishing trait after the
activation of EMT programmes have been initiated (Lambert et al., 2017).

Other factors such as the adaptability of the cancer cell ‘seed’ and anatomical factors
have been found to play a role in determining recurrent metastatic spread patterns as well.
An example for the latter is the propensity of advanced gastrointestinal malignancies to
metastasise into the liver as a result of the portal vein emptying directly into the liver
(Gupta and Massagué, 2006). Yet, the distribution of clinically observed metastatic
spread suggests that the anatomy of the circulatory system only plays a role in a small
subset of seeding routes and thus cannot explain general patterns of metastatic spread.

While the specific mechanisms of and the reasons for cancerous spread to specific
metastatic sites remain largely unknown, some studies can provide insight into typical
patterns of metastatic tumour spread of a certain primary cancer type. To tie in with
Stephen Paget’s 19th century observation that breast cancer spread does not occur ran-
domly, we can, for example, consult data on the metastatic spread of primary breast
cancer. These were collected from 4181 breast cancer patients (3735 early-stage breast
cancer patients diagnosed at MD Anderson Cancer Center and 446 breast cancer pa-
tients at Memorial Sloan Kettering Cancer Center, who had no detectable metastases
upon diagnosis but all developed some eventually). They were then visualised through
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Figure 2.15: Metastatic progression of breast cancer. Circular chord diagram
showing MC network of data on metastatic spread from 4181 breast cancer patients over
a 10-year period. Primary breast cancer is located on top. Metastatic sites—including the
bones, lungs and brain—are ordered clockwise in decreasing order of transition probability
from the primary breast tumour. Chord widths starting from the ‘breast’ represent one-
step transition probabilities between two sites. Further information on the exact data
origin and patient criteria can be found at http: // kuhn. usc. edu/ breast_ cancer/ .
Courtesy of Dr Jeremy Mason, University of Southern California using the interactive
tool published at http: // kuhn. usc. edu/ forecasting—the corresponding publication
is Newton et al. (2013).

interactive graphs by the Kuhn Laboratory (2017). Figure 2.15 shows typical metastatic
spread patterns of a primary breast tumour 10 years after diagnosis from such an inter-
active figure.
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2.4 The role of EMT and MET in the
invasion-metastasis cascade

As briefly explained in Section 2.3, cancer cells adapt to the environmental requirements
of the various steps of the invasion-metastasis cascade via changes in phenotype (Jolly
et al., 2017). EMT and MET are a canonical group of—at least transiently—observed
phenotypic changes that are assumed to be crucial for metastatic spread (Guo et al., 2012;
Ye et al., 2015; Krebs et al., 2017). Various combinations of so-called EMT-inducing
transcription factors (EMT-TFs) together with a number of extracellular molecules in
the tumour microenvironment and related pathways are thought to trigger EMT (Jie
et al., 2017). As an outcome of EMT, the cell-cell adhesion, which is predominantly en-
forced via E-cadherin, gap junctions and tight junctions between formerly epithelial-like
cancer cells, is reduced together with their expression of epithelial integrins. These are
replaced by the expression of cell-matrix adhesion-enhancing molecules like N-cadherin,
as well as of integrins that are specific to extracellular components on the cell membrane.
Moreover, the actin cytoskeleton remodels into stress fibres that accumulate at the ar-
eas of cell protrusions and epithelial cytokeratin intermediate filaments are increasingly
replaced by vimentin (Micalizzi et al., 2010). As part of this combination of changes,
the characteristic polygonal cobblestone-like cell shape of epithelial cells is progressively
replaced by a spindle-shaped morphology. Figure 2.11 schematically shows the changes
cells undergo when switching from an epithelial-like (left) to a mesenchymal-like (right)
phenotype. Moreover, the motility and invasiveness of the cancer cells are enhanced (Jie
et al., 2017; Dongre and Weinberg, 2019). As another result of EMT, the cells become
increasingly potent at degrading the underlying basement membranes of organs and ves-
sels as well as the ECM via the expression of metalloproteases (MMPs) (Dongre and
Weinberg, 2019). Additionally, in the case of glioma cells a trade-off has been observed
between proliferation and motility (Giese et al., 1996). MET can reverse the phenotypic
changes induced by EMT. Thus—generally speaking—MET causes the cells to become
less motile and invasive while enhancing their proliferative potential. Traditionally, the
EMT-process has been viewed to result in cells of epithelial and of mesenchymal pheno-
type in a binary sense (Pastushenko and Blanpain, 2018; Dongre and Weinberg, 2019).
Yet, more recently, intermediate states—commonly referred to as hybrid, incomplete or
partial-EMT states—on the spectrum between the fully epithelial and fully mesenchymal
state have been shown to exist in various cell lines of patient xenografts and of human
primary cancers, such as breast, head and neck, and pancreatic cancer (Pastushenko and
Blanpain, 2018). Cancer cells in these intermediate phenotypic states are assumed to
show a variety of combinations of the above-mentioned phenotypic traits. The full tran-
sition from an epithelial to a mesenchymal state, which had formerly been assumed to be
the only possible outcome of EMT, has recently been shown to actually be rare during
carcinogenesis (Dongre and Weinberg, 2019). Furthermore, cell cycle arrest may occur
in these fully mesenchymal cancer cells (Vega et al., 2004; Lovisa et al., 2015), while
partial-EMT cancer cells continue to be able to proliferate (Handler et al., 2018).

In what follows, the roles of EMT and MET as well as of epithelial, partial-EMT and
mesenchymal cancer cells during the various steps of the invasion-metastasis cascade are
elucidated in more detail. Sections 2.3.2 to 2.3.5 introduced the five steps of the invasion-
metastasis cascade in detail. Therefore, we will only focus on the respective EMT-related
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features, as well as those related to the partial-EMT phenotype, in Sections 2.4.1 to 2.4.4.

2.4.1 Local cancer cell invasion

In Section 2 we established that carcinomas are tumours that arise from epithelial tissue.
However, during local cancer invasion, cancer cells have been found to either invade
as single cells of partial-EMT or of mesenchymal phenotype or as clusters, which often
consist of cancer cells of heterogeneous phenotypes (Friedl and Wolf, 2003). Hence, EMT
of some degree at least in a subset of the cancer cells at the primary site is a prerequisite
for this first step of the invasion-metastasis cascade (Francart et al., 2018; Pastushenko
and Blanpain, 2018). Migrating cells usually employ their acquired mesenchymal traits,
i.e. the decrease or loss in cell-cell adhesion and increase in cell-ECM adhesion and in
MDE-expression, to invade (Friedl and Wolf, 2003; Bill and Christofori, 2015). This
hypothesis is, for example, supported by reports suggesting that invading cancer cell
clusters contain cells that have undergone partial EMT in vivo (Tsai et al., 2012; Ocaña
et al., 2012). Moreover, the occurrence of clusters highlights that partial EMT allows
for the cancer cells to maintain at least some aspects of their epithelial cell-cell adhesion
(Cheung and Ewald, 2016). Furthermore, the spatial location of cancer cells of partial-
EMT and of epithelial phenotype was investigated by Puram et al. (2017) in situ in oral

Epithelial-like 
cancer cells

Partial-EMT 
cancer cells

CAFs in 
stroma

Epithelial-like cancer cells

Partial-EMT cancer cells

Figure 2.16: Partial EMT occurs at the leading edge in HNSCC. In situ spa-
tial location of cancer cells expressing a partial EMT programme versus those expressing
an epithelial phenotype within HNSCC tumours schematically (left) and in human tissue
(right). On the right, immunohistochemistry was used to stain the tumour for PDPN,
one of the top genes in the partial-EMT programme, as well as SPRR1B, an epithelial
differentiation marker. Partial-EMT cancer cells were located at the leading edge of tu-
mours in proximity to the surrounding stroma, epithelial-like cancer cells at the core of
tumours. Reproduced from Puram et al. (2017) with permission from Elsevier.
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cavity head and neck squamous cell carcinomas (HNSCCs). Using immunohistochemistry
to stain a collection of tumours, they found that, while the core of the tumours contained
malignant cells of epithelial phenotype, partial EMT had occurred in the cancer cells at
the leading tumour edge in the proximity of cancer-associated fibroblasts (CAFs) in the
tumour microenvironment. A corresponding stained tissue sample and an explanation in
the form of a diagram are shown in Figure 2.16.

2.4.2 Intravasation

As explained in detail in Section 2.3.3, only MDE-expressing cancer cells may intravasate
into intact vessels. Therefore, partial-EMT cancer cells are—like mesenchymal-like cancer
cells—able to intravasate undamaged vessels (Jolly et al., 2018). Similarly, cancer cell
clusters that consist at least partially of partial-EMT and mesenchymal-like cancer cells
can enter undamaged vessels using MDEs.

2.4.3 Travel through the vasculature and extravasation

The bulk of CTCs and CTC clusters that travel through the vasculature were found to
be of partial-EMT phenotype (Jolly et al., 2018). In terms of experimental evidence of
typical CTC phenotypes, Armstrong et al. (2011) found that in women with metastatic
breast cancer and men with castration-resistant prostate cancer more than 75% and
80% of CTCs, respectively, coexpressed epithelial and mesenchymal markers. Similarly,
studies by Thiery and Lim (2013) and by Yu et al. (2013) reported that a significant pro-
portion of CTCs were of partial-EMT or mesenchymal-like phenotype in patients with
metastatic breast cancer. CTCs of partial-EMT phenotypes have further been observed
in the blood of patients with cancer of the liver, prostate and lungs as well as in pa-
tients with colorectal, nasopharyngeal and gastric cancer. In these types of cancer, the
partial-EMT phenotype correlates with poor clinical prognosis when compared to the oc-
currence of cancer cells of pure epithelial or pure mesenchymal phenotype (Pastushenko
and Blanpain, 2018). The prominence of cells of partial-EMT phenotype at the tumour
edge as well as their ability to intravasate into the vasculature using MDEs offer poten-
tial explanations of these findings. An additional explanation is that at least a subset
of partial-EMT CTCs is more resistant to anoikis, i.e. to apoptosis induced by lack of
correct cell-ECM attachment (Huang et al., 2013).

2.4.4 Metastatic growth

Cancer cell phenotypes are, once again, of crucial importance when it comes to the coloni-
sation and metastatic growth of cancer cells at the secondary sites. Also, EMT alone fails
to explain this last step of the invasion-metastasis cascade given that macrometastases
in humans often present similar histopathological traits to the primary tumours they
typically originate from. These include a mainly epithelial-like morphology (Pastushenko
and Blanpain, 2018) with a relatively small subset of cancer cells with phenotypes fur-
ther along the EMT spectrum (Dongre and Weinberg, 2019). This is despite the above-
described evidence of the abundance of partial-EMT CTCs in the vasculature. Conse-
quently, this suggests that some degree of MET is needed for macrometastatic growth.
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Figure 2.17: Schematic overview of the invasion-metastasis cascade with—
as opposed to Figure 2.7—additional detail regarding the role of the EMT-
process and partial-EMT cancer cells. Single mesenchymal-like and partial-EMT
cancer cells as well as heterogeneous clusters consisting of mesenchymal-like, partial-
EMT and epithelial-like cancer cells break free from the primary tumour and invade the
surrounding tissue (top left). They can intravasate via active matrix-degrading enzyme
(MDE)-mediated and passive mechanisms (mid-left, along epithelium of the vessel). Once
in the vasculature, circulating tumour cell (CTC) clusters may disaggregate (centre) and
CTCs may die. Surviving cells may extravasate through the walls of the microvasculature
to various secondary sites in the body (bottom right). Successful colonisation there can
result in either disseminated tumour cells (DTCs) or in micrometastases, which have the
potential to develop into full-blown metastases.
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A murine prostate cancer model by Ruscetti et al. (2015) delivers further insight. Can-
cer cells in macrometastases that had spread to the lungs were found to have mainly
epithelial markers and few mesenchymal markers; the inverse constitution was found in
dormant micrometastatic lesions. Coherently, in a study by Ocaña et al. (2012), it was
proposed that the constant overexpression of the EMT-inducer PRRX1 in human breast
tumour cell lines, which were injected intravenously into chick embryos, may lock can-
cer cells in a mesenchymal-like phenotypic state. This was suggested to inhibit the cells
from performing MET, which, in turn, failed to give rise to lung metastases. Similarly,
Kröger et al. (2019) concluded from a number of studies that a stable mesenchymal-like
phenotype without any MET potential cannot succeed in metastatic re-seeding.

2.5 An example of an in vitro invasion study
In this section, we explore how experimentalists study invasion in vitro and quantify their
results. As an example, we introduce an organotypic assay experiment by Nurmenniemi
et al. (2009) that we subsequently use to demonstrate that our mathematical model
for cancer invasion of the ECM in Chapter 6 provides biologically accurate predictive
results. The experiment by Nurmenniemi et al. (2009) uses human tongue squamous cell
carcinoma cells of cell line HSC-3 that invade uterine leiomyoma tissue. Since this mimics
the in vivo invasion of the tumour microenvironment in oral squamous cell carcinoma
(OSCC), we first explain OSCC and the composition of its tumour microenvironment
in vivo. With reference to experimental evidence, the suitability of uterine leiomyoma
tissue to represent the tumour microenvironment of OSCC is demonstrated. We proceed
by describing the experimental setup of the invasion organotypic assays in Nurmenniemi
et al. (2009), their experimental results and the methods applied to quantify these results.

2.5.1 Oral squamous cell carcinoma (OSCC)

Head and neck cancer is one of the 10 most common types of cancer worldwide, afflicting
more than 5 × 105 individuals each year. OSCC represents 95% of all forms of head
and neck cancer, and over the last decade, its overall incidence has increased by 50%.
OSCC is a malignant neoplasm derived from the stratified squamous epithelium of the
oral mucosa as Figure 2.18 shows. The neoplasm can occur at various sites, the most
frequent being the lip, lateral edges of the tongue and floor of the oral cavity.

Oral carcinogenesis is a multistage process, which simultaneously involves precan-
cerous lesions, invasion and metastasis. Oral cancer is considered to be a preventable
condition, due to the possibility of early detection and treatment. However, the majority
of OSCC are diagnosed at a late phase which markedly decreases the chances of survival
and leads to a significant deterioration in patient quality of life. Despite the currently
available therapeutic strategies, which include the excision of malignant tissue and com-
bination of radiotherapy and chemotherapy, the five-year survival rate is only 53%. A
high percentage of patients have a poor response to therapy and high recurrence rates
(Rivera and Venegas, 2014).
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Figure 2.18: OSCC and its tumour microenvironment. In the tumour microenvi-
ronment, different stromal cells—including vascular and lymphatic endothelial cells, and
pericyte support fibroblast innate and adaptive immune cells—as well as tumour cells
are observed. Furthermore, the tumour microenvironment contains non-cellular compo-
nents, including the ECM, growth factors, proteases, protease inhibitors or other sig-
nalling molecules that are significant in the reactions of the stroma in the tumour mi-
croenvironment (Koontongkaew, 2013). From Rivera and Venegas (2014) under Creative
Commons License.

2.5.2 The OSCC tumoural microenvironment

Traditionally, organotypic assays to study carcinoma cell invasion in three dimensions
consist of type I collagen, e.g. Nyström et al. (2005); Nurmenniemi et al. (2009); Sabeh
et al. (2009), a combination of type I collagen and Matrigel, e.g. Gaggioli et al. (2007), or
fibroblasts embedded in collagen e.g. Fusenig et al. (1983); Mackenzie (2004). However,
as Figure 2.18 suggests, the in vivo tumour microenvironment is far more complex than
the organotypic assays used in any of the cited experimental setups. Indeed, the tumour
microenvironment contains numerous types of cells, including smooth muscle cells, en-
dothelial cells and their precursors, pericytes, fibroblasts, cancer-associated fibroblasts,
myofibroblasts, neutrophils, mast cells, basophils, eosinophils, T and B cells, natural killer
cells and antigen-presenting cells, such as dendritic cells and macrophages (Lorusso and
Rüegg, 2008) (see Figure 2.18). Further, the tumour microenvironment consists of other
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non-cellular components, such as the ECM, proteases, protease inhibitors, growth factors
and other signalling molecules (Koontongkaew, 2013). After cancer invasion was, for a
long time, considered to be dependent solely on the mutated cancer cells with abnormal
proliferative capacities, it has recently become evident that the tumour microenvironment
and its interaction with the cancer cells considerably affects the invasive outcome (Kenny
et al., 2007).

To mimic the tumour microenvironment of OSCCs in vivo, Nurmenniemi et al. (2009)
recommended the use of real human uterine leiomyoma tissue, rather than of more tra-
ditional organotypic assays such as type I collagen, for three-dimensional invasion exper-
iments. Using immunostaining for various cell markers and proteins, it was confirmed
that the in vivo tumour microenvironment of OSCCs compares to uterine leiomyoma
tissue—compare Figure 3 in Nurmenniemi et al. (2009). The study found that the my-
oma tissue consists of abundant quantities of ECM proteins, such as collagen type I and
III and laminins. Further, they found basement membrane proteins like collagen type IV
and fibronectin, smooth muscle actin-positive cells. Other cell types like smooth mus-
cle cells, endothelial cells, lymphocytes, macrophages and fibroblasts were also observed.
Finally, to compare invasion outcomes, Nurmenniemi et al. (2009) constructed invasion
experiments that were equal apart from uterine leiomyoma tissue being used in some and
collagen I in others. It was observed that using myoma enhanced the invasion depth of
cancer cells as well as possibly promoted EMT. Overall, the conclusion was reached that
myoma provided a biologically relevant human matrix for squamous cell carcinoma.

2.5.3 Experimental method for the HSC-3 organotypic invasion
assay culture

In this thesis, we provide a summary of those details of the experimental setup in Nur-
menniemi et al. (2009) that are relevant to our modelling approach and simulations in
Chapter 6. Further details can be found in the publication itself.

For the organotypic culture, only non-degraded human uterine leiomyoma tissue was
selected and any areas with macroscopically heterogeneous tissue were omitted. The
suitable tissue was cut into 3 mm thick slices. From these, discs of 8 mm diameter were
punched. 7× 105 human tongue squamous cell carcinoma cells (HSC-3) were allowed to
attach to the top of each myoma disc overnight. Subsequently, the myoma discs were
transferred onto uncoated nylon discs that rested on curved steel grids in 12-well plates
with sufficient volume of media. This arrangement is shown on the top left of Figure 2.19,
which presents the steps of the experimental procedure elaborated in what follows.

At days 2, 8 and 14, the organotypic cultures, which all stemmed from the same
myoma to minimise differences in tissue, were formalin-fixed. Then they were dehydrated,
bisected and embedded in paraffin to reach the state shown in the centre of Figure 2.19.
Next, they were sectioned into slices of 6 µm thickness and immunostained according to
the question the authors sought to address. For the main invasion experiment, which our
model focusses on, pancytokeratin AE1/AE3 was used, which stains epithelial-derived
HSC-3 cells brown, as shown on the bottom of Figure 2.19.

The same staining was used in an experiment to investigate EMT, as depicted in
the middle panel of Figure 2.20. In this experiment, Nurmenniemi et al. (2009) further
stained the sections with the mesenchymal marker vimentin (VIM), which stains cells
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Figure 2.19: Graphical representation of HSC-3 myoma assay experimental
procedure. See text for details on the experimental procedure by Nurmenniemi et al.
(2009). Reproduced from Nurmenniemi et al. (2009) with permission from Elsevier (bot-
tom) and from Rissanen et al. (2013) (top).
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Figure 2.20: Immunostaining for mesenchymal and epithelial markers. Im-
munostained sections with (A) VIM, which stains cells of mesenchymal phenotype red;
(B) pancytokeratin AE1/AE3, which stains epithelial-derived cells brown; (C) both VIM
(red) and pancytokeratin (blue) simultaneously. Reproduced from Nurmenniemi et al.
(2009) with permission from Elsevier.

of mesenchymal phenotype red, as the left panel of Figure 2.20 demonstrates. Finally,
simultaneous staining was carried out as well—the right panel of the same figure shows
VIM in red and pancytokeratin in blue.

2.5.4 Quantification of the HSC-3 myoma assay results

The bottom of Figure 2.19 shows microscopic fields with pancytokeratin AE1-/AE3-
stained organotypic assays that initially consisted of a single HSC-3 cell layer on top of
visually homogeneous myoma tissue at day 2, 8 and 14 (left to right).

Qualitatively, it can be observed that at day 2, the single-cell layer on top of the
myoma assay had increased in thickness. Myoma invasion in the form of subtle protrusive
strands that continued to be attached to the upper non-invasive cell layer as well as in
the form of two small invading cancer cell clusters were visually detectable. By day 8,
however, the myoma tissue area studied was infiltrated by many single cancer cells and
small clusters of cancer cells. At day 14, the top-most non-invasive cell layer had notably
extended further to a thickness of approximately 36–43 µm. Furthermore, the depicted
myoma tissue was infiltrated by large cancer cell clusters throughout, with the ‘islands’
nearer the non-invasive cell layer generally tending to present a larger surface area.

Quantitatively, invasion results were measured via the maximal invasion depth, the
invasion area and the invasion index, as shown in Figure 2.21 (left to right). To determine
the maximum invasion depth for each slice, the distances of the three HSC-3 cells that
had invaded furthest from the myoma surface—measured perpendicularly to the top edge
of the microscopic field—were measured using Fiji software, as shown in Figure 2.22, and
the mean of the distances was calculated, as described in Åström et al. (2018). This
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Figure 2.21: Quantification of invasion results. Invasion results on day 14 were
measured via the maximal invasion depth, the invasion area and the invasion index, which
are presented in the form of box plots (left to right). The central rectangles span the first
quartile to the third quartile. The segment inside the rectangle shows the median. The
‘whiskers’ above and below the box show the locations of the respective minimum and
maximum. Suspected outliers are indicated by a circle and outliers by a star. The results
for the maximal invasion depth consist of at least three measurements, cf. Figure 2.22, of
two to eight slices from two to four independent assays. For the invasion area and index,
one measurement per representative area was taken from each of the two to eight slices
from the two to four independent assays. Modified from Nurmenniemi et al. (2009) with
permission from Elsevier.

Figure 2.22: Maximal invasion
depth. The invasion distances of
the three epithelial-like HSC-3 cells
that invaded furthest into the myoma—
measured perpendicularly to the top edge
of the microscopic field—were measured
as indicated by the red line. Then,
their mean was calculated as described in
Åström et al. (2018).

Figure 2.23: Invading vs. non-
invading cell area. The area of the
upper non-invading epithelial-like HSC-
3 cell layer is shown in white; the area
that is occupied by invading epithelial-like
HSC-3 cells is shown in red. Cells of
mesenchymal-like phenotype were not ac-
counted for in the determination of the
respective areas.
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was repeated for 3 to 8 slices from the same myoma disc and then averaged. Using this
method, the maximal invasion depth was found to be 547 µm, with interquartile range
61 µm, in this experiment. The invasion index used was introduced in Nyström et al.
(2005). To calculate the index, Nurmenniemi et al. (2009) first quantified the area of the
upper non-invading cell layer, which corresponds to the respective area coloured in white
in Figure 2.23 in each microscopic field, as well as the area occupied by the sum of the
remaining invading epithelial-like HSC-3 cells, which is highlighted in red in the same
figure. These measurements were, again, taken from 3 to 8 slices of the same myoma
to determine the mean area of the upper non-invading cell layer (Ainv−) and the mean
invading cell area (Ainv+). The invasion index (I) was then calculated as

I =
Ainv−

Ainv+ + Ainv−
, (2.5.1)

which gave I = 0.51 [0.41, 0.60] in this particular experiment.
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Chapter 3

Mathematical models of cancer
invasion and metastasis

In this chapter, we review existing models of cancer invasion and metastasis. We consider
both spatially local and non-local invasion models. The metastasis models reviewed
either describe the acquisition of a metastatic phenotype in cancer cells or investigate
metastatic growth dynamics. The models proposed in Chapters 4–6 are motivated by
this literature review—they focus on aspects previously unexplored through mathematical
models, such as the spatiotemporal evolution of individual cancer cells in the invasion-
metastasis cascade and the role of EMT-processes therein.

3.1 Mathematical models of cancer invasion
Arguably, the roots of solid tumour growth models lie in modelling work by Hill (1928)
on general, non-cancer-specific diffusion of oxygen and lactic acid through tissue. Other
cancer-specific spatiotemporal models of non-invasive tumour growth by diffusion, such
as Burton (1966); Greenspan (1972, 1976); Deakin (1975), started developing around
half a century ago. While Burton (1966); Greenspan (1972); Deakin (1975) considered
solid tumour growth by diffusion only, the later biomechanical model of solid tumour
growth (Greenspan, 1976) introduced the effects of cell movement and pressure on tumour
growth. Models focusing on cancer cell invasion, in particular, began to be developed in
the early nineties. We give an overview of the development of these models in this section.
Throughout, we distinguish models which include only local interactions between cancer
cells and their environment and those that additionally capture interactions that are non-
local in space through integral terms. This includes a review of existing mathematical
models that account for, in the wider sense, EMT-related features in the context of
spatially explicit cancer invasion.

The information in this chapter is based on the review sections in Enderling and Chap-
lain (2014); Araujo and McElwain (2004); Byrne (2010); Gerisch and Chaplain (2008);
Deakin (2015); Knutson (2011); Peng et al. (2017); Metzcar et al. (2019) as well as on
the results of a personal literature search.

39



3.1.1 Local invasion models

Early models of cancer invasion used ordinary differential equations (ODEs) in a contin-
uum approach. Nowadays, local continuum models also exist in the form of e.g. systems
of advection-reaction-diffusion partial differential equations (PDEs). This allows account-
ing for space in the invasive process. Furthermore, both hybrid and discrete approaches
to modelling cancer invasion are also well-established in the literature.

Continuous local invasion models

Gatenby (1991) proposed a first ODE model describing cancer cell invasion by applying
mathematical modelling techniques from population ecology to cancer growth. Healthy
mesenchymal or epithelial cells, which initially were assumed to be in an equilibrium state
under the given resources entering through blood vessels or reach them by diffusion, took
on the role of the host in population biology. Cancer cells were treated as the initially rare
invading population. The outcome of studying cancer invasion using this first non-spatial
model was either coexistence of both cell types or the extinction of either cancer cells or
healthy cells. Two further ODE models by Gatenby (1995a, 1996) also examined invasion
from a population ecology perspective.

During the same time, Gatenby (1995b) started developing ODE models to test
whether the so-called acid-mediated invasion hypothesis as further explained in Gatenby
et al. (2006) could be verified using mathematical models. This hypothesis claims that
cancer outcompetes healthy resident cells by changing the tissue environment to give
cancer cells a competitive advantage over normal cells. Cancer cells have been shown to
have an altered glucose metabolism—their glucose uptake exceeds that of normal cells.
The resulting increase in H+ ions in the local environment of the cancer cells diffuses
into adjacent healthy tissue along the H+ ion concentration gradient. This causes the
pH, which is defined as pH = − log10 H

+, where H+ is the hydrogen ion activity, in the
adjacent normal tissue to decrease i.e. the tissue becomes more acidic. According to the
acid-mediated invasion hypothesis, this change in pH causes healthy cells to release more
proteolytic enzymes, which degrade the ECM. Another effect is the induction of death
of healthy cells. As the tumour cells are resistant to the acidic environment, the space
created through cell death and ECM degradation allows them to continue to proliferate
and to invade the normal adjacent tissue.

However, due to their ODE nature, the models in Gatenby (1991, 1995a, 1996) could
approximate the evolution of the total number of cells over time but could not account
for their spatial evolution. Yet, as described in Chapter 2, cancer invasion as a biologi-
cal phenomenon is an inherently spatial process. The ODE invasion models’ limitation
with regards to accounting for space was first overcome in the PDE model developed in
Gatenby and Gawlinski (1996). More specifically, this was an early paper of a group of so-
called reaction-diffusion(-taxis) models. These models, which the remainder of this review
subsection deals with, are granted their name by the directed movement of cancer cells
in response to the ECM gradient, known as haptotaxis, and cell movement responding
to chemical gradients in the tissue, chemotaxis. This paper also described acid-mediated
invasion but this time the phenomenon was modelled using a system of reaction-diffusion
PDEs rather than ODEs. It follows a brief overview of the model presented in the seminal
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paper. To allow a better comparison to other modelling work in this thesis, we adjust
the original notation. The PDE model tracks the spatiotemporal evolution of

c(t,x) density of neoplastic (i.e. cancerous) tissue,

m(t,x) excess concentration of H+ ions,

w(t,x) density of normal tissue,

where x ∈ R.
The dimensional model describing the spatiotemporal evolution of the density of can-

cerous tissue c, H+ ion concentration m and normal tissue density w is given by:

∂c

∂t
= ∇ · (Dc[w]∇c) + rcc

(
1− c

Kc

− αcw
w

Kw

)
, (3.1.1)

∂m

∂t
= Dm∇2m + rmc + dmm , (3.1.2)

∂w

∂t
= rww

(
1− w

Kw

− αwc
c

Kc

)
− dmmw + ∇ · (Dw[c]∇w) . (3.1.3)

diffusion growth

diffusion production reabsorption

growth tissue death diffusion

Here, the constants are:

Dc[w] normal tissue-dependent cancer cell diffusion coefficient,

rc growth rate of cancerous tissue,

Kc carrying capacity of cancerous tissue,

αcw parameter characterising tumour tissue growth reduction due to competition
with normal tissue,

Kw carrying capacity of normal tissue,

Dm H+ ion diffusion coefficient,

rm H+ ion production rate,

dm H+ ion reabsorption rate,

rw growth rate of healthy tissue,

αwc parameter characterising normal tissue growth reduction due to competition
with tumour tissue,

Dw[c] cancerous tissue-dependent normal tissue diffusion coefficient.
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As equation (3.1.1) shows, in Gatenby and Gawlinski (1996) cancer cells underwent non-
linear diffusion. The rate of diffusion was assumed to depend on the density of the
normal tissue, w—the higher the density of the normal tissue, the lower the diffusion
of the logistically growing cancerous tissue. The cancerous tissue produced H+ ions at
rate rm, as equation (3.1.2) shows. These H+ ions also diffused with coefficient Dm and
they underwent linear decay at rate dm. The decay rate took into account the effects of
mechanisms that increase the local tissue pH via reabsorption of H+ ions, such as large
scale vascular evacuation and buffering. The H+ ion production and reabsorption rates
were taken to be equal for simplicity. Furthermore, H+ ions were assumed to degrade the
logistically growing normal tissue, as shown in equation (3.1.3).

The model was non-dimensionalised and studied using both travelling wave analysis
and computer simulations. Using data from in vivo measurements of interstitial pH
gradients in healthy and in cancerous tissue, which had recently become available through
experiments by Martin and Jain (1994), Gatenby and Gawlinski (1996) predicted the
existence of a pH gradient as well as the gradient’s range correctly and found growth
rates of malignant and benign tumours to ‘reasonably approximate clinical observations’.

Truly groundbreaking about the seminal work by Gatenby and Gawlinski (1996) was
the prediction of a biological phenomenon that had not yet been observed experimentally.
They closely examined the effect of the tissue degradation rate. The crucial correspond-
ing non-dimensional parameter they examined in this regard was γ = dw

dm
× rm

rw
×Kc. For

a tumour to be invasive, they found that γ > 1 was required. Different values of γ > 1
corresponded to different invasive tumour-host tissue-interfaces. Arguably the most in-
teresting case was γ >> 4, when a hypocellular gap between the invading tumour and
the reclining normal tissue edges was predicted. This is a fascinating case in the short
history of mathematical oncology as the examination of tissue samples in response to the
outcome of their mathematical model did indeed confirm the existence of this hypocel-
lular gap, which previously had not been discovered by the medical community. The
simulations and corresponding experimental results are shown in Figure 3.1.

Clinical research at the time had recently brought the attention of the scientific com-
munity to the role of MDEs in cancer invasion. The MDEs themselves and their effect
on the ECM density were included in a number of reaction-diffusion-taxis PDE models
following (Gatenby and Gawlinski, 1996). These models accounted for the effect of di-
rected cell migration—as a response to gradients in ECM density or in adhesive molecules
located in the ECM—on cancer invasion. The gradients in ECM occur naturally in the
body but are especially relevant in cancer invasion as the cancer cells secret MDEs that
degrade the ECM locally, as described in Section 2.3.2.

A first model of several that considered random motility, haptotaxis and/or chemo-
taxis in the context of invasive cancer cells interacting with MDEs, ECM proteins, nor-
mal cells and non-invasive cancer cells was published by Perumpanani et al. (1996). Like
Gatenby and Gawlinski (1996), they analysed their one-dimensional model using a com-
bination of travelling wave analysis and computer simulations. This way, they examined
how deeply and at what speed cancer cells invade the ECM when led by hapto- and
chemotactic cues. They found the invasion speed and the invasion wave profile to be de-
termined by the profile of local chemoattractants as well as by the phenotypic composition
of the tumour and the ECM.

A renowned model focussing on haptotaxis is the continuum PDE model by Anderson
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Figure 3.1: Hypocellular interstitial gap discovered through PDE model. (A)
Computer simulations with a degradation rate of healthy tissue γ = 12.5 resulted in a
significant hypocellular gap (pointed at by the white arrows) between advancing cancer
tissue front (red) and retracting normal tissue (green). The blue circles represent H+ ions,
which are secreted by the cancer cells, diffuse into the healthy tissue and degrade it. (B)
Subsequently initiated hematoxylin-eosin (H & E) stained micrograph of the tumour-host
interface confirms the existence of the previously unrecognised hypocellular interstitial gap.
Originally published in Gatenby and Gawlinski (1996); depicted modified version taken
from Enderling and Chaplain (2014) with permission from Bentham Science Publishers
Ltd.

et al. (2000), which—to our knowledge—was the first of its kind that extended PDE mod-
elling to a second dimension. The full system of PDEs is described in equations (4.1.1),
(4.1.9) and (4.1.10). Like other authors have done in the past (e.g. Gerisch and Chaplain
(2008), cf. Section 3.1.2), we will base our model of local cancer cell invasion model on
Anderson et al. (2000). Unlike many previous models, including Gatenby and Gawlinski
(1996), the system of PDEs proposed in Anderson et al. (2000) neither included a cancer
cell population growth nor ECM remodelling term. Instead, they suggest accounting
for cell growth after discretising the model with a central difference scheme (cf. hybrid
models in Section 3.1.1).

Subsequently, several continuum reaction-diffusion-taxis PDE models that focussed
on MDEs in the form of uPAs and MMPs were proposed. The role of uPA, one type
of proteolytic enzyme over-expressed in invading cancer cells, has, for instance, been
studied by Chaplain and Lolas (2005, 2006) using different systems of reaction-diffusion-
taxis PDEs and—building on the former and latter, respectively—by Kolbe et al. (2016)
and Andasari et al. (2011). In all these papers, spatiotemporally heterogeneous invasion
patterns were observed in the model-based simulations.

Chaplain and Lolas (2006) approached modelling cancer invasion by a system of three
PDEs to account for the spatiotemporal interaction between cancer cells, uPA and ECM.
Contrary to the model proposed by Anderson et al. (2000), cancer cell proliferation, as well
as ECM remodelling, were both included in this two-dimensional model. In the absence
of the ECM, cancer cells were assumed to follow logistic growth. However, competition
for space between cancer cells and the ECM was included via a crowding term. Further,
cell movement due to random diffusion, haptotaxis and chemotaxis was accounted for.
The following dimensional PDE system was suggested in Chaplain and Lolas (2006):
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∂c

∂t
= ∇ · (Dc∇c) − ∇ · (χc∇m) − ∇ · (φc∇w) + ρc(1− c

c0

− w

w0

), (3.1.4)

∂m

∂t
= Dm∇2m + αc − νm , (3.1.5)

∂w

∂t
= µc(1− c

c0

− w

w0

) − γmw. (3.1.6)

diffusion chemotaxis haptotaxis proliferation

diffusion production decay

re-establishment degradation

Similarly to before, for x ∈ R2,

c(t,x) cancer cell density,

w(t,x) ECM density,

and, slightly different to the section above as we are now considering uPAs rather H+

ions,

m(t,x) uPA concentration.

Additionally, we have the following:

Dc (linear or non-linear) cancer cell diffusion coefficient,

χ chemotactic function,

φ haptotactic function,

ρ cancer cell proliferation rate,

c0 maximum sustainable tumour cell density,

w0 maximum sustainable ECM density,

Dm constant uPA diffusion coefficient,

α rate of uPA production by cancer cells,

ν uPA decay rate,

µ constant ECM production rate,

γ ECM degradation rate.
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In their preceding paper, Chaplain and Lolas (2005) proposed a system of five equa-
tions, which described the interactions between cancer cells, uPA, uPA inhibitors of type
plasminogen activator inhibitor-1 (PAI-1), the ECM-cleaving and MMP-activating en-
zyme plasmin, and the ECM component vitronectin. Cancer cells diffused and moved
in response to both chemo- and haptotactic cues. While uPA and its inhibitor PAI-1
triggered chemotactic movement, the ECM component vitronectin induced haptotactic
movement. Spatiotemporally heterogeneous patterns were observed in simulations of the
cell movement.

The model by Andasari et al. (2011) extended and analysed the system of equations
initially proposed in Chaplain and Lolas (2005). Moreover, it allowed for cancer cells to
mutate into a phenotype which diffuses, migrates and proliferates more rapidly, which
was modelled using a Heaviside function. While the current biological evidence on EMT-
related phenotypic changes somewhat contradicts the notion of such a ‘go-and -grow’
mutation, the proposed model was an important step towards modelling mutations in
cell phenotype in spatial cancer invasion models. Andasari et al. (2011) further showed
by linear stability analysis that the observed spatiotemporally heterogeneous patterns
were caused by a taxis-driven instability of the spatially homogeneous steady state.

The analytical and numerical study of a system of equations as proposed in Chap-
lain and Lolas (2005) constitutes challenges since exploring it using classical numerical
methods requires very fine discretisation of the grids to accurately resolve the dynam-
ics. To this end, Kolbe et al. (2016) applied adaptive mesh refinement techniques to the
model with the aim of resolving the dynamics of the system’s solution accurately with
reasonable computational cost. As a result, a higher-order, stable, and robust numerical
method for the system of equations originally established in Chaplain and Lolas (2005)
was proposed.

Hellmann et al. (2016) proposed a model, in which cancer cell haptotaxis, ECM degra-
dation by MMPs, and production of MMPs by cancer cells were taken into account based
on the work in Anderson et al. (2000). Yet, they extended the model by considering addi-
tional features. The spatiotemporal evolution of differentiated cancer cells and of cancer
stem cells (CSCs), which have biological properties comparable to the epithelial-like and
the mesenchymal-like cancer cells in our model, respectively, was included in the model.
Also, EMT as well as logistic proliferation and MMP production of the cancer cells were
considered. In particular, in Hellmann et al. (2016) EMT was triggered by epidermal
growth factors (EGFs) in the ECM. This way, physiological mechanisms that lead to
EMT from differentiated cancer cells to CSCs were accounted for in the model. To study
the invasion of both types of cancer cells into the ECM, an advection-reaction-diffusion
system of Keller-Segel taxis type was used. Numerical simulations were proposed as a
proof of concept to show that combining the two systems can account for EMT in a
biologically accurate manner.

Sfakianakis et al. (2017) developed this model of EGF-driven EMT further by also
accounting for transdifferentiation of the CSCs to cancer-associated fibroblasts (CAFs)
as well as fibroblast-driven remodelling of the extracellular matrix. The extended model
was then analysed in a component-wise manner. In the corresponding simulations, the
detachment of CSCs from the main tumour body of differentiated cancer cells—due to
the ability of CSCs to invade the tissue comparatively more rapidly—was reproduced
qualitatively.
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By building on a multiscale moving boundary method introduced by Trucu et al.
(2013), a multiscale model of cancer invasion was suggested by Peng et al. (2017). In this
work, the above-mentioned models by Chaplain and Lolas (2005); Andasari et al. (2011)
were used to govern the macroscale (i.e. tissue scale) dynamics of cancer invasion. The
microscale (i.e. cell-level) dynamics were expressed using a system of three coupled PDEs,
which described the local dynamics of the spatiotemporal interaction of uPA, PAI-1 and
plasmin. Together, these equations at two scales described not only the evolution of the
invasive edge of the tumour in time and space but also how the macroscopic movement on
the tissue scale was induced by dynamics at the cell level. Simulations based on this model
presented heterogeneous invasion patterns, which qualitatively resembled those found in
tissues of many cancer types. Insights gained through this continuum model concerned
the depth of finger-like protrusions at the tumour boundary into the tissue as well as
the existence of heterogeneous patterns inside the tumour. For instance, heterogeneous
initial ECM conditions, which are representative of the ECM in the human body, led
to a more finger-like tumour spread than homogeneous ones. Further, heterogeneous
patterns inside the tumour region revealed that chemotaxis dominated the invasive cancer
cell movement. Quantitative predictions were not possible as the model was not (yet)
calibrated or dimensionalised.

Karagiannis and Popel (2004) presented an ODE model that accounts for the role of
MDEs of type MMP, rather than of uPAs like in previous models. Here, the role of pro-
MMP-2-activation by MT1-MMP together with TIMP2 in cancer invasion was studied.
It was suggested to use the model as a means of quantifying the activation of pro-MMP-2
as a function of TIMP2 and MT1-MMP concentrations in a well-mixed scenario.

Furthermore, Deakin and Chaplain (2013) developed a spatial approach to investigat-
ing the roles of membrane-bound MMPs like MT1-MMP and soluble MMPs like MMP-2.
This approach also accounted for the effects of ECM density, which affects how effectively
each the two MMPs invade the ECM. Their modelling approach consisted of a system
of seven PDEs describing the spatiotemporal interaction of cancer cell density, ECM
density, the matrix suitability modifier 1, and the concentrations of MMP-2, MT1-MMP,
TIMP2 and of MT1-MMP:TIMP2 complex. The results of this model produced matrix
heterogeneity using ECM degradation only, which allowed separating the effects that
result from ECM degradation by MMPs as opposed to those arising from pre-existing
heterogeneity in matrix density. In particular, they found that ECM environments that
force invasion to rely on MT1-MMP only resulted in a slower invasion—as did TIMP2
overproduction.

Local discrete and hybrid invasion models

While the above-mentioned continuum models have been used to make great advances in
producing qualitative insights into cancer invasion, all of them described cancer invasion
using cancer cell density. Consequently, these continuum models cannot follow the move-
ment of individual cells as they invade the ECM. However, it appears that the minority
of cancer cells that invade further into the ECM than others while carrying crucial mu-
tations are typically exactly those cells that ultimately cause life-threatening metastases.

1This was a PDE describing the degree of difficulty the cells experience when invading the ECM. It
further accounted for the amount of ECM that was still degradable.
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Figure 3.2: Schematic overview of discrete cell-based modelling methods. Dis-
crete cell-based methods can be classified into lattice-based models (left) and off-lattice
models (right). The latter can be distinguished further into centre-based versus boundary-
based methods. Specific examples of each of these types of models are explained schemati-
cally. More detailed explanations and examples from the literature regarding applications
of the modelling techniques to cancer invasion are given in the text. Reproduced from
Metzcar et al. (2019) with permission from the American Society of Clinical Oncology.

Moreover, phenotypic properties—such as mutations, cell size or cell shape—which are
intrinsically important to cancer growth, also can best be captured when modelling at the
level of the individual cell. To this end, advances in computational speed have increased
the popularity of discrete and hybrid modelling approaches, which are, on average, com-
putationally more costly than their continuum counterparts.

Discrete, or cell-based, methods for modelling of cancer invasion can be broadly clas-
sified into lattice-based and off-lattice models (see Figure 3.2). Modelling techniques
falling into the former category include IBMs, which are also known as agent-based models
(ABMs), as were presented for instance in Anderson and Chaplain (1998); Anderson et al.
(2000); Zhang et al. (2009), cellular automata models (CAMs) like Kansal et al. (2000);
Patel et al. (2001); Deutsch and Dormann (2005); Hatzikirou and Deutsch (2008); Ender-
ling et al. (2009), extensions of CAMs— namely, lattice gas cellular automata (LGCA)
models as proposed in Dormann and Deutsch (2002); Wurzel et al. (2005); Hatzikirou
et al. (2010, 2015), cellular Potts models (CPMs) approaches as used in Turner and Sher-
ratt (2002); Popławski et al. (2009); Kabla (2012); Scianna et al. (2013); Hallou et al.
(2017), and hybrid discrete-continuum models as found in Anderson (2005); Rejniak and
Anderson (2011); Sfakianakis et al. (2018a). Off-lattice models like Ramis-Conde et al.
(2008a,b), on the contrary, do not require agents to stay on lattices but are force-based
instead. These include centre-based models (CBMs) such as Kim and Othmer (2013) and
boundary tracking models, e.g. Rejniak (2007); Fletcher et al. (2014). This list of discrete
modelling approaches does not claim completeness—a wide range of such approaches has
been used to study cancer invasion. To give an overview, we will give a short explanation
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of the above-mentioned model types in what follows. The review sections of the papers
we give as examples for the respective model type contain further information.

CAMs consist of a finite-dimensional—typically regular—grid of cells, each in one
of a finite number of states. A basic scenario would be a ‘grid’ in the form of a one-
dimensional line with two states, which e.g. represent on and off. However, Cartesian
grids of an arbitrary number of dimensions may be considered. The most common and
historically earliest CAMs are two-dimensional. These could, for instance, take the shape
of squares, triangles and hexagons. The initial cell constellation evolves through a number
of discrete time steps based on the states of the cells in the neighbourhood of a particular
cell. The change in state typically occurs according to typically one but sometimes
multiple set rules, which can generally be expressed as mathematical functions. The rules
are applied iteratively for the desired number of steps (Toffoli and Margolus, 1987; Schiff,
2011). The concept of the cellular automaton was discovered by John von Neumann
in the 1940s in the context the development of a self-replicating machine, the so-called
universal constructor. His work was published posthumously in Von Neumann and Burks
(1966). CAMs in tumour growth have been reviewed in Moreira and Deutsch (2002).

An extension to CAMs, so-called LGCA models, allow for multiple cells per lattice site
(Wolf-Gladrow, 2004; Deutsch and Dormann, 2005). Instead of tracking the movement of
individual cells, they account for the number of cells that move through channels between
the lattice sites. As a result, LGCAs can simulate large numbers of cells over long periods
(Metzcar et al., 2019).

Potts models are another extension to CAMs: Different to standard CAMs, Potts
models identify individual cells by indexing them with a spin number Q. The CPM is a
modification of a Potts model with a large spin number Q that was introduced by Graner
and Glazier (1992) to examine the sorting behaviour of two cells differing in adhesivity.
CPMs applied to cancer have for example been reviewed in Szabó and Merks (2013). The
stochastic multiparticle CPMs use probabilistic rules to update lattice sites one after the
other. The models typically have two or three dimensions. Different to CAMs, CPMs
can express cell types and shapes as cells can extend over more than one grid point, as
shown in Figure 3.3. Assuming that we are looking at a model that captures cells moving
on a two-dimensional grid, for a population of N cells, each cell is assigned one of the N
spins Q(xi, yj) = 1, ..., N , where (xi, yj) is a generic grid point occupied by a cell. So if
two or more grid points have the same spin Q, this implies that the same cell resides on
them. Moreover, different types can be assigned to (groups of) cells. Graner and Glazier
(1992), for instance, distinguished between three types T (Q) = l, d, or M . While l and
d represented cells of low and high adhesivity, respectively, M modelled the ECM. At
each time step, the spin number Q of a grid point changed with a certain probability,
allowing cell sizes and shapes to evolve over time. How the spin numbers changed in
Graner and Glazier (1992) depended on whether the potential new configuration had
lower, higher or equal surface tension, which reflected the adhesive forces between the
cells. Two neighbouring cells with high adhesivity, for example, would have low surface
energy—those with low adhesivity, on the contrary, high surface energy.

To integrate the effect of locally varying gradients of chemoattractants on cell move-
ment into invasion models, Anderson and Chaplain (1998) developed a technique in their
discrete quasi-stochastic model of tumour-induced angiogenesis. In this model, individ-
ual endothelial cells moved up TAF and fibronectin gradient concentrations in addition
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Figure 3.3: Example of two cells of different shape in the CPM. Cell 1 and
cell 2 are depicted in some medium. Their boundaries contain information about the
local adhesion coefficient Ji,j between cell 1 and cell 2, or between one of them and the
medium. High adhesivity tends to increase the contact surface between the two entities
involved. Reproduced from Le Guillou et al. (2009) with permission from AMSI & Col-
legium Basilea.

to permanently moving by random diffusion. Hence, they performed a biased random
walk. By using an IBM that is derived from the continuum model using a Forward-
Time Central-Space (FTCS) finite-difference scheme, Anderson and Chaplain were not
only able to recover the qualitatively realistic large-scale results of their continuum PDE
model, but also to track the paths of single endothelial cells, which led the tip of a vessel
sprout. This enabled them to simulate the growth path of vessel sprouts. Thus, their
simulation results reproduced a capillary network of qualitatively realistic morphology
and structure.

In Anderson et al. (2000), the same technique was applied to the problem of cancer
invasion, laying a foundation for discrete quantitative invasion modelling. Anderson
et al. (2000) obtained their IBM by discretising the system equations (4.1.1), (4.1.9)
and (4.1.10), using the same FTCS scheme as described in Chapter 4. This yielded the
discretised model in equations (4.1.3), (4.1.4) and (4.1.5).

Both the continuum and the discrete model showed that haptotaxis and ECM struc-
ture were important for cancer invasion. While the continuum model in equations (4.1.1),
(4.1.9) and (4.1.10) did not include proliferation, this was considered in the discrete model
via proliferation rules that were added to the discretised model. These allowed for mitosis
once a parent cell had reached maturity as long as there was enough space for two daugh-
ter cells in the immediate neighbourhood of the parent cell. Furthermore, the discrete
model emphasised that the ECM structure may aid individual cancer cells to escape from
the main tumour via haptotaxis. This is a crucial feature in modelling metastasis, yet
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these cells could not be observed when considering continuous cancer cell densities rather
than the evolution of individual cancer cells. The authors argued that this phenomenon
potentially had important consequences in a clinical setting as the model predicted that
single cancer cells moved further into the tissue than surgeons can predict by visual
inspection.

The above-mentioned IBMs (Anderson and Chaplain, 1998; Anderson et al., 2000)
contained more information than a basic CAM on each grid point: Rather than solely
incorporating Boolean-type information about the occupancy of a grid point, they as-
signed additional phenotypic features to it. Anderson (2005) also used the FTCS scheme
to discretise a model consisting of the continuum model in equations (4.1.1), (4.1.9) and
(4.1.10) with an additional fourth equation describing the oxygen concentration on the
grid. However, the crucial difference in this model was that only the movement of the can-
cer cells and their cell-specific processes—such as proliferation, death, mutation, cell-cell
adhesion, MDE production, and oxygen uptake—were modelled by discretisation of the
continuum equations and thus simulated by imposing cellular automata-like rules. The
spatiotemporal evolution of oxygen concentration, ECM density and MDE concentration
was still modelled using a continuum approach, in accordance with their physically near-
continuous nature. Due to this combination, the authors named their approach a hybrid
model. The results and insights obtained using this hybrid approach could not be re-
covered by using the continuum model alone. They included the observation that, while
cell-cell interaction was important in the early developmental stages of a tumour, cancer
cell-matrix interactions master the geometry of the tumour later on due to mutations
occurring during tumour growth. These mutations caused those cancer cells that sur-
vive the process of natural selection to lose cell-cell adhesion and to, in general, become
increasingly aggressive. Aggressive features in the framework of the model included: a
large haptotactic coefficient, a low proliferation age, a large oxygen uptake, high MDE
production as well as expressing low to no cell-cell adhesion. The results in Anderson
(2005) suggested that cancer cells of aggressive phenotypes, which had been introduced
into the cell population through random mutations, would ultimately dominate in the
tumour.

More recently, Sfakianakis et al. (2018a) introduced a coupled two-dimensional hy-
brid system that governed the spatiotemporal evolution of individual mesenchymal cancer
cells by a system of stochastic differential equations (SDEs), while the collectively mov-
ing epithelial cancer cells, the ECM and the MMPs evolved according to PDEs. This
novel modelling technique considered the effects of EMT and MET—so of the transition
of cancer cells between the epithelial and the mesenchymal phenotypic state—on cancer
invasion using phase transition operators. As a result, the in silico invasion assays simu-
lated using the Sfakianakis et al. (2018a) approach presented ‘islands’ of invading cancer
cells ahead of the expanding initial main cancer cell mass, which had arisen from EMT
and subsequent MET. A sample simulation is shown in Figure 3.4. These ‘islands’ at
some distance from the tumour mass are frequently observed in vivo but do not typically
present themselves in solely macroscopic or atomistic cancer invasion models.

Lattice free, force-based models (see left and middle panel of Figure 3.2) can be
grouped into models that track the cells’ centre of mass, so-called centre-based models
(CBMs), and those focussing on cell boundaries. A brief explanation, largely based on
the review in Metzcar et al. (2019), follows.
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Figure 3.4: Simulation results from hybrid multiscale model of cancer invasion
by Sfakianakis et al. (2018a). The spatiotemporal evolution of an initially uniformly
dense epithelial-like cancer cell population placed on top of the two-dimensional represen-
tation of an invasion organotypic assay consisting of ECM of heterogeneous density is
depicted at times t = 1, t = 150 and t = 200 (left to right). The density of the epithelial-
like cancer cells is represented via yellow and red isosurfaces corresponding to the outer
colour bar; the heterogeneous ECM density (grey) corresponds to the inner colour bar.
EMT spawns mesenchymal-like cancer cells (not depicted here), which can invade the
ECM via haptotaxis and thus much more rapidly than the slowly diffusing epithelial-like
cancer cells at the cost of their proliferative potential. The reverse process, MET, cre-
ates the ‘islands’ of epithelial-like cancer cells observed in the middle and right panel,
which eventually reconnect with the invading tumour mass (right panel). Authorised use
of authors’ copy of the figure.

CBMs represent cells as points or volumes of spheres or more realistic shapes. Their
positions are updated according to locomotive, drag-like, adhesive and repulsive forces.
Using this approach, multiple cells can be modelled as functional units where biologically
appropriate (e.g. when modelling mammary glands). Also, at additional computational
cost, single cells can be broken down into their subcellular units, which are modelled to
interact via mechanical forces, to better represent cell morphology.

Boundary-tracking models make use of vertex-based, level set and front-tracking meth-
ods. To apply the former method, cells are represented as polygons and polyhedra, in
two and three dimensions, respectively. Then, the forces acting on their vertices are
computed. This vertex-based method is especially useful when modelling surfaces that
are completely covered in cells. Front-tracking methods compute fluid flow inside and
between cells by solving PDEs and then advect boundary points along cell membranes
in this flow. Finally, level set methods implicitly track all boundary movement but are
computationally highly costly.

3.1.2 Non-local invasion models

Many of the local reaction-diffusion(-taxis) models mentioned in the section above as-
sume that cells move in response to hapto- or chemotactic gradients in the tissue. As
explained in Section 2.1.1, this involves the binding and loosening of cell-matrix and
cell-cell adhesions. Depicted in Figure 2.1 are the proteins involved in cell-cell binding
(cadherins) and in cell-matrix attachment (integrins). Signals in the microenvironment
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of a cell influence how often these attachments are unbound and rebound as well as how
strong the adhesive forces are, which affects cancer cell movement.

To this end, non-local PDE models in the form of integro-differential equations, which
incorporate cell-cell adhesion using integral terms, have been developed. A first non-local
model for adhesion was proposed in Sekimura et al. (1999) in the context of pattern for-
mation of scale cells in the wings of butterflies and moths. Differential adhesion was first
explored in a continuum model of adhesion forces and their influence on cell movement
proposed by Armstrong et al. (2006). They accounted for adhesion by an integral term,
which modelled non-local interactions in the PDE model. Their model was the first of its
kind to include cell-cell adhesion in a continuum model of interacting cell populations.
Applications to both single-cell and multi-cell populations were presented. While not
considering cancer invasion explicitly, it was found that when studying the cell sorting
behaviour in a cell population consisting of multiple cell types, the resulting behaviour
resembled that observed in experiments. While this had previously been achieved using
discrete approaches, the technique in Armstrong et al. (2006) pioneered in the inclusion
of cell-cell adhesion in a continuum model of interacting cell populations.

Two years later, Gerisch and Chaplain (2008) based their first non-local cancer in-
vasion PDE model on Armstrong et al. (2006). They represented one or more cancer
cell populations by a PDE each and additionally considered a PDE to represent the
ECM, which was modelled to be fixed in space. They extended the continuous local
haptotaxis-based PDE model in Anderson et al. (2000) to include cell proliferation and
ECM remodelling. Also, by adding non-local terms, cell-matrix and cell-cell adhesion
were considered explicitly. To incorporate this non-local phenomenon, the haptotactic
flux term, which had been assumed to be local in previous models, was replaced by the
non-local flux term −cAu (explained below). In notation coherent with previously men-
tioned models wherever possible, the dimensional system of equations became:

∂c

∂t
= ∇ · (Dc∇c− cAu) + ρc(1− θcc− θww), (3.1.7)

∂m

∂t
= ∇ · (Dm∇m) + αc − νm , (3.1.8)

∂w

∂t
= µ(1− θcc− θww) − γmw, (3.1.9)

diffusion/adhesion proliferation

diffusion production decay

remodelling degradation

where, like in equations (3.1.4)–(3.1.6) but with x ∈ Ω, where Ω is the respective spatial
domain:

c(t,x) cancer cell density,

w(t,x) ECM density,

and, slightly differently than in the above section as now generic MDEs were considered
rather uPAs specifically,
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m(t,x) MDE concentration.

Furthermore, the following constants were defined:

Dc cancer cell diffusion coefficient,

ρ cancer cell proliferation rate,

θc fraction of 1 unit volume of physical space occupied by cancer cells at unit density,

θw fraction of 1 unit volume of physical space occupied by ECM at unit density,

Dm MDE diffusion coefficient,

α rate of MDE released by cancer cells,

ν MDE decay rate,

µ ECM remodelling rate,

γ ECM degradation rate.

The most crucial difference, however, was the non-local Au-term, where u = (c, w,m),
which the authors referred to as the adhesion velocity. On a one-dimensional domain
Ω—again building on previous work by Armstrong et al. (2006)—this was defined to be
a function of x ∈ Ω and of time t:

Au :=
1

R

∫ R

0

1∑
k=0

n(k) · Ω(r)g(u(t,x + rn(k)))dr, (3.1.10)

where the right and left unit outer normal vectors were n(k) = −1k, k = 0, 1. On a
two-dimensional domain Ω, the adhesion velocity became

Au :=
1

R

∫ R

0

r

∫ 2π

0

n(θ) · Ω(r)g(u(t,x + rn(θ)))dθdr, (3.1.11)

with the unit outer normal vector corresponding to angle θ given by n(θ) = (cos θ, sin θ)>.
R > 0 was the sensing radius of a cell located at x; Ω(r) was the radial dependency
function, which depended on the distance r ≥ 0 from x; and g(u) was the vector of
concentrations u, which in the case of Gerisch and Chaplain (2008) were the cancer cell
density c and the ECM density w at time t and location x + rn:

g(c, w) = (Sccc+ Scww) · (1− θcc− θww)+,

where (·)+ := max{0, ·}, and Scc and Scw were the cell-cell and cell-matrix adhesion
coefficients, respectively. Ω(r) was taken to be a measure of how strongly points within
the sensing region influence the adhesion velocity. The two variations of this measure
considered by Gerisch and Chaplain (2008), and also used previously used by Armstrong
et al. (2006), were

Ω1(r) =
1

2R
and Ω2(r) =

1

πR2
.
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These described the one- and two-dimensional case, respectively, where any point in the
sensing region had the same influence on adhesion velocity. The alternative formulations

Ω2(r) =
1

R

(
1− r

R

)
and Ω2(r) =

3

πR2

(
1− r

R

)
were used when the influence was supposed to be decreasing the further the points were
away from x.

Sherratt et al. (2009) proposed a similar non-local PDE model of cancer invasion also
based on Armstrong et al. (2006). Simulations of cancer cell profiles invading the ECM
from both of these models delivered results of similar quality to those obtained by previ-
ous reaction-diffusion-taxis cancer invasion models. However, it generally appeared that
including the non-local cell-cell adhesion term tended to slow down the cancer cells’ inva-
sion rate. Also, both Gerisch and Chaplain (2008) and Sherratt et al. (2009) found that
for a given cell-matrix adhesion parameter, a large enough cell-cell adhesion parameter
could be chosen to stop invasion completely in their computational simulations.

Chaplain et al. (2011) studied the nature of the proliferative properties of non-local
PDE models analytically by proving some results based on Gerisch and Chaplain (2008).
Furthermore, computational simulations illustrating the relative effects of cell-cell and
cell-matrix adhesion on cancer invasion were provided.

Domschke et al. (2014) further developed work by Gerisch and Chaplain (2008), who
had extended the continuous local haptotaxis-based PDE model proposed in Anderson
et al. (2000) to include cell proliferation and ECM remodelling as well as cell-matrix
and cell-cell adhesion by adding non-local terms. In particular, Domschke et al. (2014)
introduced a subpopulation of cancer cells that arose from the initial cell population
by mutation, which was modelled using a Heaviside function. The mutation resulted
in a decrease in self-adhesion and an increase in cell-matrix adhesion, which caused the
mutated cancer cells to spread more rapidly into the surrounding tissue—as coherent
with the current biological understanding that EMT causes more invasive phenotypes.

Figure 3.5: Example of simulation results from two species non-local partial
integro-differential equation model by Domschke et al. (2014). For the time
steps t = 0, 10, 20, 30, 40, 50, 60, the top row shows the superimposed non-dimensionalised
cancer cell densities of two subpopulations c1 (black) and c2 (red), while the bottom row
shows the ECM density w. The red colour bar refers to c2, the black one to both c1 and
w. Reproduced from Domschke et al. (2014) with permission from Elsevier.
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Domschke et al. (2014) further developed the model by Gerisch and Chaplain (2008)
to study the influence of cell-cell and cell-matrix adhesion on tumour growth and develop-
ment in more depth. In particular, they introduced a subpopulation of cancer cells that
arose from the initial cell population by mutation, which was modelled using a Heavi-
side function. The mutation resulted in a decrease in self-adhesion and an increase in
cell-matrix adhesion, which caused the mutated cancer cells to spread more rapidly into
the surrounding tissue— coherent with the current biological understanding that EMT
causes more invasive phenotypes, cf. Section 2.3.2. Simulations showed various heteroge-
neous cancer cell infiltration patterns arising from changes in the cell-cell and cell-matrix
adhesion properties, which had been held fixed in previous models, as well as from al-
tering initial conditions. Finally, the effects of letting adhesion coefficients depend on
time, rather than taking them to be constant, were investigated. Figure 3.5 presents an
example of the computational results obtained by Domschke et al. (2014).

3.2 Mathematical models of metastasis
While representing invasion and metastasis as uncoupled, independent processes would
be misleading, we review respective models separately. The models in Section 3.1 ex-
amined how cancer cells invaded the healthy tissue as can be observed around a solid
primary carcinoma. In this review of metastatic cancer models, we focus on mathemati-
cal approaches that describe how secondary (and higher degree) tumours form from these
primary tumours.

As Section 2.3.4 accentuates, a variety of sub-processes at multiple temporal and
spatial scales are involved in metastasis. As a result, different models are appropriate
to shed light on these sub-processes—ultimately, it is the biological problem that we
seek to find insight to that should determine the appropriate modelling approaches and
techniques. A model of metastasis could, for example, address the following questions:
When do metastases appear and how does their size develop over time? How does the
metastatic cancer cell phenotype evolve? Given a primary tumour, what determines its
metastatic spreading pattern? Which circumstances result in newly metastasised cancer
cells remaining dormant (micrometastatic dormancy) rather than developing into a full-
blown secondary tumour?

In what follows, an overview of some of the most prominent approaches to modelling
various aspects of metastatic spread is presented. These are broadly categorised into those
describing how successful metastatic cancer cell phenotypes evolve through epigenetic and
genetic mutations on the one hand, and approaches that model the growth dynamics of
metastases on the other hand. Note that a review of mathematical models of EMT and/or
MET in the context of metastasis will be omitted. The reason is that, to our knowledge,
the work in Chapter 5 of this thesis, which will be published in Franssen and Chaplain
(2019), is the first metastasis model to include the roles of EMT and MET, and of the
corresponding phenotypes of individual cancer cells in a spatially explicit manner.

We will consider both deterministic and stochastic models and will further group them
according to the predominant mathematical technique involved. Each type of model is
useful; the appropriate one should be chosen on the grounds of the biological circum-
stances and the modeller’s aim. A deterministic modelling approach in the form of an
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ODE or a PDE model delivers the same results each time the system is solved if the
same parameter values are used. There is no stochasticity involved in the coefficients.
However, many biological processes—in the context of cancer invasion and metastasis
for example cell movement, phenotypic mutations, and survival of cells when entering
the bloodstream to metastasise—present an element of stochasticity. Thus, mathemat-
ical models that capture potentially occurring stochasticity in the appropriate part of
the model may present results that are biologically more realistic. For instance, cells
movement in space could be stochastic, or the cell phenotype could mutate with some
probability upon mitosis, or random noise can be included in an otherwise deterministic
model. While the representation of inherently random biological processes by stochastic
models may make them prima facie appear to be superior in many cases, the downside
is that their analysis is generally more difficult. Deterministic models, on the contrary,
are comparatively easily analysed, allowing us to study the different behaviours that a
system can exhibit and further enabling us to determine over which parameter ranges
these behaviours occur. Hence, a more profound understanding of the behaviour of the
system of interest may be gained.

Information in this review chapter of metastasis models is drawn from personal read-
ing as well as from the chapter Mathematical Modeling of the Metastatic Process by
Scott et al. (2013b) and from the chapter Mathematical Modeling of Cancer Metastases
by Ryser & Komarova (2015) published in Zhang (2015). Stochastic types of models
reviewed are branching processes, Moran processes, cellular automata (which are not in-
trinsically stochastic—this depends on the rules imposed), Markov Chain (MC) models as
well as stochastic-mechanistic models. Deterministic approaches to modelling metastasis
considered here are ODE and PDE models.

3.2.1 Models describing the acquisition of a metastatic
phenotype

Cancer starts with mutations in a small set of healthy cells. Further mutations over
time can result in cells acquiring a metastatic phenotype that enables them to spread to
distant sites in the body. In what follows, we introduce a group of models describing the
acquisition of a metastatic phenotype.

In Michor et al. (2006); Michor and Iwasa (2006), Moran processes that allowed for
mutation upon reproduction were used to study the dynamics of metastatic formation. As
shown in Figure 3.6, a Moran process is a stochastic approach to modelling the evolution
dynamics of a population that consists of a fixed number of individuals. These individuals
can be of diverse phenotypes where each type has a different fitness assigned to it. At
each time step, one individual in the population is chosen to replicate with a probability
proportional to its fitness. So, in principle, any individual could be chosen to replicate but
the higher an individual’s fitness, the more likely it will do so. Consecutively, a randomly
chosen individual will die during each time step. As a result, phenotypes of higher fitness
tend to dominate the population as time progresses. While the earlier model by Michor
et al. (2006) considered a scenario in which a single activating mutation in an oncogene
like myelocytomatosis viral oncogene homolog (myc) or rat sarcoma virus homolog (ras)
was necessary to enable cells to metastasise, their follow-up paper (Michor and Iwasa,
2006) studied the effect of metastasis suppressor gene (MSG) inactivation. If these MSGs
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Figure 3.6: Schematic representation of a single time step in a Moran process.
Given a population consisting of a fixed number of individuals of diverse phenotypes (red
and green cells) where each type has a different fitness associated to it, at each time step,
one individual in the population is chosen to replicate with a probability proportional to
its fitness. Consecutively, a randomly chosen individual will die during each time step.
Reproduced from Altrock et al. (2015) with permission from Nature Publishing Group.

were inactivated in both alleles, or an oncogene—like myc or ras—was activated in a single
mutation, this promoted the ability of metastatic spread within the scope of the model.
Further, cancer cells acquired either a fitness advantage or disadvantage over normal cells
through the mutations in the model.

Results obtained in Michor et al. (2006); Michor and Iwasa (2006) include that the
majority of metastases formed from mutations that provided mutated cells in the primary
tumour with a fitness advantage. This allowed them to increase in number at the cost of
cancer cells of other phenotypes in the primary tumour. Further, they found that their
results fit in with experimental data by Ramaswamy et al. (2003) who observed that

‘the metastatic potential of human tumors is encoded in the bulk of a primary
tumor, thus challenging the notion that metastases arise from rare cells within
a primary tumor that have the ability to metastasize’.

An extension to the model by Michor et al. (2006) was published by Dingli et al. (2007).
Since the cancer cell population in this model was allowed to grow, the modelling approach
was no longer a Moran process in the strict sense. Instead, the growth of the primary
tumour was now captured using a time-branching process. Two cases were distinguished.
The cancer cells could either break free from the primary tumour but the tumour itself did
not change in size or they could remain at the primary site, causing the tumour to grow
exponentially. The dissemination probability of cancer cells depended on the tumour’s
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size. Overall, Dingli et al. (2007) found that the rate of metastatic formation depended
on the interactions between the mutated cells’ relative fitness, the likelihood that they
were exported and the rate at which mutations occurred. The optimal combination giving
the highest metastatic progression possible was unique to every tumour. For example,
while one may, at first sight, assume that a higher dissemination probability of mutated
cancer cells would benefit cancer spread, the authors found that the trade-off costs could
have a destructive effect—even on an exponentially growing tumour. The reason for this
was the potential lack of mutated cells that remained at the primary site and continued
to proliferate there. While cells with mutations like myc and ras, which had a higher
relative fitness assigned to them in the model in accordance with research on fibroblasts
by Wyllie et al. (1987), flourished in the primary tumour and were able to seed plenty
of metastases, the authors suggested that the phenomenon described above especially
occurred in cells with mutations that had a lower relative fitness than normal cells, such
as MSG activation (Steeg, 2004). These cells could only coexist if the tumour population
was small. Also, complete export of the mutated cells could be observed in the model.
Interestingly, this phenomenon is also reported to occur in cancer patients. For example,
the articles by Greco (2014), Moran et al. (2016) and Ross et al. (2015) evolve around the
phenomenon of cancer of unknown primary site (CUP), which is seen in approximately
3-5% of advanced cancers. A CUP consists of multiple metastases whose primary tumour
of origin remains unknown to clinicians (Greco, 2014).

3.2.2 Models of metastatic growth dynamics

For reasons explained in Section 2.3.4, a seemingly successfully treated and recovered
patient may relapse after some time due to cancerous regrowths at the primary site
and/or due to undetected micrometastases and/or isolated dormant cancer cells that
remain undiscovered upon initial treatment. Routinely preventing these small lesions of
cancer cells from causing a relapse in every patient with drugs is not viable due to their
often debilitating side effects. Ideally, a patient should receive a treatment dosage that is
just sufficient to prevent a relapse. This requires the treatment to be adjusted in a case-
specific manner so that it is only applied where and when necessary. An oncologist has
the best chance of achieving this if they know where and how many metastases typically
form, what their growth patterns are, how aggressively they grow, and of what size they
are. However, at the time of removal of the primary tumour, an oncologist’s knowledge
is usually restricted to the size of detectable metastases and of the primary tumour.

In an attempt to shed light on metastatic growth dynamics, several deterministic and
stochastic mathematical models have been proposed.

Saidel et al. (1976) combined experimental work on a murine model of primary fi-
brosarcoma with metastatic spread to the lungs with an ODE model in order to obtain
lumped-parameter values that could not be measured experimentally. They compartmen-
talised their model into five metastatic stages shown in the blue boxes of Figure 3.7. The
change in cancer cell number over time at the different stages was measured experimen-
tally to subsequently parametrise the mathematical model. Next, the model was used to
make predictions regarding e.g. vessel growth inhibition, inhibition of intravasation, lung
vessel damage and tumour resection. In silico results were compared with experimental
ones, where possible, and were described to be in good agreement.
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Figure 3.7: Compartmentalised translational ODE model by Saidel et al.
(1976). While the blue boxes represent the compartments, in which the size of the tumour
cell populations can be measured experimentally, the brown ovals indicate the quantities
derived from the model. Schematic representation reproduced from Scott et al. (2013b)
with permission from Springer.

Scott et al. (2013a) proposed a model of self-seeding to study the relative likelihood of
primary and secondary seeding by assuming that a primary tumour consisted of a set of
independent loci, on which tumours underwent saturating growth according to a logistic
law. From these loci, cancer cells were shed and potentially returned to their original loci
or formed new loci.

With the aim of investigating the validity and the implications of the current hypoth-
esis that the immune system plays a pro-tumour role—rather than just an anti-tumour
role—in metastasis (Cohen et al., 2015; Shahriyari, 2016), Rhodes and Hillen (2019) pro-
posed a mathematical model of tumour-immune interactions at two anatomically distant
sites. The model accounted for both pro- and anti-tumour effects of the immune system by
considering the time-evolution of metastatic cancer cells, necrotic cells, cytotoxic immune
cells and tumour-educated immune cells at the primary and secondary site through an
ODE model. Following validation of the model against experimental data, immunother-
apeutic interventions, primary resection surgeries and injuries at the metastatic site were
modelled. Rhodes and Hillen (2019) concluded that the results of their model suggested
that the immune-mediated theory of metastasis may explain e.g. metastatic dormancy
or blow-up, as well as metastatic spread to secondary sites that present injury and the
relatively poor performance of immunotherapies.

A PDE model for the colony size distribution of multiple metastatic tumours, as found
in rapidly disseminating tumours in the liver (see Figure 3.8), lungs or brain was suggested
by Iwata et al. (2000). Their model studied the evolution of the colony size distribution
of metastatic tumours. The metastatic growth model initially considered a single cell,
which grew according to Gompertzian growth. The resulting growing primary tumour
shed single metastatic cancer cells—the larger the tumour, the more cells were shed.
These single cells also grew into metastases at some rate and emitted further single cells,
just like the cells of the primary tumour. The authors obtained an explicit solution which
tended to an asymptotically stable colony size distribution of metastatic tumours. They
concluded that this solution fitted data from computer tomography (CT) scans of clinically
observed colony size distributions well. CT scans, like the one shown in Figure 3.8,
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Figure 3.8: Examples of liver CTs with multiple metastatic tumours. The CTs
on the left and right were taken 432 and 559 days after the primary tumour diagnosis,
respectively. By taking multiple CT images in the form of slices throughout the whole
liver, the number and size of all detectable liver metastases (indicated by white arrows)
can be measured. Reproduced from Iwata et al. (2000) with permission from Elsevier.

are very commonly used in diagnosing and monitoring cancer and are thus generally
readily available. Hence, a model like this one could potentially be well-parametrised to
make clinically relevant predictions about subclinical (primary, secondary,...) metastatic
burden and the future metastatic growth dynamics.

Many subsequent papers were based on the preliminary work of Iwata et al. (2000).
For instance, the model was further analysed and solved numerically by Barbolosi et al.
(2009) and Devys et al. (2009). It was then used in Benzekry (2011) to model metastasis
density, while tumour growth and angiogenesis were accounted for by an ODE model
by Hahnfeldt et al. (1999). It further formed the basis for a mathematical model by
Benzekry et al. (2016), which connected presurgical primary tumour volume and post-
surgical metastatic burden. Finally, an in vivo human xenograft model by Hartung et al.
(2014) was also based on Iwata et al. (2000). This described primary tumour growth by
a set of phenomenological models, and metastatic growth by a transport equation that
was endowed with a boundary condition for metastatic emission.

In Xu and Prorok (1998); Bartoszyński et al. (2001); Hanin et al. (2006), similar
growth laws to the ones described in Iwata et al. (2000) were used in fully stochastic
models in order to predict the probability that a certain given distribution of metastatic
colony size occurred at a given time by deriving joint conditional distribution functions.
Each model was validated against one patient’s data. After fitting the models, predictions
about the patients’ condition prior to diagnosis and about the natural history of their
cancer were made.

While we reviewed the models by Michor et al. (2006); Michor and Iwasa (2006); Dingli
et al. (2007) in Section 3.2.1, as they focus on the acquisition of a metastatic phenotype,
Haeno and Michor (2010) proposed a model of similar type but allowed for tumour cell
proliferation rates that are much larger than death rates. This way, the authors studied
how tumour metastasis evolved in an expanding cancer cell population. They calculated
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Figure 3.9: Continuous time-branching model by Haeno et al. (2007). Type-0
cells, which are mutation-free, differentiate into type-1 cells, which carry one mutation,
at rate u1. Type-1 cells further mutate into type-2 cells, which carry two mutations, at
rate u2. Reproduction rates of each cell type are shown on top, death rates at the bottom.
Reproduced from Haeno et al. (2007) with permission from Genetics Society of America.

not only the probability that a tumour metastasises but also, at every particular point in
time, the expected total number of cancer cells and metastasised cells. The model relied
on estimated parameter values due to lack of clinical data on cell growth and death rates,
on probabilities of metastatic export and on mutation frequency of cancer cells. Yet, it
gave a theoretical example of how a mathematical model can be used to examine the effect
of the choice of treatment (chemotherapy and/or tumour resection) and its timing on the
period a patient survives. The model further indicated that the optimal treatment choice
for a patient was tumour-specific. It was found to depend on factors such as how large
the metastasis-enabling mutation rate was, on the death and birth rates of cells with and
without the ability to metastasise, and on the export rate of metastatic cells. The authors
further analysed their stochastic model and found that analytic approximations were in
good agreement with results obtained by running the computational stochastic model.
Regarding the expected patient survival time, the authors found that both chemotherapy
and resection had life-prolonging effects, as to be expected.

Cisneros and Newman (2014) proposed another stochastic model that used a birth-
death process to investigate whether metastasis occurs from many poorly adapted cancer
cells or from a few well-adapted cancer cells.

Building on the work by Michor et al. (2006) and Michor and Iwasa (2006), which
had investigated the dynamics of one and two mutations in MSGs in a cell population of
constant size, respectively, Iwasa et al. (2006) and Haeno et al. (2007) studied the same
scenario with one and two MSGs, respectively, while allowing for exponential tumour
expansion using a continuous time-branching process. Both papers initially assumed the
existence of a sole mutation-free (and hence treatment-sensitive) parent cancer cell. At
each mitosis, a parental cell could turn into a resistant cell with a single mutation with
a certain probability. In the work of Haeno et al. (2007), a cell with a single mutation
could then further mutate into one with two mutations. In both models, these cell types
were differentiated by their relative fitness. This was represented schematically in Fig-
ure 3.9. Furthermore, these models were suggested to have clinical relevance because
a single genetic alteration suffices to induce resistance to an otherwise successful ther-
apy. Knowing the probability that a tumour will become resistant to a drug during the
course of treatment and the mean number of resistant cells that exist when a tumour has
reached a detectable size could provide valuable insights that cannot be easily obtained
experimentally.
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Recently, Frei et al. (2019) introduced a stochastic model for cancer metastasis that
took the form of a branching stochastic process with settlement. Particles in the model
represented clusters of cancer cells. It was shown that the expected particle location,
their locational variance, the furthest particle distribution, and the extinction proba-
bility satisfied an integro-differential equation with distributed delay. The uniqueness
and existence of this equation were proven and then analysed. The framework was then
validated against murine data on metastasis.

Liotta et al. (1976) considered the three left-most steps of metastatic cascade system
shown in Figure 3.7, which they had conceptualised for their previous ODE model in
Saidel et al. (1976), in a MC model that accounted for stochastic processes at the cell
level. Instead of the flux of single cells between these compartments, the flux of tumour
cell clusters was modelled. In line with experimental data, the model made the following
assumptions:

• The number of cell clusters decreased as clusters increased in size.

• The larger the clusters, the lower their death rate and the higher the probability
that they colonised as metastases.

Like before, model results were in good agreement with an experimental murine model
regarding the number of macroscopic metastases as a function of time as well as the time-
dependent probability of finding a mouse that is metastasis-free when it was sacrificed
after ten to 30 days. This led the authors to the conclusion that therapeutic interventions
which break up large clusters of cancer cells could reduce the number of metastases
forming.

In a follow-up paper, Liotta et al. (1977) suggested a mathematical expression for
the probability that no metastasis will have formed in their experimental murine model
after a given period of time. This probability was found to be close to one (∼1) at the
beginning but it approached zero (→0) as time progressed, suggesting that after a critical
time period micrometastases will almost certainly have formed.

Another MC model was proposed by Newton et al. (2012) with the aim of quan-
tifying pathways of metastatic progression for lung cancer. A transition matrix was
calculated and its transition probabilities interpreted as random variables. This was used
to construct a circular network of primary and metastatic locations that was based on
postmortem tissue analysis of primary and metastatic tumour sites in 3827 autopsies from
untreated lung cancer patients. The model was further developed in Newton et al. (2013).
As an extension, this model was applied to breast cancer in Newton et al. (2015)—the
circular chord diagramme showing a MC network of data on metastatic spread from 4181
breast cancer patients shown in Figure 2.15 is based on the work in Newton et al. (2015).

Finally, Margarit and Romanelli (2016) developed a patient-statistics-based absorbing
MC model to analyse the metastatic routes between principal organs.

3.3 Conclusions from the literature review
In this chapter, we reviewed existing models of cancer invasion and metastasis. In the
case of invasion, we considered both spatially local and non-local models. The metastasis
models we reviewed either described the acquisition of a metastatic phenotype in cancer
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cells or investigated metastatic growth dynamics. The models proposed in the remainder
of the thesis are motivated by the gaps in the literature identified through this review.

In particular, we found that existing models of metastasis did not account for the
spatiotemporal evolution of individual cancer cells in the—inherently spatial—invasion-
metastasis cascade. The same applies to the location-dependent role of phenotypic vari-
ation and EMT-processes in cancer invasion and metastatic spread. These previously
unexplored aspects are at the centre of the metastasis modelling framework introduced
in Chapter 4, which is extended in Chapter 5:

• In Chapter 4, a spatially explicit hybrid multi-organ metastasis modelling frame-
work is developed. It describes the invasive growth dynamics of individual cancer
cells of epithelial-like and mesenchymal-like phenotype both at a primary site and
at potential secondary metastatic sites in the body, as well as their transport from
the primary to secondary sites.

• The phenotypic variation accounted for by the framework in Chapter 4 is extended
in Chapter 5 to include cancer cells of an epithelial-like, a mesenchymal-like and a
mixed phenotype. Furthermore, permanent and transient mutations between these
cell phenotypes in the form of EMT and its reverse process MET are now included.
Both of these mechanisms are implemented at the biologically appropriate locations
of the invasion-metastasis cascade.

Furthermore, the literature review of cancer invasion models showed that—due to the
large number of cells involved in the invasion process—continuum models are a popular
and computationally efficient approach to modelling cancer invasion, cf. Section 3.1. This
approach can reflect the biology of epithelial-like cancer cells and hence their spatiotempo-
ral evolution well. However, as we have established in Section 2.4, EMT and MET—and
intrinsically also cancer cells of mesenchymal phenotype—play a crucial role in cancer
invasion (Godlewski et al., 2010). In particular, a distinguishing feature of mesenchymal-
like cancer cells is their relative loss of cell-cell adhesion as shown in Figure 2.11. Hence,
it would be biologically inaccurate to represent cells of mesenchymal phenotype using a
continuum approach. To this end, we develop a model that represents the spatiotemporal
evolution of epithelial-like and mesenchymal-like cancer cells in a biologically appropri-
ate manner through a hybrid system of partial and stochastic differential equations in
Chapter 6. As only a small proportion—and hence relatively small number—of cancer
cells are of mesenchymal-like phenotype (Dongre and Weinberg (2019); cf. Section 2.4),
the model retains computational efficiency. Thus, the three-dimensional spatio-temporal
evolution of an appropriately large number of cancer cells can be simulated. As a result,
the hybrid model can be accurately parametrised to predict experimental organotypic in-
vasion assay results qualitatively and quantitatively. Thus, the novel modelling approach
introduced in Chapter 6 allows us to bridge the gap between experimental and theoretical
work frequently observed in existing invasion models.
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Chapter 4

A mathematical framework for
modelling the metastatic spread of
cancer

The biological processes involved in the invasion-metastatic cascade are inherently spa-
tial, cf. Chapter 2. Yet, from the literature review in Chapter 3, we conclude that, to
our knowledge, no spatially explicit model to describe cancer invasion and metastatic
spread exists, not to mention a model that combines all of the steps of the invasion-
metastasis cascade—i.e. cancer cell invasion, intravasation, vascular travel, extravasation
and regrowth at secondary sites in the body—in a spatial manner. To close this gap in
the existing literature, we propose a novel spatial modelling framework of the metastatic
spread of cancer in this chapter. This framework describes the invasive growth dynamics
of individual cancer cells both at a primary site and at potential secondary metastatic
sites in the body, as well as the transport from the primary to secondary sites. Through-
out, the interdependent interactions between the cancer cells, the MDEs secreted by the
cells, and the cells’ microenvironment in the form of the ECM are accounted for. Further-
more, the individual-based framework models phenotypic variation by considering cancer
cells of an epithelial-like and a mesenchymal-like phenotype. The work in this chapter
has also previously been published in (Franssen et al., 2019).

4.1 Model setup
In this section, we introduce the ideas and assumptions that our modelling framework
builds on. The corresponding model is described in Figure 4.1 in the form of a flowchart.

In order to account for the metastatic spread of cancer cells in a spatially explicit
manner, we consider G+ 1 non-overlapping spatial domains. These consist of the spatial
domain representing the primary tumour site, Ω

P
⊂ R2, as well as the G ∈ N spa-

tial domains representing the sites of potential secondary metastatic spread, Ωa
S
⊂ R2,

where a = 1, 2, ..., G. In these spatial domains, we represent the MMP-2 concentration
and the ECM density at position x at time t by the continuous functions m(t,x) and
w(t,x), respectively, while capturing the spatiotemporal evolution of epithelial-like and
mesenchymal-like cancer cells individually. We model the local cancer cell invasion by ex-
panding the modelling approach used in Anderson and Chaplain (1998); Anderson et al.
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Figure 4.1: Flowchart of the invasion-metastasis hybrid model. At each time
step, each cancer cell on the primary grid moves and proliferates as explained in detail
in the text. A cancer cell remains on the primary grid during the respective time step,
unless it is placed on a grid point of the primary grid that represents a blood vessel. In the
latter case, single CTCs and CTC clusters may enter the vasculature. They spend some
number of time steps in the circulation and survive with a probability of P

S
in the case of

single CTCs and with a probability of P
C
in the case of CTC clusters. Cancer cells that

do not survive are removed from the simulation. Surviving CTCs and CTC clusters are
placed onto one of G secondary grids with the respective probability E1, E2, ..., EG. Cancer
cells on the secondary grids move and proliferate in the same way as the cancer cells
on the primary grid (potentially with different parameter values to represent organ- and
patient-specific differences in the local tumour microenvironment). For better orientation,
the red boxes with their labels on the left correspond to the sections indicated in bold in
Sections 2.3.2–2.3.5 and Section 4.1 of the text.
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(2000) to our specific biological problem. We include a second cancer cell phenotype and
also additionally consider MT1-MMP, which is taken to be bound to the membranes of
the mesenchymal-like cancer cells and thus follows their discrete spatiotemporal dynam-
ics. We designate locations in the primary spatial domain to function as entry points
into the vasculature and, similarly, impose a spatial map of exit locations from the vas-
culature onto the secondary metastatic domains. This allows cancer cells to travel from
the primary tumour site to secondary sites via blood vessels.

We next consider one key step of the invasion-metastasis cascade after the other. To
make the key steps more recognisable, we begin each paragraph by printing the description
of the corresponding step of the invasion-metastasis cascade, cf. Sections 2.3.2–2.3.5, in
bold. Further, the same step descriptions are used in the flowchart in Figure 4.1.

Local cancer cell invasion The movement of the individual epithelial-like and
mesenchymal-like cancer cells in the spatial domains of our model is derived from the
coupled PDEs (4.1.1) and (4.1.2) below. These equations describe the continuous spa-
tiotemporal evolution of epithelial-like and mesenchymal-like cancer cell densities c

E
(t,x)

and c
M

(t,x), respectively. Both cancer cell types are assumed to move via a combina-
tion of diffusive movement and haptotactic movement up the gradient of the ECM den-
sity w(t,x). Thus, the conservation equations for the cancer cell densities ck(t,x)—where
k = E,M—evolving with constant diffusion coefficient ]D

k
≥ 0 and constant haptotactic

coefficient Φ
k
≥ 0 are given by

∂ck
∂t

+∇ · (Jdiff + Jhapto) = 0.

Here
Jdiff = −Dk∇ck

is the flux used to describe solely the random movement of the cancer cells, and

Jhapto = Φ
k
ck∇w

is the haptotactic flux. Moreover, we assume that cancer cells (and, implicitly, MT1-MMP)
cannot leave the domain. This results in zero-flux boundary conditions, i.e. if n is an
appropriate outward unit normal vector,

n · (−Dk∇ck + Φ
k
ck∇w) = 0

is imposed on the boundaries of every domain Ω
P
and Ωa

S
, a = 1, 2, ..., G. Consequently,

the evolution of the density of epithelial-like cancer cells c
E
(t,x) is governed by the fol-

lowing diffusion-haptotaxis equation:

∂c
E

∂t
= D

E
∇2c

E
− Φ

E
∇ · (c

E
∇w), (4.1.1)

diffusion haptotaxis

along with zero-flux boundary conditions. Here, D
E
≥ 0 is the constant cancer cell dif-

fusion coefficient for epithelial-like cancer cells and Φ
E
≥ 0 is their constant haptotactic

sensitivity coefficient. Similarly, the mesenchymal-like cancer cell density c
M

(t,x) evolves
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according to

∂c
M

∂t
= D

M
∇2c

M
− Φ

M
∇ · (c

M
∇w), (4.1.2)

diffusion haptotaxis

along with zero-flux boundary conditions. Here, D
M
≥ 0 is the constant cancer cell diffu-

sion coefficient for mesenchymal-like cancer cells and Φ
M
≥ 0 is their constant haptotactic

sensitivity coefficient.
However, we aim to model the cancer cells individually rather than as densities to

allow to track the evolution of single mesenchymal-like and epithelial-like cancer cells
with different phenotypes. To achieve this, we next discretise the spatial domains of our
model using a uniform mesh and discretise the flow of the cell densities in equations (4.1.1)
and (4.1.2). This way, we derive the movement coefficients of the individual epithelial-like
and mesenchymal-like cancer cells to be those in equations (4.1.7) and (4.1.8).

For this, we fix a time step ∆t and set tn = n∆t. We discretise each of the G + 1
square domains using, in the two dimensional case where x = (x, y) ∈ R2, a uniform
mesh of grid cells with size ∆x = ∆y = 1

l
. We continue by approximating the MMP-2

concentration m and the ECM density w by discrete values mn
i,j and wni,j, respectively,

and denote the number of epithelial- and mesenchymal-like cancer cells on grid point
(xi, yj)—where xi = i∆x and yj = j∆y with i, j ∈ [0, l] ∩ N0—at time tn by c

E
n
i,j and

c
M
n
i,j, respectively.
Equations (4.1.1) and (4.1.2) are discretised using a five-point central difference scheme,

as described in detail in Appendix A. This yields

c
E

n+1
i,j = P0ck

n
i−1,j + P1ck

n
i+1,j + P2ck

n
i,j+1 + P3ck

n
i,j−1 + P4ck

n
i,j (4.1.3)

where k = E,M, for the discrete spatiotemporal evolution epithelial-like and mesenchymal-
like cancer cells, respectively, together with zero-flux boundary conditions. We then
extract the coefficients to obtain

P0 : Pni−1,j :=
∆t

(∆x)2

[
Dk −

Φ
k

4

(
wni+1,j − wni−1,j

)]
,

P1 : Pni+1,j :=
∆t

(∆x)2

[
Dk +

Φ
k

4

(
wni+1,j − wni−1,j

)]
,

P2 : Pni,j+1 :=
∆t

(∆x)2

[
Dk +

Φ
k

4

(
wni,j+1 − wni,j−1

)]
,

P3 : Pni,j−1 :=
∆t

(∆x)2

[
Dk −

Φ
k

4

(
wni,j+1 − wni,j−1

)]
, (4.1.4)

P4 : Pni,j := 1− ∆t

(∆x)2

[
4Dk − Φ

k

(
wni+1,j + wni−1,j + wni,j+1 + wni,j−1 − 4wni,j

)]
. (4.1.5)

By approximating the ECM density w by linear functions in the x- and in the y-direction,

68



which will not affect the numerical results significantly since our numerical method is of
first order accuracy, equation (4.1.5) simplifies to

P4 : Pni,j := 1− 4∆t

(∆x)2
Dk. (4.1.6)

Furthermore, we can provide the notions of probabilities by

• choosing the positive parts of P0 to P3;

• noting that small values of ∆t suffice to ensure that P0,P1,P2,P3 ≤ 1.

Also, it follows from the above that P4 ∈ [0, 1]. Hence, we redefine P0–P4 as

P0 : Pni−1,j := max

(
0,

∆t

(∆x)2

[
Dk −

Φ
k

4

(
wni+1,j − wni−1,j

)])
,

P1 : Pni+1,j := max

(
0,

∆t

(∆x)2

[
Dk +

Φ
k

4

(
wni+1,j − wni−1,j

)])
,

P2 : Pni,j+1 := max

(
0,

∆t

(∆x)2

[
Dk +

Φ
k

4

(
wni,j+1 − wni,j−1

)])
,

P3 : Pni,j−1 := max

(
0,

∆t

(∆x)2

[
Dk −

Φ
k

4

(
wni,j+1 − wni,j−1

)])
, (4.1.7)

P4 : Pni,j = 1−
3∑
q=0

Pq. (4.1.8)

The resulting coefficients P0,P1,P2,P3 now correspond to the probabilities that, during
the next time step, a cancer cell at grid point (xi, yj) moves left, right, up and down,
respectively. P4 corresponds to the probability that a cancer cell remains at grid point
(xi, yj) during the next time step. This way, the cancer cells move both by diffusion, and,
as soon as a non-zero ECM density gradient exists in the local neighbourhood, also by
haptotactic movement towards the higher ECM density.

Note that, if we had used a positivity-preserving numerical scheme, such as a second
or higher order Runge-Kutta scheme, positivity of P0 to P4 would have been inherited
from the positivity of the PDEs in equations (4.1.1) and (4.1.2). The explicit Euler
approximation, however, introduces a small numerical error that could lead to negative
coefficients. The renormalisation resulting from taking the positive parts of P0 to P3

and the re-expression of equation (4.1.6) as equation (4.1.8) has a small impact on the
results in cases where any of the coefficients P0 to P3 would have been negative otherwise.
Examples are for instance scenarios where no diffusion is included but the haptotactic
term in one or more of P0 to P3 becomes negative. In these cases, our model predicts a
slightly higher probability for the particular cell to remain where it is compared to the
result we would have obtained if we had used a positivity-preserving numerical scheme.
However, with the parameter values that we choose for our simulations, the impact of
this spatially symmetric discrepancy is not significant. If anything, the spread of the
cancer cells could slow down slightly in a symmetric manner. To study parameter values
that imply for P0 to P3 to become negative regularly, however, we suggest to switch the
numerical scheme.

69



At any time step n ≥ 0, we then realise the individual-based cell movement from grid
point to grid point using the following sub-model, which was proposed in Burgess et al.
(2016, 2017):

1. On every grid we identify c
M
n
i,j on each grid point (xi, yj) by counting the number

of (sizeless) mesenchymal-like cancer cells and thus the MMP-2 concentration and
ECM density by calculating the numerical solutions defined by completing equa-
tions (A.0.1) and (A.0.2) with zero-flux boundary conditions and suitable initial
conditions.

2. For each grid point (xi, yj) on every grid, we evaluate the movement probabilities
to a neighbouring grid point for cancer cells on this grid point by substituting the
local ECM densities into equations (4.1.7) and (4.1.8).

3. Five intervals are then defined based on the movement probabilities from equa-
tions (4.1.7) and (4.1.8), at each grid point (xi, yj):

R0 := [0,P0); Rp :=

[
p−1∑
q=0

Pq,
p∑
q=0

Pq

)
, p = 1, 2, 3; and R4 :=

[
3∑
q=0

Pq, 1

]
.

4. At each grid point (xi, yj) of every grid, we generate a random number z ∈ [0, 1] for
every cancer cell on that grid point. Depending on which of the above intervals R0

to R4 the value of z falls into, the corresponding cancer cell will move left (z ∈ R0),
move right (z ∈ R1), move up (z ∈ R2), move down (z ∈ R3), or remain on its
current grid point (z ∈ R4).

5. If a cancer cell would have been placed outside the grid limits by Step 4, it remains
in its grid position in compliance with the no-loss boundary conditions. The same
applies if a cancer cell would have moved to a grid point already filled with the
preferred carrying capacity of Q cells.

The model we described so far only accounts for the movement of the cancer cells. We
thus need to additionally account for the proliferation of cancer cells. The two cancer cell
types included in the model proliferate at different frequencies. The more proliferative
epithelial-like cancer cells perform mitosis after T

E
∈ N time steps, the less proliferative

mesenchymal-like cell types after T
M
∈ N time steps (with T

M
> T

E
). When proliferating,

the cancer cells pass on their respective phenotype as well as their location so that a
proliferating cancer cell is replaced by two daughter cells after the proliferative step has
been performed. However, to account for competition for space and resources, the cancer
cells on the respective grid point do not proliferate if there are Q ∈ N cancer cells on a
grid point at the time of proliferation. If this is the case, they may proliferate again after
another time interval T

E
or T

M
, respectively.

With reference to the flowchart shown in Figure 4.1, the part of our approach described
so far is summarised as Movement & cell proliferation, which, for the primary site, is
depicted in the upper region of the flowchart.

The mesenchymal-like cancer cells in our model have the ability to express diffusible
MMP-2. The MMP-2 concentration m(t, x, y) hence develops according to the equation
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∂m

∂t
= Dm∇2m + Θc

Mn
− Λm , (4.1.9)

diffusion expression decay

along with zero-flux boundary conditions

n · (−Dm∇m) = 0,

where n is an appropriate outward unit normal vector. Here, c
Mn
∈ {0, 1, 2, ..., Q} denotes

the respective presence of up to Q mesenchymal-like cancer cells at a given position x,
following the notation by Stéphanou et al. (2006) and McDougall et al. (2012). Con-
sequently, Θc

Mn
represents the local expression of MMP-2 by the c

Mn
mesenchymal-like

cancer cells.
Dm > 0 is the constant MMP-2 diffusion coefficient; Θ > 0 is the constant rate

of MMP-2 concentration provided by mesenchymal-like cancer cells; and Λ > 0 is the
constant rate at which MMP-2 decays. Note that the mesenchymal-like cancer cells
also express MT1-MMP. However, MT1-MMP acts locally only where it is bound to the
cancer cell membrane and its spatiotemporal evolution is hence congruent to that of the
mesenchymal-like cancer cells. Therefore, we do not include a separate equation.

The diffusible MMP-2 degrades the ECM with a degradation rate of Γ2 > 0. The
MT1-MMP expressed on the membrane of the mesenchymal-like cancer cells also de-
grades the ECM, which is expressed through the degradation rate Γ1 > 0. Hence, given
that we are disregarding ECM-remodelling for simplicity, the evolution of the ECM den-
sity w(t, x, y) is governed by the following PDE:

∂w

∂t
= −(Γ1cMn

+ Γ2m)w. (4.1.10)

degradation

Since the continuous evolution of the MMP-2 concentration and the ECM density
is governed by equations (4.1.9) and (4.1.10), while the spatiotemporal evolution of the
cancer cells (and, intrinsically, of the membrane-bound MT1-MMP) is captured by an
individual-based model, this is a hybrid discrete-continuum approach to modelling cancer
invasion. Because the movement probabilities are derived from equations (4.1.1) and
(4.1.2), which are obtained using equations (4.1.9) and (4.1.10), the hybrid approach
is of the kind pioneered by Anderson and Chaplain (1998) in the context of modelling
tumour-angiogenesis, that was subsequently used to model tissue invasion by cancer cells
(Anderson et al., 2000; Anderson, 2005) and spatial evolutionary games (Burgess et al.,
2016, 2017).

Intravasation With the model setup we have described so far, the cancer cells can
invade the tissue locally in the primary spatial domain but cannot reach the spatially sep-
arated secondary domains. To allow for metastatic spread, we account for the connection
of the primary spatial domain to the secondary spatial domains by incorporating blood
vessels in our modelling framework. Examples of primary and secondary domains are
presented in Figure 4.2. To represent the entry points into the blood vessels, a number of
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Figure 4.2: Primary and metastatic sites. To give an example of how the general
modelling framework can be applied to a specific clinical setting, in our simulations we
chose the primary site Ω

P
, which is shown on the left, to represent the breast, and potential

secondary metastatic sites Ω1
S
, Ω2

S
, Ω3

S
, which are shown on the right, to represent the

bones, the lungs and the liver, respectively. Cancer cells can reach the secondary sites by
travelling through the blood system.

U
P
∈ N0 normal blood vessels, as well as V

P
∈ N0 ruptured blood vessels, are distributed

on the primary grid. The normal blood vessels take the size of one grid point, while
ruptured vessels consist of a group of Ab ∈ N, where b = 1, 2, ..., V

P
, adjacent grid points

and can thus have different shapes. Each secondary grid Ωa
S
also has, respectively, Ua

S
∈ N

normal blood vessels, where a = 1, 2, ..., G as before, that take the form of a single grid
point each. On the primary grid, the grid points where the vessels are located allow the
cancer cells to intravasate, while the respective grid points on the secondary grids allow
for extravasation.

If, by the movement steps described above, a cancer cell on the primary grid is placed
on a grid point that represents a blood vessel, it may leave the grid and enter the vas-
culature. Whether or not a cancer cell can successfully intravasate depends both on its
phenotype and on the type of vessel it is placed on.

Whenever a mesenchymal-like cancer cell is moved to a grid point (xi, yj) ∈ Ω
P
, on

which a normal single blood vessel is located, it will successfully enter the vasculature.
Further, to represent collective invasion in the form of co-presence of mesenchymal-like
and epithelial-like cancer cells, cancer cells of any type on the four neighbouring primary
grid points (xi+1, yj), (xi−1, yj), (xi, yj+1) and (xi, yj−1) are forced into the vasculature
together with the mesenchymal-like cancer cell on (xi, yj) as well as any other cells on
(xi, yj). Hence, a mesenchymal-like cancer cell moving to a grid point on which a normal
blood vessel is located results in either a single mesenchymal-like cancer cell or a clus-
ter consisting of up to 5Q cancer cells of any phenotype intravasating. However, if an
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epithelial-like cancer cell is moved to a grid point (xi, yj) ∈ Ω
P
where a normal single

vessel is located without a mesenchymal-like cell being present there, the epithelial-like
cancer cell will not intravasate and the grid point (xi, yj) will be treated like any other
grid point. This models the fact that epithelial-like cancer cells have been shown to be
unable to actively intravasate on their own.

Further, a cancer cell on the primary grid can move to one of the grid points where a
ruptured vessel is located. Contrary to the above-described scenario of entering a normal
vessel, a cancer cell of any phenotype, which is placed on a grid point representing part
of a ruptured vessel, can enter the circulation. The respective cancer cell takes with it
any other cancer cells residing both on the grid points representing the ruptured blood
vessel and on the regular grid points bordering the ruptured vessel. Biologically, the fact
that cancer cells of any phenotype can intravasate mirrors that these blood vessels are
already ruptured due to trauma or pressure applied by the expanding tumour, making
the requirement of MDE-mediated degradation of the vessel wall redundant. The fact
that other cancer cells on bordering grid points will enter the circulation together with
cancer cells placed on grid points representing blood vessels captures some degree of the
cell-cell adhesion found in collectively invading cancer cell clusters.

Travel through the vasculature If a cancer cell of either phenotype or a cluster
of cancer cells successfully enters the vasculature either through a ruptured or a normal
vessel, it will be removed from the primary grid and moved to the vasculature. Cancer
cells and cancer cell clusters remain in the vasculature for some number of time steps
T
V
∈ N, which biologically represents the average time the cancer cells spend in the blood

system. If a cell would have normally been due to proliferate while in the vasculature,
the proliferation is suppressed. It may proliferate again after another T

E
, T

E/M
or T

M

time steps, as appropriate. Any cancer cells that enter a particular vessel at the same
time are treated as one cluster and hence as a single entity once they are located in the
vasculature. However, each cancer cell that is part of a cancer cell cluster disaggregates
from its cluster with some probability Pd after

⌈
T
V

2

⌉
time steps. At the end of T

V
time

steps, the single cancer cells and the remaining cancer cell clusters are removed from the
simulation unless they are randomly determined to survive. The survival probability is
P
S
for single cancer cells and P

C
for cancer cell clusters.

Extravasation Any surviving cancer cells and cancer cell clusters are placed on one of
the G secondary grids Ωa

S
with probability E1, E2, ..., EG, where

∑G
a=1 Ea = 1. Also, on each

specific secondary grid, the cancer cells extravasate through one of the randomly chosen
Ua

S
grid points that represent a blood vessel with equal probability. If the respective

grid point cannot accommodate all of the entering cancer cells without violating the
preferred carrying capacity Q, the remaining cancer cells are randomly distributed onto
the four non-diagonally neighbouring grid points until these are filled to preferred carrying
capacity Q. If there are further cancer cells to be placed onto the respective grid point
at this instance, such cancer cells are killed to capture the effect of competition for space
in combination with vascular flow dynamics.

Metastatic growth If and when cancer cells reach a secondary grid, they behave
(i.e. replicate, move, produce MDEs etc.) there according to the same rules as on the
primary grid, as indicated on the bottom of the flowchart in Figure 4.1. However, as
the nature of the tumour microenvironment varies according to organs and particular
patients, the parameter values can be adapted accordingly for each domain.
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4.2 Implementation and model calibration
To perform numerical simulations, we first non-dimensionalised the system of equations
(4.1.1), (4.1.2), (4.1.9) and (4.1.10), which—along with zero-flux boundary conditions—
describes the spatiotemporal evolution of the epithelial-like cancer cell density c

E
(t, x, y),

of the mesenchymal-like cancer cell density c
M

(t, x, y), of the ECM density w(t, x, y), and
of the MMP-2 concentration m(t, x, y).

Like Anderson et al. (2000), we chose to rescale distance with an appropriate length
scale L = 0.2 cm (since 0.1–1 cm is estimated to be the maximum invasion distance of
cancer cells at an early stage of cancer invasion) and time with an appropriate scaling
parameter τ = L2

D
. Here D = 10−6 cm2s−1 is a reference chemical diffusion coefficient

suggested by Bray (1992), such that τ = 4 × 104 s, which corresponds to approximately
11 h. Setting t̃ = t

τ
, x̃ = x

L
, ỹ = y

L
, c̃

E
(t̃, x̃, ỹ) =

c
E

(t,x,y)

c̄E
, c̃

M
(t̃, x̃, ỹ) =

c
M

(t,x,y)

c̄
M

,

m̃(t̃, x̃, ỹ) = m(t,x,y)
m̄

and w̃(t̃, x̃, ỹ) = w(t,x,y)
w̄

, where c̄
E
, c̄

M
, m̄ and w̄ are appropriate refer-

ence parameters, substituting these into the system of PDEs (4.1.1), (4.1.2), (4.1.9) and
(4.1.10) and dropping the tildes for better readability, yields

∂c
E

∂t
= D

E
∇2c

E
− Φ

E
∇ · (c

E
∇w), (4.2.1)

∂c
M

∂t
= D

M
∇2c

M
− Φ

M
∇ · (c

M
∇w), (4.2.2)

∂m

∂t
= Dm∇2m+ Θc

M
− Λm, (4.2.3)

∂w

∂t
= −(Γ1cM

+ Γ2m)w, (4.2.4)

where D
E

=
τd

E

L2 =
d

E

D
, Φ

E
=

τφ
E
w̄

L2 =
φ

E
w̄

D
, D

M
=

τd
M

L2 =
d

M

D
, Φ

M
=

τφ
M
w̄

L2 =
φ

M
w̄

D
,

Dm = τdm
L2 = dm

D
, Θ =

τθc̄
M

m̄
, Λ = τλ, Γ1 = τ c̄

M
γ1 and Γ2 = τm̄γ2 .

To obtain biologically realistic parameter values for our model, we consulted biological
publications on the topic—Stokes et al. (1990); Bray (1992); Luzzi et al. (1998); Meng
et al. (2004); Milo et al. (2009); Collier et al. (2011); Vajtai (2013); Aceto et al. (2014);
Kuhn Laboratory (2017)—as well as comparable PDE models—Anderson et al. (2000);
Deakin and Chaplain (2013). An overview of the parameter values used together with
their mathematical and experimental origin can be found in Table 4.1.

We considered spatial domains of size [0, 1] × [0, 1], which corresponds to physical
domains of size [0, 0.2]cm× [0, 0.2]cm. In particular, we let the spatial domain Ω

P
repre-

sent the primary site and the spatial domains Ω1
S
, Ω2

S
and Ω3

S
describe three metastatic

sites. These spatial domains could represent any primary and secondary carcinoma sites.
However, to give an example of a particular application, we considered a study of 4181
breast cancer patients at Memorial Sloan Kettering Cancer Center. Data and graphs
from this study can be found at http://kuhn.usc.edu/breast_cancer (Kuhn Labora-
tory, 2017). We accordingly chose Ω

P
to represent the primary site of the breast, and

Ω1
S
, Ω2

S
and Ω3

S
to correspond to the common metastatic sites of bones, lungs and liver,

respectively. Disregarding potential spread to any other metastatic sites, the data from
the Kuhn Laboratory (2017) provided us with an extravasation probability of E1 ≈ 0.5461
to the bones, of E2 ≈ 0.2553 to the lungs, and of E3 ≈ 0.1986 to the liver.
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Table 4.1: Baseline parameter settings used in the simulations. In the first col-
umn, non-dimensional parameters are indicated by upper-case notation—corresponding
dimensional parameters using lower-case notation. In the fourth column, other mathe-
matical modelling papers are referenced in brackets and biological papers without brackets.

Description Non-dimen- Biological reference Original value
sional value (Modelling reference)

∆t Time step 1× 10−3 40 s

∆x, Space step 5× 10−3 Breast cell diameter in 1× 10−3 cm

∆y Vajtai (2013)

D
M

(d
M

) Mesenchymal-like cancer 1× 10−4 Bray (1992) 1× 10−10 cm2s−1

cell diffusion coefficient (Anderson and Chaplain (1998))
(Deakin and Chaplain (2013))

D
E
(d

E
) Epithelial-like cancer 5× 10−5 Bray (1992) 5× 10−11 cm2s−1

cell diffusion coefficient (Anderson and Chaplain (1998))
(Deakin and Chaplain (2013) )

Φ
M

(φ
M

) Mesenchymal haptotactic 5× 10−4 Stokes et al. (1990) 2.6× 103 cm2M−1s−1

sensitivity coefficient (Anderson and Chaplain (1998))

Φ
E
(φ

E
) Epithelial haptotactic 5× 10−4 Stokes et al. (1990) 2.6× 103 cm2M−1s−1

sensitivity coefficient (Anderson and Chaplain (1998))

Dm(dm) MMP-2 diffusion 1× 10−3 Collier et al. (2011) 1× 10−9 cm2s−1

coefficient

Θ(θ) MMP-2 production rate 0.195 Biological constraints 4.875× 10−6 Ms−1

Λ(λ) MMP-2 decay rate 0.1 Estimated in 2.5× 10−6 s−1

(Deakin and Chaplain, 2013)

Γ1(γ1) ECM degradation 1 Based on 1× 10−4 s−1

rate by MT1-MMP (Deakin and Chaplain, 2013)

Γ2(γ2) ECM degradation 1 Based on 1× 10−4 M−1s−1

rate by MMP-2 (Anderson et al., 2000)

T
V

Time CTCs spend in the 0.18 Meng et al. (2004) 7.2× 103 s

vasculature

T
M

Epithelial doubling time 3 Milo et al. (2009) 1.2× 105 s

T
E

Mesenchymal doubling 2 Milo et al. (2009) 8× 104 s

time

P
S

Single CTC survival 5× 10−4 Luzzi et al. (1998) 5× 10−4

probability

P
C

CTC cluster survival 2.5× 10−2 Luzzi et al. (1998) 2.5× 10−2

probability Aceto et al. (2014)

E1 Extravasation probability ∼0.5461 Kuhn Laboratory (2017) ∼0.5461

to bones

E2 Extravasation probability ∼0.2553 Kuhn Laboratory (2017) ∼0.2553

to lungs

E3 Extravasation probability ∼0.1986 Kuhn Laboratory (2017) ∼0.1986

to liver
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We discretised the four spatial domains to contain 201 × 201 grid points each. This
corresponds to a non-dimensionalised space step of ∆x = ∆y = 5 × 10−3, which results
in a dimensional space step of 1×10−3 cm, and thus roughly corresponds to the diameter
of a breast cancer cell (Vajtai, 2013). We then chose a time step of ∆t = 1 × 10−3,
corresponding to 40 s. This condition is motivated by Anderson et al. (2000) and is
employed as a means of increasing the accuracy and stability of the numerical scheme.
The simulations were run for 48000 time steps, which corresponds to ∼22 days.

On each secondary grid, we chose U1
S

= U2
S

= U3
S

= 10 distinct grid points, on which
blood vessels are located. For each grid, these blood vessels were placed randomly but at
least two space step widths away from the respective grid’s boundary. The same applies to
the primary grid Ω

P
but with the additional condition that the U

P
= 8 single grid points,

where normal blood vessels are located, and the V
P

= 2 sets of five grid points, where
ruptured blood vessels are placed, are located outside a quasi-circular region containing
the 200 centre-most grid points. While these 10 randomly placed vessels are modelled to
exist from the beginning, they represent those vessels that grow as a result of tumour-
induced angiogenesis in the vascular tumour growth phase.

To represent a two-dimensional cross-section of a small avascular primary tumour,
we placed a nodule that consisted of 388 randomly distributed cancer cells in the quasi-
circular region of the 97 centre-most grid points of the primary grid. Throughout the
simulation, we allowed for no more than Q = 4 cancer cells on any grid point to account
for competition for space. Hence, initially placing 388 cancer cells on the grid implies
that the 97 centre-most grid points, which we chose to obtain a symmetric, quasi-circular
region of about 100 grid points, are filled to the preferred carrying capacity with cancer
cells. A randomly chosen 40% of these cancer cells were of epithelial-like phenotype
and the remaining 60% of mesenchymal-like phenotype. The described initial condition
ensures that the cancer cells are placed away from any pre-existing vessels to match the
biology of an avascular tumour. The counters for the cell age are initially set to zero
for all cells. Figure 4.3 gives an example of a typical initial mesenchymal-like cancer cell
placement and vessel distribution on the primary grid.

In accordance with Table 4.1, we chose the mesenchymal-like cancer cell diffusion
coefficient to be D

M
= 1 × 10−4, the epithelial-like cancer cell diffusion coefficient to be

D
E

= 5× 10−5, and the mesenchymal and epithelial haptotactic sensitivity coefficients to
be Φ

M
= Φ

E
= 5 × 10−4. Moreover, we used the MMP-2 decay rate Λ = 0.1 that was

estimated in Deakin and Chaplain (2013) and chose the MMP-2 production rate to be
about twice as large, Θ = 0.195.

We further assumed that, once in the vasculature, a single CTC had a survival prob-
ability of P

S
= 5× 10−4, which is of the order of the micro- and macrometastatic growth

success rates proposed in Luzzi et al. (1998). We chose the success rate for metastatic
growth to be our survival probability because our model in its current state disregards
cancer cell death at secondary sites so that any successfully extravasated cancer cell
will initiate micrometastatic growth over time. CTC clusters had a survival probability
P
C

= 50P
S

= 2.5 × 10−2, in agreement with the finding by Aceto et al. (2014) that the
survival probability of CTC clusters is between 23 and 50 times higher than that of single
CTCs. Surviving single CTCs and CTC clusters exited onto the secondary grids after
spending T

V
= 0.18 in the blood system, which corresponds to 2 hours and hence to the

breast cancer-specific clinical results in Meng et al. (2004).
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Ruptured vessel

Standard vessel

0 1 2 3 4

Figure 4.3: Sample vessel distribution and initial condition for the
mesenchymal-like cancer cells. The plot shows (in red) ten randomly distributed
blood vessels on the primary grid, two of which are so-called ruptured vessels that consist
of five rather than one grid point. In the centre of the grid, the initial distribution of
the mesenchymal-like cancer cells is shown. There are between 0 (white) and 4 (black)
cancer cells on a grid point. As the initial distribution of cancer cells represents a two-
dimensional section through an avascular tumour, the blood vessels are placed at some
distance away from the initial nodule of cancer cells. The scale bar denotes 0.02 cm.

Further, we assumed a uniform initial ECM density of w(t, x, y) = 1 across all the
spatial domains, while the initial MMP-2 concentration was m(t, x, y) = 0. We chose the
other parameters as shown in Table 4.1 and assumed that epithelial-like cancer cells divide
by mitosis every time span T

E
= 2 and mesenchymal-like cancer cells every T

M
= 3. This

corresponds to approximately 22 hours and 33 hours, respectively, which is consistent
with the average doubling times found in breast cancer cell lines (Milo et al., 2009).

In Appendix B, we provide pseudo-code that yields insight into the computational
implementation of this mathematical multi-organ model.
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4.3 Results
To verify that our modelling framework is suitable to capture the key steps of the invasion-
metastasis cascade, we first ran simulations with the base parameters shown in Table 4.1.
As indicated by the headings throughout this section, we then varied these base param-
eters across biologically realistic ranges to further confirm that our framework delivers
biologically realistic results and to gain insight into the underlying biology. For each of the
parameter studies, we took the average results from running the simulation three times—
unless stated otherwise—and indicated error bars to display the standard deviation in
the corresponding plots. While the statistical reliability could be improved by increasing
the number of samples, we only use these measures to examine the general qualitative
tendencies of our model. Hence, we have restricted the analysis at this point. This way,
we studied the effect that changing the initial ratio of epithelial-like to mesenchymal-like
cancer cells, the number of blood vessels in the primary site, and the survival probability
of cancer cells had on the overall cancer dynamics. We investigated the roles of MMP-2
and MT1-MMP as well as their role in comparison to one another. Finally, we changed
the parameters to describe haptotaxis-dominated rather than diffusion-dominated can-
cer cell movement at the end of this section to re-examine the role of membrane-bound
versus diffusible MDEs. We compared the outcomes of these simulations to a range of
experimental and clinical results.

The computational time to run a simulation on a standard desktop computer was
approximately 35 minutes.

Simulations with base parameters

When using the settings outlined in the previous section, we observed in our simulations
that both epithelial-like and mesenchymal-like cancer cells invaded the tissue surrounding
the primary tumour, which is represented by the primary grid, over 22 days. This is shown
in the simulation results in the two upper rows of panels in Figure 4.4, respectively.
The epithelial-like cancer cells formed the bulk of the central tumour mass, while the
mesenchymal-like cancer cells were predominantly found at the outermost tissue-invading
edge. The maximum observed invasion distance of the cancer cells over this period was
approximately 0.13 cm. The pattern of MMP-2 concentration for the same simulation
roughly followed the distribution of the mesenchymal-like cancer cells as shown in the
third row of panels in Figure 4.4. The ECM density, which is depicted in the bottom
row of Figure 4.4, also followed the evolution of the MMP-2 concentration but in a more
uniform fashion.

In addition to the cancer cell invasion on the primary grid, we also observed metastatic
spread of single cancer cells, as well as of homogeneous and heterogeneous cancer cell
clusters, to the grids representing the secondary sites of the bones (Figure 4.5), the lungs
(Figure 4.6) and the liver (Figure 4.7). The results obtained here showed that the first
metastatic spread occurred at the site of the bones. As shown in the panel on the top left
of Figure 4.5, after 11 days we already observed a micrometastatic lesion of epithelial-
like cancer cells with an approximate diameter of 0.04 cm on the grid that represented
the bones, but in none of the other locations. Since this micrometastasis was seeded
by a single extravasated epithelial-like cancer cell, no mesenchymal-like cancer cells are
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Figure 4.4: Simulation results on the primary grid. Primary tumour dynamics
after 0 days, ∼11 days and ∼22 days (left to right). For each time step, the distribution
of epithelial-like cancer cells (top row) and mesenchymal-like cancer cells (second row) is
shown, with the discrete number of cancer cells per grid point ranging from 0 (white) to 4
(black) on each of the panels. The MMP-2 concentration (third row) continuously varies
between 0 (white) and 3.0936 (black), and the ECM density (bottom row) between 0 and 1.
Red dots represent blood vessels. There are 8 normal blood vessels of the size of one grid
point as well as 2 ruptured blood vessels, which extend over 5 grid points each. If cancer
cells are moved to these grid points, they may enter the vasculature and can potentially
extravasate at secondary sites. The dynamics of the cancer cells at the secondary sites
are presented in Figures 4.5–4.7. The scale bar denotes 0.02 cm and applies to all of the
panels.
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Figure 4.5: Simulation results on secondary grid representing the bones. Dis-
tribution of epithelial-like cancer cells, mesenchymal-like cancer cells, MMP-2 concentra-
tion and ECM density (top to bottom row of panels) at the secondary site representing the
bones, shown after ∼11 days (left) and ∼22 days (right). The number of cancer cells per
grid point varies between 0 (white) and 4 (black) in the first row of panels and between
0 (white) and 2 (black) in the second row of panels. The MMP-2 concentration ranges
from 0 (white) to 3.4737 × 10−2 (black) and the ECM density from 0.17559 (light grey)
to 1 (black). The red grid points represent blood vessels, through which cancer cells can
extravasate. The scale bar denotes 0.02 cm and applies to all panels.
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Figure 4.6: Simulation results on secondary grid representing the lungs. Dis-
tribution of epithelial-like cancer cells, mesenchymal-like cancer cells, MMP-2 concentra-
tion and ECM density (top to bottom row of panels) at the secondary site representing
the bones, shown after ∼11 days (left) and ∼22 days (right). The number of cancer cells
per grid point varies between 0 (white) and 2 (black) in the upper panels and 0 (white)
and 3 (black) in the lower panels. The MMP-2 concentration ranges from 0 (white) to
1.5876 × 10−2 (black) and the ECM density from 0.41137 (light grey) to 1 (black). The
red grid points represent blood vessels, through which cancer cells can extravasate. The
scale bar denotes 0.02 cm and applies to all panels.
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Figure 4.7: Simulation results on secondary grid representing the liver. Distri-
bution of epithelial-like cancer cells, mesenchymal-like cancer cells, MMP-2 concentration
and ECM density (top to bottom row of panels) at the secondary site representing the
bones, shown after ∼11 days (left) and ∼22 days (right). The first row of panels does not
contain any epithelial-like cancer cells, while the panel on the bottom right of the second
row contains three single mesenchymal-like cancer cells indicated in black. The MMP-2
concentration ranges from 0 (white) to 3.7129× 10−3 (black) and the ECM density from
0.58015 (light grey) to 1 (black). The red grid points represent blood vessels, through which
cancer cells can extravasate. The scale bar denotes 0.02 cm and applies to all panels.
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present. Yet, after 22 days we discovered metastatic spread at all three of the secondary
locations in the body that we considered in our simulations. On the grid representing
the bones, we found that the earliest micrometastasis, which consisted of epithelial-like
cancer cells only, had rapidly increased in diameter to approximately 0.1 cm (see top right
panel of Figure 4.5). Additionally, a second micrometastasis consisting of both epithelial-
like and mesenchymal-like cancer cells had formed at the top right of the same grid.
This phenotypically heterogeneous micrometastasis developed from the extravasation of
a heterogeneous cancer cell cluster. Finally, we observed a set of four epithelial-like and
two mesenchymal-like DTCs at the bottom right of the grid corresponding to the bones.
The latter two formations were results of heterogeneous cancer cell clusters spreading
to the bones. While the secondary site that represented the bones showed by far the
largest cancer cell load after 22 days, we detected a further two micrometastases at the
secondary site of the lungs, as shown in the panels on the right of Figure 4.6. Here, the
micrometastasis at the bottom of the grid consisted of epithelial-like cancer cells only,
while the top micrometastasis contained both cancer cell types as it had grown out of a
heterogeneous cancer cell cluster. Finally, the liver showed the least secondary spread in
the form of three mesenchymal-like DTCs that arrived as a single cluster, as shown in
the panel on the right in the second row of panels of Figure 4.7.

Changing the initial ratio of epithelial- to mesenchymal-like
cancer cells

By keeping the total initial amount of cancer cells constant at 388 but varying the initial
percentage of epithelial-like cancer cells between 0% and 100% in steps of 10%, we found
that having solely epithelial-like cells at the start of the simulation had a significant
negative impact on tumour growth. We counted an average of 62932 cancer cells at the
end of our simulation time span of 22 days as compared to about 48% more cancer cells
(i.e. 93115 cancer cells) in the case of an even initial distribution.

Starting the simulation solely with mesenchymal-like cancer cells had a similar, yet
weaker, dampening effect: Compared to simulation with an even initial distribution, it
reduced growth to 86425, and thus by about 7.7%. Otherwise, we generally found that
a higher percentage of epithelial-like cancer cells at the start coincided with a lower
number of mesenchymal-like cancer cells at the end of the simulations. At the same
time, the number of epithelial-like cancer cells after 22 days increased. We observed that
the maximum number of cancer cells occurred under initial conditions with even parts
of mesenchymal-like and epithelial-like cancer cells but that the combined cancer cell
count at the end of the simulation was relatively stable if we varied the initial number of
epithelial-like cancer cells between 0% and 90% (see Figure 4.8).

With regards to shedding from the primary tumour, and hence also to chances of
successful metastasis, we found that a higher initial percentage of mesenchymal-like cancer
cells correlated to a higher number of intravasating single cancer cells and cancer cell
clusters, likely as a result of an overall higher number of mesenchymal-like cancer cells
(see Figure 4.9). If we started our simulation with mesenchymal-like cancer cells only,
we observed an average total of 634 intravasations by single cancer cells or cell clusters—
compared to only 7 over the same time range in the case of the average of simulations
that included epithelial-like cancer cells only. When we set the number of ruptured

83



0 10 20 30 40 50 60 70 80 90 100

Initial percentage of epithelial-like cancer cells

6

6.5

7

7.5

8

8.5

9

9.5

10

F
in

al
 p

ri
m

ar
y

 t
u

m
o

u
r 

ce
ll

 l
o

ad

Figure 4.8: Co-presence of epithelial- and mesenchymal-like cancer cells in-
creases the overall primary tumour cancer cell load. The absence of mesenchymal-
like cancer cells hinders cancer cell invasion and tumour growth. The final primary tu-
mour cancer cell load on the vertical axis is given in units of 104 and refers to simulation
results after approximately 22 days.
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Figure 4.9: Higher numbers of mesenchymal-like cancer cells at the primary
site correspond to an increased intravasation count. The final primary tumour
cancer cell load on the horizontal axis is given in units of 104 and refers to simulation
results after approximately 22 days.
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Figure 4.10: A higher MMP-2 production rate lowers the final primary tu-
mour cancer cell load. The final primary tumour cancer cell load on the vertical axis
is given in units of 104 and refers to simulation results after approximately 22 days.
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Figure 4.11: A higher MMP-2 diffusion coefficient corresponds to a lower
final primary tumour cancer cell load. The MMP-2 diffusion coefficient on the
horizontal axis is given in units of 10−3 and the final primary tumour cancer cell load on
the vertical axis in units of 104. The results were measured after approximately 22 days.
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vessels in the primary grid to 0 and considered 10 normal vessels only, we observed no
intravasations.

Changing the survival probability of cells in the vasculature

As Aceto et al. (2014) suggested that the probability of cluster survival in the vasculature
(P

C
) is 23 to 50 times higher than that for single CTCs (P

S
), in the next simulations,

we examined the effects of changing the probability of cluster survival in the vasculature
to be P

C
= 23P

S
= 1.15× 10−2—so to take the value of the lower rather than the upper

bound suggested by the authors. For this purpose, we did not allow cancer cell clusters to
break up in the vasculature. Averaged over 12 simulations, the observed cluster survival
was caused to be changed from 2.503 × 10−2 (with P

C
= 2.5 × 10−2) to 1.137 × 10−2.

While this change had no significant effect on the number of single cells and clusters
intravasating, it did reduce the average number of extravasating cancer cell clusters, as
expected.

The role of MMP-2

To investigate the role of MMP-2 in the spatiotemporal evolution of the cancer cells, we
varied both the MMP-2 production rate and the MMP-2 diffusion coefficient.

Modifying the MMP-2 production rate to take values Θ ∈ {0, 0.1, 0.195, 0.3, 0.4} sug-
gested that a lower MMP-2 production rate correlates to a higher overall cancer cell load
after ∼22 days—for each cancer cell type individually as well as for both cell types com-
bined. This resulted mainly from changes in cancer cell numbers on the primary grid.
The corresponding plot in Figure 4.10 highlights this.

Next, we observed that increasing the MMP-2 diffusion coefficient over the range of
values Dm ∈ {0.1, 0.5, 1, 1.5} × 10−3 decreased the total cancer cell load on the primary
grid after 22 days. The total number of intravasations and, coherently, the metastatic
cancer cell load decreased as well. This is shown in Figure 4.11.

The effects of MMP-2 degradation alone

We next set the MT1-MMP degradation rate to be Γ1 = 0 to examine the situation in
which the diffusible MMP-2 is the only MDE in our system. We then varied the MMP-2
production rate, as we had done before when studying the effects of varying the MMP-2
production rate in the presence of MT1-MMP, to be Θ ∈ {0, 0.1, 0.195, 0.3, 0.4}.

Generally, we found that the total primary cancer cell load after 22 days was signifi-
cantly reduced compared to simulations in which MT1-MMP was present. For instance,
comparing against simulations with our baseline MMP-2 production rate of Θ = 0.195,
the total primary cancer cell load was between 8.2% and 58.0% lower. However, invasion
was still possible.
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The role of MDEs in the context of haptotaxis-dominated cancer
cell movement

In all of the above simulations, we have considered diffusion-dominated cancer cell move-
ment. We next investigated the roles of MT1-MMP and MMP-2 in cancer cell invasion
in the scenario of haptotaxis-dominated cancer cell movement. For this, we changed our
epithelial-like and mesenchymal-like non-dimensional cancer cell diffusion coefficients to
be D

E
= 5 × 10−11 and D

M
= 1 × 10−10, respectively. Further, we focussed on can-

cer cell invasion in the primary grid in these simulations and hence set the number of
normal and ruptured vessels to zero. Ceteris paribus, we then re-examined the effective-
ness of invasion involving solely MT1-MMP as well as solely MMP-2 in a system with
haptotaxis-dominated cancer cell movement. We first set the MT1-MMP degradation
rate to be Γ1 = 0, allowing us to represent the situation in which the diffusible MMP-2
is the only MDE in our system. We then, as before, varied the MMP-2 production rate
to be Θ ∈ {0, 0.1, 0.195, 0.3, 0.4}. As opposed to our findings when studying diffusion-
dominated cancer cell movement, we observed that invasion was no longer possible for
the same range of MMP-2 production rates. The final cancer cell numbers on the primary
grid averaged below a ten-fold increase in cell population when compared to the original
nodule of 388 cancer cells. Moreover, the final cancer cell constellation was located at
the centre of the grid due to the very low invasion distance of the cancer cells.

When we increased the MT1-MMP degradation coefficient back to the baseline Γ1 = 1
but set the MMP-2 production rate to be Θ = 0, we found that the cancer cells did invade
with an average total of 18312 cancer cells after approximately 22 days. By decreasing
the MT1-MMP degradation coefficient to Γ1 = 0.5, we observed an even larger cancer
cell load of 28157.

Simulation results coincide with experimental evidence that
stresses the importance of MT1-MMP in cancer invasion

We next ran simulations with an initial cell distribution and domain size that matched the
experiments conducted by Sabeh et al. (2009), who embedded HT-1080 cancer cells into
3D type I collagen gels as central nodules of diameter 1.5×10−2–2×10−2 cm. Coherently,
we increased the diameter of our initial centred quasi-circular nodule to 1.5 × 10−2 cm
and let it consist of 700 cancer cells, 40% (i.e. 280) of which were epithelial-like and 60%
(i.e. 420) mesenchymal-like. Further, we decreased our domain size to be 0.1 cm× 0.1 cm
to match that in the experimental conditions of Sabeh et al. (2009).

Figure 4.12 shows the spatiotemporal evolution of epithelial-like and mesenchymal-like
cancer cells under these experimental conditions after running a simulation for 16 days.
As expected, we still observed that invasion by both epithelial-like and mesenchymal-like
cancer cells was possible when both MDEs were present (i.e. with Θ = 0.195, Γ1 = 1)
and when solely MT1-MMP was present (i.e. with Θ = 0, Γ1 = 1), while invasion
was not possible when solely MMP-2 was expressed (i.e. with Θ = 0.195, Γ1 = 0).
These results are shown in the left, middle and right column of panels of Figure 4.12,
respectively. Out of the three mechanisms, invasion under the expression of MT1-MMP
alone yielded the highest average invasion depth. We further observed that the switch
from diffusion-dominated to haptotaxis-dominated cancer cell movement triggered more
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Figure 4.12: Simulation results for a heterogeneous cancer cell population
subject to haptotaxis-dominated movement. To match the domain size and initial
cell count of experiments by Sabeh et al. (2009), we started the simulation by placing 420
mesenchymal-like cancer cells and 280 epithelial-like cancer cells in a quasi-circular region
with diameter 1.5× 10−2 cm at the centre of a 0.1 cm× 0.1 cm grid (initial conditions not
shown). Depicted is the distribution of epithelial-like (upper panels) and mesenchymal-like
(lower panels) cancer cells after 16 days. Left to right, the invasive patterns in presence of
both MDEs (Θ = 0.195, Γ1 = 1), in presence of MT1-MMP only (Θ = 0, Γ1 = 1) and in
presence of MMP-2 only (Θ = 0.195, Γ1 = 0) are shown for both cancer cell phenotypes.
The scale bar denotes 0.01 cm and applies to all panels.

prominent finger-like protrusions in the invasive pattern of the epithelial-like cancer cells
in the scenarios where either both MDEs or MT1-MMP alone were present, which is
shown in the left and in the middle panel of the top row of Figure 4.12, respectively.

However, Sabeh et al. (2009) used a homogeneous HT-1080 cancer cell population, and
thus cells of mesenchymal origin, in their experiments to examine the role of MT1-MMP
and MMP-2 in cancer invasion. To fully match the experimental conditions of Sabeh
et al. (2009), we next changed our initial conditions to consider a cancer cell population
consisting of 700 mesenchymal-like cancer cells only, as shown in the third row of panels in
Figure 4.13. Sabeh et al. (2009) electroporated multicellular clusters of HT-1080 cancer
cells of diameter 1.5 × 10−2–2 × 10−2 cm either with a control small interfering RNA
(siRNA), which leaves the diffusible matrix metalloproteinase-1 (MMP-1) and MMP-2
as well as the non-diffusible MT1-MMP activated; or with MMP-1 and MMP-2 siRNAs,
which leaves MT1-MMP alone activated but silences the diffusible MDEs MMP-1 and
MMP-2; or with MT1 siRNA, which silences MT1-MMP but leaves MMP-1 and MMP-2
activated. These electroporated multicellular clusters were then embedded centrally in 3D
type I collagen gels. The initial experimental setups and their respective evolution after
3 days are shown—left to right—in the two upper rows of panels in Figure 4.13. Since
the evolution of the two diffusible MDEs, MMP-1 and MMP-2, in the experiments can
be jointly accounted for by the MMP-2 equation of our model, our modelling framework
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Figure 4.13: Experimental findings by Sabeh et al. (2009) (black panels) com-
pared to simulation results (white panels). The top row of panels shows the initial
experimental conditions in Sabeh et al. (2009), where HT-1080 cancer cells were embedded
into 3D type I collagen gels as central nodules of diameter 1.5× 10−2–2× 10−2 cm. The
cancer cell spheroids had previously been electroporated with a control siRNA; MMP-1
and MMP-2 siRNAs; MT1 siRNA (left to right). Their invasion after 3 days is shown in
the second row of panels. We matched the experimental conditions (see text). The bottom
row of panels shows the distribution of the mesenchymal-like cancer cells after 16 days
in the case where the mesenchymal-like cancer cells are subject to haptotaxis-dominated
movement. The number of cancer cells per grid point ranges from 0 (white) to 4 (black)
on each of the panels. Comparing the six panels on the bottom with those on the top,
we find the simulation results to be in good qualitative agreement with the experimental
results by Sabeh et al. (2009). The scale bar denotes 0.01 cm and applies to all panels.
Reproduced from Sabeh et al. (2009) with permission from Rockefeller University Press.
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can replicate the above-described experimental settings well. We did this by, again,
considering a system with both MDEs (i.e. with Θ = 0.05, Γ1 = 1), with MT1-MMP only
(i.e. with Θ = 0, Γ1 = 1) and with MMP-2 only (i.e. with Θ = 0.05, Γ1 = 0), respectively.
When looking at the invasion results after 720 time steps, which corresponds to 16 days,
we observed similar results as in the case of a mixed initial cancer cell population. As the
first panel of the bottom row of Figure 4.13 shows, invasion was possible with both MDEs
present. Yet, the invasion depth—measured by the distance between the cancer cell that
has invaded the furthest from the centre of the grid from the centre of the grid—was
slightly lower compared to the case where we allowed for MT1-MMP expression alone,
which is shown in the second panel of the bottom row of the same figure. Finally, we
again found that invasion was not possible in the presence of MMP-2 alone as the third
panel of the bottom row of Figure 4.13 shows. As Figure 4.13 suggests, these results are
qualitatively in good agreement with the experiments by Sabeh et al. (2009).

Moreover, it would be interesting to repeat the experiments by Sabeh et al. (2009) us-
ing a cancer cell population consisting of both epithelial-like and mesenchymal-like cancer
cells to examine whether the invasion assays would resemble those shown in Figure 4.12.

Finally, due to our awareness that Sabeh et al. (2009) used cancer cells of mesenchymal
origin only in their experiments, we further sought to reproduce the results of experiments
by Gaggioli et al. (2007), who studied the invasion of squamous cell carcinoma (SCC)
cells, which are of epithelial origin. They found that SCC cells rely on fibroblasts for their
invasion, which are cells of mesenchymal-like type that are capable of matrix remodelling,
like the mesenchymal-like cancer cells in our model. In the absence of fibroblasts, the
authors observed that the cancer cells were unable to invade. While we showed that
a mixed population of epithelial-like and mesenchymal-like cancer cells was indeed able
to invade when both MDEs are present (see panels on the left of Figure 4.12), we ran
the same simulations again with epithelial-like cancer cells only. This showed that the
epithelial-like cancer cells in our model were unable to invade on their own, as observed
experimentally by Gaggioli et al. (2007). (Data not shown—similar to bottom right panel
of Figure 4.13.)

4.4 Discussion
In carrying out the computational simulations, we found that such a modelling frame-
work provides biologically realistic outcomes and gives further insight into the mechanisms
underpinning the invasion-metastasis cascade at the cellular scale. Tumour shape and
metastatic distribution were predicted to appear as one would expect in a cancer patient
who has not yet received treatment. In particular, we found that the mesenchymal-like
cancer cells formed a ring-shaped leading front along the tumour edge, which was also
seen in experiments (Nurmenniemi et al., 2009). Nurmenniemi et al. (2009) further ob-
served an average maximum invasion depth of 5.47×10−2 cm over 14 days, when culturing
HSC-3 cancer cells, a human oral squamous carcinoma cell line with high metastatic po-
tential, on top of myoma tissue. This translates into an average estimated invasion speed
of approximately 4.52 × 10−8 cm s−1. It suggests that our observed maximum invasion
depth of ∼0.13 cm in 22 days and resulting average estimated invasion speed of approxi-
mately 6.77× 10−8 cm s−1 is a realistic result, given that migration speed varies between

90



cancer cell lines. The distribution of the cancer cell spread between the secondary sites
that we considered in our model—measured via the metastatic cancer cell load and num-
ber of metastases at the respective sites—further matched the clinical data of 4181 breast
cancer patients underlying our simulations, which is summarised in Figure 2.15. As Fig-
ure 4.5 indicates, the largest micrometastasis, which resulted from the earliest metastatic
spread, occurred at the site of the bones. This is the most frequently observed site of
metastatic spread from primary breast cancer in the data processed by the Kuhn Labo-
ratory (2017). Overall, we observed two further successful extravasations to the site of
the bones, resulting in both phenotypically homogeneous and heterogeneous secondary
growth at this site. The second heaviest cancer cell load, in the form of one heterogeneous
micrometastasis and one consisting of epithelial-like cancer cells only, was found in the
lungs. The least metastatic spread occurred to the liver with only three mesenchymal-like
DTCs being observed, which arrived jointly as part of the same successfully extravasated
mesenchymal-like cancer cell cluster. While, of course, stochasticity underpins the results
of the metastatic spread, we again found that our results matched the clinical observa-
tions summarised in Figure 2.15. To our knowledge, there are currently no data available
that claim to deliver an accurate estimation of the typical metastatic load from primary
breast cancer to secondary sites over a specified time frame. However, we believe our
result is biologically appropriate with regards to its timing, in correspondence with the
conclusion reached by Obenauf and Massagué (2015) in their review of the metastatic
traits that allow cancer cells to colonise various secondary sites, who suggested that CTCs
and metastatic spread can be detected soon after vascularisation of the primary tumour,
as in our simulations. Nonetheless, Obenauf and Massagué (2015) argue that the most
limiting step of the invasion-metastasis cascade is not the dissemination through the vas-
culature, which we account for in our model, but the transition from infiltration of a
secondary site to overt colonisation. To achieve this final step of colonisation, which is
not (yet) part of our modelling framework, the cancer cells need to survive secondary
site-derived detrimental signals and simultaneously exploit secondary site-derived sur-
vival signals (Obenauf and Massagué, 2015). Also, observed dormancy of tumours over
extended periods may occur in the form of pre-angiogenic micrometastases that, at a
later point in time, acquire the ability to become vascularised (Chambers et al., 2002).
As avascular tumours can grow up to 0.1–0.2 cm via diffusion only (Folkman, 1990), all
metastatic spread observed in our simulation is assumed to fall into this pre-angiogenic
category.

In addition to obtaining expected simulation outcomes on the cell-level, both for pri-
mary tumour growth and secondary spread, by using the baseline parameter settings in
Table 4.1, we obtained other biologically realistic and relevant results from the simulations
by varying key parameters.

Changing the initial ratio of mesenchymal-like cancer cells to epithelial-like cancer
cells emphasised the importance of co-presence of the two cancer cell types for rapid
invasive tumour growth. In particular, it highlighted that cancer cell invasion relies on
the expression of MDEs (and MT1-MMP in particular), which are required to clear the
collagen in the normal tissue of its covalent cross-links, as proposed by Sabeh et al. (2009).
These results further suggested that a relatively small percentage of MDE-expressing
cancer cells suffices to induce rapid cancer cell invasion.
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We observed that higher numbers of mesenchymal-like cancer cells at the primary
tumour location increased the number of cancer cell intravasations. Also, cancer cells
from primary tumours consisting of a homogeneous epithelial-like cell population did
not intravasate (unless ruptured vessels were present, in which case minimal shedding
occurred). This coincides with experimental findings by Tsuji et al. (2009). Results
from their mouse model indicated that cancer cells originating from primary tumours
of homogeneously mesenchymal-like phenotype could intravasate. The same applied to
cancer cells that stemmed from tumours consisting of a combination of epithelial-like and
mesenchymal-like cancer cells. On the contrary, no intravasations were observed when
the primary tumour consisted of epithelial-like cancer cells only.

The fact that we, as opposed to Tsuji et al. (2009), found a small amount of success-
fully intravasated cancer cells, even when our tumour consisted of epithelial-like cancer
cells only, was to be expected. This was a result of our inclusion of ruptured vessels
in the model, which we considered following the biological findings by Bockhorn et al.
(2007). Since these blood vessels are ruptured due to trauma or pressure applied from
the expanding tumour, no MDEs are required to degrade the vessel wall and thus any
cell type can intravasate through a ruptured blood vessel. We verified that the ruptured
vessels were indeed the cause of this discrepancy by rerunning the simulations with an
initial nodule consisting of epithelial-like cancer cells only on a primary grid that solely
contained normal blood vessels.

Furthermore, we showed that our model was able to reproduce the survival probabil-
ities of single CTCs and of CTC clusters observed in experiments by Luzzi et al. (1998);
Aceto et al. (2014).

Regarding the role of the MDEs in our model, we found that both less MMP-2 pro-
duction as well as less MMP-2 diffusion caused faster cancer cell invasion and thus a
higher metastatic cancer cell load after 22 days. If the MMP-2 was too diffusive or too
abundant, it degraded the ECM very rapidly. The result was a ring-shaped area around
the tumour edge, in which the ECM was fully degraded. This caused the influence of
haptotaxis on cancer cell movement to diminish or even to cease completely. Hence, a
more local or decreased degradation caused the cancer cells to invade the tissue more
rapidly.

When we reduced the MMP-2 production rate to zero, we observed that the cancer
cells could effectively invade in the presence of MT1-MMP only, which coincides with
the experimental results by Sabeh et al. (2009). On the contrary, when we set the
MT1-MMP degradation rate to zero and studied the effects of MMP-2 degradation alone,
we found that the final total primary cancer cell load was significantly reduced compared
to simulations with MT1-MMP present, which showed again the same tendency as the
results by Sabeh et al. (2009). However, contrary to the findings in these experiments,
invasion was still possible in our model when considering diffusion-dominated cancer cell
movement.

To further investigate the reason for this, we reduced the diffusion coefficients of
both the mesenchymal-like and the epithelial-like cancer cells, resulting in haptotaxis-
dominated rather than diffusion-dominated cancer cell movement. We then studied the
invasion of a mixed cancer cell population, consisting of 40% epithelial-like and 60%
mesenchymal-like cancer cells, as well as of homogeneous cell populations consisting of
mesenchymal-like or epithelial-like cancer cells only, under various MDE-related condi-
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tions. These conditions were the presence of both MT1-MMP and MMP-2 as well as
settings with solely MT1-MMP or solely MMP-2 present. We chose these MDE-related
conditions as they correspond to those in experiments conducted by Sabeh et al. (2009).
We first ran simulations with a heterogeneous initial cancer cell population and then, to
fully match the experimental conditions of Sabeh et al. (2009), with mesenchymal-like
cancer cells alone. In both cases, we found that invasion was not possible in the presence
of MMP-2 alone, while invasion was possible when we considered MT1-MMP expression
alone. Invasion was also possible with both MDEs present but the invasion depth was
slightly decreased compared to when we considered MT1-MMP alone. In the case of a
heterogeneous initial cell population, we again observed that the mesenchymal-like can-
cer cells formed the invading edge of the tumour by occurring most abundantly around
the central cluster of epithelial-like cancer cells. Further, the epithelial-like cancer cells
formed a pattern of finger-like protrusions. The simulation results observed in the case of
a homogeneously mesenchymal-like cancer cell population were in qualitative agreement
with the experimental results by Sabeh et al. (2009). For these in vitro experiments,
HT-1080 cancer cell spheroids were electroporated with a control siRNA, MMP-1 and
MMP-2 siRNAs, or MT1 siRNA. These multicellular clusters were then embedded in 3D
type I collagen gels as central nodules of diameter 1.5× 10−2–2× 10−2 cm. The invasive
patterns of the HT-1080 cells under the various conditions were then studied after 3 days.
Our model’s results in comparison to those of Sabeh et al. (2009) are shown in Figure 4.13.
Finally, we also matched experimental results by Gaggioli et al. (2007) confirming that in
the case of an initial population of epithelial-like cancer cells only, invasion is not possible.
However, the same epithelial-like population mixed with mesenchymal-like cancer cells
could invade.
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Chapter 5

A mathematical multi-organ model for
bidirectional epithelial-mesenchymal
transitions in the metastatic spread of
cancer

As explained in Section 2.4, EMT, MET and the associated changes in cancer cell pheno-
types play a pivotal role during the invasion-metastatic cascade. Yet, we found that no
spatially explicit models that describe the role of EMT and MET in metastatic spread—as
opposed to their role in invasion alone—exist, cf. Section 3.2. Consequently, none of the
existing models capture the site- and location-dependent occurrence of EMT and MET
in all of the steps of the invasion-metastasis cascade—i.e. in cancer cell invasion, intrava-
sation, vascular travel, extravasation and during regrowth at new sites in the body—in
a spatial manner. Moreover, to our knowledge, the simulations from existing spatiotem-
poral ECM invasion models that account both for epithelial and mesenchymal cancer
cell populations as well as for the transition between these two phenotypic states, such
as Domschke et al. (2017), lack the inclusion of intermediate partial-EMT phenotypes,
cf. Section 3.1. However, it has recently become evident that cancer cells of partial-EMT
phenotype are crucial to the EMT process, as explained in Section 2.4.

To close this gap in the literature, in this chapter, we develop an extension to the
spatially explicit hybrid modelling framework from Chapter 4. The resulting model de-
scribes the invasive growth dynamics of the primary tumour, by—inter alia—accounting
for EMT, as well as metastatic growth in the early avascular stages at potential secondary
metastatic sites, by accounting for MET. Furthermore, we introduce changes to the ex-
isting framework that allow us to differentiate between the cell behaviour on the various
organs as well as to account for dormancy and death of metastasised cancer cells as a
result of the potential immune response at and maladaptation to secondary sites. As in
Chapter 4, we continue to model the transport from primary to secondary sites.

Next, we introduce the ideas and assumptions that the EMT/MET-extension of the
metastasis framework builds on. Only new, EMT-related features will be established here.
The existing underlying metastasis framework in Section 4.1, onto which the alterations
described in this chapter are imposed, should be consulted for any non-EMT-specific
aspects. This work is also submitted for publication in Franssen and Chaplain (2019).
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5.1 Model setup
As in Section 4.1, we use G+1 non-overlapping spatial domains to represent the primary
tumour site, Ω

P
⊂ R2, as well as the G ∈ N spatial domains representing the sites of

potential secondary metastatic spread, Ωa
S
⊂ R2, where a = 1, 2, ..., G. As previously,

we represent the MMP-2 concentration and the ECM density at position x at time t
in these spatial domains by the continuous functions m(t,x) and w(t,x), respectively,
while capturing the spatiotemporal evolution of epithelial, partial-EMT and mesenchy-
mal cancer cells as well as of the membrane-bound MT1-MMP in a discrete approach,
cf. Anderson and Chaplain (1998); Anderson et al. (2000); Franssen et al. (2019). Also
analogously to Section 4.1, we allow cancer cells to travel from primary to secondary sites
via the vasculature by designating locations in the primary spatial domain to function
as entry points into blood vessels and, similarly, impose a spatial map of exit locations
from the vasculature onto the secondary metastatic domains.

The EMT-related features that are novel to the metastatic framework are explained
according to which key step of the invasion-metastasis cascade—i.e. cancer cell invasion,
intravasation, vascular travel, extravasation and metastatic growth—they belong to. To
enhance the clarity of presentation, as in Section 4.1, we begin each paragraph by printing
the description of corresponding the step in bold. We also label the respective sections
in the flowchart presented in Figure 5.1, which visually describes the model, accordingly.

Local cancer cell invasion As explained in detail in Section 4.1, the evolution of
the MMP-2 concentration and of the ECM density are modelled in a continuum ap-
proach. To account for the inclusion of partial-EMT cancer cells in our model, we extend
equations (4.1.9) and (4.1.10) from the existing model slightly. Accordingly, the spa-
tiotemporal evolution of the MMP-2 concentration m(t,x) is given by

∂m

∂t
= Dm∇2m + Θ

M
c

Mn
+ Θ

E/M
c

E/Mq
− Λm , (5.1.1)

diffusion expression decay

along with zero-flux boundary conditions. Here, analogous to the notation in Section 4.1,
we let c

Mn
∈ {0, 1, 2, ..., N} ∩ N0, and cE/M

q
∈ {0, 1, 2, ...,M} ∩ N0, with cMn

+ c
E/M

q
≤ Q,

denote the presence of up to a total of Q mesenchymal-like or partial-EMT cancer cells
at a given position x, following the notation by Stéphanou et al. (2006); McDougall et al.
(2012). Consequently, Θ

M
c

Mn
and Θ

E/M
c

E/M
q
represent the local expression of MMP-2 by

the c
Mn

mesenchymal-like and the c
E/M

q
partial-EMT cancer cells, respectively. Dm ≥ 0

is the MMP-2 diffusion coefficient, and Θ
M
≥ 0 and Θ

E/M
≥ 0 are the rates of MMP-2

concentration provided by mesenchymal-like cancer cells and the partial-EMT cancer
cells, respectively. Finally, Λ ≥ 0 is the rate at which MMP-2 decays. Note that
the mesenchymal-like and partial-EMT cancer cells also express MT1-MMP. However,
MT1-MMP acts only locally where it is bound to the cancer cell membrane and its
spatiotemporal evolution is hence congruent to that of the mesenchymal-like and of the
partial-EMT cancer cells. Therefore, we do not include a separate equation.

Both the MT1-MMP expressed on the membranes of the mesenchymal-like and the
partial-EMT cancer cells and the diffusive MMP-2 they secrete degrade the ECM. In
the respective equation (5.1.2), this is expressed through the degradation rates Γ

M
> 0
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Figure 5.1: Flowchart of the extended invasion-metastasis hybrid model. At
each time step, each cancer cell on the primary grid may move, may perform EMT with
some (location-dependent) probability, and may proliferate. A cancer cell remains on
the primary grid during the respective time step, unless it is placed on a grid point that
represents a blood vessel. In the latter case, single CTCs and CTC clusters may enter
the vasculature. They spend a number of time steps in the circulation and survive with a
probability of P

S
= P

E
, P

M
or P

E/M
in the case of single CTCs of epithelial, mesenchymal

and partial-EMT phenotype, respectively, and with a probability of P
C
in the case of CTC

clusters. Cancer cells that do not survive are removed from the simulation. Surviving
CTCs and CTC clusters are placed onto one of G secondary grids with the respective
probability E1, E2, ..., EG. Cancer cells on the secondary grids move and proliferate like
cancer cells on the primary grid (potentially with different parameter values to represent
organ- and patient-specific differences in the local tumour microenvironment). However,
partial-EMT cells may now revert to cells of an epithelial phenotype via MET and cancer
cells may die or remain dormant. The labelled red boxes on the left correspond to the
steps of the invasion-metastasis cascade described in Sections 2.3.2–2.3.5 and 2.4.1–2.4.4
as well as to the non-EMT-specific features of the model indicated in bold in Section 4.1.
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and Γ
E/M

> 0 in the case of the MT1-MMP bound to the membranes of partial-EMT
and of mesenchymal-like cancer cells, respectively, and for the diffusive MMP-2 by the
degradation rate Γm > 0. Hence, given that we are disregarding ECM-remodelling for
simplicity, the evolution of the ECM density w(t,x) is governed by the following PDE:

∂w

∂t
= −(Γ

M
c

Mn
+ Γ

E/M
c

E/M
q

+ Γmm)w, (5.1.2)

degradation

along with no-flux boundary conditions.
For the cancer cell migration on the grid, we adopt a discrete approach that is further

explained in Chapter 4. The movement probabilities of the cancer cells on the grid are
given as follows:

P0 : Pni−1,j := max

(
0,

∆t

(∆x)2

[
Dk −

Φ
k

4

(
wni+1,j − wni−1,j

)])
,

P1 : Pni+1,j := max

(
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∆t

(∆x)2

[
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Φ
k

4

(
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)])
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P2 : Pni,j+1 := max

(
0,

∆t

(∆x)2

[
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Φ
k

4

(
wni,j+1 − wni,j−1

)])
,

P3 : Pni,j−1 := max

(
0,

∆t

(∆x)2

[
Dk −

Φ
k

4

(
wni,j+1 − wni,j−1

)])
, (5.1.3)

P4 : Pni,j = 1−
3∑
q=0

Pq, (5.1.4)

where k = E,E/M,M and—as throughout this chapter—0 ≤ D
E
≤ D

E/M
≤ D

M
and

0 = Φ
E
≤ Φ

E/M
≤ Φ

M
. P0,P1,P2,P3 and P4 correspond to the probabilities that, during

the next time step, a cancer cell at grid point (xi, yj) moves left, right, up, down, and not
at all, respectively (Stéphanou et al., 2006; McDougall et al., 2012; Franssen et al., 2019).
Rules for proliferation and phenotypic transitions of the cancer cells, as well as—on the
secondary grids—for cell death and dormancy, are then included as described below.

The more proliferative cancer cells of epithelial phenotype perform mitosis after time
interval T

E
and the less proliferative partial-EMT and mesenchymal-like cancer cells after

time interval T
E/M

and T
M
(with T

E
≤ T

E/M
≤ T

M
), respectively. As previously in Sec-

tion 4.1, when proliferating, the cancer cells pass on their location so that a proliferating
cancer cell is replaced by two daughter cells. Generally, during a proliferative step, cells
are replaced by cells of their respective phenotype. However, following the biological find-
ings presented in Section 2.4, the extended model allows for location-dependent full and
partial EMT on the primary grid. For simplicity, this is implemented upon proliferation.
As also explained schematically on the left-hand side of Figure 5.2, the EMT mutations
on the primary grid occur as follows:

• Cancer cells of epithelial phenotype may be replaced by a set of daughter cells con-
sisting of one cell of epithelial and one of partial-EMT phenotype with probability
PE/M

EMT
> PM

EMT
when proliferating;
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• If at least one neighbouring grid point of a cancer cell of epithelial phenotype
is unoccupied, it may be replaced by a set of daughter cells consisting of one of
epithelial and one of partial-EMT phenotype with an additional probability PE/M∗

EMT
;

• Cancer cells of epithelial and of partial-EMT phenotype may be replaced by a set
of daughter cells consisting of one cell of epithelial or of partial-EMT phenotype,
respectively, and one of mesenchymal phenotype with probability PM

EMT
> 0 when

proliferating.

As before, to account for competition for space and resources, the cancer cells on the
respective grid point do not proliferate if there are already Q ∈ N cancer cells on a grid
point at the time of proliferation. Thus, Q represents the preferred carrying capacity in
our model. If proliferation is not possible due to spatial constraints, the concerned cell
may proliferate again after another T

E
, T

E/M
or T

M
time steps, respectively.

Intravasation As in Section 4.1, to represent the entry points into the blood vessels,
a number of U

P
∈ N0 normal blood vessels, as well as V

P
∈ N0 ruptured blood vessels,

are distributed throughout the primary grid. The normal blood vessels take the size of
one grid point, while ruptured vessels consist of a group of Ab ∈ N, where b = 1, 2, ..., V

P
,

adjacent grid points and can thus have different shapes. The entry rules for cancer cells
of epithelial and mesenchymal phenotype remain as described in Section 4.1. Moreover,
in this extended framework, the cancer cells of partial-EMT phenotype are treated in the
same way as those of mesenchymal phenotype—they may intravasate into both normal
and ruptured vessels, unlike epithelial-like cancer cells, and are able to carry epithelial-like
cancer cells into the vasculature with them.

Travel through the vasculature Cancer cells and cancer cell clusters remain in
the vasculature for some time interval of length T

V
∈ N, which biologically represents the

average time the cancer cells spend in the blood system. If a cell would have normally
been due to proliferate while in the vasculature, the proliferation is suppressed. It may
proliferate again after another T

E
, T

E/M
or T

M
time steps, as appropriate. Any cancer cells

that enter a particular vessel at the same time are treated as one cluster and hence as
a single entity once they are located in the vasculature. However, each cancer cell that
is part of a cancer cell cluster disaggregates from its cluster with some probability Pd
after spending a time interval of

⌈
T
V

2

⌉
in the vasculature. After the time interval T

V
, the

single cancer cells and the remaining cancer cell clusters are removed from the simulation
unless they are randomly determined to survive. In accordance with the findings in
Section 2.4, the survival probability is P

E
= P

M
> 0 for single cancer cells of epithelial and

mesenchymal phenotype, P
E/M

> P
E
,P

M
for single cancer cells of partial-EMT phenotype,

and P
C
> P

E/M
for cancer cell clusters.

Metastatic growth On the secondary grids Ωa
S
, where a = 1, 2, ..., G, the same phe-

notypes of cancer cells are accounted for as on the primary grid. Also, the same movement
probabilities from equations (5.1.4) and (5.1.3) are used to describe their movement. How-
ever, we allow for organ-specific adjustment of the cell movement through differentiation
of the respective diffusion and haptotactic coefficients, D

Ωa
S
k and Φ

Ωa
S
k , k = E,E/M,M,

a = 1, 2, ..., G.
Moreover, at the primary site, we modelled the assumption of well-adaptedness of the

cancer cells to their tumour microenvironment of origin by considering proliferation every
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Mutations at primary site Mutations, dormancy & death 
at secondary sites

Epithelial-like cancer cell 

Mesenchymal-like cancer cell 

Partial-EMT cancer cell 

Figure 5.2: Schematic representation of possible EMT mutations at the pri-
mary site (left) and of MET mutations, cell death and dormancy at the sec-
ondary sites (right). Upon proliferation, each of the cells of the three phenotypes on the
left of each arrow may undergo one of three fates instead of the usual proliferation: (A)
It may be replaced by one cancer cell of the same and one of a different phenotype; (B) it
may die (indicated by the red cross); or (C) it may remain dormant. (B) and (C) occur
at secondary sites only (shown on the right). The dashed line on the top left indicates
that this additional probability PE/M∗

EMT
for cancer cells to mutate only applies to cancer

cells at the tumour edge (see text). Note that, for enhanced readability, the illustration
omits the representation of non-mutated proliferation, which results in the substitution of
one parent cell by two daughter cells of its phenotype. Also, if the carrying capacity is
reached on a grid point prior to proliferation, proliferation—and thus mutations—do not
occur.
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fixed time interval Tk, k = E,E/M,M, if the preferred carrying capacity Q permits. At
the secondary sites, the cancer cells may not be as well-adapted to their new tumour mi-
croenvironment and may be exposed to the response of the immune system upon arrival.
Furthermore, how well the cancer cells are adapted may vary between secondary organ
tissues, cf. Section 2.4. To account for this, we make several adjustments to the prolifer-
ative step on the secondary grids, which are summarised schematically on the right-hand
side of Figure 5.2. Firstly, cancer cells may die with some grid-specific probability P

Ωa
S

D

immediately prior to each potential proliferation. Secondly, a cell may not proliferate
with some grid-specific probability P

Ωa
S

δ when proliferation is due to account for cancer
cell dormancy. Besides this, if cancer cells do proliferate during a time step, we account
for MET at the secondary sites in agreement with the biological findings presented in
Section 2.4. Hence, cancer cells of partial-EMT phenotype on the secondary grids may
be replaced by a set of daughter cells consisting of one cancer cell of epithelial and one
of partial-EMT phenotype with probability PE

MET
> 0 when proliferating. EMT does not

occur on the secondary grids. However, as before, proliferation is capped as soon as a
maximum of Q cancer cells per grid point is reached.

5.2 Implementation and model calibration
To perform numerical simulations, we non-dimensionalised the system of equations (5.1.1),
(5.1.2), (4.1.1), (4.1.2) and the respective equation for the partial-EMT cancer cells ob-
tained by e.g. substituting E/M for E in equation (4.1.1), analogously to our previous
model in Section 4.2. As Anderson et al. (2000); Franssen et al. (2019), we chose to
rescale distance with an appropriate length scale L = 0.2 cm (since 0.1–1 cm is estimated
to be the maximum invasion distance of cancer cells at an early stage of cancer invasion)
and time with an appropriate scaling parameter τ = L2

D
. Here, D = 10−6 cm2s−1 is a

reference chemical diffusion coefficient suggested by Bray (1992), such that τ = 4× 104 s,
which corresponds to approximately 11 h.

We considered spatial domains of size [0, 1]× [0, 1]. This corresponds to physical do-
mains of size [0, 0.2]cm× [0, 0.2]cm. In particular, we let the spatial domain Ω

P
represent

the primary site and the spatial domains Ω1
S
, Ω2

S
and Ω3

S
describe three potential metastatic

sites. These spatial domains could represent any primary and secondary carcinoma sites.
However, to give an example of a specific application, we chose Ω

P
to represent the pri-

mary site of the breast, and Ω1
S
, Ω2

S
and Ω3

S
to correspond to the bones, lungs and liver,

respectively, which are commonly observed metastatic sites in breast cancer.
The four spatial domains were discretised to contain 201×201 grid points each. Using

the notation x = (x, y) ∈ R2, as in Chapter 4, this corresponds to a non-dimensionalised
space step of ∆x = ∆y = 5×10−3, which results in a dimensional space step of 1×10−3 cm,
and thus roughly corresponds to the diameter of a breast cancer cell (Vajtai, 2013).
We then chose a time step of ∆t = 1 × 10−3, corresponding to 40 s. This condition is
motivated by Anderson et al. (2000). It is employed as a means of increasing the accuracy
and stability of the numerical scheme while still maintaining appropriate computational
efficiency. We ran our simulation for a period corresponding to ∼24 days.

On each secondary grid, we chose U1
S

= U2
S

= U3
S

= 10 distinct grid points, on which
blood vessels are located. For each grid, these blood vessels were placed randomly but at
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least two grid step widths away from the respective grid’s boundary. The same applies to
the primary grid Ω

P
but with the additional condition that the U

P
= 8 single grid points,

where normal blood vessels are located, and the V
P

= 2 sets of five grid points, where
ruptured blood vessels are placed, are located outside a quasi-circular region containing
the 200 centre-most grid points. While these 10 randomly placed vessels are modelled to
exist from the beginning, they represent those vessels that grow as a result of tumour-
induced angiogenesis in the vascular tumour growth phase—hence they are placed away
from the initial avascular epithelial tumour mass.

To represent a two-dimensional cross-section of a small avascular primary tumour, we
placed a nodule that consisted of 288 randomly distributed epithelial-like cancer cells in
the quasi-circular region of the 97 centre-most grid points of the primary grid. To account
for competition for space, we allowed for no more than Q = 4 cancer cells on any grid
point. This preferred carrying capacity of Q = 4 was applied throughout the simulation.
The described initial condition ensured that the cancer cells were placed away from any
pre-existing vessels to match the biology of an avascular tumour in epithelial tissue. The
counters for the cell age and proliferation were initially set to zero for all cancer cells.
Figure 4.3 provides an example of a typical initial placement of the epithelial-like cancer
cells as well as a sample vessel distribution on the primary grid.

In accordance with the ranges provided in Table 5.1, we chose the epithelial-like
cancer cell diffusion coefficient to be D

E
= 1×10−4, the partial-EMT cancer cell diffusion

coefficient to be D
E/M

= 2.5 × 10−4 and set the mesenchymal-like cancer cell diffusion
coefficient to D

M
= 5× 10−4. The epithelial, partial-EMT and mesenchymal haptotactic

sensitivity coefficients were Φ
E

= 5×10−5, Φ
E/M

= 1×10−3 and Φ
M

= 2×10−3, respectively.
These parameter values were chosen in accordance with Anderson and Chaplain (1998);
Deakin and Chaplain (2013) based on biological data on cell movement in Bray (1992)
in combination with the biological constraint that EMT enhances cell invasiveness and
motility, which we express in terms of diffusion and haptotactic movement in this model.

Moreover, we used the MMP-2 decay rate Λ = 0.1 that was estimated in Deakin
and Chaplain (2013). We chose the MMP-2 production rate of the mesenchymal-like
cancer cells to be about twice as large (ΘM = 0.195), the MMP-2 production rate of
partial-EMT cancer cells to be the same as the MMP-2 decay rate (ΘE/M = 0.1), and
for the epithelial-like cancer cells to not produce any MMP-2 (ΘE = 0). This choice of
parameters is motivated by the qualitative biological observation that breast cancer cells
which have undergone EMT produce more MMPs (Radisky and Radisky, 2010; Dongre
and Weinberg, 2019).

Taking into consideration the qualitative and quantitative biological findings in Sec-
tions 2.3 and 2.4, we further assumed that, once in the vasculature, single CTCs of ep-
ithelial and mesenchymal phenotypes had a survival probability of P

E
= P

M
= 2× 10−4,

while those of partial-EMT phenotype survived the travel through the vasculature with
probability P

E/M
= 6 × 10−4. The survival probability of CTC clusters was set to

P
C

= 2.5 × 10−2 ≈ 42 × P
E/M

, in accordance with the finding by Aceto et al. (2014)
that the survival probability of CTC clusters is between 23 and 50 times higher than that
of single CTCs. Surviving single CTCs and CTC clusters exited onto the secondary grids
after spending a period of T

V
= 0.18 in the blood system, which corresponds to 2 h and

hence to the breast cancer-specific clinical results in Meng et al. (2004).
Further, we assumed a uniform initial MMP-2 concentration of m(0,x) = 0 across all
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the spatial domains. We varied the initial ECM density according to the organ each grid
represents using clinical measurements of ECM densities in organs from (ICRP, 2009).
These are presented in Table 5.1. For this, we took w(0,x) = 1, x ∈ Ω

P
, on the primary

grid that represents the breast as our reference density. We then rescaled the initial ECM
densities on the secondary grids relative to this initial density. For the bones, the lungs
and the liver, respectively, this yielded w(0,x) ≈ 0.9608, for x ∈ Ω1

S
, w(0,x) ≈ 1.0392,

for x ∈ Ω2
S
, and w(0,x) ≈ 1.0294, for x ∈ Ω3

S
. We assumed that epithelial-like cancer

cells divide by mitosis every interval T
E

= 2, the partial-EMT cancer cells every interval
T

E/M
= 3, and the mesenchymal-like cancer cells every T

E
= 6. This corresponds to

approximately 22 hours, 33 hours and 67 hours, respectively, which is consistent with the
average doubling times found in breast cancer cell lines (Milo et al., 2009; NCI, 2015;
Hughes et al., 2008). Moreover, we assumed that on the primary site, upon proliferation
of a cancer cell of epithelial or partial-EMT phenotype, one of the daughter cells mutates
into a mesenchymal-like cancer cell with probability PM

EMT
= 1 × 10−2. Similarly, one

daughter cell of each epithelial-like cancer cell may mutate into a partial-EMT cancer
cell with a probability of PE/M

EMT
= 2 × 10−2 throughout the grid. Moreover, there is an

additional probability from partial EMT of PE/M∗

EMT
= 0.15 if the epithelial-like cancer cell is

located at the edge of the tumour, cf. Puram et al. (2017). While these parameter values
could not be inferred directly from the literature at this point as, to our knowledge,
no quantitative results are available, they are constrained by the biology presented in
Dongre and Weinberg (2019). In particular, they are based on the fact that cancer
cells of partial-EMT phenotype—especially at the leading tumour edge (Puram et al.,
2017)—are observed more frequently than those of full mesenchymal-like phenotype at
the primary site. Instead of representing the adaptation to each grid through these
parameter settings, we determined the relative likelihood of metastasis-formation at the
three secondary sites by consulting data on the transition probabilities of primary breast
cancer to the metastatic sites of the bones, lungs and liver, respectively. As in Franssen
et al. (2019), we used data gathered by the Kuhn Laboratory (2017) in a study of 4181
breast cancer patients. As shown in Figure 4 of Franssen et al. (2019), the one-step
transition probability from the breast to the bones was 23.1%, to the lungs was 15.3%
and to the liver was 11.0%. Since we focus solely on the spread to these three metastatic
sites and spread to other organs is included in the terms accounting for vascular death,
we obtain the relative likelihoods of spread to the bones, lungs and liver, which are
P1

S
≈ 0.5461, P2

S
≈ 0.2553, and P3

S
≈ 0.1986, respectively.

At the secondary sites, cancer cells of partial-EMT phenotype were replaced by a set of
daughter cells consisting of one cell of epithelial and one of partial-EMT phenotype with
probability PE

MET
= 0.5 during proliferation. Again, this parameter value could not be

inferred directly from the literature at this point as, to our knowledge, such quantitative
information is not available. However, it is constrained by the biological result presented
in Dongre and Weinberg (2019) that metastases tend to resemble the phenotypic make-
up of the tumours at the primary site with a high number of epithelial-like cancer cells.
Due to a lack of organ-specific data on differences in the tumour microenvironments
that could affect the diffusion and haptotactic coefficients of the cancer cells of various
phenotypes—as well as their dormancy and death probabilities—at the time of writing,
we restricted the differentiation between organs to their local initial ECM density at this
stage. Accordingly, we took D

Ωa
S
k = Dk and Φ

Ωa
S
k = Φk, where k = E,E/M,M on all
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grids in our model. Similarly, the dormancy and death probabilities on all secondary
sites were P

Ωa
S

δ = 0.5 and P
Ωa

S
D = 0.05, a = 1, 2, 3. As data from the literature could

not be sourced to approximate these values at this point, we chose these probabilities to
qualitatively agree with the results by Luzzi et al. (1998). We postpone updating the
parameter values until data on dormancy and death of cancer cells at secondary sites in
the body become available. An overview of the parameter values mentioned herein can
be found in Table 5.1.

In Appendix B, we provide pseudo-code that provides insight into the computational
implementation of this mathematical multi-organ model.

Table 5.1: Baseline parameter settings used in the simulations. In the first col-
umn, non-dimensional parameters are indicated by upper-case notation. Corresponding
dimensional parameters are stated in brackets using lower-case notation. In the fourth
column, we reference other mathematical modelling papers in brackets and biological pa-
pers without brackets. Epithelial-like, partial-EMT and mesenchymal-like cancer cells are
represented by the acronyms ECC, PCC and MCC, respectively.

Description Non-dimen- Biological reference Original value
sional value (Modelling reference) from cited source

∆t Time step 1× 10−3 40 s

∆x, Space step 5× 10−3 Breast cell diameter in 1× 10−3 cm

∆y Vajtai (2013)

DE ECC diffusion coefficient 1× 10−4 Bray (1992) 1× 10−10 cm2s−1

(dE ) (Anderson and Chaplain (1998))
(Deakin and Chaplain (2013))

D
E/M

PCC diffusion coefficient 2.5× 10−4 Bray (1992) 1× 10−10 cm2s−1

(d
E/M

) (Anderson and Chaplain (1998))

(Deakin and Chaplain (2013))

DM MCC diffusion coefficient 5× 10−4 Bray (1992) 1× 10−10 cm2s−1

(dM ) (Anderson and Chaplain (1998))
(Deakin and Chaplain (2013))

ΦE ECC haptotactic 5× 10−5 Stokes et al. (1990) 2.6× 103 cm2M−1s−1

(φE ) sensitivity coefficient (Anderson and Chaplain (1998))

Φ
E/M

PCC haptotactic 1× 10−3 Stokes et al. (1990) 2.6× 103 cm2M−1s−1

(φ
E/M

) sensitivity coefficient (Anderson and Chaplain (1998))

ΦM MCC haptotactic 2× 10−3 Stokes et al. (1990) 2.6× 103 cm2M−1s−1

(φM ) sensitivity coefficient (Anderson and Chaplain (1998))

Dm MMP-2 diffusion 1× 10−3 Collier et al. (2011) 1× 10−9 cm2s−1

(dm ) coefficient

ΘE MMP-2 production rate 0 Biological constraints in
(θE ) by ECCs Radisky and Radisky (2010)

Θ
E/M

MMP-2 production rate 0.1 Biological constraints in

(θ
E/M

) by PCCs Radisky and Radisky (2010)

ΘM MMP-2 production rate 0.195 Biological constraints in
(θM ) by MCCs Radisky and Radisky (2010)

Λ MMP-2 decay rate 0.1 Based on 2.5× 10−6 s−1

(λ) (Deakin and Chaplain, 2013)
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Γ1 ECM degradation 1 Based on 1× 10−4 s−1

(γ1 ) rate by MT1-MMP (Deakin and Chaplain, 2013)

Γ2 ECM degradation 1 Based on 1× 10−4 M−1s−1

(γ2 ) rate by MMP-2 (Anderson et al., 2000)

TV Time CTCs spend in the 0.18 Meng et al. (2004) 7.2× 103 s

vasculature

TE ECC doubling time 2 Milo et al. (2009); NCI (2015) 8× 104 s

T
E/M

PCC doubling time 3 Milo et al. (2009); NCI (2015) 1.2× 105 s

TM MCC doubling time 6 Milo et al. (2009); NCI (2015) 2.4× 105 s

Hughes et al. (2008)

P
Ω

1,2,3
S

δ Probability no cell proliferation 0.5 Qualitative biological
when due on Ω1,2,3

S
constraints (see text)

P
Ω

1,2,3
S

D Probability cell death before 0.05 Qualitative biological
proliferation on Ω1,2,3

S
constraints (see text)

PE = PM Epithelial/mesenchymal 2× 10−4 Luzzi et al. (1998)
CTC survival probability

P
E/M

Partial-EMT CTC 6× 10−4 Luzzi et al. (1998)

survival probability

PC CTC cluster survival 2.5× 10−2 Luzzi et al. (1998)
probability Aceto et al. (2014)

P1
S

Probability for surviving cells ∼0.5461 Kuhn Laboratory (2017) ∼0.5461

to extravasate to bones

P2
S

Probability for surviving cells ∼0.2553 Kuhn Laboratory (2017) ∼0.2553

to extravasate to lungs

P3
S

Probability for surviving cells ∼0.1986 Kuhn Laboratory (2017) ∼0.1986

to extravasate to liver

PM
EMT

Probability for full EMT on ΩP 1× 10−2 Biological constraints in
Dongre and Weinberg (2019)

PE/M
EMT Probability for partial EMT 2× 10−2 Biological constraints in

on ΩP Dongre and Weinberg (2019)

PE/M∗

EMT Additional probability for partial 0.15 Qualitative information in
EMT on ΩP at tumour edge Puram et al. (2017)

PE
MET

Probability for partial MET 0.5 Biological constraints in
on Ω1,2,3

S
Dongre and Weinberg (2019)

w(0,x), Breast initial ECM density 1 ICRP (2009) 1.020 g cm−3

x ∈ ΩP

w(0,x), Bone initial ECM density 0.9608 ICRP (2009) 0.980 g cm−3

x ∈ Ω1
S

w(0,x), Lung initial ECM density 1.0392 ICRP (2009) 1.060 g cm−3

x ∈ Ω2
S

w(0,x), Liver initial ECM density 1.0294 ICRP (2009) 1.050 g cm−3

x ∈ Ω3
S

105



5.3 Results
To verify that our modelling framework can capture the key steps of the invasion-
metastasis cascade, we ran simulations with the parameters shown in Table 5.1. The
computational time to run a simulation on a standard desktop computer was about 45
minutes. We provide sample results showing the primary and the three secondary grids
at various times in the range of 0 to 24 days during one sample simulation in Figure
5.3 and Figures 5.4–5.6, respectively. We chose results on the primary grid to show the
spatiotemporal dynamics on day 0, 11 and 22 so that they can be contrasted to those in
Section 4.3. For the secondary sites, we chose to present sample results for times that
best give evidence of the various mechanisms related to metastatic spread, MET and
the consequences of the immune response at secondary sites that are described through
this modelling framework. However, this does not imply that these phenomena are lim-
ited to the times and locations depicted in Figures 5.3–5.6 in that particular or in other
simulations. The results discussed in this section refer to this single simulation unless
it is explicitly stated that they refer to the 20 simulations shown in Figure 5.9. These
were run with the same conditions—including the vessel locations on all grids—as the
sample simulation apart from that the 288 initial epithelial-like cancer cells were newly
distributed randomly in the central 97 grid points each time. Also, different seeds for the
random number generator were used for each simulation, which affects various processes
such as the movement and mutations of the cancer cells.

As described in Section 5.2, we started the simulations with a small nodule of epithelial-
like cancer cells of diameter ∼1.5× 10−2 cm (see also Figure 4.3). These were located on
the primary grid representing the breast, which had an ECM of uniform density and con-
tained no partial-EMT cancer cells, no mesenchymal-like cancer cells and no MMP-2, as
shown in the left-most column of Figure 5.3. As the middle column of Figure 5.3 shows,
after 11 days, the epithelial-like cancer cells had invaded the local tissue, covering a
nearly circular area of approximately 0.1 cm diameter. Moreover, some partial-EMT and
mesenchymal-like cancer cells could be observed on the primary grid. Their occurrence
arose from cancer cells of previously epithelial-like phenotype via (partial) EMT. Both
of these cell types occurred sparsely within a quasi-circular region with an approximate
diameter of 0.18 cm. Additionally, the partial-EMT cancer cells populated a ring-shaped
area at the edge of the tumour more densely. The MMP-2 concentration broadly fol-
lowed the distribution of the partial-EMT cells and ranged from 0 to 0.38. Moreover,
the ECM had been degraded in the centre of the grid and a density gradient could be
observed at the edge of this near-circular region. After 22 days, the area occupied by the
epithelial-like cancer cells in the centre of the tumour had expanded further. Also, the
ring-like area populated with partial-EMT cancer cells at the tumour edge had grown and
become more densely populated. The mesenchymal-like cancer cells were now sparsely
spread throughout the whole grid. In general, we observed that areas on the grid near
vessels were sparsely occupied, if at all. The distribution of the MMP-2 concentration
still broadly followed the evolution of the partial-EMT cancer cells, now ranging from
0.76 to 2.66. The ECM on the domain that we considered had now been fully degraded.

In addition to the cancer cell invasion on the primary grid, we also observed metastatic
spread to the grids representing the secondary sites. For the model in Chapter 4, we
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Figure 5.3: Simulation results on the primary grid. Primary tumour dynamics
after 0, ∼11, and ∼22 days. For each time step, the distribution of epithelial-like, partial-
EMT and mesenchymal-like cancer cells (first to third row) is shown, with the discrete
number of cancer cells per grid point ranging from 0 (white) to 4 (black) on each of the
panels. The MMP-2 concentration (fourth row) continuously varies between 0 (white) and
2.6602 (black), and the ECM density (bottom row) between 0 and 1. Red dots represent
blood vessels. There are 8 normal blood vessels of the size of one grid point as well as
2 ruptured blood vessels, which extend over 5 grid points each. If cancer cells are moved
to these grid points, they may enter the vasculature and may extravasate at a secondary
site, cf. Figures 5.4–5.6. The scale bar denotes 0.02 cm and applies to all of the panels.
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Extravasated PCC-MCC cluster Dormant MCC

Partial-EMT
cancer cells 
(PCCs) 

Mesenchymal-like
cancer cells 
(MCCs) 

21.1 days 24.1 days

Figure 5.4: Cluster extravasation and dormancy on secondary grid rep-
resenting the bones. Distribution of partial-EMT cancer cells (upper panels) and
mesenchymal-like cancer cells (lower panels) at the secondary site representing the bones
is shown after ∼21 days (left) and ∼24 days (right). The number of cancer cells per
grid point varies between 0 (white) and 1 (black). Around day 21, a cluster consisting
of two partial-EMT and one mesenchymal-like cancer cell extravasates onto the grid of
the bones (yellow). Moreover, over the 3 day period between the panels on the left and
on the right, the mesenchymal-like cancer cell, which normally has a doubling-time of
∼2.78 days, remains dormant (green). The scale bar denotes 0.02 cm.
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Extravasated ECC-PCC cluster

Epithelial-like 
cancer cells (ECCs) 

Partial-EMT
cancer cells (PCCs) 

16.3 days 23.1 days

Figure 5.5: Cluster extravasation and largest metastatic lesion on secondary
grid representing the lungs. Distribution of epithelial-like cancer cells (upper panels)
and partial-EMT cancer cells (lower panels) at the secondary site representing the lungs
is shown after ∼16 days (left) and ∼23 days (right). The number of cancer cells per
grid point varies between 0 (white) and 2 (black). Around day 16, a cluster consisting of
six epithelial-like and one partial-EMT cancer cell extravasates onto the grid of the lungs
(yellow). This early extravasation of a relatively large cluster of epithelial-like cancer
cells results in the largest metastatic growth which can be observed in the right half of the
panels on the right. The scale bar denotes 0.02 cm.
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Extravasated single ECC ECCs via MET Dormant ECC

PCC will die PCC has died Extravasated single PCC

20.7 days 23.1 days22 days

Epithelial-like 
cancer cells (ECCs) 

Partial-EMT 
cancer cells (PCCs) 

Figure 5.6: Single cell extravasations, MET, dormancy and cell death on sec-
ondary grid representing the liver. Distribution of epithelial-like cancer cells (upper
panels) and partial-EMT cancer cells (lower panels) at the secondary site representing
the liver is shown after ∼21 days, ∼22 days and ∼23 days (left to right). The number
of cancer cells per grid point varies between 0 (white) and 1 (black). On day 20 and
23, a single epithelial-like and a single partial-EMT cancer cell extravasate onto the grid
of the liver (yellow). No extravasations took place during the presented period. Hence,
the three epithelial-like cancer cells that occurred in the period between 20.7 and 22 days
in the upper middle panel (pink) are a result of MET of the partial-EMT cancer cells
presented in the bottom row of panels. Over the same period, a partial-EMT cancer cell
dies (red). Moreover, over the 1.1 days between the panels in the middle and on the right,
an epithelial-like cancer cell, which normally has a doubling-time of ∼0.93 days, remains
dormant (green). The scale bar denotes 0.02 cm.

showed all of the secondary grids at the same time instances as the primary grid, so after
approximately 11 and 22 days, cf. Section 4.3. Moreover, we included the spatiotemporal
dynamics of the ECM density and of the MMP-2 concentration for each of the grids at
these times. For these results, we hence refer to this previous work. In this chapter, we
focus on the presentation of the additional phenomena captured through this extension
of the model instead. As the newly introduced features are connected to the cells of
various phenotypes that are included in the model, at the secondary sites we only show
their evolution, while omitting the presentation of the MMP-2 and ECM dynamics. To
give examples of how the various mechanisms that this model describes are instantiated
in the simulations, we show the grids of the bones (Figure 5.4), the lungs (Figure 5.5)
and the liver (Figure 5.6) at various times ranging from 16.3 to 24.1 days. The particular
times differ between the secondary grids as they were chosen to best present how the
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phenomena occur in the simulations. Yet, within each grid, the time instances shown
are such that the cell phenotypes depicted in the corresponding panels are at least the
length of a cell doubling interval apart to allow all cells in the respective grid to have
proliferated, if applicable, at least once.

We proceed by describing the results at the secondary sites grouped by the mechanisms
that we aim to highlight (Figures 5.4–5.6) rather than grid-by-grid, as these mechanisms
typically occur on all secondary grids. Furthermore, we present the corresponding dy-
namics of the cell-phenotype evolution of the population sizes on the secondary grids in
Figures 5.7 and 5.8. Finally, we ran another 20 simulations, cf. Figure 5.9, to examine
whether the results in Figures 5.7 and 5.8 from the single sample simulation is generally
representative.

Extravasations

We observed extravasations of single cancer cells of various phenotypes, as well as of
homogeneous and heterogeneous cancer cell clusters. Examples of a selection of these
extravasations are highlighted in yellow on the grids representing the various secondary
organs. Figure 5.6 shows samples of recently extravasated single cancer cells of epithelial
and of partial-EMT phenotypes on the grid representing the liver. Figures 5.4 and 5.5
show examples of extravasated cancer cell clusters consisting of mixed phenotypes. These
consist of two partial-EMT and one mesenchymal-like cancer cell on the grid that repre-
sents the bones, and of six epithelial-like and one partial-EMT cancer cell in the case of
the grid representing the lungs.

During the 22 day period over which the simulation on the primary grid is presented
in Figure 5.3, we observed 6 extravasations of single cells, as well as 11 of clusters consist-
ing of two cells, 6 of clusters consisting of three cells and 1 extravasation each of clusters
consisting of six and of seven cells. Another general observation was that during the simu-
lated 24 day period, only one mesenchymal-like cancer cell successfully extravasated onto
a secondary grid. All other extravasations were performed by single cancer cells as well
as by homo- and heterogeneous cancer cell clusters, which were mainly of partial-EMT
phenotype but also of epithelial-like phenotype. The highest number of extravasations of
either a cancer cell or a cancer cell cluster was observed onto the grid of the bones.

In the 20 simulations that we ran to examine the mean numbers of cancer cells of the
various phenotypes on secondary grids, cf. Figure 5.9, we observed the earliest extravasa-
tions to secondary grids by mesenchymal-like cancer cells after 9.3 days, by partial-EMT
cancer cells after 2 days and by epithelial-like cancer cells after 1.4 days. In other sim-
ulations, there were no extravasations by epithelial-like or mesenchymal-like cancer cells
during the 24.1 days we ran the simulations for.

MET

On the grid representing the liver, no extravasations took place during the period between
20.7 and 23.1 days, i.e. during the period shown in Figure 5.6. Hence, the three epithelial-
like cancer cells that occurred during the period between 20.7 and 22 days, which are
highlighted in pink in the upper row of panels, are a result of MET of the partial-
EMT cancer cells presented in the bottom row of panels. If MET occurred during a
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Figure 5.7: Phenotype-specific cell load over time on secondary grids. Plots of
total number of epithelial-like (ECC; blue), partial-EMT (PCC; red) and mesenchymal-
like (MCC; yellow) cancer cells on the grids of the bones, lungs and liver (top to bottom)
in the period between 14.6 and 24.1 days. On each grid, the initial growth arises from
extravasating cells. The stepwise, mostly non-negative growth pattern thereafter largely
occurs from proliferation of cells as well as further extravasations. For ECCs, part of
the growth also results from PCCs that undergo MET. As MET during PCC proliferation
results in one PCC and one ECC, MET typically causes the PCC growth to slow down.
Negative growth, as e.g. observed in the PCC population on the top ‘bones’ grid after day
18, is always a result of cell death. Throughout, MCCs remain rare on secondary grids.
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Figure 5.8: Trends in phenotype-specific cell load on secondary grids overall.
Left: Combined total cell load on the secondary grids of cancer cells of epithelial-like
(ECC; blue), partial-EMT (PCC; red) and mesenchymal-like (MCC; yellow) phenotype
between the period of 14.6 and 24.1 days. The number of ECCs grows most rapidly
over time—their growth is caused by extravasations, MET and proliferation. PCCs grow
steadily but less rapidly. Their growth is slower due to their larger proliferation interval
but also due to a subset of PCCs undergoing MET during proliferation. Only 1 MCC is
observed during the time period. Right: Plot of the ratio of ECCs to PCCs over the same
time frame (green). Throughout, there are more ECCs than PCCs and the ratio increases
with time for the reasons explained above. The best linear fit line (pink) highlights this
trend.

proliferative step, the respective partial-EMT cancer cell was replaced by one cancer cell
of its phenotype as well as one of epithelial-like phenotype. Overall, the phenomenon of
MET caused the growth rate of epithelial-like cancer cells to increase while slowing the
growth rate of partial-EMT cancer cells at secondary sites. This trend is captured in the
plots in Figure 5.8.

While any partial-EMT cancer cell can potentially undergo MET, the mesenchymal-
like cancer cells cannot change phenotype. The sole mesenchymal-like cancer cell in
Figure 5.4 is an example of such a phenotypically stable cell.

Metastatic growth

The by far largest micrometastatic lesion during the simulation period presented itself
on the grid of the lungs, shown in Figure 5.5. It resulted from a cluster consisting of six
epithelial-like cancer cells and one partial-EMT cancer cell that extravasated relatively
early—after approximately 16 days. All other lesions remained comparatively small dur-
ing the same 23 day period, consisting of less than 20 cancer cells of almost exclusively
epithelial-like and partial-EMT phenotypes. This is also reflected in the evolution of the
total cell number on the three grids represented through the plots in Figure 5.7. As
time progressed, a tendency towards a higher percentage of epithelial-like cancer cells at
secondary sites was observed, as Figure 5.8 suggests.
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Figure 5.9: Trends in phenotype-specific cell load on secondary grids overall—
showing the mean (line) and standard derivation (whiskers) from 20 simula-
tions. All 20 simulations were run with the same conditions as the sample simulation in
Figure 5.8 apart from that the 288 initial epithelial-like cancer cells were newly distributed
randomly in the central 97 grid points and that different seeds for the random number gen-
erator were used for each simulation. Top left: Mean combined total load of cancer cells of
epithelial-like (ECC; blue) phenotype on the secondary grids between the period of 9 and
24.1 days. The number of ECCs grows most rapidly over time—their growth is caused by
extravasations, MET and proliferation. Top right: Mean combined total load of cancer
cells of partial-EMT (PCC; red) and mesenchymal-like (MCC; yellow) phenotype on the
secondary grids between the period of 1 and 24.1 days. Generally, PCCs grow steadily but
less rapidly than ECCs. Their growth is slower due to their longer proliferation interval
but also because a subset of PCCs undergoes MET during proliferation. MCCs also tend
to grow in number over time, yet very slowly. This is due to their long doubling time.
Bottom: Plot of the mean ratio of ECCs to PCCs between the period of 2 and 24.1 days
(green). Throughout, there are on average more ECCs than PCCs and the mean ratio
increases with time. The best linear fit line (pink) highlights this trend.
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In the 20 simulations that we ran to examine the mean numbers of cells of the various
phenotypes on secondary grids, cf. Figure 5.9, we observed a comparatively large standard
deviation with respect to the mean number of epithelial-like cancer cells on the secondary
grids. This is likely caused by the large variation in the time of the first extravasation by
epithelial-like cancer cells: This occurred after as little as 1.4 days during one of the 20
simulations, while no epithelial-like cancer cells at all extravasated during another. Due
to the exponential growth observed in the early stages of secondary spread when space
is not yet a significantly limiting factor, large metastases can form if the extravasation
occurred early on. The same applies to a lesser extent to the other two cell phenotypes.
The standard deviation of the number of cells on the secondary grids over time is lower for
these cell types as these cell types need to come into existence on the primary grid before
they are able to spread. Also, they are less proliferative and, in the case of partial-EMT
cancer cells, subject to MET on the secondary grids.

Dormancy

Given that we have chosen the periods between the time instances presented through
the panels in Figures 5.4 to 5.6 to be such that there exists at least one opportunity
for each cancer cell to reproduce, these figures show examples of dormant cancer cells at
the secondary site of the bones and the liver, respectively. Due to their dormancy, the
respective mesenchymal-like and epithelial-like cancer cells do not proliferate while other
cells on the grids may. The two examples of dormant cells discussed in this section are
highlighted in green in the respective figures.

Death due to maladaptation & immune response

Figure 5.6 shows an example of a partial-EMT cancer cell that dies in the period between
20.7 and 22 days. Other examples of cell death on secondary sites become evident when
examining the cell population growth plots for the partial-EMT cells on each of the
secondary sites shown in Figure 5.7. Negative growth, as e.g. observed in the partial-
EMT population on the top ‘bones’ grid after day 18, on the middle ‘lungs’ grid at day 21,
and on the bottom ‘liver’ grid after day 17 and 22, is always a result of cell death. The fact
that we only observe cell death in the partial-EMT population through these plots does
not imply that cell death does cannot occur in the cell populations of other phenotypes.
The epithelial-like cancer cells in the model tend to proliferate mostly synchronously.
Hence, rare potential cell deaths are likely to be overshadowed in the plots in Figure 5.7
by an even larger positive cell growth at the same time instance. The same applies to
potential other partial-EMT cell deaths.

5.4 Discussion
In this chapter, we have extended the mathematical framework for the metastatic spread
of cancer introduced in Chapter 4 to include EMT and MET. As a result, the framework
now additionally accounts for transitions of cancer cells between an epithelial, a newly
introduced partial-EMT and a mesenchymal phenotypic state. This is achieved in a
location-dependent fashion—both with respect to the steps of the invasion-metastasis
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cascade and with respect to the intra-tumoural location of the cancer cells. This way, the
modelling framework captures the phenomena of EMT and MET in their physiological
context. Furthermore, we include organ-specific differences in the local tissue of the
secondary sites involved in our model by accounting for their ECM density following
biological findings in (ICRP, 2009). Finally, the extended framework now also takes into
account cancer cell dormancy and death as a result of maladaptation to the new tumour
microenvironments at the secondary sites as well as due to the local immune response.

Through computational simulations, we found that the extended metastasis mod-
elling framework provides biologically realistic outcomes and gives further insight into the
above-described mechanisms that underpin the invasion-metastasis cascade at the cellu-
lar scale. Tumour shape and metastatic distribution at the primary site were predicted
to appear as one would expect in a cancer patient who has not yet received treatment.
In particular, we found that the partial-EMT cancer cells formed a ring-shaped leading
front along the tumour edge, which was also seen in experiments (Nurmenniemi et al.,
2009) as well as in human tissue, as shown in Figure 2.16 from Puram et al. (2017).

Nurmenniemi et al. (2009) further observed an average maximum invasion depth—
measured as the distance from the centre of the grid to the cell furthest away from the
centre—of 5.47× 10−2 cm over 14 days when culturing HSC-3 cancer cells, a human oral
squamous carcinoma cell line with high metastatic potential, on top of myoma tissue. This
translates into an estimated average invasion speed of approximately 4.52× 10−8 cm s−1.
It suggests that our observed maximum invasion depth of ∼9 × 10−2 cm in 11 days by
partial-EMT and mesenchymal-like cancer cells, which remained roughly the same during
the 20 simulations that we ran, and the resulting estimated average for the invasion speed
of approximately 9.38×10−8 cm s−1 are realistic results, given that migration speed varies
between cancer cell lines and that the displacement of the cancer cells is likely a result of
a combination of migration and proliferation.

The number of extravasations of single cancer cells or of a cancer cell cluster per sec-
ondary site further matched the clinical data of 4181 breast cancer patients, which under-
lie our simulations. The bones are the most frequently observed site of metastatic spread
from primary breast cancer in the data processed by the Kuhn Laboratory (2017)—
correspondingly, we observed the highest number of extravasations to the grid represent-
ing this site.

To our knowledge, there are currently no data available that claim to deliver an ac-
curate estimation of the typical metastatic load from primary breast cancer to secondary
sites over a specified time frame. However, we believe our results are biologically appropri-
ate with regards to their timings. They are in correspondence with the conclusion reached
by Obenauf and Massagué (2015) in their review of the metastatic traits that allow cancer
cells to colonise various secondary sites, suggesting that CTCs and metastatic spread can
be detected soon after vascularisation of the primary tumour, as in our simulations.

The types of extravasations that we observed through the simulations in our model
coincide with the biological evidence presented in Section 2.4 that CTCs of all phenotypes
appear to be able to extravasate (Banyard and Bielenberg, 2015). Furthermore, only a
low proportion of extravasations included mesenchymal-like cancer cells—the bulk of
extravasating cells were of partial-EMT phenotype and others of epithelial phenotype.

As discussed above, the highest number of extravasations was observed onto the grid of
the bones. Yet, as Figure 4.6 indicates, the largest micrometastasis, which resulted from
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the early metastatic spread of a large cluster consisting predominantly of epithelial-like
cancer cells, occurred at the site of the lungs, where only two extravasations were observed
over the total time period that we considered. This emphasises that cancerous spread is
highly complex and difficult to predict, a feature represented through the stochasticity
involved in multiple processes of our model. Examples of such processes are (partial) EMT
at the primary site, the survival of CTCs and the potential partial or full dissemination of
CTC clusters in the vasculature, the determination of the secondary site of extravasation,
as well as MET, dormancy and cell death at secondary sites. Furthermore, the fact
that the largest growth stemmed from a cluster consisting of predominantly epithelial-
like cancer cells highlights that this cell type with its distinguishing feature of rapid
proliferation is generally the one best adapted to growth in the tumour microenvironment
at secondary sites. This observation and our observation that—as time progresses—
increasing numbers of partial-EMT cancer cells transit to an epithelial-like phenotype
coincide with two of the biological findings discussed in Section 2.4. The first such
finding is that the bulk of cancer cells at secondary sites are of epithelial-like phenotype
(Pastushenko and Blanpain, 2018) as well as some of partial-EMT phenotype (Dongre and
Weinberg, 2019). The second finding in agreement with our results is the observation by
Ruscetti et al. (2015) that macrometastases at the secondary site of the lungs consisted
mainly of epithelial-like cancer cells while smaller lesions presented few epithelial-like
cancer cells and thus mainly cells with some degree of mesenchymal-traits. Finally, our
model accounts for the biological evidence presented in Ocaña et al. (2012) and Kröger
et al. (2019) that cancer cells of a stable mesenchymal-like phenotype are unable to
transform via MET and hence fail to give rise to metastatic growth at secondary sites.
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Chapter 6

A 3D hybrid discrete-continuum model
of EMT-/MET-dependent cancer cell
invasion

In this chapter, we introduce a three-dimensional hybrid discrete-continuum mathemati-
cal model of cancer cell invasion. This model accounts not only for collective epithelial and
for individual mesenchymal invasion strategies but also for the transition between these
two phenotypic cell states, i.e. for EMT and MET. It is based on the two-dimensional
model for cancer invasion introduced in Sfakianakis et al. (2018a). In this thesis, we
extend this model to a third dimension and use it to represent organotypic invasion as-
say experiments by Nurmenniemi et al. (2009). Subject to some alterations, the work is
aimed to be published.

Due to the number of cells involved in cancer invasion, continuum models are a pop-
ular and computationally efficient approach to modelling cancer invasion, cf. Section 3.1.
This approach can reflect the biology of epithelial-like cancer cells and hence their spa-
tiotemporal evolution well. However, as we have established in Section 2.4, EMT and
MET—and intrinsically also cancer cells of mesenchymal phenotype—play a crucial role
in cancer invasion (Godlewski et al., 2010). In particular, a distinguishing feature of
mesenchymal-like cancer cells is their loss of cell-cell adhesion (see Figure 2.11). Hence,
it would be biologically inaccurate to represent cells of mesenchymal phenotype using a
continuum approach. As only a small proportion—and hence relatively small number—of
cancer cells are of mesenchymal-like phenotype (Dongre and Weinberg (2019); cf. Sec-
tion 2.4), the model in this chapter retains computational efficiency while representing
the spatiotemporal evolution of epithelial-like and mesenchymal-like cancer cells in a bi-
ologically appropriate manner. This is achieved by representing the epithelial-like cancer
cells, which make up the bulk of cells in the model, in a continuum PDE approach and
the more sparsely occurring mesenchymal-like cancer cells through an individual-based
SDE approach.

As we present in Section 6.3, the resulting model predicts the experimental organ-
otypic assay results by Nurmenniemi et al. (2009) qualitatively and quantitatively ac-
curately. Hence, the modelling approach allows us to bridge the often-existent gap be-
tween experimental and theoretical work. To demonstrate this, the resulting model was
parametrised to accurately represent the organotypic invasion assays of OSCCs in an
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experimental organotypic invasion model proposed by Nurmenniemi et al. (2009), which
is described in Section 2.5. Parameter values were extracted from the literature wherever
possible. Missing parameter values were inferred using inverse parameter estimation.
Finally, a sensitivity analysis was carried out to give information about the biological
relevance of the parameters.

6.1 Model setup
For the construction of this invasion model, we formulate a coupled hybrid system of
partial and stochastic differential equations that describe the evolution of epithelial-like
and mesenchymal-like cancer cells, respectively. We continue by outlining in Section 6.1.3
how the transitions from one phenotypic state to the other—via EMT and MET—are
modelled mathematically. It is to be noted that, while both the model described in
Chapters 4 and 5, and the model introduced in this section are of hybrid nature, they
are each ‘hybrid’ in a different sense. The previously introduced metastasis framework
is a hybrid approach because the evolution of the diffusive MMP-2 and the ECM is
modelled in a continuum approach while the movement of the cancer cells is modelled
using a (continuum-derived) discrete modelling approach and cell-specific processes like
proliferation and mutations are then added onto the discrete model. In contrast, in
the coupled discrete-continuum approach introduced in this section, epithelial-like cancer
cells are always modelled in a continuum approach while mesenchymal-like cancer cells
are represented as a collection of discrete particles throughout.

This is achieved through the density-based and particle-based submodels outlined in
Sections 6.1.1 and 6.1.2. These submodels are coupled via density-to-particle and particle-
to-density operators introduced in Section 6.1.3. The setup of the two submodels mirrors
biological features that distinguish the cancer cells of the two phenotypes. Epithelial-
like cancer cells typically appear as cell sheets with strong intercellular adhesion. This
adhesion becomes diminished during the EMT process. EMT is captured through the
density-to-particle operator in Section 6.1.5. This causes resulting mesenchymal-like can-
cer cells to typically appear individually (see Figure 2.11 for a graphical representation).
However, cell-cell attachment and hence the epithelial phenotypic state can be regained
via MET, which is represented by the particle-to-density operator in Section 6.1.4.

Another important difference between the models is that the individual cancer cells
in the metastasis framework in Chapters 4 and 5 move on a grid while the individually
modelled mesenchymal cancer cells in this model can take any position in the spatial
domain like in the cells in the CBMs explained in Section 3.1.1.

6.1.1 Density-based submodel

Through the density-based submodel, we capture the spatiotemporal evolution of the
epithelial-like cancer cells. We assume that these cells compete for space and resources
with the mesenchymal-like cancer cells and with the ECM. Moreover, the epithelial-like
cancer cells in our model proliferate. This causes (mechanical) pushing forces to develop
between them, which we incorporate in the model through a small diffusion term. Finally,
we assume that epithelial-like cancer cells do not migrate actively—neither in the form
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a directed response to extracellular cues via hapto- or chemotaxis nor in the form of
random migration.

In our model, the above processes are accounted for via macroscopic deterministic
PDEs. Namely, we denote by Ω ⊂ R3 a Lipschitz domain suitable for the experimental
settings to be modelled, and by c

E
(x, t), c

M
(x, t), m(x, t), and w(x, t), where x ∈ Ω and

t ≥ 0, the densities of the epithelial-like cancer cells, the mesenchymal-like cancer cells
(whenever applicable), the diffusible MMP-2, and the ECM, respectively, in coherence
with the notation in the other chapters of this thesis. As in Chapters 4 and 5, the
subscripts E and M indicate the epithelial and the mesenchymal phenotype, respectively.

Although we model the time evolution of the mesenchymal-like cancer cells through
their particle formulation (see Section 6.1.2), they also participate in the time evolution
of the epithelial-like cancer cells via their corresponding density formulation c

M
. The

mesenchymal-like cancer cells transition between their particle and density formulations
via the particle-to-density process explained in Section 6.1.3.

The considerations above are incorporated in the following (deterministic) PDE that
governs the spatiotemporal evolution of the epithelial-like cancer cells:

∂

∂t
c

E
(x, t) = D

E
∆c

E
(x, t) − νEMT

E
(x, t)c

E
(x, t) + νMET

M
(x, t)c

M
(x, t)

+ ρE
ccE

(x, t) (1− c
E
(x, t)− c

M
(x, t)− w(x, t)) , (6.1.1)

diffusion EMT MET

proliferation

where νEMT
E

(x, t) = ν
E
XE(t)(x) and νMET

M
(x, t) = ν

M
XM(t)(x), with E(t),M(t) ⊂ Ω, and

D
E
, ν

E
, ν

M
, ρE

c ≥ 0. Note that in equation (6.1.1), for simplicity, we assume that EMT
takes place in randomly chosen sub-sets, denoted by E(t) ⊂ Ω. We understand E(t) to
be the set union of a number of sub-sets each having the size of a single biological cell,
cf. equation (6.1.9) and Section 6.1.2. Similarly, we assume that MET gives rise toM(t),
another union of sub-sets, each of the size of a cancer cell, cf. equation (6.1.13).

We further suppose that both epithelial-like and mesenchymal-like cancer cells pro-
duce diffusible MMP-2, which are assumed to diffuse in the environment and decay with a
constant rate. This yields the following PDE for the spatiotemporal evolution of MMP-2:

∂

∂t
m(x, t) = Dm∆m(x, t) + ρE

mcE
(x, t) + ρM

mcM
(x, t) − λmm(x, t), (6.1.2)

diffusion production decay

with Dm, ρE
m, ρM

m, λm ≥ 0 constants. Note, however, that within the scope of this thesis,
we set these coefficients to zero so that only the membrane-bound MT1-MMP degrades
the ECM, cf. (Sabeh et al., 2009) and models in previous chapters.

Similarly, we model the ECM as an immovable component of the system that nei-
ther diffuses nor otherwise translocates. The ECM is described by a non-uniform density
profile, which is degraded by both membrane-bound and diffusive MMPs. We model
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the matrix degradation to be dependent on the cancer cell/MMP-2-complex instead of
MMP-2 alone. This is a simplification of the activation of MMP-2 by membrane-bound
MT1-MMP, TIMP2 and pro-MMP-2, previously explained in Figure 2.8 in Section 2.3.2.
Additionally, for simplicity, no reconstruction of the matrix is assumed. Overall, the
spatiotemporal evolution for the ECM is then given by the equation

∂

∂t
w(x, t) = − (λE

wc
E(x, t) + λM

wc
M(x, t))m(x, t)w(x, t), (6.1.3)

degradation

with λE
w, λM

w ≥ 0 constants.
The reaction-diffusion system (6.1.1)–(6.1.3), which could be extended to an advection-

reaction-diffusion (ARD) system if it involved chemo- or haptotaxis in equation (6.1.1),
is solved numerically using a method developed in Kolbe et al. (2016); Sfakianakis et al.
(2017), which we describe in some detail in Appendix C.

6.1.2 Particle-based submodel

We next give an outline of the particle-based submodel that describes the spatiotem-
poral evolution of the single mesenchymal-like cancer cells. Like the remainder of the
model, the methods and techniques used therein are motivated by work in Sfakianakis
et al. (2018a). However, prior to their application of modelling the spatiotemporal evo-
lution of mesenchymal-like cancer cells in Sfakianakis et al. (2018a), similar methods and
techniques had been used in other scientific fields. An example is the classical particle-
in-cell method, first proposed in Harlow (1962), which has its main application in plasma
physics. Another example is the smoothed-particle hydrodynamics method used in as-
trophysics and ballistics, see e.g. Gingold and Monaghan (1977). The stochastic nature
of the ODEs obeyed by the particles is motivated by the seminal work in Stratonovich
(1966). For the combination of the two cancer cell formulations—i.e. for the bidirectional
transition between the epithelial-like and mesenchymal-like cancer cell formulations via
an atomistic and a continuum formulation for both the epithelial-like and mesenchymal-
like cancer cell populations—we are inspired by Blanc et al. (2007); Kitanidis (1994);
Makridakis et al. (2013); Tompson and Dougherty (1992).

We consider the mesenchymal-like cancer cells to be a discrete collection of isolated
mass particles that migrate through the tissue via biased random motion. We model
this biased random motion strategy using SDEs. In particular, we consider a system of
N = N(t) ∈ N mesenchymal-like cancer cells, which we index by p ∈ P = {1, . . . , N}.
We account for their positions xp(t) ∈ R3 and their masses mp(t) ≥ 0. Then the overall
mass distribution of the particle system {(xp,mp), p ∈ P} is given by

˜̃c(x, t) =
∑
p∈P

mp(t)δ(x− xp(t)) (6.1.4)

where δ(· − xp(t)) is the Dirac distribution centred at xp ∈ R3. Using the characteristic
function

ζ(x) = XK0(x), x ∈ R3, (6.1.5)
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we redefine ˜̃c(x, t) in equation (6.1.4) as

c̃(x, t) =

∫
Ω

˜̃c(x′, t)ζ(x− x′)dx′
(6.1.4)

=
∑
p∈P

mp(t)ζ(x− xp(t)). (6.1.6)

Here K0 is a—for reasons of simplicity—cuboid domain that represents the volume
occupied by a physical cell. The biased random motion of the particles that represent the
mesenchymal-like cancer cells is modelled through the combination of two independent
processes. Firstly, we consider directed motion that represents the haptotactic response
of the cells to gradients of the ECM-bound adhesion sites. Secondly, we include persistent
random motion, which we understand as Brownian motion. Both of these cell-migration
processes are combined in an SDE of the form

dXp
t = µ(Xp

t , t)dt+ σ(Xp
t , t)dW

p
t , for p ∈ P, (6.1.7)

where Xp
t represents the position of the particles in physical space (here R3), and Wp

t is
a Wiener process with independent and normally distributed increments. The modelling
assumption that the mesenchymal-like cancer cells undergo directed motion is encoded in
equation (6.1.7) via the drift coefficient µ, and their random motion via the diffusion co-
efficient σ. The contribution of these coefficients to equation (6.1.7) can be understood as
follows. During a short time interval of duration δt, the changes of the stochastic process
Xp
t (i.e. of the position of the particle p in physical space) follow a normal distribution

with expectation µ(Xp
t , t)δt and variance σ(Xp

t , t)
2δt.

Remark: Note that, in the special case that we consider here where µ(x, t) = µx and
σ(x, t) = σx, with µ ∈ R and σ ≥ 0, the stochastic process that solves equation (6.1.7)
can be numerically computed and hence approximated by the corresponding half-step
explicit Euler-Maruyama particle motion scheme

Xp
t+τ = Xp

t + µXp
t τ + σZp

√
τ , for p ∈ P . (6.1.8)

Here, τ > 0 is the time step of the scheme and Zp is a vector of normally distributed
values of zero mean and unit variance, cf. Kloeden and Platen (2013).

During every time step τ , a provisional new position of each particle is computed
via equation (6.1.8). This allows estimating the speed of the respective particle. If this
speed exceeds the maximal (biological) mesenchymal-like cancer cell particle speed s, the
provisional new position of the respective particle is adjusted in its magnitude to comply
with s. The direction of the particle displacement is not affected.

The mesenchymal-like cancer cells participate in several dynamical processes—such
as in the EMT, the MET and the proliferation of the epithelial-like cancer cells; in the
production of MMPs; and in the degradation of the ECM. Yet, the particle motion scheme
in equation (6.1.8) does not include any reaction processes. Instead, we account for these
processes in the following way:

• As mesenchymal-like cancer cells undergo MET and become epithelial-like cancer
cells, they are transformed to density via the density-to-particle operator that will
be introduced in Section 6.1.3 and the respective mesenchymal-like cancer cells are
removed from the system of mesenchymal-like cancer cell particles. The additional
epithelial-like cancer cell density that is created via MET augments the existing
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epithelial-like cancer cell density and participates in the system of equations (6.1.1)–
(6.1.3) in a regular fashion. Conversely, a part of the epithelial-like cancer cell
density undergoes EMT and becomes mesenchymal-like cancer cell density. This
is then transformed into particles via the particle-to-density operator defined in
Section 6.1.3. These newly formed mesenchymal-like cancer cells are then added to
the system of existing mesenchymal-like cancer cell particles.

• At every (time instance and) time step of the method, the full distribution of
mesenchymal-like cancer cell particles is transformed temporarily to density via
the particle-to-density operator (without undergoing MET to epithelial-like cancer
cells). The mesenchymal-like cancer cell density then participates in the prolifera-
tion of the epithelial-like cancer cells, in the production of the MMPs, and in the
degradation of the ECM, as equations (6.1.1)–(6.1.3) describe.

6.1.3 Phase transitions between particles and densities

We assume that the domain Ω ⊂ R3 is sufficiently large and regular to be uniformly
partitioned into equal cuboid partition cells {Mi, i ∈ I} as

Ω =
⋃
i∈I

Mi, (6.1.9)

where all cuboid partition cells Mi are translations of the generic cell K0. Every measur-
able function c : Ω× (0,∞)→ R can be represented by its simple-function decomposition∑

i∈I

ci(t)XMi
(x), (6.1.10)

where XMi
is the characteristic function of Mi ⊂ Ω, and ci(t) the mean value of c(·, t)

over Mi. That is

ci(t) =
1

K

∫
Mi

c(x, t)dx. (6.1.11)

where K is the volume of K0 and in effect of all Mi. Furthermore, a particle, indexed by
p ∈ P , can be represented in its particle formulation through its position and its mass

(xp(t), mp(t)) , (6.1.12)

or in its density formulation by the characteristic function with density value

mp(t)

K
XKp(x). (6.1.13)

Here, as before, Kp is the translation of the generator cell K0 centred at xp. Note that,
clearly, equation (6.1.13) implies that the mass mp of the particle is uniformly distributed
over Kp. The sets Kp, p ∈ P , in equation (6.1.13) and the Mi, i ∈ I, in equation (6.1.10)
are equivalent up to translations but they do not coincide in general. The Mi, i ∈ I,
form a fixed partition of the domain, cf. equation (6.1.9), whereas the Kp, p ∈ P , ‘follow’
the position of the particles in equation (6.1.13). Based on this ‘dual’ description of
the particles in equations (6.1.12) and (6.1.13), we assign the particle-to-density and the
density-to-particle transition operators in the next two sections.
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6.1.4 Particle-to-density transition operator for MET

Let
{

(xM
p ,mM

p ), p ∈ P
}
be a collection of particles that represent mesenchymal-like cancer

cells. Using equation (6.1.6), we define the particle-to-density operator F as{
(xM

p ,m
M
p ), p ∈ P

} F−→ c(x, t). (6.1.14)

To define the function c(x, t), we go through all the particles that represent mesenchymal-
like cancer cells and consider their corresponding density formulation according to equa-
tion (6.1.13). The support Kp of every particle overlaps with several of the partition cells
Mi, i ∈ I. We assign the corresponding portion of the particle mass to every partition
cell Mi:

mM
p

∣∣
Mi

=
mM
p

K

∣∣Kp ∩Mi

∣∣. (6.1.15)

In a similar fashion, we account for the contribution of all particles p ∈ P to a partition
cell Mi:

ci(t) =
∑
p∈P

1

K
mM
p

∣∣
Mi

(6.1.15)
=

∑
p∈P

mM
p (t)

K2

∣∣Kp ∩Mi

∣∣, for i ∈ I . (6.1.16)

In view of equations (6.1.10) and (6.1.16), we deduce the density function c(x, t) over the
full domain Ω to be

c(x, t) =
∑
i∈I

ci(t)XMi
(x), x ∈ Ω. (6.1.17)

For simplicity, within the scope of this thesis, we assume that each of the mesenchymal-
like cancer cell particles

{
(xM

p ,mM
p ), p ∈ P

}
undergo MET to become an epithelial-like

cancer cell (below abbreviated as ECC ) randomly through the process

{
(xM

p ,m
M
p ), p ∈ P

} MET−−−→
{

(xE
p,m

E
p), p ∈ PMET} . (6.1.18)

newly created ECC particles

The resulting epithelial-like cancer cell particles are instantaneously transformed to den-
sity via the particle-to-density operator F given in equation (6.1.14):{

(xE
p,m

E
p), p ∈ PMET} F−→ cE

MET.

Consequently, the MET can be expressed in operator form as

RMET (cE ,
{

(xM
p ,m

M
p ), p ∈ P

})
= (cE + cE

MET, {(xM
p ,m

M
p ), p ∈ P̃ new}), (6.1.19)

where P̃ new is a re-enumeration of the set difference P \ PMET.
Figure 6.1 shows a graphical representation of the particle-to-density operator F . For

ease of presentation, this is depicted in two dimensions.
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Figure 6.1: Two-dimensional graphic representation of the particle-to-density
operator F. Left: We consider a support Kp (p ∈ P ) around the location xp of ev-
ery particle. The mass of every particle mp—each represented by a point—is uniformly
distributed over the respective support Kp. The grid represents the partitioning of the
domain. Right: A view from above reveals that the supports Kp can overlap with several
cells of the partition. The corresponding masses are assigned to the partition cells using
equation (6.1.16). We have chosen to show this in two rather than three dimensions for
ease of presentation.

6.1.5 Density-to-particle transition operator for EMT

Given a density function c = c(x, t), we define the density-to-particle operator B for a
general particle as

c(x, t)
B−→ {(xp(t),mp(t)), p ∈ P} . (6.1.20)

We assign one particle with mass

mi(t) =

∫
Mi

c(x, t)dx (6.1.21)

and position
xi(t) = the (bary-)centre of Mi (6.1.22)

to every cuboid partition cell Mi, i ∈ I. Figure 6.2 shows a graphical representation of
the density-to-particle operator B—in two dimensions for ease of presentation.

In this thesis, the density-to-particle transition is used to model the EMT process.
As in the case of MET in Section 6.1.4, EMT is—at this stage—represented using a
simplified approach where a randomly chosen part of the epithelial-like cancer cells (in
density formulation) cE

EMT undergoes EMT to give rise to mesenchymal-like cancer cells.
For this, the full domain is discretised into partition cuboids Mi, i ∈ I, as represented
graphically for the two-dimensional case in Figure 6.1. EMT takes place with some
probability in each cuboid that contains some material. The larger the amount of material
in a cuboid, the higher the probability that one cell undergoes EMT. We perform this
process in steps. First, the randomly chosen part of the epithelial-like cancer cell density
cE
EMT transitions to mesenchymal-like cancer cell density:

cE
EMT

EMT−−−→ cM
EMT.
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Figure 6.2: Graphical representation of the density-to-particle operator B. The
mass mi of the density function c(x, t) (surface) is computed over every partition cell Mi,
i ∈ I (quadrilateral grid on the xy-plane) using equation (6.1.21). We then define the
particle as (xi,mi), where the location xi is given by equation (6.1.22). We have chosen
to show this in two rather than three dimensions for ease of presentation.

This mesenchymal-like cancer cell density is immediately transformed to me- senchymal-
like cancer cell particles via the density-to-particle operator B given in equation (6.1.20):

cM
EMT

B−→
{

(xM
p ,m

M
p ), p ∈ PEMT} . (6.1.23)

Here xM
p and mM

p are given by equations (6.1.21) and (6.1.22), respectively, and PEMT is
the set of indices corresponding to the particles that perform EMT. Subsequently, the
family of existing mesenchymal-like cancer cell particles—below abbreviated as MCC—is
updated with these newly created particles. It is hence given by the disjoint union

{
(xM

p ,m
M
p ), p ∈ P

}
]

{
(xM

p ,m
M
p ), p ∈ PEMT} =

{
(xM

p ,m
M
p ), p ∈ P new} , (6.1.24)

existing MCC particles newly created MCC particles

where P new is a re-enumeration of the multiset P ] PEMT. Overall, the EMT operator
consequently reads as

REMT(cE ,
{

(xM
p ,m

M
p ), p ∈ P

}
) = (cE − cE

EMT,
{

(xM
p ,m

M
p ), p ∈ P new}). (6.1.25)

6.1.6 Interactions between particles

We understand the particles as isolated cancer cells or cancer-cell aggregates of similar
sizes and masses. To maintain similar masses, we split and merge the particles according
to their mass and position. In the particular case that a particle represents an isolated
cancer cell, we set mref to be the reference cell mass, cf. Table 6.1. Moreover, because
particles are represented as points, we take K0 to be the substantiation of a particle into

127



three dimensions, i.e. the mass of the cancer cell is modelled to be distributed evenly
throughout the cube K0. We then proceed as follows:

Splitting. A large particle (xp,mp) with mass mp >
4
3
mref is split into two smaller

particles (x1
p,m

1
p), (x2

p,m
2
p) of the same position x1

p = x2
p = xp and each of mass

m1
p = m2

p = 1
2
mp. From that moment onwards, these two particles are considered

to be distinct from each other.

Merging. A small particle (xp,mp) with mass mp <
2
3
mref is merged with another small

particle (xq,mq) if they are close to each other, i.e. if

‖xp − xq‖ < diam(K0),

where ‖ · ‖ describes the two-dimensional Euclidean norm. The resulting particle
is set to have the cumulative mass of the two particles and to be located at their
centre of mass (

mpxp +mqxq
mp +mq

,mp +mq

)
. (6.1.26)

If more than two small particles are found in merging distance at the same time,
they are merged pair-wise in the order they have been created.

Given that the distance between the particles is sufficiently small, iterations of themerging
and splitting processes lead to particles with masses mp ∈

[
2
3
mref,

4
3
mref

]
, i.e. particles

with masses that are close to the reference cell mass mref.
Besides the merging and splitting procedures, we do not consider other processes that

alter the masses of the particles. Moreover, we do not consider any further interactions
between the particles in this work (such as competition for free space or development of
collision forces) as we try to be consistent with the dynamics that are usually assumed
by macroscopic deterministic models similar to that in equations (6.1.1)–(6.1.3). If two
or more particles occupy the same position in this model, this can be understood as a
comparatively high local cell density.

6.2 Implementation and model calibration
We choose our domain to be of size 8500 µm × 8500 µm × 8500 µm following the experi-
mental settings of Nurmenniemi et al. (2009) described in Section 2.5.3.

The construction of the initial ECM density distribution is based on discrete prin-
ciples. For this, we first created a random landscape of a predefined size—e.g. an 8×8
random matrix for two-dimensional experiments or an 8×8×8 random matrix for three-
dimensional experiments. These random values are chosen from a normal distribution
between the predefined minimum and maximum ECM density value and, respectively, will
serve as the ‘heights of the hills’ and ‘depths of the valleys’ of the final ECM landscape.
With subsequent refinements and periodic interpolations, we increased the dimensionality
of the matrix. This way, from the 8×8 matrix in two dimensions we deduced a 16×16
matrix, from which we deduced a 32×32 matrix and so on—as shown in Figure 6.3. At
every stage of the refinement process, we introduced some small Gaussian noise in each
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Figure 6.3: Construction of a sample initial ECM density distribution in two
dimensions. The initial ECM density distribution that we ultimately use in our model
is a result of multiple refinements. Here, we show the process in two dimensions starting
with an 8×8 random matrix (top left panel). This matrix is progressively refined to a
256×256 matrix (bottom right panel) via repeated periodic interpolations. The result is a
sample two-dimensional initial ECM density distribution with values between 0.9× wmax

and wmax, where wmax = 1.06 g−1cm3 (ICRP, 2009). The corresponding process was
applied in three dimensions up to a refinement of 64×64×64 for our simulations.

of the values. The process in two dimensions up to the deduction of a 256×256 matrix is
described visually in Figure 6.3.

In what follows, we additionally provide a pseudo-algorithm for the construction of
the ECM to explain how the construction of the ECM is based on discrete principles. For
the sake of simplicity of presentation, we here consider the one-dimensional case and the
domain [0, 1).

• An initial approximation of the ECM is set by deciding on the number of the major
‘hills’ and ‘valleys’ per direction along the grid. In our one-dimensional example,
we choose an initial rough structure of the ECM with 8 ‘hills’ and ‘valleys’, i.e. we
approximate the ECM as

8∑
i=1

c
(8)
i XC(8)

i
(x), x ∈ [0, 1),

where C(8)
i = [x

(8)
i−1/2, x

(8)
i+1/2), x(8)

i−1/2 = (i − 1)∆x(8), i = 1, ..., 8, ∆x(8) = 1
8
, and

where the coefficients c(8)
i are uniformly distributed random numbers chosen within
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the interval [0, 1).

• Subsequently, a refinement takes place. The domain [0, 1) is now discretised by
C

(16)
i = [x

(16)
i−1/2, x

(16)
i+1/2), ∆x(16) = 1

16
, i = 1, ..., 16 , x(16)

i−1/2 = (i − 1)∆x(16). Accord-
ingly, the ECM is then approximated by the simple function

16∑
i=1

c
(16)
i XC(16)

i
(x), x ∈ [0, 1).

The new coefficients c(16)
i interpolate—with some random noise—between the pre-

vious values:

c
(16)
i =

(
1 + 0.002

(
r

(16)
i − 0.5

)) c(8)
bi/2c + c

(8)
bi/2c+1

2
, i = 1, . . . , 16,

where b·c represents the floor function, and where r(16)
i are uniformly distributed

random numbers within [0, 1). We note that the first and last coefficients, c(16)
1 and

c
(16)
16 , are computed periodically with respect to the c(8)

· -values. The rescaling factor
0.002 is chosen to that the multiplicative randomness/noise is adjusted to 0.1% of
the interpolated value.

• In a similar manner, the resolution of the ECM increases further so that the ECM
is approximated by

32∑
i=1

c
(32)
i XC(32)

i
(x), x ∈ [0, 1],

where C(32)
i = [x

(32)
i−1/2, x

(32)
i+1/2), x(32)

i−1/2 = (i− 1)∆x(32), ∆x(32) = 1
32
, i = 1, ..., 32, and

c
(32)
i =

(
1 + 0.002

(
r

(32)
i − 0.5

))
c
(16)
bi/2c+c

(16)
bi/2c+1

2
, i = 1 . . . 32.

• The refinements are repeated until the desired resolution is reached.

• At a final stage when the desired resolution of the ECM is reached, the values of
the density of the matrix are rescaled between the biological range of a minimum
and maximum ECM density.

We initially considered a single layer of epithelial-like cancer cells to reside on the
upper non-uniform matrix surface. This way, our initial conditions correspond to those
in the experiments by Nurmenniemi et al. (2009), for which 7× 105 epithelial-like cancer
cells and no mesenchymal-like cancer cells were placed on top of each myoma disc. For
the three-dimensional model with x = (x, y, z) ∈ Ω, this single layer of epithelial-like cells
is translated to cell density as

c(t,x) = c(t, x, y, z) =

{
1, z > zmax − 1.5× 10−3

0, else.

Here, 1.5 × 10−3 is the non-dimensional diameter of a single cell corresponding to the
the average diameter of 15 to 20 µm of a HSC-3 cell (Japanese Collection of Research
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Table 6.1: Parameter settings for the simulations. Epithelial-like HSC-3 cells
and mesenchymal-like HSC-3 cells are abbreviated ECC and MCC, respectively. At
this instance, we only model the activity of membrane-bound, non-diffusive MMPs like
MT1-MMP following the experimental results by Sabeh et al. (2009) shown in Figure 4.13.
We achieve this by setting the coefficients Dm, ρE

m, ρM
m and λm in equation (6.1.2) to zero.

We also set the initial conditions for the diffusible MMP to be m(x, 0) = 1. This allows
for possible extensions of the model that include diffusible MMPs, while continuing to ac-
count for the effects of membrane-bound MMPs in our model via equation (6.1.3). Note
that ν

E
and ν

M
have different units as the former refers to a density of cancer cells and

the latter to individual cancer cells.

Description Value Range Reference

D
E

ECC density diffusion coefficient 8.64× 10−8 cm3 1× 10−9 − 1× 10−12 cm2s−1 Chaplain and Lolas (2005)
Brú et al. (2003)

ρE
c ECC density proliferation 1.2 d−1 1.2 d−1 Fujinaga et al. (2014)

coefficient

σ MCC particle diffusion coefficient 3.3675 cm d−
1
2 Parameter estimation

µ MCC particle drift coefficient 7.4595× 10−2 d−1 Parameter estimation

s Maximum MCC particle speed 2.16 cm d−1 1.83× 10−5 − 3.83× 10−5 cm s−1 Butler et al. (2010)

m
ref

MCC particle reference mass 2.3× 10−9 g cell−1 2.3× 10−9 − 3.3× 10−9 g cell−1 Park et al. (2008)

|V0| MCC particle reference volume 2.3× 10−9 cm3 2.2× 10−9 − 5.2× 10−9 cm3 Puck et al. (1956)

ν
E

EMT rate 7.502× 10−2 M cm−3d−1 Parameter estimation

ν
M

MET rate 4.7697× 10−1 d−1 Parameter estimation

wmax Maximum (initial) ECM density 1.06 g cm−3 1.02− 1.05 g cm−3 ICRP (2009)

λw ECM degradation rate 1.8383× 10−4 M cm−3d−1 Parameter estimation
by ECCs & MCCs

Bioresources Cell Bank, 2015). z describes the height of the three-dimensional domain
and zmax is the height of the upper surface of the myoma assay without the upper initial
cell layer placed on it. Figure 6.5 shows this domain.

Throughout, we implement the model with the zero Neumann boundary conditions
for the densities in the model in equations (6.1.1)–(6.1.3). However, since the MMPs
accounted for in this set of simulations are membrane-bound and hence follow the spa-
tiotemporal evolution of the cancer cells and since the ECM is immovable, we practically
only need to enforce the boundary conditions for the cancer cells modelled through equa-
tion (6.1.1). Furthermore, to represent the experimental conditions of Nurmenniemi et al.
(2009) through our simulations, we do not allow particles to escape the domain. If a par-
ticle would have escaped the domain, we force it to remain on the boundary of the domain
instead, retracted along its linear movement trajectory. During the next time step, such
a particle again moves according to the model, i.e. according to equation (6.1.7).

6.2.1 Parameter values

To ensure that our simulations are biologically realistic, we use parameter values from
the literature wherever possible. These are summarised in Table 6.1 together with their
source. Five of the parameter values shown in Table 6.1 could not be sourced from the
literature. These were estimated using inverse parameter estimation, as explained in
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Section 6.2.2.
Moreover, through the settings for the current simulations, we model the activity of

membrane-bound, non-diffusive MMPs like MT1-MMP alone by setting Dm, ρE
m, ρM

m and
λm to zero. We chose to do this in agreement with the results shown in Figure 4.13, which
indicate that MT1-MMP is both necessary and sufficient for cell invasion. As MT1-MMP
is created on the cell membranes and remains there, its impact through its magnitude
is proportional to the density of the cancer cells. However, the model may allow for
the inclusion of diffusive MMPs in the future and hence include equation (6.1.2) in the
general model introduced in Section 6.1.1.

Finally, a rigorous dimensional analysis is non-trivial for a model on multiple scales
like this one and hence postponed to future work.

6.2.2 Parameter estimation

The model described in Section 6.1 depends on the parameters shown in Table 6.1, some
of which cannot directly be measured experimentally and need to be indirectly identified.
In the case of our simulations, these are the ECM degradation rate λw, the diffusion
coefficient σ and the drift coefficient µ of the mesenchymal-like cancer cell particles, and
the EMT and MET rates ν

E
and ν

M
. We employ a combination of global and local

optimisation methods for the parameter identification process of these parameters.
The global optimisation method we use is called enhanced scatter search (eSS) (Egea

et al., 2009). It belongs to the wider class of stochastic global optimisation methods
called metaheuristics (Glover and Kochenberger, 2006). Like other stochastic optimisa-
tion methods, eSS draws an initial diverse population of guesses out of the parameter
space and conditionally initiates intense local searches.

As the local optimisation method, we employed the interior point method, for details
on which we refer to Karmarkar (1984); Byrd et al. (2000). This is an iterative linear
and non-linear convex optimisation method that achieves optimisation by going through
the middle of the bounded polyhedron in the parameter space. Due to its robustness, it
is very well-suited for a problem of mixed stochastic-deterministic nature like this one.

Due to the stochastic nature of our model, repeated applications of the minimisa-
tion methods lead to different (optimal) parameter results. We hence compute a large
sample of results and identify the confidence interval, which is 95% in our work. The
sample determined through the global optimisation method is then passed over to the
local optimisation process as the computational polyhedron in the parameter space. All
the implementations take place with MATLAB. For the metaheuristic part, we use the
MEtaheuristics for bIoinformatics Global Optimization (MEIGO) toolbox (Egea et al.,
2010).

We denote the parameters determined through the combination of global and local
optimisation as

Pest =
{
pesti , i = 1 . . . 5

}(
def.
=
{
λw, σ, µ, νE

, ν
M

})
, (6.2.1)

and estimate them by minimising the discrepancy/error between the experimental mea-
surements and the model predictions. This is measured here by the objective functional
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Eobj =
∣∣|Wmea|X − |Wmod|X

∣∣. (6.2.2)
The ‘norm’ |Wmea|X denotes the experimentally measured quantities and |Wmod|X the
corresponding numerical values from the model.

To minimise the objective functional in equation (6.2.2), we employ optimisation
techniques (see above), which can heuristically be outlined as follows:

a) For an initial parameter set Pest, like the one in equation (6.2.1), the model in
Section 6.1 is solved numerically to give Wmod.

b) Via equation (6.2.2), these model predictions Wmod are compared with the experi-
mentally measured data Wmea to yield the objective functional values Eobj.

c) A new parameter set Pest for equation (6.2.1) is chosen via the interior point method
with the aim of decreasing the value of the objective functional Eobj.

The steps a) to c) of the above algorithm are repeated until a parameter set is identified
that either minimises the objective functional or satisfies other stopping criteria.

For the simulations in this thesis, in particular, we minimised the maximal invasion
depth of the epithelial-like cancer cells as well as their invading cell area (using equal
weights). The experimental meaning of these quantities is explained in Section 2.5.4 and
Figures 2.22 and 2.23 in particular.

The parameter values resulting from the parameter estimation are shown in Table 6.1.

6.2.3 Sensitivity analysis

Each one of the parameters in the model in Section 6.1 has a different impact on the
model’s dynamics and its solution. A profound understanding of the impact of the model
parameters is crucial both for drawing biological conclusions and for quantifying biological
processes. Moreover, the sensitivity analysis is useful for the calibration and for the
further development of the model.

We study the impact of the parameters both qualitatively and quantitatively by per-
forming a local sensitivity analysis. To this end, we consider a particular experimental
setting and a reference parameter set to compute a reference solution. We then vary one
reference parameter after the other and compute the corresponding solutions. Consecu-
tively, we compare these solutions with the reference solution and thus quantify the effect
that the variation in the parameters has on the solution.

In more detail, the parameters that we study with respect to their effect are

Psens =
{
λw, σ, µ, νE

, ν
M

}
def.
=
{
psensi , i = 1, ..., 5

}
. (6.2.3)

We denote the reference parameter set as

Pref =
{
prefi , i = 1, ..., 5

}
(6.2.4)

and compute with it the reference solutionWref. Ceteris paribus, we perturb the reference
parameters prefi ∈ Pref individually, which gives new values pperi . For each perturbation of
the parameters, the new parameter set, denoted by

Pper
i =

{
pperi , i = 1, ..., 5

}
, (6.2.5)

133



differs from the reference set Pref only with regards to the value of the parameter pi.
With the perturbed parameter set Pper

i and the same model conditions (initial conditions,
boundary conditions, etc.), we compute the corresponding solution Wper

i and compare it
to the reference solution Wref. For this, we use the sensitivity function

Si =

∣∣|Wper
i |X − |Wref|X

∣∣
|pperi − prefi |

, (6.2.6)

where | · |X denotes a suitably chosen ‘norm’. Note that because we consider the maximal
invasion depth and the invading cell area with equal weights, we are not interested in
the sign of the sensitivity function. However, if we solely considered one of the measure-
ments as our solution, also accounting for the sign rather than the absolute value of the
denominator alone would indicate the direction of change induced by the parameter set
Pper
i with respect to Pref (see e.g. Figure 6.7).
The perturbations of the parameters are small and hence the divided differences in

equation (6.2.6) can also be viewed as approximations of the corresponding partial deriva-
tives of the solutionW around the reference parameter set Pref. In essence, Si represents
the (absolute) rate at which the solutionW changes, in the sense of the ‘norm’ | · |X , with
respect to the parameter i.

The local sensitivity follows from accounting for all the parameters of Psens. It can
be used to deduce biological information and meaning. For instance, it lets us rank
the influence of various parameters on the system, which enables us to gain a more
comprehensive understanding of the influence of the different input parameters and their
variation on the model outcomes (Alam et al., 2016).

6.3 Results
To produce the simulations presented in the top row of Figure 6.4 through our model, we
accounted for the experimental conditions used in Nurmenniemi et al. (2009) as closely as
possible. Nurmenniemi et al. (2009) used myoma organotypic assays as their ECM. Using
results by (ICRP, 2009) on the average density of human uterine ECM and reproducing its
homogeneity as described in Section 6.2 and Figure 6.3, we reconstructed the qualitative
features of the myoma assay important to our model. We further ensured that our
simulations were run on a domain similar to the assays used in Nurmenniemi et al.
(2009) by running the simulations on an 8500 µm×8500 µm×8500 µm square domain. In
the experiments, this domain was cylindrical with a diameter of 8000 µm and a height of
3000 µm. However, the 6 µm thick slices that were ultimately analysed by Nurmenniemi
et al. (2009) were only approximately of size 600 µm × 600 µm (see Figure 6.4), taken
perpendicular to the myoma disc surface, starting at its upper surface. As Figure 6.4
shows, we also examined slices of dimension 600 µm × 600 µm × 6 µm from the larger
three-dimensional domain as shown in Figure 6.5 as well.

Moreover, our initial conditions correspond to those in the experiments by Nurmen-
niemi et al. (2009), for which 7× 105 epithelial-like cancer cells and no mesenchymal-like
cancer cells were placed on top of each myoma disc—we initially considered a single layer
of epithelial-like cancer cells, which were described by a density profile, to reside on the
upper non-uniform matrix surface. The time evolution of this initial density is subject
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Figure 6.4: HSC-3 myoma invasion simulations and experimental results.
The spatiotemporal evolution of an initially uniformly dense epithelial-like cancer cell
population placed on top of an ECM of heterogeneous density is depicted after 2, 8 and
14 days (left to right). Sample simulation results are shown in the top row of panels and
corresponding experimental results of HSC-3 myoma invasion assays by Nurmenniemi
et al. (2009) in the bottom row. All panels show slices of a three-dimensional assay of
6 µm thickness. The density of the epithelial-like cancer cells is represented via yellow and
orange isosurfaces corresponding to the outer colour bar. We have chosen to present the
isosurfaces corresponding to 0.1, 0.75 and 1.5 of the average tumour density for reasons
explained in Section 6.4. The heterogeneous ECM density (grey) corresponds to the inner
colour bar. EMT spawns mesenchymal-like cancer cells (not depicted here), which are able
to invade the ECM via haptotaxis and thus much more rapidly than the slowly diffusing
epithelial-like cancer cells at the cost of proliferative potential. The reverse process, MET,
creates the ‘islands’ of epithelial-like cancer cells observed in the middle and right panels
corresponding to days 8 and 14. These eventually reconnect with the invading tumour
mass, as shown in the top left of right panels, which correspond to results on day 14.
Bottom row of panels is modified from Nurmenniemi et al. (2009) with permission from
Elsevier.
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Figure 6.5: HSC-3 myoma invasion simulation results in 3D. A sample simula-
tion result of a HSC-3 myoma invasion assays of dimensions 8500 µm×8500 µm×8500 µm
after 14 days is shown. The ECM of non-uniform density, colouring of which corre-
sponds to the first colour bar, is shown in the background. Epithelial-like cancer cell
densities are visualised through contour plots in correspondence with the second colour
bar. Mesenchymal-like cancer cell particles are represented by red dots.

to equations (6.1.1)–(6.1.3). Primarily due to its diffusion term, equation (6.1.1) causes
a slight propagation of the epithelial-like cancer cell front. This becomes most apparent
in the earlier stages of the time evolution—before new islands are formed, which also
contribute to the tumour growth. At the same time, EMT takes place and gives rise
to isolated mesenchymal-like cancer cells, which are represented by particles. These are
shown as red dots in Figure 6.5. However, the mesenchymal-like cancer cell particles are
omitted in the top row of panels of Figure 6.4 to mimic the staining for epithelial markers
in the corresponding panels that show the experimental findings by Nurmenniemi et al.
(2009) in the bottom row of panels of the same figure. The migration of the particles
takes the form of a random haptotaxis-biased motion, which is modelled by the system
of SDEs in equation (6.1.7). During their invasion of the ECM, these particles, which
represent mesenchymal-like cancer cells, undergo MET with a probability rate described
in Table 6.1. This gives rise to islands consisting of epithelial-like cancer cells away from
the non-invasive cell area on top of the ECM. These epithelial-like cancer cell islands are
now described by a density profile and their spatiotemporal evolution is hence once again
modelled through the continuum model in equations (6.1.1)–(6.1.3). Growth of these
islands results in one of the following phenomena:

• The islands may merge with the upper layer of epithelial-like cancer cells on top
of the ECM if they are sufficiently close to the top of the assay. This causes the
non-invasive cell layer to grow rapidly.
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• The islands become part of the invading cell area if they are placed at a sufficiently
large distance from the top of the ECM.

Figure 2.23 describes the definition of the invading versus non-invading cell area as applied
in the analysis of the experimental results by Nurmenniemi et al. (2009)—and hence also
in the analysis of our simulation results—in more detail.

6.4 Discussion
Through the computational simulations we carried out, we found that our three-dimensio-
nal hybrid discrete-continuum model of EMT- and MET-dependent cancer cell invasion
provides qualitatively and quantitatively biologically realistic outcomes. The spatiotem-
poral evolution of the cancer cell invasion in the experimental organotypic assays by
Nurmenniemi et al. (2009) was predicted realistically. In this section, we will discuss
some issues regarding the visualisation of the simulation results. We continue by describ-
ing the insights to our model that we have won through our sensitivity analysis. From
this, we derive conclusions about the impact of various parameters in the model.

Visualisation of the 3D model

Regarding the visualisation of the top row of panels in Figure 6.4, we had to choose
which isosurfaces to show due to the three-dimensional nature of the problem. Due to
the diffusion term included in equation (6.1.1), as well as typically in all deterministic
macroscopic models of cancer invasion, the entire domain is covered with some—even
negligibly small—tumour cell density. As a result, the thresholds for the visualisation of
all isosurfaces are required to be set—including, arguably most crucially, the threshold
for the lowest isosurface, which is shown in yellow in Figure 6.4. For this, we computed
the average cell—and hence tumour—density, which is

d
T

=
m

ref

|V0|
= 1

for the parameters in Table 6.1. We then visualised the isosurfaces at 0.1d
T
, 0.75d

T
and

1.5d
T
. Similarly, visualisation methods of experiments are also subject to overlooking

phenomena that are below some threshold which can be accounted for.

Insights from the parameter sensitivity analysis

The simulations shown in Figure 6.4 were run using the estimated parameter values
in Table 6.1. As described in Section 6.2.3, these values were obtained by minimising
the error between our simulation results and the experimental results with respect to the
maximal invasion depth of the epithelial-like cancer cells, as well as their total non-invasive
and invasive area. For the experiments in Nurmenniemi et al. (2009), these were measured
as explained in Section 2.5.4 and Figures 2.22 and 2.23 in particular. The quantification
of the experimental results after 14 days was visualised in Figure 2.21, yielding a median
of 5.4700× 10−2 µm for the maximal invasion depth of the epithelial-like cancer cells,
and of 3.5270× 10−4 µm2 and 3.6710× 10−4 µm2 for their total non-invasive and invasive
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area, respectively. Through the parameter estimation of the values used in Table 6.1,
we obtained 7.0130× 10−2 µm, 3.9884× 10−4 µm2 and 3.0398× 10−4 µm2, respectively.
Note that the maximal invasion depth in the experiments of Nurmenniemi et al. (2009)
was the mean of the three epithelial-like cancer cells that had invaded the domain the
furthest. To ensure to work as closely to the experimental measurements as possible, we
adapted this approach when measuring our simulation outcomes.

To perform the measurements from our simulations, we started with the three-dimensi-
onal part of the epithelial-like tumour density profile. From this, we extracted nine
vertical slices from the middle of the domain. For every slice, we identified the non-
invading area of the tumour, which is defined as the upper connected part of the epithelial-
like density profile. Computationally, areas of the domain are connected if there exists a
path within the epithelial-like density profile that connects occupied computational cells.
Thus, the non-invading area that is occupied by epithelial-like cancer cells in each slice
is determined.

By subtracting the non-invading area of the tumour from the area of overall epithelial-
like density profile, we then identified the invading area of the tumour. We computed
the area that this part of the tumour occupies as well as the maximum invasion depth.
The latter is given by the mean of the three computational cells with the lowest z-value
that are occupied by epithelial-like cancer cell density. The invasion depth is measured
as the shortest distance between the respective invading cell and the lower boundary of
the non-invasive area, parallel to the vertical z-axis.

Finally, the invasion index is computed using the formula (2.5.4) that is proposed to
measure the experiments in Nurmenniemi et al. (2009), i.e.

invasion index = 1− non-invading area
invading area + non-invading area

.

These computed quantities are next compared to the experimental data. As absolute
errors that would result from the differences between the experimental and simulation
measurements provided above are not directly comparable due to e.g. differences in units,
we compute the (unit-less) relative errors e1, e2 and e3 instead by dividing the absolute
errors by the mean of the experimental measurement. Through addition of the errors and
subsequent division by 3, we determined the L1 mean relative error, which was 0.2558.
We further determined the relative root mean square (RMS) error√√√√1

3

3∑
n=1

e2
n, (6.4.1)

which is commonly used in biological problems of this type and took value 0.2959. Due
to the stochasticity involved in our model, these errors can vary between simulations
even when the same parameters are explored. The obtained measurements were fairly
satisfactory given the dimension and the stochasticity involved in our model and therefore
no formal statistical analysis was performed at this stage.

We also used the RSM error for our sensitivity analysis. As explained in Section 6.2.3,
we can compute the local sensitivity of the model by varying each of the originally un-
known model parameters Psens =

{
λw, σ, µ, νE

, ν
M

} def.
=
{
psensi , i = 1, ..., 5

}
—one after the
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other—around its respective reference value prefi . In this thesis, we computed the back-
ward and forward sensitivity gradients by taking, respectively. Through this, we gained
two pieces of information:

• The signs of the backward and forward gradients indicate whether the reference
value prefi is (close to) the minimiser. A combination of negative- and positive-signs
implies that the sensitivity decreases and increases around the reference value prefi .

• The magnitude of the two gradients indicates how sensitive the result is to the
variation of this parameter pi and to which direction it should be varied to minimise
the result even more.

In our case, this analysis step is carried out with respect to the RMS error (6.4.1). In
what follows, we give details of the respective sensitivity gradients and explain the results.

The parameter sensitivity analysis results for the ECM degradation rate (psens1 = λw)
are shown in Figure 6.6a. The sensitivity gradients were -110.2882 and 80.5483, respec-
tively, for the experiments run with, ceteris paribus, values 0.5pref1 and 2pref1 —instead of
pref1 = 1.8383 × 10−4 M cm−3d−1. The change in the sign of the sensitivity gradients
implies that the minimum of the RMS error is attained around the reference value pref1 .
This is an indication that the reference parameter was sufficiently well estimated. Fur-
thermore, the strong gradients imply that the RMS error is quite sensitive to the ECM
degradation rate.

Figure 6.6b shows the results from the parameter sensitivity analysis for the mesenchy-
mal-like cancer cell particle diffusion coefficient (psens2 = σ). The sensitivity gradients
were 0.0033 and 0.0032, respectively, for the experiments run with, ceteris paribus, values
0.5pref2 and 2pref2 —instead of pref2 = 3.3675 cm d−

1
2 . The two positive signs imply that the

error increases as the parameter value increases. This should serve as an indication to
reduce the reference parameter value pref2 = 3.3675 cm d−

1
2 and to perform the sensitivity

analysis again thereafter and re-evaluate. However, as the magnitude of the gradient—and
hence the sensitivity of the RMS error to the variation in the particle diffusion coefficient—
is small, no strong benefit is to be expected from this repeated minimisation of the RMS
error. Hence, we conclude that the reference parameter value pref2 is acceptable.

In Figure 6.6c, the results from the parameter sensitivity analysis for the mesenchymal-
like cancer cell particle drift coefficient (psens3 = µ) are presented. -0.3658 and 0.2830 were
the sensitivity gradients for the experiments run with, ceteris paribus, values 0.5pref3 and
2pref3 —instead of pref3 —respectively. As in the case of the ECM degradation rate, the
change in sign indicates that the minimiser of the RMS error is (close to) the reference
value pref3 = 7.4595× 10−2 d−1. However, by direct comparison, we deduce that the RMS
error is less sensitive to this parameter than to the ECM degradation rate.

The results of the parameter sensitivity analysis for the EMT rate (psens4 = ν
E
)

are shown in Figure 6.6d. The sensitivity gradients were -3.3807 and 8.2855, respec-
tively, for the experiments run with, ceteris paribus, values 0.5pref4 and 2pref4 —instead of
pref4 = 7.502× 10−2 M cm−3d−1. Again, the change in sign indicates that the minimiser
of the RMS error is attained around the reference value pref4 = 7.502× 10−2 M cm−3d−1.
Moreover, the RMS error is more sensitive to the EMT rate than it is to particle adhesion
coefficient but less sensitive than it is to the ECM degradation rate.

Finally, the results of the parameter sensitivity analysis for the MET rate (psens5 = ν
M
)

are shown in Figure 6.6e. The sensitivity gradients were -0.2091 and 0.2201, respectively,
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Figure 6.6: Sensitivity analysis results. For each of the five estimated parameters
Psens =

{
λw, σ, µ, νE

, ν
M

} def.
=
{
psensi , i = 1, ..., 5

}
, the relative ‘root mean square’ (RMS)

error (6.4.1) was computed for 20 simulations of the experiment. In each plot, the results
obtained from the reference parameter set Pref are shown (green), as well as results from
parameter sets with the decreased (red) and increased (blue) parameter values, 0.5prefi and
2prefi , respectively. Throughout, the means are represented by a horizontal dashed line in
the respective colour. For result interpretation, see text.

(a) ECM degradation rate (psens
1 = λw). (b) Particle diffusion coefficient (psens

2 = σ).

(c) Particle adhesion coefficient (psens
3 = µ). (d) EMT rate (psens

4 = ν
E
).

(e) MET rate (psens
5 = ν

M
).

140



Figure 6.7: Sensitivity analysis for particle diffusion coefficient against maxi-
mal invasion depth of the epithelial-like cancer cells. For the estimated parameter
psens2 = σ, the maximal invasion depth of the epithelial-like cancer cells was computed for
20 simulations of the experiment. In the plot, the results obtained from the reference
parameter set Pref are shown in green; the results from parameter sets with the decreased
and increased parameter values 0.25pref2 and 4pref2 , respectively, are shown in red and blue,
respectively. The means were computed and represented by a horizontal dashed line in the
respective colour. For result interpretation, see text.

for the experiments run with, ceteris paribus, the values 0.5pref5 and 2pref5 —instead of
pref5 = 4.7697 × 10−1 d−1. As before, the change in sign indicates that the minimiser of
the RMS error is (close to) the reference value pref5 = 4.7697 × 10−1 d−1. Moreover, the
RMS error is less sensitive to the MET rate than it is to the ECM degradation rate, the
particle adhesion coefficient, and to the EMT rate parameters.

In summary, the sensitivity analysis showed that the parameter values P sens that we
determined as a result of the parameter sensitivity analysis (see Table 6.1) are sufficiently
close to the minimiser of the RMS error and hence a good fit to our model. Furthermore,
the RMS error shows different degrees of sensitivities to the parameters. If we order
the five parameters from least to highest sensitivity, we get: particle diffusion coefficient,
MET rate, particle adhesion coefficient, EMT rate, ECM degradation rate.

Note that we have performed our sensitivity analysis with respect to the relative RMS
error, which consisted of the maximal invasion depth of the epithelial-like cancer cells,
as well as of the non-invasive and invasive area—all with equal weights, as we described
at the beginning of this section. We decided to minimise the total RMS error (6.4.1)
rather than just one of these three values to take into account all of the quantitative
output provided in Nurmenniemi et al. (2009). If we perform the sensitivity analysis
against one of these three quantities only, rather than against the complete error, we
can learn more about how this particular quantity changes as a particular parameter
is varied, which provides us with further insights. Figure 6.7 shows an example of this
kind of result—the reference particle diffusion coefficient pref2 (green line) is decreased and
increased and computed against the maximal invasion depth of the epithelial-like cancer
cells. The plot shows that increasing the particle diffusion coefficient to 4pref2 (blue line)
only slightly increases the maximal invasion depth. However, a smaller particle diffusion
coefficient of 0.25pref2 (red line) corresponds to a comparatively much stronger decrease
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in invasion depth, which arises due to the lower cell motility. As a result, we obtain
an average maximal invasion depth closer to the median of 5.4700× 10−2 µm measured
experimentally by Nurmenniemi et al. (2009). When linking this back to the results
from the parameter sensitivity analysis that accounted for the relative RMS error rather
than solely for the maximal invasion depth, which is shown in Figure 6.6b, we find that
decreasing the particle diffusion coefficient does not benefit us significantly in our aim to
approximate the RMS error against experimental data.
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Chapter 7

Perspectives

In this thesis, we have established a first framework for modelling both the invasion
and the metastatic spread of cancer cells in a cell-based, spatially explicit manner in
Chapter 4. In this initial outline of the model, we have focussed on capturing the main
steps involved in the invasion-metastasis cascade. This framework can be developed in
many ways to include further biological detail.

To give an example of this, we have extended the model to additionally account
for transitions of cancer cells between an epithelial, a partial-EMT and a mesenchymal
phenotypic state in Chapter 5. Moreover, we have included the phenomena of cell death
and dormancy due to suboptimal adaptivity of metastasised cancer cells to the new
tumour microenvironments at secondary sites. Finally, in agreement with biological data,
we have differentiated the tissue for different organs in our simulations in this chapter.

Further possible future extensions to the model are elucidated in Section 7.1. Also,
one idea for future work—the representation of the fitness of cells of different phenotypes
according to their adaptivity to their (potentially spatiotemporally varying) local envi-
ronment by using game theory—is elaborated in detail in an initial model in Section 7.2
with corresponding sample simulation results.

In Section 7.3, we explore future work related to the three-dimensional hybrid model of
cancer invasion that explicitly takes into account the transition from collectively invading
epithelial-like cancer cells to individually invading mesenchymal-like cancer cells, which
we introduced in Chapter 6.

7.1 Extensions to the metastasis modelling framework
With regards to future extensions of the metastasis model introduced in Chapter 4, which
we further extended in Chapter 5, the inclusion of a third spatial dimension would further
enhance the model’s attention to biological detail. We have not prioritised this in the
early-stage development of this invasion-metastasis cascade modelling framework as we
believe that this would not change the overall characteristics of the model’s qualitative
insights.

Biomechanical properties are also not yet accounted for in this modelling framework
but are important, especially for processes such as intravasation, travel through the vas-
culature and extravasation. For this reason, we are planning to couple our modelling
framework to a biomechanical haemodynamics model.
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To create an organ-specific model, we have taken into account differences in the local
tumour microenvironment of primary and secondary organs in the body in two ways.
Firstly, we distinguished between the relative differences in ECM density between the
organs according to biological measurements in (ICRP, 2009). Secondly, we aligned
the relative likelihood of successful secondary spread to the organs in our model to the
metastatic transition probabilities of breast cancer from large patient studies (Kuhn Lab-
oratory, 2017). This is, of course, a simplification of the actual physiology in many ways.
For instance, in reality, differences between organs are not limited to the relative den-
sities of their ECM. As explained in detail in Barney et al. (2016), the tissue-specific
differences in the tumour microenvironment found in the organs are manifold and only
marginally established. They include, for instance, the genetic markers associated with
tissue-specific metastasis, the healthy cells typically found in these tissues, the ECM stiff-
ness and protein composition, and the tissue dimensionality. Further, these and other
features will not only differ between organs but also when considering the same organ
in any number of patients. Also, the tumour microenvironments have been shown to
change with time. They could thus be modelled as a landscape that evolves over time to
capture e.g. the process of pre-metastatic niche formation that has been observed both in
mouse models and clinical studies (McAllister and Weinberg, 2014). For this reason, it
is our long-term goal to include the metastatic programmes of the various organs in our
model once more is known about them. Until then, we will continue using the transition
probabilities from a large study such as (Kuhn Laboratory, 2017) to differentiate between
the relative success of metastatic spread to the various organs.

Often, solitary DTCs and micrometastases are non-proliferating, or dormant, even
years after primary tumour diagnosis (Luzzi et al., 1998; Chambers et al., 2002; Pantel
and Speicher, 2016). In fact, in the aforementioned experiments by Luzzi et al. (1998)
on liver metastases in mice, examination of the liver tissue after two weeks after the
intraportal injection of cancer cells showed that 95 % of all solitary DTCs were dormant
but only 3.3% of the cells in tumours, which were of cross-sectional size 0.45× 0.15 mm
to 2.8× 1.4 mm. Other cells may not survive due to activation of the immune system at
the secondary sites. In our current model, dormant and apoptotic DTCs are accounted
for through grid- and phenotype-unspecific probabilities only. Furthermore, we do not
distinguish between cells at secondary sites that are part of a growing tumour and those
that are solitary DTCs with regards to the probability of death and dormancy. We could
include cancer cell dormancy and immune system activation at secondary sites more
explicitly as part of the above-mentioned extension in the organ-specific differentiation of
the respective organ tissue. This way, it could be studied in more detail how these changes
in the microenvironment of dormant cancer cells over time affect growth activation of
previously latent micrometastases, which was suggested, amongst others, by McAllister
and Weinberg (2014).

Breast cancer cell intravasation and dissemination occurs through a tumour microen-
vironment of metastasis (TMEM)-mediated mechanism. TMEMs are microanatomical
structures consisting of three different cell types that are in direct physical contact with
one another (Karagiannis et al., 2017). Since we model individual cell dynamics, our
framework can easily be adapted to model TMEM involvement in metastatic spread of
breast cancer by including an additional cancer cell type and calibrating its phenotype.

In the current modelling approach, we account for the fact that EMT and MET have
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been observed to occur in specific steps of the invasion-metastasis cascade as well as
in specific locations within the primary tumour. For instance, partial EMT appears to
be triggered predominantly at the primary site and towards the tumour boundary as
observed in situ—see Figure 2.16 and Puram et al. (2017). Also, in the early stages of
colonisation at a secondary site, MET has been found to be the predominant mutation. It
would be desirable to additionally include a physiological motivation for the mutations we
model, like e.g. developed in Sfakianakis et al. (2017). In particular, we aim to incorporate
the physiological motivation by accounting for the role of hypoxia as a trigger for EMT
and MET as described below. While the full spectrum of mechanisms underlying the
induction of EMT remains elusive to date (Wang et al., 2016), it is assumed that tumour-
induced hypoxia plays an important role in the process (Imai et al., 2003; Yang et al.,
2008; Wang et al., 2016; Petrova et al., 2018). The hypoxic environment in the tumour
activates its main effector hypoxia-inducible factor-1 (HIF-1) (Petrova et al., 2018), which
in turn activates EMT-TFs like Snail and Twist (Imai et al., 2003; Yang et al., 2008),
thus promoting EMT and metastatic phenotypes. A biological model that connects
the occurrence of tumour-induced hypoxia with EMT and angiogenesis via CAFs has
recently been proposed in Petrova et al. (2018). The hypothesis is made that rapid
tumour growth, which reduces the oxygen concentration in tumour and stroma regions
far away from vessels since the diffusion of oxygen is limited to 100–200 µm, creates
hypoxic regions. Epithelial-like cancer cells in these regions produce signalling molecules
that transform normal fibroblasts as well as other healthy cells in the stroma to CAFs
(Zeisberg et al., 2007; Petrova et al., 2018). These CAFs have been shown to produce stiff
aligned ECM. This differently organised ECM is, in turn, hypothesised to induce EMT
in premalignant epithelial cells and to support cell migration in breast cancer (Dumont
et al., 2013). CAFs have further been shown to promote angiogenesis via the production
of vascular endothelial growth factor-C (VEGF), C-X-C motif chemokine 12 (CXCL12)
and basic fibroblast growth factor (FGF-2) (Pietras and Östman, 2010), making hypoxia
an angiogenic stimulus (Carmeliet and Jain, 2000). Our modelling framework meets the
prerequisites for an extension that includes the biological phenomena described above.
Therefore, in future work, we will connect the EMT features currently included in the
metastasis framework with the prevalence of tumour-induced acutely and chronically
hypoxic regions as well as with angiogenesis.

Including tumour-induced angiogenesis as a result of hypoxia in the framework would
furthermore allow to capture metastatic growth beyond the current avascular stage and to
thus include the development of larger, vessel-growth activating (macro-)metastases. In-
corporating tumour-induced angiogenesis in our framework would also allow us to include
reseeding in a more realistic manner. In this thesis, we have investigated the classic, uni-
directional view of metastatic progression. However, it is hypothesised that self-seeding
from primary to primary tumour, primary reseeding from a metastatic site back to the
primary tumour, and metastatic reseeding, where metastases form out of existing metas-
tases, also play a role in metastatic spread. These processes could easily be included
in this modelling framework, in particular in the context of allowing for colonisation by
considering tumour-induced angiogenesis at the secondary sites. Of course, we could also
replace the currently static initial vessel distribution by including vascular growth result-
ing from tumour-induced angiogenesis. For this, an earlier attempt by Powathil et al.
(2012) to model the transportation of oxygen to the tumour through newly formed vessels
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as well as hypoxia-induced quiescence of cancer cells could be modified and extended.
For ethical reasons, modern-day data concerning metastatic spread, such as those

by the Kuhn Laboratory (2017), stem from studies in which the primary tumours were
removed prior to the observations of when the tumour would reoccur or present detectable
metastases. We could easily modify our model to include both successful resections of
the primary tumour and/or of metastases as well as tumour resections that accidentally
leave a small residue of cancer cells. Finally, we could model resections at various times to
examine the effects of delayed surgical interventions on the disease outcome. Additionally,
other treatment regimes could be modelled. One example is the inclusion of chemotherapy
in the framework, especially once have we account for angiogenesis, in a similar way to
(Powathil et al., 2012, 2013). Other approaches to modelling chemo-, radio-, nano- and
immunotherapy, as well as targeted, hormone and combination therapy have recently
been reviewed by Chamseddine and Rejniak (2019). Some of these could function as a
basis to modelling treatment approaches by extending this framework.

Finally, the effect of mutations on cell phenotypes can easily be included in this
cell-based modelling framework, as shown in Chapter 5. In this context, the biological
observation that mesenchymal-like, partial-EMT and epithelial-like phenotypes occur on
a spectrum rather than as three discrete states (Campbell, 2018) is another detail that
could be included in the framework. Existing spatial models that consider multiple or
continuous phenotypic states of cancer cells include (Lorz et al., 2015; Świerniak and
Krześlak, 2016; Domschke et al., 2017; Lorenzi et al., 2018). Game theory could be
applied to study the competition and hence evolution of cell phenotypes in the various
local environments that evolve over time (cf. pre-metastatic niche formation) in the body.
In the next section, some preliminary work to incorporating spatial game theory into our
metastasis framework will be introduced.

7.2 Using game theory to capture interactions of cells
of different phenotypes in various tumour
microenvironments—an initial model

Game theory has its roots in economics. It was first used by Antoine Cournot to analyse
the economic phenomenon of the duopoly (Cournot, 1838). Over 100 years later, the
mathematician John von Neumann and the economist Oskar Morgenstern first formalised
the theory mathematically in their classic book Theory of games and economic behaviour
(Von Neumann and Morgenstern, 2007).

Economic game theory formally studies cooperation and conflict between several inter-
dependently interacting agents. In his book Game Theory: Analysis of Conflict, Roger
Myerson defines it as ‘the study of mathematical models of conflict and cooperation
between intelligent rational decision-makers’ (Myerson, 2013). Understanding the inter-
actions of rational decision-makers in an environment defined by scarce resources using
the formalised language of game theory can underpin strategic decision-making. The
impact of game theory has, however, not remained limited to economics. Social scientists
and scientists from various fields such as psychology, political science, logic, computer sci-
ence and biology soon also found a useful analytic tool in game theory (Myerson, 2013).
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Problems that have been tackled using game theory since include, for instance, choosing
the optimal policy for a presidential candidate, finding the best vaccination policy, salary
negotiations (Von Neumann and Morgenstern, 2007) as well as population dynamics in
ecology, which is also known as evolutionary game theory (EGT). Early EGT models
did not consider spatial dimensions but well-mixed populations instead. However, it was
established in Nowak and May (1992, 1993); Nowak et al. (1994); Durrett and Levin
(1994) that the inclusion of spatial effects can change the outcome of a game compared
to the corresponding well-mixed scenario. In particular, accounting for spatial dimensions
can lead to the long-term stable coexistence of species in cases where, in the well-mixed
game-theoretic scenario, coexistence cannot occur.

The concept of including game theory in the metastasis framework introduced in this
section is based on the preliminary non-cancer-specific multi-grid model published in
Burgess (2013); Burgess et al. (2016, 2017). However, EGT has already found applica-
tions in the context of cancer, most of which focus on the selection for certain tumour
phenotypes. Several papers that model malignant tumour growth were reviewed in Hum-
mert et al. (2014). In particular, Anderson et al. (2009) used EGT to study the evolution
of aggressive cancer cell phenotypes. The go-or-grow dichotomy observed to occur be-
tween cancer cell phenotypes was examined in a non-spatial manner in Mansury et al.
(2006) and spatially defined as occurring on a fixed lattice of a graph in Basanta et al.
(2008a). Basanta et al. (2008b) and Archetti (2014) modelled the effect of differences
between the metabolic pathway of cancer cells and normal cells, which is known as the
Warburg effect, and Basanta et al. (2012) modelled interactions between tumour cells
and healthy cells. Models by Tomlinson and Bodmer (1997) and Bach et al. (2001) were
concerned with angiogenesis via growth factor production by cancer cells—the Tomlin-
son and Bodmer (1997) model was later extended in Bach et al. (2003) to become one
of the early models that considered spatial EGT. The review by Hummert et al. (2014)
concluded that applications of EGT to date had predominantly been used to examine the
role of interactions between individual cells as well as, linked to this, the emergence of
new phenotypic traits. Moreover, the authors remarked that most cancer-specific EGT
models at the time had not accounted for space—despite the discovery of the importance
of spatial dimensions for the game-theoretic outcomes in evolutionary games in a general,
non-cancer-specific setting about a decade before the publication of the review. Instead,
the majority of cancer-specific publications considered a well-mixed population of cells,
often expressed in terms of proportions rather than absolute numbers of cells.

Since then, a few papers have used spatial EGT in the context of cancer modelling.
For instance, Kaznatcheev et al. (2015) presented cancer dynamics as an evolutionary
game between two cell phenotypes. In line with the go-or-grow dichotomy, rapidly pro-
liferating cancer cells were considered alongside invasive cancer cells. These invasive cells
arose from the former via mutations that were triggered by differences in environmental
factors. In particular, spatial structure—as anatomically found in the neighbourhood of
static boundaries representing e.g. blood vessels or basement membranes—promoted the
invasive phenotype in this model. This led the authors to the conclusion that the local
neighbourhood structure has important effects in game-theoretic modelling and that these
would be overlooked when only considering scenarios including well-mixed populations.

You et al. (2017) analysed a spatial game of metastatic castrate-resistant prostate
cancer in the form of a spatially-explicit agent-based approach. They also examined how
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this game compared to the corresponding non-spatial game. Because for almost all their
case studies the predictions of the spatial model differed from those of a non-spatial one
and because of the intrinsic spatial heterogeneity within tumours, they concluded that
spatial cancer models are likely needed to capture the key elements of tumour growth.

Given the effects observed from the inclusion of space in non-cancer-specific EGT
models, we agree with Hummert et al. (2014); Kaznatcheev et al. (2015); You et al.
(2017); Zhang et al. (2017): To study tumourigenesis—which is intrinsically spatially
heterogeneous as tumours do not consist of well-mixed cell populations—appropriately
with EGT, spatial effects should be taken into account. If space is taken into account,
EGT can be a powerful tool to study the long-term spatial evolution of cells of different
phenotypes in various physiological locations. These can, for instance, be organs where
primary and secondary tumours form in the body, as our initial model in the next section
elucidates.

7.2.1 Model setup

For our initial model, we consider the spatiotemporal evolution of cells of two different
phenotypes, A and B. When relating the model to the setting of cancer invasion and
metastasis, the cell types could, for instance, represent cancer cells and healthy cells. The
cells move on a spatial domain Ω ⊂ R2 by random diffusion only, which corresponds to the
cells performing an unbiased random walk in the discretised model. The ECM density
and the MDE concentrations accounted for previously in the metastasis framework in
Section 4.1 are not included at this point.

As in Section 4.1, the movement of the cells of the two phenotypes A and B is obtained
via the FTCS discretisation of the respective PDEs, which are

∂ck
∂t

= Dck∇2ck, (7.2.1)

random motility

where k = A,B, along with reflective boundary conditions. Here, Dck > 0 is the constant
cell diffusion coefficient for cells of type A and B, respectively.

Again, analogously to Section 4.1, we fix a time step ∆t and set tn = n∆t. We
choose a square domain, which we discretise using a uniform mesh of grid cells with size
∆x = ∆y = 1

l
. Furthermore, we set xi = i∆x and yj = j∆y, where i, j ∈ [0, l] ⊂ N0. We

continue by expressing the number of cells of type A and B on grid point (xi, yj) at time
tn by c

A
n
i,j and c

B
n
i,j, respectively. The resulting discretised equation is then solved for

cn+1
i,j , the number of cancer cells at grid point (xi, yj) at time tn+1. Finally, substituting

∆x = ∆y yields the discretised equations

ck
n+1
i,j = P0ck

n
i−1,j + P1ck

n
i+1,j + P2ck

n
i,j+1 + P3ck

n
i,j−1 + P4ck

n
i,j,
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where

P0 : Pni−1,j := Dck

∆t

(∆x)2
,

P1 : Pni+1,j := Dck

∆t

(∆x)2
,

P2 : Pni,j+1 := Dck

∆t

(∆x)2
,

P3 : Pni,j−1 := Dck

∆t

(∆x)2
,

P4 : Pni,j := 1− 4Dck

∆t

(∆x)2
.

The coefficients P0,P1,P2 and P3 correspond to the probabilities that, during the next
time step, a cancer cell at grid point (xi, yj) moves left, right, up and down, respectively.
P4 is the probability that a cancer cell remains at grid point (xi, yj) during the next
time step. Subsequently, the movement submodel—as outlined in bullet points 1. to 5. in
Section 4.1 but with the obvious adjustment that ECM density and MMP-2 concentration
are not considered in this early stage of model development—is applied.

As in Section 4.1, the proliferation rules are added onto the discrete model. Only this
time, proliferation is a result of the local interaction of cells, which is represented through
game theory. As soon as there are two or more cells from either species on the same grid
point, each cell performs up to one interaction per time step with another cell. If there are
exactly two cells on the same grid point, they interact; if there are three, two randomly
chosen ones interact; if there are four cells, two pairs—chosen at random—interact exactly
once; and so on. Self-interaction does not exist in this model. All cells enter the model
with a payoff of 0 but as a result of these interactions, the cells accumulate payoff. The
payoff from a single interaction with another cell is phenotype-specific (Table 7.1 shows
an example). Once a cell’s accumulated payoff is larger than or equal to 1, it produces
one offspring cell of its phenotype on the grid point that it is located on and its own
payoff is reduced by 1. This is also known as non-synchronous generation (as opposed
to synchronous generation where the accumulated payoff is translated into offspring at a
certain point in time, for example when a cell dies). Finally, cells die after a set amount
of TD time steps.

7.2.2 Implementation

We considered four scenarios. In all scenarios, the spatial domains were taken to be of
size [0, 1] × [0, 1]. We took ∆t = 0.05 and ∆x = ∆y = 1

l
, where l = 30 for Scenario 1

and 2 and l = 100 for Scenario 3 and 4. Throughout, each cell had a lifespan of 100∆t.
Also, all cells started with a payoff of 0 and accumulated phenotype-dependent payoff
from interactions on their grid point as described in Table 7.1. To relate the model to the
setting of cancer invasion and metastasis, we chose to consider one type B cell amongst an
abundance of type A cells as the initial settings in all our simulations. The initially rare
type B cell could, for instance, represent a cancer cell that is found in tissue otherwise
containing healthy cells. The healthy cells could be represented by the initially abundant
presence of type A cells. A physiological scenario like this could exist either when a
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tumour first begins forming at a primary site in the body or as a result of metastatic
spread to secondary sites.

For Scenario 1 and 2, the initial population consisted of 8999 cells of type A, which
were randomly spread out on the grid, and one cell of type B at the centre of the grid.1
This gave an average of five cells per grid point, like in Burgess et al. (2017), where,
however, a square grid with 100 grid cells in each direction together with an initial
population of 49999 type A cells and one type B cell was used. For Scenario 1, the cells
of either phenotype moved to any of the four neighbouring grid points with probability
P0 = P1 = P2 = P3 = 0.0000625 and remained in their position with a probability of
P4 = 0.99975 during a time step. For Scenario 2, we took P0 = P1 = P2 = P3 = 0.000125
and the probability for cells to remain in their position to be P4 = 0.9995.

For Scenario 3 and 4, we had 9999 type A cells spread out randomly on the grid
and one type B cell in the middle of the grid. This yielded an average of one cell per
grid point. For Scenario 3, we used the same movement probabilities as for Scenario
2. For Scenario 4, we also allowed for the two cell types to have different diffusion
coefficients, resulting in type A moving to any of the four neighbouring grid points with
probability P0 = P1 = P2 = P3 = 0.0375, while type B cells did so with probability
P0 = P1 = P2 = P3 = 0.075 during each time step.

Table 7.1: Payoff matrix of the game between cells of phenotype A and B.

Type A cell Type B cell

Type A cell pAA = 0.02 pAB = 0

Type B cell pBA = 0.1 pBB = 0.001

7.2.3 Results

Exemplary results for Scenario 1 highlighted that stochasticity plays an important role in
the EGT model. The results shown in Figures 7.1 and 7.2 were run using the exact same
settings. Yet, in the simulations presented in Figure 7.1, the cells of type B never invaded
the tissue but remained on the initial grid point instead. This led to the extinction of
this cell type within three generations, i.e. after 300∆t. On the contrary, in Figure 7.2,
the cells of type B established themselves for a period that was more than one magnitude
larger (3200∆t). Both cell types coexisted during this period. However, over time, the
type B cells locally depleted the type A cells on the grid points which they resided on. It
was only when the cells of type B had died out that the cells of type A repopulated the
respective area of the grid (see final three panels of Figure 7.2). Yet, both simulations
have in common that the type B cells did not establish themselves in the long run,
while the type A cells eventually covered the entire grid with an overall stable number of
cells that only fluctuated minimally. In future work, we will quantify the effects of the
observed stochasticity by analysing the numbers of cells of phenotype A and B and the
area occupied by type B cells over time in a larger number of simulations.

1We also ran simulations starting solely with type A cells. Type B cells were introduced by random
mutations upon offspring generation only. Due to the performance limitations of the MATLAB model,
however, we eventually decided to focus on mutations at a later stage.
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Figure 7.1: First set of sample results for Scenario 1. Spatiotemporal evolution of
cells of type A (left panels) and of type B (right panels) after 0, 100∆t, 250∆t and 10000∆t
is shown. Initially, 8999 cells of type A were randomly distributed and one cell of type
B placed in the centre of the 30 × 30 grid (first row of panels). During each time step,
the cells moved to one of four neighbouring grid points with probability 0.0000625 and
accumulated phenotype-dependent payoffs according to Table 7.1. Each cell had a lifespan
of 100∆t. Type B cells died out after 3 generations while type A cells remained spread
throughout the grid in the long term.
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Figure 7.2: Second set of sample results for Scenario 1. Plots show the spatiotem-
poral evolution of cells of type A (left panels) and of type B (right panels) at 0, 250∆t,
600∆t, 1200∆t, 1700∆t, 2300∆t, 3150∆t, 3200∆t and 3250∆t. The simulation was run
using the same parameter values as in Figure 7.1. Yet, type B cells died out after 32—
rather than 3—generations. Also, type B cells invaded the grid and caused type A cells
to become locally degraded while they continued to exist. Once type B cells had died out,
type A cells re-populated the space and remained spread throughout the grid thereafter.
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Figure 7.3: Sample results for Scenario 2. Plots show the spatiotemporal evolution
of cells of type A (left panels) and of type B (right panels) at 0, 400∆t, 1400∆t, 2600∆t,
3200∆t, 5000∆t, 9000∆t and 15200∆t. The same parameter values as in Scenario 1 were
used apart from that the movement probability to one of four neighbouring grid points was
doubled to be 0.000125. Type B cells invaded the grid fully in a ring-shaped wavefront and
died out after 50 generations. The invasion caused some type A cells to locally die out
while others continued to exist in clusters. Once type B cells had died out, type A cells
did not re-populate the space. They also died out after 152 generations.
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Figure 7.4: Sample results for Scenario 3. The spatiotemporal evolution of cells of
type A (left panels) and type B (right panels) after 0, 100∆t, 500∆t, 700∆t and 900∆t
is shown. Initially, 9999 cells of type A were randomly distributed and one cell of type B
placed in the centre of the 100×100 grid (first row of panels). The movement probabilities
were taken as in Figures 7.1 and 7.2. The cells received phenotype-dependent payoff upon
encounter according to Table 7.1. Each cell had a lifespan of 100∆t. The cells of type B
did not invade the tissue and did not even proliferate once. The cells of type A also did
not stably sustain over time so that all cells had died out after 10 generations.
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Figure 7.5: Sample results for Scenario 4. Plots show the spatiotemporal evolution
of cells of type A (left panels) and of type B (right panels) at 0, 100∆t, 300∆t, 400∆t and
550∆t. Simulations were run with the same conditions as in Figure 7.5 apart from that,
during each time step, the cells of type A moved to either of the four neighbouring grid
points with probability 0.0375, while type B cells did so with probability 0.075. The cells
of type B invaded the tissue and locally depleted the cells of type A. However, the cells
of type A did not stably continue to exist over time regardless of the existence of type B
cells. Hence, all cells had died out after 6 generations.
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The panels shown in Figure 7.3 represent sample results for Scenario 2, in which cells
are twice as likely to move during each time step as they were in Scenario 1. The resulting
movement probabilities and the average number of cells per grid point in Scenario 2
coincided with those in Burgess et al. (2017). Like Burgess et al. (2017), we observed a
ring-shaped wavefront of type B cells that invaded the grid (see Figure 7.3). This caused
the cells of type A that were initially spread randomly throughout the grid to become
depleted in the regions where the cells of type B had resided. However, small groups of
cells of type A remained on the grid throughout and beyond the 51-generation survival
period of cells of type B. The clusters consisting of type A cells remained on the grid for
an additional period of 153 generations thereafter.

Comparing the sample results for Scenario 2 to the stable coexistence of both cell
types observed in Burgess et al. (2017) led us to believe that boundary effects may have
played a role in the extinction of both populations. Thus, we decided to run simulations
on a larger 100× 100 grid for Scenario 3 and 4. However, as it was computationally too
costly to model an initial average population density of 5 cells per grid point, simulations
for Scenario 3 and 4 contained an initial average of 1 cell per grid point. The results
shown in Figure 7.4 are representative of simulations with settings of Scenario 3. Apart
from the grid size, the only difference to Scenario 2 was the initial (average) population
distribution—all other parameters were taken to be the same. The change in initial
conditions typically resulted in type B cells failing to reproduce. Also, all A cells died out
after 10 generations.

Finally, for Scenario 4 we increased the movement probabilities during each time step
to 0.0375 for the type A cells and to 0.075 for the B cells, ceteris paribus. We observed
that type B cells were now able to invade the grid and to locally deplete the type A cells.
While this allowed type B cells to survive for 6 generations, it decreased the survival
period of type A cells compared to Scenario 3 from 10 to 6 generations.

7.2.4 Discussion

We chose the interaction of cells to result in the payoff accumulation shown in Table 7.1,
which resembles that of a classical prisoner’s dilemma game. In the language of EGT,
this makes type A cells cooperators and type B cells defectors. When a type A cell meets
another type A cell, both cells receive a payoff of pAA = 0.02. However, type A cells
receive no payoff when paired with a type B cell. While such an interspecific encounter
is unproductive for type A cells, it highly pays off for type B cells, which gain the game’s
highest payoff of pBA = 0.1 during such an encounter. Yet, when type B cells encounter
type B cells, they only receive a very small payoff of pBB = 0.001. In a biological sense,
type B cells are parasitic on type A cells. Depending on the conditions of a game, they
can more or less successfully invade the type A population (see Figures 7.1 to 7.5), which
receives no benefit from the invasion by cells of type B. We hypothesise that, in the
simulations depicted in Figures 7.1 to 7.5, this becomes evident from the fact that type
A cells become locally depleted if type B cells reside on the same grid points for some
length of time. Also, as Figure 7.2 shows, if the population of type A is fit enough (in the
sense of motility, payoff accumulation and the number of cells per grid point) to establish
itself in the long term, it re-populates the temporarily depleted regions of the grid that
were previously occupied by type B cells. Notably, cells of type B also depend on the
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existence of type A cells for survival as they do not produce sufficient offspring to sustain
in the long run by intraspecific interaction alone—due to a lack of payoff accumulation.
This explains why type B cells die out in the simulations depicted in Figures 7.1 to 7.5
after the cells of type A have been locally depleted.

Through simulations with settings as described above, we propose two further hy-
potheses, which are still subject to more systematic investigations:

1. Given an initially random distribution of type A cells, the average number of cells
per grid point plays an important role. In Scenarios 1 and 2, an average of 5
cells per grid point resulted in a stable existence of type A cells over a long time.
However, in Scenarios 3 and 4, the type A cells died out regardless of the existence
of type B cells. A proposed explanation is that the cells do not have enough partner
cells to interact with in order to collect payoff and thus to generate enough offspring
when the grid is uniformly sparsely populated.

2. Stochasticity plays an important role in this type of model. As Figures 7.1 and
7.2 exemplify, the fate of the initially the rare invader of type B seems to heavily
depend on what happens during the early time steps of a simulation. The relative
success or failure of a type B cell to spread likely depends on

(a) the initial local conditions it finds in its local environment—here in the form
of resident cells of type A in its local neighbourhood, which is a result of the
initially random spread of the type A cells, and

(b) the fact that the B cell may or may not move, and hence spread, during the
initial time steps.

If we consider the initial type B cell in our simulations to represent a cancer cell that
is found in tissue otherwise containing healthy type A cells, the respective physiological
scenario could exist either at a primary site when cancer begins to form and may or may
not be eliminated by the healthy tissue, or at secondary sites after cancer cells extravasate.
With respect to secondary spread—as we consider in Chapters 4 and 5—we could, for
example, differentiate between the adaptivity of cancer cells to the new local tumour
microenvironment via differences in the payoff values that the cells accumulate via the
interactions and/or via differences in their movement probabilities at each organ. For
instance, cancer cells stemming from a primary breast tumour may be generally better
adapted for spread to the tissue of the bones than to the liver’s tissue, cf. Figure 2.15. In
this case, Scenario 1 could represent the metastatic spread to the grid representing the
bones. The payoff values in Table 7.1 could then be adapted such that pBA = 0.08 rather
than pBA = 0.1 for cells on the domain representing the metastatic spread of a breast
cancer cell to the liver.

Also, by starting with a few rather than solely one cell of type B, we could represent
the arrival of a cluster of cancer cells at a secondary site. Moreover, we could distinguish
the payoff that cancer cells gain from interactions according to their various phenotypes,
which could also evolve over time e.g. via mutations. This would allow us to model
the degree of success of cancer cells of various phenotypes after arriving at secondary
sites as a consequence of metastatic spread. As an example, in the context of the model
introduced in Chapter 5, the various phenotypes of cells involved could be epithelial-like,
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partial-EMT and mesenchymal-like, and the mutations could take the form of EMT and
MET. Importantly, the phenotypes occurring along the epithelial-mesenchymal spectrum
and hence the respective mutations could be taken to occur in smaller steps rather than
as 3 discrete types of cancer cells as currently in Chapter 5.

Simulating cell interactions using spatial EGT can be computationally costly. This
imposed limits on the simulations we chose to run using this initial model that was
implemented using MATLAB. For instance, we limited the number of cells included in
the simulation either by choosing a relatively small grid with a high population density
(Scenario 1 and Scenario 2 ) or a larger grid with relatively low population density
(Scenario 3 and Scenario 4 ). Yet, if the respective code is written in a lower-level
language, like that of the C++ model introduced in Chapters 4 and 5, high-performance
computing could allow simulations over long time periods. Running these could be used
to investigate what the long-term outcome of cancer invasion and metastatic spread would
be in tumour microenvironments representing various organs.

All results presented here are preliminary results that require further theoretical in-
vestigation as well as quantification e.g. by running multiple simulations with the same
settings to inform us of the relative frequency of the results. This could, for example,
be achieved through recording the number of cells of type A and of type B over time as
well as through the maximal invasion depth and/or the area invaded by species B at any
point throughout the simulations. However, we are looking to increase the complexity
of the underlying model e.g. by allowing for mutations, haptotaxis and more realistic
payoff tables that may (locally) evolve over time to represent local changes in the tumour
microenvironment. Hence, we postpone more in-depth investigations to a later point.

7.3 Extensions to the 3D hybrid discrete-continuum
model of EMT-/MET-dependent cancer cell
invasion

Our long-term research aim is to create a multiscale full-organism modelling framework
of cancer invasion and metastatic spread. To achieve this, we will extend the current
work to include the representation of the single-cell scale, interactions between cells, as
well as the dynamics at the scale of the tissue in the domains accounted for in a more
biologically realistic manner.

Such a multiscale full-body framework can aid the understanding of the impact of
changes on the various scales on the overall disease evolution. It can hence be used
to model disease progression as well as the impact of treatment approaches in various
combinations and doses. This way, we can, for instance, learn about optimal dosing
of a particular drug in a particular patient or drug interactions, as explained in Chap-
ter 1 and Figure 1.1, while taking into consideration spatiotemporal dynamics of cancer
cell spread. Full-body and multi-organ models designed for purposes such as predicting
the absorption, distribution, metabolism and excretion (ADME) of synthetic or natural
chemical substances in humans and other animal species already exist, often in the form
of physiologically based pharmacokinetic (PKPB) models, see e.g. review in van Hasselt
and van der Graaf (2015). Some full-body models for pharmacokinetics also include mul-
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tiple scales—Chen et al. (2014), for instance, included the subcellular, cellular, and the
whole-body level in their model for immunogenicity. Such models typically represent
multiple organs as compartments and do not account for spatiotemporal effects as the
presence of e.g. drugs, antigens or oxygen in the respective compartments is modelled in
an ODE approach. However, as the spatial homogeneity typically associated with carci-
nomas is crucial to their disease evolution, the multiscale full-body modelling framework
we intend to construct would allow to understand and predict the disease and, later on,
its treatment in more biological detail.

To achieve enhancements on the smallest scale, we will combine this model, which
describes the motility of mesenchymal-like cancer cells through SDEs, with models that
account for cell motility in a biologically more realistic sense, cf. Sfakianakis et al. (2018b).

On the scale of cell-cell interactions, we are looking to include a merging and splitting
process that reflects the underlying biology in more detail. Within the scope of our model,
large particles, which biologically correspond to clusters of cells, arise from EMT through
the density-to-particle operator in Section 6.1.5. In the current simulations, we have set
mref, which determines the cluster size through the splitting and merging processes in
Section 6.1.6, to be such that any clusters of cells disaggregate into single cells. This is to
account for the fact that we consider a binary epithelial-mesenchymal spectrum so that
the mesenchymal-like cancer cells do not attach to other cells. If we decided to include
phenotypes along the EMT-spectrum (cf. Figure 2.11), this could be adjusted to account
for the existence of cell clusters in addition to the epithelial-like cancer cell sheets that
we consider in the current model. Conversely, merging of small particles in Section 6.1.6
is included in the model to account for close-range cell-cell interactions. This property of
the model will be investigated further in future work. Further possible extensions of the
model include accounting for cell-cell communication mediated by their filopodia as well
as the ECM (e.g. via durotaxis).

On the same scale, we will include the production of diffusible MMPs like MMP-2
by the cancer cells in the model rather than relying on ECM degradation by membrane-
bound MMPs like MT1-MMP only.

Finally, on the largest scale, the current work, which models experiments on domains
that represent organotypic assays, will be transferred to organs in the body where carcino-
mas typically develop. In the next step, the metastatic spread from this site in the body
to other sites will be accounted for through multiple domains in a multi-organ model,
cf. Chapters 4 and 5. We will then be able to provide a unified modelling framework
to account for a wide range of scales, spanning from the migration of individual cells to
whole-organism phenomena. The fundamental components for this extensive effort have
been provided in this thesis.
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Appendix A

Discretisation of the continuum model
underlying the metastasis framework in
Chapters 4 and 5

We discretise each of the equations (4.1.1), (4.1.2), (4.1.9) and (4.1.10) using an FTCS
scheme. Thus, we approximate the time-derivative on the left hand side by a forward
difference scheme of first order and the right hand side by the centred second order
difference scheme.

For clarity of notation, when discretising equations (4.1.1) and (4.1.2), we denote
k = E,M to represent the coefficients corresponding the epithelial and mesenchymal
cancer cells, respectively, and further drop the index k to when describing the cancer cell
type, hence denoting ck = c. This yields

cn+1
i,j − cni,j

∆t
= Dk

(
cni+1,j − 2cni,j + cni−1,j

(∆x)2
+
cni,j+1 − 2cni,j + cni,j−1

(∆y)2

)
− Φk

[
(cni+1,j − cni−1,j)(w

n
i+1,j − wni−1,j)

4(∆x)2
+
wni+1,j − wcni,j + wni−1,j

(∆x)2

+
(cni,j+1 − cni,j−1)(wni,j+1 − wni,j−1)

4(∆y)2
+
wni,j+1 − 2wni,j + wni,j−1

(∆y)2

]
.

By continuing with the notation c = ck, k = E,M and solving for cn+1
i,j , the number of

cancer cells of epithelial and of mesenchymal phenotype, respectively, at grid point (xi, yj)
at time tn+1,

cn+1
i,j = P0c

n
i−1,j + P1c

n
i+1,j + P2c

n
i,j+1 + P3c

n
i,j−1 + P4c

n
i,j,
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where

P0 : Pni−1,j :=
∆t

(∆x)2

[
Dk −

Φ
k

4

(
wni+1,j − wni−1,j

)]
,

P1 : Pni+1,j :=
∆t

(∆x)2

[
Dk +

Φ
k

4

(
wni+1,j − wni−1,j

)]
,

P2 : Pni,j+1 :=
∆t

(∆y)2

[
Dk +

Φ
k

4

(
wni,j+1 − wni,j−1

)]
,

P3 : Pni,j−1 :=
∆t

(∆y)2

[
Dk −

Φ
k

4

(
wni,j+1 − wni,j−1

)]
,

P4 : Pni,j := 1− ∆t

(∆x)2
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2Dk − Φ
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wni+1,j − 2wni,j + wni−1,j

)]
− ∆t

(∆y)2

[
2Dk − Φ
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(
wni,j+1 − 2wni,j + wni,j−1

)]
.

If we substitute ∆x = ∆y, the five equations above simplify to equations (4.1.4), i.e.

P0 : Pni−1,j :=
∆t

(∆x)2

[
Dk −

Φ
k

4

(
wni+1,j − wni−1,j

)]
,

P1 : Pni+1,j :=
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Dk +

Φ
k
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wni+1,j − wni−1,j

)]
,

P2 : Pni,j+1 :=
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(∆x)2

[
Dk +

Φ
k

4

(
wni,j+1 − wni,j−1

)]
,

P3 : Pni,j−1 :=
∆t

(∆x)2

[
Dk −

Φ
k

4

(
wni,j+1 − wni,j−1

)]
,

P4 : Pni,j := 1− ∆t

(∆x)2

[
4Dk − Φ

k

(
wni+1,j + wni−1,j + wni,j+1 + wni,j−1 − 4wni,j

)]
.

Note that the discretisation time step ∆t and space steps ∆x and ∆y were chosen to
represent the physical properties of cancer cell size and remain fixed in corresponding
equations. However, the abiotic time step ∆ta and the abiotic space steps ∆xa and
∆ya used in the discretisation of the equations describing the MMP-2 concentration and
ECM density can be chosen freely for a more accurate discretisation of the PDEs in
(4.1.9) and (4.1.10), as long as ∆t, ∆x and ∆y are integer multiples of ∆ta, ∆xa and
∆ya, respectively. Consequently, when discretising equation (4.1.9), we obtain

mn+1
i,j −mn

i,j

∆ta
= Dm

(
mn
i+1,j − 2mn

i,j +mn
i−1,j

(∆xa)2
+
mn
i,j+1 − 2mn

i,j +mn
i,j−1

(∆ya)2

)
+ΘcM

n
i,j−Λmn

i,j.

Solving for mn+1
i,j , the MMP-2 concentration at grid point (xi, yj) at time tn+1, and sub-

stituting ∆x = ∆y, we find

mn+1
i,j = ∆ta

[
Dm

(
mn
i+1,j +mn

i−1,j +mn
i,j+1 +mn

i,j−1 − 4mn
i,j

(∆xa)2

)
+ ΘcM

n
i,j − Λmn

i,j

]
+mn

i,j
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and hence

mn+1
i,j = Dm

∆ta
(∆xa)2

(
mn
i+1,j +mn

i−1,j +mn
i,j+1 +mn

i,j−1

)
+mn

i,j

(
1− 4Dm

∆ta
(∆xa)2

−∆taΛ

)
+ ∆taΘcM

n
i,j. (A.0.1)

Finally, from the FTCS discretisation of equation (4.1.10), we obtain

wn+1
i,j − wni,j

∆ta
= −

(
Γ1cM

n
i,j + Γ2m

n
i,j

)
wni,j.

Solving for wn+1
i,j , the number of cancer cells at grid point (xi, yj) at time tn+1, yields

wn+1
i,j = wni,j

[
1−∆ta

(
Γ1cM

n
i,j + Γ2m

n
i,j

)]
. (A.0.2)
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Appendix B

Pseudo-code for the metastasis models
in Chapters 4 and 5

Here, we provide pseudo-code that provides insight into the computational implementa-
tion of the mathematical multi-organ model of metastatic spread. All of the pseudo-code
applies to the model introduced in Chapter 5. For the model in Chapter 4, the underlined
parts are omitted. Also, note that only some level of detail is provided to avoid repetition
of the model outlines given in Sections 4.1 and 5.1. The reader is referred there for further
detail e.g. on the entry conditions of the cells of various phenotypes to each of the vessel
types or the types of mutations that occur on the various grids. The pseudo-code then
reads as follows:

1. Plant seeds for random number generator

2. Create primary and secondary grids with their initial ECM density, vessels, and
restriction zones for the initial cancer cell placement

3. Create the initial batch of cancer cells one after the other on the primary grid by
storing them in a vector with their attributes (coordinates, grid, alive or dead, cell
phenotype, age)

4. Main loop

4.1. Print grids

4.2. Simulate primary grid, cancer cell by cancer cell (in order of their creation)

4.2.1. Increase cell age
4.2.2. Process cells on vessel grid points:

• If vessel entry condition fulfilled: add cell(s) to vessel vector, tag jointly
entering cells as a cluster and remove them from the grid
• else: do not alter cell position

4.2.3. Cells on non-vessel grid points proliferate while potentially undergoing
EMT, as explained graphically in the left column of Figure 5.2

4.2.4. Erase dead cells

4.3. Process cancer cells in vessel in order of their entry time
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4.3.1. Decrease time to remain in vessel for each cell in vessel
4.3.2. Process potential cluster disaggregation for cells that have spent half of

the total time in the vasculature
4.3.3. For cells that have spent sufficient time in the vasculature, determine if

they die or survive according to the specific death probabilities associated
with cells in clusters versus single cells of the various phenotypes
• if cell dead: remove from simulation
• else: remove from vessel and determine grid and vessel to place the

cell or cell cluster on
– if vessel grid point not filled to carrying capacity Q: place cell(s) on

vessel grid point
– else if vessel grid point filled to carrying capacity Q but neighbour

grid points provide space: place on random grid point neighbouring
vessel grid point

– else: remove cell from simulation

4.4. Simulate cancer cells on secondary grids cell by cell (in order of their arrival
at or creation on the respective secondary grid)

4.4.1. Increase cell age
4.4.2. Cells on all grid points proliferate—while potentially undergoing MET as

shown in the right column of Figure 5.2—, remain dormant, or die
4.4.3. Erase dead cells

4.5. Update the ECM density by degrading it according to the MDE concentration
on each grid point (grid point by grid point, starting top left to bottom left
and then moving through the grid points left to right, column by column)
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Appendix C

Numerical method for the ARD model
in Chapter 6

We use a second order Implicit-Explicit Runge-Kutta (IMEX-RK) Finite Volume (FV)
numerical method that was previously developed in Kolbe et al. (2016); Sfakianakis et al.
(2017), where we refer to for more details. Here we provide a basic description of the
method.

For ease of presentation, we consider the generic ARD system to be of the form

wt = A(w) +R(w) +D(w), (C.0.1)

where w represents the solution vector, and A, R, and D the advection, reaction, and
diffusion operators respectively.

We denote bywh(t) the corresponding semi-discrete numerical approximation—indexed
here by the maximal spatial grid diameter h—that satisfies the system of ODEs

∂twh = A(wh) +R(wh) +D(wh), (C.0.2)

where the numerical operators A, R, and D are discrete approximations of the operators
A, R, and D in (C.0.1) respectively.

Our method of choice for solving (C.0.2) is an IMEX-RK method based on an explicit
and implicit splitting of the form

∂twh = E(wh) + I(wh). (C.0.3)

The actual splitting depends on the particular problem at hand but in a typical case, the
advection terms A are treated explicitly in time, the diffusion terms D implicitly, and
the reaction terms R partly explicitly and partly implicitly.

More precisely, we employ a diagonally implicit RK method for the implicit part, and
an explicit RK for the explicit part

W∗
i = wn

h + τn

i−2∑
j=1

āi,jEj + τnāi,i−1Ei−1, i = 1 . . . s,

Wi = W∗
i + τn

i−1∑
j=1

ai,jIj + τnai,iIi, i = 1 . . . s,

wn+1
h = wn

h + τn

s∑
i=1

b̄iEi + τn

s∑
i=1

biIi.

(C.0.4)
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Table C.1: Butcher tableaux for the explicit (upper) and the implicit (lower)
parts of the third-order IMEX scheme in equation (C.0.4). See Kennedy and
Carpenter (2003) for further information.

0

1767732205903
2027836641118

1767732205903
2027836641118

3
5

5535828885825
10492691773637

788022342437
10882634858940

1 6485989280629
16251701735622

− 4246266847089
9704473918619

10755448449292
10357097424841

1471266399579
7840856788654

− 4482444167858
7529755066697

11266239266428
11593286722821

1767732205903
4055673282236

0 0
1767732205903
2027836641118

1767732205903
4055673282236

1767732205903
4055673282236

3
5

2746238789719
10658868560708

− 640167445237
6845629431997

1767732205903
4055673282236

1 1471266399579
7840856788654

− 4482444167858
7529755066697

11266239266428
11593286722821

1767732205903
4055673282236

1471266399579
7840856788654

− 4482444167858
7529755066697

11266239266428
11593286722821

1767732205903
4055673282236

Here s = 4 are the stages of the IMEX method, Ei = E(Wi), Ii = I(Wi), i = 1 . . . s,
{b̄, Ā}, {b, A} are respectively the coefficients for the explicit and the implicit part of the
scheme given by the Butcher Tableau in Table C.1, cf. Kennedy and Carpenter (2003).
We solve the linear systems in (C.0.4) using the iterative biconjugate gradient stabilised
Krylov subspace method (Krylov, 1931; van der Vorst, 1992).
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