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Glacial lakes exacerbate Himalayan
glacier mass loss

Owen King?*, Atanu Bhattacharya®?, Rakesh Bhambri® & Tobias Bolch?

Heterogeneous glacier mass loss has occurred across High Mountain Asia on a multi-decadal timescale.
Contrasting climatic settings influence glacier behaviour at the regional scale, but high intra-regional
variability in mass loss rates points to factors capable of amplifying glacier recession in addition to
climatic change along the Himalaya. Here we examine the influence of surface debris cover and glacial
lakes on glacier mass loss across the Himalaya since the 1970s. We find no substantial difference in

the mass loss of debris-covered and clean-ice glaciers over our study period, but substantially more
negative (—0.13 to —0.29 m w.e.a~*) mass balances for lake-terminating glaciers, in comparison to
land-terminating glaciers, with the largest differences occurring after 2000. Despite representing

a minor portion of the total glacier population (~10%), the recession of lake-terminating glaciers
accounted for up to 32% of mass loss in different sub-regions. The continued expansion of established
glacial lakes, and the preconditioning of land-terminating glaciers for new lake development increases
the likelihood of enhanced ice mass loss from the region in coming decades; a scenario not currently
considered in regional ice mass loss projections.

Glacier mass loss has occurred across large parts of High Mountain Asia over at least the last four decades!,
although substantial spatial variability has been documented in the magnitude of glacier mass loss in the region.
Glaciers in the Karakoram, Kunlun Shan and eastern Pamir have maintained mass balance to the present day**~7,
whereas glaciers located in the Himalaya, in the Tien Shan and Nyaingentanghla have experienced substantial
mass loss in recent decades®®. The disparity in regional mass loss rates has been attributed to the diminished
sensitivity to warming of glaciers in the Karakoram, Kunlun Shan and eastern Pamir due to their accumulation
of snowfall in winter months, rather than during the summer monsoon along the Himalaya®. However, large
intra-regional variability in glacier mass loss is evident along the Himalayan arc®’, which suggests factors exist
that are capable of exacerbating glacier recession in addition to climatic change here.

Glaciers situated in the Himalaya commonly have extensive debris cover'’, and an increasing number termi-
nate into a glacial lake'!. A continuous debris mantle thicker than a few centimetres dampens sub-debris ablation
rates'?. Modelling studies have shown how debris cover enables the persistence of greater glacier area in com-
parison with clean-ice in a changing climate'>!*. However, comparable thinning rates have been observed for
clean-ice and debris-covered glaciers at similar elevations'>-'” at several locations in the Himalaya.

Glacial lakes amplify ice loss from their host glaciers through mechanical calving and subaqueous mel
There are currently more than 700 proglacial lakes in the Himalaya!?, which are all capable of directly influ-
encing the behaviour of their host glacier. Proglacial lake area expanded by >50% in the Himalaya between
1990 and 2015'". Enhanced glacier area reductions have been observed from lake-terminating glaciers in the
Sikkim Himalaya?!, and elevated glacier mass loss from lake-terminating glaciers has recently been confirmed as a
region-wide phenomenon®?*?*. However, a comprehensive analysis of the impact of glacial lakes on glacier retreat
and mass loss rates in the Himalaya is still lacking.

The main aim of this study is therefore to examine the influence of a debris mantle and glacial lake develop-
ment on the long-term evolution of Himalayan glaciers in detail, in order to improve our understanding of the
regional variability of ice loss rates. We quantify mass loss and terminus retreat from lake and land-terminating
glaciers along the Himalayan arc since the 1970s, using optical and radar based remotely-sensed datasets. We use
these data to discuss the role of debris cover and glacial lakes as drivers of glacier mass loss in the Himalaya and
consider the future evolution of glaciers in the region.
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Figure 1. Regional glacier mass balance estimates across the Himalaya over the period ~1974-~2015,
subdivided depending on glacier terminus type. Regional and land-terminating glacier mass balance estimates
are the same for the period 2000-~2015 in Central West 1, and there are no lake-terminating glaciers covered in
our ~1974-2000 dataset in the West Himalaya. Black boxes mark Hexagon footprint extent, which are lacking
for Central 2 and Far East study areas due to inadequate quality of available Hexagon data. Orange polygons

are from the Randolph Glacier Inventory version 6.0. Country boundaries are tentative and for orientation

only. This figure was generated using ArcGIS, vers. 10.3 (http://www.esri.com/software/arcgis/arcgis-for-
desktop) and Inkscape, vers. 0.92.4 (https://inkscape.org/).

Glacier Mass Balance and Ice Front Retreat Rates

We generated geodetic glacier mass balance estimates for two periods using digital elevation models (DEM)
derived from Hexagon KH-9 stereoscopic imagery (spanning the period 1973-1976, supplementary informa-
tion), the Shuttle Radar Topographic Mission DEM (2000), and 499 DEMs generated from WorldView and
Geoeye optical stereo pairs (spanning the period 2012-2016%*). Our assessment of contemporary (hereafter
2000-~2015) glacier mass loss rates covers a continuous swath from Jammu and Kashmir in the West of the
Himalaya, to the Arunachal Pradesh in the Far East of the Himalaya (Fig. 1) and encompasses 1275 glaciers
greater than 1 km? in area (7450 km? in total). Our assessment of 1973-6 to 2000 (hereafter ~1974-2000) glacier
mass loss focusses on six regions (Fig. 1) and includes mass loss estimates for 939 glaciers (4834 km? glacier area).
We paired glacier mass balance data with estimates of glacier ice front retreat for a subset of 325 glaciers located
in the same areas covered by Hexagon data. Ice front retreat was measured between the date of the Hexagon
(1973-6), Landsat (1999-2002) and Sentinel imagery (2017/18).

Results: Temporal Variability in Glacier Mass Loss

Pervasive increases in ice mass loss and divergent ice mass loss depending on glacier terminus type are both evi-
dent in our results (Fig. 2). The mean mass balance of all glaciers within our sample over the period ~1974-2000
was —0.25+0.09 m water equivalent (w.e) a~!, ranging from —0.20 £0.08 to —0.29 £0.10 m w.e.a”'. The mean
mass balance of all glaciers between 2000 and ~2015 was —0.39 £0.12m w.e.a™!, ranging from —0.26 £0.11
to —0.54 £ 0.20m w.e.a™! (Table 1). Glacier mass loss rates increased without exception in our study regions
(Table 1, Fig. 1). Our results are in tendency in line with those of’, although our data do not support their finding
that contemporary ice loss rates have increased to double those of the ~1974 to 2000 period (from —0.25+0.09 to

SCIENTIFICREPORTS|  (2019)9:18145 | https://doi.org/10.1038/s41598-019-53733-x


https://doi.org/10.1038/s41598-019-53733-x
http://www.esri.com/software/arcgis/arcgis-for-desktop
http://www.esri.com/software/arcgis/arcgis-for-desktop
https://inkscape.org/

www.nature.com/scientificreports/

~
N}
N
=
-
~

Debris cover ~1974-2000
[l <19% debris (n=805)|
[ >19% debris (n=86)
| <19% debris mean |16
i >19% debris mean

Lake-terminating
[l 2000-~2015 (n=96)
[l ~1974-2000 (n=43)

| 2000-~2015 mean
1 ~1974-2000 mean

@
nd
=
o

IS
3

N
=

Number of glaciers
o

Number of glaciers (clean ice)
= w
lTl o

,_.
N
Number of glaciers (debris covered)

=}

<
-

*Q
S

] AR ]
AR

0.4
0.3
0.2
0.1
0
0.1
£.02
-0.5
0.4

M %
e ? <
s balance (mw.e.a™)
Debris cover 2000-~2015
B <19% debris (n=1034)
B >19% debris (n=176)
| <19% debris mean | 59
i >19% debris mean

e~
S 9
m

-
N}
o
w
o
.
1N}
o

Land-terminating
[l 2000-~2015 (n=1114),
[ ~1974-2000 (n=724)

| 2000-~2015 mean

i ~1974-2000 mean

(oe]
O

=

1S)

o
15)
=)

3
o
0
<}

N
1<)

IS
o
Number gf glaciers |,
o

N
o

Number of glaciers (clean ice)
[}
o

~N
o

,_.
v
Number of glaciers (debris covered)

=}
o

< Mmoo bl B B 4
©c oo o o229

©
balance (mw.e.a™) Mass balance (mw.e.a™)

m-.

Figure 2. The distribution of glacier mass balance estimates for clean-ice (<19% debris cover) and debris-
covered (>19% debris cover) glaciers over the period ~1974-2000 (A), and 2000-~2015 (B), lake-terminating
(C) and land-terminating glaciers (D) across both study periods. Note variable scaling on y-axis.

West —0.21+0.08 |n/a —0.21+0.08 |n/a —0.40+0.06 | —0.49+0.08 |—0.39+0.06 |0.10
S\/eezirfl —0.26+0.08 | —0.314+0.08 | —0.24+0.08 |0.07 —0.41+£0.10 | —0.67+0.10 | —0.38+£0.09 |0.29
Central

West 2 —0.244+0.11 | —0.2640.11 —0.23+0.10 | 0.03 —0.26+0.11 | —0.41+0.10 |—0.26+0.11 |0.15
Central 1 —0.27+0.10 | —0.36+0.10 |—0.24+0.10 |0.12 —0.37+0.11 | —0.48+0.12 | —0.35+0.11 |0.13
Central 2 n/a n/a n/a n/a —0.37+0.12 —0.53+0.12 —0.35+0.11 0.18
Central East —0.29+0.10 | —0.374+0.10 |—0.27+£0.10 |0.10 —0.37+£0.11 | —0.48+0.11 —0.35+0.11 |0.13
East —0.20+0.08 | —0.314+0.07 | —0.18+£0.08 |0.13 —0.43+0.12 | —0.59+0.12 | —0.38+£0.11 |0.21
Far East n/a n/a n/a n/a —0.54+0.20 —0.76+0.24 —0.53+0.18 0.23
All —0.25+0.09 | —0.324+0.09 | —0.23+0.09 |0.09 —0.39+0.12 | —0.55+0.12 | —0.37+£0.12 |0.18

Table 1. Geodetic mass balance (mb) estimates for glaciers located in different regions across the Himalaya
over the two time periods of this study.

—0.39+£0.12m w.e.a '), as’ suggest (from —0.22+0.13 to —0.43 +0.14m w.e.a™!), particularly considering the
levels of uncertainty associated with the mass balance data.

The role of debris cover in glacier evolution.  To examine the relative importance of the presence of a
debris mantle on glacier mass loss rates, we subdivided our mass balance datasets depending on debris extent,
following the approach of?? (methods). Akin to*?, we find no significant difference between thinning rates (Fig. 3)
or mass balance of land-terminating glaciers with and without substantial debris cover. Over the period 2000-
~2015 clean-ice, land-terminating glacier mass balance was —0.35 £ 0.12m w.e.a”!, whereas debris-covered,
land-terminating glacier mass balance was slightly more negative at —0.41 & 0.12m w.e.a”!. Further to%,
we find similar mass loss rates irrespective of debris cover extent over the period ~1974-2000. Clean-ice,
land-terminating glacier mass balance was —0.22 +0.08 m w.e.a™!, whereas debris-covered, land-terminating
glacier mass balance was again slightly more negative at —0.29 +0.08 m w.e.a"'. These results show that simi-
lar ice loss from debris-covered compared to debris-free glaciers is not a recent phenomenon. Using unpaired,
two-tailed t-tests, we examined the statistical characteristics of the differences between mass balance estimates
for debris-covered and clean-ice glaciers (supplementary tables 7 and 8). In five of our eight sub-regions, we find
little evidence of significant differences in the mass balance of debris-covered and clean-ice glaciers (p > 0.05,
t0.05-1.35) over the period 2000-~2015 (supplementary table 8). The coverage of our ~1974-2000 mass bal-
ance dataset did not allow for the statistical analyses of differences in all sub-regions, but in four cases we find
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Figure 3. The cumulative ice front retreat (dTerm) of a subset (n =325) of lake (A) and land-terminating (B)
glaciers located across the Himalaya between 1973 and 2018. The relationship between glacier surface elevation
change and elevation for lake-terminating (C) and land-terminating (D) glaciers with and without substantial
debris cover.

little evidence of significant differences in the mass balance of debris-covered and clean-ice glaciers (p > 0.05, t
1.07-1.91) over this study period.

Terminus type variability in ice loss. The mean mass balance of lake-terminating glaciers was substan-
tially more negative than that of land-terminating glaciers (Table 1), thus we focus the remainder of our analyses
on the impact of glacier-lake interactions on glacier mass loss. Over the period ~1974-2000, lake-terminating
glacier mass balance (mean —0.32+0.12m w.e.a”!) more negative than land-terminating glacier mass balance
(—0.23 £0.09 m w.e.a™!) across the Himalaya (Fig. 2), ranging from 0.03 m w.e.a~! (Central West 1) to 0.13m
w.e.a”! (East) for specific regions (Table 1). Over the period 2000-~2015, the difference between lake-terminating
glacier mass balance (—0.55+0.12m w.e.a ') and land-terminating glacier mass balance (—0.37£0.12m w.e.a )
was double that of the earlier time period, again varying from 0.10m w.e.a' (West) to 0.29 m w.e.a' (Central West
1) for different sub-regions (Table 1). The mass balance of debris-covered (—0.51+£0.12m w.e.a™!) and clean-ice
(—0.67 £ 0.15m w.e.a ') lake-terminating glaciers were both substantially more negative than land-terminating,
debris-covered (—0.41+0.12m w.e.a™!) and clean-ice glaciers (—0.35+0.12m w.e.a™!) (supplementary table 4),
thus terminus type appears to exert a much stronger influence on glacier mass balance than debris extent.

Again we examined the statistical characteristics of terminus-type dependant differences in our mass bal-
ance datasets (supplementary tables 7 and 8). In two out of three sub-regions tested for the period ~1974-2000
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~1974 to 2000 2000 to 2013-16
% of glacier % of glacier
population % contribution of | population % contribution of
Himalaya lake-terminating regional ice mass | lake-terminating regional ice mass
Region glaciers loss glaciers loss
West n/a n/a <1 1
Central West1 | 9 32 10 30
Central West2 | 1 4 1 4
Central 1 11 17 14 23
Central 2 n/a n/a 9 15
Central East 11 20 15 30
East 14 21 22 29
Far East n/a n/a 4 11
All 9.2(11) 18.8 (23) 9.5(15) 18(28)

Table 2. The contribution of lake-terminating glaciers to glacier mass loss from different catchments over the
two time periods of this study. Numbers in parentheses represent mean values for the West, Central 1, Central
East and East Himalaya regions, where glacial lakes are most prevalent.

p <0.05, although t-values were low (2.05-2.51), suggesting a less robust relationship between terminus type and
mass loss rates over this earlier period. In the five sub-regions where data quantity allowed for statistical analyses,
terminus type dependant differences in mass balance were all significant (p < 0.05, t 2.65-5.88) over the period
2000-~2015, which suggests the much greater impact of glacial lake growth on glacier mass loss rates towards the
present day over large parts of the Himalaya.

Glacier terminus retreat accompanied the widespread glacier thinning across the Himalaya (Figure 3). Over
the period ~1974-2000, land-terminating glaciers retreated at a mean rate of 7.1 = 1.1 m a~!, ranging only slightly
between regions (Supplementary Table 6). Lake-terminating glaciers retreated at a mean rate of 15.9+1.1ma"!
over the same period. Glacier terminus retreat rates increased without exception across the two time periods, to
amean rate of 10.4 + 1.4m a~! for land-terminating glaciers and 26.8 + 1.4 m a~! for lake-terminating glaciers,
respectively, over the period 2000-2018 (Supplementary Table 5). The retreat rate of land-terminating glaciers
increased on average by ~46% between the two study periods, whereas lake-terminating glacier retreat rates
increased by almost 70%. Along glacier centrelines (see methods), land-terminating glaciers reduced in length
by a mean value of 9%, ranging from no change (where heavily debris-covered) to 33%, between the 1970s and
2018. Lake-terminating glacier length reduced by a mean of 13%, ranging from <1 to 49%, over the same period.

Examination of the altitudinal distribution of glacier surface elevation changes shows ice loss at the
glacier-lake interface to be the main driver of the enhanced mass loss from lake-terminating glaciers (Fig. 3).
Thinning rates of ~1 m a~! were pervasive for ablation zones of land-terminating glaciers across the Himalaya
(Fig. 3) over the period 2000-~2015. In contrast, lake-terminating glaciers thinned by up to 4m a~! at their ter-
mini in some regions (Eastern Himalaya), and large portions of their ablation zones thinned at a greater rate than
land-terminating glaciers. Similar thinning patterns are evident for glaciers of different terminus type over the
period ~1974-2000 (Fig. 3), although thinning rates were of lesser magnitude. Land-terminating glacier ablation
zones thinned at a rate of ~0.5m a™! over the period ~1974-2000, whereas lake-terminating glacier ablation zones
lowered at a mean rate of ~1 m a~! over the same period.

Lake-terminating glaciers constituted only a small portion of the glacier population in each region, yet they
were responsible for a substantial amount of the regional ice mass loss, across both study periods (Table 2).
Lake-terminating glaciers accounted for ~32% of the ice mass loss in our Central West 1 study area (Fig. 1) over
the period ~1974-2000, despite just ~9% of the glacier population terminating into a lake. Lake-terminating
glaciers in the Central 1, the Central East and East Himalaya contributed ~20% of the total regional ice mass
loss whilst accounting for 11-14% of the glacier population over the period ~1974-2000. The contribution of
lake-terminating glaciers to intra-regional ice mass loss budgets increased by ~21% after 2000, where glacial
lakes are prevalent. Lake-terminating glaciers in Central West 1, Central East and East Himalaya provided similar
proportions (30, 30 and 29%, respectively) of the total regional mass loss over this period (Table 2). The regional
mass balance in the Central West 2 region, where only a few lake-terminating glaciers are situated, remained
almost unchanged (—0.2440.11 Vs —0.26 £0.11 m w.e. a ') between the two study periods.’ estimated that only
5-6% of the total ice mass loss from the entire Himalaya is provided by lake-terminating glaciers, although their
analyses is limited to glaciers >3 km? in size, and® show that smaller lake terminating glaciers generally display
the most negative mass balance.

We measured comparable mass loss rates from glaciers in the (West) Himalaya, where few glacial lakes are
situated, to regions where glacial lakes have exacerbated ice mass loss (Table 1). Glaciers in Garwhal Himalaya
exist in a unique climatological setting. They receive the majority of their precipitation from mid-latitude winter
westerlies"*, but experience mean annual temperatures more akin to the central Himalaya, rather than the colder
Karakoram®. The sensitivity of snowfall to warming is therefore higher in this region, and long-term temperature
increases®*® have heavily impacted both seasonal snowfall’**” the phase of summer precipitation'”?, and there-
fore glacier mass balance in this region.
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Discussion: Implications for Future Glacier Evolution

Our results clearly emphasise the strong impact of glacial lake development on glacier recession along the
Himalaya since the mid-1970s, alongside atmospheric warming’. Over this period, lake-terminating glacier mass
balance was substantially more negative than that of land-terminating glaciers, and lake-terminating glacier ter-
mini retreated at twice the rate of their land-terminating counterparts. Although lake-terminating glaciers make
up only a small portion of the total glacier population (~10%), they are responsible for a disproportionate share
of intra-regional ice mass loss. Where lake-terminating glaciers are most prevalent (Central West 1, Central 1,
Central East and East Himalaya), lake-terminating glacier recession accounted for almost 30% of the total ice
mass loss, despite comprising only ~15% of the glacier population, over the period 2000-~2015. This contribu-
tion increased from ~23% over the period ~1974-2000, when ~11% of the glacier population terminated into
glacial lakes. Statistical analyses of our mass balance datasets also indicate the now widespread influence of glacier
terminus type on glacier mass loss rates. Where glacial lakes were not prevalent (Central West 2), regional mass
loss rates have remained steady over the last four decades.

The magnitude of the contribution of lake-terminating glaciers to regional ice loss is unlikely to diminish in
coming decades, given the sustained expansion of currently proglacial lakes across the Himalaya'***, and the
preconditioning of many debris-covered, land-terminating glacier surfaces for meltwater storage.’® suggest that
the transition of many debris-covered glaciers from land-terminating to lake-terminating is a likely scenario in
the later stages of glacier wastage. Indeed, more than 25% of the debris-covered glaciers we examined hosted
glacial lakes, and debris-covered, lake-terminating glaciers displayed the highest mass loss rates of all glaciers
we surveyed (—0.67 £0.15m w.e.a”!, supplementary table 4). Widespread glacier surface velocity reductions®,
sustained glacier thinning (Fig. 3) and associated surface slope reductions® will allow for the formation of more
extensive supraglacial pond networks on many debris-covered glaciers, which will eventually coalesce to become
pro-glacial lakes®'. The heightened mass loss from such glaciers will sustain their contribution to the regional
mass loss budget in coming decades.

Our results show that several decades of enhanced ice loss is possible whilst glacier-lake interactions drive the
dynamic evolution of such glaciers. Increased thinning rates and amplified terminus retreat rates (Fig. 3) were
documented for the majority of the population of lake-terminating glaciers we assessed over the >40 year study
period. The amplified thinning towards lake-terminating termini is due to the occurrence of both mechanical
calving and subaqueous melt'®'°. The increase in thinning rates over lake-terminating glaciers across the two
study periods (Fig. 3) is likely to have been driven by the increased areal extent'"* and the depth?®® of glacial lakes
across the region in recent decades. Increased proglacial lake depth exacerbates calving fluxes'®** and increases
the glacier-lake contact area prone to subaqueous melt and can also influence glacier flow rates®?, which increases
ice fluxes towards the lake each glacier hosts. The dynamic behaviour of lake-terminating glaciers is in stark con-
trast to land-terminating glaciers along the Himalaya, which have experienced substantial velocity reductions in
response to thinning and driving stress reductions since 2000°.

The comparability of ice loss rates from debris-covered and clean-ice glaciers suggests that localised abla-
tive processes, such as ice cliff and supraglacial pond expansion®*-*’, have contributed substantially to individ-
ual glacier mass budgets for much longer than previously thought, even during times of less negative glacier
mass balance. Estimates of the contribution of ice-cliff backwasting to individual glacier ablation budgets in the
Himalaya range from 7-40%¢-%%. suggest that the absorption and redistribution of energy by supraglacial ponds
may account for 6-19% of surface ablation on debris-covered glaciers in the Langtang catchment. In combina-
tion, these processes may drive substantial ablation in heavily debris-mantled areas of glaciers. Pervasive glacier
stagnation®! may also be contributing to the comparability of debris-covered and clean-ice glacier thinning rates,
with reduced emergence velocities in debris-covered areas®® aiding thinning. Disentangling the contribution of
each ablative process is key to understanding the evolution of debris-covered, land-terminating glaciers in the
Himalaya.

In order to understand whether the contribution of lake-terminating glaciers to regional ice mass loss may
increase further, both the prevalence of the formation of new glacial lakes, and the impact of multi-decadal glacier
thinning on the dynamics of lake-terminating glaciers need to be better understood. If lake-terminating glacier
behaviour is not considered in future ice mass loss scenarios, ice mass loss from the Himalaya, and other regions
where glacial lakes are common, may be substantially underestimated.

Methods

DEM pre-processing and dh/dt correction.  The methods of* were followed to eliminate planimetric and
altimetric shifts from HMA DEMs and Hexagon KH-9 DEMs. The non void-filled, 30 m resolution SRTM DEM
(https://earthexplorer.usgs.gov/) was used as the reference DEM and the RGI V6.0 glacier inventory*’, which was
modified manually to reflect glacier extent visible in the Hexagon imagery from the 1970s, was used to isolate
dh/dt data over stable ground from which shift vectors were calculated. Along-track and cross-track biases were
not prevalent in HMA DEMs. To remove tilts from Hexagon KH-9 DEMs, a second order global trend surface
was fitted to non-glacierised terrain, considering elevation differences between £150 m and inclination <15°%,
Following the coregistration of DEMs from different epochs, individual DEMs were differenced to obtain eleva-
tion change data over different time periods.

The SRTM DEM is known to have underestimated glacier surface elevations due to C-band radar penetra-
tion*!. Failure to correct such a penetration bias may cause a 20% underestimate in regional mass balance esti-
mates*2. We corrected dh/dt data derived using the SRTM DEM using the penetration estimates of'*, which were
estimated through the reconstruction of glacier surface elevations at the point of SRTM acquisition via the extrap-
olation of a time series of IceSat data (spanning the period 2003-2009), with the difference between the two data-
sets assumed to represent C-band penetration depths. The direct validation of SRTM penetration depth estimates
are difficult due to the lack of information available about spatially variable glacier surface conditions (snowpack
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depth and extent) at the time of SRTM DEM acquisition. We compared our geodetic mass balance estimates
with those derived using alternative methods and baseline datasets not affected by C-band radar penetration
(Supplementary Table 3), and find a mean difference of —0.02m w.e. a ! (ranging from —0.12 to + 0.08 m w.e.
a~1) between estimates of regional mass loss over directly comparable time periods generated by®. This suggests
the successful elimination of C-band radar penetration biases.

The derivation of geodetic mass balance estimates involves the summation of glacier mass loss or gain over
the entirety of a glacier’s surface. Variable glacier surface conditions and the extreme topography of glacierised
mountain regions means data gaps and anomalous surface elevation values are common in DEMs generated from
remotely-sensed imagery. Data gaps and anomalies are inherited by glacier surface elevation change data once
DEMs from two time periods are differenced, and they must be filled or removed through filtering for glacier
mass loss to be captured accurately.

The approach of*® was employed to filter the surface elevation change data generated using Hexagon KH-9
data. This approach involves the filtering of surface elevation change data depending on the standard deviation of
elevation changes, weighted by an elevation dependent coefficient. The approach of** allows for stricter filtering
of elevation change data at higher elevations, where outliers arising from poor image contrast in glacier accumu-
lation zones are common and where the magnitude of elevation changes are expected to be lower. More lenient
filtering of elevation change data is required over glacier ablation zones, where optical contrast and therefore
Hexagon DEM quality was higher.

The improved spatial and spectral resolution of the WorldView and Geoeye imagery in comparison to the
Hexagon data means superior coverage of DEMs was available over glacier accumulation zones in our later study
period. The remnant anomalies present in our contemporary (SRTM-HMA) surface elevation change data-
set, mainly resulting from errors in the SRTM DEM, were eliminated following the simpler approach of*. The
approach of* involves the removal of values greater than +/— 3 standard deviations of the mean elevation change
in 100 m altitudinal bins through the elevation range of glacierised terrain.

We employed a two-step gap filling approach; first we used a 4 x 4 cell moving window to fill small (a few
pixels) data gaps with mean elevation change data from neighbouring cells. We then filled larger data gaps with
median values of surface elevation change calculated across each 100 m increment of the glaciers elevation range.
Both approaches have been shown to have limited impact on glacier mass loss estimation*. Data gaps were most
prevalent in surface elevation change data derived from Hexagon imagery, varying from 5.5-14.5% of glacier
area for different sub-regions. We converted surface elevation change data to ice volume considering the grid size
of our dh/dt data (30 m pixels), and then to glacier mass change using a conversion factor of 850 == 60 kgm™3 *.

Glacier mass balance subdivision. We divided our samples of glacier mass balance depending on their
terminus type and debris extent. Terminus type was determined manually using satellite imagery from each date
as reference, with contact required between a proglacial lake and its host glacier to allow for its classification of
lake-terminating. We replicated the approach of*? to divide our mass balance data depending on debris-extent,
and classified glaciers as debris-covered where more than 19% of their area was mantled by debris, and as
clean-ice otherwise, using the supraglacial classification of™.

Mass balance uncertainty. Our mass balance uncertainty (c,,,) estimates consider and combine the
uncertainty associated with surface elevation change (E,,), the uncertainty associated with volume to mass con-
version (E,,,), and the spatially nonuniform distribution of uncertainty.

The uncertainty associated with elevation change (E,;) was calculated through the derivation of the standard

error - the standard deviation of the mean elevation change - of 100 m altitudinal bands of elevation difference
data®>*;

E. = Ostable

N

Where 0, is the standard deviation of the mean elevation change of stable, oft-glacier terrain, and N is the
effective number of observations*. N is calculated through:

N, - PS

ot

2d

N =

Where N, is the total number of DEM difference data points, PS is the pixel size and d is the distance of spatial
autocorrelation, taken here to equal 20 pixels (600 m). E,, was calculated as 7% of the mass loss estimate®” for
each glacier and summed quadratically with E:

2
Oam = VEan + Ean

0Am Was then weighted depending on glacier hypsometry in each region to better represent the spatial variability
of uncertainty®.

Glacier terminus mapping. Glacier termini were mapped for three different epochs using the same six
Hexagon KH-9 scenes used in DEM generation, 7 Landsat TM/ETM+- scenes spanning the period 1999-2002,
and 6 Sentinel 2 A/B scenes spanning the period 2016 to 2018 (Supplementary Table 2). We also used 8 ortho-
rectified Corona KH-4B images analysed by*® to map glacier termini in Himachal Pradesh (West Himalaya).
Glacier termini were mapped in a semi-automated fashion using the approach of*’, which involves the manual
digitisation of glacier termini, the division of the ice front into points of even spacing, and the measurement of
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the distance between terminus points to a reference location placed up glacier. We generated glacier centreline
profiles for the extent of glaciers in the Hexagon imagery following the approach of* to quantify the impact of
terminus retreat on glacier length over the study period.

Glacier terminus change uncertainty. We followed the approach of°! to estimate the uncertainty associ-
ated with terminus retreat rates, whereby:

e=(PS1)* + (PS2)’ + E,

Where e is the total error in terminus position, PS1 is the pixel size of imagery from the first epoch, PS2 is the
pixel size of imagery from the second epoch, and E,., the coregistration error between images, which we assume

to be half a pixel*. -
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