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ABSTRACT 

We have completed a 16-channel 340 GHz 3D imaging radar for next-generation airport security screening under the 
European Union funded CONSORTIS (Concealed Object Stand-Off Real-Time Imaging for Security) project. The radar 
maps a 1 x 1 x 1 m3 sense volume with ~1 cm3 voxel resolution at multi-hertz frame rates. The radar has been installed in 
the CONSORTIS system enclosure and integrated with a passenger control system and command module. The full 
system will ultimately also incorporate a dual-band passive submillimeter wave imager and automatic anomaly detection 
software for reliable, ethical detection of concealed objects. A large data collection trial on targets of interest has been 
conducted to support the development of automatic anomaly detection software. Initial threat detection analysis indicates 
promising results against aviation-relevant objects including simulant dielectric threat materials. 

Keywords: Radar, submillimeter wave, security, FMCW, imaging, concealed object detection. 

1. INTRODUCTION 
The continuing threat of terrorist attacks at airports and other mass transportation hubs is driving the development of new 
detection technologies which can offer improved performance and in particular improved throughput compared with 
existing security scanners. Recognizing this requirement, in 2011, the European Union solicited proposals to reduce the 
time needed for security checks while maintaining or increasing the level of detection under the Seventh Framework 
Programme (FP7) Topic SEC-2012.3.4.5-5 “Further research and pilot implementations of Terahertz detection 
techniques (T-Ray)”. Project proposals were expected to develop a prototype imaging system operating at a single or 
multiple sub/millimeter wave frequency, including frequencies above 300 GHz, which had to be safe for use on the 
general public and allow concepts of operation which respect privacy. 

The CONSORTIS (Concealed Object Stand-Off Real-Time Imaging for Security) project1 was funded under the above 
EU scheme between 2014 and 2017 with the aim of combining passive and active submillimeter wave imaging for next 
generation aviation security applications. The full CONSORTIS system combines a 340 GHz 3D imaging radar, a dual-
band passive submillimeter wave camera, and automatic anomaly detection (AAD) software to ensure privacy. A 
passenger control system is used to coordinate passenger flow through the system and a command module maintains 
overall control of all the subsystems during system operation. The dual-mode approach, in conjunction with automatic 
anomaly detection software, aims to achieve higher detection performance whilst preserving the safety and privacy of 
staff and passengers. A primary goal of the project has been to achieve this enhanced security performance at a higher 
passenger throughput rate with the ultimate goal of having a walk-by system. 

A CAD model of a passenger passing by the CONSORTIS system is shown in Fig. 1. The tower houses the radar above 
the radiometer and the passenger is imaged from one side as they pass by. Ultimately, two towers would be needed to 
provide full coverage but only one was built during the project. 
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Figure 1. CONSORTIS system CAD model (left) showing one tower enclosure with radar mounted above radiometer. 

Passenger passes through passenger control system arches – key locations are entry (red), mid-way (grey) and exit 
(green). Radar subsystem CAD model (right). 

 

The 340 GHz radar subsystem development has been previously reported2 and this paper presents results obtained during 
the completion and characterization of the radar. The radar has been integrated into the CONSORTIS system along with 
the passenger control system and the command module. Data collection trials were conducted to gather statistically 
relevant data on a range of targets, subjects and clothing types and some example imagery is presented here. 

2. RADAR SUBSYSTEM OVERVIEW 
The CONSORTIS radar subsystem2 uses 16 homodyne 340 GHz transceivers disposed in a linear sparse focal plane 
array (FPA) combined with high speed mechanical beam scanning. It images a 1 x 1 x 1 m3 volume with ~1 cm3 voxel 
resolution at a frame rate of 7 Hz. A direct digital synthesis (DDS) based wideband chirp generator with an output at ~10 
GHz drives the solid state frequency multiplier transceivers which cascade x8 MMIC and x2-x2 Schottky diode 
doublers. The transmitted chirp bandwidth is 30 GHz yielding 0.5 cm range bins. A critical enabling technology in 
achieving such a high channel count FPA is the use of self-mixing multipliers as the final stage – the final transmit 
doubler also acts as a mixer on receive, with the baseband IF signal extracted via the bias line3. This technology greatly 
simplifies the homodyne architecture and excludes the need for external transmit-receive duplexing components. The 
slight degradation in sensitivity compared with a homodyne receiver using a dedicated mixer is well tolerated in this 
short range application. 

The radar signals from the transceiver array are coupled to free-space using smooth-walled spline profile feedhorns and 
focused to sixteen ~1 cm diameter spots which are vertically aligned in the focal plane with a spacing of 6 cm. A pair of 
mirrors in a Dragonian configuration provides the focusing. Azimuth beam scanning is performed by a Lissajous scanner 
comprising a pair of counter rotating, canted plane mirrors which cause each focal spot to trace out a long thin figure-of-
eight. Elevation scanning, to fill in the scan pattern, is achieved by reciprocating the Dragonian primary mirror up and 
down for every pair of frames. 

A block diagram of the radar architecture is shown in Fig. 2 alongside a ray diagram depicting the key optical 
components. The raw IF signals from the transceivers are bandpass filtered to select the 1 m range swath at the working 
distance (~2.4 m), amplified and frequency translated down to a 1 – 6 MHz baseband in a 16 channel analog range-offset 
downconverter circuit. Received signals are sampled by a 16 channel ADC and then FMCW processed by FFT to form 
range profiles for every line of sight in the scan pattern. The field of view (FoV) can be steered in azimuth as passengers 
walk past using a large plane pan mirror which completes the optics. The radar views the subject from a slightly elevated 
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The radar was designed to operate at a 10 Hz frame rate and both the mechanical beam scanning and radar processing 
achieve that speed. However, in practice, the frame rate has had to be restricted to 7 Hz due a timing synchronization 
latency in the trigger electronics which control the start of each acquisition. Operating at frame rates above 7 Hz causes 
alternative left-to-right and right-to-left lines to become displaced. A fairly simple modification to the trigger electronics 
would allow the imaging speed to be increased to the full frame rate of 10 Hz. 

The azimuth scan pattern is derived from the geometrical ray trace of the Lissajous scanner whilst assuming a perfectly 
linear elevation scan. Since there are 9 left-to-right and right-to-left lines per frame whose elevations advance 
progressively that the scan patterns are obviously different for up and down frames. The measured elevation scan pattern 
was determined using Hall sensors which measured the deflection of the linear motor shafts that drive the reciprocating 
mirror up and down. It is clear that the mirror motion does not perfectly follow the triangular drive waveform and this is 
due to mechanical resistance in the drive coupling and air resistance. By combining the azimuth and elevation scan 
pattern distortions it is possible to assign a geometrically accurate pointing angle to each line of sight in the image. 

Currently, raw data is processed and displayed without scan pattern corrections in real-time on the control PC using 
multi-threaded C code with the radar image presented as a 2D projection of the data cube, color coded by maximum 
reflected power. The scan pattern corrections are then applied offline in MATLAB accounting for the differences in up 
and down frames. The true pointing angles of each pixel are not spaced equally in azimuth and elevation so the final 
image is interpolated onto an equally spaced rectilinear grid for subsequent processing and analysis. Fig. 7 shows one 
frame, color coded by maximum intensity, which compares the raw image indexed by encoder position which is 
geometrically incorrect, a dot plot indicating the true positions of each pixel, and the final interpolated image which has 
correct geometry. The image quality is noticeably improved after the scan pattern corrections are applied. 

   
Figure 7. Single frame color coded by maximum intensity comparing: (left) raw image indexed by encoder position showing 

geometrical errors especially at edges, (middle) dot plot indicating the true position of each pixel in the scan pattern, 
and (right) interpolated image with the correct geometry after application of the scan pattern corrections. Intensity color 
scale covers 60 dB. Range extent limited to 35 cm around the torso to reduce data saving burden, hence the face and 
hand are slightly clipped in intensity. 

4. DATA COLLECTION EXAMPLE IMAGERY 
The radar subsystem was mounted into the CONSORTIS system enclosure and Fig. 8 shows the radar fitted in the upper 
part of the CONSORTIS tower with the pan mirror visible. The space below the radar is for the passive radiometric 
imager. The radar subsystem itself is shown in close up, in which the radar electronics and optomechanical components 
for the beam scanning mechanism can be clearly seen. The radar dimensions are 73 x 91 x 115 cm and the estimated 
weight is ~130 kg. The radar subsystem (radar head plus control PC) is all powered by a dedicated power supply located 
at the bottom of the equipment rack to the right of the system tower. The radar power consumption is <750 W. 

The radar was then integrated with the Command Module (CM) and the Passenger Control System (PCS) to enable 
automatic system testing and data collection. The PCS uses a suite of sensors and indicator lights mounted on two 
archways to control passenger flow through the system. A Microsoft Kinect sensor on the exit arch detects the presence 
of a passenger entering the system through the entry arch and the CM automatically sequences the process of passenger 
flow control and radar data acquisition. In the current concept of operation, the radar is designed to acquire a burst of 
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frames at the entry and exit positions where the passenger is paused briefly, waiting for the stop/go indicator lights. The 
CM instructs the pan mirror to steer to the entry and exit points appropriately and for the radar to acquire the relevant 
data, which is then available on the data bus for subsequent processing. 

  
Figure 8. CONSORTIS tower deployed at VTT, Espoo, Finland, with radar subsystem mounted inside and control PC to 

right hand side (left). Radar subsystem close up (right). 

When the pan mirror steers, the FoV rotates by the pan angle, as noted above. Fig. 9 illustrates this effect with CAD 
views of a mannequin at the entry and exit positions with the FoV overlaid, plus example radar intensity images of a real 
person from these viewpoints. The radar thus obtains ¾ views of the person from the front and back as they pass through 
the system. As mentioned previously, a full deployment would require two towers to view the subject from both sides. 

  
Figure 9. FoV rotation during panning showing entry point (right) and exit point (left) as the subjects passes from right to 

left through the system with CAD models and example radar intensity images of a person. 

A considerable amount of data has been gathered with the radar to assess its performance. A data collection trial was 
conducted which acquired >1000 data runs in an operationally realistic scenario. The tests covered a range of subjects, 
threat items, threat locations and clothing. Weapons plus real and simulant aviation-relevant dielectric threat materials 
were used. Detailed results of the trial are beyond the scope of this publication but a few examples can be given to 
illustrate the imagery acquired. 

Since the radar collects bursts of 3D data it can be prepared for analysis and presentation in different ways, although not 
all of them appear optimally on a 2D screen or static page. Two example display formats which we use frequently are (i) 
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color coding by maximum intensity per line of sight, and (ii) color coding by range to last surface. The former is very 
simple to calculate and interpret but is often dominated by external surface reflections. The latter uses the fine range 
resolution of the radar to reveal objects underneath clothing layers. Note that in both cases, because the information is 
encoded in a color scale, they are subject to human perception differences. Alternative presentations could be point 
clouds, surface reconstructions, contour plots, etc. Two example data sets are shown in Figs. 10 and 11 using the two 
color codings described above. These are single frames of radar data and include the range and scan pattern corrections. 

  
Figure 10. Subject at exit point with large conformal dielectric threat simulant attached to their side, under clothing. Color 

coded by maximum intensity (left) and by range to last surface (right). Color scale covers 60 dB. 

  
Figure 11. Subject at entry point with small dielectric threat simulant attached below their armpit, under clothing. Color 

coded by maximum intensity (left) and by range to last surface (right). Color scale covers 60 dB. 

In both examples shown here, the dielectric threat simulants appear clearly in both display presentations. However, it 
should be noted that (as is well known) the maximum intensity display can be sensitive to surface effects from clothing 
and speckle which may mask or even confuse the detection of a concealed threat. In contrast, the range to last surface 
effectively sees through the clothing and reveals the contours of the concealed object underneath. A robust automatic 
anomaly detection algorithm is likely to combine the analysis of more than one data presentation. 

The trial data have been used to support the development of AAD algorithms by project partner FOI, Sweden, and to 
derive preliminary receiver operating characteristic (ROC) curves for the detection performance of the radar against 
different threats. Initial ROC curves have been derived using human operator classification of various 2D and 3D data 
presentations similar to that shown above and have yielded some very promising results. Work is ongoing to develop a 
fully automatic detection scheme using AAD algorithms. 
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From the large number of trial images obtained it became evident that a human operator can easily distinguish gender 
differences and can even identify individuals after repeated imaging. This illustrates the high fidelity of the radar but 
further highlights the need for automatic image analysis to remove human observation and maintain passenger privacy 
and ethical operation. 

5. DISCUSSION & CONCLUSIONS 
The EU FP7 CONSORTIS project has successfully completed the development, characterization and testing of an 
advanced submillimeter wave radar imager for next-generation airport security applications. The 340 GHz 3D imaging 
radar combines a sparse array of 16 radar transceivers with high speed mechanical beam and real-time processing to map 
a 1 x 1 x 1 m3 sense volume with ~1 cm3 voxel resolution at multi-hertz frame rates. Self-mixing multiplier technology 
has been crucial in achieving a large focal plane array of 16 channels without the need for external duplexing 
components. We believe this is the highest channel count submillimeter wave radar reported to date. 

To optimize the radar image fidelity, thorough characterization of the range and spatial responses was undertaken from 
which corrections were derived and applied to the raw data. The radar range profile, whilst quite clean in raw form due 
to the high performance chirp generator and frequency multiplying transceivers, becomes transform limited down to the 
system noise floor with a range bin width of 0.5 cm. The range calibration is different for each channel and has been 
found to be stable over periods of weeks, avoiding the need for frequent recalibration. 

The beam profile was characterized at multiple positions in the sense volume using a scanned point target. The -3 dB 
radar spot size was confirmed to be ~1 cm as designed and measured beam profiles agree well with simulations, 
validating the quasi-optical design and reflecting the high precision manufacture of the focusing mirrors whose surfaces 
conform to their design profiles to within ~λ/30. 

The mechanical beam scanning arrangement exhibits non-uniform sampling scan patterns in azimuth (figure-of-eight) 
and elevation (non-linear) which have been characterized. Scan pattern corrections have been derived which account for 
these distortions and are applied to the output data to yield geometrically accurate images. 

The radar subsystem has been mounted in the CONSORTIS tower enclosure and integrated with the Passenger Control 
System and Command Module. In the full system, the radar will be joined by a dual-band passive submillimeter wave 
imager. Operating fully automatically, under control of the CM and PCS, the radar has been used to collect >1000 data 
sets on realistic threat scenarios involving different people, threat items, threat locations and clothing. Weapons plus real 
and simulant dielectric threat materials were used. 

The example imagery demonstrates the high volumetric resolution of the radar and its ability to reveal small, even 
dielectric, objects concealed under clothing. Video sequences obtained at 7 Hz frame rate demonstrate the temporal 
fidelity of the radar imagery, providing multiple looks at targets which may vary with aspect angle. Initial ROC curves 
have been derived from human classification of 2D and 3D data presentations which show very promising results. Work 
is ongoing to develop a fully automatic detection scheme using AAD algorithms. The need for AAD algorithms to 
ensure passenger privacy and ethical operation has been underscored by the level of detail visible in the imagery. 

The CONSORTIS project has successfully demonstrated a 340 GHz radar imager within a prototype security screening 
system that is capable of acquiring high resolution 3D imagery at multi-hertz frame rates which can resolve threat objects 
concealed under clothing. This submillimeter wave radar technology, when combined with automatic anomaly detection 
software, will be suitable for future high throughput aviation security screening applications. 
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