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ABSTRACT  

The excitonic insulator (EI) is an intriguing phase of condensed excitons undergoing a Bose-Einstein-
Condensation (BEC)-type transition. A prominent candidate has been identified in Ta2NiSe5. Ultrafast spectroscopy 
allows tracing the coherent response of the EI condensate directly in the time domain. Probing the collective 
electronic response we can identify fingerprints for the Higgs-amplitude equivalent mode of the condensate. In 
addition we find a peculiar coupling of the EI phase to a low frequency phonon mode. We will discuss the transient 
response on multiple energies scales ranging from the exciton dynamics to the coherent THz response of the gap. 

Keywords: excitonic insulator, exciton wave packet, collective excitation, ultrafast, pump-probe, non-equilibrium, time-
domain, THz 

1. INTRODUCTION
1.1 Excitonic insulators 

Excitonic insulators is a novel insulating state that is formed by the condensation of excitons (electron-hole pairs) into 
a common ground state. This state was theoretically predicted about 50 years ago to appear in small band 
gap semiconductors or semimetals with small band overlap, when the exciton binding energy exceeds either band 
gap or band width [1]. The condensation in these cases can be described either as a BEC or BCS-like transition for 
the two cases respectively. 

A schematic picture is shown in Figure 1 describing the formation of an excitonic insulator gap. Excitons are bound 
states of electrons and holes due to their Coulomb interaction. In s simplified single-partice picture one can describe 
the bound excitons to appear below the bandgap of a semiconductor. However for large exciton binding energies 
exceeding the band gap of the semiconductor the exciton level would appear within the valence band of the 
semiconductor, as seen from the electron point of view, or inside the conduction band, as seen from the hole point of 
view. Therefore excitons form out of electrons and holes of the valence and conduction band that are within the 
exciton binding energy. At sufficient low temperatures these excitons then condense into a common ground state. 
This transition of preformed excitons that as bosons then condense into the excitonic insulator ground state at low 
temperatures can be described within a BEC-like picture. In the case of semimetals a similar picture emerges. 
Typically, in metals the background of quasi-free charge carriers screens the Coulomb interaction between 
electron hole excitations. Therefore no stable excitons form. However if the exciton binding energy exceeds the 
band overlap, e.g. in a semimetal, then the Coulomb interaction between the electrons and holes cannot be screened 
anymore. In this case excitons can form and they directly condense into the excitonic insulator ground state. This type of 
transition can be described within a BCS-like picture.  
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Figure 7a shows the oscillation amplitudes of the 1THz mode that traces the temperature dependence of the transient 
order parameter for two different excitation fluences. A mean field type of behavior of the order parameter can describe 
these dependencies. The reduced TC for the higher excitation fluence is due to the larger depletion of the condensate. 

3. SUMMARY AND CONCLUSION 
The ultrafast dynamics of photo-excited Ta2NiSe5 reveals first direct fingerprints for a coherent dynamics of the excitons 
in the system, that are responsible for the opening of the gap. Furthermore strong exciton-phonon coupling allows the 
identification of a coupled phonon-excitonic insulator amplitude mode. This is a direct manifestation of order parameter 
oscillations in the excitonic condensate substantiating the existence of an excitonic insulator state in Ta2NiSe5. 
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