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Abstract: Human activities are fundamentally altering biodiversity. Projections of declines at the 

global scale are contrasted by highly variable trends at local scales, suggesting biodiversity change 

may be spatially structured. Here, we examined spatial variation in species richness and composition 

change using over 50,000 biodiversity time series from 239 studies. We find clear geographic 5 

variation in biodiversity change. Rapid compositional change is prevalent, with marine biomes 

exceeding and terrestrial biomes trailing the overall trend. Assemblage richness is not changing on 

average, although locations exhibiting increasing and decreasing trends of up to ~20% per year were 

found in some marine studies. At local scales, widespread compositional reorganization is most often 

decoupled from richness change, and biodiversity change is strongest and most variable in the oceans.   10 

  

One Sentence Summary: Mapping biodiversity change shows changes in marine systems outpace 

those in terrestrial systems, and loss is most prevalent in the tropics. 

  

Main Text: Humans are reshaping biodiversity patterns. Against a background of elevated extinction 15 

rates (1, 2), local biodiversity change results from multiple interacting drivers that influence the 

abundance and distribution of species. Different regions of the globe are projected to experience 

different trends in biodiversity change, particularly due to variation in the strength of drivers such as 

land-use intensity (3) and climate change (4). There are widespread changes in the identities of 

species that live in any one location (species composition), whereas shifts in the numbers of species 20 

(species richness) show mixed patterns, with increasing, decreasing, or static trends (5-9). However, 

the spatial distribution of the locations most affected is unknown. Here, we map biodiversity change, 

in terms of species richness and composition, to uncover the geography of biodiversity change. Our 

analysis compares assemblage time series across the marine, terrestrial and freshwater realms, 

different biomes, and latitudinal bands (i.e., polar, temperate, and tropical). 25 

  

Both biodiversity and its change are unevenly distributed on the planet (10, 11) and unevenly sampled 

(12-15). Species densities typically decline drastically from the tropics to the poles, and the identities 
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of species differ across continents and oceans. Hence, knowing which locations are undergoing 

different types of net change in biodiversity is critical to understand how biodiversity is changing 

globally.  Detecting geographic variation in biodiversity trends will not only improve our 

understanding of how global biodiversity is changing but also inform conservation prioritization. 

Specifically, by identifying the regions of the planet that are changing more, we will be better placed 5 

to make informed decisions about the spatial distribution of biodiversity vulnerability, and about 

where to prioritize reactive (such as restoration) and proactive (protection) conservation actions (16).  

In addition, quantifying this spatial distribution will refine hypotheses about the drivers of 

biodiversity change.  

 10 

Spatial patterns in biodiversity change are the combined result of species changing their distributions, 

entering and leaving local communities, going extinct or speciating. These processes are affected by 

many drivers, which themselves are spatially heterogeneous (17, 18), and differ between the marine 

and terrestrial realms (19). For example, spatial overlap between climate change and other drivers of 

change is greater in the marine realm than in the terrestrial realm (19). Moreover, species sensitivites 15 

to climate change (i.e., temperature increases) are also greater in the marine realm (20, 21). When 

coupled with ecological differences between realms, such as fewer barriers to dispersal and greater 

colonization rates in marine ecosystems (22, 23), these differences may result in greater compositional 

change in marine compared to terrestrial assemblages (21). Therefore, we predict biodiversity in the 

marine realm has changed more than in the terrestrial realm. Importantly, changes in community 20 

composition are not necessarily associated with changes in species richness if species gains and losses 

are approximately balanced (5-9, 24, 25). However, in regions where land-use intensity is high (26) or 

where range sizes contract in response to climate change (27), species extirpations could result in a 

decrease in species richness. Conversely, in regions subject to high rates of species introductions (28-

31), high connectivity, or where ranges expand (32, 33) or species are broadly favored by land-use 25 

change (34), species richness could increase. Hence, we expect there to be variation in biodiversity 

change across different biomes and geographical regions of the planet. There may also be latitudinal 
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differences in biodiversity change. For example, tropical regions are entering climatic conditions with 

no present-day equivalents (35), and intensification of land-use change is more recent than in 

temperate regions (36), therefore richness loss may be more prevalent and more extreme in tropical 

latitudes. Here we examine whether biodiversity change differs in magnitude between the realms, and 

if strong geographic patterns exist across realms, latitudes or regions in the changes to species 5 

richness and composition. 

 

We examined geographic variation in patterns of change in both species richness and composition 

using local assemblage time series from across the globe (37, 38, Fig. S1). The BioTIME database is 

currently the largest compilation of assemblage time series, and our analysis included 239 10 

independent studies (Supplementary Table 1). As spatial extent varied considerably among studies, 

we used a gridding method (96 km2 hexagonal cells; (39) to partition the 126 studies that had multiple 

sampling locations and large spatial extents (38); 113 studies were not partitioned because they were 

contained within a single grid cell. This resulted in 51,932 unique local assemblage time series, with 

each time series comprised of samples from only one study. This means that important study-level 15 

considerations (e.g., sampling method) were consistent within each time series. Following further 

filtering by sampling completeness and standardization by sample-based rarefaction (38), these time 

series became the lowest level in our hierarchical models of temporal trends. Temporal extent and 

start date vary substantially within these data: time series span from the late 1800s to the present, 

though most data come from the past 40 years (Fig. S2), and we examined the sensitivity of our 20 

results to this heterogeneity.   

 

Biodiversity trends across the globe 

 

To examine geographic patterns in biodiversity change we quantified realm, latitudinal and regional 25 

departures from the overall trends of richness and composition change using hierarchical generalized 

linear models. We first nested the cell-level time series within the 239 original studies to control for 
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effects of sampling methods and non-independence of cell-level time series that came from a single 

study. Throughout our analysis we control for not having the same taxa sampled everywhere by 

including taxon in our models. Our first model, the biome-taxon (BT) model, nested studies into 9 

taxonomic-habitat groupings that were further nested within 48 biomes (defined by the Ecoregions of 

the World datasets available from The Nature Conservancy website; 5 

http://maps.tnc.org/gis_data.html; TNC terrestrial regions dataset, (40-43); this resulted in 321 biome-

taxon-study combinations grouped within 105 unique biome-taxon combinations. The 48 biomes, 

including 33 marine (41), 10 terrestrial (44) and 5 freshwater (42), represent geographic regions of the 

world and allowed us to characterize spatial patterns as biome-level departures from the overall trend 

of biodiversity change for each realm. The taxonomic-habitat groupings, dictated by specifications in 10 

the original studies, were amphibians, benthos, birds, fish, invertebrates, mammals, marine 

invertebrates/plants, plants, and multiple taxa, and were included to contrast and control for 

differences in trends among taxa within the different biomes. We examined the robustness of our 

biome-taxon models, and the spatial patterns they identified, by fitting two complementary 

hierarchical models with simpler geographic structures. Here we focus on the simplest model 15 

(referred to as the realm-latitude-taxon model), and present a model of intermediate complexity in the 

supplement (38). All models grouped cells within studies at the lowest level, and the realm-latitude-

taxon model grouped studies into 29 unique combinations of realm (marine, terrestrial, freshwater), 

latitude (polar, temperate, tropical), and taxonomic-habitat group, allowing us to characterize 

variation in biodiversity change for taxon groups across broad latitudinal bands within each realm. 20 

The different geographic structure meant that this model included 271 studies when we applied our 

threshold of three cell-level time series per realm-latitude-taxon group (38). Results of all models 

were qualitatively consistent, both in terms of the overall trends they estimated, and at the lowest 

levels (i.e., the study- and cell-level: Fig. S3), suggesting that our inferences are largely robust to 

differences in how we examined for geographic patterns. Additionally, we found our results relatively 25 

insensitive to the heterogeneity in temporal extent of the data and did not detect systematic effects of 

the number of years sampled, temporal duration, start year, or the initial species richness on the 

estimates of rates of change (Fig. S7, S8). 
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Our biome-taxon model results show that variation in biodiversity change is greater in the marine 

versus the terrestrial and freshwater realms. The overall average of richness change was not 

statistically distinguishable from zero globally, or for any individual biome (Fig. 1). The magnitude of 

positive departures from the overall trend was greater among marine biomes (range of median biome 5 

departure: -0.0003 - 0.001, n = 33; Fig. 1A) compared with terrestrial and freshwater biomes (-0.0007 

- 0.0001, n = 15; Fig. 1B), but richness trends did not vary substantially among biomes (σBiome = 

0.004) or for taxon groups within biomes (σBiome-taxon = 0.003). Instead, the main level of variation was 

at the study level (σBiome-taxon-study = 0.04), where specific studies exhibited species richness increases or 

decreases of up to 20% per year in the marine realm and up to 10% in the terrestrial realm (Fig. S9). 10 

Twenty-three marine, five terrestrial and two freshwater studies showed significant species richness 

losses, while thirty-one marine and nine terrestrial showed significant gains. These results were 

consistent with the realm-latitude-taxon model that showed change centered on zero for all latitudinal 

bands (Fig. 2A), with the greatest variation observed in the marine realm at the study-level, 

particularly in polar and tropical latitudes (Fig. 2B). Data limitations from tropical systems remain in 15 

our assemblage time series data (e.g., no tropical freshwater assemblages), precluding some direct 

comparison between realms (see also Fig. S1). The high rates of change we observed in the marine 

tropics (Fig. 2B) are consistent with predictions that tropical marine species will be relatively 

sensitive to extreme heat events, because they are closer to their physiological limits (20, 21), in 

addition to overexploitation, pollution, and other threats occurring in the marine tropics (36).   20 

 

To examine changes in species composition, we partitioned total Jaccard dissimilarity, calculated as 

the dissimilarity between the initial year and each subsequent year of a time series, into the additive 

components of turnover and nestedness (45). These trends describe directional compositional change 

relative to the initial assemblage, and the decomposition examines whether changes in community 25 

composition were due to the original species in assemblages being replaced by new species 

(turnover), or if assemblages were becoming smaller subsets of themselves or growing to include new 

species alongside the original species (nestedness). Overall, we found rates of turnover were positive 
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and much greater (0.028; 90% credible interval: 0.023-0.032; Fig. 3) than the rates of change in 

nestedness (0.006; 0.006-0.007; Fig. S12). Compositional change was dominated by species 

replacement within assemblages, with approximately 28% of species being replaced per decade. 

Variation at the biome level was much greater for turnover (σBiome = 0.01) compared to species 

richness, resulting in stronger geographic patterns and revealing further differences between marine 5 

and terrestrial realms. Three marine biomes (warm temperate northwest and southwest Atlantic, and 

northwest Australian shelf) had rates of turnover greater than the overall trend. In contrast, three 

terrestrial biomes (temperate broadleaf and mixed forests, temperate conifer forests, and tropical and 

subtropical moist broadleaf forests) had rates of turnover slower than the global trend, and most 

terrestrial biomes showed negative departures from the global average (Fig. 3B). Positive departures 10 

from the overall trend in terrestrial and freshwater biomes were found in aquatic systems: large lakes, 

mangroves and polar freshwaters. These trends of directional compositional change are highly 

unlikely to have arisen simply from random assemblages being drawn from relatively constant 

regional species pools. Simulations show that such a process has a median slope of zero for both 

turnover and nestedness change (38, Fig. S10).  Additionally, we identified that higher rates of 15 

compositional change in marine and freshwater biomes were associated with a higher proportion of 

assemblages undergoing complete turnover (Fig. S13), were robust to our choice of error distribution 

(Fig. S14), and whether comparisons were made to the initial assemblage or between assemblages at 

consecutive time points (38, Fig. S15, S16).  

 20 

Linking richness and composition change 

To examine the relationship between changes in species richness and changes in composition, we 

plotted the dominant component of composition change (turnover or nestedness) for each biome-

taxon-study combination against species richness change (46, Fig. 5A, B). When turnover is the 

dominant component, this relationship shows how quickly new species are replacing original species, 25 

and whether or not these arrivals are associated with changes to the number of species. At the study-

level, rates of turnover exceeded nestedness change for more than 97% of biome-taxon-study 
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combinations (313/321; Fig. 5B, C). Among these studies, approximately 23% (57/313) exhibited 

trends different from zero for both turnover and species richness rates (Fig. 5C), with a relatively 

balanced distribution of 23 cases of species richness losses, and 34 with gains; we note that we did not 

adjust for multiple comparisons, though they are less of a problem when comparing partially pooled 

estimates from hierarchical models (47). When nestedness is the dominant component, this 5 

relationship shows how fast assemblages are changing to become smaller subsets or growing to 

include new species alongside the species initially observed. Among the eight biome-taxon-study 

combinations where nestedness exceeded turnover change (8/321; Fig. 5B, C), only two showed rates 

of nestedness and richness trends different from zero, with one losing and one gaining species. Our 

combined results for turnover and species richness change support recent studies reporting that 10 

different components of biodiversity change, such as composition shifts and species richness, are 

largely uncoupled (5, 7-9). In fact, we find high rates of turnover are associated with the full spectrum 

of richness changes. 

 

Discussion 15 

Compositional change dominated by species turnover is the most striking and prevalent form of 

biodiversity change across the globe, and was characterized by strong geographic structure. Only 

marine biomes were found to have faster rates of compositional change than the overall trend, 

whereas only terrestrial biomes were observed to trail the overall compositional trend. Moreover, 

marine studies exhibited greater variation in rates of compositional turnover. We also found that most 20 

studies, across all biomes and realms, showed considerable replacement of species through time 

without associated species richness changes. This finding, using the largest global dataset to date, is 

consistent with the assertion that species richness trends are often uncoupled from species 

replacement, and thus insufficient alone, for fully capturing how biodiversity might change (9). The 

consistent pattern of species replacement is likely underpinned by a diverse suite of drivers impacting 25 

different study sites, regions, and realms. Such reorganization independent of changes to the number 

of species is also consistent with the presence of regulatory mechanisms for species richness. 

Community regulation of species richness is widespread (48), and may be driven, for example, by 
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shared resources (49). Contemporary pressures such as introduced species (29-31), replacement of 

localized specialists by widespread generalists (50, 51), range shifts in response to environmental 

change (22, 52), or local warming (53, 54) may also help explain our finding of widespread 

composition change associated with variable richness change at the study level. 

  5 

Rates of species richness change and turnover were higher in absolute magnitude and more variable in 

the marine realm, with maximum turnover rates in marine biomes twice those observed for terrestrial 

biomes. Higher rates of turnover in the marine realm are consistent with predictions for species 

responses based on greater sensitivities to increased temperatures (20, 21) coupled with fewer barriers 

to dispersal in marine systems (22, 23), though attribution to specific drivers is beyond the scope of 10 

analyses presented here. Further, if assemblages are more spatially heterogeneous in marine compared 

to terrestrial systems, then this too may contribute to our finding of higher temporal turnover in 

marine assemblages (55). Although we did not find strong contrasting trends for specific taxonomic 

groups within biomes, environmental differences between the realms (unrelated to dispersal and 

connectivity), or life history differences among taxa could also underpin some of the patterns in 15 

turnover detected at the realm and regional scales. For example, in the temperate marine realm, 

mammals had lower turnover than invertebrates, which is consistent with other findings showing 

long-lived taxa exhibit less rapid temporal turnover (55). 

  

Amid widespread variation in biodiversity trends, we found that tropical marine regions have a higher 20 

proportion of studies exhibiting biodiversity change at the extremes of richness gains, losses and 

turnover (Fig. 2B, 4, S9). Hence, although we find higher magnitude changes in the tropics, this result 

contrasts with our prediction that we would find mostly richness losses. The tropics, which harbor the 

majority of biological diversity, are generally considered to be where biodiversity is most threatened 

on the planet (36). Moreover, in the context of climate change, there are likely fewer species available 25 

to replace those species lost in tropical zones that have entered no-analog warm temperature 

conditions (56, 57). If these trends are maintained, this could lead to a dramatic restructuring of 
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biodiversity, with potentially severe consequences for ecosystem functioning across biomes and 

changes to the latitudinal diversity gradient, significantly altering the planet’s biogeography. We note, 

however, that such a pattern of biotic attrition would be expected to be accompanied by a larger 

contribution of the nestedness component to community compositional change than we found here 

(Fig. 5, S12). BioTIME includes relatively few tropical datasets (37), despite being the largest 5 

compilation of biodiversity time-series currently available, and further data collection in these areas is 

needed to be able to confidently assess trends in the tropics. Furthermore, biodiversity monitoring 

overall is lacking for many regions of the planet, e.g., the deep ocean. The geographical variation we 

uncover highlights the critical importance of improving the spatial coverage of biodiversity 

monitoring to better estimate global biodiversity change. 10 

  

We identify hotspots of biodiversity change, that is, key areas that represent extremes for biodiversity 

trends. As conservation has moved towards systematically identifying regions in need of protection 

(58), global maps of conservation priorities according to different criteria have been developed (16, 

59). Our study provides an important criterion for targeting conservation action: a global map of 15 

current rates of biodiversity change. In addition to the marine tropics, marine biomes in the western 

Atlantic and Northwest Australia are undergoing rates of replacement higher than the global average. 

These regions are, therefore, currently undergoing the most dramatic rates of change and should be 

prioritized for reactive conservation measures. In contrast, several forest biomes (e.g., temperate 

broadleaf and mixed, temperate conifer) have slower rates of replacement than the global average. As 20 

these regions appear to be undergoing less change, we speculate that proactive conservation measures 

are likely to be more appropriate. Specific conservation actions always need to be tailored to the 

locations and taxa, but our study provides the global and regional context in which individual 

locations are immersed.   

  25 

The global heterogeneity in biodiversity change is underpinned by geographic variation. We find 

spatial variation in species gains and losses is greater than taxonomic variation. This spatial variation 

suggests that statements about biodiversity loss need to be conditional on context and location. On 
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average, local species richness change across the globe does not differ from zero, but there are many 

locations gaining or losing species. Species replacement is ubiquitous and also spatially structured.  

Determining whether the spatial variation uncovered is related to differences among communities in 

their degree of exposure and vulnerability to drivers of biodiversity change is an important next step. 

Nevertheless, our results show that, while the entire planet is undergoing biodiversity change, the 5 

direction and magnitude of change differs across geographic regions.    
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Figure 1. Species richness change maps showing departures from the overall trend for marine 

and terrestrial biomes. Inset shows the overall trend in assemblage species richness change; bar 5 

depicts 50% (thick) and 90% (thin) credible intervals. Shading on the map represents positive (blue; 

faster increases in species richness than average) and negative (red; slower increases in species 

richness than average) departures for each biome from the overall average species richness change 

(0.004 log species per year). Numbers in the legend denote the departure and the biome-level (overall 

+ departure) estimate in brackets. 90% credible intervals for all biome level estimates overlap zero. A, 10 

Marine biomes (n = 33) show both positive and negative departures from the overall trend, with more 

negative departures in the tropics, whereas there are no latitudinal trends in B, terrestrial (n = 10) and 

freshwater (n = 5) biomes, which also show both positive and negative departures from the overall 

trend. 

Figure 2: Posterior distributions of species richness change for the realm-latitude-taxon model. 15 

The overall trend in assemblage richness change (solid vertical bar) does not differ from zero (grey 

shading depicts the 90% credible interval) for the realm-latitude-taxon-study model. A, Density ridges 

of the slope coefficients of the taxon-level color represents the taxonomic group, and B, density ridges 

of the posterior distributions of the study-level slope coefficients within a given combination of realm 

and latitudinal band estimated with the realm-latitude-taxon model. 20 

Figure 3.  Species turnover component maps showing departures from the overall trend for 

marine and terrestrial biomes. Assemblages across the globe are experiencing high rates of species 

replacement (median ~28% of species replaced per decade). Shading represents positive (blue; faster 

turnover than average) and negative (red, slower turnover than average) departures from the overall 

trend for each biome; numbers in the legend denote the departure and the biome-level (overall + 25 

departure) estimate in brackets. A, Rates of new species replacing original species have both faster 

(blue) and slower rates of turnover (red) from the overall trend in marine biomes, but included the 



 39

biomes with the highest turnover rates: the 90% credible intervals in the warm temperate north 

western Atlantic, warm temperate south western Atlantic, and the north west Australian shelf biomes 

were greater than the overall trend; whereas B, terrestrial and freshwater biomes have mostly slower 

rates of turnover than the overall trend (red shading), and the 90% credible intervals for temperate 

broadleaf and mixed forests, temperate conifer forests and tropical and subtropical moist broadleaf 5 

forests were lower than the overall trend. 

Figure 4. Posterior distributions of turnover for the realm-latitude-taxon model. The overall 

trend in turnover change per year is greater than zero (solid black line; grey shading depicts the 90% 

credible interval) for the realm-latitude-taxon-study model. A, Density ridges of the taxon-level slope 

coefficients, color represents the taxonomic group, and B, density ridges of the study-level slope 10 

coefficients within a given combination of realm and latitudinal band estimated with the realm-

latitude-taxon model. 

Figure 5. Conceptual and empirical relationships between changes in species richness and 

changes in species composition. A, Conceptual model relating the turnover and nestedness 

components of species composition change (Δ dissimilarity) to changes in species richness (Δ S). 15 

When the turnover component is larger than the nestedness component, new species entering 

assemblages replace the original species (purple shaded boxes). Conversely, when the nestedness 

component is larger than the turnover component, some original species of the assemblage remain, 

and the numbers of new species entering the assemblage are largely independent of the original 

species (pink shaded boxes). The change in species richness documents the net change in the numbers 20 

of species in the assemblage (and ignores their identity as either original or new species). B, 

Scatterplot showing the dissimilarity trend as a function of the species richness trend. Each point 

represents a biome-taxon-study level estimate, point shape indicates realm, and larger points indicate 

that both composition and richness trends differed from zero with 90% probability (CIs not shown for 

clarity). C, The number of studies for each combination of change in species richness and species 25 

composition (measured as either the turnover, Jtu, or nestedness, Jne, component of Jaccard 

dissimilarity). Filled sections of each bar represent the number of biome-taxon-study combinations 
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where the 90% credible intervals for both species richness (S) and composition change (Jtu or Jne) did 

not overlap zero. 

 


