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Does turbulence determine the initial mass function?
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ABSTRACT
We test the hypothesis that the initial mass function (IMF) is determined by the density
probability distribution function (PDF) produced by supersonic turbulence. We compare 14
simulations of star cluster formation in 50 M� molecular cloud cores where the initial turbu-
lence contains either purely solenoidal or purely compressive modes, in each case resolving
fragmentation to the opacity limit to determine the resultant IMF. We find statistically indis-
tinguishable IMFs between the two sets of calculations, despite a factor of 2 difference in the
star formation rate and in the standard deviation of log (ρ). This suggests that the density PDF,
while determining the star formation rate, is not the primary driver of the IMF.

Key words: brown dwarfs – stars: formation – stars: low-mass – stars: luminosity function,
mass function.

1 IN T RO D U C T I O N

Two decades of theoretical studies have established that a lognormal
density probability distribution function (PDF) is the defining char-
acteristic of supersonic turbulence (e.g. Vazquez-Semadeni 1994;
Nordlund & Padoan 1999; Ostriker, Gammie & Stone 1999; Klessen
2000; Kritsuk et al. 2007; see review by Elmegreen & Scalo 2004).
In particular, numerous studies (e.g. Padoan, Nordlund & Jones
1997a; Lemaster & Stone 2008; Price, Federrath & Brunt 2011;
Molina et al. 2012) have shown that the density variance is propor-
tional to the Mach number, giving

σ 2
ln ρ = ln

(
1 + b2M2

)
, (1)

where σ ln ρ is the standard deviation in the logarithm of the density
(i.e. the ‘width’ of the PDF), M is the root-mean-square (RMS)
Mach number and b is a constant of order unity related to the
mixture of solenoidal and compressive modes in the velocity field
(e.g. Federrath, Klessen & Schmidt 2008; Federrath et al. 2010).

Padoan & Nordlund (2002) proposed that the PDF determines the
IMF for low-mass stars (M < 1 M�), based on the observation that
the IMF is also lognormal at the low-mass end (e.g. Chabrier 2003,
2005). Relating the PDF to the IMF is powerful because it enables
analytic theories of star formation (e.g. Krumholz & McKee 2005;
Hennebelle & Chabrier 2008, 2009; Hopkins 2012; Guszejnov &
Hopkins 2015) which predict the IMF from the few parameters in
equation (1). Relating the initial mass function (IMF) to the statistics
of turbulence explains the universal nature of the IMF in the Milky
Way (e.g. Bastian, Covey & Meyer 2010), since nearby molecular
clouds show supersonic motions with seemingly universal scaling
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relations (Zuckerman & Evans 1974; Larson 1981; Heyer & Brunt
2004).

Measurements of lognormal column density PDFs from extinc-
tion mapping (Lombardi, Alves & Lada 2006; Lombardi, Lada &
Alves 2008, 2010) lend support to a direct relationship between the
PDF and the IMF. In particular, Kainulainen et al. (2009) showed
that star-forming clouds differ from non-star-forming clouds by the
presence of a power-law tail in the column density PDF at high den-
sities, suggesting that self-gravity merely converts the high-density
end of the PDF into stars. The measured mass function of ‘cores’
also seems to mimic the stellar IMF, but shifted to higher masses,
implying a one-to-one relationship between ‘cores’ and ‘stars’ with
an efficiency factor of ∼0.3 (e.g. Motte, Andre & Neri 1998; Testi &
Sargent 1998; Luhman & Rieke 1999; Johnstone et al. 2000; Alves,
Lombardi & Lada 2007; Nutter & Ward-Thompson 2007; Enoch
et al. 2008; Rathborne et al. 2009; Chabrier & Hennebelle 2010).
However, numerous studies have also cautioned or argued against
a direct core mass function and IMF relationship (e.g. Ballesteros-
Paredes et al. 2006; Goodwin et al. 2008; Smith, Clark & Bonnell
2008, 2009).

Alternatively, Bonnell et al. (1997) and Bate & Bonnell (2005)
proposed that the IMF is determined by ‘competitive accretion’
between low-mass fragments for a limited gas supply, with accretion
truncated by the preferential ejection of low-mass stars and brown
dwarfs from unstable multiple systems. This was demonstrated in
the star cluster formation calculations of Bate, Bonnell & Bromm
(2003; hereafter BBB03). These were the first attempts to simulate
the IMF ‘directly’ by resolving the gravitational collapse to the
opacity limit for fragmentation (the density at which radiation is
trapped by dust, ρ ≈ 10−13 g cm−3, implying an increase rather than
decrease in the Jeans mass with density, and hence the formation of
a single hydrostatic object; Low & Lynden-Bell 1976; Rees 1976).
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Sink particles were inserted in the calculations once the opacity limit
was reached, enabling simulation of the subsequent accretion up to
the final stellar masses. This approach has had remarkable success at
reproducing the observed IMF, with the most recent calculation by
Bate (2012) modelling the formation of 183 stars and brown dwarfs
from a 500 M� cloud, finding an IMF statistically indistinguishable
from the local IMF compiled by Chabrier (2005).

While these simulations employ turbulent clouds, it is not obvious
how the resultant IMF relates to the details of the initial turbulence.
A subsequent study by Bate (2009c) found no change in the IMF
when the slope of the power spectrum of the initial turbulence
was varied. In their simple model to explain the IMF produced by
simulations, Bate & Bonnell (2005) invoke the PDF only indirectly,
via a lognormal distribution of mass accretion rates. Nevertheless,
a connection may still exist.

Here, we investigate the PDF–IMF connection by simulating star
formation in two initially identical sets of model clouds, set up with
either purely solenoidal or purely compressive initial velocity fields.
If the PDF determines the IMF, then we expect the IMFs to differ,
since the PDFs should be very different. If the IMF is more due to
nurture than nature, the effect may be more minor. The main caveat
to our study is that we assume impulsive rather than continuous
turbulent driving.

Girichidis et al. (2011) performed a related study, along with other
variations in the initial conditions, and found that the shape of the
IMF was unaffected by the type of turbulent driving. However, they
simulated more massive and denser clouds (M = 100 M� and R =
0.1 pc) and did not resolve to the opacity limit (sinks were inserted
at a scale of 40 au, compared to 5 au employed here and in BBB03).
We also perform a statistical study with multiple realizations of the
initial velocity field in each case, compared to their single realiza-
tion. Lomax, Whitworth & Hubber (2015) recently compared the
effect of solenoidal versus compressive forcing in star formation cal-
culations, but focused on smaller cores (M = 3 M�; R = 3000 au),
examining the effect on disc and binary fractions rather than the
IMF.

While this paper was under review, an important and comple-
mentary study to ours was published by Bertelli Motta et al. (2016),
examining the correlation between the IMF and the statistics of
turbulence using two sets of simulations where the turbulence was
first driven to a steady state in a periodic box before ‘switching on’
gravity. These authors varied the Mach number as well as the den-
sity of the cloud, using a total mass of either 5750 M� or 516 M�
in a 10 pc3 or 3 pc3 domain, respectively. Their ‘high density’ sim-
ulations were resolved only to a density of 1.6 × 10−14 g cm−3, one
order of magnitude less than the opacity limit, with sink particle
radii of 100 au. They found no correlation between the Mach num-
ber and the characteristic mass of the resulting IMF, concluding that
the IMF is mainly determined by small-scale processes such as disc
formation and fragmentation and not by turbulence driven at the
scale of the cloud. However, studying the role of initial conditions
in a clump with decaying turbulence remains important since this
may be closer to the situation in dense cores prior to the onset of
stellar feedback.

2 N U M E R I C A L M E T H O D

We use the PHANTOM smoothed particle hydrodynamics (SPH) code
(Lodato & Price 2010; Price & Federrath 2010; Price 2012). This
is the first application of PHANTOM to star cluster formation.

2.1 Initial conditions

Aside from the initial velocity fields, our setup is identical to that
in BBB03: we set up a series of turbulent, spherical clouds, with
50 M� of gas of uniform density with diameter 0.375 pc. The
corresponding initial free-fall time is tff = 1.90 × 106 yr. The
minimum Jeans mass at the opacity limit is Mmin ≈ 0.0011 M�.
We use 3.5 million SPH particles, consistent with BBB03, who
showed that about 75 particles are required per Mmin (see also Bate
& Burkert 1997). Particles were distributed in a uniform random
distribution. We adopt code units with a length unit of 0.1pc, mass
unit of 1 M� and time units such that G = 1.

2.2 Equation of state

We adopt a barotropic equation of state P = Kργ . Following BBB03,
we prescribe γ = 1 (i.e. isothermal) for densities lower than the
opacity limit for fragmentation (ρ = 10−13 gcm−3), γ = 7/5 for
10−13 gcm−3 < ρ < 10−10 gcm−3 and γ = 1.1 for ρ > 10−10 gcm−3.
We define the constant K to be such that the sound speed is cs =
1.84 × 104 cm s−1 during the isothermal phase (i.e. 10 K assuming
a mean molecular weight μ = 2.46) and in the γ = 7/5 regime
such that the pressure remains continuous when γ changes. As
discussed by Bate (2009a), using a barotropic equation of state
overproduces low-mass stars and brown dwarfs compared to ob-
servations, since the cold gas surrounding the protostars fragments
too readily (cf. Fig. 6). Several groups (Bate 2009b, 2012; Offner
et al. 2009; Commerçon et al. 2010; Krumholz et al. 2010) showed
that this can be solved by modelling radiation in the flux-limited
diffusion approximation. However, simulations with radiation are
expensive, precluding the kind of statistical study we perform here,
the radiation algorithm is not yet implemented in PHANTOM, and
a barotropic equation of state is sufficient to answer the question
of whether the PDF influences the IMF. We also ignore magnetic
fields which change the star formation rate and perhaps also the IMF
(Ostriker et al. 1999; Heitsch, Mac Low & Klessen 2001; Vázquez-
Semadeni, Kim & Ballesteros-Paredes 2005; Tilley & Pudritz 2007;
Price & Bate 2008, 2009; Myers et al. 2014).

2.3 Velocity fields: solenoidal versus compressive driving

We impulsively drive turbulence in each cloud, as in BBB03, by im-
posing an initial supersonic turbulent velocity field. The amplitude
of the velocity fluctuations follow a power spectrum P(k) ∝ k−4,
where k is the wavenumber, in order to be consistent with Larson’s
scaling relation. We generate each field via a Fourier transform on
a 643 grid, which is then interpolated on to the SPH particles. The
coefficient of each Fourier mode is drawn from a Rayleigh distri-
bution with each mode also given a uniform random phase between
[− π, π]. This is equivalent to sampling from a cylindrical bivariate
Gaussian (Dubinski, Narayan & Phillips 1995).

To obtain a purely solenoidal velocity field, we take the curl of
a vector field to produce a divergence-free velocity field. Similarly
for a purely compressive velocity field, we take the gradient of a
scalar field to produce a curl-free field. We compute the gradients
in Fourier space. Velocities are normalized so that the initial kinetic
energy is equal to the gravitational potential energy, giving an ini-
tial RMS Mach number of M = 6.4. We performed simulations
using seven realizations of the initial velocity field for each case
(solenoidal or compressive), realized by changing the seed in the
random number generator for the phases and amplitudes.
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Figure 1. Evolution of column density during the gravitational collapse of two example 50 M� molecular cloud cores with purely solenoidal (top) and purely
compressive (bottom) initial turbulent velocity fields. The large-scale structure of the clouds is very different, with the compressive case showing a factor of 2
increase in the standard deviation of log (ρ) compared to the solenoidal case as well as stronger shocks and a faster onset to star formation. To obtain enough
statistics to determine the IMF, we perform simulations using seven realizations of each type of driving, giving 14 simulations in total.

2.4 Sink particles

Following BBB03, we introduce sink particles (Bate, Bonnell &
Price 1995) when the central density of pressure-supported frag-
ments reaches ρs = 10−11 g cm−3, two orders of magnitude higher
than the opacity limit. Once ρs is exceeded and sink formation
conditions are satisfied, we replace gas particles within 5 au with
a sink particle. Gas particles within 5 au are accreted if they pass
checks for angular momentum and boundness, with their mass and
momentum added to the sink. Gravity between sinks is softened
within 4 au; gas particles are accreted without checks within this
radius.

3 R ESULTS

3.1 Column density evolution

Fig. 1 shows the evolution of column density from t = 0 to t = 0.3tff

(left to right) in two representative calculations, using solenoidal
driving (top, as in BBB03) and compressive driving (bottom).
Shocks form quickly in both cases, due to the impulsive super-
sonic velocity field, but are stronger in the compressive case, driv-
ing the formation of large-scale filaments after only 0.3tff. For the
solenoidal case, ∇ · v = 0 initially by definition, so there are no
regions which initially promote collapse.

Fig. 2 shows the subsequent small-scale fragmentation in the
compressive cloud, with the first protostar formed after just 0.2tff.
The process in all other clouds appears visually very similar. Gas
flows into dense cores along filaments (e.g. Gómez & Vázquez-
Semadeni 2014; Federrath 2016; Klassen, Pudritz & Kirk 2016;
Smith et al. 2016), feeding young protostars via accretion discs. The
process is chaotic and dynamical, with close encounters between
stars resulting in the destruction of accretion discs, and the ejection
of smaller mass objects. Bound systems form and get destroyed by
interactions on a very short time-scale. The stars live in a competitive

Figure 2. Snapshots of the evolution after the onset of star formation, show-
ing column density in a 0.03 pc × 0.03 pc inset for one of our compressively
driven clouds. The star formation process is similar in solenoidal clouds, but
occurs later and at a slower rate.

environment, where those which grow in mass quickly stay in the
dense regions and accrete further material, whilst ejecting lower
mass objects.

3.2 Comparison of PDFs

We computed the density PDFs by binning the particles into 2000
bins equally spaced between −10 < log10(ρ) < 10 in code units. We
then computed the standard deviation, σ ln ρ by fitting a lognormal
distribution to the PDF (using scipy.optimize.curve_fit
in PYTHON). Note that the PDF computed in this way is mass-
weighted, rather than volume-weighted. Both volume- and mass-
weighted PDFs are expected to be lognormal when the equation
of state is approximately isothermal (Padoan, Jones & Nordlund
1997b; Passot & Vázquez-Semadeni 1998; Scalo et al. 1998;
Nordlund & Padoan 1999; Ostriker, Stone & Gammie 2001).
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Figure 3. The time evolution of the RMS Mach number M (top) and the
mass-weighted standard deviation of the logarithm of density σ ln ρ (middle).
The lower panel shows the evolution in the σ–M plane. Solid lines show
the mean over all seven simulations of each type while the shaded error bars
indicate the standard deviation between simulations.

Fig. 3 shows the time evolution of the (mass-weighted) RMS
Mach number, M (top panel) and standard deviation, σ ln ρ (centre
panel) for our entire set of calculations, with the solid lines showing
the mean from the seven different simulations for each type of
velocity field and the shaded region shows the 1σ standard deviation.
The bottom panel shows the evolution in the M–σ ln ρ plane. In both
the solenoidal and compressive clouds, M decays with time due
to the dissipation of energy by shocks, reaching a minimum before
rising again once bound structures have formed.

Comparison of PDFs in decaying turbulence simulations is com-
plicated by the time evolution of the velocity field. In our calcula-
tions, the initial density field is uniform and the PDF thus develops
in response to the initial turbulent velocity field. Since the clouds
evolve on different time-scales, it is not particularly meaningful to
compare their PDFs at the same time. Rather – for the purposes of
our study – equation (1) suggests that they should be compared at
the same RMS Mach number M so that the only difference is from
the different mixing parameters b.

The lower panel of Fig. 3 shows that the initial collapse of the
cloud roughly corresponds to σ ln ρ � 2. Once σ ln ρ reaches this
value, M rises again once fragmentation begins. Also, the PDF is
no longer lognormal. We thus use the time interval where σ ln ρ <

2 to compare the density PDFs prior to the onset of star formation.
The standard deviation of the PDFs is different not only at the same
time early in the evolution of the cloud, but also at the same RMS
Mach number.

Fig. 4 shows the resultant PDFs computed at the time when all
calculations have the same RMS Mach number of M = 5.5, which
is when σ differs most between the simulations. The difference
in the PDF produced by compressive versus solenoidal driving is

Figure 4. Comparison of the mass-weighted density PDFs for the two
types of turbulent driving, compared at the same RMS Mach number of
M = 5.5. Solid lines show the mean over all seven simulations of each
type while shaded regions represent the 1σ deviations between different
realizations.

Figure 5. Total mass in sink particles as a function of time for the two
types of driving. The star formation rate is higher by a factor of 2 in the
calculations employing compressive driving. The onset of star formation
also occurs ≈0.9 free-fall times earlier.

similar to that shown by e.g. Federrath et al. (2008, 2010), except
that we show the mass-weighted version. Compressive driving pro-
duces a broadening of the PDF caused by the collision of stronger
shocks which in turn create larger variations in the density field.
This demonstrates that our different choices of impulsive driving
indeed drive significant differences in the density PDF prior to star
formation.

3.3 Star formation rate

Fig. 5 shows the total stellar mass as a function of time, measured
by the mass in sink particles. The onset of star formation occurs
at t ≈ 0.2tff in the compressive case, compared to t ≈ 1.1tff in the
solenoidal case. Once star formation starts in each calculation, the
rate at which material is converted to stars is higher by a factor of
∼2 in the compressive clouds compared to the solenoidal cloud.

The overall efficiency of star formation is similar in both types
of calculation over the time we have continued the simulations,
with ≈15 per cent of the gas mass converted to stars. However,
the efficiency is higher on an absolute scale since this occurs over
a shorter time-scale in the compressive case. Also, the end of the
simulations does not mark the end of the star formation process
since the mass in stars continues to increase.

3.4 Comparison of IMFs

Fig. 6 shows the IMFs from our simulations, combining all seven
realizations with solenoidal (left) and compressive driving (right),
with the cumulative IMFs shown in Fig. 7. The IMFs of stars
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Figure 6. Combined IMFs (blue and red histograms) from the seven solenoidal (left) and seven compressive (right) simulations. Solid/dashed lines show the
empirically derived IMFs of Kroupa (2001) and Chabrier (2005) for comparison. While our simulations overproduce low-mass objects, consistent with Bate
(2009a), the IMFs with either solenoidal or compressive driving are statistically indistinguishable, suggesting no direct link between the PDF (Fig. 4) and the
IMF.

Figure 7. Cumulative IMFs, comparing solenoidal (left) to compressive
(right). Thick bold lines show the mean of all realizations while the thinner
lines show the results from individual calculations.

which have finished accreting (235 of 388 and 298 of 533 sinks for
solenoidal and compressive, respectively) are shown in red, while
the IMF of all stars is shown in blue. The lowest mass possible in
our calculations is ≈0.005 M� from the opacity limit for fragmen-
tation, which sets the low-mass cutoff. The IMFs appear similar
to those shown in BBB03 but with better statistics because of our
multiple realizations. Our IMFs are also similar to those found by
Bate (2009a) from one calculation of a 500 M� cloud. In particular,
we observe the statistically significant excess in low-mass stars and
brown dwarfs compared to the Kroupa (2001) and Chabrier (2005)
IMFs (dashed and solid lines, respectively) which occurs when a
barotropic equation of state is employed (e.g. Bate 2009a,b).

There is no obvious difference between the IMFs produced by the
different types of driving. Statistics confirm this – a Kolmogorov–
Smirnov test gives a p-value of 0.71 between the two distributions
when considering all sink particles, and a p-value of 0.98 when
considering only sinks which have finished accreting. This means
that we cannot reject the hypothesis that the samples come from
the same underlying distribution. Thus, while the type of driving
changes the density PDF, the resultant IMFs are indistinguishable.

4 D I S C U S S I O N A N D C O N C L U S I O N S

We presented the results of 14 numerical simulations of the gravita-
tional collapse of 50 M� molecular clouds, each impulsively driven
with a different random solenoidal or compressive velocity field to
test the effect of the initial turbulence on the IMF. We resolved frag-
mentation to the opacity limit, at which point sink particles were

inserted. By allowing the sink particles to accrete and grow in mass,
we directly measured the masses of the resultant cluster of stars.

We found that while the initial turbulent velocity fields yielded
different density PDFs during the initial collapse phase (before star
formation begins), they had no significant effect on the IMF. How-
ever, the star formation rate was ≈2 times greater in the compres-
sively driven clouds, with the onset of star formation occurring 0.9
free-fall times earlier. Our findings are consistent with Girichidis
et al. (2011), who found that their IMFs unchanged by the ratio
of solenoidal and compressive modes in the initial turbulence, and
with Bate (2009c) who found that using a different initial kinetic
power spectrum did not significantly alter the resulting IMF.

The main caveat to our study is that we assumed impulsive turbu-
lent driving, which does not produce a statistical steady state. Thus,
it may be argued that the turbulent support present in the collapsing
cores has already decayed by the time star formation occurs. Also,
our density PDFs evolve in time and do not maintain the empir-
ical relation between the variance, Mach number and the ratio of
solenoidal and compressive modes (equation 1; see Fig. 3). How-
ever, the decaying regime is important as it may better represent
dense cores prior to star formation (e.g. Lada et al. 2008) and thus
driving of the velocity field by outflows and radiative feedback.

The best answer to the above caveat is provided in the com-
plementary study by Bertelli Motta et al. (2016). Although these
authors did not resolve the IMF to the opacity limit, they used
clouds driven to a statistical steady state inside a periodic box, be-
fore ‘switching on’ gravity to collapse the cloud. Importantly, the
turbulence in their experiments was continually driven throughout
the calculations, producing PDFs which match equation (1). De-
spite this, in their ‘high density’ simulations which are most similar
to ours, Bertelli Motta et al. (2016) found no correlation between
the properties of the turbulence and the resulting shape of the IMF,
which is consistent with our findings. Furthermore, the trends found
in their ‘low density’ simulations, though of too low resolution to
probe the IMF directly, were also not consistent with the predictions
of existing analytic theories. The authors attribute the null result in
their ‘high density’ simulations to the IMF being determined mainly
by dynamical evolution of the fragments under the influence of self-
gravity, which is also the case in our study. Thus, whether or not
turbulence is driven or decaying, it would appear to have little or no
influence on the IMF.

Truly realistic simulations require an understanding of the phys-
ical source of turbulent driving in the interstellar medium. Our sim-
ulations also did not include radiative transfer or magnetic fields,
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both of which play an important role in determining the IMF. Fur-
thermore, our ability to probe the IMF at M � 1 M� is limited by
the 50 M� total mass of our model clouds. Worthwhile follow-up
studies would include radiative feedback and more massive clouds
(e.g. Bate 2012; Krumholz, Klein & McKee 2012) and magnetic
fields (e.g. Myers et al. 2014).
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