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ABSTRACT

Context. An X-ray survey with the XMM-Newton telescope, XMM-XXL, has identified hundreds of galaxy groups and clusters in two 25 deg2

fields. Combining spectroscopic and X-ray observations in one field, we determine how the kinetic energy of galaxies scales with hot gas tem-
perature and also, by imposing prior constraints on the relative energies of galaxies and dark matter, infer a power-law scaling of total mass with
temperature.
Aims. Our goals are: i) to determine parameters of the scaling between galaxy velocity dispersion and X-ray temperature, T300 kpc, for the halos
hosting XXL-selected clusters, and; ii) to infer the log-mean scaling of total halo mass with temperature, 〈ln M200 |T300 kpc, z〉.
Methods. We applied an ensemble velocity likelihood to a sample of >1500 spectroscopic redshifts within 132 spectroscopically confirmed
clusters with redshifts z < 0.6 to model, 〈lnσgal |T300 kpc, z〉, where σgal is the velocity dispersion of XXL cluster member galaxies and T300 kpc is a
300 kpc aperture temperature. To infer total halo mass we used a precise virial relation for massive halos calibrated by N-body simulations along
with a single degree of freedom summarising galaxy velocity bias with respect to dark matter.
Results. For the XXL-N cluster sample, we find σgal ∝ T 0.63±0.05

300 kpc , a slope significantly steeper than the self-similar expectation of
0.5. Assuming scale-independent galaxy velocity bias, we infer a mean logarithmic mass at a given X-ray temperature and redshift,
〈ln(E(z)M200/1014 M�)|T300 kpc, z〉 = πT + αT ln

(
T300 kpc/Tp

)
+ βT ln

(
E(z)/E(zp)

)
using pivot values kTp = 2.2 keV and zp = 0.25, with nor-

malization πT = 0.45 ± 0.24 and slope αT = 1.89 ± 0.15. We obtain only weak constraints on redshift evolution, βT = −1.29 ± 1.14.
Conclusions. The ratio of specific energies in hot gas and galaxies is scale dependent. Ensemble spectroscopic analysis is a viable method to infer
mean scaling relations, particularly for the numerous low mass systems with small numbers of spectroscopic members per system. Galaxy velocity
bias is the dominant systematic uncertainty in dynamical mass estimates.

Key words. galaxies: clusters: general – X-rays: galaxies: clusters – galaxies: kinematics and dynamics – galaxies: groups: general

1. Introduction

The cosmic web of dark matter drives the gravitational potential
wells in which baryonic matter is accelerated, shocked, stirred,
and partially cooled into stars and galaxies. Under gravity and
shocks alone, the internal structure of collapsed halos is antic-
ipated to be self-similar (Bertschinger 1985), meaning that the
internal density and temperature profiles for hot gas maintain
fixed forms in an appropriately scaled spatial radius. Integra-
tion of these forms enables straightforward calculation of global
properties such as X-ray luminosity or temperature. The model
specifies the slopes and evolution with redshift of key mass-
observable relations (MORs, see Kaiser 1986).

While astrophysical processes within halos, such as star
formation and associated supernova and active galactic nuclei
(AGN) feedback, are expected to drive deviations from self-
similarity, the observed population mean behaviour of the most
? Based on observations obtained with XMM-Newton, an ESA sci-

ence mission with instruments and contributions directly funded by
ESA Member States and NASA.

massive halos lie close to self-similar predictions (Mantz et al.
2016a).

The idea that both galaxies and hot gas are in virial equi-
librium within a common gravitational potential, originally pro-
posed by Cavaliere & Fusco-Femiano (1976), leads to the ex-
pectation that galaxy velocity dispersion scales as the square
root of X-ray temperature, σgal ∝ T 0.5

X . This behaviour reflects
MOR scalings with total mass M ∝ T 3/2

X and M ∝ σ3
gal at fixed

redshift.
For the most massive clusters in the sky, multiple surveys and

follow-up observations are enabling individual halo masses to be
estimated from gravitational lensing, hydrostatic, and dynamical
methods (see Allen et al. 2011; Kravtsov & Borgani 2012, for
reviews). These methods are subject to different sources of sys-
tematic uncertainty (e.g., Meneghetti et al. 2014), and the sam-
ples to which they are applied may have additional systematic
shifts, relative to a sample complete in halo mass, due to sample
selection. The resulting biases pose limits on the accuracy of em-
pirically derived MORs.
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Multiple, independent mass proxies allow for consistency
tests that can expose and help mitigate systematic errors.
We present here a virial analysis of 132 spectroscopically con-
firmed clusters identified in the XMM-XXL Survey (Pierre et al.
2016, hereafter XXL Paper I). The method extends the stacked
spectroscopic technique developed by Farahi et al. (2016), origi-
nally applied to optically selected clusters in SDSS (Rykoff et al.
2014).

We focus first on the virial scaling of galaxy velocity disper-
sion with hot gas temperature, then infer how mean total mass
scales with temperature using an additional degree of freedom
that relates galaxy velocity dispersion to the underlying dark
matter. This galaxy velocity bias is the largest source of uncer-
tainty in our mass estimate.

Early N-body simulations established virial scaling for
purely dark matter halos (Evrard 1989) and ensemble analysis of
billion-particle and larger simulations provides a highly accurate
calibration, with sub-percent error in the intercept of dark matter
velocity dispersion at fixed halo mass (Evrard et al. 2008).

Inferring a virial, or dynamical, mass of an individual clus-
ter requires a large number of spectroscopic members and a re-
liable interloper rejection algorithm (e.g., Biviano et al. 2006)
such as that provided by the caustic technique (Rines et al. 2007;
Rines & Diaferio 2010; Gifford et al. 2013). For large cluster
samples emerging from surveys, a complementary approach to
infer mean MOR scaling behaviour is to employ ensemble pop-
ulation analysis, effectively stacking the local velocities of galax-
ies in multiple clusters to extract a mean velocity dispersion sig-
nal (Farahi et al. 2016).

Here we have employed a large collection of galaxy spec-
troscopic redshifts assembled from multiple sources for groups
and clusters identified in the north field of the XMM-XXL
survey. The 132 systems span X-ray temperatures kT300 kpc ∈

[0.48−6.03] keV, and redshift z ∈ [0.03−0.6], and the spec-
troscopic sources include GAMA, SDSS-DR10, VIPERS, and
VVDS Deep and Ultra Deep surveys.

The mass-temperature scaling has been studied extensively
(e.g., Xue & Wu 2000; Ortiz-Gil et al. 2004; Arnaud et al. 2005;
Vikhlinin et al. 2006; Kettula et al. 2015; Mantz et al. 2016b;
Lieu et al. 2016). Observational relations generally steepen
from close to the self-similar for hot systems to a slope of
∼1.6−1.7 once cooler systems (kT300 kpc . 3 keV) are included
(Arnaud et al. 2005; Lieu et al. 2016). More than half of the clus-
ters in this work will be systems with kT300 kpc . 3 keV, which
allows us to test deviation from the self-similar model, with yet
another mass calibration technique.

As part of the first series of XXL papers, (Lieu et al. 2016,
hereafter XXL Paper IV) estimates the mass-temperature scaling
relation of X-ray bright systems using weak-lensing mass mea-
surements from the Canada-France-Hawaii Telescope Lensing
Survey (CFHTLenS) shear catalogueue (Heymans et al. 2012;
Erben et al. 2013). The work presented here is complementary to
that study where it provides a mean dynamical mass as a function
of X-ray temperature. The X-ray sample differs from that used
by XXL Paper IV, but the pipeline for deriving X-ray properties
from the XMM data is identical.

We describe the sample, data, and selection criteria in Sect. 2.
The likelihood model used to constrain the galaxy velocity dis-
persion scaling with temperature is described in Sect. 3. In
Sect. 4, we present results for this relation, followed by a dis-
cussion of a range of systematic uncertainties and sensitivity
analysis in Sect. 5. A key result of this work, the dynamical
mass-temperature relation, is presented in Sect. 6. Finally we
conclude in Sect. 7

Throughout we have assumed WMAP9 consistent cosmol-
ogy with Ωm = 0.28, ΩDE = 0.72, and local Hubble constant
h = H0/100 km s−1 Mpc−1 = 0.7. Unless otherwise noted, our
convention for the mass of a halo is M200, the mass contained
within a spherical region encompassing a mean density equal to
200 times the critical density of the Universe, ρc(z). Similarly,
r∆ is defined as the radius of the sphere inside which the mean
density is a factor ∆ times the critical density of the Universe at
that redshift, and M∆ is the total mass within that radius.

2. Cluster and spectroscopic sample

The XXL survey consists of tiled 10 ks (or longer) exposures
across two fields of roughly 25 deg2 each. The observing
strategy and science goals of the survey are described in
XXL Paper I while source selection and a resultant brightest 100
cluster sample are published in Pacaud et al. (2016, hereafter
XXL Paper II). The X-ray images were processed with the
Xamin v3.3.2 pipeline (Pacaud et al. 2006), which produces
lists of detections of varying quality. The overall catalogue
with point sources will be available in computer readable form
via the XXL Master Catalogue browser1 and at the Centre de
Données astronomiques de Strasbourg (CDS2; Chiappetti et al.
2018, hereafter XXL Paper XXVIII), while cluster candidates
are grouped by detection classes (C1, C2, C3) and hosted in
the same places as catalogue XXL-365-GC (Adami et al. 2018,
hereafter XXL Paper XX). The 2016 series of XXL papers,
including (XXL Paper II), pertained to the brightest 100 clusters
and 1000 AGN, while for the second series, including this
paper, we are publishing much deeper samples: 365 clusters
and 20 000 AGN, with slightly revised cluster properties and
scaling relations. Of the XXL cluster sample 46% are classified
as high-quality (C1) detections, 43% are intermediate quality
(C2) and the remaining 11% are marginal quality (C3) sources.
We discard C3 sources in this work as they do not have reliable
luminosity and temperature measurements. The subject of this
work is a subset in the XXL-N area, with spectroscopically
confirmed redshifts and with redshifts z < 0.6, generating a
sample of 132 systems. A detailed discussion of the sample
selection is provided by XXL Paper XX and Guglielmo et al.
(2018, hereafter XXL Paper XXII). The cluster optical and
X-ray images can be found in the XXL cluster database3.

The sky distribution of the systems used in this work is
shown in Fig. 1. X-ray extended sources are shown as black cir-
cles and the colour map shows the sky surface density of spec-
troscopic galaxies lying in an aperture of radius r ≤ 3r500 with
respect to their centres. The r500 estimates are determined from
weak lensing mass estimates presented in XXL Paper IV. We
next provide additional details of the group/cluster and galaxy
spectroscopic samples.

2.1. X-ray Temperatures

Of the 132 spectroscopically confirmed C1 and C2 clusters with
z < 0.6, X-ray temperatures are available for 106, 81 C1 and
25 C2 clusters. All are C1 clusters and most but not all are
included in the XXL 100 brightest sample of XXL Paper II.
The temperature determination, described in detail by Giles et al.
(2016, hereafter XXL Paper III), outputs the temperature mea-
sured within a physical 300 kpc aperture for sufficiently high
signal-to-noise-ratio systems.

1 http://cosmosdb.iasf-milano.inaf.it/XXL
2 http://cdsweb.u-strasbg.fr
3 http://xmm-lss.in2p3.fr:8080/xxldb
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Fig. 1. Spatial distribution of galaxies and clusters in the XXL north field used in this work. Black circles show cluster centres with z ≤ 0.6 with
area proportional to temperature. The heat map shows the sky surface density of spectroscopic galaxies lying within a projected aperture of 3r500
around cluster centres.

After detection by Xamin v3.3.2 – a detection pipeline pi-
loted by the XMM-LSS project (Pacaud et al. 2006) – as an
extended X-ray source, a background subtracted radial profile
is extracted in the [0.5−2] keV band. The detection radius is
defined as that at which the source is detected at 5σ above the
background. A spectrum is then fit from a circular aperture of ra-
dius of 300 kpc centred on the X-ray centroid, using a minimum
of five counts per energy bin, resulting in a temperature measure-
ment we refer to as T300 kpc. Cluster spectral fits were performed
in the 0.4−7.0 keV band with an absorbed APEC model with
the absorbing column fixed at the Galactic value, and a fixed
metal abundance of Z = 0.3 Z�. For more detail on the data pro-
cessing, we refer the reader to Pacaud et al. (2016). We note that
the measured X-ray temperatures are non-core excised owing to
the limited angular resolution of XMM-Newton and the modest
signal-to-noise-ratio of most detections. These temperatures are
taken from XXL Paper XX.

For the systems that lack direct temperature estimates, we
estimate temperatures from X-ray luminosities using published
XXL scaling relations as follows. First, background-corrected
XMM count-rates within 300 kpc from the cluster centre in the
[0.5−2] keV band are extracted. This forms the basis of a first
luminosity estimate, the starting point for an iterative scheme
that uses the L − T scaling relation from XXL Paper XX and
the T − M500 relation from XXL Paper IV. The process as-
sumes isothermal β-model emission with parameters (rc, β) =
(0.15r500, 2/3), and iterations continue until convergence. This
method outputs temperature, mass, and r500 estimates. Details of
the steps above are described and reported in XXL Paper XX.

To check the internal consistency of the derived X-ray tem-
perature, XXL Paper XX performs a comparison of T300 kpc
derived using the above approach with direct temperature mea-
surements for a subset of systems, finding good agreement. Be-
low, we show that the velocity dispersion scaling parameters us-
ing the subset of systems with directly measured temperatures
are consistent with those of the full cluster sample.

Fig. 2. Temperature vs. redshift of the full 132 XXL-N cluster sam-
ple. Blue circles are clusters with measured temperature and magenta
squares show clusters with inferred temperature.

Figure 2 shows redshifts and temperatures of the XXL-N
clusters. At a given redshift, higher mass systems that are both
brighter and hotter tend to have direct temperature measure-
ments. As explained in Sect. 2.5, the sample size shrinks, by
roughly 3% (four clusters), after we apply velocity and aperture
cuts discussed below.

2.2. Spectroscopic sample

Concerning the spectroscopic database of galaxies, reduced
spectra from several public surveys are combined with XXL
dedicated observing runs to create a large, heterogeneous col-
lection of redshifts. The surveys and observing programmes,
listed in Table 2 in XXL Paper XXII, include GAMA
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(45%; Hopkins et al. 2013; Liske et al. 2015), SDSS-DR10 (5%
Ahn et al. 2014), VIPERS (32% Guzzo et al. 2014), VVDS
Deep and Ultra Deep (9% Le Fèvre et al. 2005, 2015). The
remaining 9% are obtained mainly by ESO Large Pro-
gramme + WHT XXL dedicated observational campaigns which
are individually contributing less than 2%. The typical er-
ror in redshift for galaxies is ∼0.00041(1 + z), equivalent to
120(1 + z) km s−1. The full list of spectroscopic catalogues are
listed in XXL Paper XXII. We note that the spectroscopic sam-
ple adopted in this work is a subset of the spectroscopic sample
of XXL Paper XXII.

Given that the catalogue sources overlap in the sky, a non-
negligible number of objects are observed by more than one
project. The cleaning of catalogue duplicates follows the selec-
tion criteria designed to identify the best spectrum in the final
catalogue, as described by XXL Paper XXII. The selection pro-
cedure is based on two sets of priorities, the first regarding source
origin and then the second regarding the reliability flag attributed
to the redshift estimate.

The full sample contains 120 506 galaxies in the north XXL
region, 63 681 of which are at z ≤ 0.6. For our default analy-
sis, we employ a sub-sample comprised of those galaxies lying
within a projected distance of r500 from the centres of the clus-
ters, shown in Fig. 1, yielding 7751 galaxies.

The spectroscopic information for these galaxies, as well
as for spectroscopically confirmed groups/clusters, is hosted in
the CeSAM (Centre de donnéeS Astrophysiques de Marseille)
database in Marseille (CeSAM-DR2)4.

2.3. Spectroscopic redshifts of XXL-selected clusters

All C1 and C2 candidate clusters identified within the XXL sur-
vey are followed up for spectroscopic redshifts using an iterative
semi-automatic process similar to that used for the XMM-LSS
survey (Adami et al. 2011).

First, spectroscopic redshifts from public and private sources
lying within the X-ray contours are selected. These are sorted
to identify significant (more than 3 galaxies) concentrations, in-
cluding a preliminary “cluster population” based on projected
separation from the X-ray centroid. For the large majority of
cases, a single concentration appears, allowing for relatively un-
ambiguous redshift determination.

A preliminary measure of the cluster redshift is the mean
value of the redshift of the preliminary cluster population. From
this redshift, a physical region of 500 kpc radius is defined,
and all galaxies within this radius were selected as cluster mem-
bers. This procedure is iterated with all available redshifts within
a 500 kpc physical radius to get the final mean cluster red-
shift. However, for ambiguous cases where there are not more
than three galaxies with spectroscopic redshifts, the redshift is
measured by looking for the putative brightest cluster galaxy
(BCG) in the i-band located close to the X-ray centroid (see
XXL Paper XX for a detailed discussion).

The cluster centre is defined by the peak in the detected
X-ray emission. Because X-ray emission is continuous and the
gas traces the gravitational potential, we expect fewer mis-
centred clusters (mis-centered with respect to the dark matter
potential minimum) compared to photometrically-defined sam-
ples (Rykoff et al. 2012). We defer a detailed treatment of cluster
mis-centring to future work.

4 Publicly available at http://www.lam.fr/cesam/

Fig. 3. Magnitude of the rest-frame velocity of cluster galaxies, Eq. (1),
as a function of cluster temperature. Each dot is one galaxy, and some
galaxies appear in the fields of multiple clusters. The black line shows
the cut, Eq. (2), that separates the lower signal population from a pro-
jected background. Points above the black line are disregarded in our
analysis.

2.4. Galaxy-cluster velocities

Given the redshift, zc, of each XXL-N group or cluster, we mea-
sure the rest-frame relative velocity of each galaxy within the
target field of that cluster,

vgal = c
(

zg − zc

1 + zc

)
, (1)

where c is the speed of light and zg is the redshift of the galaxy.
In this paper the original spectroscopic galaxy selection for

each cluster is defined only by sky location, not cluster redshift.
Therefore, each cluster field contains a mix of galaxies residing
within and outside the cluster environment. We describe below
the probabilistic method originally applied to SDSS redMaPPer
systems by Rozo et al. (2015), which involves a two-stage ap-
proach to handling foreground and background galaxies.

2.5. Signal component and final cluster sample

The model framework, wherein observable properties scale with
halo mass as power laws with some intrinsic covariance, moti-
vates the modeling process. For systems with a given tempera-
ture, T300 kpc, and redshift, we expect a log-normal distribution of
halo mass with some intrinsic (10−20%) scatter (Le Brun et al.
2016). The galaxy velocities internal to these halos are assumed
to follow a Gaussian distribution with a dispersion that increases
with halo mass. Because the intrinsic scatter of these relations
is not very large, the expected distribution of galaxy velocities,
vgal, at fixed T300 kpc and z will also be close to Gaussian (see
Becker et al. 2007, for a specific model applied to galaxy rich-
ness instead of temperature). This collective component is the
fundamental signal we seek to model and extract from the data.

The first stage of the process removes projected interlopers
with large vgal offsets, much larger than those expected from the
underlying Gaussian model. The threshold value, vmax(T300 kpc),
is set empirically by examination of the absolute magnitude of
the line-of-sight galaxy velocities as a function of cluster tem-
perature, given in Fig. 3. Similar to the analysis of Farahi et al.
(2016), where redMaPPer optical richness plays the role of
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Fig. 4. Frequency distribution of the number of spectroscopic mem-
bers per cluster within r500 after removing the high-velocity background
component using the velocity cut, Eq. (2).

T300 kpc, two populations emerge: a signal component at low ve-
locities and a projected population offset to higher velocities.

Based on the structure of Fig. 3, we define a maximum, rest-
frame galaxy velocity for the signal region of

vmax(T300 kpc) = 2500
(

kT300 kpc

2.2 keV

)0.5

km s−1. (2)

Applying this cut along with the radial cut, r ≤ r500, elimi-
nates four clusters from the sample because no galaxies satisfy
these cuts. The final cluster sample involves 1592 galaxies across
128 clusters, 103 of which have directly measured temperatures.

Figure 4 shows the distribution of spectroscopic galaxy
counts within r500 in the cluster sample after applying the veloc-
ity threshold, Eq. (2). The modal, median, and mean values are 3,
9, and 12.4 respectively. After applying the velocity and aperture
cuts, the main contribution of spectroscopic sample came from
GAMA (45%), VIPERS (30%), VVDS Deep and Ultra Deep
(11%), SDSS-DR10 (5%). The remaining catalogues individu-
ally contribute less than 2%.

In Sect. 5, we investigate the sensitivity of our results to vmax
and r500 selection thresholds, not finding statistically significant
change.

3. Cluster ensemble velocity model

The study of Rozo et al. (2015) introduced an ensemble likeli-
hood model for stacked cluster spectroscopy with the goal of
assessing the quality of photometric membership likeli-
hoods computed by the redMaPPer cluster finding algorithm
(Rykoff et al. 2012). This model was designed to take advantage
of sparse, wide-area spectroscopic samples, for which each clus-
ter may have only a few member redshifts. Subsequently, the ap-
proach was extended by Farahi et al. (2016) to infer the scaling
of mass with optical richness, λRM. In the present work we fol-
low a similar approach, with X-ray temperature replacing λRM.

3.1. Ensemble galaxy velocity likelihood

Power-law scaling relations, originally motivated by the self-
similar model (Kaiser 1986), are confirmed in modern hydro-
dynamic simulations, which model baryonic processes in halos
(e.g., Truong et al. 2018; McCarthy et al. 2017). Consequently,
we assume a power-law scaling relation between characteristic

galaxy velocity dispersion, σgal, and X-ray temperature of the
form,

σgal(T300 kpc, z) = σp

(
kT300 kpc

kTp

)α (
E(z)
E(zp)

)β
, (3)

where kTp = 2.2 keV and zp = 0.25 are the pivot tempera-
ture and redshift, and E(z) = H(z)/H0 is the normalised Hubble
parameter.

The probability distribution function (PDF) of galaxy veloc-
ity at a given cluster temperature is taken to be Gaussian with the
above dispersion. The ensemble likelihood for the signal compo-
nent allows for a residual, constant background atop this cluster
member signal. The likelihood for the ensemble cluster-galaxy
rest-frame velocity sample is thus

L =

n∏
i=1

[
p G(vgal,i|0, σgal(Ti, zi)) +

1 − p
2vmax(Ti)

]
, (4)

where G is the Gaussian distribution with zero mean and stan-
dard deviation, σgal, vgal is the line-of-sight (LOS) velocity,
Eq. (1), and the sum i is over all galaxy-cluster pairs in the
spectroscopic sample lying below the maximum cutoff, Eq. (2).
The parameter p is the fraction of galaxies that contribute to the
Gaussian component, while 1−p is residual fraction of projected
systems that are approximated by a uniform distribution in the
signal portion of velocity space.

We maximise this likelihood with respect to the four model
parameters, σp, α, β, and p. Below we find that the redshift evo-
lution parameter, β, is both relatively poorly constrained and
consistent with zero. We therefore also perform a restricted
analysis in which we assume self-similar evolution (SSE), with
β = 0.

3.2. Ensemble velocity model in simulations

This model has been tested against simulation by Farahi et al.
(2016), using cluster richness instead of X-ray temperature, with
several key findings. First, the spectroscopic mass estimate is
a nearly unbiased estimator of 〈ln Mmem|λRM〉, where Mmem is
the mass of the underlying halo that contributes the maximum
fraction of the cluster’s photometric member galaxies assigned
by redMaPPer. Second, galaxies lying in the signal region con-
sist of a majority coming from the top-ranked, member-matched
halo (∼60%) as well as locally projected galaxies (∼40%) lying
outside the matched halo. Finally, the main source of systematic
uncertainty in the SDSS cluster mass estimate of Farahi et al.
(2016) is uncertainty in the magnitude of the galaxy velocity
bias.

4. Velocity scaling results

In this section, we present the inferred σgal − kT300 kpc scaling
relation for the full cluster sample. The fiducial analysis uses the
signal velocity threshold of Eq. (2), an angular limit of r500, and
solves for the four degrees of model freedom using the entire
sample. Sensitivity tests of the angular and velocity thresholds
used in our fiducial treatment are presented in the next section.

We run the Markov chain Monte Carlo (MCMC) analysis
module PyMC (Patil et al. 2010) to maximise the likelihood and
recover the scaling relation parameters between velocity disper-
sion of galaxy members and temperature of hot cluster gas. We
assume a uniform priors on all parameters, with the following

A8, page 5 of 13

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201731321&pdf_id=4


A&A 620, A8 (2018)

Table 1. Expectation values and standard deviations of the marginalised
posterior distributions of free parameters of the model defined in
Eqs. (3) and (4).

σp [km s−1] α β p
539 ± 16 0.63 ± 0.05 −0.49 ± 0.38 0.88 ± 0.015

Notes. Parameters listed above are for the fiducial model; the self-
similar evolution model, with β set to zero, returns identical central
values and errors for the other parameters and so are not listed.

domain limits: p ∈ [0, 1], σp ∈ [50, 1000] km s−1, α ∈ [−10, 10],
and β ∈ [−10, 10].

The best-fit parameter values for the fiducial model and the
restricted SSE model are given in Table 1. The posterior PDFs
of the free parameters are presented in Appendix A.

For the fiducial treatment, the posterior constraint on the
slope of galaxy velocity dispersion scaling with temperature is
α = 0.63 ± 0.05, is in tension with the self-similar expectation
of 0.5. A slope steeper than self-similar could potentially arise
from AGN feedback effects on the ICM. Recent simulations in-
cluding AGN feedback exhibit shifts in the global ICM tempera-
ture of halos that are mass-dependent, with larger increases seen
at lower masses (Le Brun et al. 2016; Truong et al. 2018). Since
the galaxy velocity dispersion is not directly coupled to AGN
activity, the impact on the ICM would lead to α > 0.5.

We find no significant change in the scaling amplitude with
redshift but our constraint is weak, β = −0.49 ± 0.38. Since the
fiducial analysis yields no evidence of redshift evolution, it is no
surprise that the posterior SSE parameter values are identical to
those of the fiducial analysis.

The Gaussian component amplitude, p, is close to, but signif-
icantly different from unity. While the value of 0.88±0.02 is con-
sistent with the 0.916 ± 0.004 value found by Rozo et al. (2015)
in their study of SDSS redMaPPer clusters, differences in se-
lection and measurement preclude a direct comparison. Besides
sample selection differences, the SDSS galaxy velocities are
pairwise with respect to the central galaxy’s velocity, whereas
ours are determined by the mean cluster redshift, zc. Some of the
difference could reflect mis-centering, as a larger fraction of mis-
centered clusters both reduces p and increases σp (Farahi et al.
2016). We defer detailed modeling of such selection effects to
future work.

Normalised velocity residuals about the mean scaling be-
haviour in the fiducial analysis are shown in Fig. 5. We bootstrap
the galaxy sample to compute means and standard deviations of
the PDF in 64 bins between −4 and 4 in v/σgal, and these are
shown as points with error bars in the figure. The line is the
model, a Gaussian of zero mean, unit variance and amplitude
given by the fiducial best fit plus a constant background.

From Fig. 5, it is evident that our fit is not a good fit to data
in the standard chi-squared sense. The normalised velocity PDF
structure is very similar to that seen by Rozo et al. (2015) and
Farahi et al. (2016) for redMaPPer clusters and simulations, re-
spectively. We find χ2/d.o.f. = 74/44 for vgal/σgal ∈ [−3, 3],
which is less than that for the best-fit value found by Rozo et al.
(2015) for SDSS redMaPPer clusters, χ2

SDSS/d.o.f. = 96/26.
While the centrally peaked nature of the normalised veloc-

ity PDF remains to be carefully modeled, two potential sources
are likely to be important. One is projected large-scale structure;
the Farahi et al. (2016) simulations show that only ∼60% of the
galaxies in the signal component of velocity space actually lie
within r200 of the halo matched to each member of the cluster
ensemble. Another is intrinsic scatter in σgal − TX, which will
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Fig. 5. Normalised residuals of galaxy velocity about the mean scaling
relation in the fiducial analysis. Red points show the data and the black
line is the model, Eq. (4), a mixture of a Gaussian and a uniform distri-
bution. Error bars are calculated by bootstrapping the velocities of the
spectroscopic sample, using 64 bins between −4 and 4 in vgal/σgal. See
text for discussion of the goodness of fit.

distort the Gaussian shape. The fact that the χ2/d.o.f. is smaller
for the XXL sample compared to SDSS redMaPPer may reflect
the fact that the intrinsic scatter in galaxy velocity dispersion is
smaller at fixed temperature than at fixed richness, but differ-
ences in selection may also play a role.

Although the best fit is not a good fit to a Gaussian, the simu-
lation of Farahi et al. (2016) show that the derived galaxy veloc-
ity dispersion scaling is unbiased with respect to the log-mean
value obtained by matching each cluster to the halo that con-
tributes the majority of its galaxy members. Because the galaxy
velocities in that simulation are unbiased relative to the dark
matter by construction, the virial mass scaling derived from the
galaxy velocity dispersion, M(λRM, z) ∝ σ3

p(λRM, z), presents an
unbiased estimate of the log-mean, membership-matched halo
mass of the cluster ensemble. The reader interested primarily in
mass scaling estimates can move directly to Sect. 6.

We turn next to comparing our scaling of galaxy velocity dis-
persion with gas temperature to previous work, and then explore
the robustness of our parameter values in Sect. 5.

Soon after early observations of extended X-ray emission
from clusters indicated a thermal gas atmosphere, a dimension-
less parameter of interest emerged: the ratio of specific energies
in galaxies and hot gas, βspec = σ2

gal/(kTX/µmp), where µ is the
mean molecular weight of the plasma and mp is the proton mass
(note this beta is fundamentally different from the symbol used
in Sect. 3).

Early estimates of this ratio in small observational samples
(Mushotzky et al. 1978) and gas dynamic simulations (Evrard
1990; Navarro et al. 1995) yielded βspec ≈ 1, consistent with
a scenario in which both components are in virial equilibrium
within a common gravitational potential. More recently, this
ratio has been explored at high redshift; Nastasi et al. (2014) find
βspec = 0.85 ± 0.28 for 15 clusters with z > 0.6.

Figure 6 compares the fiducial scaling relation of this work to
previous determinations in the literature. In addition, the dashed
(magenta) line shows βspec = 1 assuming mean molecular weight
µ = 0.6, appropriate for a metal abundance of 0.3 Z�. Shaded
regions show 1σ uncertainty on the expected velocity dispersion
at a given temperature.
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Table 2. Summary of published σgal − kTX scaling relation parameters, using the notation1 of Eq. (3).

Source σp (km s−1) α β Fitting method N Redshift
This work 539 ± 16 0.63 ± 0.05 −0.49 ± 0.38 Ensemble ML 132 z < 0.6

Wilson et al. (2016) 497 ± 85 0.86 ± 0.14 −0.37 ± 0.33 ODR2 38 z < 1
Nastasi et al. (2014) 508 ± 147 0.64 ± 0.34 – BCES bisector 15 0.64 ≤ z ≤ 1.46
Xue & Wu (2000) 523 ± 13 0.61 ± 0.01 – ODR2 145 z < 0.2

Notes. (1) We note that sample definitions, analysis methods and notation vary across sources. Published intercepts are renormalised to the fixed
pivot temperature and redshift used in Eq. (3). (2)Orthogonal Distance Regression.
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Fig. 6. Comparison of the σgal − kT300 kpc scaling relation of this
work with prior literature, as labeled. Shaded regions are 1σ un-
certainty on the expected velocity dispersion at given temperature.
The magenta line is the locus of constant specific energy ratio,
βspec = σ2

gal/(kTX/µmp) = 1 with µ = 0.6. The slope of Wilson et al.
(2016) suffers from a potential bias discussed in the text.

Table 2 summarises the comparison with previous studies.
The published scaling relations are re-evaluated at the pivot point
of this work to be directly comparable. When appropriate, errors
in the published slope are propagated to the normalization error.

The measured slope is consistent between our work and pre-
vious works. Wilson et al. (2016) find a slope 0.86 ± 0.14 for
a sample of 38 clusters from the XMM Cluster Survey. Us-
ing simulations, however, they show that the orthogonal fitting
method on their sample produces a substantial overestimate in
slope, by ∼0.3, in the test shown in their Table 7 and Fig. 9.
They caution that their fit overestimates the velocity dispersion
of clusters above 5 keV. Similarly Ortiz-Gil et al. (2004) uses
the orthogonal fitting method and find a steep slope ∼1.00±0.16
for a sample of 54 clusters.

If a bias correction is applied, the slope of Wilson et al.
(2016) reduces to ∼0.55, consistent with our findings. We note
that a smaller shift of ∼0.2 would bring the Ortiz-Gil et al.
(2004) result into consistency with self-similarity at the 2σ
level. For a heterogeneous sample constructed from the litera-
ture, Xue & Wu (2000) report a slope of 0.61 ± 0.01, consistent
with our result.

The velocity dispersion normalizations given in Table 2
at the pivot temperature and redshift are all in good agree-
ment within their stated errors. The 3% fractional uncertainty
in our quoted normalization is among the tightest published
constraints, comparable to the statistical error of the more het-
erogeneous sample of Xue & Wu (2000).

5. Systematic errors and sensitivity analysis

In this section, we investigate sources of uncertainty in the scal-
ing presented in the previous section, including survey selection
and the sensitivity of the posterior parameters to the details of
the spectroscopic sample used to define the signal region.

Table 3 summarises the results of the tests presented be-
low. A cursory look at the table indicates that most param-
eters shift by modest amounts, typically within one or two
standard deviations of the fiducial result, with the exception of
the Gaussian amplitude, p, discussed further below.

5.1. Temperature estimates

As presented in Sect. 2.1, the XXL temperatures are directly
determined for 103 of the 128 clusters in our sample. A nat-
ural question to ask is whether our results are sensitive to
the temperature estimation method applied to the remaining
25 clusters.

We first note that the 103 systems with measured T300 kpc
tend to be more massive at a given redshift, with higher galaxy
richness. The higher richness translates into more galaxies with
spectroscopy, and it turns out that this subset holds most of the
statistical weight of the spectroscopic sample. Within the fiducial
r500 aperture, there are 1421 galaxies in the 103 clusters with di-
rect temperatures, compared with 171 galaxies in the 25 clusters
with inferred temperatures. So ∼90% of the statistical weight
comes from clusters with measured temperatures.

As a consistency check, we refit the scaling relation after re-
moving all clusters with inferred temperature from the sample.
The parameter constraints remain consistent with our fiducial
analysis.

5.2. Angular aperture

The velocity dispersion of dark matter particles in simulations
varies weakly as a function of distance from the halo centre
(Old et al. 2013), and this effect has been confirmed observa-
tionally (Biviano & Girardi 2003). We test the sensitivity of our
fit parameters by varying the angular aperture of inclusion by
factors of 2±1 from the fiducial value of r500. We note that the
size of the sample varies slightly as the aperture is changed.
The main change is that a larger aperture induces a larger
projection effect, evident from the Gaussian normalization,
p = 0.82 ± 0.02 for 2r500 versus p = 0.90 ± 0.02 for 0.5r500.
There are modest trends in the other parameters, including a
slightly steeper slope α = 0.67 ± 0.07 at 0.5r500, and β is not
consistent with 0 at the ∼2σ level at 0.5r500, but the statistical
power of the sample is insufficient to determine these trends with
high precision.
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Table 3. Sensitivity analysis of σgal − kT300 kpc inferred parameters.

Model σp [km s−1] α β p # Clusters # Galaxies

Fiducial 539 ± 16 0.63 ± 0.05 −0.43 ± 0.38 0.88 ± 0.02 128 1592
Measured kT300 kpc only 547 ± 17 0.60 ± 0.05 −0.39 ± 0.39 0.87 ± 0.02 103 1421

r < 0.5r500 509 ± 20 0.67 ± 0.07 −1.29 ± 0.50 0.90 ± 0.02 127 891
r < 2.0r500 557 ± 13 0.56 ± 0.04 0.42 ± 0.32 0.82 ± 0.02 131 2810

vmax
1 = 2000 km s−1 526 ± 18 0.62 ± 0.05 −0.50 ± 0.40 0.88 ± 0.02 128 1557

vmax
1 = 3000 km s−1 549 ± 15 0.63 ± 0.05 −0.45 ± 0.37 0.88 ± 0.02 128 1617
αVmax = 0.3 2 539 ± 16 0.61 ± 0.05 −0.46 ± 0.39 0.88 ± 0.02 128 1591
αVmax = 0.7 2 543 ± 16 0.65 ± 0.05 −0.48 ± 0.38 0.88 ± 0.02 128 1589
zc > 0.25 3 550 ± 32 0.58 ± 0.09 −0.82 ± 0.79 0.87 ± 0.02 84 814
zc ≤ 0.25 3 576 ± 48 0.63 ± 0.06 0.63 ± 1.42 0.88 ± 0.02 44 778

Notes. See text for further discussion. (1) Normalization of the maximum velocity threshold in Eq. (2). (2) Slope in temperature of the maximum
velocity threshold in Eq. (2). (3)Cluster redshift.

5.3. Signal component maximum velocity

Recall that the likelihood model is applied to a subset of all
spectroscopic galaxies that lie in the signal region, with rest-
frame velocities below a maximum value, vmax(T300 kpc), given
by Eq. (2). We test the effect of this maximum by indepen-
dently varying the amplitude by ±500 km s−1 (or ±20%) and the
power-law index by ±0.2. The number of signal galaxies does
not vary much with these changes, indicating that our fiducial cut
is roughly identifying the caustic edge that separates bound and
unbound galaxies in clusters (Miller et al. 2016). All parameters
remain within 1σ of their fiducial values as these changes are
made.

5.4. Redshift range

We take the pivot redshift in this work, zp = 0.25, and split the
full sample into high and low redshift subsets. For these, we
do not find statistically significant deviations from the fiducial
model parameters. The changes in the normalization, slope, red-
shift evolution, and parameter p are all less than 1σ. Although,
as to be expected, there remains no effective constraints on the
redshift evolution factor.

5.5. X-ray selection and Malmquist bias

The aim of our analysis is to produce unbiased estimates of the
scaling relations inherent to the population of dark matter ha-
los. Selection by X-ray flux and angular size (Pacaud et al. 2006)
can introduce bias in the inferred σgal − kT300 kpc scaling relation
if there is non-zero covariance between X-ray selection proper-
ties and galaxy velocity dispersion (see Sect. 5.1 in Kelly 2007).
Such data sets are said to be “truncated”, and the truncation ef-
fects need to be explicitly modeled in the likelihood.

There have not yet been observational estimates of the cor-
relation between galaxy velocity dispersion and X-ray proper-
ties at fixed halo mass. Halos in the Millennium Gas simulations
of Stanek et al. (2010) show intrinsic correlation coefficients of
∼0.3 for LX and σDM, where σDM is the velocity dispersion of
dark matter particles in the halos. However, translating this es-
timate into correlations involving σgal projected along the line-
of-sight is non-trivial and lies beyond the scope of this work.
Redshift-space projection presumably dilutes any intrinsic halo
correlation, unless the source of the projected velocity compo-
nent also carries associated X-ray emission.

The magnitude of potential selection biases can be addressed
by simulating the entire process of survey selection and sub-

sequent spectroscopic analysis, along the lines of that done by
Farahi et al. (2016) for redMaPPer optical selection. We defer
that work to future analysis. From the perspective of halo mass
estimation, corrections to the velocity dispersion scaling from
sample selection are likely to be smaller than the systematic
uncertainty associated with galaxy velocity bias, as discussed
below.

6. Ensemble dynamical mass scaling of
XXL clusters

As previously noted, Farahi et al. (2016) use sky realizations
derived from lightcone outputs of cosmological simulations to
show that the mass determined through virial scaling of the en-
semble, or stacked, pairwise velocity dispersion offers an unbi-
ased estimate of the log-mean mass of halos matched via joint
galaxy membership. Here, we apply this approach to the fiducial
velocity dispersion scaling in order to estimate the characteristic
mass scale, 〈ln M200|TX〉 of XXL clusters as a function of tem-
perature at the pivot redshift, zp = 0.25.

The simulation of Farahi et al. (2016) assumed galaxies to be
accurate tracers of the dark matter velocity field, but real galaxies
may be biased tracers. To estimate the velocity dispersion of the
underlying dark matter from the galaxy redshift measurements,
we introduce a velocity bias factor, bv, defined as the mean ra-
tio of galaxy to dark matter velocity dispersion within the target
projected r200 region used in our analysis. The normalization of
the dark matter velocity scaling with temperature is then

σp,DM =
σp

bv
, (5)

where σp is the galaxy normalization with temperature, Eq. (3).
Following Farahi et al. (2016), we proceed by: i) imposing

an external bv estimate to derive the normalization of the dark
matter virial velocity scaling with X-ray temperature; then ii) ap-
plying the dark matter virial relation calibrated by Evrard et al.
(2008) to determine the scaling of total system mass with tem-
perature.

We use bv = 1.05 ± 0.08 which is an empirical estimate
derived from redshift-space clustering of bright galaxies by
Guo et al. (2015a). A similar value of 1.06 ± 0.03 is found
in the simulation study of Wu et al. (2013), although that
study found galaxy bias slightly below 1 for the brightest
galaxies. We note that the peak of distribution of absolute
r-band magnitude of selected galaxies in this work is Mr = 21.5
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(see Appendix B), which is consistent with the brightest galaxy
sample of Guo et al. (2015a). Using a velocity bias of 1.05±0.08
leads to an estimate of the dark matter velocity dispersion at the
pivot temperature and redshift,

σp,DM = 516 ± 43 km s−1. (6)

We note that σp,DM uncertainty has contribution from the bv
prior and σp posterior.

The virial scaling of halos in simulations displays a linear
relationship between the cube of the dark matter velocity dis-
persion, σ3

p,DM, and a mass measure, E(z)M∆, where E(z) =

H(z)/H0 is the normalised Hubble parameter. Using Eq. (6) and
Table 3 of Evrard et al. (2008) along with h = 0.7, the total mass
within r200 at the pivot temperature and redshift is

〈ln(M200/1014 M�)〉 = 0.33 ± 0.24, (7)

corresponding to M200 = (1.39+0.37
−0.30) × 1014 M�.

The full velocity scaling implies a log-mean mass for the
XXL selected cluster sample of〈
ln

(
E(z)M200

1014 M�

)
|T, z

〉
= πT + αT ln

(
T
Tp

)
+ βT ln

(
E(z)
E(zp)

)
, (8)

with intercept πT = 0.45 ± 0.24, temperature slope αT = 3α =
1.89 ± 0.15, redshift slope βT = 3β = −1.29 ± 1.14. Re-
call that this result is based on 300 kpc temperature estimates,
T ≡ T300 kpc.

Biviano et al. (2006) have examined the robustness of virial
mass estimates in a cosmological hydrodynamic simulation.
They find that dynamical mass estimates are reliable for densely
sampled clusters (over 60 cluster members). Due to the ensem-
ble technique adapted here, this work does not suffer from sparse
sampling of cluster members. Generally speaking, stacking tech-
niques reduce the noise associated with sparse samples, at the
price of not constraining the intrinsic scatter.

While we explicitly remove extreme projected outliers in ve-
locity space (see Fig. 3) and account for a residual, constant con-
tribution in the velocity likelihood, it is worth noting that the cen-
tral Gaussian component has contributions from galaxies that do
not lie in the main source halo. While this component retains
some degree of projected galaxies, Farahi et al. (2016) shows
that the dynamically-derived mass is a robust estimate of log-
mean mass at a given observable, in that case 〈ln M200|λRM, z〉.
While the optical and X-ray samples are selected differently, not
enough is known about hot gas and galaxy property covariance
to model selection effects precisely. We discussed in Sect. 5.5
why selection effects are unlikely to imprint significant bias into
the inferred scaling relation.

6.1. Comparison with previous studies

Figure 7 compares the mass-temperature scaling relation, a dy-
namical mass estimates, derived in this work with previous
studies that use weak lensing (XXL Paper IV) and hydrostatic
(Arnaud et al. 2005) mass estimates. Overall, there is a good
agreement within the uncertainties.

The data points with error bars are weak lensing estimates
of M200 for a subsample of the 100 brightest clusters in XXL
(XXL Paper IV). In order to directly compare our MOR with
XXL Paper IV and other works, we evaluate all results at z = 0
using h = 1. When shifting the normalization, we assume SSE,
βT = 0, yielding πT = 0.09 ± 0.25.

Assuming self-similar redshift evolution, XXL Paper IV
estimated the mass−temperature scaling relation using a sub-
sample of 38 out of 100 brightest XXL clusters. To improve
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Fig. 7. M200 − kT scaling relation from this work (black line and dark
shaded region) is compared with published relations given in the legend
and Table 4. Shaded regions are the 1σ uncertainty in the expected mass
at a given temperature. See the text for more discussion.

their constraint, their sample is complemented with weak
lensing mass measurements from clusters in the COSMOS
(Kettula et al. 2013) and CCCP (Hoekstra et al. 2015) cluster
samples. While the data points plotted in Fig. 7 are taken
directly from XXL Paper IV, their published MOR is framed in
terms of M500. We therefore convert the normalization to M200
using an NFW profile with concentration c = 3.1, the median
value of the XXL Paper IV sample, for which M200/M500 = 1.4.
The slope of the weak lensing relation lies within ∼1σ of the
self-similar expectation of 1.5.

The assumption of hydrostatic equilibrium is commonly
used to derive masses from X-ray spectral images, and
Arnaud et al. (2005) apply this method to a sample of ten nearby,
z < 0.15, relaxed clusters in the X-ray temperature range
[2−9] keV. The masses are derived from NFW fits to the mass
profiles, obtained under the hydrostatic assumption using mea-
surements from the XMM-Newton satellite. We note that they use
a core-excised spectroscopic temperature from a 0.1r200 ≤ r ≤
0.5r200 region. Our result is consistent with that of Arnaud et al.
(2005) within their respective errors.

Kettula et al. (2015) combine 12 low mass clusters from
the CFHTLenS and XMM-CFHTLS surveys with 48 high-mass
clusters from CCCP (Hoekstra et al. 2015) and 10 low-mass
clusters from COSMOS (Kettula et al. 2013). From this sample
of 70 systems, they measure a mass - temperature scaling rela-
tion with slope 1.73 ± 0.19 for M200. When M500 is used, they
find a slope of 1.68±0.17 which they argue may be biased by se-
lection. Applying corrections to this (Eddington) bias, they find
a slope of 1.52 ± 0.17, consistent with self-similarity.

Table 4 summarises these comparisons, showing the slopes
and normalizations scaled to z = 0 for a pivot X-ray tem-
perature of 2.2 keV. The expected log mass is the largest for
weak-lensing proxies, and smallest under the hydrodynamic
assumption, but they are statistically consistent within their
stated 10−20% errors. The slope derived in this work is statis-
tically consistent with the scalings derived from weak-lensing
and hydrostatic techniques. In agreement with prior work, we
find a significantly (>2.5σ) steeper slope than the expected
self-similar value of 1.5. A more precise comparison would
need to take into account different approaches to measur-
ing X-ray temperature, as well as potential instrument biases

A8, page 9 of 13

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201731321&pdf_id=7


A&A 620, A8 (2018)

Table 4. Comparison of the mass normalization, ln A = 〈ln(M200/1014 h−1 M�) | kTX = 2.2 keV, z = 0〉, and slope of the mass–temperature
determined by the works listed.

Paper ln A Slope Mass proxy Number of clusters Redshift
This work 0.09 ± 0.25 1.89 ± 0.15 Dynamical mass 132 z < 0.6

XXL Paper IV1 0.31 ± 0.23 1.67 ± 0.14 Weak-lensing mass 96 0.1 < z < 0.6
Kettula et al. (2015)2 0.43 ± 0.17 1.73 ± 0.19 Weak-lensing mass 70 0.1 ≤ z ≤ 0.5
Arnaud et al. (2005)3 −0.09 ± 0.09 1.72 ± 0.10 Hydrostatic mass 10 z < 0.16

Notes. (1) The normalization is converted from M500 to M200 as described in the text. (2) CFHTLenS + CCCP + COSMOS cluster sample. (3)

Spectroscopic temperature within the 0.1r200 ≤ r ≤ 0.5r200 region. All clusters.

(Zhao et al. 2015; Schellenberger et al. 2015). For example,
Arnaud et al. (2005) and Kettula et al. (2015) measure core-
excised temperatures within r200 while the temperatures used
in this work are measured within fixed physical radius. Com-
paring the non-core excised temperatures of XXL clusters with
the core excised temperatures used by Kettula et al. (2013),
XXL Paper IV found a mean ratio of 〈T300 kpc/T0.1−0.5r500, WL〉 =
0.91 ± 0.05.

Several independent hydrodynamic simulations that incor-
porate AGN feedback, including models from variants of the
Gadget code (cosmo-OWLS; Le Brun et al. 2016; Truong et al.
2018) as well as RAMSES Rhapsody-G (Hahn et al. 2017), find
slopes near 1.7 for the scaling of mean mass with spectroscopic
temperature. These results are in agreement with our finding. We
note that the cluster sample used in this work is dominated by
systems with kTX < 3 keV, while Lieu et al. (2016)’s cluster
sample is dominated by clusters with temperature above 3 keV.
Slopes steeper than the self similar prediction for low tempera-
ture systems have been noted in preceding observational works
as well (e.g., Arnaud et al. 2005; Sun et al. 2009; Eckmiller et al.
2011).

6.2. Velocity bias

As in the original application of Farahi et al. (2016) to esti-
mate the mass-richness scaling of redMaPPer clusters, the dom-
inant source of systematic uncertainty in ensemble dynamical
mass estimates comes from the uncertainty in the velocity bias
correction.

Dynamical friction is a potential physical cause for the ve-
locity bias that would generally drive galaxy velocities to be
lower than that of dark matter particles within a halo (e.g.,
Richstone 1975; Cen & Ostriker 2000; Yoshikawa et al. 2003).
On the other hand, clusters that are undergoing mergers tend to
have galaxy members with a larger velocity dispersion relative to
the dark matter particles (Faltenbacher & Diemand 2006), and
merging of the slowest galaxies onto the central galaxy could
also tend to drive bv to be greater than one. These competing ef-
fects are subject to observational selection in magnitude, colour,
galaxy type, star formation activity and aperture which need to
be addressed with larger sample size. There is growing observa-
tional evidence that velocity bias is a function of the aforemen-
tioned selection variables (e.g., Guo et al. 2015a; Barsanti et al.
2016; Bayliss et al. 2017).

The space density of clusters as a function of velocity disper-
sion also constrains the velocity bias in an assumed cosmology,
and (Rines et al. 2007) find bv = 0.94 ± 0.05 and 1.28 ± 0.06 for
WMAP1 and WMAP3 cosmologies, respectively. The quoted er-
rors are statistical and based on a sample of 72 clusters in the
SDSS DR4 spectroscopic footprint. The study of Maughan et al.
(2016) compares caustic masses derived from galaxy kinematics
(e.g., Diaferio 1999; Miller et al. 2016) with X-ray hydrostatic

masses. Such a comparison yields a measure of relative biases
in hydrostatic and caustic methods, and their finding of 1.20+0.13

−0.11
for the ratio of hydrostatic to caustic M500 estimates is consis-
tent with unity at the <2σ level. If incomplete thermalization
of the intracluster plasma leads hydrostatic masses to underes-
timate true masses by 20% (e.g., Rasia et al. 2006, and refer-
ences therein), then the central value of Maughan et al. (2016)
indicates that caustic masses would further underestimate true
masses. Because of the relatively strong scaling M ∝ b−3

v , a value
bv ' 0.9 would suffice for consistency.

Redshift space distortions provide another means to test ve-
locity bias (Tinker et al. 2007). The current constraints from
Guo et al. (2015b,a) indicate a magnitude-dependent bias, with
b−1
v changing from slightly above one for bright systems – the

value bv = 1.05± 0.08 we employ in Sect. 6 to infer total mass –
to slightly below one for fainter galaxies. Oddly, this trend is
opposite to that inferred for galaxies from both hydrodynamic
and N-body simulations, where bright galaxies are kinematically
cooler than dimmer ones (Old et al. 2013; Wu et al. 2013). The
recent observational study of (Bayliss et al. 2017) finds a similar
trend.

In summary, studies are in the very early stages of investigat-
ing velocity bias in the non-linear regime, both via simulations
and in observational data. The statistical precision of future spec-
troscopic surveys, such as DESI (DESI Collaboration 2016), will
empower future analyses that may produce more concrete esti-
mates of bv as a function of galaxy luminosity and host halo
environment.

Given the current level of systematic error in mass calibra-
tion, our ensemble velocity result is consistent with the weak-
lensing mass calibration results of XXL Paper IV. Similarly, the
weak lensing results of Simet et al. (2017) and Melchior et al.
(2017) for redMaPPer clusters agree with the Farahi et al. (2016)
estimates. Better understanding of the relative biases of weak
lensing, hydrostatic and other mass estimators will shed light on
the magnitude of velocity bias in the galaxy population.

7. Conclusion
We model ensemble kinetic motions of galaxies as a function
of X-ray temperature to constrain a power-law scaling of mean
galaxy velocity dispersion magnitude, 〈lnσgal|T300 kpc, z〉 for a
sample of 132 spectroscopically confirmed C1 and C2 clusters in
the XXL survey. Spectroscopic galaxy catalogues derived from
GAMA, SDSS DR10, VIPERS, VVDS and targeted follow-up
surveys provide the input for the spectroscopic analysis. From
the kinetic energy, we derive total system mass using a precise
dark matter virial calibration from N-body simulations coupled
with a velocity bias degree of freedom for galaxies relative to
dark matter.

Following Rozo et al. (2015) and Farahi et al. (2016), we
employ a likelihood model for galaxy–cluster relative velocities,
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after removal of high-velocity outliers, and extract underlying
parameters by maximising the likelihood using an MCMC tech-
nique. The analysis constrains the behaviour of a primary Gaus-
sian component, containing ∼90% of the non-outlier galaxies,
the width of which scales as a power law with temperature, as
anticipated by assuming self-similarity (Kaiser 1986).

Based on 1908 galaxy-cluster pairs, we find a scaling steeper
than self-similarity,〈
ln

(
σgal

km s−1

)
| T300 kpc, z = zp

〉
= ln(σp) + α ln

(
T300 kpc

2.2 keV

)
, (9)

with σp = 539 ± 16 and α = 0.63 ± 0.05 at a pivot redshift of
zp = 0.25. While redshift evolution is included in the likelihood,
the data are not sufficiently dense at high redshift to establish a
meaningful constraint on evolution.

We identify and characterise several sources of systematic
error and study the sensitivity of inferred parameters to the
galaxy selection model and assumptions of the stacked model.
The method is largely robust (Table 3). It is worth noting that
these systematic error sources are generally different from those
of other mass calibration methods, such as weak-lensing and hy-
drostatic X-ray methods, which allows the XXL survey to have
an independent estimate of the cluster mass scale.

Employing the precise N-body virial mass relation calibrated
in Evrard et al. (2008) coupled with an external constraint on
galaxy velocity bias, σgal/σDM = 1.05 ± 0.08, we derive a halo
mass scaling〈

ln
(

E(z)M200

1014 M�

)
| T300 kpc, z = zp

〉
= πT + αT ln

(
T300 kpc

2.2 keV

)
+ βT ln

(
E(z)

E(0.25)

)
, (10)

with normalization, πT = 0.45 ± 0.24, and slopes, αT = 1.89 ±
0.15 and βT = −1.29 ± 1.14.

Within the uncertainties, our result is consistent with mass
scalings derived from both weak-lensing measurements of the
XXL sample (XXL Paper IV) and provides an independent
X-ray analysis using the hydrostatic assumption to obtain mass.
But uncertainties in the scaling normalization remain at the level
of 10−25% (see Table 2), and fractional errors in slope are also
of order ten percent.

We note that the dominant source of uncertainty in our mass
estimator is not statistical, but systematic uncertainty due to the
galaxy velocity bias. Deeper and denser spectroscopic surveys,
partnered with sophisticated sky simulations, will enable richer
analyses than that performed here. As the accuracy of weak
lensing and hydrostatic mass estimates improve, the ensemble
method we employ here could be inverted to constrain the mag-
nitude of velocity bias at small scales from future surveys such
as DESI (DESI Collaboration 2016). Such an approach has re-
cently been applied to a small sample of Planck clusters by
Amodeo et al. (2017).

Larger numbers of spectroscopic galaxies at z > 0.5 are
needed to constrain the redshift evolution. In recent hydrody-
namic simulations that incorporate AGN feedback, Truong et al.
(2018) present evidence for weak redshift evolution in the slope
of the mass-temperature scaling relation at z < 1, with stronger
evolution at z > 1. Next generation X-ray missions, such as
eROSITA (Merloni et al. 2012) and Lynx (Gaskin et al. 2015),
will offer the improved sensitivity needed to identify and charac-
terise this population. In the meantime, deeper XMM exposures
over at least a subset of the XXL area can be used to improve

upon the modest constraints on evolution we obtain using the
current 10 ks exposures.

The best practice in comparing the forthcoming, more sensi-
tive observational data with theoretical models will require gen-
erating synthetic light-cone surveys from simulations and ap-
plying the same data reduction techniques to the models and
observations.

An extension that we leave to future work is to properly
include temperature errors into the ensemble spectroscopic
likelihood model. Richer data will allow investigation of
potential modifications to the simple scaling model assumed
here, including testing for deviations from self-similarity (in the
redshift evolution of the normalization or a redshift-dependent
slope, for example) and potential sensitivity to the assembly
history or large-scale environment of clusters.
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Appendix A: Posterior parameter distributions

Figure A.1 shows the posterior distributions of the free parame-
ters of the fiducial model5. Posterior PDFs are close to Gaussian,
illustrating the convergence of the MCMC chains.
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Fig. A.1. Posterior likelihood distributions for σgal − kT300 kpc scaling
relation parameters.

5 Plot produced with the Python package corner.py
(Foreman-Mackey 2016)

Appendix B: Absolute r-band magnitude
of selected galaxies

According to Guo et al. (2015a) the velocity bias runs with the
absolute magnitude of selected galaxies. Figure B.1 shows the
distribution of absolute r-band magnitude of selected galaxies in
this work. We find that the peak of this distribution lies very near
Mr = 21.5, which justifies the choice of our prior distribution,
bv = 1.05 ± 0.08 found by Guo et al. (2015a) for this magnitude
threshold.
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Fig. B.1. The distribution of r-band absolute magnitude for selected
galaxies after applying the fiducial aperture and velocity cuts.
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