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ABSTRACT 9 

Dropping is a common antipredator defence that enables rapid escape from a perceived 10 

threat. However, despite its immediate effectiveness in predator–prey encounters (and against 11 

other dangers such as a parasitoid or an aggressive conspecific), it remains an under-12 

appreciated defence strategy in the scientific literature. Dropping has been recorded in a wide 13 

range of taxa, from primates to lizards, but has been studied most commonly in insects. 14 

Insects have been found to utilise dropping in response to both biotic and abiotic stimuli, 15 

sometimes dependent on mechanical or chemical cues. Whatever the trigger for dropping, the 16 

decision to drop by prey will present a range of inter-related costs and benefits to the 17 

individual and so there will be subtle complexities in the trade-offs surrounding this 18 

defensive behaviour. In predatory encounters, dropping by prey will also impose varying 19 

costs and benefits on the predator – or predators – involved in the system. There may be 20 

important trade-offs involved in the decision made by predators regarding whether to pursue 21 

prey or not, but the predator perspective on dropping has been less explored at present. 22 

Beyond its function as an escape tactic, dropping has also been suggested to be an important 23 

precursor to flight in insects and further study could greatly improve understanding of its 24 



evolutionary importance. Dropping in insects could also prove of significant practical 25 

importance if an improved understanding can be applied to integrated pest-management 26 

strategies. Currently the non-consumptive effects of predators on their prey are under-27 

appreciated in biological control and it may be that the dropping behaviour of many pest 28 

species could be exploited via management practices to improve crop protection. Overall, this 29 

review aims to provide a comprehensive synthesis of the current literature on dropping and to 30 

raise awareness of this fascinating and widespread behaviour. It also seeks to offer some 31 

novel hypotheses and highlight key avenues for future research.  32 
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I. INTRODUCTION 67 

One of the simplest ways for an organism on a raised substrate or in the air to escape an 68 

approaching threat is to drop. Dropping behaviour immediately removes an individual from 69 

the perceived hazard – be that a predator or another source of danger (such as a parasitoid or 70 

aggressive conspecific) – at least temporarily. Broadly, as an antipredator defence, dropping 71 

is a behaviour that could literally mean the difference between life and death for the prey. In 72 

the natural world, where organisms are engaged in an ongoing ‘struggle’ to survive and 73 

proliferate to pass on their genes to subsequent generations, any evolved adaptations that 74 

increase the likelihood of survival and/or breeding opportunities will be of great advantage to 75 

an individual or, indeed, a species. Given that antipredator adaptations occur in almost every 76 

major taxonomic group and in every biome of the world, Ruxton, Sherratt & Speed (2004, p. 77 

2) rightly point out that, “as R. A. Fisher argued, their very presence tells us that predation is 78 

a phenomenon of great ecological and evolutionary significance”. Antipredator adaptations 79 

can be morphological, chemical, or – as in the case of dropping – behavioural in nature, but 80 

all have evolved to reduce the risk of predation and, ultimately, mortality, thereby increasing 81 

the fitness of the prey. In many cases, when faced with a predatory threat, a prey species has 82 

multiple antipredatory adaptations they could utilise. Some morphological defences, for 83 

example camouflage, may be deployed constantly, but where prey have the option to select a 84 

behavioural defence in response to an imminent threat they ought to select the behaviour that 85 

will best increase their chances of surviving the encounter. 86 



We define dropping as a voluntary antipredator defence whereby a prey individual uses 87 

gravity, wind or water currents to power escape from imminent threat. Dropping can either be 88 

passive, where an individual simply falls away or releases its hold on a substrate, or active, 89 

where the individual may jump away from a substrate, sometimes kicking or somersaulting in 90 

the process (Brown, 1974); as an example of this variability, Haemig (1997) describes wood 91 

ants, Formica aquilonia, both falling and deliberately jumping from trees. Whether passive or 92 

active, key to dropping is that the behaviour must result in the individual escaping in a 93 

trajectory determined primarily by the external force (gravity or bulk fluid flow) only 94 

modified modestly, if at all, by the organism itself.  95 

This deceptively simple, but in fact very complex, behaviour is common and widespread as 96 

an antipredator defence, but (perhaps due to its lack of required morphological adaptations) it 97 

is currently under-studied. As a key antipredator defence, dropping has significant 98 

consequences for both prey and predators at both individual and population scales. 99 

Undoubtedly, the precise cost–benefit framework surrounding dropping depends on the point 100 

of deployment within the predation sequence. Interactions between predators and their prey 101 

can be usefully broken down into a sequence of stages comprising: (1) encounter (spatial and 102 

temporal proximity), (2) detection, (3) identification, (4) approach, (5) subjugation, and (6) 103 

consumption (Caro, 2005; Endler, 1991). In the literature, antipredatory defences employed 104 

by prey during stages 1–4 (ahead of subjugation) are referred to as ‘primary defences’, 105 

serving to influence the likelihood of the predator physically contacting the prey. So-called 106 

‘secondary defences’ act once subjugation or contact has begun (stages 5 and 6). Unusually, 107 

dropping escape can be deployed either as a primary defence [see Barnett et al. (2017), 108 

Brown (1974) and Clegg & Barlow (1982) for some examples of dropping pre-subjugation] 109 

or a secondary defence [see Castellanos et al. (2011) and Cloudsley-Thompson (1995) for 110 

some examples of dropping post-contact], suggesting that the timing of this escape behaviour 111 



can be varied in an adaptive way. Generally, we might not expect prey to drop as soon as they 112 

perceive a predator as they will not definitely be at risk of attack unless the predator has 113 

already detected them, identified them as prey and begun their approach. In many 114 

circumstances there will potentially be significant costs associated with dropping, for 115 

example, if there are other predators foraging below the prey’s initial position, and so it may 116 

be adaptive to delay escape – and avoid the costs of dropping altogether – until a predation 117 

attempt is undoubtedly imminent. However, while dropping earlier in the predation sequence 118 

leads to more frequent dropping in prey, dropping later in the predation sequence runs the 119 

risk that a predator is successful in attacking before the prey gets a chance to drop, or that the 120 

predator can track and pursue prey that have dropped more readily. We expect the timing of 121 

dropping responses to specific predator attacks to be context dependent. 122 

This review seeks to highlight the broad taxonomic distribution of dropping as an escape 123 

tactic, ranging from relatively passive undirected dropping using gravity, water, or wind, to 124 

relatively active and directed dropping in species that employ a form of gliding. We then 125 

detail a range of situations that can trigger the behaviour, considering visual, tactile, auditory, 126 

chemical, and parasitism-related triggers as well as the importance of multiple cues and 127 

abiotic factors in some situations. The costs, benefits, and trade-offs to dropping for both prey 128 

and predators are then discussed, including its use in combination with other defence 129 

mechanisms – such as tonic immobility (Honma, Mappes & Valkonen, 2015; Humphreys & 130 

Ruxton, 2018) – or cost-reducing behaviours – such as silk drop-lines (Castellanos & 131 

Barbosa, 2006; Fitzpatrick, Troubridge & Maurice, 1994; Johnson et al., 2007; Sugiura & 132 

Yamazaki, 2006) or aerial righting (Meresman, Ben-Ari & Inbar, 2017; Ribak et al., 2013). 133 

This review also aims to draw attention to the importance of this under-appreciated 134 

antipredator defence, not only for the individual organisms and populations affected, but also 135 

because of its potential to improve our understanding of the evolution of insect flight (Dudley 136 



et al., 2007; Dudley & Yanoviak, 2011; Yanoviak, Kaspari & Dudley, 2009) and how 137 

improved knowledge of dropping could be applied practically to benefit ecological modelling 138 

and agriculture. Finally, we offer a number of outstanding questions that could stimulate 139 

fruitful future research in this area.  140 

 141 

II. WHICH TAXA EXHIBIT DROPPING AS AN ANTIPREDATOR DEFENCE AND 142 

WHAT DIFFERENT FORMS DOES DROPPING TAKE? 143 

As an antipredator defence that does not necessarily require specialist morphological 144 

adaptations or complex display behaviours, dropping is commonly used as an escape tactic 145 

across a wide range of taxa. However, from simple, undirected dropping dependent on 146 

gravity, to more controlled active dropping, and dropping in underwater contexts, there is a 147 

range of forms dropping can take to ultimately achieve the same antipredator function. 148 

 149 

(1) Release and undirected dropping 150 

Often examples of terrestrial dropping escape consist straightforwardly of a release from a 151 

raised substrate and an undirected fall to whatever lies beneath. In many cases, an 152 

approaching threat may be aerial in nature, as is the case for several Mediterranean lizard 153 

species that respond to perceived avian predators by dropping from bushes to the ground (Vitt 154 

et al., 2002). Interestingly, though, some birds themselves – such as certain African bulbuls 155 

(Pycnonotus barabatus and Andropadus latirostris) and the frugivorous speckled mousebird 156 

(Colias striatus) – have also been reported as ‘dropping like rocks’ when they have been 157 

perched in trees (Caro, 2005; Lima, 1993). By so doing they escape into dense, underlying 158 

vegetation in order to avoid attacks from raptors. 159 

Undirected dropping involving release from plants has been undoubtedly best studied in 160 

insects, however, and these small taxa can potentially encounter threats approaching from 161 



above, below or from level surroundings. The wealth of study of insect dropping is likely due 162 

to the behaviour’s prevalence in insects and the relative ease of study in these taxa. Most 163 

commonly, aphids are the focus of dropping research (Francke et al., 2008; Gillespie & 164 

Acheampong, 2012; Gish, Dafni & Inbar, 2011; Losey & Denno, 1998c; Ma & Ma, 2012; 165 

Wyckhuys et al., 2008), but lepidopterans (Castellanos & Barbosa, 2011; Greeney, Dyer & 166 

Smilanich, 2012; Perović et al., 2008; Zhou, Meng & Li, 2017) are also well known for 167 

dropping – most commonly in their larval stages, but also as adults (Honma et al., 2015). 168 

Important predatory insect taxa, including ladybirds (Ben-Ari & Inbar, 2013; Lucas, Coderre 169 

& Brodeur, 1997) and spiders (Blackledge & Pickett, 2000; Cloudsley-Thompson, 1995; 170 

Jackson, Rowe & Wilcox, 1993; Uetz et al., 2002), also drop to escape predation themselves. 171 

 172 

(2) Controlled terrestrial descent 173 

Like lizards and smaller birds, many species of primate – which despite being relatively large 174 

taxa are not apex predators – experience predation threats from raptors. Here dropping from 175 

tree canopies (sometimes with the help of vines) into lower branches or undergrowth can 176 

serve as an effective defence (Barnett et al., 2015, 2017; de Luna et al., 2010; de Souza 177 

Martins, de Lima & de Sousa e Silva, 2005; Lledo-Ferrer et al., 2009; Wright, 1998). To 178 

avoid injury, the descent will likely be more controlled in these larger taxa than in insect 179 

species – some of which may well possess hard integuments that help them withstand 180 

dropping – such that individuals plan their route down to some extent. Compared to smaller 181 

taxa, though, it may be that dropping in primates is a less costly behaviour in terms of the 182 

energy and time expenditure required for returning to suitable locations once a threat has 183 

passed. Often primate dropping behaviour is accompanied by alarm calls (see references 184 

above), but sometimes such warning calls occur in response to species that only resemble 185 

predators (Barnett et al., 2018). This has been suggested to occur in such species as the red-186 



nosed cuxiús (Chiropotes albinasus) because although cautiously reacting to a 187 

‘pseudopredator’ may reduce the time available for foraging or other activities, fitness is 188 

enhanced overall by not risking becoming a potential predator’s dinner (Barnett et al., 2018).  189 

 190 

(3) Sudden loss of powered flight 191 

Not all prey species that exploit gravity when dropping in an undirected way start off based 192 

on a substrate. For many insects fully capable of flight, dropping from the air suddenly during 193 

a bout of powered flight remains an important antipredator defence against flying predators 194 

such as bats (Miller & Olesen, 1979; Miller & Surlykke, 2001). Several bird species have 195 

also been reported as dropping out of the air to escape predation. Beyond simple escape 196 

dives, where small passerines often sharply pull up after dropping vertically over sea to evade 197 

falcons (Hedenstrom & Rosen, 2001), sometimes birds do completely drop with the help of 198 

gravity to reach refuge in water. Belted kingfishers (Megaceryle alcyon) have been observed 199 

suddenly plunging down into water when being pursued by hawks (e.g. Cooper’s hawk, 200 

Accipiter cooperii, and sharp-shinned hawks, Accipiter striatus) over a river (Johnson, 1925; 201 

Kirby & Fuller, 1978; Skinner, 1928); in this case, dropping appears to be the first stage in 202 

the overall escape strategy as the kingfisher rapidly rises back out of the water facing a 203 

completely different direction and speeds off, meanwhile the hawk must attempt to arrest its 204 

momentum and readjust its attack direction. Where there is no body of water below, and only 205 

hard ground, some birds still escape mid-air attacks through dropping. Mourning doves 206 

(Zenaida macroura) and European starlings (Sturnus vulgaris) both perform sudden breast-207 

first plunges into the ground to escape predation, but the substantial risk of injury associated 208 

with this tactic suggests it may be a truly ‘last-ditch’ defence (Caro, 2005; Lima, 1993). 209 

 210 



(4) Directed aerial descent and gliding 211 

Many arboreal vertebrates have extended simple dropping escape behaviour into directed 212 

aerial descent (gliding at steep angles) or ‘classical gliding’ (gliding at shallow angles), 213 

including some species of lizard (Dudley et al., 2007; McGuire & Dudley, 2005; Mori & 214 

Hikida, 1994), frogs (Emerson & Koehl, 1990; McCay, 2001) and even snakes (Socha, 215 

2002). These descents are slower than simple undirected release from a given substrate, 216 

making them a more controlled form of dropping. Many small mammals also use classical 217 

gliding (Jackson, 2012; Jackson, 2000), both for escape and travel functions. Classical gliding 218 

in terrestrial vertebrates was likely an important precursor to the evolution of powered flight 219 

(Dudley et al., 2007; Dudley & Yanoviak, 2011). Directed aerial descent has only fairly 220 

recently been described in a variety of wingless arboreal insects too (Yanoviak, Dudley & 221 

Kaspari, 2005; Yanoviak, Fisher & Alonso, 2008; Yanoviak, Munk & Dudley, 2011, 2015; 222 

Zeng et al., 2015). It is important to note here that, while dropping from the air and directed 223 

aerial descent fall under our definition of dropping, those species such as flying squirrels that 224 

have extensive morphological adaptation for gliding used for routine movement through the 225 

environment as well as escape from predators are best seen as a separate phenomenon. 226 

Species well adapted to glide are able to modify the trajectory of falls significantly so that 227 

their dropping is less directly impacted by forces such as gravity. 228 

 229 

(5) Active drift 230 

Having considered terrestrial and aerial dropping enabled primarily by gravity – but also 231 

potentially wind – it is also important to consider aquatic taxa that utilise water flow, 232 

sometimes alongside gravity, when evading predation. Many molluscan prey species in 233 

tidepools have been reported to escape from predaceous species, such as starfish and sea 234 

stars, by releasing their attachment to the substratum, flattening their mantles dorsoventrally, 235 



and gliding away in the surf (Bullock, 1953; Dayton et al., 1977; Hoffman, 1980; Lam, 236 

2002). This escape behaviour strongly resembles directed aerial dropping but currently 237 

remains under-studied. More appreciated in the literature at present is a similar behaviour that 238 

is seen in running waters, such as streams and rivers. Where water flows, benthic 239 

invertebrates can actively escape from their predators by releasing their foothold and entering 240 

the water column in a behavioural defence known as ‘active drift’ (Brittain & Eikeland, 241 

1988). Active drift is one of several mechanisms of ‘invertebrate drift’ seen in running 242 

waters, a broader topic that has been the focus of many studies over the past few decades [see 243 

Brittain et al. (1988), Naman, Rosenfeld & Richardson (2016) and Wooster & Sih (1995) and 244 

references therein]. Active drift differs from most examples of terrestrial dropping, as the 245 

prey typically escapes via an upwards and horizontal trajectory rather than downwards. 246 

Nonetheless, we consider it a form of aquatic dropping due to its voluntary initiation, 247 

antipredator function, and its exploitation of an external force (here water currents rather than 248 

gravity) in the avoidance of an imminent threat.  249 

Intriguingly, a different mechanism of dropping has been observed in conjunction with tonic 250 

immobility in two species of predatory cichlid fish – Haplochromis livingstoni and 251 

Parachromis friedrichsthalii. These fish appear to mimic a corpse by falling down through 252 

the water column and lying inert on the substrate as part of their hunting tactic (McKaye, 253 

1981; Tobler, 2005); however, as an antagonistic tactic deployed to deceive potential prey, 254 

this behaviour far from qualifies for our definition of dropping as an antipredator defence.  255 

The prevalence of dropping as an antipredator defence across such a wide range of taxa gives 256 

an indication of how effectively it must function as an adaptive and flexible escape 257 

behaviour. The evident convergent evolution of such a defence across multiple groups of very 258 

different animals demonstrates how important and fitness-enhancing behavioural adaptations 259 

can be, despite not necessarily occurring alongside specialist morphological adaptations. Due 260 



to the bulk of the dropping literature currently consisting of studies using insects this review 261 

will consequently focus on insect interactions with predators and parasitoids. However, work 262 

on other taxa is drawn in where possible and many of the broader concepts discussed and 263 

suggested research areas will apply equally to all species where dropping can influence 264 

survival and fitness. We encourage further study of this conceptually simple but subtly 265 

complex defence within the context of all the predator–prey interactions in which it occurs. 266 

 267 

III. WHAT CAN TRIGGER DROPPING BEHAVIOUR? 268 

(1) Visual and tactile cues  269 

The most obvious trigger for antipredator dropping is the approach of a predator, following 270 

the prey’s detection of the predator. In primates and other terrestrial vertebrates, approaching 271 

avian predators are often detected visually (Barnett et al., 2017; de Luna et al., 2010; Lledo-272 

Ferrer et al., 2009; Vitt et al., 2002). Insect vision is less understood than primates’, but it is 273 

thought that substrate-borne vibrations may sometimes be more important to insects’ 274 

detection of an approaching predator (Castellanos & Barbosa, 2006). Direct contact with a 275 

predator will also be an important trigger for dropping, and it has been found that the sensory 276 

hairs of Orgyia leucostigma (Lymantriidae) caterpillars enable stimulus-specific – and 277 

therefore predator-specific – responses depending on the velocity of hair-bending they 278 

experience (Castellanos et al., 2011). Specifically, O. leucostigma caterpillars predominantly 279 

drop in response to high hair-bending velocities – similar to those caused by more forceful, 280 

rapid predators like the wasp Polistes fuscatus and the spined assassin bug Sinea diadema – 281 

and predominantly walk away in response to low hair-bending velocities – similar to those 282 

caused by the slower-attacking stink bug Podisus maculiventris. 283 

 284 



(2) Auditory cues 285 

Flying insects avoiding predation by bats use one main trigger to drop: bat echolocation calls 286 

(Miller & Olesen, 1979; Miller & Surlykke, 2001). In a fascinating case of possible 287 

convergent evolution, Rosen, Levin & Hoy (2009) describe how females of the parasitic fly 288 

Ormia ochracea have evolved the same evasive behaviour as their cricket (Gryllus rubens) 289 

hosts, dropping towards the ground upon detecting bat echolocation calls. As disrupting flight 290 

by dropping could be energetically costly, some species of moth have evolved sophisticated 291 

abilities to discriminate between the calls of bats that are flying nearby looking for prey 292 

(‘early attack’) and calls of these bats that have detected prey and are moving into pursuit 293 

(‘late attack’) – this discrimination allows these moths to use only the truly threatening “late 294 

attack” calls to trigger dropping behaviour (Corcoran, Wagner & Conner, 2013; Ratcliffe et 295 

al., 2011). While some have suggested that prey species should benefit most by defending as 296 

early as possible during predator–prey encounters (Endler, 1991; Fuiman & Magurran, 1994), 297 

this is a clear case where taking defensive action later on in the predation sequence can be 298 

more beneficial, corroborating the conclusion of Bateman, Vos & Anholt (2014) that there is 299 

no universal ecological or evolutionary advantage to defending early in the predation 300 

sequence. 301 

 302 

(3) Chemical and parasitism cues 303 

In aphids a key trigger to drop to avoid either predators or parasitoids is alarm pheromone, 304 

(E)-β-farnesene, release by conspecifics (Harrison & Preisser, 2016; Keiser, Mondor & 305 

Koenig, 2015; Montgomery & Nault, 1977; Roitberg & Myers, 1978; Schwartzberg et al., 306 

2008). Parasitoids are important natural enemies of insects and it is thought that dropping 307 

may be the most common behavioural defence against them (Gross, 1993). Intriguingly, in 308 

aphids different symbionts may (Dion et al., 2011) or may not influence the likelihood of 309 



dropping in response to the presence of parasitoids (Lavy et al., 2015). Often in parasitoid–310 

host encounters, dropping behaviour occurs as a response to – rather than in anticipation of – 311 

parasitism (Chau & Mackauer, 1997; Gillespie & Acheampong, 2012). Here, the trigger for 312 

dropping could relate to the physical external experience of parasitism or an internal chemical 313 

cue; future work could pick apart the trigger, or triggers, at play. It has been suggested that 314 

aphids altruistically commit ‘adaptive suicide’ when parasitized to protect uninfected kin 315 

(McAllister & Roitberg, 1987; McAllister, Roitberg & Weldon, 1990), but this has been 316 

questioned (Latta, 1987; Tomlinson, 1987). 317 

 318 

(4) Multiple cues and abiotic factors 319 

Information from multiple senses can be combined to trigger antipredatory dropping, such as 320 

the detection of alarm pheromone release from conspecifics alongside vibrations caused by 321 

the movement of an approaching threat (Clegg & Barlow, 1982). Fascinatingly, multiple cues 322 

have recently been recorded as key to triggering dropping in invertebrates escaping incidental 323 

ingestion by mammalian herbivores (Ben-Ari & Inbar, 2013; Gish, Dafni & Inbar, 2010). The 324 

combination of the heat and humidity of mammalian breath has been found to trigger 325 

dropping in coccinellid beetles (Ben-Ari & Inbar, 2013) and Uroleucon sonchi aphids (Gish 326 

et al., 2011). Additionally, pea aphid (Acyrthosiphon pisum) nymphs appear to combine 327 

breath cues with vibration cues to avoid erroneous dropping, which would be particularly 328 

costly at such a young life stage (Gish, Dafni & Inbar, 2012).  329 

As well as biotic cues, abiotic factors may interact with triggers to dropping. Higher 330 

temperatures can increase predator foraging rate and, therefore, the vibrations sensed by prey 331 

(Brodsky & Barlow, 1986). Heat stress itself may (Ma & Ma, 2012) or may not trigger 332 

dropping, possibly depending on the clone or species studied (Stacey & Fellowes, 2002) – 333 

future work could explore this. There are clearly many potential triggers for escape dropping, 334 



and almost certainly there is yet more to discover about the combination of senses and cues 335 

utilised by non-insect taxa in particular in detecting approaching predators. Whatever the 336 

trigger for dropping, the costs, benefits and trade-offs associated with the behaviour will 337 

influence the decision to drop in prey and its impact on predators, whether they choose to 338 

pursue the prey or not. 339 

 340 

IV. WHAT ARE THE BENEFITS, COSTS AND TRADE-OFFS ASSOCIATED WITH 341 

DROPPING? 342 

(1) Prey perspective 343 

(a) Benefits 344 

For prey, the most obvious benefit of dropping is the immediate escape from a threat. 345 

Dropping presents an immediately effective antipredator escape option and therefore in many 346 

situations it could offer the greatest benefit to prey fitness, relative to other tactics. As an 347 

example, Minoretti & Weisser (2000) found that pea aphids that try to walk away from 348 

seven-spot ladybird (Coccinella septempunctata) predators are often re-encountered. 349 

Dropping takes advantage of external forces – in this case, gravity – in order to exploit the 350 

path of least resistance, so that escape from enemies is simple and rapid. This benefit applies 351 

to avoidance of predators, parasitoids (Gross, 1993), and intra-guild predators where different 352 

instars of competing species vary in size and/or defences (Lucas et al., 1997; Raak-van den 353 

Berg, De Lange & Van Lenteren, 2012; Sato, Yasuda & Evans, 2005). A subtler benefit of 354 

dropping in all circumstances where prey make their escape from a particular resource, for 355 

example a feeding area on a plant, may be that post-dropping the prey individual experiences 356 

a better resource, for example a feeding area on a plant of greater quality, but this is an 357 

example of a more complex, long-term benefit that is at present under-studied. 358 

 359 



(b) Costs 360 

Despite any immediate and long-term benefits, dropping comes with a suite of fitness costs. 361 

These can include energetic costs such as temporary distancing from resources, energetic loss 362 

while locating a subsequent resource, or selecting a poorer subsequent resource than the 363 

original. For insects such as aphids, reduced feeding time likely damages larval fitness 364 

(Johnson et al., 2007), increases development time for nymphs and is thought to reduce 365 

reproductive capacity in adult life (Agabiti, Wassenaar & Winder, 2016). Even where aphids 366 

at any life stage are successful in locating a new plant on which to feed after dropping, their 367 

lifetime fecundity is likely to be impaired due to the loss of feeding time and energy 368 

expended in searching (Nelson, 2007; Roitberg, Myers & Frazer, 1979). By reducing 369 

fecundity, this key ‘non-consumptive effect’ of predators – and parasitoids (Fill, Long & 370 

Finke, 2012; Ingerslew & Finke, 2017) – can substantially reduce prey population growth 371 

(Nelson, 2007; Nelson, Matthews & Rosenheim, 2004; Nelson & Rosenheim, 2006).  372 

For dropped individuals, the risk of mortality may also increase through: (i) exposure to new 373 

predators (Losey & Denno, 1998a,c; Winder, 1990), (ii) exposure to harsh or harsher 374 

environmental conditions (Perović et al., 2008; Roitberg & Myers, 1979; Ruth et al., 1975), 375 

or (iii) time spent finding a suitable resource post-dropping. There is also the additional risk 376 

of simply being pursued and consumed by the original predator. Strikingly, from a population 377 

perspective, incidents of dropping can lead to important changes in the spatial organisation of 378 

prey (Fievet et al., 2007; Minoretti & Weisser, 2000; Winder et al., 2014) and it is likely that 379 

such changes may increase the susceptibility of remaining prey to future attacks (Agabiti et 380 

al., 2016). 381 

 382 



(c) Cost-reducing mechanisms 383 

There are clearly significant costs to dropping as an antipredator defence, particularly for 384 

undirected forms of dropping, and so it is no surprise that some species have evolved 385 

mechanisms to reduce these costs. Wingless pea aphids have recently been observed 386 

exhibiting an aerial-righting mechanism, whereby they assume a stereotypic posture when 387 

dropping that rotates them to a stable orientation. This improves their chances of clinging on 388 

to leaves that they encounter as they fall, thus lowering the likelihood of encountering risks to 389 

mortality on the ground (Meresman et al., 2017; Ribak et al., 2013). Similarly, lizards such as 390 

Anolis carolinensis use their tails as a mid-air stabliser when jumping and falling to allow for 391 

coordinated landing on small branches after escaping predators. However, sometimes lizards 392 

will lose their tails by autotomy as a separate defence mechanism (Bateman & Fleming, 393 

2009), and until their tail grows back stability when falling is compromised (Gillis, Bonvini 394 

& Irschick, 2009). Lizards with autotomised tails, therefore, likely face greater potential risks 395 

when dropping and so must include their tail loss in decisions regarding their choice of 396 

antipredator behaviours. 397 

A more commonly observed cost-reducing tactic than aerial righting in insect taxa is the 398 

production of silk thread ‘drop-lines’ – also known as ‘draglines’ (Blackledge & Pickett, 399 

2000) and ‘life-lines’ (Sugiura & Yamazaki, 2006). Lepidopteran larval dispersal behaviour 400 

often involves the use of drop-lines in ‘silking’ and subsequent ‘ballooning’ on the wind (Cox 401 

& Potter, 1990; Moore & Hanks, 2004; Terry, Bradley & Vanduyn, 1989; Zalucki, Clarke & 402 

Malcolm, 2002), but drop-lines are also important for avoiding threats (Castellanos & 403 

Barbosa, 2006). After dropping a short distance with silk to avoid a predator, larvae may 404 

continue to drop further (Johnson et al., 2007) or lose contact with the plant because of 405 

environmental factors such as strong winds (Perović et al., 2008). Alternatively, sometimes 406 

larvae climb back up drop-lines once the perceived threat has passed, thus avoiding the costs 407 



associated with losing their original position (Fitzpatrick et al., 1994; Sugiura & Yamazaki, 408 

2006).  409 

However, some parasitoids have evolved a remarkable countermeasure to drop-lines, 410 

whereby they locate the silk support line and slide down to their prey (Yeargan & Braman, 411 

1986). More incredibly, Yeargan & Braman (1989) describe how the hyperparasitoid 412 

Mesochorus discitergus overcomes the dropping defence of green cloverworm Plathypena 413 

scabra (Lepidoptera) in order to oviposit in the larval primary parasitoids inside already-414 

parasitised caterpillars. Here, where a green cloverworm larva hangs from a leaf on silken 415 

threads, the hyperparasitoid usually hangs by its hind tarsi from the edge of the same leaf 416 

before reeling in the caterpillar, by pulling upward on the silken thread. The hyperparasitoid 417 

females then distinguish between green cloverworms parasitized by one of their hosts, 418 

Cotesia marginiventris, and those that are unparasitized, holding and probing parasitized ones 419 

further (Yeargan & Braman, 1989). Even where prey do not face parasitoid countermeasures, 420 

potential drawbacks to drop-lines may include silk production costs, the risk of strong winds 421 

(Perović et al., 2008), or the presence of flying predators. Not all silk-producing insects use 422 

drop-lines when dropping, so it is likely that related costs – such as dangling exposed to 423 

flying predators in mid-air – are less worth risking for some species in some situations. A 424 

detailed look at how silk-spinning ability and the potential for alternative defensive 425 

behaviours affect willingness to drop as lepidopteran larvae develop would be valuable.  426 

 427 

(d) Trade-offs surrounding the decision to drop 428 

Whether prey have cost-reducing mechanisms to employ or not, the decision to drop will be 429 

guided by a number of important trade-offs concerning the relative benefits and costs of 430 

dropping to escape any perceived threat. Abiotic factors may influence the decision to drop 431 

even when they themselves are not the immediate trigger for dropping; for example, the daily 432 



cycle and illumination have been suggested to influence colonisation of plants in potato 433 

aphids (Macrosiphum euphorbiae) (Narayandas & Alyokhin, 2006) and so may influence 434 

mortality risk post-dropping. Similarly, high soil temperatures can prove fatal to dropping 435 

insects (Perović et al., 2008; Ruth et al., 1975) and so the heat of the surrounding 436 

environment must be traded off with the immediacy of predatory danger. Abiotic factors such 437 

as temperature and light may be more likely to influence the fitness of insect taxa than larger 438 

taxa that utilise dropping, as smaller taxa experience greater variation between microclimates 439 

and, proportionally, drop a much greater distance (that will require more energy to recover a 440 

position from) relative to their body size. Pea aphids have been described as ‘assessing’ risk 441 

and are less likely to drop when their environment is hot and dry (Dill, Fraser & Roitberg, 442 

1990). Of course, any assessment of a potentially risky situation need also include a number 443 

of biotic factors. 444 

Traits of an individual’s starting location or substrate itself should undoubtedly feed into any 445 

decision to drop, where prey leaves a desired resource during escape. If a resource is high 446 

quality it would be costly to abandon it for potentially lower-quality resources and 447 

individuals are less likely to drop from it (Dill et al., 1990). For insects, dropping likelihood 448 

may also depend on where the individual is located on a plant – Clegg & Barlow (1982) 449 

suggest that the stems of plants may be more dangerous for aphids than the undersides of 450 

leaves. The architecture of a plant may also influence the trade-off between danger and 451 

dropping if it influences how likely a dropped individual is to land on a lower part of the 452 

plant. It would be interesting to investigate whether herbivores select particular types of 453 

plants or particular places on plants on which to feed in part because such site selection 454 

improves the effectiveness of dropping as an antipredator strategy. Defensive morphological 455 

adaptations or other structural components of a plant may additionally help prey avoid 456 

predators or parasitoids (Obermaier et al., 2008), reducing the necessity of escape and 457 



therefore the frequency of dropping defence. An interesting additional consideration for 458 

insect prey species is whether plants are attended by ants or not; myrmecophilous aphids, for 459 

example, appear to be more dependent on ants for protection from predators than their own 460 

defensive tactics such as dropping (Nault, Montgomery & Bowers, 1976; Suzuki & Ide, 461 

2007). 462 

Alongside plant factors, where relevant, traits of the prey themselves will influence their 463 

decision to drop. If dropping from a feeding resource, whether prey are specialist or 464 

generalist feeders could have important implications for their likely success at finding 465 

suitable locations at which to feed post-dropping (Castellanos & Barbosa, 2011). For insects 466 

requiring particular host plants, host-finding and dispersal abilities will be very important 467 

(Ben-Ari, Gish & Inbar, 2015; Bierzychudek et al., 2009). Of course, host-finding abilities 468 

may be linked with plant factors, but there is still much to learn about how insects locate their 469 

host plants (Döring, 2014) and more studies regarding host-finding abilities may develop our 470 

understanding of the costs of dropping under different conditions. Life-history traits and prey 471 

state have also been found to influence the benefits and costs that will accompany dropping 472 

for prey individuals. In a theoretical model, Uroleucon jacea aphids with high relative 473 

gonadal investment or poor somatic energy states feeding on Centaurea jacea are predicted 474 

to be less willing to drop in response to predator attack due to their short survival 475 

probabilities when food uptake stops (Stadler, Weisser & Houston, 1994).  476 

In a similar vein, ontogeny could affect the trade-offs experienced by prey, but while adult or 477 

later-instar insect prey (Cornell, Stamp & Bowers, 1987; Losey & Denno, 1998c) are 478 

sometimes the more willing to drop, it is often the more juvenile stages in various insect taxa 479 

that drop most readily (Awan, 1985; Cloudsley-Thompson, 1995; Francke et al., 2008; 480 

Jackson et al., 1993; Lucas et al., 1997). Smaller lepidopteran larvae, for example, are 481 

perhaps less likely to be pursued by the original predator, but are also more susceptible to 482 



starvation through taking more time to reach a suitable feeding site post-dropping. If 483 

dropping is more costly to young, it would be adaptive for them to employ more sensory 484 

modalities to detect the level of threat. Gish et al. (2012), for example, found that young pea 485 

aphids avoid erroneous dropping when evading incidental ingestion by mammalian 486 

herbivores by dropping mostly in response to a combination of breath stimulus and 487 

vibrational stimulus. Ontogenetic differences in defence tactics are also seen in response to 488 

parasitism (Chau & Mackauer, 1997; Cornell et al., 1987). Willingness to drop at different 489 

life stages may be largely determined by relative vulnerability either to predators or climatic 490 

conditions (Perović et al., 2008). Additionally, while a couple of studies have suggested that 491 

prey density does not affect dropping behaviour in pea aphids (Harrison & Preisser, 2016; 492 

Losey & Denno, 1998c), Day et al. (2006) found that prey density was a significant influence 493 

on aphid dropping behaviour. Intraspecific differences, reproductive state, and associations 494 

with more intricate secondary defence mechanisms could also be explored further.  495 

In part relating to some of the prey traits already mentioned, as well as more complex traits 496 

such as personality (Schuett et al., 2011), the trade-offs of dropping for prey are also thought 497 

to vary with species (Losey & Denno, 1998a), race (Kunert et al., 2010), strain (Zhang et al., 498 

2016), and clone (Braendle & Weisser, 2001; Lowe & Taylor, 1964; Schuett et al., 2011, 499 

2015). Interestingly, kin recognition may influence dropping likelihood, even in non-social 500 

aphids (Muratori, Rouyar & Hance, 2014), but more work should explore this further.  501 

For any species, dropping will not be the only defensive option and behavioural trade-offs 502 

will be made depending on any given situation. Dropping is often used in combination with 503 

other defence mechanisms and, for example, its deployment in conjunction with subsequent 504 

tonic immobility (or death-feigning) (Humphreys & Ruxton, 2018) may be more effective 505 

against certain enemies than dropping alone, as has been reported in such diverse insect taxa 506 

as spiders (Blackledge & Pickett, 2000; Jackson et al., 1993) and moths (Honma et al., 2015). 507 



The ‘decision’ to utilise dropping as an escape tactic may also depend on the potential for 508 

alternative behavioural adaptations or tactics in given situations (Ohno & Miyatake, 2007). 509 

For example, when under feeding stress pea aphids tend to kick at Aphidius ervi parasitoids 510 

rather than drop, to minimise the likelihood of energy shortfall (Villagra, Ramı́rez & 511 

Niemeyer, 2002). For birds that ‘choose’ to drop to the ground (Lima, 1993) or into water 512 

(Johnson, 1925; Kirby & Fuller, 1978; Skinner, 1928), it could be rationally assumed that the 513 

obvious escape method of flight is not always the wisest defence against larger and faster 514 

raptors. Environmental factors may also affect the behavioural trade-offs made, for instance 515 

prey may choose between dropping or startle displays depending on the underlying ground 516 

cover, with dropping only proving the more appealing option if there is somewhere to hide 517 

available below (Ruxton et al., 2004).  518 

Distance to safe cover below may also influence the decision to drop, where the endpoint 519 

depends on gravity. From the perspective of avian species seeking to escape from pursuing 520 

predatory birds, Hedenstrom & Rosen (2001) analysed three aerial escape strategies and 521 

concluded that if prey are close enough to safe cover a vertical dive escape may be effective, 522 

even though smaller prey species will possess lower terminal diving speeds than that of their 523 

predators. Considering the influence of the underlying environment on insect prey, habitat 524 

complexity may also impact how easily dropped prey could locate new plants, how likely 525 

predators are to pursue dropped prey, and the effectiveness of dropping relative to other 526 

escape tactics; all of these factors deserve further study. 527 

The type of predator may also determine the best defensive behaviour as, for instance, flight-528 

capable insects may still choose to drop where their chances of flying escape are limited by 529 

dangers from above (Ben-Ari & Inbar, 2013). The predator:prey size ratio – often influenced 530 

by the instar stages of both sides – will also influence the effectiveness of running, kicking or 531 

dropping as defensive strategies (Brown, 1974; Dixon, 1958; Evans, 1976; Hoki, Losey & 532 



Ugine, 2014). More generally, different predators have been observed to elicit different 533 

dropping rates in the same insect prey species (Castellanos & Barbosa, 2006; Castellanos et 534 

al., 2011; Day et al., 2006; Losey & Denno, 1998c). Future research could manipulate the 535 

magnitude of perceived predatory risk and predator density to explore further the predatory 536 

triggers for dropping. But prey species are not alone in experiencing trade-offs in dropping 537 

situations; predators themselves will potentially experience benefits and costs that require 538 

decisions to be made regarding prey pursuit. 539 

 540 

(2) Predator perspective 541 

(a) Benefits 542 

When individuals drop they risk exposing themselves to new predators, and it is these new 543 

predators that can greatly benefit from dropping behaviour; instead of searching for and 544 

pursuing prey themselves, prey simply drops down (or indeed, flows downstream by active 545 

drift) to them. Interestingly, a laboratory study by Losey & Denno (1998b) showed that the 546 

combined predation rate of foliar-foraging (Coccinella septempunctata) and ground-foraging 547 

(Harpalus pennsylvanicus) predators of pea aphids was almost double the sum of their 548 

individual predation rates when only one type of predator was present. The strength of the 549 

synergistic interaction between the predator types suggests that dropping behaviour elicited 550 

by foliar-foraging predators greatly benefits the ground-foraging predators and has great 551 

importance to the suppressive effect of predator complexes. 552 

 553 

(b) Costs and trade-offs surrounding the decision to pursue prey 554 

For the predators that lose out on prey which have dropped to escape, the antipredator 555 

behaviour involves only costs. Predators will experience costs of reduced food uptake and 556 

foraging efficiency (Francke et al., 2008) and parasitoids can experience reduced fecundity 557 



(Niku, 1976). One way to reduce these costs may be to pursue dropped prey. Many insect-558 

eating birds employ a ‘diving after’ behaviour to retrieve dropped prey items – although this 559 

has energetic costs, it requires less energy than seeking and acquiring new prey (Lohrl, 1978). 560 

Certainly, some insect predators do pursue their prey, for example, Sceliphron caementarium 561 

mud-dauber wasps vigorously pursue spiders that have dropped from their webs, and have 562 

been observed to crawl around under webs in gradually enlarging circular patterns to locate 563 

their fallen prey (Blackledge & Pickett, 2000). However, few studies have explored the trade-564 

offs that may influence predators’ willingness to pursue dropped prey.  565 

It might be reasonable to assume that prey size, and therefore energy content, would 566 

influence pursuit likelihood, with larger prey items being worthier of chasing. However, 567 

some predators may prefer to attack younger and smaller prey that are less able to defend 568 

themselves by kicking or running away, for example (Duran Prieto et al., 2016), so in some 569 

cases the converse could be true. Some predators of aphids also prefer to attack particular 570 

colour morphs as well as size (Farhoudi et al., 2014), so this may also affect their pursuit 571 

likelihood. Of course, despite prey preferences, physical factors such as the distance dropped 572 

would likely have a significant bearing on the decision to pursue prey. Logically, distance 573 

would correlate negatively with pursuit likelihood, as the greater the distance dropped the 574 

more time and energy will be required for pursuit and, if the predator hunts in vegetation or in 575 

the air, for the subsequent return to typical foraging height. Another prey-related factor that 576 

could present a trade-off for predators considering pursuit may be the prey density remaining 577 

at the initial encounter point versus the density that has dropped away. We suspect that if 578 

there are numerous prey still available, a predator is unlikely to waste time searching for a 579 

dropped individual. This may be complicated, though, if a great number – perhaps the 580 

majority of a colony or group, for example – of prey items simultaneously drop (potentially 581 



triggered by conspecific alarm pheromone in the case of aphids). Future studies would do 582 

well to pick apart these complexities. 583 

Alongside prey factors, we propose that predator state should influence the decision to pursue 584 

dropped prey. A predator’s hunger state, general physical condition, and perhaps reproductive 585 

stage may affect its willingness to pursue a prey item and suffer any potential energetic costs 586 

in doing so. As well as the risk of not finding dropped prey, amounting to wasted time and 587 

energy, predators may also ‘weigh up’ the risk of encountering their own predators on an 588 

underlying substrate, or further downstream in the case of active drift. In some cases, 589 

predators may also just be too slow to feasibly ‘chase’ dropped food items. We may also 590 

expect that some predators learn that certain types of prey in given situations are likely to 591 

drop and so these predators may alter their foraging strategies accordingly. As far as we are 592 

aware, there is a current dearth of knowledge about the trade-offs of dropping experienced 593 

from the predator’s perspective and we would encourage researchers to pick up and explore 594 

some of the ideas suggested above.  595 

 596 

V. NON-ANTIPREDATOR FUNCTIONS OF DROPPING  597 

The function of dropping behaviour may not be restricted to avoiding predators. When not 598 

being used to escape enemies, voluntarily falling is sometimes deployed by invertebrates as a 599 

shortcut to the ground or to access high-quality food patches (Haemig, 1997; Ohzora & Yano, 600 

2011). In fact, more controlled dropping behaviour – known as ‘directed falling’ or directed 601 

aerial descent – has been reported in a number of wingless ant species (Yanoviak & Dudley, 602 

2006; Yanoviak et al., 2005; Yanoviak et al., 2008, 2010) as well as spiders (Yanoviak et al., 603 

2015) and stick insects (Zeng et al., 2015). Directed aerial descent is considered a form of 604 

gliding, but it occurs at steeper angles than ‘classical gliding’ (Dudley et al., 2007). Directed 605 

aerial descent appears to have evolved independently in multiple lineage of ants and, unlike 606 



gliding frogs for which the behaviour also has multiple independent origins (Emerson & 607 

Koehl, 1990), ant species in which directed aerial descent occurs do not show obvious 608 

external morphological differences from species within the same genus that do not exhibit 609 

directed aerial descent (Yanoviak et al., 2011). The occurrence of directed aerial descent in 610 

wingless insects suggests that insects have been engaged in controlled dropping behaviours 611 

prior to the origin of wings (Dudley & Yanoviak, 2011; Yanoviak et al., 2009). Selective 612 

pressures associated with remaining within an elevated foraging habitat may have motivated 613 

the antecedents to flapping flight from controlled dropping in lineages which are now volant 614 

(Dudley et al., 2007) and so, evolutionarily, dropping in primitive insects was likely an 615 

important precursor to insect flight (Hasenfuss, 2002).  616 

Alongside the potentially vital role dropping may have played in the evolution of insect 617 

flight, it is important to consider the role dropping may have on the co-evolution of natural 618 

enemies. Chau & Mackauer (1997) report how the parasitoid wasp Monoctonus paulensis 619 

preferentially attacks smaller, first-nymphal instars of pea aphids over larger and, in terms of 620 

resources for offspring development, more profitable instars in part because they were less at 621 

risk of dropping after successful parasitism. Dropping, as an antipredator defence, will 622 

presumably have impacted the foraging tactics of predators, as well as the host choice and 623 

oviposition behaviour of parasitoids, over evolutionary history and is likely to continue 624 

serving as an important behaviour in the ongoing arms race between natural enemies and 625 

their prey. 626 

 627 

VI. WHAT PRACTICAL APPLICATIONS ARE THERE FOR A BETTER 628 

UNDERSTANDING OF DROPPING BEHAVIOUR?  629 

A greater understanding of dropping would be useful to integrate into models and studies of 630 

insect population dynamics (Agabiti et al., 2016), and – where dropping is costly to prey – 631 



may also help to explain the invasion success of some predatory species (Hoki et al., 2014; 632 

Raak-van den Berg et al., 2012). Increased understanding of the complexities of dropping 633 

may be particularly important in the many cases where it is a common non-consumptive 634 

effect of natural enemies on pest species of agricultural crops. This could be of increasing 635 

importance across the globe as ongoing climate change is likely to influence the population 636 

dynamics of crop pests and their surrounding ecosystems (Kambrekar et al., 2015; Michaud, 637 

2010; Wang et al., 2015). Of more practical use would be integrating insights about dropping 638 

behaviour into current pest management strategies, aiming to mitigate some of the serious 639 

yield losses caused by some pests that drop [for example, aphids (Dedryver, Le Ralec & 640 

Fabre, 2010)]. 641 

Some insecticides are already thought to trigger dropping behaviour (Dixon & McKinlay, 642 

1992), which could influence pests’ subsequent growth, reproduction, and crop-damaging 643 

abilities. But, increasingly, purely chemical control of pests is problematic due to such issues 644 

as pests developing resistance (Bass et al., 2015, 2014; Dedryver et al., 2010; Springate & 645 

Colvin, 2012), damage to non-target species (Blacquière et al., 2012), other ecological issues 646 

(Geiger et al., 2010; Goulson & Kleijn, 2013), and legislative restrictions. With the move 647 

away from chemical control, or at least to reduced chemical control, assisting the natural 648 

function of biological pest control could be an effective avenue for agriculture. Natural 649 

enemies are important and often effective controllers of crop pests (Chambers et al., 1986; 650 

Schmidt et al., 2003; Symondson, Sunderland & Greenstone, 2002) and the value of 651 

biological pest control to agriculture worldwide has been estimated at $417 billion per year 652 

(Costanza et al., 1997). However, the non-consumptive effects of ‘biocontrol’ natural 653 

enemies are currently under-appreciated in the pest-control literature and drawing knowledge 654 

about dropping behaviour into pest-management strategies could provide some novel 655 

improvements.  656 



Predators will suppress prey populations in part through the costs of induced defensive 657 

behaviours – such as dropping – alongside their direct consumptive effects (Nelson & 658 

Rosenheim, 2006). Several studies have drawn attention to a synergistic effect – mediated by 659 

dropping – of foliar-foraging and ground-based predators controlling prey (Grez, Zaviezo & 660 

Mancilla, 2011; Winder, 1990; Winder et al., 2014, 1994). Predator interactions could be 661 

particularly important in developing biological pest control (Crowder & Jabbour, 2014), 662 

where it may also be the case that the role of parasitoids has previously been under-663 

appreciated (Schmidt et al., 2003). Of course, multiple predators may interact 664 

antagonistically (Meisner et al., 2011) and a range of other inter-related factors, such as the 665 

availability of alternative prey for generalist predators (von Berg et al., 2009), will 666 

complicate attempts to determine the overall effectiveness of pest control. But increased 667 

knowledge of dropping behaviour in predator–prey interactions could certainly help to draw 668 

out some of the more subtle impacts of predators and therefore help guide both the choice of 669 

biological control species – natural or introduced – and how to create the best conditions to 670 

prevent dropping escape behaviour giving pest species a fitness advantage, whether this 671 

advice relates to the predator involved, traits of plants, or environmental conditions. 672 

Intraguild predation is another important element to explore when aiming to develop 673 

integrated pest-management strategies (Colfer & Rosenheim, 2001; Rosenheim et al., 1995), 674 

and as Sato et al. (2005) point out, there is a need for studies exploring the fate of some 675 

predatory taxa once they have used dropping to escape intraguild predation. 676 

The implementation of a biological control system factoring in dropping need not necessarily 677 

be used in isolation as a pest-management strategy. While some types of chemical control 678 

seem to have long-term negative effects on natural biological control (Geiger et al., 2010; 679 

Krauss, Gallenberger & Steffan-Dewenter, 2011), this is not to say that certain chemical 680 

treatments cannot be used effectively in combination with biological control (Gentz, 681 



Murdoch & King, 2010). For any sustainable and safe pest-management strategy, a total 682 

systems approach is needed (Lewis et al., 1997), but incorporating findings about dropping 683 

into any management plan could only improve our understanding of how best to control pests 684 

while maintaining a thriving ecosystem. 685 

 686 

VII. OUTSTANDING QUESTIONS AND OPPORTUNITIES FOR FUTURE 687 

RESEARCH 688 

Dropping is already known to be a widespread antipredator escape defence, but at present its 689 

importance is under-appreciated and there is still much to learn. Considering both what may 690 

influence the decision to drop and what the consequences of dropping are for prey and their 691 

predators, there is a need for a greater exploration of abiotic factors, plant traits, variables in 692 

the underlying environment, prey factors and predator factors. Rather than repeating the 693 

specific knowledge gaps outlined above, we here draw attention to a few additional 694 

suggestions for future research before laying out what we find to be the most exciting 695 

unresolved questions. 696 

Ideally, well-designed field studies in natural conditions could be employed to investigate the 697 

impact of abiotic conditions on dropping behaviour, for insects in particular, such as weather 698 

and temperature. The influence of changing light conditions and diel period might be 699 

particularly well explored by this means. Visual cues might be utilised by some taxa when 700 

detecting threats or locating suitable food sources post-dropping; Gish & Inbar (2006) 701 

suggested that future studies should address insect prey’s ability to discriminate between 702 

visual cues, and time of day may well influence behavioural decisions. The sensitivity of prey 703 

to environmental sounds, such as moving branches or rainfall, would also be interesting to 704 

explore through field studies, as reacting defensively to non-threatening noises would 705 

presumably incur needless fitness costs. More generally, as laboratory results do not always 706 



reflect field studies on dropping (Braendle & Weisser, 2001; Raak-van den Berg et al., 2012), 707 

more field studies – or at least more natural design elements in experimental studies (such as 708 

real instead of artificial predators) – will shed more light on dropping behaviour. 709 

Considering predators in particular, interactions between multiple predators should be 710 

explored further to see where predators act synergistically (Losey & Denno, 1998b) or 711 

antagonistically (Traugott et al., 2012) in their control of prey. It may be interesting to 712 

research whether there are any situations where foliar-foraging predators benefit from the 713 

presence of ground-foraging predators, although Losey & Denno (1998b) found no evidence 714 

of this. It is possible that, through using cues of different ground-based predators, studies may 715 

find that prey are sometimes less willing to drop despite also detecting foliar-based predators. 716 

Alternatively, prey may still drop but not all the way to the ground, or when they hit the 717 

ground they might flee to new plants with foliar-foraging predators on them in their hurry to 718 

escape from ground-foraging predators; these possibilities certainly warrant further 719 

investigation. More exploration of the frequency of predators pursuing dropped prey and the 720 

factors that influence this decision could also be valuable. 721 

Another avenue for research could look into whether the specific trigger for dropping affects 722 

subsequent behaviour. Phelan, Montgomery & Nault (1976) suggested that aphids dislodged 723 

by alarm pheromone disperse by increasing their rate of locomotion and decreasing their 724 

orientation to vertical images. Perhaps different triggers affect post-dropping behaviour 725 

differently and, if so, perhaps dropping is more or less attractive to prey depending on the 726 

trigger.  727 

From a broader evolutionary perspective, any improved understanding of the behavioural 728 

ecology of dropping could help us explain why some species related to taxa that do drop do 729 

not utilise this escape tactic themselves, e.g. bird cherry-oat aphids (Rhopalosiphum padi) 730 

(Long & Finke, 2014). Learning more about the contexts that instigate dropping will help us 731 



pick apart the evolution of dropping as an effective antipredator tactic. Dropping behaviour 732 

may also be a key factor in the evolution of insect flight, and any work that builds on our 733 

understanding of that is at least as valuable as studies presenting mechanisms for the 734 

evolution of flight in pterosaurs or early birds; arguably, flight in insects is an even more 735 

essential topic to explore due to the vast quantities of flying insects that inhabit the planet.  736 

Overall, there is still a lot to learn about dropping, but to us the most exciting and untapped 737 

questions for this topic are: (1) what factors are key in influencing the occurrence and 738 

consequences of dropping behaviour, both in the short and long term? (2) When do predators 739 

pursue dropped prey, and what factors influence this decision? (3) Why do some taxa that 740 

could drop as a defence tactic not utilise the behaviour against predators and/or what 741 

conditions bring about dropping as a defence? (4) What role did dropping behaviour play in 742 

the evolution of insect flight? (5) How could dropping behaviour be effectively exploited as 743 

part of integrated pest-management strategies? 744 

 745 

VIII. CONCLUSIONS 746 

(1) We define dropping as a voluntary antipredator defence whereby a prey individual uses 747 

gravity, wind or water currents to power escape from an imminent threat. The behaviour must 748 

result in the individual escaping in a trajectory determined primarily by the external force 749 

only modified modestly, if at all, by the organism itself. 750 

(2) Antipredator dropping behaviour has been recorded across a wide range of taxa and is 751 

thought to be the most common antipredator defence in insects. 752 

(3) Dropping can be triggered by a number of different biotic and abiotic cues. Biotic cues 753 

can include chemical triggers (e.g. alarm pheromone), mechanical triggers (e.g. contact with 754 

a predator), and other types of sensory trigger (e.g. the heat and humidity of mammalian 755 

breath). 756 



(4) Despite the immediate escape benefit that dropping provides prey with, the overall impact 757 

of dropping on a prey individual’s fitness will be influenced by many factors relating to: the 758 

prey itself, the potential for cost-reducing tactics or alternative defensive behaviours, the 759 

predator(s) faced, the traits of the resource abandoned, and the surrounding or underlying 760 

environmental conditions. The decision to drop, therefore, has significant context-dependent 761 

consequences. 762 

(5) For predators that lose prey to dropping, dropping will be costly and their subsequent 763 

decision whether to pursue prey may be influenced by traits of the dropped prey, the 764 

availability of other prey, abiotic factors, and the state of the predator itself. Interestingly, 765 

new predators that encounter the dropped prey will benefit from the behaviour, such that 766 

overall predator complexes may be more effective at suppressing prey populations. 767 

(6) Integrated pest-management strategies that exploit dropping by pest species in response to 768 

biological control predators could have significant consequences for pest survival, growth, 769 

reproduction, and subsequent damage to crops. This may involve managing the agricultural 770 

environment such that conditions make dropping unprofitable for pests. 771 

(7) There is much still to learn about what influences the cost–benefit framework of this 772 

under-appreciated antipredator defence and what role it played in the evolution of insect 773 

flight. Its potential to improve agricultural pest control is also, at present, little explored. To 774 

investigate all these avenues, developing an understanding of the inter-related variables at 775 

play will be key, as will studies that use natural conditions as far as possible. 776 
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