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Abstract

This thesis describes the results of angle resolved photoemission spectroscopy (ARPES)
experiments on delafossite oxide metals, and theoretical work explaining the obser-
vations. The main results of the thesis are reported in three chapters, each of which
is dedicated to a different physical observation, as I describe below.
The delafossite metals exhibit extraordinarily high conductivity, motivating a

study of bulk electronic structure. I report measurements of the bulk electronic
structure of the non-magnetic delafossites PdCoO2 and PtCoO2. In each, a single
fast band crosses the Fermi level, resulting in a highly two-dimensional Fermi surface
of nearly hexagonal cross-section. The detailed differences between the materials are
described, and so are the possible many-body renormalisations.
Extension of the measurements to the electronic structure of the antiferromagnetic

delafossite metal PdCrO2 reveals a signal which I realised cannot be explained in
terms of standard pictures of electron behaviour in a periodic potential. Using a
combination of experiment and theory, partly in collaboration with external groups,
we were able to identify its origin as the Kondo-like coupling of itinerant Pd - and
localised Cr - electrons. In doing so we are able to show that that ARPES can be
sensitive to spin-spin correlations.
Furthermore, I report measurements and analysis of the surface states arising

from the transition metal terminated surfaces of PtCoO2, PdCoO2 and PdRhO2.
The states support a large Rashba-like spin-splitting, the energy scale of which
is comparable to the atomic spin-orbit coupling of the relevant transition metal
ion. I show how this arises as a consequence of the large energy scale of inversion
symmetry breaking at the surface, and that this is in turn a consequence of the
unusual structure of the transition metal oxide layer.
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1. Introduction

Understanding how observable properties of materials arise as a consequence of their
structure and constituent elements is of deep fundamental interest, as it is a window
onto the underlying quantum many-body problem. The multitude of complementary
experimental probes and tuning parameters which can be used to study solids allows
us to ask a variety of specific questions, and test predictions of the theories aiming
to explain the resulting data. While there is no general recipe for the study of new
materials, most often the first step is an observation which the experimentalists
recognise as unusual. More experiments are done to gather information about the
phenomenon, and theories are developed to explain it. In the most favourable cases,
the theories motivate further experiments, sometimes inspiring new technological
development, or perhaps the design of novel materials. Along the way new effects,
which may or may not be related to the original one, are encountered, in turn
motivating different new experiments and theories.
My aim in this thesis is to convey one such story of research motivated by an

experimental observation, and leading to serendipitous discovery of new phenomena
which I believe are interesting in their own right. The starting experimental obser-
vation was the extremely high conductivity in the non-magnetic delafossite metals
PtCoO2 and PdCoO2. While the high conductivity was noticed as soon as they
were first synthesised in 1971 [1–3], its underlying cause was not understood. In
fact, it took more than thirty years for a more extensive experimental and theoret-
ical investigation of these materials to start (Ref. [4], and references therein). As a
part of the effort to understand the high conductivity, we decided to investigate the
electronic states underlying it. The experimental technique I have used to do this
is angle resolved photoemission spectroscopy (ARPES), which enables the imaging
of quasiparticle dispersions, as described in detail in Chapter 2. While not giving
a direct solution to the puzzle of high conductivity, our measurements of the dela-
fossite bulk electronic structure [5], discussed in Chapter 4, did yield very sharp
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Chapter 1 Introduction

quasiparticle spectra, which could be analysed over a much wider binding energy
range than is usual for metallic oxides. They also motivated theoretical work which
helped to understand how the properties of the delafossite Fermi surface lead to
suppressed scattering [6].
While investigating the non-magnetic delafossite metals, we also decided to meas-

ure the antiferromagnetic metal PdCrO2. We observed a signal which had been
seen previously [7], and interpreted in terms of standard models of the behaviour
of electrons in a periodic, in this case antiferromagnetic, potential. However, as de-
scribed in Chapter 5, a careful investigation of our data and the predictions of such
standard models led us to understand that the signal we observed had a different
origin. This motivated our theory collaborators Sota Kitamura and Takashi Oka
to perform a many-body calculation, which in turn motivated further experiments,
eventually allowing us to understand our observation as a previously unidentified
type of spectroscopic signal, arising as a consequence of coupling between itinerant
and strongly correlated subsystems [8].
The study of effects arising from the bulk electronic structure, like the ones de-

scribed above, is often complicated by the fact ARPES can typically probe only
a ∼ 5 Å thick layer near the crystal surface. The surface sensitivity can also be
an advantage, as it offers an opportunity to investigate the electronic states which
are affected by the reduced symmetry and the altered bonding environment at the
surface. Specifically, both the Pd- terminated and the CoO2 - terminated surfaces
of delafossites host electronic states very different to those of the bulk [9]. They are
compared, and their characteristic signatures are described briefly in Section 1.2.
We were able to observe and study both types of surfaces states [10, 11]. While I
discuss the states originating from the Pd - terminated surface only briefly in Ap-
pendix B, the investigation of the states localised on the CoO2 - terminated surfaces
of PdCoO2 and PtCoO2 forms a large part of this thesis (Chapter 6). They had been
observed and identified prior to the work presented here [12]. That experiment was
done, however, as a part of a study of the bulk electronic states, and the properties
of the surface states were not investigated further. In the course of performing a
more in-depth study, we noticed that they support an unusually large spin-splitting.
Using a combination of experiment and theory we have been able to understand how
the large spin-splitting arises as a consequence of the structure of the surface layer,
as described in detail in Chapter 6. The conclusions we were able to draw are not
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1.1 Delafossite oxides

specific to delafossite oxides, and are applicable to a wide range of systems.
Overall, this thesis is an overview of the effects we have observed and studied

by angle resolved photoemission spectroscopy of delafossite oxide metals. Those
experimental observations motivated me to develop several minimal tight-binding
models, with the aim of differentiating between features which can and cannot be
explained in such a single-particle framework, and to understand the origin of the
ones which can. The thesis contains the descriptions and results of these models,
as well as the results of more advanced theory motivated by the experiments and
the minimal models, and done by our collaborators. The physics underlying these
theories is also discussed, along with implications for future experiments.

1.1. Delafossite oxides

1.1.1. Real and reciprocal lattice structure

The general formula of delafossite oxides is ABO2. The term ‘delafossite structure’
is used for two different polymorphs, referred to as the 3R and 2H polymorph,
which belong to the rhombohedral space group R3m (166) and the hexagonal space
group P63/mmc (194), respectively. The two polymorphs contain the same struc-
tural units, stacked differently. The most famous example of the 2H delafossites is
NaxCoO2, which becomes superconducting when intercalated with water. All of the
delafossites I have studied belong to the 3R polymorph, so the following description
and the literature review refer to the materials of this structure. The structure of
the 3R delafossite polymorph is shown in Figures 1.1(a, b). Each of the four ions
in the formula unit, the A and B - type cations and the two oxygen anions, span a
triangular lattice of the same lattice constant a. As evident in the top view shown
in Figure 1.1b, the same-species atoms in neighbouring layers are staggered; the
in-plane positions of atoms are the same only in every third layer of a given type.
This is the structural difference between the two polymorphs: in the 2H structure
the in-plane positions are the same in every other layer. The out-of-plane lattice
parameter of the conventional hexagonal unit cell of a 3R delafossite is therefore
equal to three separations between the neighbouring A (or B) planes (c in Figure
1.1a). The volume of the conventional unit cell, spanned by the out-of-plane lattice
vector c and the in-plane lattice vector a (marked in Figure 1.1b), is therefore three

3



Chapter 1 Introduction

times larger than the volume of the rhombohedral unit cell.
The layered nature of the delafossite structure results in the intralayer coupling

being considerably stronger than the coupling between the A and the BO2 layers.
When thinking of the properties of a specific delafossite, a good starting point is
therefore to separately consider the properties of the individual layers, which are
governed by the elements occupying the A and B sites, and the local environment of
those sites. The A-type cations are linearly coordinated with two oxygen ions (Figure
1.1c), while each of the B-type cations is in the centre of an oxygen octahedron
(Figure 1.1d). This octahedron is a common structural unit in transition metal
oxides, creating an octahedral crystal field on the B site. However, the octahedra in
the delafossite structure are edge sharing, in contrast to the more common corner
sharing octahedra found in perovskites.

a

A

A

ABO2

BO2

BO2

A

A

BO2

a

c

b

d
c

Figure 1.1.: The crystal structure of the 3R delafossite polymorph, (a) viewed from
the side and (b) from the top. (c) Each A-type ion is linearly coordinated with two
oxygen ions. (d) Each B-type ion is in the centre of an oxygen octahedron.

Because ARPES is a momentum-space probe, it is important to understand the
reciprocal, as well as the real-space, unit cell of delafossites. The three-dimensional
Brillouin zone of the 3R polymorph is shown in Figure 1.2a. The staggering of the
neighbouring triangular layers in the real space structure leads to the faceting of the
Brillouin zone, whose two-dimensional projection is shown in Figure 1.2b. As I will
show in Section 4.1 below, from the point of view of photoemission it is justified to
neglect the small out-of-plane dispersion of the Fermi surface, and consider the two
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1.1 Delafossite oxides

dimensional version of the Brillouin zone instead, shown by the green line in Figure
1.2c. This is the Brillouin zone of a two-dimensional triangular lattice of lattice
spacing a; it is hexagonal, with the side of the hexagon given by aBZ = 4π/ (3a).
The high symmetry points of the zone are the Γ, K and M points, as indicated
in Figure 1.2c. In Table 1.1 I list the real space lattice parameters, as well as the
parameters of the 2D Brillouin zone, of all the delafossites studied in this thesis.

a b c

Г

M

K2π
c/3

4π/(3a)

Figure 1.2.: (a) The three-dimensional Brillouin zone of the 3R delafossites. (b)
The projection of the 3D zone onto a 2D plane. (c) The 2D Brillouin zone (green),
compared to the projection of the 3D zone (black).

a/Å c/Å
(
Γ−K

)
/Å−1

(
Γ−M

)
/Å−1 ABZ/Å−2

PtCoO2 2.82 17.808 1.485 1.286 5.73
PdCoO2 2.83 17.743 1.479 1.281 5.69
PdCrO2 2.93 18.087 1.429 1.237 5.30
PdRhO2 3.02 18.083 1.386 1.201 4.99

Table 1.1.: Real space lattice constants a and c, as well as the distance between the
high-symmetry points in the Brillouin zone and the 2D Brillouin zone volume of all
the delafossites studied in this thesis. The side of the hexagonal Brillouin zone is
equal to the Γ−K distance (Figure 1.2c). The lattice constants are taken from Ref.
[4], where the source references are listed.
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1.1.2. Variety of delafossites

The delafossite structure is very accommodating, and can host a variety of elements
on the A and B sites, leading to a wide range of properties across the structural
series. This is illustrated by the periodic table shown in Figure 1.3, in which I mark
all the elements which occupy the A or the B site in a known 3R delafossite oxide
by green and grey, respectively. What is more, not only oxides can assume the dela-
fossite structure. In Table 1.2 I note all the combinations of A and B site elements
occurring in 3R delafossite oxides, sulphides, selenides and tellurides listed in the
Inorganic Crystal Structure Database (ICSD, [13]), marked with the corresponding
elemental symbols (O, S, Se and Te, respectively). In addition to these, there are
also examples of delafossites whose oxygen site is occupied by elements which are
not in the oxygen family (group 16 of the periodic table), such as Ca, Sr or N. Al-
though not a comprehensive overview of all the delafossites synthesised to date, the
table illustrates the range of compounds across the structural series, and is useful
as a reference. I have studied its small subset, namely the four known delafossite
oxides based on Pt or Pd.

Several general observations about the delafossite oxides can be made based on
the considerations of the constituent elements in a local ionic picture. While a
degree of covalent bonding between different ionic species means that this is never
exact, it is a good approximation and a useful foundation on which to build a
more detailed understanding. The periodic table in Figure 1.3 therefore contains
the information on the most common oxidation states of every element in the top
right corner of the corresponding field. There are two oxygens in the delafossite
formula unit, each in the 2− oxidation state. To preserve charge neutrality the
oxidation states of the A and B cations have to add up to +4. In the vast majority
of delafossite oxides this occurs by the A and B site cations taking the oxidation
states of 1+ and 3+, respectively. The only currently known exceptions are the
mercury based delafossites, HgCaO2, HgSrO2 and HgBaO2, in which both cations
take the 2+ oxidation state. This can be deduced by inspecting the ‘grey’ elements
in the periodic table: the most common oxidation state of Ca, Sr and Ba is 2+, as
losing two electrons makes all of their electron shells closed. On the other hand, 3+
is one of the most common oxidation states of all the other elements which occupy
the B site in a known delafossite oxide. Even more informative is the analysis of
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A

B

Figure 1.3.: The periodic table of elements, with the elements which occupy the A
site and the B site in at least one known 3R delafossite oxide marked green and
grey, respectively.

the elements found on the A-site. In the 1+ state the alkali metals (Li, Na, K, Rb)
reach the noble gas electronic configurations, while copper and silver reach a closed
d shell: 3d and 4d shell, respectively. This is why 1+ is one of their most common
oxidation states, as is 2+ for mercury. The outliers to this general trend are Pd and
Pt; in the delafossite structure they take the 1+ oxidation state, although this is
very rare for them. The unusual oxidation state was pointed out when the Pd- and
Pt- based delafossites were first synthesised in 1971. Pd and Pt in the delafossite
structure assume the 4d9 and 5d9 electronic configurations, respectively, leaving one
hole in the relevant d shell, and therefore making the Pd and Pt layers metallic.
Consequently all of the Pd and Pt based delafossites are metals, and I study all
of them in this thesis. The only known metallic delafossite oxide that contains
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neither Pd nor Pt is AgNiO2. It is, however, fundamentally different from the other
metallic delafossites, as the metallic states are derived from the B-site element,
i.e. Ni in the 3d7 configuration. I will not discuss it further, but will concentrate
on PtCoO2 , PdCoO2, PdRhO2 and PdCrO2 instead. The first three among these
are non-magnetic, while PdCrO2 exhibits local moment antiferromagnetism, and
will therefore be discussed separately. My aim in this introduction is not to offer a
comprehensive chronological review of the research done on delafossite oxide metals,
because this was done in a recent review article [4]. Rather, I will summarise the
results and conclusions necessary to understand and contextualise the research done
as part of this thesis.
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1.1 Delafossite oxides

B
A

Li Na K Rb Cs Pd Pt Cu Ag Hg Tl

Ca O
Sr O
Ba O
Sc S O, S O, S O, S O O Se, Te
Y S, Se O, S, Se O, S, Te O, S O S, Se, Te
Ti S O, S
Zr S
V O O, S, Se
Cr O O, S, Se O, S O O O, Se
Mo O O
Fe O O O O
Ru O
Co O O O O O
Rh O O O O O
Ni O O
Al O O O
Ga O S Se O
In Se O, S, Se O O O, S, Se S
Tl O S
As Se
Sb Te Te
Bi S Se, Te S, Se, Te
La Se O, S, Te O, S, Se S O
Ce Se S S, Se, Te S
Pr Se O, S, Te S, Se S O Se, Te
Nd S, Se S, Te O, S, Se, Te S, Te O S, Se, Te
Sm S, Se, Te S, Se, Te O, S, Se, Te S O S, Se, Te
Eu S S O, S S O S
Gd Se S, Se S, Te O, S S S, Se, Te
Tb Se S, Se S S, Se S S, Se, Te
Dy S, Se S, Se S O, S S S, Se, Te
Ho S, Se O, S, Se S O, S, Se S Se, Te
Er S, Se O, S, Se O, S, Te O, S, Se S S, Se, Te
Tm S S O, S S S, Se, Te
Yb S O, S, Se S, Se O, S S O S, Se
Lu S S O, S, Se S O S, Se, Te

Table 1.2.: Combinations of A and B site elements that exist in the 3R delafossite
structure. Oxides, sulphides, selenides and tellurides are marked with the corres-
ponding elemental symbols, O, S, Se and Te, respectively.
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1.1.3. Non-magnetic delafossite metals

By far the most studied among the metallic delafossites is PdCoO2. As already
mentioned, Pd ion in PdCoO2 is in the 1+ valence state and thus has nine electrons
in the 4d shell, making the Pd layer metallic. A simplified crystal field diagram
shown in Figure 1.4a would suggest that the one carrier is of the d3z2−r2 character,
however the relevant bandwidth is larger than the crystal field splitting, mixing all
the 4d orbitals, as allowed by symmetry. What is more, mixing of the 5s orbital with
the 4d orbitals is also allowed, and has been proposed to significantly contribute to
the high conductivity. A similar picture is valid for Pt in PtCoO2, but the relevant
orbital manifolds are 5d and 6s, instead of 4d and 5s. The crystal field on the
Co site is octahedral, splitting the 3d orbital manifold into the lower energy t2g

and the higher energy eg subspaces. In the real structure the octahedra are in fact
trigonally distorted, leading to an additional small crystal field splitting of the t2g
manifold. The electronic configuration of Co3+ is 3d6, allowing the t2g states to be
fully occupied and the eg states to remain empty (Figure 1.4b). Equivalently, in
PtCoO2 and PdRhO2 the t2g states of the 3d orbital manifold of Co, and those of
the 4d orbital manifold of Rh, are fully occupied, while the corresponding eg orbitals
remain empty. The transition metal layers can therefore in the first approximation
be thought of as simple insulators, separating the conductive layers of A cations.

Pd1+
O2-

4d

dxy , dx2-y2

dyz , dzx

d3z2-r2

O2-

3d
eg

t2g

Co3+

25

20

15

10

5

0

IrO2

Cs

Rb

Pt, Pd
Li
ReO3K
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Figure 1.4.: The crystal field diagrams on the (a) A and (b) B site of PdCoO2. (c)
The room temperature resistivity of highly conductive metals, (d) with a zoom-in
onto the most conductive room temperature metals. For PtCoO2 and PdCoO2 the
in-plane resistivities are quoted.
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1.1 Delafossite oxides

As already mentioned, the high room temperature conductivity of PtCoO2 and
PdCoO2 was noticed as soon as they were synthesised. To illustrate what is meant
by ‘unusually high conductivity’, in Figure 1.4c I plot the resistivity at room tem-
perature of a range of very conductive elemental metals, such as the alkali metals,
bulk platinum and palladium, but also of a few examples of highly conductive ox-
ides, such as IrO2 , ReO3 and SrMnO3. At the bottom of the plot there is a cluster
of most highly conductive room temperature metals, expanded in Figure 1.4d. As
expected, elemental silver, copper, gold and aluminium are among them, but so are
PtCoO2 and PdCoO2. The in-plane conductivity of these layered oxides is there-
fore comparable to that of silver and copper. This is even more striking when the
conductivity per carrier of all of these metals is compared; because of the insulating
CoO2 layers, the carrier density in PtCoO2 and PdCoO2 is approximately one third
of that of the elemental metals. In other words, the room temperature conductivity
per carrier of PtCoO2 is approximately three times higher than that of copper! The
residual resistivity of delafossites is also very low, complicating its precise meas-
urement. Values as low as 8 nΩcm in PdCoO2 and 20 nΩcm in PtCoO2 have been
reported in samples of carefully defined geometries [14], corresponding to mean free
paths of ∼ 20 µm and ∼ 10 µm, respectively. This points to an unprecedentedly low
level of disorder in an as-grown complex oxide, the underlying reason for which is still
a topic of active investigation. Regardless of their origin, the long mean free paths
have very interesting consequences, and have enabled the study of unconventional
hydrodynamic and ballistic transport [15, 16].

The electronic structure of PdCoO2 has, prior to the measurements done as a part
of this thesis, been studied both by angle resolved photoemission [12] and quantum
oscillations [17]. Those two techniques offer complementary information on the
Fermi surface properties, making it highly desirable to perform both experiments
on the same material. This is not always possible, as the two techniques have dif-
ferent material requirements and limitations. ARPES is sensitive to the in-plane
electronic structure, while the out-of-plane dispersion broadens the signal, making
it most suitable for the study of two dimensional electronic structures. Additionally,
the surface sensitivity of the technique means that high quality data are typically
obtained by cleaving in ultra high vacuum conditions. The material therefore has to
be cleavable, typically requiring a layered crystal structure. On the other hand, the
amplitude of quantum oscillations is exponentially sensitive to impurity scattering,
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therefore requiring a high level of crystalline perfection. ARPES can yield inform-
ation on the in-plane Fermi surface anisotropy inaccessible to quantum oscillations,
while quantum oscillations are very sensitive to the degree and symmetry of the out-
of-plane Fermi surface warping, and offer the most precise information on the Fermi
surface volume. The ability to perform both types of experiments on PdCoO2 led
to a comprehensive experimental picture of its Fermi surface topography. It was
found by ARPES that the Fermi surface has a hexagonal cross-section, as shown
in Figure 1.5a. The quantum oscillation experiment found a very small degree of
out-of-plane warping, consistent with the picture of PdCoO2 as an alternating stack
of two dimensional metallic layers separated by insulating spacer layers. The three
dimensional Fermi surface plot, informed by both ARPES and quantum oscillations,
is shown in Figure 1.5b. Quantum oscillations also revealed a small average effective
mass of ∼ 1.5me, consistent with the Fermi velocity measured by ARPES.

a b

Figure 1.5.: (a) The in-plane bulk Fermi surface of PdCoO2measured by angle re-
solved photoemission, reproduced with permission from Ref. [12]. (b) The 3D Fermi
surface of PdCoO2. The in-plane hexagonal shape is reproduced from the photoe-
mission measurements shown in (a), while the out-of-plane warping is deduced based
on the measurements of the de Haas van Alphen effect (Ref. [17]). Reproduced with
permission from Ref. [17].

Interestingly, density functional theory calculations predict a larger degree of out-
of-plane warping than is experimentally observed. This is a consequence of the
hybridisation between the Pd and Co states, demonstrating that the simple ionic
picture, in which palladium has a hard valence of 1+ and cobalt of 3+, does not
capture the detailed physics. However, once the on-site Coulomb repulsion on the Co
sites is included in the calculation, the hybridisation between the layers is suppressed,
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1.1 Delafossite oxides

the Co states are removed from the Fermi level, and the experimental Fermi surface
is retrieved [17]. It is therefore still useful to think of the CoO2 layers as insulating
and the Pd layers as metallic in the first approximation, but the full justification of
this picture is more subtle than that suggested by simple ionic arguments.
There were no published measurements on the electronic structure of PtCoO2 prior

to the ones done as a part of this thesis, because available single crystals were
too small. Our photoemission measurements were done simultaneously with the
quantum oscillation measurements performed by Frank Arnold and Elena Hassinger
[5], so I will compare them in Chapter 4. The basic phenomenology is, however,
similar in the two compounds, with the larger orbital overlap of the Pt 5d orbitals
compared to the Pd 4d leading to lighter electron masses and more warped Fermi
surfaces. Very similar fermiology is also found in PdRhO2 [18, 19].

1.1.4. The antiferromagnetic metal PdCrO2

The basic ionic picture of PdCrO2 is similar to that of PdCoO2: Pd is in the 1+
valence state, making the Pd layers metallic (Figure 1.6a), while the valence of Cr
is 3+. The electronic configuration of Cr3+ is 3d3, leaving the three t2g orbitals half-
filled. A simple charge counting argument would therefore suggest that the Cr layer
is also metallic, as seen in the DFT calculations of Ref. [20]. This is, however, not the
case in reality because the on-site Coulomb repulsion introduces a large energetic cost
for double occupancy of the individual orbitals, favouring electron localisation. If the
three Cr electrons in the three t2g orbitals all assume the same spin state, as sketched
in Figure 1.6b, double occupancy is prevented by the Pauli principle. Because of this,
the Cr layer becomes a correlated insulator, i.e. a Mott insulator, with a localised
spin of S = 3/2 per Cr site. Those localised spins order antiferromagnetically below
TN = 37.5 K, as indicated by the measurements of magnetisation and heat capacity
[21–23]. A more direct confirmation of the magnetic ordering is obtained through
neutron scattering [24, 25], clearly showing magnetic Bragg peaks whose intensity
increases below TN (Figure 1.6c). The wavevectors of the magnetic Bragg peaks
show that the in-plane magnetic order corresponds to a 120° antiferromagnetic spin
structure, increasing the real space unit cell three times, as sketched in Figure 1.6d.
Each localised spin assumes one of three directions, labelled 1, 2 and 3 in Figure
1.6d, with a 120° angle between each pair of spins. The direction of the spins with
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Chapter 1 Introduction

respect to the crystalline axes, and in particular its variation between different Pd
layers, has not been uniquely determined to date. In Reference [25] two models
consistent with the neutron scattering data are proposed, both suggesting that the
three spins lie in a plane containing the crystalline c axis, but the details of the
layer-to-layer variation of the spin direction are model-dependent.
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Figure 1.6.: The crystal field diagrams on the (a) A and (b) B site of PdCrO2. The
strong on-site correlations lead to the formation of localised spins S=3/2 on the Cr
sites. (c) The localised spins order antiferromagnetically, with TN = 37 K, as shown
by the temperature dependence of the intensity of the corresponding magnetic Bragg
peak. Reproduced with permission from Ref. [25]. (d) The Cr plane. The three
directions the localised Cr spins can take are labelled 1, 2 and 3. The directions of
the spins with respect to the crystalline axis cannot be unambiguously determined
from the available data [25].

Irrespective of the details of the magnetic structure, it is clear that PdCrO2 consists
of alternating metallic and antiferromagnetic Mott insulating layers, both on a tri-
angular lattice. The close proximity of such different electronic systems naturally
leads to questions about their interaction. If the layers were entirely decoupled,
the behaviour of the metallic layers would not be affected by the transition to the
antiferromagnetic sate. This is not the case, as can easily be seen in the resistivity
measurements, which show an unambiguous discontinuity at the Néel temperat-
ure (Figure 1.7a), most evident in the first derivative (bottom panel of Figure 1.7a).
While proving the existence of some coupling between the magnetism and the metal-
lic states, this observation does not offer direct insight into its nature.
The Fermi surface of PdCrO2 was probed by quantum oscillations by Ok et al.
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1.1 Delafossite oxides

and Hicks et al. [26, 27]. Their results were consistent, and could be explained by
the hypothesis that the Fermi surface of PdCrO2 in the absence of the antiferromag-
netic order is very similar to that of PdCoO2. In the antiferromagnetic phase this
PdCoO2 - like Fermi surface reconstructs across the boundary of the magnetic Bril-
louin zone, as shown schematically in Figure 1.7a, leading to the observed quantum
oscillation frequencies. This is precisely what would be expected if PdCoO2 was
placed in a weak periodic potential, whose periodicity corresponds to that of the
Cr-site antiferromagnetism.

a b

Figure 1.7.: (a) 2D model of the Fermi surface reconstruction. (b) The temperat-
ure dependent resistivity of PdCrO2 (top panel), along with its derivative (bottom
panel). The figures are reproduced with permission from Ref. [27].

Quantum oscillation measurements are, however, not sensitive to the in-plane
shape of the Fermi surface, and are in practice limited to temperatures below the an-
tiferromagnetic transition in PdCrO2. Angle resolved photoemission measurements
by Sobota et al. [28] confirmed that the PdCrO2 Fermi surface is of hexagonal
shape, very similar to that of PdCoO2 (Figure 1.8a), both below and above the
antiferromagnetic transition. However, they observed no reconstruction due to the
antiferromagnetic order, and they speculated that the discrepancy with the quantum
oscillations could be a consequence of the inherent surface sensitivity of ARPES. In
contrast, a later measurement by Noh et al. [7] did show the electronic structure re-
construction consistent with the quantum oscillations (Figure 1.8b). What is more,
at a temperature of 100 K, considerably higher than the Néel temperature of 37.5 K,
the reconstructed bands were not visible anymore, and the Fermi surface resembled
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Chapter 1 Introduction

the one of PdCoO2. Noh et al. performed their measurements at a different photon
energy to the one used by Sobota et al., and assumed that this was the reason for the
inconsistency between the two ARPES experiments. We were also able to observe
the apparent reconstruction of the electronic structure, but have shown how it is in
fact not a consequence of the periodic potential caused by the Cr spins, but rather
a more subtle consequence of the coupling between itinerant and Mott insulating
states [8]. This will be described in detail in Chapter 5.

Figure 1.8.: The in-plane bulk Fermi surface of PdCrO2measured by angles resolved
photoemission, measured by (a) Sobota et al. [28], and (b) Noh et al. [7]. Figures
reproduced with permission from the corresponding references.

1.2. Surface states

As already mentioned, ARPES can typically probe only a depth of ∼ 5 Å below the
surface of a crystal. If we are interested in the study of the bulk electronic struc-
ture, the surface sensitivity poses an immediate problem. The basic concepts used
to describe the electronic structure of periodic solids, such as the Brillouin zone,
band structure or the Fermi surface, rely on the underlying periodicity. However, at
the surface of a crystal the periodicity in the direction perpendicular to the surface
is necessarily broken. Since the experiment is not sensitive to a depth significantly
larger than the interatomic spacing, it is not justified to assume a priori that a qua-
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1.2 Surface states

siparticle spectrum measured by ARPES is a bulk property of the material. There
are, however, several ways to check the origin of the measured spectra. For instance,
if the photoemission measurements are consistent with the bulk-sensitive quantum
oscillation measurements, or the calculations of the bulk electronic structure, we can
be confident that they are sensitive to the bulk. This is the case with the PdCoO2

and PdCrO2 Fermi surfaces discussed above, and is in fact common, especially in
layered materials. Conversely, if the measured spectra are very sensitive to surface
purity, they are likely to originate from the surface. The states localised in the
vicinity of a surface are often interesting in their own right; the surface sensitivity
of ARPES makes it an ideal technique to study their properties.
Topological surface states are a prominent example of such states, arising on

the surfaces of materials which have a topological invariant different to that of
vacuum. As they arise as a consequence of the bulk property of the solid, they appear
regardless of the details of the surface structure. In contrast, there are other types of
surface states which arise precisely because of the specific structure and composition
of a surface. This is similar to how the bulk electronic structure is governed by the
bulk crystal structure, and the composition of a material. Consequently, the surface
states can exhibit a range of properties as wide as that of the bulk electronic states
of three-dimensional crystals. The single feature all surface states have in common is
their high degree of anisotropy; while they are delocalised Bloch states in the plane
parallel to the surface, their wavefunctions exponentially decay perpendicular to it.
The degree of the localisation depends on the system, and varies between a single
atomic layer and tens of them. An introduction to the physics of surface states, as
well as many prominent examples, are given in Reference [29]. I will not reproduce
these general considerations here, but rather concentrate on the specific cases of the
surface states found in delafossite oxides.

1.2.1. Surface states on delafossite oxides

Due to the layered nature of the delafossite structure, the crystals are most likely
to cleave between the oxygen and the A- site ion, in principle yielding oxygen and
A-site terminated surfaces with equal probability. Because of the strong bonding
within the transition metal oxide layer, I will refer to the oxygen termination as the
transition metal oxide termination. The schematic representations of the two ter-
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Chapter 1 Introduction

minations expected in PdCoO2 are shown in Figures 1.9(a, b). As discussed above,
the bulk electronic structure of delafossites is highly anisotropic, and the properties
of individual layers deduced from ionic arguments offer considerable insight into the
behaviour of the material as a whole. Therefore, a reasonable first step towards
understanding the electronic structure of the two surface terminations is to consider
how the charge of individual layers is altered if they are found on a surface. In the
bulk, the ionic charge of each ion is maintained by Pd ‘donating’ half an electron
to the oxygen in the layer above it, and half an electron to the oxygen in the layer
below it. This results in the total charge of 1+ per formula unit in the Pd layers, and
1− in the CoO2 layers. At the surface, however, such charge transfer cannot occur,
as there is no layer above the surface layer. In the most simple picture this leads
to an effective doping of the surface layers by half a carrier per unit cell, compared
with their respective bulk charges. The CoO2 layer is expected to be hole-doped,
and the Pd layer electron-doped. Such self-doping at the polar surfaces necessarily
leads to an electronic structure different to that of the bulk. It is important to note,
however, that there is no a priori guarantee that the real surfaces can be appropri-
ately described in this way. For instance, a surface structural reconstruction may
significantly alter the electronic structure, or the excess charge may be shared across
many layers. The true surface electronic structure therefore has to be determined
experimentally, and compared to model predictions for ‘slabs’ including the surface
in question.

Kim et al. [9] performed such density functional theory calculations for the two
surface terminations of PdCoO2, as well as for the bulk electronic structure. They
allowed for the surface structure to relax, and they found surface states consistent
with the above ionic picture. In Figures 1.9(c, d) I show their results for the bulk
band structure and the Fermi surface of PdCoO2 . Consistent with the discussion
of Section 1.1.3, they find a single electron-like band crossing the Fermi level, form-
ing a two-dimensional Fermi surface of a hexagonal cross-section. At the CoO2 -
terminated surface (Figures 1.9(e, f)) in addition to this bulk band they find two
more bands crossing the Fermi level, forming two Fermi surfaces, one of which is
of hexagonal and the other one of circular cross-section. The bands are hole-like
around the Γ - point of the zone. The authors comment that those two bands are
split by spin-orbit coupling, i.e. in the absence of spin-orbit coupling there is only
one surface band crossing the Fermi level. The appearance of metallic states in the
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Figure 1.9.: Two surface terminations in PdCoO2: (a) The CoO2 - terminated sur-
face, and the (b) Pd - terminated surface. Calculated (c, g, e) band structure and
(d, f, h) Fermi surfaces of the (c, d) bulk PdCoO2, (e, f) the CoO2 and (g, h) the
Pd - terminated surface of PdCoO2. Panels c - h reproduced with permission from
Ref. [9].

surface CoO2 layer is consistent with the ionic picture: if the CoO2 layer is hole-
doped with respect to the bulk, the t2g orbitals are not fully occupied, and the layer
is metallic. An equivalent logic would suggest the electron-doped Pd-terminated
surface should also host states different to those of the bulk, in order to accom-
modate the excess charge. This is indeed the case in the calculation (Figures 1.9(g,
h)): in addition to the bulk band crossing the Fermi level, there is another band
dispersing parallel to it. The Fermi surfaces formed by the bulk and the surface
band are very similar, and are not easy to distinguish in Figure 1.9h. Additionally,
the surface calculation shows a fully occupied flat band in the vicinity of the K
point (Figure 1.9g). Those two bands, the fully occupied one and the dispersive one
forming a hexagonal Fermi surface, are an exchange-split pair. Another exchange-
split pair is found at the Γ point. One of the bands crosses the Fermi level, forming
a circular Fermi surface pocket around it, while the other one remains unoccupied,
just above the Fermi level. What is more, the calculation shows small Fermi surface
pockets around the M point of the zone. Prior to the work done as a part of this
thesis, surface states consistent with the above calculations were observed on the
CoO2 - terminated surface of PdCoO2 [12]. The measurement (Figure 1.10a) clearly
shows both the bulk Fermi surface and the two surface Fermi surfaces, consistent
with the calculation shown in Figure 1.9f. No states reminiscent of the ones cal-
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Chapter 1 Introduction

culated for the Pd - terminated surface were observed in PdCoO2, although very
similar states were observed in PdCrO2 [28]. The measurements (Figure 1.10b)
show two hexagonal Fermi surfaces very close to each other, and additional weight
around the centre of the zone. This is consistent with the Fermi surface calculated
for the Pd - terminated surface of PdCoO2, although no Fermi surface pockets are
observed around the M point. This suggests that the Pd - terminated surface of
PdCrO2 supports the same surface states as that of PdCoO2.
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Figure 1.10.: A Fermi surface measured before thermal cycling (a) on PdCoO2,
showing the bulk Fermi surface and the states originating from the CoO2surface
and (b) PdCrO2, showing the bulk Fermi surface and the states originating from
the Pd surface. (c, d) After thermal cycling only the bulk states remain. Panels (a,
c) and (b, d) are reproduced with permission from [12] and [28], respectively.

In both cases the surface derived nature of the states was confirmed by thermal
cycling. This entails warming up the sample manipulator, leading to the desorption
of the residual gases that have been absorbed on it. In particular, outgassing of hy-
drogen occurs at ∼ 17 K, which can usually be noticed via an increase of the chamber
pressure. As the manipulator is subsequently cooled down, the gases are re-adsorbed
on the cold surfaces, including the sample surface. If the observed electronic states
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are localised at the surface and are sensitive to its purity, this procedure can often
passivate them. On the other hand, the bulk states originating from deeper layers in
the sample are not expected to be significantly affected, although the data quality
may be reduced due to surface scattering. In both reported cases of the surface
states on delafossite oxide metals the surface states were removed by the thermal
cycling [12, 28], leaving a well-defined hexagonal Fermi surface originating from the
bulk electronic structure (Figure 1.10(c, d)).

1.3. Organisation of the thesis
In the remainder of the thesis, my goal is first to give the required theoretical and ex-
perimental background, and then describe the three main projects that comprise the
results that I report. Chapter 2 is dedicated to a description of angle resolved pho-
toemission spectroscopy, both from the theoretical and experimental point of view.
In order to appreciate the range of information that can be accessed by ARPES
experiments it is necessary to have a basic understanding of the phenomenology of
many-body interactions. A simple introduction to Green’s functions and self-energy
formalism is therefore also given. The experimental section includes a general over-
view of synchrotron photoemission, with a special emphasis on the aspects relevant
specifically for delafossites. Different surface terminations found on delafossites are
also discussed.
Our photoemission measurements motivated both minimal tight-binding models

and density functional theory calculations, the results of which I describe along-
side the corresponding data throughout the thesis. The physics underlying those
theoretical methods is given in Chapter 3.
Chapters 4 - 6 contain the main results of the thesis. In Chapter 4 I discuss

our experimental results on the bulk electronic structure of PtCoO2 and PdCoO2. I
compare them to de Haas van Alphen measurements, and analyse the dispersions for
signatures of many-body interactions. In Chapter 5 I show our results on PdCrO2,
and tell the story of how careful thought about the physics behind an unusual
spectroscopic signal led us to the understanding of its origin. This required a many
- body calculation, performed by our theoretical collaborators Sota Kitamura and
Takashi Oka, which I also outline. Chapter 6 is dedicated to the discussion of surface
states originating from the transition metal oxide surfaces of delafossites, in which
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we recognised an unusually large spin-splitting. In addition to the experimental
results, first principles calculations and tight binding models were needed to reach
a full understanding of the phenomenon, so I describe the results of these where
appropriate. Our experimental results motivated me to revisit the basic physics
behind spin-splitting in band structures, a description of which is also included in
Chapter 6.
In addition to the surface states originating from the CoO2 - terminated surfaces

of PdCoO2, we were also able to observe those originating from its Pd - terminated
surface. Although I participated in the measurements and discussions of these states,
the majority of the analysis was done by Federico Mazzola. I will therefore not
describe this work at the same level of detail as that devoted to the other observed
features, but I will summarise its main conclusions in Appendix B for completeness.
Our findings are reported in Reference [10].
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2. Angle resolved photoemission

Photoemission spectroscopies are experimental techniques based on the photoelec-
tric effect, first observed by Heinrich Hertz in 1887 [30]. When light of sufficiently
high frequency ν irradiates a metal, electrons with a maximum kinetic energy of
Emax
K = hν−W , where W is the material work function, can be extracted. Einstein

was awarded the Nobel prize for his explanation of the effect, which relies on the
wave-particle duality of light. The same basic process is used in modern experiments
to gain insight into the electronic structure of solids. The current of photoelectrons
is related to the electronic density of states; the larger the number of electrons that
leave a sample with a given kinetic energy, the larger is the density of states at the
corresponding binding energy. Measuring the angular distribution of the outgoing
electrons yields information on their crystal momentum. Combined with the binding
energy measurement, this allows the determination of the quasiparticle spectrum,
i.e. the non-interacting band structure and the relevant many-body renormalisa-
tions. This is crucial for understanding most properties of solids, making angle
resolved photoemission spectroscopy (ARPES) an invaluable tool in the study of
new materials.
In this chapter I will give an overview of the theoretical and experimental aspects

of angle resolved photoemission spectroscopy. In addition to the basics relevant for
every ARPES experiment, I will concentrate on those points which are needed to
understand our experiments on delafossites. References [30–33] offer comprehensive
reviews of photoemission as a technique, and I refer to them throughout the chapter.
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Chapter 2 Angle resolved photoemission

2.1. Kinetics of photoemission
When light irradiates a surface, photoexcited electrons leave the material, as shown
in Figure 2.1a. Their kinetic energy is determined by the photon energy hν, reduced
by the sample work function W and the binding energy EB that they had inside the
solid,

EK = hν − |EB| −W. (2.1)

The outgoing electrons are free, so their momentum ~p and kinetic energy Ek are
related in the usual way, |~p| =

√
2meEK . Their kinetic energy is measured us-

ing a hemispherical analyser, as will be described in more detail in Section 2.6.3.
Crucially, the position of the detector in the outgoing cone specifies the direction
of the measured electron momentum; only electrons traveling directly towards the
detector can be analysed (Figure 2.1b), enabling the simultaneous measurement of
the kinetic energy and vector momentum of the photoemitted electrons.

a b
By placing in a known place in the ougoing cone specified the direct ion of mo-
mentum; only elect rons t raveling direct ly towards thedetector can bemeasured.

Momentum parallel to the surface is conserved:

~p

3.6.2 Electron-electron interaction

3.6.3 Electron-phonon interaction

4 Photoem ission ondelafossites
h⌫

e-

analyser

hemispherical
analyser

samplesample

φ

Figure 2.1.: Schematic of the ARPES experiment, (a) in 3D and (b) in the scattering
plane.

Momentum parallel to the surface is conserved in the photoemission process up
to a reciprocal lattice vector:

~p|| = ~~k|| + ~pν|| + ~G||, (2.2)

where p|| and ~k|| are momenta of the electron in vacuum and in the solid, respect-
ively, pν = hν

c
is the photon momentum, and ~G|| the reciprocal lattice vector. In

the photon energy range used in standard photoemission (10-100eV) the photon
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2.1 Kinetics of photoemission

momentum is 0.5-5% of a typical Brillouin zone, and is usually neglected [32]. The
crystal momentum parallel to the surface is therefore related to the measured kinetic
energy EK and the emission angle ϕ as:

~k|| =
√

2mEK sin (ϕ) , (2.3)

with ϕ measured from the normal of the sample surface (Figure 2.1b). The mo-
mentum resolution depends on the kinetic energy as ∆k|| =

√
2mEK cos (ϕ) ∆ϕ; the

best resolution is therefore obtained at low photon energies. Using relations 2.1 -
2.3 both the binding energy (|EB|) and the in-plane momentum (k||) can be directly
related to the measurable quantities (EK and ϕ), in principle allowing the determ-
ination of the dependence of |EB| on k||, i.e. the in-plane quasiparticle spectrum.

In contrast, the out-of-plane momentum, kz, cannot be determined directly from
the measured quantities. The value of kz that is probed in an experiment depends
on the photon energy used; the reasons for this are outlined in Appendix A. Con-
sequently, some conclusions about the out-of-plane spectrum can be drawn from
photon energy dependent measurements. In particular, if the measured in-plane
spectra show no photon-energy dependence, the out-of-plane dispersion is small,
and the electronic structure two-dimensional within the experimental resolution.
ARPES is, however, not the ideal technique to study the kz dispersion for a few
reasons. As already mentioned, kz cannot be determined from measurable quant-
ities alone, without additional assumptions (Appendix A). Furthermore, the out-
of-plane momentum is not conserved as the electron leaves the material because of
the potential step at the surface. However, probably the biggest issue is the surface
sensitivity of photoemission. The electrons scatter on their way to the surface, with
an inelastic mean free path of lmfp ∼ 5 Å at photon energies typically used for pho-
toemission (Figure 2.2). Such a short effective depth means that the out-of-plane
momentum is defined only within an uncertainty of ∆kz ∼ 1/lmfp = 0.2 Å−1, which
is not negligible compared to the Brillouin zone size.

The finite probing depth also has consequences for the measurement of the in-
plane quasiparticle spectra. As the out-of-plane momentum is defined only with the
precision given by ∆kz , each measurement in fact probes a range of out-of-plane
momenta of width ∆kz around the mean kz, determined by the photon energy.
Hence, if the binding energy of the observed state changes significantly within ∆kz,
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Chapter 2 Angle resolved photoemission

the signal will be broadened. This effect, called kz - broadening, is the fundamental
reason ARPES is best suited for the study of two-dimensional band structures. As
will become clear in the rest of the thesis, the conduction bands in delafossite oxides
are two-dimensional within the experimental resolution, making them ideal systems
for ARPES studies.

Figure 2.2.: Kinetic energy dependence of the ‘universal’ mean free path for excited
electrons in solids. Reproduced with permission from Reference [33], after the data
from Reference [34].

2.2. The three step model
While the simplified picture of photoemission used in the last section is sufficient
to relate the measured quantities to the quasiparticle binding energy and the in-
plane momentum, the full power of the technique can be understood only when it
is treated as a quantum problem describing the transition between the initial and
final state wavefunctions [30–33]. The initial state wave function ΨN

i is the ground
state of the many-body Hamiltonian describing the semi-infinite crystal. The final
state ΨN

f is an excited state of the same Hamiltonian, comprising an ionised crystal
and a single electron state which is free-electron-like in vacuum, with a finite weight
near the surface of the crystal. The transition between them is enabled by the
interaction of the incident light with the material, described by the light-matter
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2.2 The three step model

interaction Hamiltonian, Hint. It is given by the minimal coupling, i.e. replacing
the momentum operator ~p with ~p− e

c
~A, where ~A is the vector potential. Unless very

high intensities are used it is sufficient to keep only terms linear in ~A, giving the
interaction Hamiltonian:

Hint = − e

2mc
(
~p · ~A+ ~A · ~p

)
= − e

mc
~p · ~A+ e

2mc
[
~p, ~A

]
. (2.4)

The commutator
[
~p, ~A

]
is proportional to ∇ ~A , and can be neglected as long as

the vector potential changes slowly at atomic length scales. The wavelength at
the photoemission photon energies is in the 120 − 1200 Å range, much larger than
interatomic separations, so this so-called dipole approximation is valid. Using these
wavefunctions and the interaction Hamiltonian, the photoemission probability can
be calculated using Fermi’s golden rule,

wif = 2π
~

∣∣∣〈ΨN
f |Hint|ΨN

i

〉∣∣∣2 δ (EN
f − EN

i − hν
)
, (2.5)

where EN
i and EN

f denote the initial and final state energies, respectively. This way
of calculating the probability, called the one-step model, correctly treats photoe-
mission as a single coherent quantum mechanical process, as illustrated in Figure
2.3a. The full one-step calculation has been successfully used in some cases, but it is
often too complex to be useful to interpret experiments. A phenomenological model
called the three-step model has been proven to be very successful, and is commonly
used instead. The three steps of the model are described below, and illustrated in
Figure 2.3b.

The first of the three steps is the optical excitation of an electron from an occupied
Bloch state to a Bloch state which is unoccupied in equilibrium. The energy of the
final state is determined by the photon energy; if it is high enough it is valid to
think of it as a free-electron like state. This process is enabled by the light-matter
interaction Hamiltonian, as is photoemission in the one-step model described above.
In the second step the excited electron travels towards the surface. Its mean free
path depends on its kinetic energy, as illustrated in Figure 2.2. The third step
is the escape into vacuum, if the kinetic energy is high enough to overcome the
work function. Once in vacuum, the electrons are truly free, so the classical kinetic
arguments used to relate the measured kinetic energy to momentum (Section 2.1)
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Chapter 2 Angle resolved photoemission

are always valid. The total photoemission probability is given by the product of the
probabilities of the three individual steps, but the most relevant physical information
is contained in the first step, the optical excitation, which I discuss in detail in the
following section.

a b

Figure 2.3.: Illustration of the (a) one-step model and (b) the three-step model of
photoemission. Reproduced with permission from Reference [33], adapted from Ref.
[30, 34].

2.3. ARPES in the sudden approximation
The probability of the optical excitation within the three step model is also given
by Fermi’s golden rule (equation 2.5), with the same initial state and the interaction
Hamiltonian as in the one step model, but the final state ΨN

f,k now consists of the
N−1 bound electrons and one electron occupying a higher-energy Bloch state of the
wave vector1 ~k. It is convenient to factorise this wave function into a part represent-
ing the leaving photoelectron, and a part representing the remaining system. Such
a factorisation is justified only if it is reasonable to assume that the photoelectron
does not interact with the system on its way to the surface, in the second step of

1In the following I will omit the vector symbol for simplicity, and write k instead of ~k
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2.3 ARPES in the sudden approximation

the three step model. This assumption, called the sudden approximation, is never
really valid in a semi-infinite crystal; as the scattering cross-section decreases the
mean free path increases, leaving the number of scattering events approximately
constant [35]. However, at high enough photon energies the inelastically scattered
electrons contribute to the spectrum as a featureless background which can be sub-
tracted. The physically significant features can then be interpreted assuming that
the photoelectron leaves the sample suddenly, and does not interact with the re-
maining system. It has been shown that this approach is valid at energies as low as
20 eV in cuprates [32], and it is implicitly used in the interpretation of virtually all
photoemission experiments.

Within the sudden approximation the final state wave function can be expressed
as the product of the photoelectron Bloch state |ϕf,k〉 and the remaining N−1 body
wave function, ∣∣∣ΨN

f,k

〉
= A |ϕf,k〉

∣∣∣ΨN−1
m

〉
, (2.6)

where A is an antisymmetrisation operator ensuring that the N - electron wave
function obeys the Pauli principle. The index m labels an eigenstate of the N − 1
electron problem. In a general case the remaining system is left in a superposition
of excited states, so the total excitation probability is given by a sum over all eigen-
states m. In a similar fashion the initial state wave function

∣∣∣ΨN
i

〉
can be formally

factorised in the part corresponding to a single occupied Bloch state |ϕi,k〉 and the
part corresponding to the N particle ground state from which one electron has been
extracted: ∣∣∣ΨN

i

〉
= c†kck

∣∣∣ΨN
i

〉
= A |ϕi,k〉 · ck

∣∣∣ΨN
i

〉
. (2.7)

Using the factorised forms of the wave functions the probability of the photo-
excitation of an electron with momentum k can be expressed as:

W PE (k) = 2π
~
∑
i,f

∣∣∣Mk
if

∣∣∣2∑
m

∣∣∣〈ΨN−1
f,m |ck|ΨN

i

〉∣∣∣2 δ (EN
i − EN−1

m + hν − Ef,k
)
, (2.8)

with Mk
if = e

mc

〈
ϕf,k

∣∣∣ ~A · ~p∣∣∣ϕi,k〉. This expression determines the observable pho-
toemission intensity, and is therefore important to understand in detail; its various
factors are discussed separately below.
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Chapter 2 Angle resolved photoemission

The matrix element

The one electron dipole matrix element, Mk
if = e

mc

〈
ϕf,k

∣∣∣ ~A · ~p∣∣∣ϕi,k〉, is a measure of
the transition probability from the initially occupied single-particle state (ϕi,k) to
the free-electron like final single-particle state (ϕf,k). The vector potential associated
with monochromatic light is given by ~A = exp

(
ı~k · ~r

)
ε̂, where ε̂ is the unit vector

along the polarisation direction of the vector potential ~A. The matrix element is
therefore proportional to Mk

if ∼ 〈ϕf,k |ε̂ · ~p|ϕi,k〉. It can also be expressed in terms
of the position operator, using the position-momentum commutation relations. For
momentum in the x direction:

〈ϕf,k |px|ϕi,k〉 = ı
m

~
〈ϕf,k |[H, x]|ϕi,k〉 = ı

m

~
(Ef,k − Ei,k) 〈ϕf,k |x|ϕi,k〉, (2.9)

where H is the Hamiltonian and Ei,k and Ef,k are the energies of the initial and
final state, respectively. Similar expressions are of course valid for all directions in
space, so the matrix element is proportional toMk

if ∼ 〈ϕf,k |ε̂ · ~r|ϕi,k〉, where ~r is the
position operator. Both the momentum and position dependent forms of the matrix
element are sometimes used in calculations. Regardless, the crucial point is that the
matrix element introduces the photon energy, polarisation and geometry depend-
ence of the measured intensity. Although these variations sometimes complicate
the interpretation of photoemission experiments, they can also contain valuable in-
formation on the initial state wave function, as discussed in References [32, 36]. In
particular, performing the same measurements with different light polarisations can
reveal the symmetry of the initial one-electron state, ϕi,k. In Section 5.2 I will dis-
cuss, in the context of our measurements on PdCrO2, how the matrix elements can
be thought of as a Fourier transform of the initial state wave function. In practice,
if we are not interested in explicitly studying the matrix element effects, we choose
the photon energy, polarisation and geometry under which the matrix elements for
photoemission from relevant states are most favourable at the beginning of a new
measurement, and perform all subsequent measurements in those conditions.
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2.3 ARPES in the sudden approximation

The spectral function

The delta function in equation 2.8, δ
(
EN
i − EN−1

m + hν − Ef,k
)
, ensures that the

energy conservation is properly taken into account. Ef,k is the kinetic energy of
the excited photoelectron before leaving the solid; the measured kinetic energy is
reduced by the work function, EK = Ef,k −W . EN−1

m and EN
i are the energies of

the m-th eigenstate of the N − 1 particle problem, and of the N particle ground
state, respectively. Introducing symbols ω = Ef,k − hν and ωN−1

m = EN
i − EN−1

m ,
corresponding, respectively, to the total energy the solid loses when an electron is
extracted and the energy difference between the N particle ground state and the
N − 1 particle excited state, the delta function is reduced to δ

(
ω − ωN−1

m

)
. Using

this notation, the second sum in equation 2.8 can be expressed as:

A− (k, ω) =
∑
m

∣∣∣〈ΨN−1
f,m |ck|ΨN

i

〉∣∣∣2 δ (ω − ωN−1
m

)
. (2.10)

A− (k, ω) is the so called one electron removal spectral function [32], proportional
to the probability that an electron state with momentum k and binding energy ω
is occupied in the initial many particle ground state ΨN

i . The total photoemission
probability (equation 2.8) can be interpreted as the product of the probability that
an electron with momentum k and energy ω exists in the original ground state
(A− (k, ω)), and that, if it exists, is photoexcited and detected in the specified ex-
perimental conditions (

∣∣∣Mk
if

∣∣∣2).
It should be mentioned for completeness that inverse photoemission, where an

electron is added to the system, is also possible. The probability of adding an
electron with momentum k and energy ω is given by the electron addition spectral
function, A+ (k, ω), which can be calculated in direct analogy with A− (k, ω):

A+ (k, ω) =
∑
m

∣∣∣〈ΨN+1
f,m

∣∣∣c†k∣∣∣ΨN
i

〉∣∣∣2 δ (ω − ωN+1
m

)
. (2.11)

The total probability of adding or removing an electron is equal to the sum of the
addition and removal spectral functions,

A (k, ω) = A− (k, ω) + A+ (k, ω) . (2.12)

In the ground state all negative energy states are occupied, and all positive energy
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Chapter 2 Angle resolved photoemission

states are empty. Consequently, an added (removed) electron always has positive
(negative) energy, i.e. A+ (k, ω) (A− (k, ω)) is non-zero only for positive (negative)
ω. Thus, the ω > 0 part of the spectral function describes electron addition, and the
ω < 0 part describes the hole addition. The full spectral function can be thought of
as the density of one electron states.

2.4. Probe of band structure and many-body
interactions

It is now clear how the photoemission signal can be related to the distribution of
electrons in a solid as a function of their momentum and energy, i.e. the one electron
removal spectral function. In this section I will discuss how the spectral function is
directly related to the full interacting Green’s function, enabling the extraction of
many-body parameters from an ARPES experiment. After the general discussion
presented here, I will in Section 2.5 give a few concrete examples to illustrate this
point, by simulating the spectral function of a free electron gas, as well as that of
Fermi liquids with electron-electron and electron-phonon interactions.

2.4.1. Green’s functions

Green’s functions can be defined in various ways appropriate for addressing differ-
ent questions. The causal Green’s function, which can most directly be related to
photoemission experiments, is defined as

G̃0 (r, t) =

−ı
〈
0
∣∣∣c (r, t) c† (0, 0)

∣∣∣ 0〉 t > 0
ı
〈
0
∣∣∣c† (0, 0) c (r, t)

∣∣∣ 0〉 t < 0
, (2.13)

where c (r, t) and c† (r, t) are the electron annihilation and creation operators, re-
spectively [37]. The interpretation of equation 2.13 is straightforward: the first line
corresponds to the probability amplitude that an electron created at time 0 at the
origin is found at position r after a time t has passed, while the second line is the
probability amplitude that a hole created at r at a time −|t| is found at the origin a
time t after creation. It is a compact way of describing the propagation of both elec-
trons and holes in a single function, where negative times refer to hole creation and
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2.4 Probe of band structure and many-body interactions

positive to electron creation. The sign difference between the two lines in equation
2.13 is a consequence of the Fermi statistics.
As it is often more useful to consider the momentum and energy of an electron,

rather than its position at a certain time, the Fourier transform of the Green’s
function, G0 (k, ω), should be found. However, if G̃0 (r, t) is calculated explicitly
using the standard form of the time-dependent creation and annihilation operators,
c (r, t) ∼ ∑

k
ck exp (ı (kr − ε (k) t)), the Fourier transform integral diverges. This

is a consequence of the unphysical assumption that the single electron levels are
completely non-interacting. A particle placed in such a level stays in it forever, and
can be extracted with unit probability at all later times, causing the divergence. As
perfect decoupling is never possible, it is justified to add a small damping factor δ to
the time dependence of the operators: c (r, t) ∼ ∑

k
ck exp (ı (kr − ε (k) t+ ıδ)). The

integral is now well-behaved, and the Green’s function in momentum space is given
by

G0 (k, ω) = 1
ω − ε (k) + sign ε (k) ıδ . (2.14)

The sign in front of the ıδ term is different for electron (ε (k) < 0) and hole states
(ε (k) > 0), reflecting the sign difference of the probability amplitude for electron
and hole addition in equation 2.13. The poles of the Green’s function correspond to
the energies of particles ε (k), i.e. they are given by the spectrum of the Hamiltonian
describing the system. This remains true even in the interacting case, and is one
of the reasons Green’s functions are so useful. It can be shown that the real part
of the pole describes the energy and the imaginary part the inverse lifetime of a
(quasi)particle. In the noninteracting case δ → 0, so the lifetime is infinite, as it
should be [37].
An interacting electron can be thought of as a free electron which can be found in

a continuum of energy states, ω′, with varying probabilities. As discussed in section
2.3, the probability of finding an electron, or a hole, of momentum k and energy
ω′ is equal to the spectral function A (k, ω′) (equation 2.12). The Green’s function
of an electron in an interacting system can then be expressed as an integral of the
non-interacting Green’s function over all the energies an electron might have in the
interacting case, weighted by the spectral function:

G (k, ω) =
∫ ∞
−∞

A (k, ω′)
ω − ω′ + ıω′δ

dω′, (2.15)
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Chapter 2 Angle resolved photoemission

where ω′ is multiplying the imaginary δ in order to keep the sign consistent with
equation 2.14. This intuitively appealing expression for the interacting Green’s
function can be proven to be rigorously true, thus showing the relationship between
the one electron spectral function measured in photoemission and the full interacting
Green’s function [37]. What is more, it is easy to show that the equation 2.15 is
mathematically equivalent to stating that the spectral function is proportional to
the imaginary part of the Green’s function,

A (k, ω) = − 1
π

signω ImG (k, ω) . (2.16)

In other words, if it is possible to calculate the interacting Green’s function, it is
trivial to obtain the spectral function, which is the quantity measured by photoe-
mission.

2.4.2. Self-energy

The interacting Green’s function is typically calculated using perturbation theory,
with approximations appropriate for a specific case. In general, it takes the following
form:

G (k, ω) = 1
ω − ε (k)− Σ′ (k, ω)− ıΣ′′ (k, ω) , (2.17)

where ε (k) is the bare band dispersion of the non-interacting system, and Σ (k, ω) =
Σ′ (k, ω) + ıΣ′′ (k, ω) the so-called self-energy. It is difficult to calculate for a spe-
cific material, but it is straightforward to interpret. The real part of the self-energy
encodes information on the change of energy of single particle states due to interac-
tions, while the imaginary part corresponds to the energy uncertainty of the state
in the interacting case, i.e. the inverse quasiparticle lifetime.

Observable quasiparticle properties can be related to the self-energy. For example,
the effective mass m∗ is defined by the relation m∗vF = ~kF , where kF stands
for the Fermi vector, and vF for the Fermi velocity, defined as the slope of the
dispersion at the Fermi level, vF = 1

~
dε∗(k)
dk

∣∣∣
kF

. The renormalised band ε∗ (k) is
given by the sum of the non-interacting bare band, and the real part of the self-
energy, ε∗ (k) = ε (k) + Σ′ (k, ω). It is straightforward to show that the effective
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2.4 Probe of band structure and many-body interactions

mass is equal to

1
m∗

= 1
m

+ 1
~2kF

dΣ′
dk

+ dΣ′
dω

∣∣∣∣∣
ω=ε∗(k)

dε∗ (k)
dk

∣∣∣∣∣∣
kF

, (2.18)

where m is the noninteracting band mass. The momentum variation of the self-
energy is typically much smaller than the energy variation, so the first term in
the brackets is neglected [37]. This assumption does not have to hold in a general
case, and can in principle be checked by photoemission. However, if the momentum
variation is negligible, it is straightforward to show that the effective mass equals

m∗ = m (1 + λ) , (2.19)

where λ is defined as the negative energy derivative of the self-energy at the Fermi
level,

λ = − dΣ′
dω

∣∣∣∣∣
ω=0

. (2.20)

It can also be shown [37] that the quasiparticle weight, i.e. the overlap of the
quasiparticle and the original electron, is related to the mass renormalisation λ by

Z = m

m∗
= 1

(1 + λ) . (2.21)

The quasiparticle weight is by definition smaller than one, so it immediately follows
that λ > 0, i.e. the renormalised mass is larger than the band mass. Stronger
interactions lead to a larger mass renormalisation and smaller quasiparticle weight.

For non-magnetic materials the electron-impurity, electron-electron and electron-
phonon interactions are the main contributors to the total self energy. Their various
contributions to the self-energy are additive to first order:

Σ (ω) = Σimp (ω) + Σel (ω) + Σph (ω) . (2.22)

This statement is equivalent to Matthiessen’s rule, stating that the various contri-
butions to resistivity are additive. Each of the contributions to the total self-energy
will be separately discussed in the following sections.
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Chapter 2 Angle resolved photoemission

Electron-impurity scattering

Elastic scattering off impurities is local and causes no energy transfer. The impurity
self-energy is therefore considered to be momentum and energy independent, and
to be purely imaginary. It broadens the otherwise sharp features of the spectral
function; the delta functions in the spectral function turn into Lorentzian peaks of
finite width, Γimp, which can be related to the imaginary part of the self-energy as
Σ′′imp (ω) = Γimp

2 .

Electron-electron interaction

Multiple processes contribute to the decay of quasiparticles due to electron-electron
interaction, such as single electron-hole pair production, multiple electron-hole pair
production, or excitation of plasmon modes. For particles near the Fermi level,
energy and momentum conservation forbid the latter two processes, so it is enough
to consider single electron-hole production, illustrated in Figure 2.4a.

1

2

3

4
loses

gains

Fermi sea

a b

Figure 2.4.: (a) Quasiparticle scattering due to electron-electron interaction. (b)
There is always a range of ω = ε− εF where the scattering rate is smaller than the
energy of a quasiparticle

An excited quasiparticle 1 loses energy ∆ε, and excites the particle-hole pair 3-4,
conserving both energy and momentum. A simple analysis of Figure 2.4a can be used
to qualitatively understand the dependence of the scattering rate on the quasiparticle
energy. The total scattering rate from the state 1 is proportional to the number of
ways states 2 and 3 can be chosen. The state 2 is initially unoccupied, so its energy
ε~k−~q is higher than the Fermi energy. At the same time, energy conservation dictates
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2.4 Probe of band structure and many-body interactions

that it has to be smaller than the initial energy, ε~k−~q < ε~k. The number of such
states is proportional to the difference between the initial state energy and the Fermi
energy, ω~k = ε~k−εF . In a similar way, state 3 has to be initially occupied, and have
energy within ω~k of the Fermi level. Once states 2 and 3 are chosen, the conservation
laws completely determine state 4. Thus, the scattering rate of a quasiparticle with
energy ω away from the Fermi level is expected to depend on the quasiparticle energy
as Γ ∼ ω2. This simple analysis yields the correct functional dependence for a three
dimensional electron gas, while additional corrections appear in the two dimensional
case. It also justifies the Fermi liquid theory as such, because, as shown in Figure
2.4b, there is always a range of excitation energies close to the Fermi level where
the energy is larger than the decay rate, i.e. the quasiparticle concept is justified.
Although the approach outlined above is sufficient to grasp the energy dependence

of the scattering rate, a more detailed treatment is needed if experimental values
of scattering rates are to be compared to model predictions. Here I outline the
derivation of the scattering rate of a 3D and a 2D Fermi liquid, following Ref. [38]. A
free-electron like parabolic dispersion is assumed, and the only interaction taken into
account is the screened Coulomb interaction, W (~q) = V (~q)

ε(~q,ω) , with V (~q) denoting the
Fourier transform of the unscreened interaction, and ε (~q, ω) the dielectric function.
The inverse lifetime, proportional to the scattering rate, is given by Fermi’s golden
rule:

1
τ~k

= 2π
~
∑
q,k′

∣∣∣∣∣W (~q)
Ld

∣∣∣∣∣
2

δ
(
ε~k−~q + ε~k′+~q − ε~k − ε~k′

)
, (2.23)

where Ld is the size of the d dimensional space. The energy is related to momentum
via the parabolic dispersion, the sums over momenta are turned into integrals, and
the integrals over the angular part of the momentum evaluated explicitly. After
these steps are taken, the expression for the scattering rate in 3D reads:

1
τ~k
∼ ω2 + (πkBT )2

1 + e−βω

∫ 2kF

0
dq |W (~q)|2 . (2.24)

The first part of the expression describes the number of electron-hole pairs that can
be excited with the phase space restrictions given by the Fermi sphere at temperat-
ure T , and qualitatively behaves as expected from the simple analysis given above
(Figure 2.4). The integral describes the screened interaction, which can be approx-
imated by the long-wavelength static limit, i.e. the Thomas-Fermi approximation.
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It is found to be equal to
∫ 2kF

0
dq |W (~q)|2 ≈ 2kF

g (εF )2 ξ3 (rs) , (2.25)

where g (εF ) is the density of states at the Fermi level, and ξ3 (rs) a function of the
average distance between electrons expressed in Bohr radii, rs. For metallic densities
ξ3 (rs) does not vary much, and is of order one. After relating the Fermi energy and
the density of states using the parabolic dispersion, the inverse scattering time is
found to be equal to

1
τ 3D
~k

= π

8~εF
ω2 + (πkBT )2

1 + e−βω
ξ3 (rs) . (2.26)

In the 2D case both the phase space restriction and the functional form of the
screened interaction are modified. Analogous calculation yields

1
τ 2D
~k

=


ξ2 (rs) ω2

4π~εF
ln
∣∣∣4εF

ω

∣∣∣ kBT � ω

ξ2 (rs) (πkBT )2

8π~εF
ln
∣∣∣ 4εF

kBT

∣∣∣ kBT � ω

, (2.27)

where ξ2 (rs) is another function of the average distance between electrons, also
very weakly dependent on the density and of order one at metallic densities. The
dependence of the scattering rate on the quasiparticle energy is now modified by a
logarithmic correction.
While the ω dependence of the scattering rate is a consequence of very general

arguments related to the available phase space, the exact form of the equations can
depend on the Fermi surface geometry. Thus, while the ∼ ω2 and ∼ ω2 ln

∣∣∣4εF

ω

∣∣∣
functional forms of the scattering rate are frequently observed [31, 39–41], the pro-
portionality constant has to be determined experimentally. In particular, it was
assumed throughout the derivation that there is only one circular Fermi surface.
The delafossite Fermi surfaces are however hexagonal, and it will therefore be inter-
esting to study the influence of this hexagonality on the scattering rate.
Once the scattering rate is known, so is the imaginary part of the self-energy,

Σ′′ = Γ/2. The real part of the self-energy could in principle be determined by the
Kramers-Kronig relations, but that would require the knowledge of Σ′′ (ω) for all ω,
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2.4 Probe of band structure and many-body interactions

whereas the above derivation is valid only in a small energy range around the Fermi
level. Nonetheless, the fact that Σ′′ is even around ω = 0 indicates that Σ′ is odd,
and can therefore be expanded as Σ′el (ω) = −αω near the Fermi level. In the low
temperature limit the electron-electron self-energy in three dimensions is then given
by

Σ3D
el (ω) = −αω + ıβω2. (2.28)

The logarithm in equation 2.27 for a two dimensional gas can be rewritten as
ln
∣∣∣4εF

ω

∣∣∣ = ln 4
(
1 + 1

ln 4 ln
∣∣∣ εF

ω

∣∣∣), leading to the following expression for total self-
energy:

Σ2D
el (ω) = −αω + ıβω2

(
1 + 0.72

∣∣∣∣ln ∣∣∣∣ ωεF
∣∣∣∣∣∣∣∣) . (2.29)

Electron-phonon interaction

A system containing electrons and phonons can be described by the Hamiltonian

H =
∑
k

εkc
†
kck +

∑
q

ωqa
†
qaq +

∑
g

k,k′
(k, k′) c†k′ck

(
a†k−k′ + ak′−k

)
, (2.30)

where spin and polarisation indices are omitted [42]. The first term describes elec-
trons, while the second term describes phonons in the presence of these electrons.
In other words, it is assumed that the correct phonon spectrum in the metal, ωq, has
already been calculated. The third term corresponds to the scattering of electrons
due to emission (a†k−k′) and absorption (ak′−k) of phonons.
It can be shown that the electron-phonon coupling is too strong to be treated

in second order perturbation theory. If a proper many-body treatment is employed
instead, the renormalised electron spectrum is found to be equal to ε∗k = εk +
Σ (k, ε∗k), with the self-energy Σ (k, ε∗) given by

Σ (k, ε∗) =
∑
k′
|g (k, k′)|2

(
1 + nB (k′ − k)− nF (k′)
ε∗k − εk′ − ωk′−k + ıδ

+ nB (k′ − k) + nF (k′)
ε∗k − εk′ + ωk′−k + ıδ

)
,

(2.31)
where nB and nF stand for Bose-Einstein and Fermi distribution, respectively, and
δ is an infinitesimally small parameter [43]. This expression has been proven to be
correct to the order of

√
me/Mion, where me is the mass of free electrons, and Mion
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that of the relevant ions. If the Fermi surface is isotropic, the explicit k dependence
of the self-energy can be neglected to the same order.

The matrix element g (k, k′) has so far been treated as a function of momentum,
but it is often more useful to think of it as a function of energy. A new function,
called the Eliashberg function α2F (ω), is introduced:

α2F (ω) = 1
(2π)3

∫ dk2

vF

∫ dk′2

vF
|g (k, k′)|2 δ (ω − ωk′-k)∫ dk2

vF

. (2.32)

If the matrix element |g (k, k′)|2 were omitted from the integral, the equation 2.32
would be reduced to the expression for the phononic density of states, F (ω). The
Eliashberg function therefore corresponds to the phononic density of states, weighted
by the interaction strength. The symbol used, α2F (ω), emphasises this interpreta-
tion, but it should be noted that α2F (ω) is a single function; it can be factorised into
the density of states and a coupling parameter only if the momentum dependence
of the matrix element |g (k, k′)|2 is neglected.

Using the Eliashberg function the self-energy can be expressed as:

Σ (ε∗) =
∫ ∞
−∞

dε
∫ ∞

0
dω′α2F (ω′)

(
1 + nB (ω′)− nF (ε)
ε∗ − ε− ω′ + ıδ

+ nB (ω′) + nF (ε)
ε∗ − ε+ ω′ + ıδ

)
.

(2.33)
The parameter that is most often used to describe the strength of the electron-
phonon interaction is the mass renormalisation factor, λ (equations 2.19 and 2.20),
proportional to the energy derivative of the real part of the self-energy. Using the
expression 2.33 for self-energy, it can be related to the Eliashberg function by

λ = 2
∫ ∞

0
dω′

α2F (ω′)
ω′

. (2.34)

This framework can be used to find energy and temperature dependent self-energies
in simple models for acoustic and optical phonons, i.e. the Debye and Einstein
models, respectively. If the matrix element |g (k, k′)|2 is assumed to be independent
of momentum, the self-energy can be parametrised by a single number, λ. In this
approximation the Eliashberg function α2F (ω) is proportional to the density of
states, which is of known form in the two models, with a prefactor related to λ by
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requiring equation 2.34 to hold at low temperatures. α2F (ω) found in this way
is combined with the general expression for electron-phonon self-energy (equation
2.33) to find the self-energy in the Debye and Einstein models.
In the low temperature limit of the Debye model with the Debye frequency ωD

[31], the real part of the self-energy is found to be equal to

Σ′ (ε∗) = −λ~ωD3

 ε∗

~ωD
+
(
ε∗

~ωD

)3
ln
∣∣∣∣∣1−

(
ε∗

~ωD

)2∣∣∣∣∣+ ln

∣∣∣∣∣∣
1 + ε∗

~ωD

1− ε∗

~ωD

∣∣∣∣∣∣
 , (2.35)

and the imaginary to be equal to

Σ′′ (ε∗) =

λ
π
3

ε∗2

(~ωD)2 |ε∗| < ~ωD
λπ3~ωD |ε∗| > ~ωD

. (2.36)

Similarly, the Einstein model with the Einstein frequency ωE yields

Σ′ (ε∗) = −λ~ωE2 ln

∣∣∣∣∣∣
1 + ε∗

~ωE

1− ε∗

~ωE

∣∣∣∣∣∣ , (2.37)

and

Σ′′ (ε∗) =

0 |ε∗| < ~ωE
λπ2~ωE |ε∗| > ~ωE

. (2.38)

The self-energy in the two models is shown in Figure 2.5. The real part has a peak
at the maximum phonon energy, and approaches zero at higher binding energies.
Qualitatively this has to be true, because electrons at binding energies much higher
than the phonon energy cannot be significantly perturbed. The imaginary part has
a step at the same energy, because there are no electrons that can fill a hole of a
binding energy smaller than the phonon energy (ε∗1 in the inset of Figure 2.5). On
the other hand, if the hole binding energy is higher than the phonon energy (ε∗2),
the hole can be filled with a probability independent of its energy. In the Einstein
model there is only one phonon mode, so the imaginary self-energy is zero up to the
Einstein energy, while in the Debye model it increases continuously because there
are phonon modes at all energies lower than the Debye energy.
The expression 2.33 for the self-energy is temperature dependent, so it can be
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used to predict the temperature dependence of the photoemission linewidth. For
an arbitrary temperature the self energy has to be calculated numerically, but at
temperatures much higher than the characteristic phonon energy the imaginary self-
energy limits to

Σ′′ (ε∗, T � ~ωph/kB) = λπkBT, (2.39)

in both models and at all binding energies.
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Figure 2.5.: The real (a) and imaginary (b) part of the phonon self-energy in the
Debye (red) and Einstein (Green’s) model. The inset illustrates the energy con-
straint on the phonon emission.

2.5. Model spectra and analysis
In the last section I discussed Green’s functions and the self-energy formalism, with
the aim of gaining understanding of how the features of the one-electron spectral
function, measurable by photoemission, arise. The spectral function, proportional
to the imaginary part of the Green’s function (equations 2.16 and 2.17), of a system
described by a bare band dispersion ε (k) and self-energy Σ (ω) is given by

A (k, ω) = 1
π

Σ′′ (ω)
(ω − ε (k)− Σ′ (ω))2 + (Σ′′ (ω))2 . (2.40)

I will use this form of the spectral function to simulate photoemission spectra assum-
ing the self-energies calculated in Section 2.4.2. In doing this I will assume that the
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band structures are two-dimensional. This simplifies the discussion for two reasons.
First of all, as the in-plane dispersion is the same at all values of the out-of-plane
momentum, there is no kz - broadening (described in Section 2.1). Furthermore, the
linewidths of observed features are a direct measure of the lifetime of the hole created
by photoemission only if the initial state is perfectly two-dimensional [44]. In a gen-
eral case the measured linewidth is related both to the lifetime of the photo-hole,
governed by the self-energy, and the lifetime of the photoexcited electron, which
depends on the scattering processes as the electron leaves the solid.

Simulated spectra are helpful in interpreting real ARPES data, as they facilitate
recognising characteristic features when they appear in experiments. I will therefore
analyse them using methods similar to those used for real data in the rest of the
thesis. ARPES data are usually analysed by extracting one-dimensional cuts of
the spectral function. The cuts taken at constant energy are called the momentum
distribution curves (MDCs), while those taken at constant momentum are called
the energy distribution curves (EDCs). The line shapes of the two types of cuts
differ because the self-energy in the first approximation depends explicitly on energy,
but not on momentum. As long as this approximation is valid the MDCs are of
Lorentzian line shape, while the EDC line shape depends on the form of the self-
energy. Quantitative analysis of ARPES spectra is therefore usually performed by
fitting Lorentzian peaks to the extracted MDCs. This type of analysis was performed
for all of the photoemission data in this thesis, so I will take the same approach in
analysing the simulated spectra.

To show explicitly how the Lorentzian shape of the MDCs arises from the spectral
function given by equation 2.40, it is useful to rewrite the equation as a function of
momentum at a fixed energy, Aω (k). The spectral function peaks at a momentum
kω, defined by ω = ε (kω) + Σ′ (ω). The bare band can be linearised in the vicinity
of this momentum as

ε (k) = ε (kω) + vB (kω) (k − kω) , (2.41)

where vB (km) denotes the bare band slope (vB = dε/dk), at the momentum at which
the spectral function peaks. With this linearisation the spectral function at a fixed
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energy takes the form of

Aω (k) = Σ′′ (ω)
πv2

B (kω)
1

(k − kω)2 + (Σ′′ (ω) /vB (kω))2 . (2.42)

The full width at half maximum (FWHM) of this Lorentzian, a quantity directly
extracted from the fits to experimental data, is given by ∆kω = 2Σ′′ (ω) /vB (kω).
It depends on the self-energy at the binding energy at which the MDC is extracted
(Σ′′ (ω)), and the bare band slope at the momentum at which the MDC peaks
(vB (kω)). Σ′′ (ω) therefore cannot be extracted directly from the measurements;
rather, an assumption about the bare band dispersion needs to be made. This is
also true of the real part of the self-energy, Σ′ (ω). The information about it is
contained in the difference of the spectral function and the bare band dispersion; as
only the former is experimentally accessible, an assumption about the latter needs
to be made. What is more, not only the value of the extracted self-energy depends
on the assumed bare band; its binding energy dependence does too.

The MDC peak position as a function of binding energy can be used to extract
the Fermi velocity, or more generally the band slope. This is done by performing
a linear fit to the peak positions in the binding energy range of choice; the inverse
of the slope of this fit corresponds to the band slope, dε/dk. The Fermi velocity is
related to the band slope at the Fermi energy as

vF = 1
~
dε

dk

∣∣∣∣∣
εF

. (2.43)

As they differ only in the constant ~, the terms ‘band slope’ and ‘band velocity’ are
often used interchangeably, and Fermi velocities are quoted in eVÅ. This is particu-
larly convenient in relating momentum changes to energy changes in the electronic
structure. Nonetheless, it is often informative to convert the Fermi velocity to m/s;
the relevant conversion is given by

v [m/s] = 151926.8v
[
eVÅ

]
. (2.44)

The effective mass m∗ in units of the free electron mass can be calculated from the
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fitted band slope and Fermi momentum as

m∗

me

= 1
me

~kF
vF

= 7.61996
kF
[
Å−1

]
vF
[
eVÅ

] . (2.45)

In the following three sections I will simulate the spectral functions of a sys-
tem interacting only with impurities (section 2.5.1), as well as of systems in which
electron-electron (section 2.5.2), and electron-phonon interactions (section 2.5.3) are
added to the impurity scattering. In all cases I will assume a free-electron parabolic
bare band dispersion,

ε (k) = ~2

2me

(
k2 − k2

F

)
, (2.46)

with kF = 1 Å−1. The Fermi velocity of this band is equal to vF = 7.62 eVÅ = 1.16×
106 m/s, and the bare band mass is equal to the free electron mass by construction.

2.5.1. Non-interacting electrons

If the electrons do not interact with each other or the lattice, the removal of one of
them cannot perturb the rest of the system. Both initial and final state many-body
wave functions are products of the same eigenstate of the N − 1 particle system,
ΨN−1
m0 , and a single Bloch state. The difference between the energies of the N and

the N−1 particle ground states is exactly equal to the binding energy of the extrac-
ted electron, which depends on momentum, ωN−1

m = ε (k). The spectral function
(equation 2.10) is therefore equal to a delta function, A− (k, ω) = δ (ω − ε (k)) re-
flecting the infinite lifetime of a quasiparticle in a non-interacting system. To put
the same statement in the language of Green’s functions, the self-energy vanishes.
In any realistic system, however, impurities are present to some degree, leading to
a finite imaginary part of the self-energy.
A spectral function simulated assuming only an impurity contribution to the self-

energy, which is purely imaginary and has no binding energy dependence, is shown
in Figure 2.6a for Σ′′ = 20 meV. The bare band dispersion underlying it (dashed
line) coincides with the maximum intensity of the spectral function because the
self-energy contains no real part. The spectral function is, however, broadened by
impurity scattering, introducing a binding energy dependence of the MDC linewidth.
The linewidth is given by ∆kω = 2Σ′′imp/vB (kω); it increases as the band slope
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decreases at higher binding energies due to the parabolic bare band (Figure 2.6(b,
c)).

Figure 2.6.: (a) Spectral function simulated for a free-electron dispersion, with an
impurity self-energy of Σ′′imp = 20 meV. (b) MDCs extracted from (a), at energies
indicated by the dashed lines. (c) The full width at half maximum of Lorentzian
fits to MDCs extracted from (a) as a function of binding energy.

2.5.2. Electron-electron interactions

In Figure 2.7a I show the simulated spectral function with an electron-electron self-
energy of a three dimensional Fermi liquid (equation 2.28):

Σ3D
el (ω) = −αω + ıβω2, (2.47)

with α = 0.5 and β = 0.1 eV−1. As the real part of the self-energy is now finite,
the maximum intensity in the spectral function does not coincide with the bare
band dispersion, but is offset by the real part of the self-energy, Σ′, as indicated in
Figure 2.7a. As Σ′ is finite at all binding energies, the whole bandwidth is reduced,
reflecting the high energy scale of the electron-electron interactions.
The renormalised band can be analysed by extracting momentum distribution

curves as a function of binding energy, and fitting them to Lorentzian line-shapes,
as was done for the non-interacting case above. The position of these Lorentzian
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Figure 2.7.: (a) Spectral function simulated for a free-electron dispersion, with an
impurity self-energy of Σ′′imp = 20 meV, and an electron-electron self-energy given
by equation 2.47. (b)The positions of Lorentzian fits to MDCs extracted from (a)
as a function of binding energy. A linear fit to the band close to the Fermi level is
shown in the inset. (c) The full width at half maximum of Lorentzian fits to MDCs
extracted from (a) as a function of binding energy (blue), compared to the same
with only impurity self-energy (same as in Figure 2.6c).

fits as a function of binding energy is shown in Figure 2.7b2. In order to find the
Fermi velocity of this renormalised band, a linear fit to the momentum as a function
of binding energy needs to be performed in the narrow region in the vicinity of the
Fermi level, as shown in the inset of Figure 2.7b. The Fermi velocity extracted from
this fit is 5 eVÅ, suggesting a mass renormalisation of m∗/me = 1.53. However, as
discussed in Section 2.4.2, the mass renormalisation is related to the real part of the
self energy as

m∗

m
= 1− dΣ′

dω
. (2.48)

For the self-energy employed here (equation 2.47, with α = 0.5) this expression
predicts the mass renormalisation to be m∗/m = 1.5. The small difference arises
because the linear fit in Figure 2.7b is performed over a binding energy range of
200 meV; although the fit appears to be very good, the band curvature affects the
extracted slope. This effect would be minimised if the fitting range was reduced,

2In the rest of the thesis I will plot the fitted data of this type as binding energy vs momentum,
as is usually done. Here I plot the extracted momentum as a function of binding energy, in
order to emphasise the way in which the data are extracted: momentum at which the intensity
is maximum is found as a function of fixed binding energy.
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but this is often not possible with real data, which require a larger fitting range to
enable a robust fit, not overly sensitive to noise and other experimental artefacts.
For each spectrum a fitting range needs to chosen to compromise between the effects
of band curvature and experimental artefacts. In Appendix C I show how a fitting
range was chosen for a few example data sets from this thesis.
The extracted full-width at half-maximum of the Lorentzian fits to the MDCs as

a function of binding energy is shown in Figure 2.7c. As expected, the linewidth
increases with binding energy, at a considerably higher rate than for the case of only
impurity scattering. To summarise, electron-electron interactions in the simplest
case continuously shrink the bandwidth and increase the linewidth.

2.5.3. Electron-phonon interactions

The situation is very different for electron-phonon interactions because the char-
acteristic phonon energy is typically much smaller than the bandwidth. Both the
real and the imaginary part of the phononic self-energy have features at the phonon
energy (Figure 2.5), which are reflected in the simulated spectral function, shown
in Figure 2.8a for a self-energy within the Debye model (equations 2.35 and 2.36,
λ = 0.5, ~ωD = 100 meV). The spectral function exhibits a sudden change of slope
at the Debye energy, often referred to as a ‘kink’, characteristic of electron-boson
coupling. The slope of the renormalised band is reduced at energies smaller than the
phonon energy. The deviation from the bare band dispersion is the largest at the
phonon energy, where the real part of the self-energy peaks, and is reduced at higher
binding energies (inset of Figure 2.8a). The band slope can be extracted in the same
way as described in the section 2.4.2 above; the Fermi velocity is found to be equal
to 4.83 eVÅ, corresponding to the mass renormalisation of m∗/me = 1.58. In other
words, if this fit were used to estimate the electron-phonon coupling strength λ, it
would be deduced to be equal to 0.58, ∼ 15% higher than the actual value used
in the simulation, 0.5. This is of course again a consequence of the finite fitting
range; a slope fitted just at the Fermi level yields the expected value of 0.5. The
analysis of these simulated spectra points to the importance of careful fitting range
determination for real data (Appendix C).
The linewidth as a function of binding energy, shown in Figure 2.8c, inherits the

discontinuity of the self-energy at the Debye energy. It increases rapidly from the
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Fermi level towards the Debye energy. At higher binding energies the linewidth
increases at a moderate rate; it is in fact equivalent to a system with only an
effective impurity self-energy of Σ′′eff =

(
λπ~ωD/3 + Σ′′imp

)
. This is also seen in

the simulated spectral function (Figure 2.8a): at high binding energies the spectral
function follows the bare band dispersion, as it does in absence of interactions, but
with a larger linewidth (cf. Figure 2.6a).

Figure 2.8.: (a) Spectral function simulated for a free-electron dispersion, with an
impurity self-energy of Σ′′imp = 20 meV, and an electron-phonon self-energy within
the Debye model, with the Debye energy of 100 meV and coupling of λ = 0.5. A
zoom-in of the states close to the Fermi level is shown in the inset. The bare band
dispersion is shown by the line. (b) The positions of Lorentzian fits to MDCs
extracted from (a) as a function of binding energy. A linear fit to the band close
to the Fermi level is shown in the inset. (c) The full width at half maximum of
Lorentzian fits to MDCs extracted from (a) as a function of binding energy (blue),
compared to the same with only impurity self-energy (same as in Figure 2.6c).
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2.6. ARPES experiment

I have now discussed the theory behind the ARPES experiments, as well as the
type of information that can be gained through them. In this section I will describe
some of the practicalities of those experiments. All of the data in this thesis were
taken at synchrotron beamlines, so I will concentrate on describing those setups,
although ARPES can also be done using laser light, or the ultraviolet light from a
gas-discharge lamp. The majority of the data in this thesis were taken at the i05
beamline at the Diamond Light Source, with the exception of the soft x-ray ARPES
data (Figures 5.17, 5.18 and 5.19) and the spin-resolved data (Figure 6.4b), which
were taken at the i09 beamline at Diamond and the APE beamline at the Elettra
Synchrotron, respectively. The specifics of those experiments will be discussed in
Sections 2.6.6 and 2.6.7, respectively. During the course of my PhD I participated in
13 ARPES beamtimes, adding up to a total of 63 days, across the three beamlines:
eight beamtimes (38 days) at the i05 beamline at Diamond, three at the i09 beamline
(10 days) and two at the APE beamline at Elettra (15 days).

Synchrotron photoemission differs from the lamp or laser based photoemission
not only in the type of light source, but also because the experiments performed at
large scale facilities present different challenges and opportunities to those done in
in-house laboratories. Although the users are typically not sufficiently familiar with
the setup to maintain it, it is vital that they understand its various parts well enough
to be able to tune them, with the aim of obtaining the data of the highest quality
achievable in the specific circumstances. Furthermore, the facility experiments are
limited to a few days, typically 5 or 6 at a time, which need to be used efficiently.
The users have a 24 hour access to the beamline, requiring a team of people to work
together. For all the beamtimes I participated in the team consisted of four group
members, each of whom had a 12 hour-long shift. The shifts were staggered, so
that everybody overlapped with one person for the first 6 hours and with another
for the remaining 6 hours of the shift. This shift schedule is beneficial both to
ensure efficient information transfer from shift-to-shift, and because the two people
working at the same time are not likely to become tired simultaneously. Although
one or two team members usually lead the project, the synchrotron experiments
are always a group effort. Good teamwork is therefore vital to ensure efficient (and
enjoyable!) beamtimes. During the beamtimes I participated in we collected the data
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on delafossites, discussed in this thesis and References [5, 8, 10, 11, 14, 19], but also
on a range of transition metal dichalcogenides [45–49], and Sr2RuO4 under uniaxial
stress [50]. The photoemission data can be collected fairly quickly with modern
setups and intense synchrotron radiation; a high-resolution dispersion may be taken
in ∼ 15 min, while a larger Fermi surface map could be measured in 1-2 hours.
However, a considerable fraction of the time is used to optimise the measurement
conditions, which entails finding the optimal photon energy and light polarisation,
light intensity, momentum and energy resolution and position on the sample, in order
to access the relevant information in a reasonable time scale. The experiment as a
whole resembles a complex multi-parameter optimisation problem, which requires
quick decision taking, based both on the knowledge of the setup and the physics of
the material under investigation.
In what follows I will describe the experimental setup of an ARPES beamline.

Although the general discussion is not beam-line specific, I will use i05 at Diamond as
an example when discussing specific parameters; similar values are found elsewhere.
In particular I will focus on the parts of the setup which can be, and often are,
tuned by users. The whole experimental setup can be divided into three parts, each
of which I will discuss separately: the incoming light, the sample space, and the
electron detection. These are all technical details vital to ensuring the quality of
the data presented in chapters 4 - 6, but a reader more interested in the results
themselves and the theoretical techniques used to model them might prefer at this
point to skip directly to chapter 4.

2.6.1. The incoming light

Synchrotron radiation is created by charged particles travelling on curved paths. In
a synchrotron facility, schematically shown in Figure 2.9a, electrons are first acceler-
ated in a linear accelerator (LINAC) and the booster ring up to energies of ∼ MeV
and∼ GeV, respectively. They are subsequently injected into the storage ring, which
is composed of alternating straight and curved sections. As the electron trajectories
are altered by bending magnets in the curved sections, they produce broadband
synchrotron radiation which can be used for experiments. Straight sections of the
synchrotron can also be used to produce radiation if insertion devices, creating spa-
tially varying static magnetic fields, are placed in them. The energy electrons lose as
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they produce electromagnetic radiation is compensated in the radio-frequency (RF)
cavity, where a RF electric field accelerates the electrons. However, as the RF field
oscillates, it acts as an accelerator only part of the time. This is why electrons are
sent in the storage ring in bunches, tuned such that they pass the RF cavity only
in the part of the cycle in which the field accelerates them. In normal operation
at Diamond there are 900 electron bunches that are 2 ns apart, and carry 0.62 nC
each. Two such trains of bunches are separated by 72 ns, resulting in a total current
of 300 mA. The energy at which the electrons move in the storage ring is 3 GeV.
In a synchrotron there can be many beamlines, more than 30 at the Diamond syn-
chrotron, each of which receives light from a bending magnet or an insertion device.
Since all electrons in the storage ring pass through all the magnets and undulators,
synchrotrons have to be designed to minimise the influence of the experiments on
different beamlines on each other.
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Figure 2.9.: (a) Schematic of a synchrotron, taken with permission from Ref . [51].
(b) Schematic of an undulator, with arrows and colours corresponding to magnet-
isation direction of the permanent magnets. Configurations required to achieve (i)
linear horizontal (ii) circular right and (iii) linear vertical polarisation are shown.
Taken with permission from Ref. [52].

The most commonly used type of insertion device in modern synchrotrons is the
undulator, which produces the most intense light concentrated in a narrow spectral
range [51, 53]. It consists of two arrays of magnets, above and below the electron
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orbit plane, forcing electrons to oscillate. A slightly more complicated design, in
which there are two arrays of magnets above and two below the electron plane
(Figure 2.9b), allows for the polarisation of the light to be changed. Displacing
the magnet rows with respect to each other changes the electron paths, resulting
in linearly or circularly polarised light, as indicated in Figure 2.9b. The radiation
produced in this way is intense and concentrated in a narrow energy range. The
wavelength at which its intensity peaks depends on the period of the undulator,
marked λu in Figure 2.9b , as well as the magnetic field the electrons feel. Undulators
are chosen to match the photon energy range needed on a specific beamline, while
the photon energy within that range can be tuned by modifying the size of the gap
between the two arrays of magnets, thus changing the magnetic field in the electron
plane.

The light produced in a dedicated bending magnet or an undulator is passed into a
beamline, where it travels through an array of optical elements, as needed. Although
the intensity of the light emitted in an undulator peaks at a specific wavelength, it
is not sufficiently monochromatic to be used in an experiment. It therefore needs
to be monochromatised using a diffraction grating, which must be chosen to match
the relevant wavelengths. For instance, in the hard x-ray range the wavelengths
are on the order of Å, enabling the use of single crystals as diffraction gratings. In
contrast, the energy range used in a typical photoemission experiment, 10− 100 eV,
corresponds to wavelengths of ∼ 1 − 10 nm, so manufactured periodic gratings are
used instead, with the separation between grating lines chosen according to the
wavelength. As an example, at i05 it is possible to choose between two gratings,
with 800 lines/mm and 400 lines/mm; the first one of those allows for the best light
energy definition, as high as El/∆El > 20000, while the second one allows for a
higher photon flux, with a slightly reduced resolving power [54]. The photon energy
of the light used in the experiment is set by the monochromator angle with respect
to the beamline axis, usually chosen to match the peak intensity of the undulator
light, maximising the intensity of the light incident on a sample. Occasionally,
however, high intensity can reduce the measurement resolution in a photoemission
experiment, due to the Coloumb interaction of the many outgoing electrons, called
the space charge effect [55]. In those cases intensity can be reduced by detuning
the undulator such that its peak intensity does not coincide with the energy passed
through the monochromator.
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The beam exiting the monochromator contains a spread of wavelengths, sorted
along the height of the beam. Monochromatic light is obtained by focusing the light
onto the so-called exit slit, which allows only a small portion of the beam to pass
through. The vertical size of the exit slit can be chosen, directly affecting the energy
resolution, as shown in Figure 2.10 for the i05 beamline. It simultaneously affects
the photon flux (inset of Figure 2.10), and the vertical size of the light spot on the
sample, which varies between 7 and 70 µm for the exit slit heights between 0 and
200µm at i05. The horizontal beam spot size is fixed to ∼ 50 µm. As is often the
case, a compromise needs to be made between high resolution and high flux, while
also keeping in mind the spot size.

Figure 2.10.: Measured energy resolution as a function of the exit slit height at the
i05 beamline at Diamond. Inset: the photon flux as a function of the exit slit height.
Reproduced with permission from Ref. [54].

2.6.2. The sample and sample space

Ultra-high vacuum

The synchrotron light with photon energy defined using the above-described tech-
niques is focused on the sample, which is placed in a dedicated sample manipulator
in an ultrahigh vacuum (UHV) chamber. There are several reasons for keeping the
ARPES setup under vacuum. Firstly, both the incident ultraviolet light and out-
going electrons can be scattered by air molecules. Furthermore, operation of the
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electron analyser requires a pressure of ∼ 10−7 mbar. However, the base pressure
specification, typically ∼ 10−11 mbar , is not ultimately defined by these considera-
tions, but by the surface sensitivity of photoemission. As the mean free path of the
outgoing electrons is comparable to the interatomic distance at typical photoelec-
tron kinetic energies, the signal comes only from a thin layer of sample close to the
surface. It can therefore be easily dominated by both intrinsic and extrinsic surface
contributions. The residual gas molecules adsorbed on the sample surface are a
source of disorder scattering, reducing the data quality. As the rate of adsorption
of gas molecules scales linearly with their pressure, it is beneficial to achieve as low
a pressure as possible [30].
Loading samples into the UHV chamber is achieved through a system of in-

terconnected chambers at varying degrees of vacuum, constantly pumped by tur-
bomolecular pumps backed by scroll pumps, sometimes with added ion pumps and
non-evaporable getters to reach the lowest pressures3. The only chamber that is ex-
posed to the atmospheric pressure during regular operation is the smallest of them,
called the load-lock, where samples are introduced into and taken out of the UHV
system. After new samples are added into the load-lock, it is first pumped down
to ∼ 10−2 mbar using a scroll pump, after which a turbomolecular pump is turned
on. The pressure needs to reach values of ∼ 10−8 mbar before the sample can be
transferred in the rest of the vacuum system, which typically takes 1-2 hours. It is
therefore important to carefully plan sample exchanges in order not to waste time
waiting for the pressure to drop. The sample is then transferred through the inter-
mediate chambers into the measurement chamber. In general, when working with
UHV systems it is good practice to do all the movements very slowly, constantly
monitoring the pressure in order to avoid pressure spikes due to trapped residual
gas.

Sample preparation

In order to obtain clean surfaces, single crystals are typically cleaved in-situ using
a top-post, as was done with all the samples from which data are shown in this
thesis. A ceramic post of 500µm diameter is glued on the sample surface with silver
epoxy. Once in the UHV system at the desired pressure and temperature, the top-

3There are many resources available to learn about pumps, pressure gauges, and other examples
of UHV technology; see for example Ref. [56].
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post is hit using a wobble stick, with the aim of breaking the sample and creating a
clean surface. It is impossible to fully control the cleaving process; although careful
sample mounting does increase chances of a successful cleave, there is no guarantee
that, for example, the top post will not detach instead, leaving a sample covered in
epoxy. Even if the sample cleaves, the surface may not be flat and uniform. The
probability of a successful cleave depends on the material: it is higher for layered
materials and crystals which are not too small. The delafossites, the crystals of
which can be as thin as ∼ 1µm as-grown, often cleave only partially, leaving a small
and inhomogeneous surface available for the experiment.

Sample manipulator

Most beamlines have bespoke sample manipulators controlling the sample motion.
The manipulator design is particularly important for angle resolved photoemission,
because the angle between the sample and the analyser axis is a measurement para-
meter, directly related to the crystal momentum of the electrons is the solid. The
manipulator at the i05 beamline has six independent degrees of freedom, corres-
ponding to the translation along, and rotation around, the three axes. Each one of
them is controlled by a stepper motor, and their absolute positions are monitored by
encoders. With appropriate backlash corrections, all the angles are reproducible to
the precision of 0.05° [54]. Every one of the six degrees of freedom can be controlled
by the software, both individually and as a part of a more complex measurement se-
quence. This high degree of motion precision, control and automatisation is unusual,
and is one of the reasons high quality data on samples as demanding as delafossites
could be taken at i05. As already mentioned, the cleaved surfaces of delafossites
are rarely uniform, so considerable optimisation was needed to find parts of the sur-
face which could yield high resolution data. After cleaving a new sample we would
therefore always move the sample in a two dimensional grid, initially with a step
size of ∼ 100 µm, and take quick measurements at each position. This rough survey
of the sample would allow us to identify regions where surface or the bulk contribu-
tions dominate the measured signal. After choosing the region in which the signal
of interest could be observed, we would optimise the position further, making steps
as small as ∼ 10 µm until the best position was found. Indeed, in some samples
movements of ∼ 10 µm would noticeably change the data quality. Crucially, after
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finding the best position it was possible to reproducibly return to it and measure.

2.6.3. Electron analyser

Once electrons are photoemitted, their kinetic energy at a specific angle of emission
needs to be measured. This is typically done using commercially available concentric
hemispherical analysers, whose main components are two hemispheres, with a po-
tential difference ∆V = Vin − Vout between them, as shown schematically in Figure
2.11. The electric field produced by the hemispheres makes the electrons which enter
the analyser travel on circular paths. The radius of the electron path depends on its
kinetic energy, as illustrated in Figure 2.11 by the different colours; the electron on a
‘purple’ trajectory has the highest, and the one on the ‘red’ the lowest energy. Only
electrons in a narrow energy range can avoid colliding with the hemispheres, and
reach the detector. Within this range, the kinetic energy of the electrons determines
their position on the detector, enabling its measurement.

Figure 2.11.: Schematic of the cross-section of a concentric hemispherical analyser.

Details of the energetics of the photoemission experiment and detection are cla-
rified in Figure 2.12. The difference between the photon energy and the binding
energy of the electron in the solid is equal to the sum of the sample work function
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(Ws) and the electron kinetic energy in vacuum (Ek1):

hν − |EB| = Ek1 +WS; (2.49)

this is equivalent to the energetic argument made at the beginning of the chapter
(equation 2.1), and illustrated in Figure 2.12a. However, there can be small vari-
ations between the work function of the analyser (WA) and that of the sample (WS),
although both are typically ∼ 4.5 eV (Figure 2.12b). Crucially, as long as the sample
shares the same ground with the analyser there is no variation in the Fermi level
between the two. This enables the determination of the binding energy measured
from the common Fermi level using the work function of the analyser and the kinetic
energy of the electrons in the analyser:

hν − |EB| = Ek2 +WA. (2.50)

WS

EB

Ek1

sample

EF

hν

analyser, U = 0

WA

Ek2
WA

U

Epass

EF

EF

EV EV

EV

a b c

analyser, U ≠ 0

Figure 2.12.: Diagram outlining the energetics of an ARPES experiment, (a) in the
sample, (b) in the analyser if there is no retardation potential, and (c) in the analyser
with a finite retardation potential, slowing down electrons to the pass energy, Epass.

Kinetic energy in the hemisphere is, however, generically not equal to Ek2, the
kinetic energy of the photoemitted electron, modified by the difference in the work
functions. Indeed, elementary electrostatic arguments state that the kinetic en-
ergy of the electrons travelling along the mean radius of the hemisphere (the green
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trajectory in Figure 2.11) is given by:

Epass = e∆V
R1
R2
− R2

R1

, (2.51)

where e is the electron charge, ∆V is the potential difference between the two
hemispheres, and R1 and R2 their radii. In other words, it is governed only by the
hemisphere parameters. It can be tuned by changing the voltage difference between
the hemispheres, and it is typically chosen to be in the range of 5 − 20 eV for an
ARPES experiment. Since we may be interested in a kinetic energy Ek2 which is
very different from the pass energy of the analyser, the electrons are slowed down
by a retardation potential U , set by the electrostatic lenses (Figure 2.11). The
retardation potential is chosen to satisfy U = Ek2 − Epass, leading to the overall
energy conservation of the form

hν − |EB| = Epass + U +WA, (2.52)

as illustrated in Figure 2.12c.

Epass is an important measurement parameter, as it sets both the energy range
that can be accessed in a single measurement, and the energy resolution. Those are
of course related: the larger the spread of energies of the electrons sorted according
to the energy in the fixed space between the hemispheres, the poorer is the energy
resolution. The accessible energy range is typically ∼ 10% of Epass. It is therefore
often convenient to chose a large value of Epass, in order to be able to measure the
states across a wider binding energy range. If the binding energy range of interest
is wider than that accessible in a single measurement with the highest pass energy,
measurements are usually performed in the so-called ‘swept’ mode. This entails
keeping the pass energy fixed, while sweeping the lens voltage U to change the
kinetic energy detected at the centre of the detector.

The analyser energy resolution is theoretically set by the pass energy, entrance
slit width w and the analyser acceptance angle φ, both marked in Figure 2.11, as:

∆Ea = Epass

(
w

R0
+ φ2

)
, (2.53)

where R0 is the mean radius of the hemisphere, R0 = (R1 +R2) /2 [33]. Typically
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analysers have multiple entrance slits which can be changed by the user. Reducing
both the pass energy and the entrance slit width improves the resolution, but reduces
the number of electrons that can be detected, i.e. the signal. Assuming independent,
random errors, the measurement energy resolution is determined by a combination
of the light resolution ∆El, discussed in Section 2.6.1, and the analyser resolution
∆Ea, as :

∆E =
√

(∆El)2 + (∆Ea)2 . (2.54)

The electrons analysed in the schematic shown in Figure 2.11 are all travelling
vertically towards the detector, within the precision given by the acceptance angle
φ; they have no in plane momentum (k|| = 0). If the sample were rotated with
respect to the analyser axis this would change, allowing for the mapping of the
dependence of the photoemission intensity on the emission angle, and thus k||. In
modern setups it is, however, possible to simultaneously measure a range of electron
momenta without sample movement. This is enabled by two-dimensional detectors,
and elongated entrance slits, as shown schematically in Figure 2.13a. The electrons
arrive on a different place along the length of the slit depending on their in-plane
momentum in the direction parallel to the slit, as shown by the colours in Figure
2.13a. Their paths are curved by the electric field in the hemisphere, and their
energy is therefore analysed as described above (cf. Figure 2.11). The position
where the electron arrives on the detector now depends both on its kinetic energy
and the in-plane momentum along the slit direction, as indicated in Figure 2.13a.
In a single measurement the number of photoelectrons arriving at the detector as a
function of their angle of emission and kinetic energy is recorded.

In Figure 2.13a I suggested that the two sides of the detector are parallel to the
angle and energy axes. This is, however, strictly true only for the angular axis. To
understand why the curves of constant energy are not perpendicular to the curves
of constant angle, it is useful to look at a top view of the hemispherical analyser
and the electron trajectories, shown in Figure 2.13b. The red, orange and yellow
lines represent the electrons photoemitted with the same kinetic energy, but at three
different angles, as shown in Figure 2.13a. Because the radius of the trajectory is
set by the kinetic energy, the radii of the three trajectories are the same; the three
lines are of the same length. However, because they entered the analyser at different
positions along the straight entrance slit, their horizontal position on the detector
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Figure 2.13.: (a) Schematic of a concentric hemispherical analyser. (b) A view from
the top of the analyser. The red, orange and yellow lines represent the trajectories
of electrons emitted at different emission angles ϕx.

is not the same. Consequently, a constant energy line is curved on the detector, as
shown in Figure 2.13b.
There are two ways to account for this effect. One is to use a curved entrance slit

instead of the straight one, with a curvature chosen to compensate the effect. Meas-
ured constant energy lines are then parallel to the detector side, thus facilitating the
analysis. Curved slits, however, introduce artefacts in the mapping of the emission
angle on the detector. Alternatively, a straight slit can be used to minimise experi-
mental artefacts; the curved constant energy curves are then compensated for in the
analysis. This was done for all the measurements in this thesis. To analyse the data
taken with a straight slit, it is necessary to perform a reference measurement of a
constant energy curve, using the same measurement conditions as in the experiment.
This is typically done by measuring the spectrum of polycrystalline gold evaporated
on the sample manipulator, which therefore shares the ground, and the Fermi level,
with the sample. An example of such a measurement is shown in Figure 2.14a.
The gold Fermi level is a curve of constant energy, and is evidently not parallel to
the detector edge. The fact that the spectrum contains no features other than the
Fermi level facilitates an unbiased determination of the Fermi level as a function of
emission angle, which can typically be approximated by a polynomial, as shown by
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the red line in Figure 2.14b. It is then easy to process all the measurements so that
the energies are referenced from the known the Fermi level at every angle, as shown
for the gold measurement in Figure 2.14c.
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Figure 2.14.: (a) Raw measurement of the photoemission spectrum of polycrystalline
gold. (b) Same as (a), with a fitted polynomial approximating the Fermi edge. (c)
The same data as in (a), with energy expressed in relation to the fitted Fermi level.

The range of angles focused along the length of the entrance slit can be altered by
changing the lens voltages, and the user can usually choose between a few options.
The range of ∼ ±15° is commonly used, as was the case for the measurements of
polycrystalline gold in Figure 2.14. At the photon energy of 100 eV this angular
range corresponds to ∼ ±1.3 Å−1, comparable to a Brillouin zone size of a typical
solid. A wider angular range allows for a larger portion of the k|| - space to be
measured at once, but with a reduced momentum resolution ∆k||. The momentum
resolution is proportional to the angular resolution of the analyser ∆ϕa. Expressed
as a function of the momentum, electron kinetic energy and the angular resolution,
the momentum resolution is equal to

∆k|| = ∆ϕa

√
2mEK
~2 − k2

‖. (2.55)

The finite energy and momentum resolution (Equations 2.54 and 2.55, respect-
ively) broaden the measured signal. The spectral function modulated by the matrix
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elements is convolved with a Gaussian of widths ∆k|| and ∆E in the momentum
and energy directions, respectively. This broadening can affect the line shapes of
the one-dimensional cuts extracted from the measurement. As discussed in Section
2.5, the MDCs of the spectral function are Lorentzian as long as the self-energy is
momentum independent. However, the finite energy resolution leads to the mix-
ing of states of different energies in an MDC extracted from a measurement. The
Lorentzian shape is therefore not necessarily preserved, although it usually remains
a good approximation. This is important to keep in mind whenever a deviation from
the Lorentzian MDC shape is observed - this may imply momentum-dependent self-
energy, but can also be an artefact of finite measurement resolution. In addition
to these considerations due to the measurement of photoelectron energy and mo-
mentum, sample imperfections can also impede the extraction of intrinsic properties
of the spectral function. For instance, if the sample is slightly curved, electrons of
any given crystal momentum may leave the sample in a range of emission angles.
Furthermore, the cleaved surface can sometimes contain flakes inclined with re-
spect to each other, leading to the measurement of a few copies of the same feature
which may or may not be clearly resolvable. We often saw such feature-doubling
in delafossites, and we also suspect some of the samples were slightly bent. The
inhomogeneity of the cleaved surface was therefore typically the factor setting the
final measurement resolution.

So far I have treated the electron detector as a black box, enabling the detection
of electrons arriving at it. In practice the detectors consist of one or several micro-
channel plates (MCPs), followed by a phosphor plate imaged by a charge-coupled
device (CCD) camera. The MCP consists of a series of channels made in a highly
resistive material, to which a high electric field is applied. As electrons enter the
channels, they collide with their walls, exciting many more electrons and thus amp-
lifying the signal. When the fast electrons reach the fluorescent phosphor screen
light is produced, and the image of the screen is then taken by the camera. With
an appropriate photon flux and signal intensity it is possible to monitor the live
camera image of the electron distribution in k - space, observing how it changes as
we modify the measurement settings or sample angles. For a measurement, data are
collected for a length of time chosen according to the intensity of the signal and the
statistics needed.
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Example data sets

As an example of unprocessed ARPES data, in Figure 2.15 I show a data set4

measured on a CoO2 layer of PdCoO2. The two axes are the emission angle, and
the kinetic energy5 of outgoing electrons, while the colour of each pixel encodes
the number of electrons that were detected on that position in the measurement
time. The first step towards understanding a plot of ARPES data is to look at the
colour scale used, as shown by the legend which should be available with the plot.
In Figure 2.15a a simple grayscale is used, with white representing no counts and
black the highest number of counts detected in a pixel. The detector edges, beyond
which there are no more counts, are clearly visible. The data in their vicinity can be
distorted, so it is good practice to set up the measurements such that the features
of interest are far from the detector edges, preferably in its centre.
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Figure 2.15.: Example data set from a CoO2 terminated surface (see Chapter 6),
plotted in different colour-scales.

4The analysed data from the same sample are shown in Chapter 6 and Appendix D. The same
data, but processed, are shown in Figure 6.1e. The physics of these states is discussed in
Chapter 6 ; here I just use them as an example measurements.

5Actually a combination of kinetic energy and emission angle, because a straight analyser entrance
slit is used. This is a small enough effect not to impede any qualitative discussion, and is
compensated for in the analysis, as described above.
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The most intense features are the two states at the Fermi level, each of which
appears symmetrically at positive and negative angles; those are in fact the sur-
face states originating from the CoO2 - terminated surface, and will be discussed in
Chapter 6. Additionally, there is a much weaker, hardly visible, fast dispersing band.
Those weak features are more prominent if the same data are plotted in a saturated
grayscale, as shown in Figure 2.15b. The weak feature, which is in fact a bulk state
discussed in Chapter 4, is now more visible. However, all the intense features are
now black, and therefore information on the intensity variation between them is lost.
For instance, in Figure 2.15a it can be seen that the two positive-angle features at
the Fermi level do not have the same intensity; the one at the larger angle is darker.
This information is lost in the over-saturated plot. To avoid information loss, while
showing features of a range of intensities, more complex colour-scales can be used.
A type of colour scale I have used when necessary throughout the thesis is one in
which white corresponds to no counts, black to some intermediate count number,
chosen to bring out the weak features, while the largest count number corresponds
to a bright colour, such as pink or green. When the same data are plotted in this
way (Figure 2.15c), the weak bulk band can be seen, but so can the variation of
intensity between the intense surface states. Sometimes even more complex colours-
scales are used. Whenever this is the case it is important to look at the legend, and
understand how the colours used to represent the data correspond to the measured
intensities.

To show how the analyser parameters affect the measurable range of angles and
energies, in Figure 2.16 I show data similar to those in Figure 2.15, but taken in
a range of measurement conditions. In the measurement shown in Figure 2.16a
(the same data as in Figure 2.15) a pass energy of 10 eV was used, leading to a
measurement range of 0.84 eV across the detector. In the angular lens mode used,
called Ang30, the electrons leaving the sample in a ∼ ±15° range of emission angles
are dispersed along the length of the entrance slit. In Figure 2.16b the same pass
energy was used, but a different angular mode (Ang14), in which the length of the
slit corresponds to the ∼ ±7° range of emission angles. A smaller portion of k -
space is mapped, but with a higher angular resolution. Because of the artefacts due
to the sample surface homogeneity, reducing the measured angle range to improve
the angular resolution was of limited value in delafossites. The measurements in
the two angular modes, but with a pass energy of 5 eV, are shown in Figures 2.16(c,
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d). The lower pass energy leads to a smaller accessible energy range of 0.42 eV, but
higher energy resolution. The kinetic energy at the centre of the detector was set to
be 104.95 eV in all of the measurements shown here.
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Figure 2.16.: Example data set from a CoO2 terminated surface (see Chapter 6)
measured in different pass energies, and lens angular modes determining the angular
range of the electrons along the slit: (a) Epass = 10 eV, 30 deg range across the slit
(Ang30), (b) Epass = 10 eV, 14 deg range across the slit (Ang14), (c) Epass = 5 eV,
Ang30 and (d) Epass = 5 eV, Ang14.

2.6.4. Sample angles

In the previous section I discussed the information that can be accessed in a single
measurement, without sample movement. However, changing the sample angles with
respect to the analyser axis allows for a wider range of k - space to be mapped. This is
done in practice by changing the manipulator angles. Ideally the sample is parallel to
the manipulator, although small deviations are possible. In this section I will discuss
briefly how the rotation around the three axes affects the measurements. The three
angles corresponding to the three rotations are called polar, tilt and azimuth, as
indicated on Figure 2.17 for a coordinate system in which the x - axis is vertical,
and the z axis normal to the sample surface. I will assume here that the analyser
entrance slit is vertical; for a horizontal slit the influences of the polar and the tilt
angle are reversed.
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Figure 2.17.: Schematic of a sample on a manipulator plate and the analyser, showing
the three angles needed to describe their relative position.

If both the polar and the tilt angle are set to zero, the electrons with no in-plane
momentum travel straight towards the entrance slit, and eventually appear in the
middle of the detector. States of finite in-plane momentum along the slit direction
appear at finite angles. This is the case, for instance, in the measurements shown
in Figures 2.16(a, c), leading to the observed symmetrical spectra. However, even
when the states of interest have a finite in-plane momentum we may wish to measure
them at the centre of the detector. This can be achieved by changing the tilt angle
of the sample; the electrons emitted from the sample at a finite angle of emission
are now directed towards the middle of the slit, and therefore observed at the centre
of the detector, as shown in Figures 2.16(b, d) above. To explicitly show how the
states move on the detector as a function of the tilt angle, in Figure 2.18 I plot the
same bands measured at different values of ϕ. As well as the states moving across
the detector, it is also clear that the data quality depends somewhat on the tilt; at
ϕ = 16° it is noticeably poorer than for example at ϕ = 8°. This is probably in
part due to the effects of the edge of the detector, but also because the focus of the
analyser changes slightly as a function of the tilt, and in this case was optimised
for ϕ = 8°. In the measurements in which the states are close to the edge of the
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detector, such as the ϕ = 0° measurement, the curved Fermi edge is also clearly
visible.
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Figure 2.18.: Example data set measured with a varying tilt offsets ϕ, as indicated
in the panels.

In all of the measurements discussed so far the detected electrons had a finite
momentum along the slit direction, kx, but vanishing momentum along the other
in-plane direction, ky. This changes if the polar angle ϑ (Figure 2.18) is finite,
allowing for the mapping out of the two dimensional momentum space. As changing
the polar angle leads to the probing of a different part of momentum space, the
measurements taken at two distinct values of ϑ can look very different, and be
difficult to instantly relate to each other. An example of this can be seen in Figures
2.19(a, b), where I show the dispersions measured at two values of the polar angle
differing by ∼ 7°. Measurements at many closely spaced values of ϑ are typically
taken, in order to obtain information on the electronic structure evolution across
momentum space. All of these data are combined into a three dimensional data
set (ϕx, ϑ, EK), from which arbitrary two-dimensional cuts can be extracted. The
most common two-dimensional cut is the constant energy cut at the Fermi level;
once angles are converted to momenta this corresponds to the Fermi surface. An
example of such a cut is shown in Figure 2.19c. It is built from 250 dispersions,
each measured for 10 seconds, with an increment of the polar angle of 0.2° between
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them. The dispersions shown in Figures 2.19(a, b) are two of these 250 dispersions,
taken at the ϑ values indicated in 2.19c.
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Figure 2.19.: Example data set measured with the polar angle (a) ϑ = 1.4° and
(b) ϑ = 8.6°. (c) A constant energy cut at the Fermi level, extracted from a three
dimensional data set consisting of 250 dispersions like the ones shown in (a, b), each
taken at a different polar angle, with increments of 0.2° between them.

The polar and the tilt angles can be converted into the two dimensional momentum
as

kx = k sin (ϕx − ϕ+ ϕ0) cos (ϑ+ ϑ0) ky = k sin (ϑ+ ϑ0) , (2.56)

where ϕx is the angle along the slit direction, while ϕ and ϑ are the tilt and polar
angles as determined by the manipulator. If the sample is not perfectly parallel
to the sample plate, there can be a small offset between the manipulator and the
sample angle; this is captured by ϕ0 and ϑ0. They can be found by inspecting the
symmetry of the measured spectra. For instance, it is evident in Figure 2.19c that
the high symmetry cut corresponding to the corner of the hexagon is measured at
a finite ϑ = 1.4°, implying a polar offset of the sample of ϑ0 = −1.4°. The total
momentum of the free electrons in vacuum is related to their kinetic energy as

k =
√

2mEK = 0.5123
√
EK/eVÅ−1. (2.57)
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The azimuthal angle does not influence kx and ky as defined above, but it determ-
ines the angle between kx and ky and the sample crystalline axes. Practically, this
means that changing the azimuth results in the ‘rotation’ of the measured electronic
structure; if the azimuth is rotated by an angle α, so are the measured constant en-
ergy contours shown in Figure 2.19c. This enables the measurement of the electronic
structure along different high-symmetry directions in the zone in a single measure-
ment. In multiple cases in the thesis I will be showing data taken both along the
Γ−K or the Γ−M directions of the hexagonal Brillouin zone; these measurements
were obtained by changing the azimuth by 30°. The ability to change the azimuth
also means it is not necessary to orient the samples prior to the measurements.
Rather, the orientation is determined in-situ by a quick version of a map shown in
Figure 2.19c, and the relevant direction reached by the azimuthal rotation.

2.6.5. Surface terminations in delafossite oxides

One of the reasons a small light spot and the high degree of motion control is
particularly important for measurements on delafossites are the surface states hosted
by their polar surfaces, introduced in Section 1.2.1. The example data sets shown in
the previous section all show very intense features arising from the CoO2 - terminated
surface, very weak bulk states, and no traces at all of the states expected of a Pd
- terminated surface. However, in the course of our photoemission investigation
of PdCoO2 we were able to observe both the states originating from the CoO2-
terminated surface and the Pd - terminated surface. By surveying the whole surface
of the sample we could often observe signatures of both types of surfaces on the
same sample, indicating that surface termination changes across the cleaved crystal,
as shown schematically in Figure 2.20a. The ability to reproducibly move between
patches of different terminations allowed us to reliably compare their features. A
schematic of one such sample we have measured is shown in Figure 2.20b, with the
three spots at which measurements were taken marked by yellow ellipses. The size
of the ellipses indicates the size of the light spot on the sample, ∼ 90 × 20 µm in
the settings used here. To identify the relative composition of the surface in the
three locations, we measured the x-ray photoemission spectrum (XPS) at each one
of them, across a binding energy range covering both the Co 3p and the Pd 4p core
levels.
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Figure 2.20.: (a) Side view of the crystal structure of PdCoO2, showing two expected
surface terminations. (b) A ‘map’ of the sample, with the light spot positions at
which the measurements in panels (c-f) were taken marked by yellow ellipses. The
size of the rectangle corresponds to the nominal light spot size. (c) XPS spectra
(hν = 120 eV), after subtraction of a linear background and normalised by the area
of the Co 3p peak, at different spatial locations of a cleaved crystal, as indicated in
(b). The electronic structure measured (d) on the CoO2- termination, (e) on the
mixed termination and (f) on the Pd - termination. Panels c-f courtesy of Federico
Mazzola [10].

As evident in 2.20c, the relative intensity of the two peaks changes across the
sample, with the highest Co and Pd contributions in the positions marked d and f
in Figure 2.20b, respectively. The angle resolved photoemission spectra measured
at the same three positions are shown in Figures 2.20(d-f). The spectrum measured
at the position with the highest Co contribution (Figure 2.20d) shows two surface
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bands crossing the Fermi level, as predicted by the calculations for the CoO2 -
termination. The spectrum at the Pd-rich position (Figure 2.20f) shows an electron
like-pocket centred at the Γ - point, as well as a fully occupied flat band at the K -
point, consistent with the DFT prediction for a Pd - terminated surface. A spectrum
measured at an intermediate point (Figure 2.20e) exhibits both types of features,
therefore showing that both types of terminations can be present in a region covered
by the light spot.
In practice, the vast majority of the spectra we measured on PdCoO2 showed

signatures of the CoO2 - derived surface states. Those states also appeared to be very
robust. When we attempted to remove them using thermal cycling, or by exposing a
cleaved surface to a pressure as high as ∼ 10−8 mbar in in the load lock, they would
still remain observable, although less intense and not as sharp as immediately after
cleaving. What is more, the signal tended to become better defined again after
a prolonged measurement in the high intensity light beam, indicating a surface
photochemical reaction ‘cleaning’ the surface. We also observed similar states on
the transition metal oxide terminated surfaces of PtCoO2 and PdRhO2. They, and
the physics underlying them, are described in detail in Chapter 6.
In contrast, the surface states originating from the Pd - terminated surface ap-

peared to be much more sensitive to the purity of the surface, and were removed
by thermal cycling. Although statistically both surface terminations should ap-
pear with equal probability, we did not observe the features originating from the
Pd-terminated surface as often as those originating from the CoO2 - terminated sur-
face. In addition to the Pd-surface states being more purity - sensitive, it is possible
that a larger homogeneous region of uniform surface termination is needed to sup-
port coherent surface states on the Pd-terminated surface. In the vast majority of
measurements in which we were able to observe the Pd-terminated states, the spec-
tra contained features of both terminations, similar to the spectrum shown in Figure
2.20e, testifying to the surface inhomogeneity. We were also able to observe similar
surface states in our measurements of PdCrO2, consistent with previous findings of
Sobota et al [28]. The basic phenomenology and physics of the Pd - terminated
surface states are described in Appendix B.
In addition to the measurements showing signatures of one of, or both, surface

terminations, we twice measured cobaltate samples which showed no signs of sur-
face states, once in each PdCoO2 and PtCoO2. In both cases the samples cleaved
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badly, leaving only a very small patch of the surface available for measurements.
It is likely that in those cases the surfaces were too disordered to support coher-
ent surface states. We were, however, able to measure the bulk states originating
from the subsurface layers. Because the surface states were not there to complicate
the analysis, those two samples are most suitable to deduce the bulk properties of
delafossites, and I analyse them in detail in Chapter 4.

2.6.6. Resonant photoemission

As I have already mentioned, the best in-plane momentum resolution is achieved
when using low photon energies. On the other hand, the probing depth is larger,
and the kz determination more precise, when the measurements are performed with
high photon energies, in the soft x-ray energy range of 100 − 1000 eV. Another
motivation to perform photoemission measurements at these high photon energies is
the opportunity to use resonant photoemission to investigate the atomic character of
electronic states. We used soft x-ray ARPES for this reason in the study of PdCrO2

when we wanted to identify the states derived from the Cr 3d orbitals, as described
in Section 5.3.2.
Resonant photoemission can be used to investigate atomic contributions of any

atom which has a well-defined x-ray absorption edge in the accessible photon energy
range. To understand how resonant photoemission allows for the determination of
atomic character, it is necessary to first understand the basics of x-ray absorption.
A photon creates a hole in a core level of an atom, displacing an electron to an
unoccupied state of the same atom (Figure 2.21a). Those electrons can be detected
in form of the ‘drain current’ ID, measured between the sample and ground, and are
often used as a measure of the x-ray absorption cross-section. The core hole lifetime
is on the order of a femtosecond, after which it is filled by an electron from a shallower
core level, or the valence band. Crucially, as the hole is localised at the atom, the
electron filling it also originates from the same atom, indicated by the green colour
in Figure 2.21. The energy of the electron filling the hole is reduced in the process,
and released either as a photon or as a photoemitted electron, corresponding to the
fluorescent and Auger decay channels, respectively (Figure 2.21(b, c)).
Both of these decay channels, however, treat the creation of the core hole and its

decay as independent processes. This need not be the case, as the excited electron
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Figure 2.21.: Schematic representing the (a) creation of a core level hole by x-ray
absorption, and the decay of this hole via (b) emission of a photon (fluorescent
decay), (c) emission of an electron (Auger decay) and (d) emission of an electron
using the excited electron (resonant photoemission). The resonant photoemission
process had the same initial and final states as a regular photoemission process (e).
The full and empty green rectangles indicate the occupied and unoccupied states,
respectively, derived from the atom in whose core level the hole is created. EF and
EV mark the Fermi level and the vacuum level, respectively.

displaced from the core level can also fill the hole at a later time (Figure 2.21d).
Crucially, the energy released in this process is exactly equal to the energy of the
photon which created the hole in the first place. The final state of the electron
emitted in this resonant Auger process is therefore the same as the final state of an
electron emitted in a regular photoemission process, with the same photon energy,
and originating from the same initial state (Figure 2.21e). Both the resonant and the
normal photoemission processes happen simultaneously and constructively interfere,
leading to the atom-specific resonant enhancement of the photoemission signal.
We used the i09 beamline at the Diamond synchrotron for our resonant ARPES

measurements. The general discussion of photoemission experiments in sections
2.6.1-2.6.4 applies to our soft x-ray measurements as well. However, the overall
cross-section for soft x-ray ARPES is small, so high energy resolution usually has to
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be sacrificed to increase the photon flux. For instance, pass energy as high as 80 eV,
instead of ∼ 10 eV at the high resolution i05 beamline, is used. In PdCrO2 we used
the Cr L x-ray absorption edge, corresponding to the transitions between the Cr 2p
and the Cr 3d orbitals. The Cr L edge is split by the atomic spin-orbit coupling
into two peaks, labelled L2 and L3, in the energy range 570 − 600 eV [57]. The
exact shape of the absorption peaks depends on the bonding environment and the
interactions of the core-hole. We therefore determined the x-ray absorption cross-
section of PdCrO2 in-situ, by measuring the drain current as a function of photon
energy. We see two clear absorption peaks, corresponding to the L2,3 edge (Figure
2.22). When photon energy coincides with the absorption peak the photoemission
signal originating from the Cr 3d orbitals is enhanced, due to the process sketched
in Figure 2.21d.
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Figure 2.22.: X-ray absorption spectrum across the L2,3 edge of Cr.

2.6.7. Spin-resolved photoemission

So far I have described how the hemispherical analysers enable the mapping of the
dependence of the quasiparticle energy on its momentum. In the vast majority of
solids each state which is detected in this way is degenerate, because the states of
opposite spin, but same momentum and band index, have the same energy. This,
however, need not be the case; as discussed in Chapter 6, if either the time reversal
symmetry or the inversion symmetry are broken, band structures can lose their spin
degeneracy. To experimentally determine whether a band structure is spin-split, and

75



Chapter 2 Angle resolved photoemission

learn more about the k-dependence of this splitting, it is necessary to measure the
spin of photoemitted electrons, while keeping the information on their momentum
and energy. This can be done in several ways. A hemispherical analyser of the type
described in Section 2.6.3 is used to sort the electrons according to their energy and
momentum. However, not all of the electrons are passed onto the MCP. Rather,
the ones of chosen momentum and energy pass through apertures placed above and
below the MCP, and are guided towards a spin-sensitive detection system. One
method of providing spin contrast which is commonly used is the Mott scattering of
fast electrons off heavy-element targets, whereby the spin-orbit coupling of the heavy
element causes a scattering asymmetry of the spin-polarised electrons. The spin-
resolved measurements in this thesis were done using a different technique, namely
very low energy electron diffraction (VLEED). The technique relies on the spin-
dependent reflectivity of very low energy electrons at a magnetised ferromagnetic
target, usually an oxygen-passivated Fe(001) film, as described in Reference [58].
Such setups currently exist as user facilities at Hiroshima Synchrotron Radiation
Center [59, 60], and at the APE beamline at the Elettra synchrotron in Italy [61];
we used the latter setup, shown schematically in Figure 2.23.

Figure 2.23.: Schematic of the spin-resolved ARPES setup at the APE beamline
at Elettra synchrotron. Reproduced with permission of the International Union of
Crystallography from Reference [61].
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A set of lenses and deflectors is used to focus the electrons of specified energy
and momentum onto two targets, labeled W and B, for white and black. Each of
the targets can be magnetised using pairs of Helmholtz coils, either in the direction
perpendicular to the sample plane, or in one of the directions parallel to the sample
plane; x for the ‘white’ and y for the ‘black’ detector in the coordinate system out-
lined in Figure 2.23. This in principle allows the measurement of the spin projection
on each of the three axes in consecutive measurements. The out-of-plane spin can
be measured independently with the two targets, providing a natural way to com-
pare the target efficiencies, and to estimate measurement uncertainty. To measure
spin polarisation in a single direction two measurements need to be performed, with
the opposite magnetisations of the target. In practice, we always take at least four
measurements, two of each magnetisation. The target magnetisation is chosen as
↑↓↓↑ for the four measurements, where ↑ and ↓ denote the two magnetisation dir-
ections, in order to compensate for any systematic errors which may arise due to
the ageing of the target, or other time-dependent artefacts. If the band structure
is spin degenerate, the measurements with different target magnetisations yield the
same intensity, while any differences in the intensity encode the spin polarisation of
the electronic structure. If I↑ and I↓ are the intensities measured with the target
magnetised in the opposite directions, the intrinsic spin polarisation is given by

P = 1
S

I↑ − I↓

I↑ + I↓
, (2.58)

where S, called the Sherman function, quantifies the discriminatory power of the
detector. The larger the Sherman function, the larger is the measured asymmetry
of the signal for a given intrinsic polarisation. In the VLEED detectors it depends
highly on the target quality, so every target needs to be individually characterised.
Practically this is done by comparing the spin polarisation measured on a well-
known system, typically the (111) surface of gold, with the literature values [62]. For
VLEED detectors S is usually in the range 0.1−0.4; it was 0.3 for our measurements.

The efficiency of the technique is not governed by the Sherman function alone,
but also by the reflectivity of the target, which is ∼ 10−1 at the kinetic energy
of the electrons used in the experiment [59, 61]. In other words, a measurement
done using VLEED detection is 10 times less efficient than using regular ARPES
detection. What is more, a measurement of spin-polarisation requires the differ-
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ence of the signals measured with the two target magnetisations to be larger than
the statistical noise. As the statistical noise decreases with total electron count N
only as 1/

√
N , long measurements are usually needed to obtain reliable information

on spin polarisation. A measurement of a single momentum resolved curve of spin
polarisation may take on the order of 2 − 3 hours. Because of the poor efficiency
of the technique the beamline and analyser settings are usually chosen to prioritise
high flux over the energy resolution.The energy resolution of the spin resolved meas-
urements is determined by a combination of the factors affecting the resolution of
spin-integrated ARPES, and the size of the apertures through which electrons pass
before reaching the magnetised targets. The size of the aperture also determines
the angular integration range of the measured electrons, therefore setting the mo-
mentum resolution. At the APE beamline there are four different apertures which
can be exchanged in-situ.
We used spin-resolved photoemission to look into the spin-character of the sur-

face states on the CoO2 - terminated surface of PtCoO2. More specifically, we were
interested in the difference of the spin polarisation of the two intense bands, shown
for PdCoO2 in Figures 2.15 - 2.19 above. The energy resolution in the settings we
used was ∼ 100 meV, comparable to the energy scale of the features in the elec-
tronic structure of interest (cf. Figures 2.15 - 2.19). Quantitative determination of
the value of the intrinsic spin-polarisation was therefore not possible in this system.
However, it was possible to track its variation in momentum space, and in particular
its change of sign. In practice, to be confident that the measured spin-polarisation
is not an experimental artefact, it is important to measure a spin-degenerate fea-
ture in the band structure, for example at high binding energies, and show that the
measurement really shows no spin-polarisation in that case. This was done system-
atically for all of our spin resolved measurements. The result of these is shown in
Figure 6.4, and the causes of the observed spin polarisation are the main topic of
Chapter 6.
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Our experimental motivated a number of calculations, which helped to develop an
understanding of the measured electronic structure, as well as motivating additional
experiments. Density functional theory calculations, their downfolding onto a set
of Wannier orbitals, and minimal tight binding models were all used to understand
both the bulk electronic structure of non-magnetic delafossites (discussed in Chapter
4), and the surface states found on their transition metal oxide terminated surfaces
(Chapter 6). My aim in this chapter is to describe these theoretical approaches at
the level I found useful during the research described in the thesis. For instance,
I did not perform the density functional theory calculations myself, but had the
pleasure of working with Helge Rosner, the output of whose calculations I have
used to address the questions inspired by the experiments. On the other hand,
I constructed the tight-binding models which are much less material-specific than
the density functional theory calculations, but are easier to manipulate and use to
gain direct physical insight. I will briefly describe the theory and approximations
underlying each of these approaches, as well as their scope and range of applicability.
I will outline the way they were used to study delafossites, and point to the sections
where the results of such procedures are shown in this thesis.

3.1. Tight binding models
If the aim is conceptual simplicity and isolating the essence of features observed
in a band structure, while detailed agreement with experiment is not sought, it is
often useful to construct tight-binding models starting from atomic orbitals, using
the Slater-Koster parametrisation [63]. While such models can in principle correctly
capture the overall features of the band structure, their numerical predictions are
physically relevant only if the free parameters of the models are deduced based on
some additional information, such as experiments or first principles calculations.
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The essence of the tight-binding models is the construction of Bloch wave functions
from localised orbitals:

ψn,~k (~r) = 1√
N

∑
i

exp
(
ı~k · ~Ri

)
ϕn
(
~r − ~Ri

)
, (3.1)

where ϕn
(
~r − ~Ri

)
is the n-th orbital localised on site i. The effective single-particle

Hamiltonian H (~r), which contains contributions from ionic potentials of all the
atoms1, needs to be expressed in the basis of these Bloch functions. If there are M
atomic orbitals, the Hamiltonian is an M ×M matrix, with the components given
by:

Hn,m

(
~k
)

= 1
N

∑
i,j

exp
(
ı~k ·

(
~Ri − ~Rj

)) ∫
d~rϕ∗m

(
~r − ~Rj

)
H (~r)ϕn

(
~r − ~Ri

)
, (3.2)

where the sum goes over all the pairs of atomic orbitals. If the integrals in equation
3.2 had to be calculated for all pairs of orbitals and atomic sites, this approach would
be computationally heavy, and of limited value. However, as Slater and Koster
pointed out, with a few assumptions the integrals can be replaced with a small set
of constants, which are then used as fitting parameters. The first assumption is
that the orbitals on different sites are orthogonal to each other. This is not true
for actual atomic orbitals, but a transformation between these and the so-called
Löwdin orbitals, which are orthogonal, is always possible. These orbitals have the
same symmetry as the atomic ones, so unless an explicit calculation of integrals
in equation 3.2 is performed, and only symmetry considerations are used, it can
be assumed that the transformation was done, and we can proceed with Löwdin
orbitals as we would with atomic ones. The second approximation simplifies the
Hamiltonian H (~r) used to calculate the matrix elements. Specifically, only the
central potentials of the two atoms whose wave functions are integrated are kept,
simplifying the integrands in equation 3.2 to∫

d~rϕ∗m
(
~r − ~Rj

) (
Vc
(
~r − ~Rj

)
+ Vc

(
~r − ~Ri

))
ϕn
(
~r − ~Ri

)
, (3.3)

1It can also implicitly contain interactions, through renormalised parameter values.
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where Vc
(
~r − ~Ri

)
is a central potential around i-th atom. Within this approxim-

ation, called the two-centre approximation, the integrals are the same as the ones
which appear when considering a diatomic molecule, with the distance between the
two centres, ~Ri− ~Rj, defining an effective molecular axis. In this limit the language
and methodology developed to describe the molecular bonding of diatomic molecules
can be utilised to describe the bonding in solids [64]. In particular, the bonding is
allowed only if the orbitals on the two sites have the same symmetry with respect
to rotation around the molecular axis. Orbitals are grouped according to their sym-
metry into the σ, π and δ orbitals, which can be combined into the well-known σ,
π and δ bonds. A visual way to determine the symmetry of an orbital is to imagine
looking at it from the molecular axis: if it has one lobe it is a σ orbital, if it has
two lobes it is a π orbital and if it has four it is a δ orbital. For example, for a
molecular axis along the z direction the s, pz and d3r2−z2 orbitals are of σ symmetry,
px, py, dyz and dzx are of π symmetry, and dxy and dx2−y2 are of δ symmetry. The
integral between the atomic-like α and β orbitals forming a bond of η symmetry is
denoted Vαβη. Crucially, in this approach these integrals are not actually calculated,
but rather treated as free parameters, whose number is limited by the symmetry
considerations outlined above. For instance, hopping between p orbitals is governed
by two integrals, Vppσ and Vppπ, as is hopping between p and d orbitals, Vdpσ and
Vdpπ. On the other hand, there are three independent integrals describing the hop-
ping between d orbitals: Vddσ, Vddπ and Vddδ. The values of the integrals depend
on the radial parts of the wave functions, and the interatomic distance; they are
usually the largest for nearest neighbours, so often only the nearest neighbours, or
next-nearest neighbour terms are kept.

Many such ‘diatomic molecules’ need to be considered in a solid, with molecular
orbitals pointing in directions governed by the vectors connecting the relevant pairs
of atoms, ~Ri− ~Rj. For each bond direction the σ, π and δ states can be defined, but
they correspond to different atomic-like orbitals depending on the bond orientation;
for example, the px orbital is the σ orbital of a bond along the x direction, and the
π orbital of a bond along the y direction. It is of course possible to find the σ and
π orbitals for every bond direction in a crystal structure, but this is not necessary.
Rather, a global basis can be used to parametrise all the hopping integrals. In
Reference [63], Slater and Koster listed the dependence of the hopping integrals
between cubic orbitals on the bond direction, making this a particularly convenient
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basis choice. To cite two examples, the hopping integral between the px and py

orbitals is given by
Ex,y (l,m, n) = lmVppσ − lmVppπ, (3.4)

and that between dxy and dyz by

Exy,yz (l,m, n) = 3lm2nVddσ + ln
(
1− 4m2

)
Vddπ + ln

(
m2 − 1

)
Vddδ, (3.5)

where n = cosϑ, l = sinϑ cosϕ andm = sinϑ sinϕ are directional cosines describing
the relative positions of the two atoms in the global coordinate system.

This offers a clear recipe for constructing the tight binding Hamiltonians. The
crystal, with cubic orbitals on atomic sites, needs to be placed in a global coordin-
ate system. If only nearest neighbour interactions are considered, the Hamiltonian
matrix element relating orbitals γ and δ is given by

Hγ,δ

(
~k
)

=
∑
n.n

exp
(
ı~k · ~Ri

)
Eγ,δ (li,mi, ni) , (3.6)

where ~Ri are the vectors connecting the central site to nearest neighbours, and
(li,mi, ni) the relevant directional cosines; the extension to include further hoppings
is straightforward. The integrals Eγ,δ as a function of directional cosines can be
directly taken from Reference [63]. The number of free parameters of such a model
depends on the number and the symmetry of the included orbitals.

It is worth emphasising that the Slater-Koster framework allows for a construction
of a tight-binding Hamiltonian which respects the symmetry of the lattice without
an explicit construction of orbitals of this symmetry. Rather, cubic harmonics in
a global coordinate system can be used; the symmetry of the lattice is included
through the hopping integrals which depend on the bond angles. This fact makes
the implementation of the Slater-Koster method straightforward even for non-cubic
lattices, as I will show for the specific examples of p orbitals on a triangular lattice
(Section 6.4.1), as well as the more complex case of d and p orbitals in a transition
metal oxide layer of delafossites (Section 6.6).

82



3.2 Density functional theory

3.2. Density functional theory

In contrast to the tight binding models described above, the aim of density func-
tional theory is to deduce the physical properties of solids and molecules from first
principles, with no additional assumptions. In solids, this would require solving
the Schrödinger equation of ∼ 1023 electrons, all of which interact with each other
and the external lattice potential. Although this problem is clearly not soluble, it
is possible to make approximations which simplify it enough to make its solution
computationally feasible, while still adequately describing the electronic structure
of numerous materials. Density functional theory (DFT) relies on the fact that
the many-body problem can be recast in terms of the ground state electron dens-
ity, instead of the much more complicated complete electron wavefunction. This is
mathematically an exact statement, based on the two Hohenberg-Kohn theorems
[65]. The first of the theorems states that the external potential is uniquely de-
termined by the ground state electron density (n0 (~r)). The second theorem states
that the total energy of the system can be expressed as a functional of the electron
density, E [n (~r)], and that the ground state corresponds to the global minimum
of this functional. In other words, if the dependence of the total energy on the
electron density is known, all the other ground-state properties of the many-body
system can be calculated. This is a powerful statement, but it is not very practical
by itself, since it only guarantees the existence of such a functional, but does not
say anything about its form. In practice density functional theory calculations are
done using the Kohn-Sham ansatz [66], whereby a system of interacting particles is
replaced by a system of non-interacting particles moving in an effective potential.
The form of this potential, and in particular of its part describing the electron cor-
relations and exchange, is not known. Most exchange-correlation potentials used in
practice are based either on the local density approximation (LDA), or the gener-
alised gradient approximation (GGA), which assume that the exchange-correlation
functional depends only on the local electron density, or on the local electron dens-
ity and its gradient, respectively. It is important to keep in mind that all of these
approximations mean that density functional theory is generically expected to be
able to accurately describe only weakly correlated systems. In particular, strong
on-site Coloumb repulsion between electrons can never be correctly described in
a single electron picture, as it depends on the orbital occupations. It might then
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seem that density functional theory can never be relevant for any system which
contains strongly correlated electrons, but this is not entirely true. Corrective ap-
proaches may be taken, in which an energetic penalty for a double occupancy of a
specific state is introduced, in the spirit of a Hubbard Hamiltonian. These effect-
ive exchange-correlation functionals are labelled LDA+U or GGA+U, where U is
the energy cost of the double occupancy. While not expected to correctly describe
the correlated states themselves, this procedure has extended the range of utility of
density functional theory.
Once an exchange-correlation potential is chosen, the problem is mathematically

well defined, and can be numerically solved in a self-consistent manner: an initial
electron density is chosen, the energy functional with this electron density calcu-
lated and minimised, resulting in a new density. This is repeated until the density
converges within the required precision, to a value which would ideally depend only
on the choice of the exchange-correlation potential, and be independent of the code
used. However, the basis in which the wave functions are expressed varies between
the codes. If the bases were complete this would not change the final results, but
working with such large basis sets is not possible. Different DFT implementations
use various schemes to address this issue, as is nicely summarised in Reference [67],
where it was also shown that the results of all modern DFT implementations are
consistent, at least when calculating the energy of the crystalline ground state of
elemental materials.

3.2.1. DFT of delafossite oxides

All the density functional theory calculations whose results are shown in this thesis
were done by Helge Rosner, using the FPLO code (www.fplo.de, [68, 69]) developed
in Dresden. Unlike the majority of DFT implementations which are based on plane
waves, the FPLO code uses an atomic-like basis set, which makes it particularly
useful for looking into the orbital character of the electronic states. The general
gradient approximation was used for the exchange-correlation potential [70]. Com-
parison with experiments showed that including the on-site interaction of the Co
3d orbitals was necessary to correctly describe the bulk electronic structure of dela-
fossites [17], so this was done through the GGA+U functional. Relativistic effects
were always included, in the scalar-relativistic formalism in cases where spin-orbit
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coupling was neglected, or by solving the four - component Kohn–Sham–Dirac equa-
tion when including the spin-orbit coupling. For the cases where the band structure
becomes spin-split (Chapter 6), the calculation was repeated with the three different
quantisation axes, in order to calculate spin-projection along each one of them.
The Kohn-Sham equation can be represented by a NB × NB matrix, where NB

is the number of basis orbitals used, including spin. In band structure calculations
the eigenvalues of this matrix are calculated at a number of momentum points, Nk,
typically chosen along the high symmetry directions. The output are therefore the
Nk×NB eigenvalues, corresponding to the NB bands calculated at Nk points; when
plotted these make the typical ‘spaghetti plots’. Additionally, the code can return
the band weights, i.e. the NB - dimensional eigenvector corresponding to each of the
calculated eigenvalues. As the FPLO code uses an atomic-like basis set, these are
the overlaps of the wave functions with the atomic-like orbitals. The code returns
only the amplitude, but not the phase of these overlaps, a point I return to below.
The output thus contains a large body of information (up to 1GB in some of the

surface state calculations!), but to access the physically relevant quantities the right
questions need to be asked. As a somewhat trivial example, if we are interested in the
orbital character of the bulk band in PtCoO2 at the Fermi level, it is reasonable to
look into the contribution of Pt 5d orbitals to the electronic structure, but not of Pt
3d orbitals. I have worked with the output of Helge Rosner’s calculations to extract
the information needed to address the physical questions relevant to understanding
my experimental data, and enable the construction of the plots shown in the thesis;
unless otherwise stated, all the plots were made by myself.

3.3. Downfolding on a Wannier basis
The density functional theory and Slater-Koster tight binding models are in some
sense the opposite approaches to band structures: the first is computationally de-
manding but in principle offers exact description of specific materials, while the
second is easily manipulated to gain insight, but is not very specific or accurate.
An intermediate route, in which a tight binding model is constructed based on the
results of the density functional theory, is available. This process is known as the
‘downfolding’ of a density functional theory calculation onto a Wannier basis.
The eigenstates of the Kohn - Sham Hamiltonian solved by the density functional
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theory calculation are of Bloch form, and as such are delocalised in real space. An
equivalent description of an electronic system can be obtained with a different set of
wave functions, related to the Bloch ones by a unitary transformation. In particular,
the so-called Wannier orbitals, in which the localisation in momentum space is
replaced by localisation in real space, are often invoked [71]. The transformation
between the Bloch and Wannier functions is gauge dependent, and thus not unique.
For instance, one choice of Wannier orbitals are the so called maximally-localised
Wannier orbitals, for which a well-defined mathematical criterion is used to find a
set of basis states of the smallest spatial extent. Another choice is orbitals centred
on atomic sites which obey the symmetry of the atomic orbitals, but with a radial
shape which depends on the bonding environment. As the Wannier orbitals are not
physical observables, no choice is ‘more correct’ than others, although some may
be more useful for specific applications. It is important to note that the mapping
between Wannier and Bloch wave functions is exact only if the same number of wave
functions is used. As there are as many Bloch wave functions as there are electronic
states in a unit cell, in practice the transformation is done for a subset of bands,
rather than for a full band structure. It is therefore exact only if it is possible to
isolate the bands of interest from others, either by band gaps, or if hybridisation is
forbidden by symmetry.
The FPLO code can be used to project the Kohn-Sham wave functions on the

highly localised atomic-like Wannier functions. Bloch wave functions with those
Wannier functions as basis sets are constructed, and used to find the matrix ele-
ments of the tight-binding Hamiltonian expressed in the Wannier basis. Such Wan-
nier tight binding Hamiltonians were constructed both for the surface electronic
structure of PtCoO2 by Maurits Haverkort, using the Quanty program package
(http://www.quanty.org, [72]), of which he is the author. The resulting tight-binding
matrix can be easily used and manipulated using Wolfram Mathematica, as I will
show in example calculations in Section 6.7.2.
If the downfolding is done for an isolated set of bands, as it is the case for dela-

fossites, the band structure calculated using the Wannier tight binding Hamiltonian
will by construction exactly match the density functional theory band structure at
the k points where the latter was calculated, and interpolate between them. The
downfolding is therefore particularly useful when calculating properties which re-
quire integrals over the whole Brillouin zone. Crucially, and in contrast to density
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functional theory output, the complex eigenvectors are known, and consequently so
are the complex wave functions corresponding to each eigenvalue. This gives access
to information that either cannot be gained directly from a density functional theory
calculation, or would be computationally very heavy to obtain. To use an example
mentioned above, if the spin polarisation along three different axes needs to be cal-
culated, the density functional theory calculation has to be performed three times,
with the three different quantisation axes. In contrast, the same information can be
gained from the tight binding Hamiltonian by calculating the expected values of the
three spin operators using the known tight binding wavefunctions. In general, the
expected value of any operator can be calculated using the Wannier downfolding
as long as it is known how that operator acts on the basis functions. Specifically,
since the Wannier functions provided by the FPLO code have the same angular
dependence as the atomic orbitals, it was easy to use them to calculate the orbital
angular momentum of the tight binding wave functions describing the surface states
in delafossite oxides (Section 6.7.2).
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4. Bulk states in PtCoO2 and
PdCoO2

Understanding the exceptionally high conductivity of delafossite oxides, as well as
the unconventional transport properties it causes, requires a good knowledge of their
electronic structure. As discussed in Section 1.1.3, prior to the work presented here
both quantum oscillation and photoemission measurements were performed on the
Pd based delafossites, PdCoO2 and PdCrO2 [7, 12, 17, 26–28], while the available
PtCoO2 crystals were too small to make such experiments feasible. In Sections 4.1
and 4.2 of this chapter I report the first measurements of the electronic structure
of PtCoO2, as well as new ARPES measurements on PdCoO2 which will be used
to compare the two compounds. As discussed in Section 2.6.5, the majority of
the photoemission measurements on delafossites reveal signatures of both bulk and
surface states. However, one of our cleaves from each of PtCoO2 and PdCoO2 showed
no signs of surface states arising from either of the surface terminations. This greatly
simplifies the analysis and interpretation of the bulk electronic structure, so I will
concentrate on the results obtained from these two samples. The effective masses
and electron counts extracted from the photoemission data will also be compared
to density functional theory calculations and bulk - sensitive quantum oscillation
measurements.
As was already discussed in the context of the previous measurements on PdCoO2 ,

the band which crosses the Fermi level in the Pd and Pt - based delafossite metals
is very two dimensional. The experimental line-width is therefore simply related to
the self-energy, making the delafossites candidate model systems to investigate the
influence of many-body interactions on the quasiparticle dispersions. Additionally,
the large bandwidth of the metallic band in principle allows for the analysis of
electron-electron interactions over a large energy range of ∼ 1 eV. Such analysis is
performed, and its limitations discussed, in Section 4.3.
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Chapter 4 Bulk states in PtCoO2 and PdCoO2

4.1. The Fermi surface
In Figure 4.1 I show our measurements of the Fermi surfaces of (a) PtCoO2 and
(b) PdCoO2. Both Fermi surfaces consist of a single electron-like pocket of a nearly
hexagonal cross-section, consistent with previous measurements on PdCoO2 [73].
The measured Fermi surfaces are sharp and well-defined, indicating that the states
at the Fermi level have essentially no out-of-plane dispersion. This is consistent with
previous quantum oscillation measurements on PdCoO2 [17].
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Figure 4.1.: The measured Fermi surface of (a) PtCoO2 (hν = 110 eV, p - polarised
light) and (b) PdCoO2 (hν = 100 eV, p - polarised light).

The dimensionality of electronic structure can also be checked by photoemission,
if the in-plane quasiparticle dispersions are measured as a function of the probing
photon energy, as described in Section 2.1. We have performed such a measurement
along the Γ−K direction in PtCoO2, and found no resolvable variation of the Fermi
crossing vectors with photon energy (Figure 4.2a), proving that the PtCoO2 Fermi
surface is indeed two-dimensional within our resolution. This finding is consistent
with the density functional theory calculations, if the on-site correlations on the
Co site are included. The change of the Fermi surface cross-section with the out-
of-plane momentum kz predicted by DFT in the GGA+U approximation is very
small, and not possible to resolve visually in Figure 4.2b. As in PdCoO2 [17], this
is not the case if the on-site correlations on the Co sites are not included; DFT
in this approximation predicts significant admixing of Co states at the Fermi level,
introducing a degree of out-of-plane dispersion which is not consistent with either
the photoemission or quantum oscillation experiments [5].
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4.1 The Fermi surface
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Figure 4.2.: (a) The dependence of Fermi crossing vectors on photon energy in
PtCoO2. (b) The three dimensional Fermi surface of PtCoO2 calculated by DFT
within the GGA+U approximation (U = 4 eV).

The Fermi momenta as a function of angle are extracted by radially fitting mo-
mentum distribution curves (MDCs) around the measured Fermi surface (dots in
Figures 4.3(a, d)). Those fits are integrated to find the areas enclosed by the Fermi
surfaces: in PtCoO2 the area is (2.62±0.05) Å−2, corresponding to a Luttinger count,
assuming perfect two-dimensionality, of n = (0.92±0.04) e−, while for PdCoO2 it is
(2.78±0.06) Å−2, corresponding to n = (0.98±0.04) e−. Although the area extracted
from PtCoO2 is smaller than expected for a half-filled band, quantum oscillations
on the crystals from the same batch indicate a Luttinger count of 0.98e−[5], which
is within the experimental error of the expectation for half-filling. In fact, in all of
our measurements of the bulk Fermi surfaces of delafossites, as well as in the Fermi
surface of PdCrO2 measured in reference [28], the extracted area is slightly smaller
than would be expected from half-filling, although quantum oscillations confirm that
the compounds are stoichiometric [5, 17, 27]. The deviations of the ARPES-derived
Fermi volumes from half filling are therefore likely to be caused by a small difference
in surface chemistry, such as oxygen vacancies, or charge transfer towards subsurface
layers. Nonetheless, the steepness of the bands ensures that the measured shape of
the Fermi surface reflects the true shape of the bulk Fermi surface.

The shape of the two Fermi surfaces is slightly different, as the PtCoO2 Fermi
surface sides are more warped than those in PdCoO2. The warping is quantified
by fitting the extracted Fermi momenta as a function of angle ϕ around the Fermi
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Chapter 4 Bulk states in PtCoO2 and PdCoO2

surface to a periodic function reflecting the 6 - fold symmetry:

kF (ϕ) = k0 + k6,0 cos (6ϕ) + k12,0 cos (12ϕ) , (4.1)

where we employ the nomenclature for warping terms introduced by Bergemann et
al. [74] in relation to analysis of quantum oscillation experiments [17]. This is a
simple way to parametrise the Fermi surface shape, and can easily be incorporated
in numerical calculations of transport properties. The results of such fits to the
Fermi surfaces of the two materials are shown as lines in Figures 4.3(b, c, e, f),
while the fit parameters are listed in Table 4.1. I also list the parameters scaled to
make the Fermi surface area correspond to half the Brillouin zone, which should be
used to describe the true bulk Fermi surface.
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Figure 4.3.: Measured Femi surface of (a) PtCoO2 and (d) PdCoO2, with dots rep-
resenting the Fermi momenta extracted by radially fitting MDCs. (b, c) Extracted
momenta (dots) as a function of angle ϕ around the Fermi surface, with a sinusoidal
fit (lines) describing the Fermi surface shape (Equation 4.1). (c, f) The same fit as
lines in (b, c), superimposed on measured data to demonstrate good agreement.

The different shape of the two Fermi surfaces is reflected in the values of the
warping parameters. For instance, in an ideal hexagon the first warping term (k6,0)
is 5.8% of the constant term (k0), in PtCoO2 it is 7.7%, while in PdCoO2 it is 4.7%.
To visualise this point in Figure 4.4 I plot the fits to the Fermi surface of PtCoO2 and
PdCoO2, scaled to make the Fermi surface area half the relevant Brillouin zone, and
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4.1 The Fermi surface

normalised by the size of the Brillouin zone. While the PdCoO2 Fermi surface can be
thought of as a hexagon with flat sides and slightly rounded corners (Figure 4.4b),
the PtCoO2 Fermi surface sides curve inwards (Figure 4.4a). The Fermi vectors of
the two compounds as a function of angle around the Fermi surface, compared with
that of a perfectly hexagonal Fermi surface, are shown in Figure 4.4c.
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Figure 4.4.: Fits to the Femi surface of (a) PtCoO2 and (b) PdCoO2, scaled to
the side of the respective Brillouin zone (aBZ), and compared to a hexagon of the
same area (black line). (c) The same as (a, b), but shown as a function of angle to
emphasise the small differences in shape.

fitted scaled
PtCoO2 PdCoO2 PtCoO2 PdCoO2

k0 0.9112± 0.0005 0.9425± 0.0005 0.9542 0.9518
k6,0 0.0701± 0.0007 0.0440± 0.0006 0.0734 0.0444
k12,0 0.0158± 0.0007 0.0048± 0.0006 0.0165 0.0048

Table 4.1.: Parameters of fits of a periodic function (Equation 4.1) to the bulk
Fermi surfaces of PtCoO2 and PdCoO2, as well as the values scaled to make the
Fermi surface area half the Brillouin zone, while keeping the experimental shape.
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Chapter 4 Bulk states in PtCoO2 and PdCoO2

4.2. The dispersions

In Figure 4.5 I show the bulk band dispersion measured along the Γ−K direction
in (a) PtCoO2 and (b) PdCoO2. Consistent with the Fermi surface shown in Figure
4.1 there is a single steep band crossing the Fermi level. The peak positions of the
fits to the MDCs along the Γ − K and Γ −M directions in both compounds are
shown in Figure 4.5c. There are no resolvable deviations from linearity of the band
in a range shown in Figure 4.5c, exceeding 0.25 eV below EF . In each compound
the band slopes are the same along the two directions within out measurement
resolution. The Fermi velocity in PtCoO2, (8.9 ± 0.5) × 105 m/s [5.8 ± 0.3 eVÅ/è],
is somewhat higher than the one found in PdCoO2, (6.6 ± 0.3) × 105 m/s [4.3 ±
0.2 eVÅ/è]. Because of the difference in the Fermi crossing vectors the effective
mass obtained from the Fermi velocity is different for the two directions, and it
averages to m∗ = 1.26me in PtCoO2 and m∗ = 1.69me in PdCoO2. In both cases
this is approximately 10% higher than the value obtained from quantum oscillations
(m∗ = 1.14me for PtCoO2 [5],m∗ = 1.5 for PdCoO2 [27]). A likely cause of this small
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Figure 4.5.: The dispersion along the Γ−K direction measured in (a) PtCoO2and
(b) PdCoO2, and corresponding momentum distribution curves at the Fermi level
(lines in (a, b), EF ± 10 meV). (c) The peak positions of the fits to the MDCs along
the Γ−K (full symbols) and Γ−M (open symbols) directions in both compounds,
as well as lines representing Fermi velocity fits.
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4.3 Interactions

difference is the fact quantum oscillations probe only the states right at the Fermi
level, while the photoemission data need to be fitted over a larger energy range
to obtain a reliable fit. Details of the fitting procedure, and in particular fitting
range determination, are given in Appendix C. In spite of these potential issues,
both photoemission and quantum oscillations state that the effective electron mass
is about 35% higher in PdCoO2 than in PtCoO2, reflecting the larger orbitals, and
thus larger orbital overlaps, in PtCoO2.

4.3. Interactions

As discussed in Chapter 2.4.1, ARPES can probe interactions as well as the band
structure. In the measured spectral function (Figure 4.5a) neither linewidth broad-
ening below the Fermi level characteristic of electron-electron interactions, nor the
typical electron-phonon kink discussed in Sections 2.5.2 and 2.5.3, are immediately
obvious. In the following sections I will look at the data more carefully to see
if linewidth analysis can reveal signatures of interactions. I will compare the ex-
perimental results to known models of electron-electron and electron-phonon inter-
actions, in order to assess whether signatures of interactions are expected to be
observed with the given experimental resolution.

4.3.1. Resolution and surface quality effects

The dispersions in Figure 4.5 were measured with the energy resolution of ∼ 5 meV
and angular resolution of 0.1◦, at the photon energy of ∼ 100 eV, yielding the mo-
mentum resolution of 0.01 Å−1, or 1% of the bulk Fermi vector. This momentum
resolution appears to be very high, however due to the large band slope it actually
limits the effective energy resolution to ∆E ∼ vF∆k ∼ 50 meV. The large low
temperature transport mean-free path suggests that impurity scattering in dela-
fossites is negligible, and that therefore the linewidth at the Fermi level should be
resolution-limited. However, the linewidths measured at the Fermi level are 0.03 Å−1

and 0.04 Å−1 in PdCoO2 and PtCoO2 respectively, about three times larger than
the momentum resolution, decreasing the effective energy resolution further. Meas-
urements on multiple samples and multiple spots on the same sample lead us to
believe that the quality of the cleaved surface, rather than intrinsic disorder or pho-
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Chapter 4 Bulk states in PtCoO2 and PdCoO2

toemission resolution, is the factor setting the linewidth. It is difficult to obtain
an atomically flat cleaved surface, so the light spot shines on multiple flat surfaces,
which can be slightly inclined with respect to each other. What is more, the crystals
are typically very thin (∼ 10µm) and tend to bend, so the angle of emission is not
well-defined. Consequently, each measurement consists of a few copies of the single
band, too close to each other to resolve, but increasing the effective linewidth. In
each experiment special care was taken to find the most uniform spot on the sample,
and to keep the light on the same spot if sample was rotated, for example during
Fermi surface measurements. Occasionally sample movements as small as 10µm
would change the linewidth, testifying to the surface inhomogeneity.

A good way to check if the bare band dispersion and the effective impurity scatter-
ing alone can account for the experimental observations is to simulate the spectrum
that would be observed in these simple conditions, and compare it to the experi-
mental one. I will do this for PdCoO2, as a combination of lower background, smaller
Fermi level linewidth and less steep band makes the effective resolution higher than
in the PtCoO2 measurement. Although impurity scattering is not the underlying
cause of the measured linewidth, the broadening due to surface inhomogeneity can
be incorporated in the simulations via an effective impurity self-energy contribu-
tion of Σ′′ = vF∆k/2 ≈ 65 meV in PdCoO2. In Figure 4.6a I plot a simulated
photoemission spectrum, using the experimental Fermi velocity and wave vector,
assuming a parabolic dispersion and the impurity self-energy of 65 meV. The points
correspond to the momenta extracted from the measurement shown in Figure 4.5b,
proving that the parabolic band is a reasonable approximation in this energy range.
In Figure 4.6b I show the full width at half maximum (FWHM) of Lorentzian fits
to momentum distribution curves extracted from Figure 4.5b at different binding
energies, compared to the same quantity extracted from the spectrum simulated
assuming only impurity broadening (Figure 4.6a). As discussed in Section 2.5.1,
although the impurity self-energy is a constant, the momentum distribution curve
linewidth increases as the band slope decreases with binding energy (line in Figure
4.6b). This linewidth increase caused by impurity scattering alone cannot account
for the rate of linewidth increase in the measurement, motivating the analysis of
potential interaction effects. It is important to keep in mind however that the inco-
herent background, which also increases with binding energy, causes a large scatter
in the extracted linewidths. It is therefore not possible to make precise quantitative
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4.3 Interactions

statements about different contributions to the scattering rate, but it is possible to
compare the scattering rate observed in PdCoO2 to the one that would be expected
in simple models, as I do below.
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Figure 4.6.: (a) Simulated spectral function, assuming a parabolic dispersion and the
impurity self-energy of 65 meV. The symbols are peak positions of Lorentzian fits to
MDCs extracted from Figure 4.5b. (b) Full width at half maximum of Lorentzian
fits to MDCs extracted from the measurement show in in Figure 4.5b (symbols),
and from the simulated spectrum (a).

4.3.2. Electron-electron scattering

In Figure 4.7a I show a spectral function simulated assuming the same parabolic
dispersion as in Figure 4.6a, now broadened by both an effective impurity scattering
and electron-electron interactions within the Fermi liquid theory, assuming a circular
Fermi surface and a parabolic band in a two-dimensional system, as discussed in
Section 2.4.2 (equation 2.27). Under those assumptions the theory has no free
parameters; its prediction for a linewidth increase with binding energy in shown by
the dashed line in Figure 4.7b. Comparing the model to the scattering rate extracted
from the measurement along the Γ−K direction (symbols in Figure 4.7b) shows that
the model overestimates the scattering rate; the experimental observation is better
matched by a scattering rate three times smaller than the parameter-free prediction
(solid line in Figure 4.7b). While it is not surprising that the experiment does
not numerically agree with such a simple model, it is interesting that the observed
scattering rate is lower than the predicted one. Possible reasons for the reduction
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Chapter 4 Bulk states in PtCoO2 and PdCoO2

in the scattering rate are the hexagonal shape of the Fermi surface. Indeed, the
variation of orbital character around the hexagonal Fermi surface was suggested
as a possible cause of scattering suppression in PtCoO2, leading to the low room
temperature resistivity[6]. Experimentally, they motivate looking at the scattering
rate along the Γ −M direction, i.e. at the corner of the hexagonal Fermi surface
(Figure 4.7c). A few observations can be made. First of all, the scattering rate is
approximately 10% higher in the measurement along this direction, likely because
the light moved to a slightly different spot on the sample. The overall binding energy
dependence is still well-described by a combination of impurity scattering and one
third of Fermi liquid scattering rate (solid line in Figure 4.7c), so the scattering
rates along the two directions are indistinguishable with the present experimental
resolution. However, the detailed shape of the binding energy dependence is slightly
different along the two directions, and would be a very interesting topic of future
experimental study, using smaller light spots. Regardless of these details, the fact
that the linewidth continuously increases as a function of binding energy strongly
suggests that there is detectable electron-electron scattering in the system.
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Figure 4.7.: (a) Simulated spectral function, assuming a parabolic dispersion, im-
purity self-energy of 65 meV, and a Fermi liquid scattering (equation 2.27). The
symbols are peak positions of Lorentzian fits to MDCs extracted from Figure 4.5b.
(b) Full width at half maximum of Lorentzian fits to MDCs extracted from the
measurement along the Γ−K direction show in in Figure 4.5b (symbols), from the
spectrum simulated assuming Fermi liquid scattering (dashed line), and from the
spectrum simulated assuming one third of Fermi liquid scattering (solid line). (c)
Same as (b), but for the measurement along the Γ−M direction.
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4.3.3. Electron-phonon scattering

The measured dispersions exhibit no obvious signs of electron-phonon coupling,
discussed in Section 2.5.3: there are no resolvable kinks in the spectral function,
nor does the binding energy dependent linewidth show a step at a phonon energy.
In Figure 4.8 I simulate the spectral function using the same bare-band parabolic
dispersion as above, with a self-energy describing the electron-phonon interaction
within the Debye model. The Debye temperature is set to 340 K, as deduced from
heat capacity measurements [75]. The electron-phonon coupling constants of λ = 0.1
and λ = 0.2 are used to calculate the spectral functions in Figures 4.8a and 4.8b,
respectively; no kinks are obvious in either of them. In Figure 4.8c I compare the
experimentally extracted linewidth broadening with that expected from the Debye
model with λ = 0.1 (solid line) and λ = 0.2 (dashed line). For λ = 0.1 the step in
linewidth at the Debye energy is smaller than the scatter in our data, so we would
probably not be able to resolve the coupling of that strength. On the other hand,
we would be able to resolve the electron-phonon coupling with λ = 0.2. Therefore,
although we observe no evidence of electron-phonon coupling, we can use our data
to set an upper limit on the electron-phonon coupling strength to λ = 0.2. For
comparison, the bulk value in copper is reported to be 0.15, while the electron-
phonon coupling strength of the states localised on copper surface is found to be
0.14 in photoemission measurements [76].
As the number of occupied phonon modes increases with temperature, so does the

self-energy due to electron-phonon coupling. Another way to assess the strength of
the coupling is to perform measurements at higher temperatures. We have therefore
measured the dispersion along the Γ − K direction in PtCoO2 as a function of
temperature up to 100 K. As seen in Figures 4.9(a, b), no broadening is obvious in
this temperature range. The experiment was later repeated on a different sample,
for temperatures up to 250 K. The linewidth at the binding energy of 50 meV, which
is larger than the Debye energy of 30 meV, is shown as a function of temperature for
both samples in Figure 4.9c. It is constant within our resolution, and the scatter in
the data is larger than the change of linewidth predicted by the Debye model with
λ = 0.2. We would therefore not be able to resolve the temperature dependence of
the linewidth even for the largest possible coupling of 0.2.
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Figure 4.8.: Simulated spectral function, assuming a parabolic dispersion, impurity
self-energy of 65 meV, and a electron-phonon self-energy in the Debye model, with
(a) ΘD = 340 K,λ = 0.1, and (b)ΘD = 340 K,λ = 0.2. The symbols are peak
positions of Lorentzian fits to MDCs extracted from Figure 4.5b. (c) Full width at
half maximum of Lorentzian fits to MDCs extracted from the measurement along
the Γ−K direction show in in Figure 4.5b (symbols), from the spectrum simulated
assuming electron-phonon coupling with ΘD = 340 K,λ = 0.1 (solid line), and with
ΘD = 340 K,λ = 0.2 (dashed line).
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It is interesting to note that the scatter in the extracted linewidth is larger as
a function of temperature than as a function of binding energy. Again, this is
a consequence of surface inhomogeneity. As we vary the temperature the whole
manipulator holding the sample changes length, and the light shines on a slightly
different spot on the sample. We have moved the sample in order to correct for this,
enabling us to collect the data shown in Figure 4.9. This correction, however, cannot
perfectly track the manipulator contraction, causing the observed scatter. This is
also the reason the linewidths measured while warming up are systematically lower
than the ones measured while cooling back down (yellow and blue symbols in Figure
4.9c); the most uniform part of the surface was found at low temperatures, but the
sample systematically drifted during the warmup and subsequent cool-down.

4.3.4. Summary

The discussion of interactions in the bulk electronic structure of delafossites emphas-
ises the importance of careful analysis of ARPES spectra, as well as comparisons to
simulated spectral functions. As the measured dispersions appear very sharp, and
do not show obvious signs of interactions, it would be tempting to conclude that
the interactions are weak, and to relate this fact to the high conductivity. How-
ever, the large band velocity impedes our ability to resolve interactions; to put it
simply, steep bands always look sharp. Linewidth analysis, however, reveals that the
electron-electron interactions are present, and are approximately three times weaker
than predicted by the Fermi liquid theory for a two dimensional electron system with
a simple, isotropic, circular Fermi surface. Signatures of electron-phonon coupling
are not observed, and would be detected only if the coupling were stronger than
λ = 0.2. A comparison with other systems suggests that this is not a particularly
weak coupling; in other words the photoemission measurements offer no indications
that the electron-phonon coupling is weaker in delafossites than in other metals.
A particularly interesting open question is the dependence of the electron-electron

scattering rate on the angle around the Fermi surface; while it is the same within
our resolution, it is possible that there are subtle differences between the scattering
rate at the Fermi surface corners and sides. As the overall measurement resolution
is set by the quality of the cleaved surface, the best way to obtain this information
would be to try the measurement with a smaller light spot, ideally ensuring that the
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Chapter 4 Bulk states in PtCoO2 and PdCoO2

measurement signal is arising from a single flat surface. A smaller light spot would
also reduce the incoherent background, especially visible in the PtCoO2 measure-
ment (Figure 4.5a), as this is likely to arise from the electrons photoemitted from
amorphous silver epoxy around the sample.
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5. Coupling of Metallic and
Mott-insulating states in PdCrO2

As described in Chapter 4, the non-magnetic delafossites PtCoO2 and PdCoO2 host
bulk metallic states in their Pt and Pd layers, while the contribution of the CoO2

layer to the bands at the Fermi level is negligible. In this chapter I will concentrate
on PdCrO2, the magnetic counterpart of PdCoO2. Its transition metal oxide layer is
a correlated Mott insulator, hosting localised spins 3/2 on chromium sites, which at
37.5 K undergo a transition towards an antiferromagnetic state with a 120° order, as
described in Section 1.1.4. The main question I will address in this chapter is how the
coupling between the itinerant and antiferromagnetic Mott insulating subsystems
affects the spectroscopic signatures, and what information can be obtained from
the spectral function of such a coupled system. I will first show the measured
spectra, and compare them to the bulk states of PtCoO2 and PdCoO2 (Section
5.1). In trying to understand the magnitude of the observed signal it became clear
that our experimental observations cannot be explained in terms of simple models
of electrons in a periodic potential. Reaching this conclusion required a general
analysis of photoemission intensity in systems with periodic potentials of varying
strength, given in Section 5.2. This discussion is not relevant only for PdCrO2,
but for all systems with periodic potentials of varying strength, such as charge- or
spin- density wave materials. A reader primarily interested in PdCrO2 may choose
to read Section 5.2.4, in which the discrepancy between the measurement and the
simple model becomes apparent, immediately after Section 5.1. The discrepancy
motivated a many body calculation, done by our collaborators Sota Kitamura and
Takashi Oka, which I outline in Section 5.3. This calculation in turn motivated
additional experiments, described in Section 5.3.2, which both confirmed the theory
and offered novel insight about the types of information accessible to angle resolved
photoemission.

103



Chapter 5 Coupling of Metallic and Mott-insulating states in PdCrO2

5.1. The measured electronic structure

In Figure 5.1 I show an experimental overview of electronic structure of PdCrO2

in the binding energy range of ∼ 1 eV. The spectral function (Figure 5.1a) con-
tains an intense electron-like band, reminiscent of that found in the non-magnetic
delafossites, but also a weaker feature dispersing in the opposite direction. I will
refer to the more and less intense features as the main band and the reconstructed
weight, respectively. The main band makes a hexagonal Fermi surface, similar to the
one measured in PdCoO2; weaker copies of the main hexagon, made of the recon-
structed weight, are also observed (Figure 5.1b). These findings are consistent with
the photoemission measurements of Noh et al. [7], while Sobota et al. observed the
main band and signatures of states localised on the Pd surface, but no reconstructed
weight [28].
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Figure 5.1.: Measured (a) dispersion (hν = 110 eV) along the Γ−K direction, with
a momentum distribution curve at the Fermi level (EF ± 10 meV), and (b) Fermi
surface (hν = 120 eV) of PdCrO2.

5.1.1. The main band

To check how similar the main band Fermi surface really is to that of PdCoO2, I have
extracted the Fermi momenta as a function of angle by radially fitting momentum
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5.1 The measured electronic structure

distribution curves around the measured Fermi surface (dots in Figures 5.2(a, b)).
The area enclosed by the Fermi surface is (2.53±0.05) Å−1, corresponding to the
Luttinger count of n = (0.95±0.04) e−, slightly smaller than expected for a half-
filled band, as was also found for the non-magnetic delafossites (Chapter 4) and for
PdCrO2 by Sobota et al. [28]. The shape of the Fermi surface was parametrised in
the same way as the Fermi surfaces of the non-magnetic delafossites, using a periodic
function of the form:

kF (ϕ) = k0 + k6,0 cos (6ϕ) + k12,0 cos (12ϕ) . (5.1)

The corresponding fit is shown as lines in Figures 5.2(b, c), while the fit parameters
are listed in Table 5.1. I also list the parameters scaled to make the area of the
Fermi surface equal to half the Brillouin zone while keeping the experimental shape;
these are relevant for calculating bulk transport properties.
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Figure 5.2.: (a) Measured Femi surface of PdCrO2, with dots representing the Fermi
momenta extracted by radially fitting MDCs. (b) Extracted momenta (dots) as a
function of angle ϕ around the Fermi surface, with a sinusoidal fit (lines) describing
the Fermi surface shape (Equation 5.1). (c) The same fit as lines in (b), superim-
posed on measured data to demonstrate good agreement.

As mentioned in Chapter 4, in an ideal hexagon the first warping term (k6,0)
is 5.8% of the constant term (k0). In PtCoO2 it is 7.7%, in PdCoO2 it is 4.7%,
while in PdCrO2 it is 3.8%, confirming that the PdCrO2 Fermi surface is very
similar, although not identical, to that of PdCoO2. The similarity is emphasised by
plotting fits to the two Fermi surfaces superimposed on each other, each scaled to the
respective Brillouin zone (Figure 5.3a). The excellent agreement of the Fermi surface
shapes reaffirms that the states at the Fermi level have the same origin in the two
compounds, i.e. they are arising from the Pd 4d orbitals. Slight differences in the
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Chapter 5 Coupling of Metallic and Mott-insulating states in PdCrO2

fitted scaled
k0 0.9001± 0.0003 0.9214
k6,0 0.0343± 0.0004 0.0351
k12,0 0.0031± 0.0004 0.0032

Table 5.1.: Parameters of fits of a periodic function (Equation 5.1) to the bulk Fermi
surface of PdCrO2, as well as the values scaled to make the Fermi surface area half
the Brillouin zone, while keeping the experimental shape.

shape are visible if the Fermi momenta are plotted as a function of angle around the
Fermi surfaces (Figure 5.3b). This is most likely arising from the different ratio of
next nearest neighbour and nearest neighbour hopping in the two compounds, caused
by a difference in the lattice parameter, which is ∼ 3.5 % larger in PdCrO2 than in
PdCoO2 [4].
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Figure 5.3.: (a) Fits to the Femi surface of PdCrO2 and PdCoO2, scaled to the side
of the respective Brillouin zone (aBZ). (c) The same as (a), but shown as a function
of angle to emphasise the small differences in the Fermi surface shape.

In Figure 5.4b I compare the slopes of the bands of the two compounds. As evident
from the points extracted from momentum distribution curves, the band slope is
slightly smaller in PdCrO2 than in PdCoO2; the fitted Fermi velocity is 4.07 eVÅ
in PdCrO2 , compared to 4.30 eVÅ in PdCoO2 . The difference in slope could have
two origins: either interactions with the correlated CrO2 layer enhance the effective
mass in PdCrO2, or the bare band velocity is slightly different due to the difference
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5.1 The measured electronic structure

in the lattice constant. If the band can be described by a nearest - neighbour
tight binding model, E = t cos (ka), the Fermi velocity is given by vF = ~ta. The
hopping parameter t naturally decreases as the lattice constant increases; if this
were a linear relationship the Fermi velocity would remain unchanged as the lattice
constant varies. However, the hopping parameter is set by the overlap of charge
densities originating from two neighbouring atoms, and as such can have a much
stronger dependence on the interatomic distance. It is therefore not possible to
exclude the change in lattice constant as the origin of different Fermi velocities in
PdCoO2 and PdCrO2. Although we have not directly confirmed the isotropy of
Fermi velocity in PdCrO2, the similarity of the main band to the one in PdCoO2

strongly suggests that the velocity is the same along the Γ−M and Γ−K directions.
Under this assumption, and using the extracted Fermi velocity of 4.07 eVÅ and the
mean Fermi wave vector of 0.92 Å, the average electron mass is found to be 1.73me,
slightly higher than in PdCoO2 (1.69me).
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Figure 5.4.: (a) The dispersion along the Γ−K direction measured in PdCrO2, and
a momentum distribution curve at the Fermi level momentum distribution curve
(green line, EF ± 10 meV) (c) The peak positions of the fits to the MDCs along the
Γ−K direction in PdCrO2 (green) and PdCrO2 (blue), as well as lines representing
Fermi velocity fits.
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5.1.2. The reconstructed weight

Our data confirm that, unless very fine detail of the electronic structure is relev-
ant, the main band in PdCrO2 can be thought of as having the same properties as
the bulk band in PdCoO2 , consistent with previous photoemission studies [7, 28].
It is also consistent with quantum oscillation measurements [26, 27], which repor-
ted a Fermi surface consisting of the PdCoO2 Fermi surface backfolded across the
antiferromagnetic Brillouin zone boundary. The interpretation of this backfolding
is straightforward: electrons in the Pd layer, which have the same properties in
PdCoO2 and PdCrO2, feel an additional periodic potential arising from the antifer-
romagnetic order. New bands, which are copies of the original ones offset by the
wavevectors of the antiferromagnetic order ~QAFM , appear. They hybridise with the
original bands, opening small gaps at the boundaries of the magnetic Brillouin zone,
the area of which is a third of the area of the non-magnetic zone. Quantum oscil-
lations can measure the electron orbits corresponding to this reconstructed band
structure. When Noh et al.[7] observed the reconstructed weight in photoemission,
they interpreted it as arising from the same reconstruction due to the antiferromag-
netic potential. Indeed, the reconstructed weight does consist of copies of the main
band offset by the wavevectors of the antiferromagnetic order, as shown in Figure
5.5 for (a) the dispersion and (b) the Fermi surface, so this is a natural starting as-
sumption. However, in order to fully understand the observed signal, it is necessary
to explain its intensity, as well as the position in momentum space.

To judge whether the observed spectral features are consistent with such a band-
folding picture, it is necessary to revisit the fundamentals of photoemission, and
think about how it probes the initial state wave function. I do this in the following
Section, at the level I found helpful to fully grasp the origin and the intensity of
the photoemission signal in a band-folding picture, with the hope that a reader
encountering a similar experimental situation will find it useful. A reader who is
more interested specifically in PdCrO2 may wish to skip immediately to Section
5.2.4; the main conclusion of previous sections is that in the band-folding picture
intensity should drop very quickly away from the new Brillouin zone boundary.
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Figure 5.5.: (a) Measured dispersion along the Γ−K direction, with a momentum
distribution curve at the Fermi level (EF±10 meV), and (b) Femi surface of PdCrO2.
In both (a) and (b) the green dots correspond to fits to the ‘main’ band, while the
grey points are copies of the green ones, offset by the wavevectors of the antiferro-
magnetic order.

5.2. Reconstructed weight intensity

As discussed in Section 2.3, the photoemission intensity can be thought of as a
product of the square of the one-electron matrix element (

∣∣∣Mk
if

∣∣∣2) and the single elec-
tron removal spectral function (A− (k, ω)). In a non-interacting system the spectral
function consists of a series of delta functions centred at momenta and energies set
by the dispersion, EB (k), leading to photoemission intensity is proportional to

I (k, ω) =
∣∣∣Mk

if

∣∣∣2 δ (ω − EB (k)) . (5.2)

The delta function allows for the mapping of the band structure, while the intensity
variation of the signal is given by the matrix element, Mk

if . It is therefore necessary
to understand how the periodic potential affects the photoemission matrix element.
In general, the matrix element is given by Mk

if =
〈
ϕf,k

∣∣∣ ~A · ~p∣∣∣ϕi,k〉, where ~A is the
vector potential of the incoming light, ~p the momentum operator, and ϕi,k and ϕf,k
the initial and final state one-electron wave functions (Section 2.3). The final state
can be approximated by a plane wave, ϕf,k = exp

(
ı~kf · ~r

)
, which is an eigenstate of
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Chapter 5 Coupling of Metallic and Mott-insulating states in PdCrO2

the momentum operator, with ~~k as an eigenvalue. The matrix element therefore
takes the form of

Mk
if = ~ ~A · ~kf 〈ϕf,k|ϕi,k〉 , (5.3)

resulting in an intensity directly governed by the overlap of the initial wave function
in the solid, and the final state free-electron wave function which is measured1.
The initial state wave function in a periodic potential has the Bloch form, ϕ~k (~r) =
exp

(
ı~k · ~r

)
u~k (~r), with u~k (~r) inheriting the periodicity of the lattice, and the initial

state momentum ~k restricted to the first Brillouin zone. The Bloch wave function
can be expanded in a Fourier series as

ϕi,k (~r) = exp
(
ı~kix

)∑
n, ~G

cn
(
~ki
)

exp
(
ın ~Gx

)
, (5.4)

where ~G are the reciprocal lattice vectors, and n an integer. Using this form of the
initial state wave function the matrix element is given by

Mk
if = ~ ~A · ~kf

∑
n

cn
(
~ki
)
δ
(
~ki + n~G− ~kf

)
. (5.5)

The ~A · ~kf term introduces the dependence of the intensity on the measurement
geometry, as it depends on the angle between the polarisation vector and the final
state momentum direction. It can often explain the variation of photoemission
intensity with changing measurement conditions. For instance, in the Fermi surface
map shown in Figure 5.1b the measured intensity is not the same at every corner
of the main band hexagonal Fermi surface. In particular, the corner at kx = 0
and ky > 0 appears to be much more intense than the one at kx = 0 and ky < 0.
The symmetry of the system guarantees that the initial state wave functions are
the same in all the corners. However, as the polar angle is changed during the
measurement of the map, the angle between the light polarisation vector and the
final state momentum is changed, causing the observed variation in intensity. This
is an example of a so-called ‘matrix element effect,’ and it is not relevant for the

1This is in fact a simplification, as the final state in the three step process is actually an unoccupied
Bloch state. For high photon energies it can be approximated by a free-electron state, but even
in these circumstances this is not the measured state, as the electron still needs to travel to
the surface, and escape into vacuum (steps two and three of the three step process). These
distinctions are however not important for the qualitative discussion outlined here.
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5.2 Reconstructed weight intensity

present discussion. I will therefore assume that ~A · ~kf is a constant, and will not
consider it further. I will instead consider in detail how is the sum in Equation
5.5 affected by the periodic potential, and demonstrate that the intensity of the
reconstructed band cannot be understood in this framework.
Assuming for simplicity a one dimensional solid of lattice spacing a, the relevant

part of the matrix element takes the following form:

M̃ (kf ) =
∑
n

cn (ki) δ (ki + nG− kf ) , (5.6)

where G = 2π/a is the reciprocal lattice constant. The matrix element is a function
of the final state momentum, which is measurable and can assume any value, while
the coefficients cn (ki) are functions of the crystal momentum in the first zone, as they
are a property of the initial state wave function. The expression 5.6 states that if the
final state wave vector is in the first zone (kf = ki), the intensity of the signal is set
by |c0 (ki)|2, that is by the weight of the plane wave exp (ıkix) in the initial state wave
function. Equivalently, if the final state momentum is in a higher zone labelled by n
(kf = ki+nG), the intensity is proportional to the corresponding Fourier component
of the Bloch wave function, |cn (ki)|2. Photoemission could therefore in principle be
used to decompose the Bloch wave function into its Fourier components; in practice
this is complicated by experimental considerations. This analysis of the matrix
elements also immediately emphasises that the photoemission intensity need not
follow the periodicity of the solid, therefore explaining how the reconstructed weight
intensity can be weaker than the main band intensity in PdCrO2. This qualitative
discussion does not, however, offer any insight into the expected intensity ratio
between the two. In what follows I will look at how the matrix elements influence
the photoemission signal in two extreme cases, that of a nearly free electron system
and that of a tight binding band. The insights developed using these examples
will help in understanding the intensity distribution caused by a weak periodic
potential superimposed on a tight binding band, a situation approximating the case
of PdCrO2.

5.2.1. Nearly free electron system

The wave functions of electrons in vacuum are plane waves, exp (ıkx), and their
energy exhibits a quadratic momentum dependence, E = (~k)2 / (2m), as illustrated
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Chapter 5 Coupling of Metallic and Mott-insulating states in PdCrO2

in Figure 5.6a. If the kinetic energy of electrons in a solid is sufficiently larger
than the strength of the periodic potential, plane-wave wave functions, and the
corresponding parabolic dispersion, can be a useful starting point in determining
the electronic structure, leading to the so-called nearly-free electron approximation.
The periodic potential allows for the free electron states whose momenta differ by the
wave vector of the potential to mix and interfere with each other. A band structure
of such a system is illustrated in Figure 5.6b, for a cosine potential of amplitude
V = 0.1 eV, and wave vector G = 1 Å−1. In addition to the ‘original’ band (orange in
Figure 5.6b), the band structure now contains copies of the same band offset by nG,
where n are integers, as shown for n = 1 and n = −1 in Figure 5.6b (pink and red,
respectively). While the wave function away from the points where bands cross can
be well described by a single plane wave, exp (ı (k ± nG)x), as indicated in Figure
5.6b, at the band crossing points those plane waves hybridise. The resulting band
structure, shown in green, resembles the offset parabolas everywhere in momentum
space except at the boundaries of the Brillouin zones (dashed lines in Figure 5.6b), at
which energy gaps proportional to the Fourier components of the periodic potential
open; the analytical form of the band structure and the wave functions in this region
is taken from Reference [77].
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Figure 5.6.: (a) Dispersion of free electrons. Band structure of free electrons per-
turbed by a periodic potential of cosine form, V cos (xG), for V = 0.1 eV and
G = 1 Å−1, shown in the (b) periodic, (c) reduced and (d) extended zone scheme.
The orange, red and pink lines in (b) are the free-electron dispersion, a free electron
dispersion offset by −G and by G, respectively.
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5.2 Reconstructed weight intensity

There are three commonly used ways to represent a band structure of a periodic
solid. In the periodic zone scheme (Figure 5.6b), all the bands are drawn in all the
Brillouin zones, emphasising the fact that there are n solutions to the Schrödinger
equation for every momentum, where n is the number of bands (n = 2 in the example
outlined here). This is, however, highly redundant, as all the Brillouin zones are
equivalent. In the reduced zone scheme therefore all the bands are shown only in
the first zone, emphasising the fact that every state in the crystal can be labelled
by k in the first zone and a band index n (Figure 5.6c). The third representation is
the so-called extended zone scheme, in which different bands are plotted in different
zones (Figure 5.6d). Although this may seem somewhat arbitrary for a system
in a periodic potential, in a nearly free electron system it emphasises the relation
to the parabolic dispersion of free electrons. All of these representations are well-
defined, and thus equally correct, however some may be more useful than others in
specific situations. For instance, the one electron spectral function A (k, ω) peaks at
all energies which are the solutions of the Schrödinger equation, for every value of
crystal momentum, and therefore follows the periodic zone scheme (Figure 5.7a). It
is an intrinsic property of the solid, and as such obeys its periodicity, but it is not
a direct physical observable.

To find out which of the zone schemes, if any, is relevant for the intensity of the
photoemission experiment it is necessary to consider the matrix element variation as
a function of the final state momentum. This requires the Fourier decomposition of
the initial state wave function, which is particularly simple in the case of nearly-free
electrons, as already indicated by the plane wave labels in Figure 5.6b. Neglecting
the regions in the vicinity of the Brillouin zone boundary, for each of the three
sections of bands seen in the reduced zone scheme, labelled A, B and C, only one of
the coefficients cn in the Fourier expansion (equation 5.4) is finite: c0, c1 and c−1 for
sections A, B and C, respectively. The matrix element therefore allows each band
section to be observed for a final state wave vector in one of the zones only: the first
zone (kf = ki) for section A, the zone to the right of it (kf = ki + G) for section
B and the zone to the left of the first one (kf = ki −G) for section C, as indicated
in the extended zone scheme diagram (Figure 5.6d). The photoemission intensity
is therefore expected to dominantly follow the extended zone scheme. Indeed, a
calculation of the matrix elements taking properly into account the regions in the
vicinity of the zone boundary confirms this conclusion (Figure 5.7b). A closer look
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Figure 5.7.: (a) Spectral function and (b) photoemission intensity of a nearly free
electron system, with V = 0.1 eV and G = 1 Å−1. (c) Expanded region around the
Brillouin zone boundary, indicating the difference in intensity of the ‘main band’
and the ‘reconstructed weight’.

at the zone boundary reveals additional features. In addition to the ‘main band’,
which follows the extended zone scheme, weaker traces of the ‘reconstructed band’
are also visible (Figure 5.7c). This happens because in this region of momentum
space two Fourier components are needed to describe the wave functions:

ϕi,ki
(x) = c0 (ki) exp (ıkix) + c1 (ki) exp (ı (ki +G)x) . (5.7)

To determine the intensity of the two bands in, for example, the first zone, it is
necessary to calculate the variation in |c0 (ki)|2. As the wave function at the zone
boundary is an equal superposition of the two plane waves, |c0|2 = 0.5 for both
bands at this point. For the main band this fraction rapidly increases towards
one away from the crossing point, while for the reconstructed band it decreases,
resulting in the higher visibility of the main band; equivalent statements can be
made about the second zone. This is really just a description of hybridisation -
the ‘original’ wave functions can mix in the regions of momentum space in which
their energy would be similar in the absence of hybridisation. As their energy
difference increases away from the crossing point, the wave functions become more
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5.2 Reconstructed weight intensity

similar to the ‘original ones’. Unsurprisingly, the rate of intensity decrease of the
reconstructed band depends on the strength of the periodic potential, as illustrated
in Figure 5.8; the reconstructed weight is less visible for V = 0.1 eV (Figure 5.8a)
than for V = 0.5 eV (Figure 5.8b). Even for such a strong periodic potential the
reconstructed band intensity is much weaker than that of the main band. Crucially,
the intensity always decreases away from the crossing point, as illustrated in Figure
5.8c for a range of potential strengths. All of those potential strengths are chosen to
be smaller than the kinetic energy scale; if the periodic potential is very strong the
nearly free electron picture is not valid any more. An interesting question is what
happens with intensity in that case; in particular, is it still be true that each band
is dominantly visible in only one zone?
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Figure 5.8.: Photoemission intensity of a nearly free-electron system, for (a) V =
0.1 eV and (b) V = 0.5 eV. (c) The variation of intensity of the reconstructed band
as a function of distance from the Brillouin zone boundary, for a range of potential
strengths V .
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5.2.2. Tight binding system

In the limit of very strong periodic potential the band structure can be modelled
using the tight binding approximation. For a one-dimensional solid, and considering
only nearest neighbour hopping of amplitude t, the tight binding band has a cosine
dispersion, E = −t cos (ka). The wave function of momentum ki is a sum of orbitals
localised on every site, ϕ (x− na), with the phase change of kia between sites:

ψki
(x) = 1√

N

∑
n

ϕ (x− na) exp (ıkina) , (5.8)

where ki is defined in the first zone, and a is the lattice constant. The tight binding
wave function is of course of the Bloch form:

ψki
(x) = exp (ıkix) 1√

N

∑
n

ϕ (x− na) exp (−ıki (x− na)) = exp (ıkix)uki
(x) ,

(5.9)
with uki

(x) inheriting the lattice periodicity. A discussed above, the variation of
photoemission intensity with the final state momentum is governed by the Fourier
transform of uki

(x) (Equation 5.5). The intensity distribution therefore necessarily
depends on the form of the tight binding basis, ϕ (x− na), out of which uki

(x) is
constructed. This is why useful information on the symmetry of the initial state
wave function can be extracted from photoemission matrix elements. For simplicity
I will assume a Gaussian charge distribution of width σ on every site, and study the
form of the resulting intensity variation. With this assumption the periodic part of
the Bloch wave function, uki

(x), has the following form:

uki
(x) = 1√

N

1
(2πσ2)1/4

∑
n

exp
(
−(x− na)2

4σ2 + ıki (x− na)
)
. (5.10)

As the Fourier transform of a Gaussian is also a Gaussian, the coefficients cn (ki) of
the transform are given by

cn (ki) = 1√
πN

(
2πσ2

)1/4
exp

(
−σ2 (nG− ki)2

)
, (5.11)

with G denoting the reciprocal lattice vector, G = 2π/a. The width of this mo-
mentum - space Gaussian is inversely proportional to the width of the charge distri-
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bution in real space, reflecting the basic property of Fourier transforms. The more
localised the tight binding orbitals are, the more cn (ki) coefficients are relevant, and
the band can be observed in further zones. This is shown explicitly in Figure 5.9, in
which I plot the photoemission intensity expected of a tight binding band as a func-
tion of final state momentum, varying the width of the charge distribution σ. For a
charge distribution localised to within 1% of the lattice spacing (σ = 0.01a, Figure
5.9a), no variation of photoemission intensity is observable in the first three zones,
as shown in Figure 5.9b. If the change distribution is made wider, the intensity in
the higher zones is visibly reduced (σ = 0.05a, Figure 5.9c, d). The suppression
is larger and quicker for an even wider charge distribution (σ = 0.1a, Figure 5.9e,
f). While the intensity in the nearly free-electron model is best understood as a
projection of the initial state wave function onto a plane wave final state, it is more
useful to think about the intensity in the tight binding model as a Fourier transform
of the initial state wave function. These are of course equivalent statements, useful
in the opposite limits.
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Figure 5.9.: Real space distribution of charge density (a, c, e) and the variation of
photoemission intensity (b, d, f) for a Gaussian charge distribution on every site of
width σ = 0.01a (a, b), σ = 0.05a (c, d) and σ = 0.1a (e, f).
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5.2.3. Tight binding band in a weak periodic potential

The remaining question is how the measurable intensity of a tight binding band
changes if a weak periodic potential is superimposed onto the strong potential lead-
ing to the tight binding description in the first place. This is the model relevant
for describing the PdCoO2 - like conduction electrons in a weak periodic potential
caused by the local moment antiferromagnetism. It should therefore qualitatively
reproduce the features observable in PdCrO2, as long as the interaction of metallic
electrons and the weak periodic potential really captures the relevant physics. As
will become apparent in the following section, this is not the case.

The band structure in a weak periodic potential consists of the original tight -
binding band, and its copy offset by the wave vector of the periodic potential. Such
a band structure is shown in Figure 5.10a in the limit of the vanishing periodic
potential, by the orange and red lines representing the ‘original’ and ‘offset’ band,
respectively. The wave vector of the weak periodic potential is half the reciprocal
lattice vector, G/2. The boundaries of the ‘new’ zone are marked by vertical dashed
lines, and the bands are plotted in the repeated zone scheme. The periodic parts of
the Bloch wave functions corresponding to those two bands, uIki

(x) and uIIki
(x), are

given by:

uIki
(x) =

∑
n

cn (ki) exp (ınGx) , uIIki
(x) =

∑
n

cn (ki) exp
(
ı
(
n+ 1

2

)
Gx

)
. (5.12)

A Hamiltonian expressed in the basis of these wave functions has the following
generic form:

H (k) =

 E (k) V

V E (k +G/2)

 , (5.13)

where E (k) is the dispersion of the original tight-binding band. A finite periodic
potential V allows hybridisation between the original band and its offset copy, so
gaps open at the new Brillouin zone boundary, as shown in Figure 5.10a by the green
lines. The two wave functions of this hybridised system are both linear combinations
of uIki

(x) and uIIki
(x):

uki
(x) = α (ki)uIki

(x) + β (ki)uIIki
(x) , (5.14)
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Figure 5.10.: (a) Tight binding bands in the limit of the vanishing additional periodic
potential (red, orange), and for an additional periodic potential of strength V = 0.1t
(green). (b) Photoemission intensity for V = 0.1t . (c) Photoemission intensity as
a function of the distance from the boundary of the new Brillouin zone, for varying
potential strength V .

with momentum-dependent prefactors α (ki) and β (ki), which are different for the
two bands. The hybridised wave functions are of course also periodic, with Fourier
transforms given by:

uki
(x) =

∑
n

dn (ki) exp (ınGx/2) . (5.15)

As always, the photoemission intensity in the first zone (n = 0) is given by the
n = 0 coefficient of the Fourier expansion, |d0 (ki)|2 here. A comparison of the
two expressions for the wave function (equations 5.14 and 5.15) makes it clear that
d0 (ki) = α (ki) c0 (ki). Therefore, the ratio of the intensity of the band in a weak
periodic potential (|d0 (ki)|2) to the one without the weak potential (|c0 (ki)|2) is
given by |α (ki)|2, i.e. the admixture of the uIki

state in the wave function. In the first
zone the uIki

state corresponds to the unperturbed wave function, so this is equivalent
to stating that the photoemission intensity of a tight binding band in a superimposed
weak periodic potential is proportional to the overlap of the corresponding wave
function with the ‘original’ tight binding one. It is straightforward to show that this
conclusion is valid in every zone, resulting in the photoemission intensity following
the dispersion of the ‘original’ cosine band, as shown in Figure 5.10b and discussed
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Chapter 5 Coupling of Metallic and Mott-insulating states in PdCrO2

previously by Voit at al. [78]. The intensity of the reconstructed band is weak, and
quickly reduces away from the boundary of the new Brillouin zone. Unsurprisingly,
the rate of the decrease depends on the strength of the periodic potential V , as
shown in Figure 5.10c.
The analogy with the nearly-free electron case is evident. In both cases a new

periodicity perturbs a system dominated by a different energy scale. Copies of the
original band offset by the wave vector of the periodic potential appear, and hybridise
with the ‘original’ band, opening gaps proportional to the periodic potential at the
boundaries of the new zone. The intensity of the ‘reconstructed’ band is proportional
to the admixture of the ‘original’ band in the hybridised one, and is therefore quickly
reduced away from the zone boundary, as the mixing with the original band is
suppressed. Crucially, this behaviour does not rely on any specific properties of the
system. The intensity in every zone is always set by a term in the Fourier expansion
of the wave function, cn exp (ınGx), with the integer n varying from zone to zone.
An additional periodic potential of wave vector G1 introduces new components of
the form cm exp (ı (m+G1/G)Gx) to the expansion. However, as G1 is smaller than
G, G1/G is never an integer, those components cannot contribute to the observable
intensity in any of the original zones. Therefore, once the ‘original’ and ‘new’ bands
are allowed to hybridise, the observable intensity is proportional to the admixture
of the ‘original’ band in the hybrid one, as shown explicitly both for a free-electron
band and a tight binding band in a weak periodic potential above.

5.2.4. Reconstructed intensity in PdCrO2

In order to see how the above discussion applies to PdCrO2, it is useful to construct a
tight - binding model using realistic parameters. Since details of the band structure
are not relevant for the arguments presented here, I will use a simplified tight binding
model taking into account only the nearest - neighbour hopping on a triangular
lattice. The dispersion in this model is given by

E (kx, ky) = −t
(
cos (kxa) + 2 cos

(√
3kya/2

)
cos (kxa/2)

)
− E0. (5.16)

The hopping integral t and the offset E0 are chosen to match the experimental Fermi
wave vectors and the energy at which the ‘original’ and reconstructed band intersect,
leading to t = 0.9 eV and E0 = 0.4 eV. The wavevectors of the periodic potential due
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to the antiferromagnetic order are ~G1 = 4π/ (3a) x̂ and ~G2,3 = 2π/ (3a)
(
x̂±
√

3ŷ
)
.

A crucial parameter is of course the magnitude of the periodic potential V , which can
be related to the gap at the magnetic Brillouin zone boundary ∆ as V = ∆/2. The
gap is too small to be resolved in the photoemission spectra, but it can be deduced
indirectly from the so-called breakdown field in quantum oscillation measurements.
The breakdown field is a characteristic field setting the probability for an electron to
tunnel across the gaps opened by the periodic potential, and move on the ‘original’
Fermi surface instead. It depends on the gap size roughly as ~ωc ∼ ∆2/εF , where
ωc = eH/m is the corresponding cyclotron frequency and εF the Fermi energy [79].
Ok et al. [26] measured a breakdown field of ∼ 7 T in PdCrO2, corresponding to a
gap size of ∼ 40 meV. I therefore simulate the photoemission intensity assuming V =
20 meV, broadened by an effective impurity self-energy of 80 meV to reproduce the
experimental linewidth of ∼ 0.04 Å−1 at the Fermi level. As evident in Figure 5.11a,
the reconstructed band is not visible at all, a consequence of the quick suppression
of its intensity away from the zone boundary. The reconstructed band weight is
plotted as a function of binding energy in Figure 5.11b, showing that it is four
orders of magnitude smaller than the main band intensity at the Fermi level! This
is in clear contrast to the measured electronic structure (Figure 5.1), in which the
intensity is visible all the way to the Fermi level. To directly compare the measured
intensity of the reconstructed weight to the one predicted by the periodic potential
model, I normalise both by the intensity at the binding energy of 0.7 meV, at which
the main band and the reconstructed weight are separated well enough to ensure
a reliable fit. It is clear that the simple periodic potential model is inadequate to
explain our experimental observation, predicting a qualitatively different binding
energy dependence of the intensity.

To confirm that the observed signal is not an artefact of the specific experimental
conditions chosen to perform the measurement in Figure 5.1a, we measured the
same dispersion using a range of photon energies and different light polarisations,
as shown for p - and s- polarised light in Figures 5.12a and 5.12b, respectively.The
intensity variation with binding energy does slightly depend on the experimental
conditions, however it was never observed to change by more than a factor of two
over the 700 meV binding energy range, whereas the simple model would predict
a change of two orders of magnitude in the same energy range. It is particularly
interesting to note that in the measurements with s- polarised light the intensity
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actually increases towards the Fermi level, an effect that could never be explained
in the hybridisation picture. For clarity in Figure 5.12c I plot only the intensity
variation measured at 110 eV with p - polarised light and at 60 eV with s - polarised
light, representative of the range of observed intensity variations.

5.3. Coupling of metallic and Mott insulating layers
The evident disagreement between the ‘backfolding’ model and the experiment in-
dicates that the weak periodic potential arising from the antiferromagnetic order in
the chromium layer is not the cause of the reconstructed spectral weight. A crucial
ingredient neglected so far is the correlated nature of the Mott layer; it was treated
as a source of periodic potential, but its dynamical degrees of freedom were not taken
into account. After realising this issue, we addressed it by starting a collaboration
with Roderich Moessner, Sota Kitamura and Takashi Oka. Kitamura and Oka de-
veloped a minimal model describing the coupling between the metallic Pd and Mott
insulating CrO2 layers. I will outline their calculation, and in particular discuss its
implications for the measured spectra. More technical details of the calculations are
available in Reference [8].
The starting point is a Hubbard Hamiltonian, combining the hopping within and

between the Pd and Cr layers with the Coulomb repulsion in the Cr layer:

H = −
n.n∑
ijσ

(
tpp
†
iσpjσ + tcc

†
iσcjσ

)
+ U

∑
i

(
nci↑ −

1
2

)
+
∑
iσ

g
(
p†iσciσ + h.c.

)
, (5.17)

where tp (tc) denote the hopping integrals between the Pd (Cr) sites, g is the inter-
layer hopping and U the on-site Coulomb repulsion on the Cr sites, as illustrated in
Figure 5.13a. The full calculation, the results of which I will compare to the experi-
ment, includes the three t2g orbitals of Cr and the d3z2−r2 orbital of Pd, and considers
nearest neighbour and next-nearest neighbour hopping on a staggered triangular lat-
tice, as is appropriate for PdCrO2. For simplicity, in Equation 5.17 I assume only
nearest neighbour hopping, and one state per site; p†jσ (pjσ) and c†jσ (cjσ) therefore
correspond to the electron creation (annihilation) operators for an electron of spin
σ on the Pd and Cr site j, respectively (Figure 5.13a). All the hopping parameters
were informed by downfolding a density functional theory calculation onto a Wan-
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Chapter 5 Coupling of Metallic and Mott-insulating states in PdCrO2

nier basis model [8]; while this effectively single-particle calculation cannot correctly
capture the electronic structure of PdCrO2, its estimates for orbital overlaps are
relevant. The resulting hopping parameter in Pd layer is tp ∼ 1 eV, while the hop-
ping in the Cr layer tc and the hopping between the layers g are both ∼ 0.1 eV. The
on-site repulsion U is typically on the order of 4 eV for 3d orbitals [80], making it the
dominant energy scale in the problem considered here; this value was also confirmed
specifically for PdCrO2 by dynamical mean field theory [8, 81]. Because U is so
large compared to other coupling constants, it is justified to express the Hamilto-
nian in a reduced basis, which contains only wavefunctions in which the Cr sites
are singly-occupied. This is technically achieved using a Schrieffer-Wolff transform-
ation, yielding the following low-energy Hamiltonian, valid at energies significantly
smaller than U :

Heff = −tp
n.n∑
ijσ

p†iσpjσ + 4t2c
U

n.n∑
ij

~Si · ~Sj + 4g2

U

∑
iσσ′

p†iσ
(
~Si · ~σσσ′

)
piσ′ , (5.18)

where ~Sj represents the spin localised on the Cr site j, and ~σ is a vector of Pauli
matrices, {σx, σy, σz}. This is the well-known Heisenberg-Kondo Hamiltonian, often
used to describe the systems where itinerant electrons are coupled to localised spins
[82].

Figure 5.13.: A 1D schematic of the metallic (Pd) and Mott insulating (Cr) layers
of PdCrO2, indicating the terms in the Hamiltonian describing the system within
the (a) starting Hubbard model (Equation 5.17), and (b) the Kondo - Heisenberg
model valid at low energies (Equation 5.19). (c) The Doniach phase diagram (after
Reference [83]), indicating the position of PdCrO2 .

It is instructive to analyse how its three terms, illustrated in (Figure 5.13b), arise
from the original Hamiltonian (Equation 5.17, Figure 5.13a). The first term, describ-
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5.3 Coupling of metallic and Mott insulating layers

ing the hopping in the metallic Pd layer, remains unchanged. This in not surprising,
as the Pd layer is not significantly affected by the strong correlations in the Cr layer.
However, the hopping in the Cr layer (tcc†iσcjσ) is suppressed because the on-site re-
pulsion introduces a large energy cost for double occupancy. It is replaced by an
effective nearest neighbour antiferromagnetic spin exchange, 4t2c/U

(
~Si · ~Sj

)
. This

term arises because the virtual process by which an electron hops to a neighbour-
ing site and returns to the original one is forbidden by the Pauli principle if the
neighbouring spins are ferromagnetically aligned. Such virtual processes, however,
reduce the total kinetic energy, as they allow the wave functions to become more
delocalised; antiferromagnetic alignment is therefore favourable. The energy gain
associated with the antiferromagnetism scales as t2c/U , reflecting the fact that the
process underlying it requires two ‘hops,’ to and from an intermediate state, whose
energy is U . This is the standard way in which antiferromagnetic interaction arises
in correlated insulators. The last term, known as the Kondo coupling term, de-
scribes the interaction of localised spins and conduction electrons. It has the same
physical origin as the antiferromagnetic coupling between the localised spins: if the
spin of an itinerant electron is the same as the spin of the localised one, the Pauli
principle does not allow their wave functions to overlap, leading to a larger degree
of wave function localisation, and the corresponding kinetic energy cost. A localised
spin therefore ‘attracts’ conduction electrons of opposite spin. The similar origin of
the two terms is emphasised if the Kondo term is rewritten as

Hint = 4g2

U

∑
i

~Si · ~si, ~si =
∑
σσ′

p†iσ~σσσ′piσ′ , (5.19)

where ~si represents the spin of an itinerant electron on site i. Care should be taken
though not to over-interpret this notation; while ~si can be used to determine the
spatial variation of expected value of the spin of the itinerant electrons, in contrast
to ~Si it does not represent a spin localised at site i.

The antiferromagnetic nature of the Kondo interaction favours the creation of
singlet states between the localised spins and the itinerant electrons, with a charac-
teristic binding energy of

kbTK = εF exp (−1/ (Kρ (εF ))) ∼ εF exp (−εF/K) , (5.20)
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where TK is the so-called Kondo temperature, εF the Fermi energy, K = 4g2/U

the Kondo coupling, and ρ (εF ) the density of states at the Fermi level [37]. The
exponential suppression makes this energy scale typically much smaller than the
Fermi energy. Varying the relative strength of the antiferromagnetic exchange and
the Kondo temperature results in the rich phase diagram of the Heisenberg - Kondo
Hamiltonian, known as the Doniach phase diagram, sketched in Figure 5.13c. If the
antiferromagnetic exchange dominates, the localised spins order antiferromagnetic-
ally, while the itinerant electrons feel a spatially varying spin-dependent potential
arising from this antiferromagnetic order. On the other hand, if the Kondo temper-
ature is the dominant energy scale, the itinerant electrons tend to form singlet states
with the localised spins, thus screening them and preventing the antiferromagnetic
order from arising. The resulting state is a heavily renormalised Fermi liquid, where
the effective Fermi energy is not set by the hopping tp, but by the Kondo energy
scale, TK . This is the limit relevant for the so-called heavy fermion systems.

It is worth emphasising that the Doniach phase diagram offers a valid descrip-
tion even in the absence of the direct antiferromagnetic exchange, for the so-called
Kondo lattice Hamiltonian, which contains only terms describing the kinetic energy
of itinerant electrons and their Kondo coupling to a lattice of localised spins. This
Hamiltonian is relevant for f - electron systems, because the negligible direct orbital
overlap of the f orbitals cannot cause a direct antiferromagnetic exchange. The an-
tiferromagnetism is instead provided through the Ruderman – Kittel – Kasuya –
Yosida (RKKY) interaction, which arises as a consequence of coupling of the local
moments and the conduction electrons, and as such is already implicitly included in
the Kondo coupling term. As with the Kondo temperature, the energy scale asso-
ciated with the RKKY interaction is also governed by a combination of the Fermi
energy and the Kondo coupling, in this case as JRKKY ∼ K2/εF . However, this
simple model governed by only two microscopic parameters, K and εF , is often not
sufficient to describe realistic materials containing many atoms and orbitals. The
direct exchange can then be added empirically to the Hamiltonian, with a value
chosen to match the experimental findings. In contrast, as the 3d orbitals are more
extended than the f orbitals, the direct antiferromagnetic exchange is present in
PdCrO2, leading to the observed antiferromagnetic ground state. The fact that the
PdCrO2 is in the antiferromagnetic part of the Doniach phase diagram is confirmed
by a comparison of the relevant energy scales. If estimated from the first principles
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5.3 Coupling of metallic and Mott insulating layers

calculations both the antiferromagnetic exchange J and the Kondo coupling are
found to be of similar magnitude, J ∼ K ∼ 5 meV. This is not surprising, as the
hopping in the chromium layer and the hopping between the layers are of a com-
parable magnitude (tc ∼ g ∼ 0.1 eV). The Fermi energy is very large, on the order
of 5 eV, so the Kondo energy scale kbTK ∼ εF exp (−εF/K) is indeed very small.
PdCrO2 is therefore an example of a system that can be described by a Kondo -
Heisenberg Hamiltonian using realistic microscopic parameters, and is found to be
in the antiferromagnetic limit of the model.

5.3.1. Spectral functions

To see if this model can account for our experimental findings it is necessary to
calculate the one-electron removal spectral function, separately for the Pd layer and
the Cr layer because of their different nature. In what follows I will use the term
‘spectral function’ to refer to the spectral function already modulated by the overlap
of the initial state and the final free-electron like state. Although not precise, this
is commonly done as the spectral function itself is not physically observable2.
The one-electron removal spectral function of metallic Pd describes the process

in which an electron is removed from the Pd layer, in our experiment by photoe-
mission, as illustrated in Figure 5.14a. The hole created in this way propagates
in the Pd layer, occasionally tunnelling into the Cr layer, thus feeling the periodic
potential arising from the antiferromagnetic order. The resulting spectral function
therefore looks dominantly like the Pd dispersion (Figure 5.14b). Zooming in at the
boundary of the new magnetic Brillouin zone (inset in Figure 5.14b) reveals a small
gap opening, and a very weak spectral weight in the reconstructed band. This is
precisely the band folding due to a weak periodic potential introduced in Section
5.2.3; it does take place, but it cannot account for the signal we observe.
In contrast, the removal of electrons from Cr orbitals is drastically altered by

the coupling to the Pd layer. In an isolated Mott layer electrons can be removed
only from the lower Hubbard band, which is found at the binding energy of ∼ U/2;
therefore, electron removal spectral function of a Mott insulator has no features at
smaller energies. However, for finite interlayer coupling g, a hole created in the Mott

2Calling this quantity the ‘simulated intensity’, as I did in the simple models above, is misleading
if we wish to compare it to the experimental findings, as it does not account for the experimental
geometry, or the symmetry of the underlying orbitals.
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Figure 5.14.: (a) Photoemission from a Pd layer leaves a hole which propagates in
the Pd layer. (b) One-electron removal spectral function for electrons in the Pd
layer. The inset shows as small gap opening at the magnetic zone boundary and
weak weight in the reconstructed band.

layer can rapidly move to the itinerant layer, where it can propagate. This can be
seen formally, as the Schrieffer–Wolff transformation leads to an effective real space
Cr removal operator of the form:

(cjσ)eff = 2g
U

∑
σσ′

(
~Sj · ~σσσ′

)
pjσ′ . (5.21)

An attempt to remove an electron from the Cr layer therefore results in a hole
in the Pd layer. There are two important features of the transformed operator.
Firstly, the process is perturbatively small in g/U . Secondly, it provides a connection
between the itinerant Pd electrons (pjσ′) and Mott spins ( ~Sj). To develop an intuitive
feeling for this coupling in the limit of a magnetically ordered system it is useful to
consider its form if the local spin orientation is fixed, for instance along the positive
z direction, Szj = 1/2. The removal operator for a spin up (parallel to the localised
spin, cj↑) and down (cj↓) electron are then given by

(cj↑)eff = g

U
pj↑, (cj↓)eff = − g

U
pj↓. (5.22)

The first of these expressions is easy to understand: it is possible to remove a spin-
up electron (cj↑) from a site where there exists a localised spin up (Szj = 1/2), as
long as the hole is instantly filled by an electron from the Pd layer, which happens
with a probability proportional to g/U (Figure 5.15a). At first it may seem unusual
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5.3 Coupling of metallic and Mott insulating layers

that it is also possible to remove an electron of the opposite spin, with the same
probability of g/U . This is in fact not contradictory, as an electron may be removed
from a virtually doubly occupied site. As the double occupancy is also enabled by
the coupling between the two layers, its probability is also given by g/U (Figure
5.15b). The operators for the removal of the ‘correct’ and ‘wrong’ spin therefore
do not differ in amplitude, but they do differ in sign (Equation 5.22). The wave
function of a Pd layer hole created by this process therefore encodes the localised
spin of the site where it was first created through its phase.
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Figure 5.15.: (a) A hole created by photoemission from a Cr layer immediately
tunnels to the Pd layer. (b) Alternatively, a photo can remove an electron from a
double occupied site, again leaving a hole in the Pd layer. (c) One-electron removal
spectral function for electrons in the Cr layer.

This spin-dependent tunnelling process is crucial in determining the final form of
the chromium removal spectral function, which is found to be equal to

ACr
(
~k, ω < 0

)
= −

∫ 0

−∞

dω′

2π

∫ d3~q

(2π)3

32
∣∣∣g~k+~q

∣∣∣2
U2 APd

(
~k + ~q, ω′

) 〈
~S~q · ~S−~q (ω − ω′)

〉
.

(5.23)
It is a convolution of the itinerant layer spectral function and the spin-spin correl-
ation function of the Mott layer, with an amplitude determined by the interlayer
coupling3, through the (g/U)2 term. The Pd spectral function appears because the
holes tunnel to the Pd layer and propagate there, while the Cr spin-spin correlation

3The inter-layer coupling g here exhibits a weak momentum dependence, and is thus labelled as
g~k. This is a consequence of the fact that in the real material each atom has more than one
nearest neighbour in the neighbouring layer. The coupling therefore has a spatial structure,
reflected in a momentum structure of its Fourier transform. For more details see Ref. [8].
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function appears because those holes retain a memory of the localised spin in the
Mott layer. Indeed, if the spins were not correlated at all, holes would appear in the
Pd layer with arbitrary phases on different sites, and therefore would not lead to a
coherent photoemission signal. A finite spin-spin correlation function is reflected in
the phase of the created holes, and consequently in the spectral function. In this
way the spin response of the Mott layer and the charge response of the itinerant
layer become intertwined, and photoemission is sensitive to both.

In the case of the antiferromagnetically ordered PdCrO2, the mean-field spin
correlation function is a delta function peaked at zero energy and the wavevectors
of the antiferromagnetic order ~QAFM , leading to the chromium removal spectral
function which is just a copy of the Pd removal spectral function, offset by ~QAFM :

ACr
(
~k, ω < 0

)
∼ 32g2

U2 APd
(
~k + ~QAFM , ω

)
, (5.24)

as illustrated in Figure 5.15c. It peaks at the same momenta as a band reconstruc-
ted by a weak periodic potential would, but its intensity does not depend strongly
on binding energy. This is illustrated explicitly in Figure 5.16a, in which I plot the
calculated intensity normalised at −0.7 eV, together with experimental points and
the prediction of the band folding model. The calculated variation in spectral weight
is in good agreement with the experiment. The exact slope of the reconstructed in-
tensity as a function of binding energy depends on the detailed structure of PdCrO2,
and in particular of the ratio of the nearest-neighbour and next-nearest neighbour
Kondo coupling. This is best seen by plotting the reconstructed weight for various
combinations of nearest neighbour (nn) and next-nearest neighbour (nnn) hopping;
small parameter-dependent quantitative variations are observed, although the over-
all binding energy dependence of the reconstructed weight intensity remains weak
for all choices of parameters (Figure 5.16b). The exact form of the binding energy
dependence of the reconstructed weight therefore depends on details both in the
experiment and in the theory, but the weight never changes by more than a factor
of two, in clear contrast to the ‘band folding’ model which predicts a change of two
orders of magnitude.

In addition to this agreement with experiment, the intertwined spin-charge re-
sponse theory makes an independent prediction: it states that the reconstructed
weight is a feature of the chromium one electron removal spectral function, not of
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Figure 5.16.: (a) Comparison of experiments (symbols), the band folding model
(dashed line) and the Cr spectral function calculated within the intertwined spin-
charge theory (full line). (b) The comparison of the predictions of the theory for
different ratios of nearest-neighbour and next-nearest neighbour Kondo couplings
(full lines), with that of the band folding model (dashed line).

the Pd spectral function. This is in fact a very surprising prediction, as the spectral
functions of Mott insulators are naturally associated with broad, weakly dispersing
features, while the reconstructed weight in PdCrO2 is well-defined and dispersive.
The prediction motivated us to perform resonant photoemission measurements en-
abling us to determine the atomic character of the observed states, as I describe in
the following section.

5.3.2. Orbital character of the reconstructed weight

In order to check the orbital character of the reconstructed weight we performed
resonant angle resolved photoemission measurements in the soft x-ray photon en-
ergy range, coinciding with the L2,3 x-ray absorption edge of chromium, which we
measured on the same sample. The physics behind this technique is described in
Section 2.6.6. We first used it to identify the orbital character of the dominant
features of the spectral function by comparing on- to off- resonant spectra measured
across a wide binding energy range of 4 eV (Fig. 5.17 (a, b)). Consistent with meas-
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Chapter 5 Coupling of Metallic and Mott-insulating states in PdCrO2

urements at lower photon energies, we observe the main band crossing the Fermi
level. Additionally, we observe a large resonant enhancement of spectral weight of a
very weakly dispersing and broad feature centred at approximately 2 eV below EF ,
emphasised in energy distribution curves integrated over 0 ± 0.5 Å−1 (Fig. 5.17c).
This weight would be expected in an isolated Cr-derived Mott insulator: a hole
created by photoemission has a short lifetime and cannot propagate, leading to the
broad, non-dispersive ‘lower Hubbard’ band, centred at approximately U/2 below
the Fermi level, in agreement with the DFT+DMFT calculations [8, 81], and con-
firming U ∼ 4 eV as a reasonable value for the on-site Coloumb repulsion. While the
spectral weight of the main band (IMB) shows negligible change across the reson-
ances, the integrated intensity of the weakly-dispersive feature (ILHB) tracks the Cr
L2,3 - edge x-ray absorption spectrum (Fig. 5.17d). These measurements therefore
establish both the Pd origin of the main band and the Cr origin of the lower Hubbard
band, entirely consistent with the picture of PdCrO2 as a natural heterostructure
of a nearly-free electron metal alternating with a Mott insulator.
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Figure 5.17.: Soft x-ray ARPES (T = 13 K) at photon energies of (a) 578 eV and (b)
581.7 eV, respectively tuned off- and on- resonance with the Cr L3 edge. (c) Energy
distribution curves extracted from (a, b) and integrated over 0 ± 0.5 Å−1. (d) The
intensity of the main band (IMB, extracted from fits to momentum distribution
curves at the Fermi level) and of the feature associated with the lower Hubbard
band (ILHB, extracted from energy distribution curves (c)) as a function of probing
photon energy compared to the measured x-ray absorption spectrum (XAS) across
the Cr L2,3 – edge.
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5.3 Coupling of metallic and Mott insulating layers

Our intertwined spin-charge model, however, predicts that if the Mott insulator
is coupled to a metal, its spectral weight can also be observed at lower energies in
the form of the reconstructed weight. This reconstructed weight is too weak to be
immediately obvious in Fig. 5.17(a, b), both because of the intrinsic suppression
of ∼ (g/U)2 predicted by our model, and because of the small cross section for Cr
photoemission at the soft x-ray energies. Just off-resonance the ratio of the cross
sections for Cr 3d and Pd 4d orbitals is only ∼ 0.15 [84]; for comparison, this is
∼ 100 times smaller than at 110 eV at which the data in Figure 5.1 were measured.
However, the reconstructed spectral weight is revealed by comparing momentum
distribution curves measured on- and off- resonance (Fig. 5.18a, extracted from Fig.
5.17(a, b)), demonstrating how it is in fact enhanced when the photon energy is
tuned to promote photoemission from Cr orbitals. The enhancement is made even
clearer by comparing Fermi surfaces measured on- and off- resonance (Figure 5.18(b,
c)); the copies of the Fermi surface are visible only in the resonant measurement,
strongly supporting a chromium origin of the reconstructed weight.
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Figure 5.18.: (a) Momentum distribution curves (EF ± 50 meV) extracted from dis-
persions measured at photon energies of 578 eV and 581.7 eV(shown in Fig. 5.17
(a, b)), respectively tuned off- and on- resonance with the Cr L3 edge. The MDCs
are offset to account for a small increase in background at resonance. The Fermi
surface measured (T = 13 K, integrated over EF ± 200 meV) (b) off-resonance and
(c) on-resonance with the Cr L3-edge.

An additional independent confirmation of the chromium character of the recon-
structed weight can be obtained from the photon energy dependent measurements at
non-resonant photon energies. Away from resonances the variation of photoemission
intensity with photon energy is dominantly caused by the changing overlap of the
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Chapter 5 Coupling of Metallic and Mott-insulating states in PdCrO2

radial part of the initial state wave function and the final state plane wave. This over-
lap changes with the wavelength of the final state plane wave, at a rate dependent on
the initial state wave function. We therefore compare the photon energy dependence
of the lower Hubbard band intensity with that of the reconstructed feature in the
100 − 350 eV photon energy range. They follow the same functional form (Figure
5.19a); as the lower Hubbard band is proven to be chromium derived (Figure 5.17),
this measurement strongly suggests that so is the reconstructed weight. To check
that this agreement is not an artefact of an overall intensity variation with photon
energy, in Figure 5.19b I plot the ratio of the reconstructed weight and the main
band intensity. First of all, the ratio is not constant, showing that the Pd - derived
intensity does change at a rate different to the Cr derived-intensity. Moreover, this
measured ratio follows the functional form of the ratio of the calculated Cr 3d and
Pd 4d ionic cross-sections [84]. Taken together, the resonant enhancement and the
variation of intensity as a function of photon energy at non-resonant photon energies
offer strong experimental evidence of the chromium character of the reconstructed
weight.

a b

ILHB

Reconstructed
weight (IRW)

1.0

0.0

0.5

350250150
Photon energy (eV)

I/I
(1
10
eV

)

Measured
IRW : IMB

Calc. cross-section
(Cr3d:Pd4d) x 0.023

350250150
Photon energy (eV)

0.2

0.0

0.1

R
at
io

Figure 5.19.: (a) The photon energy dependence of the reconstructed weight (IRW )
at lower photon energies closely tracks that of the Cr-derived lower Hubbard band
(ILHB). (b) The ratio of IRW to the weight of the ‘main band’ IMB, compared to
the Cr 3d : Pd 4d ionic cross-section ratio [84], scaled by a factor of ∼ 0.023.
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5.4 Conclusion and implications

The ratio of the intensities of the reconstructed weight and the main band as a
function of photon energy contains additional information. It follows the form of
the calculated ratio for Cr 3d and Pd 4d orbitals, but it is ∼ 0.02 (Figure 5.19b)
smaller. This is our best estimate of the intrinsic ratio of spectral weights of the
reconstructed and the main band feature. The intertwined spin-charge model pre-
dicts the reconstructed weight to be suppressed by ∼ 32(g/U)2 from the main band
weight (equation 5.23). Assuming U = 4 eV and the suppression of 0.02, this yields
g ∼ 0.1 eV, as estimated independently from first principles calculations. Our model
therefore agrees both qualitatively and quantitatively with the experiment.

5.4. Conclusion and implications
The combination of the weak binding energy dependence of the reconstructed weight
and its chromium character taken together rule out not only the simple band folding
model, but also other potential explanations for the observed spectral weight. For
example, diffraction of the outgoing electrons from the superlattice potential caused
by e.g. a structural distortion would lead to a reconstructed spectral weight with a
weak binding energy dependence, as observed e.g. in graphene grown on SiC [85].
However, this picture could never explain the Cr-derived character of the spectral
features; if they were due to the diffraction of the Pd-derived states, they would
exhibit Pd character. On the other hand, a very strong hybridisation between Cr
and Pd layers could explain the Cr character, but in this scenario the backfolded
weight would quickly drop away from the hybridisation points, as it does in the
band folding model. Indeed, this was the model used in Ref. [7], but gaps needed
to be as large as ∼ 1 eV to explain a backfolded weight observable at the Fermi level
(Fig. 4 of Ref. [7]), in clear contrast to both photoemission and quantum oscillation
measurements.
We can therefore be confident that PdCrO2 is indeed described by the Heisenberg-

Kondo Hamiltonian, whose parameters are experimentally constrained (equation
5.18), establishing PdCrO2 as a simple and clean model system to study the physics
arising from this Hamiltonian. The implications of our measurements and theory
are however even broader, as we were able to show that in certain circumstances
angle-resolved photoemission can be used as an energy- and momentum- resolved
probe of spin-spin correlations. The necessary condition to achieve this is coupling
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between two subsystems, one of which can support only spin excitations, and the
other one only charge excitations. This situation occurs naturally in PdCrO2 be-
cause of the close proximity of metallic and Mott insulating layers, but it could also
be engineered artificially, with the aim of investigating the structure of spin-spin cor-
relation function in systems which are not suitable for the more traditional probes,
such as neutron scattering. A case in point are the van der Waals magnets [86],
which offer the opportunity to study the magnetic ordering in a two-dimensional
limit. However, as they are only a few atomic layers thick, and often not larger than
a few micrometers in lateral size, probing them poses a considerable experimental
challenge. Is is, however, possible to stack layers of different van der Waals mater-
ials, creating the so-called van der Waals heterostructures. If a coupling between
the correlated magnet of interest and a metallic layer was achieved, ARPES could
be used to obtain otherwise inaccessible information about the spin-spin correlation
function of the magnet. More generally, our experiment and theory together point
to a type of spectroscopic signal that was not considered before. As well as motivat-
ing completely new types of experiments, this also invites revisiting known systems
in which correlated and itinerant states coexist, and a careful investigation of the
origin of any ‘replica features’ that may be observed.
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6. Rashba-like spin-split surface
states

The surfaces of PtCoO2 and PdCoO2 support states with properties very different
from those of the bulk, as discussed in the Introduction (Section 1.2.1), and shown
in Section 2.6.5 on the example of PdCoO2. The surface states found on their
CoO2 - terminated surfaces are the topic of this chapter, which I will start by
describing the experimental observations, and the conclusions that can be drawn
based on the experiments and symmetry arguments alone (Section 6.1). I will go
on to introduce the density functional theory (DFT) calculations of these surface
states performed by Helge Rosner, compare them to the experiment, and show how
this comparison was necessary to correctly interpret the calculations, but also to
motivate further measurements (Section 6.2). Both the experiment and the first
principles calculations show that the surface states exhibit a spin-splitting that is
unusually large for a system based on 3d orbitals, motivating a careful examination
of the basic principles underlying the appearance of spin-split band structures in
solids (Sections 6.3 - 6.5). This analysis, although motivated by our measurements,
in not at all specific to delafossites. In contrast, it outlines a general framework
which can be used to think about systems exhibiting spin-splitting. In section 6.4
I work with a didactic model based on p - orbitals, as originally introduced by
Petersen and Hedegård [87], which is very useful for establishing and illustrating
the main principles behind spin-splitting. In section 6.5 I discuss the generality of
the conclusions drawn from the p - orbital model, and finally, in section 6.6 I extend
the analysis to a tight binding model whose ingredients are directly relevant to the
CoO2 layer of the delafossites. I show how this model gives a new perspective on the
density functional theory calculations, and how its predictions were confirmed by
measurements on a new compound, PdRhO2 (Section 6.7). A reader more interested
in the results specifically relevant for the delafossite surface states than in the general
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Chapter 6 Rashba-like spin-split surface states

analysis of the development of spin splitting and orbital angular momentum in solids
may prefer to jump directly from section 6.2 to section 6.6, and back-refer to sections
6.3 - 6.5 as necessary.

6.1. Experimental observations

In figure 6.1 I show the surface electronic structure measured along the two high
symmetry directions of PtCoO2 and PdCoO2 , as well as the corresponding Fermi
surfaces. In both compounds there are two surface hole-like bands centred at the
Γ point of the Brillouin zone, which I will refer to as the inner (smaller kF ) and
outer (larger kF ) band. The outer band forms a hexagonal Fermi surface of the
same orientation as the zone, while the Fermi surface of the inner band is circular,
consistent with the previous observation in PdCoO2 [12]. The surface states in
PtCoO2 and PdCoO2 are very similar, so the discussion below is valid for both
materials. For simplicity the majority of data in this chapter is shown for PtCoO2

only; equivalent plots for PdCoO2 , as well as numerical values extracted from them,
can be found in Appendix E. I will point to the Appendix when appropriate, but
referring to it is not necessary to follow the rest of this chapter.

6.1.1. Dispersions

The high resolution dispersions (Figure 6.1 a, b, d, e) can be used to determine the
Fermi crossing vectors (kF ), as well as Fermi velocities (vF ) along the high symmetry
directions. In Figures 6.2(a, d) I show zoom-ins of the data measured close to the
Fermi level along the Γ −M and the Γ − K directions in PtCoO2 (same data as
in Figure 6.1 (a, b)). The dots mark the positions of Lorentzian peaks fitted to
extracted momentum distribution curves (MDCs) as a function of binding energy;
the same extracted points are shown in Figures 6.2(b, e). The dispersions are linear
on the energy scale of ∼ 50 meV, however a slight curving away from this linear trend
can be seen in the immediate vicinity (∼ 10 meV) of the Fermi level. This apparent
change of slope is an artefact both of Coloumb interactions between the outgoing
electrons, known as the space charge effect [55], and the finite resolution. The space

138



6.1 Experimental observations

-0.2

-0.1

0.0

E-
E F

(e
V)

-0.2

-0.1

0.0

E-
E F

(e
V)

-1 0 01
kx (Å-1)

-1 1
kx (Å-1)

-1 0 1
ky (Å-1)

-1

0

1

k y
(Å

-1
)

-1

0

1

k y
(Å

-1
)

MM Г KK Г
a b c

d e f

M K

M K

PdCoO2

PdCoO2PdCoO2

PtCoO2 PtCoO2

PtCoO2

Figure 6.1.: Overview of the experimental results on the spin-split surface states of
PtCoO2 (a, b, c) and PdCoO2 (d, e, f). Dispersions in a and d are measured along
the Γ−M direction, while those in b and e are along Γ−K. The purple lines in a,
b, d and e are momentum distribution curves integrated over EF ± 5 meV. Fermi
surfaces (EF ± 5 meV) of the two compounds are shown in panels c and f . All the
data were measured using photon energy of 110 eV and p-polarised light.

charge effect can be minimised by reducing the photon energy, light intensity1 or
increasing the light spot size. The non-uniform surfaces of delafossites required the
use of the smallest possible light spot, and the photon energy was chosen to maximise
the matrix element for photoemission from Co 3d orbitals. We did reduce the light
intensity as much as possible while still allowing collecting high-quality data in a
reasonable timescale. Nonetheless, special care needs to be taken in analysis not
to be misled by the artificial curving near the Fermi level when extracting band

1The synchrotron radiation is not continuous, but arrives in pulses, as determined by electron
bunches in the synchrotron ring (see section 2.6.1). The relevant parameter for space charge
is actually the number of photons per pulse, rather than the average intensity. However, from
the point of view of the user, tuning the number of photons per pulse is equivalent to tuning
the intensity.
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slopes and Fermi momenta. Specifically, it is crucial to decide on the fitting range
which is large enough for the fit to be reliable, but includes only the linear part of
the band, as described in detail in Appendix C.2. This has been done individually
for every dispersion, measured on three different samples, the data from which are
shown in Figure D.2. Examples of such linearised bands, with slopes and crossing
points determined by careful fitting, are shown by black lines in Figures 6.2(b, e),
while extracted values of Fermi momenta and velocities are listed in Table 6.1. The
values of both velocities and momenta confirm that the inner band, unlike the outer
one, is isotropic. The equivalent plots and extracted values for PdCoO2 are shown
in Figure D.1 and Table D.1 of Appendix D.

inner outer

Γ
−
K

kF
(
Å−1

)
0.50± 0.01 0.64± 0.02

vF
(
eVÅ

)
0.40± 0.01 0.31± 0.02

m/me 9.5± 0.5 15± 1

Γ
−
M

kF
(
Å−1

)
0.50± 0.01 0.60± 0.01

vF
(
eVÅ

)
0.40± 0.02 0.41± 0.02

m/me 9.6± 0.5 11.5± 0.8

Table 6.1.: The Fermi momenta, velocities and effective masses of the two surface
state bands in PtCoO2, averaged over three samples, the measurements from which
are shown in Figure D.2. The uncertainties reflect both the measurement and fitting
precision, as well as sample-to-sample variation. The equivalent data extracted from
PdCoO2 are listed in Table D.1, while the measurements underlying it are shown in
Figure D.3.
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Figure 6.2.: (a, d) Dispersion measured along the Γ−K and the Γ−M directions
in PtCoO2 (110 eV, p-polarised light), respectively. The dots in (a, b, d, e) are
the peak positions of Lorentzian fits to extracted MDCs. The lines in (b, e) are
linearised bands, defined by fitted band slopes and Fermi momenta of the relevant
dispersion. (c, f) The full width at half maximum of Lorentzian fits to the MDCs as
a function of binding energy. Equivalent plots for the two high symmetry directions
in PdCoO2 are shown in Appendix D, Figure D.1.
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The effective quasiparticle masses of the inner (outer) band, calculated from
the extracted band slopes and the Fermi vectors, are found to be (9.5± 0.5)me

((15± 1)me) along the Γ−K direction, and (9.6± 0.5)me ((11.5± 0.8)me) along
the Γ −M direction (Table 6.1). The extracted masses are rather large, especially
compared to the free-electron like bulk band. It is evident from the dispersions that
the mass is enhanced by interactions. Especially prominent are kinks characteristic
of electron-boson coupling, seen at the binding energy of ∼ 50 meV (cf. simulated
spectra in Figure 2.8). However, if this were the only type of interaction the rate of
increase of the linewidth would be expected to suddenly decrease at the character-
istic energy of the boson. In contrast, the extracted full width at half-maximum of
the Lorentzian fits (FWHM, Figure 6.2c) does not show any sharp features at the
kink energy, pointing to the influence of electron-electron interactions. While the
presence of both types of interactions is a robust experimental fact, estimating their
numerical strength requires making an assumption about the bare, non-interacting
band.

6.1.2. Fermi Surfaces

In Figure 6.3a I show the Fermi surfaces resulting from the surface bands of PtCoO2 ,
with dots representing the Fermi momenta extracted by radially fitting momentum
distribution curves (MDCs) around the measured Fermi surface. To analyse the
shape of the Fermi surface, it is useful to plot the extracted momenta as a function
of angle ϕ (dots in Figure 6.3b). Clearly visible oscillations in the outer band reflect
the 6-fold symmetry of the larger Fermi surface. In contrast, the inner band Fermi
vector does not appear to depend on the angle in a systematic way. These statements
can be made more quantitative by fitting the extracted momenta as a function of
angle to a periodic function reflecting the 6-fold symmetry, as was already done for
the bulk Fermi surface (Section 4.1):

kF (ϕ) = k0 + k6,0 cos (6ϕ) + k12,0 cos (12ϕ) . (6.1)

The results of fits to the two bands are shown as lines in Figures 6.3(b, c); averaged
parameters from fits to Fermi surfaces in two samples are listed in Table 6.2. In
an ideal hexagon the first warping term (k6,0) is 5.8% of the constant term (k0), in
the outer band in PtCoO2 it is 3.3%, while in the inner band it is only 0.7% of the
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constant term, which is within the error of the experiment. The next warping term,
k12,0, is barely larger than the experimental error for the outer band and negligible
for the inner band. All higher terms are negligible for both bands.
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Figure 6.3.: (a) Measured Fermi surface of PtCoO2, with dots representing the
Fermi momenta extracted by radially fitting MDCs. (b) Extracted momenta (dots)
as a function of angle ϕ around the Fermi surface, with a sinusoidal fit (lines)
describing the Fermi surface shape (Equation 6.1). (c) The same fit as in b (lines),
superimposed on measured data to demonstrate good agreement. The equivalent
plots of the data extracted from PdCoO2 are shown in Figure D.4.

inner outer
k0 0.5248± 0.0008 0.6483± 0.0007
k6,0 -0.003± 0.001 −0.022± 0.001
k12,0 0.000± 0.001 0.0011± 0.0009

Table 6.2.: Parameters of fits of a periodic function (Equation 6.1) to the inner
and outer surface state Fermi surfaces of PtCoO2 . An example of such a fit is
shown in 6.3(b, c). The quoted values are weighted averages of values extracted
from two samples. The equivalent parameters extracted from the measurements on
PdCoO2 are listed in Table D.2.

While the agreement between the measured data and the sinusoidal fit for the
outer surface demonstrated that the above analysis is a good way to parametrise
the Fermi surface shape, it is important to remember that the numerical values of
Fermi momenta extracted from the maps are systematically overestimated, due to
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the combined effect of the finite integration window of the Fermi surface (EF ±
5 meV) and the space charge. Comparison with the momenta extracted from fits to
dispersions (Table 6.1) suggests this is an effect on the order of 4% for both bands.
This information is relevant for extracting the areas of the two Fermi surfaces, as it
means that direct integration of the fitted data will give an area 8% larger than the
intrinsic one. Once this is taken into account, the best estimates for the areas of the
inner and outer Fermi surface are 15% and 23% of the Brillouin zone, respectively,
adding up to 38%. Assuming spin degeneracy, this would suggest a carrier density
of ∼ 0.78 holes per unit cell. While effective hole-doping of the surface transition
metal oxide layer with respect to the insulating bulk is not unexpected, a simple
ionic argument outlined in Section 1.2.1 would suggest there should be 0.5 holes per
unit cell. The total charge of the surface states is therefore the first experimental
indication that the surface states might not be spin degenerate.

6.1.3. Spin-splitting

A direct confirmation of the lifting of the spin degeneracy comes from our spin
resolved ARPES measurements. We measured the expected value of spin perpen-
dicular to momentum along the Γ−K direction of the zone (turquoise line in Figure
6.4a), and found that the spin polarisation is indeed finite, and of different sign on
the two bands (Figure 6.4b).
The values of intrinsic spin polarisation are difficult to extract due to the energy

resolution of spin resolved ARPES, which is ∼ 100 meV in the settings used here
(Section 2.6.7, [61]), about twice the energy of the kink in the dispersions (Figure
6.2a). Nonetheless, much can be deduced about the spin texture of the surface states
from this experiment alone. Since all Γ−K directions in the zone are equivalent, we
know there is non-zero spin polarisation perpendicular to momentum along at least
three in-plane directions in the zone, as illustrated in Figure 6.4c. In other words, the
spin direction becomes “locked” to momentum, circling along the Fermi surface in
opposite direction on the two bands. Such spin-momentum locking is reminiscent of
the Rashba spin-splitting that is often observed on surfaces of systems with strong
spin-orbit coupling. However, the states observed here are features of the CoO2

terminated surfaces, for which the bare spin-orbit coupling is rather weak, only
70 meV for Co 3d orbitals [88]. For comparison, the (111) surface of copper, another
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Figure 6.4.: (a) Measured Fermi surface of PtCoO2. The turquoise line indicates the
cut in momentum space along which the spin polarisation was measured. (b) Spin-
resolved ARPES measurements (hν = 65 eV , p-polarised light) of an in-plane spin
polarisation (〈Sy〉) of the Fermi surface for the cut shown in a. Error bars reflect
an estimate of the uncertainty in extracting the spin polarisation from the experi-
mental measurements as a function of in-plane momentum, incorporating statistical
and systematic errors. (c) Fits to the Fermi surfaces (same as Figure 6.3c), with
arrows representing the information on the direction of spin polarisation that can
be extracted based on experiment and symmetry arguments alone. The length of
the arrows is arbitrary.

3d orbital system with similar spin-orbit coupling of 100 meV, supports Rashba spin-
splitting, but the size of the splitting observed at the Fermi level is only 0.0057 Å−1

[89], and would not be resolvable at all in our experiment. The splitting in PtCoO2

is as large as 0.13 Å−1 and 0.1 Å−1 along the Γ−K and Γ−M directions, respectively.
This magnitude is comparable to some of the largest Rashbla-like splittings known
[90, 91], found in systems containing Bi 6p orbitals which have a very large atomic
spin-orbit coupling of 1500 meV.

The above comparison of our experimental observations and well-known systems
in the literature therefore suggests that the CoO2 terminated surfaces of delafossite
oxides support unusually large spin-splitting, the origin of which needs to be under-
stood. A first thought might be that there is significant admixing of Pt 5d states,
which have much larger atomic spin-orbit coupling. Additionally, we may wonder
if correlation effects play a significant role in enhancing the splitting, or if surface
distortions are relevant. A way to address these questions is to perform density
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Chapter 6 Rashba-like spin-split surface states

functional theory calculations of the surface electronic structure. This allows us to
directly ask questions about the orbital character, to artificially change the surface
structure, and to eliminate correlation effects.

6.2. Comparison of DFT and experiment

The surface electronic structure was calculated for a symmetric slab, containing nine
CoO2 and eight Pt layers. It was terminated with CoO2 layers on both sides, with
a vacuum gap of 15 Å above the surface. The ideal crystal structure was used, with
no surface relaxation. The corresponding band structure is shown in Figure 6.5a,
where the colour represents the wave function weight in the surface CoO2 layer.
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Figure 6.5.: (a) Electronic structure from the DFT supercell calculations projected
onto the first CoO2 layer. There are two bands in the bulk band gap in the vicin-
ity of, but not crossing the Fermi level. (b) The experimental Fermi momenta of
the surface state (dots) match the calculated wavevectors at the binding energy of
110 meV. (c) DFT electronic structure, shifted by 110 meV to match the experiment
at the Fermi level.

6.2.1. Setting the Fermi level

It is evident that the calculated band structure shown in Figure 6.5a cannot match
the experiment: there are no surface bands at the Fermi level, in clear contrast to
the measured electronic structure. However, there are two bands just below the
Fermi level which are mainly isolated from bulk bands, and disperse in the same
direction as the experimentally observed surface states. In fact, as will soon become
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6.2 Comparison of DFT and experiment

clear, these are the bands that are observed experimentally to cross the Fermi level.
Their occupation is an artefact of the slight non-stoichiometry of the slab, necessary
to make the slab symmetric: a stoichiometric slab would have the same number of
Pt and CoO2 layers, while a slab terminated with CoO2 layers on both sides has an
additional CoO2 layer. The non-stoichiometry is not expected to change the shape
of the bands, but it does necessarily affect their filling, as well as relative energies
of different bands. We therefore set the Fermi level in the calculations to match
the experimental crossing vectors of the surface states (Figure 6.5b). Applying a
shift of +110 meV to all the bands (Figure 6.5c) results in a good agreement of the
calculated and measured surface states at the Fermi level. However, it causes the
hole-like bulk bands near M to intersect the Fermi level in the slab calculation,
contrary to the case for the true bulk electronic structure (Figure 4.1). I will neglect
these pockets in plotting the calculated Fermi surfaces.

6.2.2. Fermi velocities and interactions

The fact it is possible to set the Fermi level in the calculation such that the Fermi
momenta of both bands match the experiment means the interactions are not affect-
ing the relative filling of the two bands. However, they decrease the Fermi velocities,
as evident in the measured dispersions (Figure 6.1 a, b, d, e), thus increasing the
effective masses. The mass renormalisation, quantified through λ (equations 2.19,
2.20) can be estimated by comparing the calculated and measured Fermi velocities:

λ = 1− mexp

mDFT
= 1− vDFTF

vexpF

. (6.2)

To determine the DFT Fermi velocities, I extracted the band slope as a function of
energy in the vicinity of the Fermi level (Figure 6.6), and fitted it to a quadratic
function. It is worth emphasising that the fact a quadratic function was needed
to correctly describe the band slope in the range of EF ± 50 meV means the use
of a linear or a parabolic bare band, as is often done, would introduce systematic
errors here. The fits are used to extract the band slope at the Fermi level, i.e. the
Fermi velocity, as well as to estimate the error of that Fermi velocity caused by the
uncertainty in the Fermi level, assumed to be ±5 meV (Table 6.3).
The mass renormalisation extracted in this way is smaller for the inner band (λ =
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Figure 6.6.: Band slope of for the two bands along the two high symmetry directions,
as a function of energy. The lines are quadratic fits to the plotted range, used to
extract the value at EF and the error.

0.4) than the outer band (λ
(
Γ−M

)
= 0.6, λ

(
Γ−K

)
= 0.7) along both directions

(Table 6.3). If really true, this is a very interesting result which invites several
questions. Is the self-energy intrinsically k-dependent, or is it different for different
orbital states found on the two bands? Is the electron-electron or the electron-
phonon interaction the one responsible for the difference in the renormalisation of
the two bands? However, reliably disentangling the influence of electron-electron
and electron-phonon interactions is known to be a difficult problem even when the
bare band is well known [92], made even more complicated in delafossites by the
close proximity in momentum space of the two surface-state bands and the bulk
band. Additionally, the finite band curvature in the range in which the fits were
performed affects the extracted values of velocities. A different curvature of the
outer and inner band could contribute to the apparent difference in Fermi velocity.
Answering detailed questions about self-energies will therefore require both more
reliable calculations, and experiments with better resolution, possibly using laser
photoemission.
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6.2 Comparison of DFT and experiment

vDFTF

(
eVÅ

)
λ

inner, Γ−K 0.53± 0.03 0.4± 0.1
inner, Γ−M 0.56± 0.03 0.4± 0.1
outer, Γ−K 0.53± 0.01 0.7± 0.1
outer, Γ−M 0.66± 0.02 0.6± 0.1

Table 6.3.: Fermi velocities extracted from DFT (vDFTF , see figure 6.6), and mass
renormalisation λ (Equation 6.2) for the two bands along the two high symmetry
directions.

6.2.3. Spin polarisation

As well as reproducing the basic band dispersion, the calculation should show the ex-
perimentally observed spin polarisation. To check for this, I have coloured the bands
according to the expected value of spin (Figure 6.7). Non-vanishing spin polarisa-
tion is found in-plane for the direction perpendicular to the momentum (Figure 6.7a,
〈S⊥〉), as well as out-of plane (Figure 6.7b, 〈Sz〉). The in-plane component parallel
to the momentum (

〈
S‖
〉
, not shown) vanishes along the high symmetry directions.

As well as the chiral in-plane component consistent with the experiment, the cal-
culation also finds a smaller out-of-plane spin polarisation at the Fermi level. This
is summarised in Figure 6.7c, in which the length of arrows encodes the calculated
〈S⊥〉, and the colour the 〈Sz〉. 〈S⊥〉 is ∼ 0.9~/2 at the Fermi level for both bands
along both high-symmetry directions, while 〈Sz〉 vanishes along the Γ−M direction.
Its absolute value is approximately 0.2~/2 for both bands along the Γ−K direction.

Once the basic agreement with the experiment has been established, the calcula-
tion can be used to gain further insight in the bands and wave functions, in particular
away from the Fermi level, where the correlations broaden out the experimental fea-
tures. The band structure plots in Figures 6.7(a, b) show that the spin-splitting
persists throughout the bandwidth of the relevant bands, vanishing only at the Γ
and M points of the zone, where a combination of translation and time-reversal
symmetry ensures spin degeneracy. While the direction of the polarisation changes,
from out-of plane in the vicinity of the K point, towards dominantly in-plane in the
rest of the zone, the expected value of the spin operator is always close to the max-
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Figure 6.7.: DFT band structure, coloured according to the spin projection (a) in
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counterclockwise rotation) and (b) in the out-of-plane direction (〈Sz〉). (b) Fermi
surface calculated by DFT, coloured according to 〈Sz〉, with the length of arrows
encoding 〈S⊥〉.
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Figure 6.8.: (a) Expected value of in-plane spin perpendicular to momentum (〈S⊥〉,
circles) and out-of plane spin (〈Sz〉, dashes). (b) Energetic splitting between the
spin-polarised bands. Both are calculated by DFT.

imum possible value, ~/2 (Figure 6.8a). This is true even in the immediate vicinity
of the Γ and M points; the spin polarisation does not decrease continuously, but
stays large as long as the splitting is allowed. In contrast, the bands have to be con-
tinuous, and consequently the energetic splitting between them decreases smoothly
toward the time-reversal invariant points (Figure 6.8b). The requirement for the
splitting to vanish at the Γ and M points means it needs to reach a local maximum
between them, which indeed happens, with a splitting of 74 meV. The momentum
dependence of the splitting is more complicated along the Γ−K direction, where it
increases from zero at Γ to a maximum value of 87 meV, followed by a local minimum
at the momentum where the spin changes orientation from in-plane to out-of-plane,
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6.2 Comparison of DFT and experiment

to another maximum of 64 meV at K. The most striking feature of the momentum
dependence of the spin-splitting is the size it can assume; the splitting is on the
order of the atomic spin-orbit coupling of Co 3d orbitals (70 meV) in a large part of
the zone, reaching a maximum 25% larger than the atomic value.

6.2.4. Influence of Pt spin-orbit coupling

The large splitting quite naturally raises the question of the importance of the Pt 5d
orbitals, whose local spin-orbit coupling of 550 meV is much larger than that of Co 3d
orbitals, in determining the spin-splitting. The similarity of the data in the vicinity
of the Fermi level in PtCoO2 and PdCoO2 (Figure 6.1) already suggests the A-site
contributions in negligible. To address the issue of the Pt influence across a wider
binding energy range, I first plot the calculated wave function weight contribution
of the Pt orbitals in the two bands (Figure 6.9a).
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Figure 6.9.: (a) The percent of wave function weight coming from Pt orbitals. (b)
An estimate for the minimum size of the splitting caused by Co SOC, obtained by
subtracting the Pt weight (plotted in (a)) multiplied by the atomic SOC of Pt 5d
orbitals (550 meV) from the full spin-splitting (Figure 6.8b)

Neglecting the isolated points where band crossings make it difficult to define
individual bands, the Pt weight varies between 1% and 5%, and is about 2.5% at
the Fermi wavevectors. A very naive estimate of its contribution to spin-splitting can
be obtained by multiplying the Pt 5d wave function weight by the Pt 5d spin-orbit
coupling constant. Subtracting this value from the total spin-splitting gives a rough
estimate of the lower bound for the CoO2 contribution to the energetic splitting
(Figure 6.9b). The ‘CoO2 splitting’ estimated in this way still reaches the full
value of Co spin-orbit coupling at its maximum, and is as high as 57 meV at the K
point. The above analysis neglects the orbital character (more precisely, the value
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Chapter 6 Rashba-like spin-split surface states

of
〈
~L · ~S

〉
) of the admixed Pt bands, and is therefore not quantitatively correct.

Nonetheless, the simple estimate it provides is enough to rule out Pt contribution as
a driving mechanism of the splitting, and confirms that the spin-splitting is unusually
large.

6.2.5. Spin-splitting at the K point

The large spin-splitting found in DFT along the Γ−K direction of the zone motivated
us to carefully measure the dispersion along the same direction in both PtCoO2 and
PdCoO2 ; the results are shown in Figure 6.10. Although the data are broadened
by interactions, we find a clearly resolvable splitting of ∼ 60 meV at the K point
in both compounds. The fact the splitting is the same in the two compounds with
different A - site cations offers additional, purely experimental, evidence that the
strength of the spin-orbit coupling of the A-site cation is not the origin of the large
spin-splitting.
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Figure 6.10.: Spin-split surface states of (a) PtCoO2 and (c) PdCoO2 measured along
the Γ − K direction. The inset in a shows the first two Brillouin zones, with the
purple line indicating the direction along which the measurements were taken. k‖ is
the value of in-plane crystal momentum along this direction and kK the momentum
at the K point. Energy distribution curves (EDCs) for for k/kK = 1 ± 0.05 are
shown in (b) and (d) for PtCoO2 and PdCoO2, respectively.
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6.3 Spin-splitting

The observed splitting size is consistent with the DFT calculations, proving once
again that the DFT correctly captures essential features of the spin-splitting. How-
ever, it is also important to note that the mean binding energy of the two bands at
the K point is 200 meV, while the calculated value is 140 meV. Generically, inter-
actions are expected to shrink the bandwidth, not extend it as appears to be the
case here. This discrepancy is not so surprising given the approximations used in
the calculations, but it does warn against over-reliance on the calculation for the
extraction of quantitative interaction parameters.

6.2.6. Conclusions from experiments and DFT

The agreement between the experiment and the density functional theory calculation
is very good, but this does not offer direct insight into the basic physics underlying
the observed phenomenon. Nonetheless, it does allow us to draw a few important
conclusions. First of all, the fact that the DFT calculations capture the relevant
physics means that the correlations are not driving the spin-splitting. Furthermore,
the calculations are performed for an ideal slab without surface relaxation, so surface
distortions of the crystal structure can almost certainly also be ruled out as a cause
of the large splitting. Finally, both the experiment and the calculations confirm
that the large spin-orbit coupling of Pt 5d orbitals is not significantly contributing
to the observed spin-splitting. Taken together, these findings suggest that the key
physics of the large splitting is contained in a bulk-like CoO2 layer placed at a
surface, and can be understood in a single-particle picture. This motivated me to
revisit the question of how spin-splitting arises at all (Section 6.3), and to investigate
minimal tight binding models (Sections 6.4 and 6.6) with the aim of isolating the
main ingredients necessary to achieve the observed large spin-splitting.

6.3. Spin-splitting

6.3.1. Symmetry requirements

In the vast majority of solids spin degeneracy is protected by a combination of time
reversal and inversion symmetry. The time reversal symmetry ensures degeneracy
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of states of opposite momentum and opposite spin:

E
(
−~k, ↑

)
TR= E

(
~k, ↓

)
, (6.3)

while the inversion symmetry requires degeneracy of states of opposite momentum,
but same spin:

E
(
−~k, ↑

)
inv= E

(
~k, ↑

)
. (6.4)

Taken together, these symmetries ensure that there are two degenerate states of
opposite spin at every momentum:

E
(
~k, ↑

)
= E

(
~k, ↓

)
. (6.5)

This requirement can be lifted in two ways, either by breaking time reversal sym-
metry or by breaking inversion symmetry. If time reversal symmetry is broken, the
resulting spin-split band structure causes an imbalance in the number of spin-up and
spin-down electrons, producing an overall magnetic moment (Figure 6.11(a, b)).
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kx

kyE E
a b c d

kxkx

Figure 6.11.: Schematic spin-split band structures (a, c) and Fermi surfaces (b, d).
Spin-splitting of a spin-degenerate band (dashed line) is allowed either due to the
breaking of time reversal symmetry (a, b) or inversion symmetry (c, d). Blue arrows
mark the direction of spin on the spin-split Fermi surfaces.

If time reversal symmetry is preserved, but broken inversion symmetry allows the
band structure to become spin-split, the energetic splitting and spin polarisation
direction have to be momentum dependent (Figure 6.11(c, d)). This is a direct
consequence of the time reversal condition, which requires the states of opposite
momentum to have opposite spin, without creation of any overall magnetic moment.
In particular, the splitting needs to vanish at the zero momentum Γ point of the
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6.3 Spin-splitting

zone, as is evident both in the model band structure shown in Figure 6.11c and in
the DFT band structure of PtCoO2 (Figure 6.5c).
In addition to this degeneracy at the Γ point, the PtCoO2 band structure is also

spin-degenerate at the M point of the zone. This is not accidental; it follows from
time reversal symmetry combined with the periodicity of the lattice. The momenta
related by inverse lattice vectors (~G) are equivalent:

E
(
~k − ~G, ↑

)
= E

(
~k, ↑

)
. (6.6)

While true for every point in momentum space, this statement is especially relevant
for a subset of momenta for which ~k = ~G/2, such as the M point of the hexagonal
Brillouin zone (Figure 6.12a). For those points ~k − ~G = −~k , so the translation
invariance condition (Equation 6.6) is formally equivalent to the inversion sym-
metry condition (Equation 6.4). In combination with time-reversal symmetry it
thus ensures the spin degeneracy at those points in momentum space, called the
time-reversal invariant momenta (TRIM).

a b c d
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Г
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K'
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Figure 6.12.: (a) Three neighbouring Brillouin zones, and the two inverse lattice
vectors ~G1 and ~G2, showing how ~kM = ~G/2 for theM point of the zone. Considering
two neighbouring Brillouin zones makes it clear why there can never be any (b) chiral
or (c) radial in-plane spin polarisation at the K-point, but out-of plane polarisation
is allowed (d).

Furthermore, a combination of time-reversal symmetry and periodicity forbids
in-plane spin polarisation at the K point of the zone. This is made obvious by con-
sidering spin polarisation in two neighbouring zones. If there were any, for example,
clockwise chiral in-plane spin polarisation (Figure 6.12b), it would assume the dir-
ection of red arrows in the first zone and green arrows in second zone; clearly there
is no way to make the spin polarisation direction consistent at the points common
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to both zones. The same is true for radial polarisation (Figure 6.12c). In contrast,
out-of-plane polarisation is allowed, as shown in Figure 6.12d. This is of course
consistent with the findings of density functional theory in PtCoO2 ; bands are spin-
split at the K point, but the spin polarisation is purely out-of-plane (Figures 6.7(a,
b) and 6.8(a)).

6.3.2. Spin dependent Hamiltonian

The above discussion outlines the cases in which spin-splitting is not forbidden by
symmetry, but it does not address the question of whether it will actually take
place, and by which mechanism. For a band structure to become spin-split, there
needs to be a term in the Hamiltonian which can couple to spin; it is important
to understand its physical origin and magnitude. Neglecting exchange interactions,
spin can directly couple only to magnetic fields, absent in the time-reversal invariant
problem considered here. However, electric and magnetic fields transform into each
other under the Lorentz transformation. Consequently, a spin moving with velocity
~v in a static electric field ~E experiences an effective magnetic field:

~Beff = − 1
c2~v × ~E. (6.7)

For an electron spin this results in a Zeeman coupling term:

HZ = −~µ · ~Beff = e

mec2

(
~v × ~E

)
· ~S, (6.8)

where ~µ and ~S are the magnetic moment and spin of the electron, respectively, and
c is the speed of light. In addition to an electric field due to nuclear charge which
is present in every material, the effect of a surface electric field can be relevant for
surfaces states.

Surface electric field

Perpendicular to every surface there is an electric field ~E = Eẑ, caused by the
potential difference between the sample and vacuum, i.e. the work function. The
transformation of the surface electric field into an effective magnetic field is an
appealing way to explain spin-splitting, as it quite naturally incorporates both the
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6.3 Spin-splitting

symmetry breaking at the surface, and the coupling of the spin and momentum
direction in a single term in the Hamiltonian.
The magnitude of the field can be estimated as a ratio of the work function and the

distance over which the potential changes, which is found to be on the order of the
Fermi wavelength in the jellium model. For gold (work function W = 4.3 eV, Fermi
wavelength∼ 5Å), the field is on the order of∼ 1 eV/Å. Using this value the splitting
estimated according to equation 6.8 is 10−6 eV [87], while the measured value at the
(111) surface of gold is 100000 times larger, 0.11 eV [93]. This discrepancy of several
orders of magnitude rules out the effective magnetic field arising from the surface
electric field as a cause of spin-splitting.

Spin-orbit coupling

Another electric field present in all solids is the Coloumb field of the nuclear charge:

~EC = 1
e
~∇VC = 1

e

dVC
dr

~r

r
, (6.9)

which results in the well known spin-orbit coupling term in the Hamiltonian [94]:

HSOC = 1
2

1
m2
ec

2
1
r

dVC
dr

~L · ~S = λ (r) ~L · ~S, (6.10)

where ~L = ~r × ~p is the angular momentum operator2. Given its atomic origin, it is
reasonable to first estimate the strength of spin-orbit coupling for an isolated atom,
where it acts as a weak perturbation on the central Coulomb potential. The position-
dependent part of the coupling can thus be estimated using the unperturbed atomic
wave functions, Ψnl:

λ = 1
2

1
m2
ec

2

〈
Ψnl

∣∣∣∣∣1r dVCdr
∣∣∣∣∣Ψnl

〉
= 1

2
1

m2
ec

2
1

4πε0
Z
〈

Ψnl

∣∣∣∣ 1
r3

∣∣∣∣Ψnl

〉
, (6.11)

2This is actually half the value that would be obtained by simply combining the Coulomb field
(equation 6.9) and the general expression for the coupling of a moving spin and static electric
field (equation 6.8). The additional factor of 1/2 is a consequence of a relativistic kinematic
effect called the Thomas correction, which is related to the fact the energy is evaluated in a
rotating coordinate system [94, 95].
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where Z is the nuclear charge. It is enough to know that the size of an electron orbit
scales as the ratio of the Bohr radius (aB = (4πε0~2)/(mee

2)) and nuclear charge to
reach an estimate for the strength of spin-orbit coupling:

λ ∼ α2Z4 Ry
~2 , (6.12)

where α = e2/ (4πε0~) = 1/137 is the fine structure constant3. A proper calculation
[96] gives the same trend, with a prefactor dependent on quantum numbers n and l:

λnl = 1
n3l

(
l + 1

2

)
(l + 1)

α2Z4 Ry
~2 . (6.13)

A striking feature of the above expression is the strong dependence of the spin-orbit
coupling on the nuclear charge, Z4. However, using this dependence to estimate
the relative strength of spin-orbit coupling in compounds containing different atoms
would be very misleading. First of all, the quantum numbers n and l of the out-
ermost electrons, most relevant for material properties, change as a function of Z.
Furthermore, the above argument neglects the screening of the nuclear charge by
core electrons. The wave function of an outermost electron in an atom spreads
from the core region (rcore ≤ aB/Z) where there is no screening, to the outer region
(rout ≥ aB) where only the charge of one proton remains unscreened, and the wave
function resembles the one of hydrogen, with Z = 1. Landau and Lifshitz [97] gave
an estimate for the scaling of the spin-orbit coupling strength for the outermost
electrons with Z, without worrying about any details of the wave function. They
noticed that the dominant contribution to the spin-orbit coupling comes from the
core region where the potential gradient is the strongest, and where the λ ∼ Z4

scaling is valid. Requiring only the continuity of the wave function between the core
and the outer region, they found that the probability of finding an electron in the
core region scales as 1/Z2. The spin-orbit coupling for outermost electrons is thus

3This is in fact the origin of the term ‘fine structure constant’; while atomic spectra are dominantly
governed by the Coloumb interaction, making Rydberg (1 Ry = 13.6 eV) the relevant energy
scale, the spin-orbit interaction gives rise to their fine structure, with level splittings reduced
by the factor of α2.
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expected to obey an overall scaling of

λout ∼ α2Z2 Ry
~2 . (6.14)

These simple estimates are useful to gain physical intuition, but it is important to
check how well they describe real atoms. Shanavas et al. [98] compared them with
the values of spin-orbit coupling calculated using Hartree - Fock wave functions [99],
and found that the Z4 scaling works reasonably well for inner electrons with specific
values of n and l, although expression 6.13 does always overestimate the magnitude
of the coupling because of the neglected screening. The Z2 scaling describes the
rough overall systematic variation of the spin-orbit interaction strength of the out-
ermost electrons, although it clearly cannot capture the specific atom-to-atom and
orbital-to-orbital variations (Figure 6.13). As evident in Figure 6.13, the strength
of atomic spin-orbit coupling for the outermost electrons in d orbital systems varies
between ∼ 10 meV and ∼ 1 eV (10−3 Ry and 10−1 Ry). These values are also relevant
for atoms in solids, as the core atomic region is not significantly affected by bond-
ing. Unlike the surface electric field, the energy scale of atomic spin-orbit coupling
is large enough to influence band structures. It is the main mechanism of includ-
ing spin in time reversal symmetric Hamiltonians, and crucial for spin-splitting, in
keeping with received wisdom that spin-splitting is larger in systems with larger
spin-orbit coupling.

6.4. Model Hamiltonian: p orbitals on a triangular
lattice

It is now clear that the underlying Hamiltonian of a spin-split band structure needs
to contain an inversion symmetry breaking term (HISB) and a spin-orbit coupling
term (HSOC). Petersen and Hedegård [87] used a tight-binding model incorporating
both of these to describe the spin-split surface states on the (111) surface of gold;
a similar approach has been used many times since [98, 100]. I will reproduce
the original model constructed by Petersen and Hedegård, containing p orbitals on
a triangular lattice, starting from the kinetic Hamiltonian parametrised using the
Slater-Koster model, as described in Section 3.1. I will then separately add an
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Figure 6.13.: Dependence of the spin-orbit coupling strength λnl for atoms as a
function of the atomic number Z. The results of Herman and Skillman [99], calcu-
lated using the Hartree-Fock method (coloured lines and symbols) are compared to
the hydrogenic Z4 dependence for the 3d series (equation 6.13, upper dashed line),
and the Landau-Lifshitz Z2 scaling (lower dashed line). Outermost electrons are
indicated by the circles and the shaded area. Reproduced from reference [98].

inversion symmetry breaking term and a spin-orbit coupling term, to study how
each of them influences the band structure. Finally, I will combine all the terms to
see how spin-splitting arises, and how its size depends on the relative strength of
the model parameters. The simplicity of this model makes it a useful starting point
to establish general principles.

6.4.1. Kinetic Hamiltonian

The kinetic Hamiltonian describing hopping between orbitals localised on different
lattice sites is generically given by:

HK =
∑
ij,αβ

tαβ (ϑij) a†α,iaβ,j, (6.15)

where a†α,i (aα,i) is a creation (annihilation) operator for an electron on site i in the
orbital α, ϑij is the angle between the line connecting sites i and j and the x axis,
while tαβ (ϑij) denotes the hopping integral between the orbital α on site i and the
orbital β on site j. In the model considered here the lattice is triangular (Figure
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6.4 Model Hamiltonian: p orbitals on a triangular lattice

6.14a), and nearest neighbour hopping between three p orbitals, expressed in the
cubic basis {py, pz, px}, is included.

a b

c

d

e

x

y

x

z

x

z

x

z

Figure 6.14.: (a) A triangular lattice, with ϑij marking the angle the line connecting
atoms i and j closes with the x axis, and a as the lattice constant. The hopping
Hamiltonian can be parametrised with overlap integrals Vσ (b) and Vπ (c). Hopping
between in-plane p orbitals and the pz orbital is zero while inversion symmetry is
preserved (d), and finite once it is broken (e).

The angle and orbital dependent hopping parameters, tαβ (ϑij), can be found in
Reference [63], as described in Section 3.14. They can be parametrised using two
Slater-Koster integrals: Vσ is the overlap of two p orbitals if their lobes are pointing
towards each other (Figure 6.14b), while Vπ is the overlap if the lobes are parallel
(Figure 6.14c). The angle dependant hopping integrals expressed in terms of these
parameters are [63]:

tyy (ϑij) =Vσ sin2 (ϑij)− Vπ cos2 (ϑij) (6.16)
tzz (ϑij) =− Vπ (6.17)
txx (ϑij) =Vσ cos2 (ϑij) + Vπ sin2 (ϑij) (6.18)
txy (ϑij) = (Vσ + Vπ) sin (ϑij) cos (ϑij) . (6.19)

Evaluating the sum 6.15 on a triangular lattice with the above angle dependent
hopping leads to the following Hamiltonian matrix elements:

4The simplified notation in this section is slightly different from the one used in Section 3.1, which
is consistent with Reference [63]. They are related by: tαβ (ϑij) = Eα,β (cos (ϑij) , sin (ϑij) , 0).
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HK
yy (kx, ky) =− 2Vπ cos (kx)− (Vπ + 3Vσ) cos

(
kx
2

)
cos

(√
3ky
2

)
(6.20)

HK
zz (kx, ky) =− 2Vπ

(
cos (kx) + 2 cos

(
kx
2

)
cos

(√
3ky
2

))
(6.21)

HK
xx (kx, ky) =− 2Vσ cos (kx)− (Vσ + 3Vπ) cos

(
kx
2

)
cos

(√
3ky
2

)
(6.22)

HK
xy (kx, ky) =

√
3 (Vσ − Vπ) sin

(
kx
2

)
sin

(√
3ky
2

)
. (6.23)

For simplicity, all the momenta are expressed in units of 1/a, where a is the lattice
constant.

The band structure found by diagonalising the above Hamiltonian with the para-
meters used by Petersen and Hedegård [87] (Vπ = −0.3Vσ) is shown in Figure 6.15,
coloured according to the orbital character. There are three bands, arising from
the three p orbitals. The band whose dispersion is electron-like around the Γ point
(green in Figure 6.15) is of well-defined pz character throughout the zone and in-
tersects the other bands without hybridising. This is possible because there is no
hopping between the pz orbital and the in-plane p orbitals (tyz (ϑij) = tzx (ϑij) = 0),
as required by inversion symmetry (Figure 6.14d): the overlaps of an in-plane or-
bital with the positive and negative lobe of the pz orbital cancel each other. In other
words, those band crossing points are protected by inversion symmetry. Addition-
ally, the two in-plane p - orbitals cross at the K point, forming a Dirac cone.

This crossing point is protected by symmetries of the triangular lattice, specifically
by a combination of the mirror symmetry with zx as a mirror plane, labelled σh, and
the three-fold rotation, R2π/3 (Figure 6.16a). Two equivalent K points are related by
both of these symmetries, requiring all wave functions at these points to be invariant
under the two symmetry operations (Figure 6.16c). Their effect on the in-plane p-
orbitals is most transparent in the basis of the spherical harmonics, where the two
orbitals are p1 and p−1:

p−1 = 1√
2

(px − ıpy) p1 = − 1√
2

(px + ıpy) . (6.24)
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Figure 6.15.: Band structure of p orbitals on a triangular lattice, calculated using
the kinetic Hamiltonian (equations 6.20-6.23), and coloured according to the orbital
character. The Brillouin zone in the coordinate system is shown on the right, with
the path along which the band structure is calculated shown by the dashed line.

As demonstrated in Figure 6.16(c, d) for the p1 orbital, each pα state (α = ±1)
transforms into itself (up to a trivial phase factor) under R2π/3, but into the different
pα state under σh. Therefore, the two states have to be degenerate at the K point
of the Brillouin zone as long as both R2π/3 and σh are preserved.

Figure 6.16.: (a) Mirror symmetry with the zx plane as the mirror plane, σh, is a
symmetry of a triangular lattice. (b) Two equivalent K points of a triangular lattice
are connected by σh , as well as the three-fold rotation symmetry, R2π/3 . (c) The
p1 state transforms into itself under rotation, (d) but into the p−1 state under the
mirror symmetry.
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6.4.2. Inversion symmetry breaking Hamiltonian

A term breaking inversion symmetry generically has the form of HISB = Er̂, where
r̂ is the position operator. Specifically, if inversion is broken along the direction
normal to a surface (ẑ), but preserved in plane, the Hamiltonian is reduced to

HISB = Eẑ. (6.25)

If the inversion symmetry is broken by a surface electric field E, this term describes
the dipole energy. However, it is important to realise that the inversion symmetry
breaking (ISB) Hamiltonian has the above form in the first order regardless of its
microscopic origin. At the tight binding level the effect of inversion symmetry break-
ing can be included by considering how the asymmetric deformation of orbitals it
causes alters effective hopping parameters [87, 98]. Although every hopping integral
can be affected, the largest effect by far is to allow the otherwise forbidden hopping
between orbitals that are symmetric under inversion z → −z, and the asymmet-
ric ones. Specifically, once the pz orbital is deformed the overlaps of its positive
and negative lobe with the in-plane p orbital do not cancel anymore (Figure 6.14e),
leading to the following hopping terms:

tzx (ϑij) =γ cos (ϑij) (6.26)
tyz (ϑij) =γ sin (ϑij) . (6.27)

The resulting Hamiltonian matrix elements, considering nearest neighbour hopping
on a triangular lattice, are given by:

HISB
yz (kx, ky) =2ıγ

√
3 cos

(
kx
2

)
sin

(√
3ky
2

)
(6.28)

HISB
xz (kx, ky) =2ıγ

(
2 cos (kx) + cos

(√
3ky
2

))
sin

(
kx
2

)
. (6.29)

It is worth looking into the structure of this Hamiltonian: it is Hermitian, off-
diagonal and has no real components. All of these statements are also true of
angular momentum operators Ly, Lz and Lx, which, written in the basis of cubic
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harmonics {py, pz, px} have the following form5:

Ly =


0 0 0
0 0 −ı

0 ı 0

 Lz =


0 0 ı

0 0 0
−ı 0 0

 Lx =


0 −ı 0
ı 0 0
0 0 0

 . (6.30)

As HISB has only two independent elements, it can be expressed as a linear combin-
ation of two angular momentum operators, with momentum dependent prefactors:

HISB (kx, ky) = −γLx
(

2
√

3 cos
(
kx
2

)
sin

(√
3ky
2

))
+

+γLy
(

2
(

2 cos (kx) + cos
(√

3ky
2

))
sin

(
kx
2

))
. (6.31)

This relationship shows that breaking of symmetry along the z direction can cause
formation of an in-plane momentum dependent orbital angular momentum (OAM).
To get a better understanding of the nature of the orbital angular momentum struc-
ture it is useful to look at the Hamiltonian along the high symmetry directions
(kx = 0 for the Γ−M direction, ky = 0 for Γ−K):

HISB (0, ky) =− 2
√

3 sin
(√

3ky
2

)
γLx (6.32)

HISB (kx, 0) =
(

2 (2 cos (kx) + 1) sin
(
kx
2

))
γLy. (6.33)

For both of those directions the inversion symmetry breaking Hamiltonian is pro-
portional to the angular momentum operator perpendicular to the momentum dir-
ection, indicating that the orbital angular momentum structure emerging as a con-
sequence of the breaking of inversion symmetry is dominantly chiral. At the high-
symmetry points (ky

(
M
)

= 2π/
√

3, kx
(
K
)

= 4π/3 ) the inversion symmetry
breaking Hamiltonian vanishes. This specific relationship of inversion symmetry
breaking and orbital angular momentum is by no means general; it would not be
true if higher-order terms describing changes to Vσ and Vπ due to the asymmet-

5These can be obtained from the more standard form in the basis of spherical harmonics by the
coordinate transformation given in Appendix E.1.
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rical orbital deformation were included. What is more, a similar minimal inversion
symmetry breaking Hamiltonian in the d- orbital manifold would also couple the
asymmetric (dyz, dzx in this case) and symmetric (d3z2−r2 , dxy, dx2−y2) orbitals, but
it would result in six generally independent matrix elements. It could therefore
not be expressed as a linear combination of the three angular momentum operat-
ors. All of these observations motivate an examination of the underlying causes of
the somewhat surprising relationship between inversion symmetry breaking and or-
bital angular momentum (section 6.5). However, even without an in-depth analysis
of these issues, there can be no doubt that the two are related in the p - orbital
Hamiltonian discussed here. This motivates looking for orbital angular momentum
structures in band structures formed by inversion symmetry breaking Hamiltonians.

In Figure 6.17 I show the band structure calculated with the same symmetric
hopping parameters as in Figure 6.15 (Vπ = −0.3Vσ), but with varying inversion
symmetry breaking term, γ. I colour them according to the expected value of or-
bital angular momentum along a quantisation axis perpendicular to momentum
(〈L⊥〉, Figure 6.17(a, c, e)), and according to the orbital character (Figure 6.17(b,
d, f)). For a small γ (γ = 0.02Vσ, Figure 6.17(a, b)) the band structure is largely
unperturbed, except at points where the band of pz character would cross bands of
the in-plane p character in the symmetric case. Once inversion symmetry is broken
those crossing points are not protected anymore; small anti-crossing gaps open,
bands hybridise and states on either side of the gaps develop chiral orbital angular
momentum. Increasing γ results in larger gaps, and an extended region around them
where orbital character mixes to produce orbital angular momentum (γ = 0.2Vσ,
Figure 6.17(c, d)). If the inversion symmetry breaking energy scale is made larger
than the bandwidth (γ = 2Vσ, 6.17(e, f)) states of different orbital character are
allowed to mix across the zone, resulting in a band structure significantly different
from the initial symmetric one. The three bands now correspond to the three ei-
genstates of 〈L⊥〉: m = 1, 0,−1 for the bands of highest, middle and lowest energy,
respectively. The splitting between them is momentum dependent, reflecting the
momentum dependent prefactors relating inversion symmetry breaking and angular
momentum (Equation 6.31). The m = 0 band remains unperturbed, and retains a
well-defined orbital character of the p orbital perpendicular to momentum (py along
kx, px along ky), as seen in Figure 6.17f. The crossing point at the K point remains
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Figure 6.17.: Band structure calculated for the inversion symmetry breaking para-
meter equal to γ = 0.02 (a, b), γ = 0.2 (c, d) and γ = 2 (e, f). The bands are
coloured according to the chiral orbital angular momentum (a, c, e), and orbital
character (b, d, f). The dashed line shows the band structure for γ = 0. The
Brillouin zone, with the path along which the band structure is calculated, is shown
at the bottom right. (g) Schematic representation of the influence of inversion sym-
metry breaking on p-orbitals. All the calculations are done for Vπ = −0.3 Vσ.
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protected by the combination of mirror and rotation symmetry, both of which are
still present.
The influence of strong inversion symmetry breaking on a degenerate set of p or-

bitals is schematically shown in Figure 6.17g. The atomic states are split into states
of defined orbital angular momentum along a specific axis (〈Lα〉), which is chiral
(〈Lα〉 = 〈L⊥〉) for the high symmetry directions. The energetic splitting is governed
by an inversion symmetry breaking energy scale, EISB (kx, ky) =

〈
HISB (kx, ky)

〉
,

which is momentum dependent, and proportional to γ. The maximum it reaches in
the present geometry is 2

√
3γ ≈ 3.5γ (equation 6.31, and Figure 6.17(e, f)).

6.4.3. Spin-orbit coupling Hamiltonian

The spin-orbit coupling Hamiltonian is easiest to express in the basis of spherical
harmonics {Yl}, since they are the eigenstates of the angular momentum operator.
Of course, it is now necessary to distinguish states of opposite spin, so schematically
the basis is

{
Y ↓l , Y

↑
l

}
, and the Hamiltonian in that basis:

HSOC = λ

2

 −Lz L+

L− Lz

 , (6.34)

where 1/2 comes from the value of the electron spin, Lz is the angular momentum
operator along the quantisation axis, and L+ and L− raising and lowering oper-
ators, respectively. This Hamiltonian can be transformed into the cubic basis,{
p↓y, p

↓
z, p
↓
x, p
↑
y, p
↑
z, p
↑
x

}
in this case, in the usual way (Appendix E.1), to obtain:

HSOC = λ

2



0 0 −ı 0 −ı 0
0 0 0 ı 0 1
ı 0 0 0 −1 0
0 −ı 0 0 0 ı

ı 0 −1 0 0 0
0 1 0 −ı 0 0


. (6.35)

The spin-orbit coupling allows mixing of states of different orbital character; in
particular the terms coloured red mix the pz orbital with the in-plane p orbitals.
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However, unlike the inversion symmetry breaking, it mixes states of different spin.
It can be diagonalised simultaneously with the total angular momentum operator,
~J2 =

(
~L+ ~S

)2
, whose eigenvalues are j (j + 1), with j = 3/2, 1/2 in the p orbital

case.
I plot the evolution of the band structure with increasing λ in Figure 6.18, colour-

ing the bands according to the expected value of the spin-orbit coupling operator
(
〈
~L · ~S

〉
, Figure 6.18(a, c, e)), as well as according to their orbital character (Fig-

ure 6.18(b, d, f)). If λ is small (λ = 0.1 in Figure 6.18(a, b)) only the states in
the immediate vicinity of band crossing points are affected. Small gaps open, the
states on either side of which develop a finite

〈
~L · ~S

〉
. Increasing λ increases the

hybridisation gaps, as well as the portion of the zone in which spin and orbital
angular momentum are coupled (λ = 1, Figure 6.18(c, d)), while making it signi-
ficantly larger than the kinetic Hamiltonian (λ = 10, Figure 6.18(e, f)) results in
three strongly spin-orbit coupled, but weakly dispersive, bands of undefined orbital
character. Unlike inversion-symmetry breaking, the spin-orbit coupling energy scale
has no momentum dependence, a consequence of its local origin. No crossing points
of the initial band structure are protected against hybridisation due to spin-orbit
coupling; in particular a gap opens at the K point. This is possible because the
mirror symmetry changes the sign of spin, as well as orbital angular momentum,
while the rotational symmetry keeps both invariant. Their combination therefore
ensures the degeneracy of the |p−1, ↑〉 state with the |p1, ↓〉 state, but this pair can
have a different energy to the (|p−1, ↓〉 , |p1, ↑〉) pair. The two pairs correspond to
the states of negative and positive

〈
~L · ~S

〉
, respectively.

The influence of spin-orbit coupling on degenerate p orbitals is shown schemat-
ically in Figure 6.18g: they are split into a 4-fold degenerate j = 3/2 manifold
in which

〈
~L · ~S

〉
= 0.5~2, and the doubly degenerate j = 1/2 manifold in which〈

~L · ~S
〉

= −~2 , with the energy difference between them set by the spin-orbit
coupling energy scale.
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Figure 6.18.: Band structure calculated for the spin-orbit coupling parameter equal
to λ = 0.1Vσ (a, b), λ = 1Vσ (c, d) and λ = 10Vσ (e, f). The bands are coloured
according to the expected value of the spin-orbit coupling operator

〈
~L · ~S

〉
(a, c, e),

and orbital character (b, d, f). The dashed line shows the band structure for λ = 0.
The Brillouin zone, with the path along which the band structure is calculates, is
shown at the bottom right. (g) Schematic representation of the influence of spin-
orbit coupling on the p-orbitals. All the calculations are done for Vπ = −0.3 Vσ.
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6.4.4. Spin-split band structure

After analysing the separate influence of inversion symmetry breaking and spin-orbit
coupling, it is easy to understand how spin-splitting arises when they are combined,
especially in the limiting cases where one of the energy scales is much larger than
the other. This is best illustrated by looking at an example of two states of different
orbital character that are degenerate in the inversion symmetric case with no spin-
orbit coupling (Figure 6.19), such as the ones found at band crossing points.

Figure 6.19.: Schematic illustration of how a fourfold-degenerate state becomes split
by ISB and SOC if (a) the spin-orbit coupling energy scale is dominant, and if the
spin-orbit coupling energy scale is dominant.

If a dominant spin-orbit coupling is introduced these initially 4-fold degenerate
states (including spin) are split according to their angular momentum. The resulting
states need not be the eigenstates of the angular momentum operator, but

〈
~L · ~S

〉
does acquire a finite value, forcing the orbital and spin angular momentum to be
either parallel or antiparallel to each other. Breaking inversion symmetry introduces
additional splitting according to orbital angular momentum, which is necessarily
accompanied by a spin-splitting due to the dominant spin-orbit coupling (Figure
6.19a). In the opposite limit, where inversion symmetry breaking energy scale is
dominant, the original states are split into states of finite orbital angular momentum
along a specific axis. If weaker spin-orbit coupling is added, it splits the states
further into states of spin parallel and anti-parallel to the pre-existing orbital angular
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momentum (Figure 6.19b).
The picture that emerges is one of two limiting cases, characterised by strong

(EISB � ESOC) and weak (EISB � ESOC) inversion symmetry breaking. The
diagrams in Figure 6.19 suggest that there is a way to distinguish between these
limits even if the relative magnitude of the energy scales is not a priori known:
the orbital angular momentum of the two bands of opposite spin points in the
opposite direction in the weak ISB case, and in the same direction in the strong ISB
case. To see how this works in practice in Figure 6.20, I plot the band structure
of the p - orbital model in the two limits, choosing the values of parameters such
that the weak one alone would open gaps only right at the crossing points, while
the strong one affects the larger part of the zone, although in both cases dispersing
bands determined by the symmetric, kinetic Hamiltonian remain clearly recognisable
(γ = 0.2Vσ, λ = 0.1Vσ for the strong ISB case, γ = 0.02Vσ, λ = 1Vσ for the weak
ISB case; cf. Figures 6.17 and 6.18).
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Figure 6.20.: Spin split band structure in the (a, b) weak inversion symmetry break-
ing case (γ = 0.02Vσ, λ = 1Vσ) and (c, d) strong inversion symmetry breaking case
(γ = 0.2Vσ, λ = 0.1Vσ), coloured according to spin angular momentum (a, c) and
the orbital angular momentum (b, d).
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As evident in Figure 6.20(a, c) the band structure is indeed spin-split in both
cases, with the orbital angular momentum pointing in the opposite direction on the
two spin-split branches if the inversion symmetry breaking energy is weak (Figure
6.20b), and same if it is strong (Figure 6.20d). Another difference between the two
limits is the relative size of the gap between the two spin-split pairs and along the
Γ −K line (or, equivalently, the Γ −M line), and the gap at the K point. In the
weak ISB case both of these are set by the spin-orbit interaction, and thus of a
similar magnitude. The inversion-symmetry breaking cannot however open a gap at
the K point, so the gap size is always determined by the spin-orbit coupling, and
is therefore much smaller in the strong ISB case. The transition between the two
limits is best studied by keeping one of the parameters fixed while the other one is
varied. In Figure 6.21 I plot the band structure along the M − Γ direction for a
fixed spin-orbit coupling strength of λ = Vσ and a variable γ.
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Figure 6.21.: Spin-split band structure along theM −Γ direction for a fixed value of
spin-orbit coupling (λ = 1Vσ) and variable inversion symmetry breaking parameter
γ, the value of which in units of Vσ is indicated above each plot. The bands are
coloured according to (a) the spin angular momentum (SAM) and (b) the orbital
angular momentum (OAM).
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As expected, for very small γ the orbital angular momentum has the opposite sign
on the bands of opposite spin. As γ is increased this remains true until the spin-
splitting becomes large enough for the two clockwise spin polarised bands (blue in
Figure 6.21a) to touch, at which point they lose their orbital angular momentum (at
γ = 0.17Vσ in Figure 6.21b). When γ is increased even further they regain the orbital
angular momentum, but it is now of the same sign as on their respective spin-split
pairs. This confirms that there are indeed two regimes supporting spin-splitting,
the weak ISB and the strong ISB regime, which are separated by a well-defined
crossover. This crossover is also evident when looking at the maximum size of the
spin splitting along the Γ −M line as a function of inversion symmetry breaking,
plotted for the lower energy spin-split pair in Figure 6.22a.
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Figure 6.22.: The spin splitting between the two lowest energy bands (Figure 6.21)
as (a) a function of inversion symmetry breaking γ for fixed spin-orbit coupling
λ = 1Vσ, and (b) as a function of λ and γ. (c) Spin-splitting normalised by the
spin-orbit coupling λ, as a function of λ and γ.

The spin-splitting increases linearly with the strength of inversion symmetry
breaking in the weak ISB limit. Once the crossover is reached, indicated by the
dashed line in Figure 6.22a (γ = 0.17Vσ), the size of the spin-splitting saturates to a
value limited by the spin-orbit coupling energy scale. In other words, the size of the
spin-splitting is always limited by the weaker of the two energy scales. Another way
to see this explicitly is to plot the size of the spin splitting as a function of both inver-
sion symmetry breaking γ and spin-orbit coupling λ (6.22b). If large spin-splitting
is the goal, it is not enough to increase one of the energy scales, because the splitting
then becomes limited by the weaker one, but rather both energy scales need to be
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increased together. Since the spin-splitting can never be larger than either of the
energy scales, the largest spin-splitting that can be expected in a material containing
given constituent atoms is limited by the atomic spin-orbit coupling of the relevant
orbitals of those atoms. Such large splitting can be achieved only if the inversion
symmetry breaking scale is dominant, i.e. in the strong ISB case, as illustrated by
Figure 6.22c in which I plot the spin-splitting normalised by the spin-orbit coupling
constant λ. It should be noted that the fact that spin-splitting is limited by the
spin-orbit coupling energy scale does not mean it cannot be larger, or smaller, than
λ. The actual value it assumes depends on the underlying orbitals, as well as the
relative strength of the kinetic and spin-orbit coupling Hamiltonian. Nonetheless,
the largest achievable splitting will be proportional to, and on the order of, λ; it is
equal to 1.16λ in the parameter range considered here (Figure 6.22c).
The above picture of a hierarchy of energy scales offers a new perspective on spin-

splitting. It emphasises that it is not only the breaking of symmetry that is import-
ant, but also the energy scale associated with it. It suggests that the spin-splitting
in real materials is usually much smaller that the spin-orbit coupling because it is
limited by the inversion symmetry breaking energy scale. It also indicates that the
inversion symmetry breaking scale in delafossites might be unusually large, enabling
spin-splitting as large as the atomic spin-orbit coupling. However, all of this reason-
ing is reliant upon the statement that the breaking of inversion symmetry promotes
creation of orbital angular momentum along a specific axis. While undoubtedly true
for the p - orbital model described in this section, if we wish to use this physical
picture to understand real materials it is crucial to understand how general this
behaviour is, and its underlying causes.

6.5. Relationship between inversion symmetry
breaking and orbital angular momentum

A symmetry-breaking Hamiltonian by definition favours creation of asymmetric wave
function weights, raising the question of whether every wave function can be asym-
metrically distorted. Park et al. [101, 102] and Kim et al. [103] described how
an asymmetric charge distribution can arise in a tight-binding wave function as a
consequence of a surface electric field. The following discussion is based on their
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Chapter 6 Rashba-like spin-split surface states

argument, extended to consider the range of validity of the model.
A Bloch wave function of crystal momentum kx is in the tight binding limit built

from orbitals localised on every lattice site, with a phase difference of kxa between
them. For a chain of atoms along the x̂ direction the wave function based on the px
orbital is:

ψxkx
(~r) = 1√

N

∑
n

px (~r − nax̂) eıkxan, (6.36)

where the sum is taken over all lattice sites and N is the number of atoms. The
orbitals building the wave function are schematically shown in Figure 6.23a for
kxa = 2π/5, with the colours representing the phase. Interference between orbitals
on neighbouring sites causes the momentum dependence of the charge distribution.
However, the orbital on every site is symmetric under inversion z → −z, and con-
sequently so is the final charge distribution at every momentum. The same argument
applies if the phase is antisymmetric, as it is for the pz orbital; the wave function
then has a different sign for positive and negative z, but the wave function weight is
still symmetric. A tight-binding wave function composed of a single cubic orbital can
therefore never break inversion symmetry. This is not surprising, as the inversion
symmetry breaking Hamiltonian is able to modify the band structure only at points
where it can mix states of different orbital character (Figure 6.17), for example px
and pz character along the kx direction.
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Figure 6.23.: Schematic representation of orbitals composing a tight binding wave
function for kxa = 2π/5 if the base orbital is (a) px orbital and (b) my = 1 orbital.
The phase is shown by colour.
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It is therefore reasonable to consider a tight-binding wave function based on a
linear combination of two cubic orbitals, such as the eigenstates of Ly, the angular
momentum operator quantised along the y axis:

pmy=−1 = 1√
2

(−ıpz + px) , pmy=1 = 1√
2

(ıpz + px) . (6.37)

These orbitals are complex, with a phase which depends on the angle ϕ as −myϕ, as
shown for themy = 1 orbital on site n in Figure 6.23b. A tight-binding wave function
based on the my = 1 orbital is schematically shown in Figure 6.23b for kxa = 2π/5.
The site-to-site phase change of kxa is equivalent to a site-to-site rotation of the
orbital by −kxa. As the orbitals are neither symmetric nor antisymmetric under
inversion, it is possible for the Bloch wave function weight to be different for positive
and negative z, for example at points A and B between sites n and n + 1 (Figure
6.23b). Neglecting further orbitals, the wave function at those points is a sum of
contribution from sites n and n + 1, each of which is a product of a radial wave
function and a phase factor. At the point A:

ψ
my=1
kx

(A)= 1√
2

(Rn (r) exp (−ıϕ0) +Rn+1 (r) exp (ı (−π + ϕ0 + ka))), (6.38)

where Ri(r) is the radial part of the wave function centred at site i. The wave
function weight is given by:

∣∣∣〈ψmy=1
kx

(A)
〉∣∣∣2 = 1

2
(
Rn (r)2 +Rn+1 (r)2 − 2Rn (r)Rn+1 (r) cos (2ϕ0 + ka)

)
.

(6.39)
The last term describes the interference between the wave functions on neighbouring
sites. The equivalent expression at the point B is:

∣∣∣〈ψmy=1
kx

(B)
〉∣∣∣2 = 1

2
(
Rn (r)2 +Rn+1 (r)2 − 2Rn (r)Rn+1 (r) cos (2ϕ0 − ka)

)
.

(6.40)
The interference term is different at the two points, proving that the wave function
weight can indeed differ at positive and negative z, as shown explicitly by the plots of
the wave function weight (Figure 6.24). The asymmetry is momentum dependent,
and disappears at the Brillouin zone centre (kxa = 0) and boundary (kxa = π).
The tight-binding wave function with the my = −1 state as the basis also has a
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Chapter 6 Rashba-like spin-split surface states

momentum-dependent asymmetrical weight, but pointing in the opposite direction.
As long as inversion symmetry is preserved these two states are degenerate, and
the total weight distribution symmetrical. However, if the Hamiltonian contains an
inversion symmetry breaking term, one of the asymmetrical states is energetically
more favourable than the other, and a gap opens between them. As these wave
functions with asymmetrical weights are based on eigenstates of Ly, the states on
either side of the gap develop orbital angular momentum in the y direction.

0 0.6kxa=0 kxa=π/4 kxa=3π/4kxa=π/2 kxa=π0 0.8 0 0.4 0 0.12 0 0.04

x x

z

x x x

Figure 6.24.: Wave function weight of a tight-binding wave function based on the
my = 1 2p orbital, as a function of x and z. The value of kxa is indicated above
each plot. The hydrogenic radial wave function (n = 2, l = 1) is used. Purple dots
mark the lattice sites, separated by 2 Å. The sum (equation 6.36) is performed over
2 0 lattice sites to avoid edge effects.

This analysis of wave functions offers an intuitive explanation for the relationship
between orbital angular momentum and inversion symmetry breaking for p - orbitals,
and is entirely consistent with the conclusions drawn from the tight-binding band
structures. The remaining task is to understand how general these conclusions are.
A crucial ingredient for an asymmetric wave function weight to develop is the angle
dependent phase of the basis orbital, which leads to a constructive interference
between neighbouring orbitals for one sign of z, and destructive for the other. If the
basis orbital has a constant phase, the interference factor is proportional to cos (ka)
regardless of the sign of z. The remaining question is whether such a wave function
necessarily carries an orbital angular momentum in the ŷ direction. An orbital which
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is a linear combination of spherical harmonics of given l has the general form:

ψl (ϕ, ϑ) =
l∑

m=−l
cml Y

m
l (ϕ, ϑ) , (6.41)

where cml are complex coefficients. The phase of the spherical harmonics Y m
l (ϕ, ϑ)

depends on the angle ϕ around the quantisation axis, chosen to be ŷ here, as −mϕ.
Their sum has an angle dependent phase as long as there is at least one m for which
it does not contain equal weight of +m and −m states:

|cml |
2 6=

∣∣∣c−ml ∣∣∣2 . (6.42)

If condition 6.42 is fulfilled, a tight-binding wave function made of ψl (ϕ, ϑ) at every
site can support an asymmetric charge distribution. On the other hand, the angular
momentum of ψl (ϕ, ϑ) along the quantisation axis is given by

〈Ly〉 = ~
l∑

m=1
m
(
|cml |

2 −
∣∣∣c−ml ∣∣∣2) . (6.43)

For p orbitals (l = 1) this is reduced to 〈Ly〉 = ~
(
|c1
l |

2 −
∣∣∣c−1
l

∣∣∣2), so the condition to
have a finite 〈Ly〉 is equivalent to the condition to have an angle dependent phase.
This is, however, not generically true; for l > 1 a wave function can be complex and
still have vanishing 〈Ly〉. It is easy to see how this happens for the following d -
orbital wave functions:

u+ (ϕ, ϑ) =−
√

2
3Y

1
2 (ϕ, ϑ) +

√
1
3Y
−2

2 (ϕ, ϑ) . (6.44)

u− (ϕ, ϑ) =
√

2
3Y
−1

2 (ϕ, ϑ) +
√

1
3Y

2
2 (ϕ, ϑ) . (6.45)

〈Ly〉 clearly vanishes for both of the wave functions:

〈
u+ |Ly|u+

〉
= ~

(2
31 + 1

3 (−2)
)

= 0,
〈
u− |Ly|u−

〉
= ~

(2
3 (−1) + 1

32
)

= 0.

They do however have an angle dependent phase, as shown in Figures 6.25a and
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Chapter 6 Rashba-like spin-split surface states

6.25b for u+ and u−, respectively. Consequently, tight-binding wave functions based
on them can support an asymmetric charge distribution at finite kx, as shown in
Figure 6.25(c, d) for kxa = π/2 .
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Figure 6.25.: (a) The u+ and (b) the u− orbitals (equation 6.44) coloured according
to their phase. The tight binding wave functions based on the (c) u+ and (d) u−
3d orbitals, for kxa = π/2 . The hydrogenic radial wave function (n = 3, l = 2) is
used. Purple dots mark the lattice sites, separated by 2 Å. The sum (equation 6.36)
is performed over 50 lattice sites to avoid edge effects.

To summarise, a tight binding wave function of a finite crystal momentum ~k

can become asymmetric with respect to a direction d̂ if its base orbital has an
angle dependent phase in the plane containing both ~k and d̂. Such a wave function
can, but does not have to, develop a finite expectation value of angular momentum
along a specific quantisation axis, determined both by d̂ and the orbital character
of the wave function in question. An inversion symmetry breaking Hamiltonian
always causes a splitting between asymmetric wave functions of opposite weight
distributions, which may be followed by a splitting of states of opposite angular
momentum and, in combination with spin-orbit coupling, of opposite spin. In those
cases the picture of energy scale hierarchy developed in section 6.4.4 is valid and
relevant. However, it is also possible that a splitting between asymmetric wave
functions does not cause a splitting of states of opposite angular momentum. In
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those cases no observable spin-splitting will occur even if the Hamiltonian contains
both the inversion symmetry breaking and spin-orbit coupling term.
The above discussion points to two practical considerations for analysing spin-

splitting in specific materials. First of all, it is important to check for every ma-
terial whether the relevant orbital manifold supports creation of orbital angular
momentum, and consequently spin-splitting. In majority of systems, and all real ma-
terials I can think of, this is the case. Indeed, the example of u+ and u− states above
is finely tuned to prove that this relationship between orbital angular momentum
and inversion symmetry breaking does not arise from fundamental principles; rather
it is a consequence of the fact that both orbital angular momentum and wave func-
tion asymmetry are related to the spatial variation of the wave function phase, but
in different ways. This leads to the second conclusion, which needs to be taken into
account when using model Hamiltonians to describe the arising of spin-splitting. It
is often convenient to mathematically relate the inversion symmetry breaking term
with the orbital angular momentum operator, as was done for p orbitals in Section
6.4.2. However, no such relation can be completely general, and it always needs to
be reconsidered in the context of the studied compound.

6.6. CoO2 tight binding model
The p - orbital model described in the last section demonstrates how a tight-binding
analysis can lead to crucial insights on the nature of spin-splitting. The orbitals on
which the tight-binding wave functions are based determine whether spin-splitting
can occur at all, while the resulting band structure is governed by the relative size of
the two relevant energy scales, the spin-orbit coupling and the inversion-symmetry
breaking energy scale. This motivates the construction of a second tight-binding
model, with the aim of investigating the nature of spin-splitting in the surface states
arising on the transition metal oxide terminated surfaces of delafossite oxides. The
analysis of such a model entails looking into the relevant basis orbitals, to see which
ones amongst them can support spin-splitting, as well as determining the relative
magnitude of the two energy scales governing spin-splitting. The spirit of the ap-
proach is similar to that adopted above; the aim is not to correctly capture the
detailed band structure, but rather to isolate the minimal ingredients necessary to
achieve the large effect that is observed experimentally. As the density-functional
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Chapter 6 Rashba-like spin-split surface states

theory calculations (Section 6.2) proved that the spin-split wave functions are pre-
dominantly localised in the top CoO2 layer, a good starting point is to consider this
layer only.
As discussed in the Introduction (Section 1.1), the Co atoms are arranged on a

triangular lattice of lattice constant a = 2.82 Å, with each Co in the centre of an
oxygen octahedron (Figure 6.26(a, b)). The octahedra are edge sharing, so a single
CoO2 layer can be thought of as three triangular layers of equal spacing - a layer of
cobalt between two oxygen layers (Figure 6.26a). In the ideal structure the distance
between Co and O atoms is equal to a/

√
2 = 1.99 Å, but in the real materials the

octahedra are trigonally distorted [5], bringing oxygen and cobalt layers closer to
each other, and decreasing the Co - O distance to 1.88 Å.

O1

O2

ba

Figure 6.26.: (a) A top-view of the CoO2 layer of delafossite oxides. Effective hopping
paths are indicated by the arrows. (b) The CoO2 octahedron, a structural unit
building the CoO2 layer.

As usual, the octahedral crystal field splits the d orbitals into the eg and t2g

manifolds, while the trigonal distortion introduces an additional, smaller, splitting
of the t2g manifold. The full crystal field Hamiltonian is diagonal in the so-called
trigonal basis, {u+, u−, x0, x1, x2}, where u+ and u− are the two eσg orbitals, x0 is
of a1g symmetry, and x1 and x2 are of eπg symmetry (Figure 6.27, Reference [104]).
The basis transformation between the trigonal basis and the spherical basis with z
as a quantisation axis is given in Appendix E.2. In the bulk electronic structure of
the Co - based delafossites the Co t2g orbitals are fully occupied, and the eg orbitals
empty. The surface layer is effectively hole-doped with respect to the bulk, giving
rise to the surface states, which are therefore t2g - derived. Hence, the spin-split
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Figure 6.27.: The five 3d orbitals of Co, expressed in the trigonal basis which di-
agonalises the crystal field Hamiltonian. The colour marks the phase of the wave
function.

wave functions are based on the orbitals shown in Figures 6.27(c - e). The x0 orbital
is in fact the d3z2−r2 in the global cubic system; it is real, and a wave-function based
on it alone cannot support an asymmetric charge distribution, or orbital angular
momentum along a specific axis. The other orbitals are complex, with a phase
changing as a function of angle. As discussed in Section 6.5, this means that the
wave functions based on them can support asymmetric charge distributions, but it
is not a guarantee that they can carry an orbital angular momentum as well. The
simplest way to find out if they can is to inspect the orbital angular momentum
operator along the ẑ axis, expressed in the trigonal basis, as found by utilising the
basis transformation given in Appendix E.2:

Lztrig =



0 0 0 0 −
√

2
0 0 0

√
2 0

0 0 0 0 0
0

√
2 0 1 0

−
√

2 0 0 0 −1


. (6.46)

In the large crystal field limit the terms which mix the eσg and t2g - like orbitals,
shown in black in equation 6.46, can be neglected. The upper diagonal 2 x2 block
(marked blue in equation equation 6.46) is relevant for the bands derived from the eσg
orbitals, while the lower 3x3 block (purple in equation equation 6.46) is relevant for
those derived from the t2g - like orbitals. As all the blue terms vanish, there can be
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no angular momentum developed in the eσg bands. This is not surprising, as the two
orbitals of this symmetry, u+ and u−, are precisely the ones used in section 6.5 as an
example of complex orbitals which cannot support any orbital angular momentum
along a specific quantisation axis. As the eg orbitals are unoccupied in delafossites,
this is not relevant for any of the observations. On the other hand, Lz is diagonal in
the subspace spread by the three t2g - like orbitals, with eigenvalues of 0, 1 and −1
for the x0, x1 and x2 states, respectively. Although they are d - orbitals with l = 2,
the isolated t2g states are therefore expected to behave similarly to p orbitals from
the point of view of developing angular momentum along a specific axis. In direct
analogy with the p - orbital case, we therefore expect that the band structure based
on the t2g orbitals can become spin-split. The spin-splitting can occur in the bands
based on the x1 or x2 orbital alone, or if they are allowed to mix with the x0 orbital.
In the following few sections I will refer to the x0 orbital as the mz = 0 state, and
to the x1 and x2 states as the |mz| = 1 states.

The considerations so far are valid for any system based on the t2g orbitals. To
find out how the spin-splitting occurs specifically in the structure of the delafossite
surface layer, a band structure needs to be calculated. The kinetic part of the tight
binding Hamiltonian is constructed in the geometry outlined above (Figure 6.26),
using the Slater-Koster [63] parametrisation of the energy integrals. The cubic
{xy, yz, 3z2 − r2, xz, x2 − y2, p1y, p1z, p1x, p2y, p2z, p2x} basis is used, where p1 and
p2 refer to the orbitals on the oxygen layers above and below cobalt, respectively,
and the ẑ axis is taken to be normal to the crystal surface. Three different types
of hopping can be included: direct hopping between Co 3d orbitals, direct hopping
between O 2p orbitals, and hopping between Co 3d and O 2p orbitals. Although
I have constructed a tight-binding model containing all of these hoppings, I found
that the essential physics can be captured even if only the nearest neighbour Co
- O - Co hopping between cobalt t2g and oxygen pz orbitals is retained, and the
crystal field caused by the trigonal distortion neglected. For illustrative purposes
and maximum simplicity in what follows I will show results from this minimal model.
Technically this simplification is achieved by applying a very large on-site energy
on all the orbitals which are not included in the model. Hopping between d and p
orbitals is parametrised by two Slater-Koster integrals, Vdpσ and Vdpπ, which can be
related by the empirical relation Vdpπ = −

√
3/4Vdpσ [105] to reduce the number of

free parameters even further.
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6.6.1. The band structure

Before discussing the spin-splitting, it is useful to look at a spin-degenerate band
structure, and in particular at its orbital character, shown in Figure 6.28a. The
parameters of the model are chosen so that the bandwidth and energies of all the
states approximately match those found by DFT (the first column in Table 6.4).
The bands are coloured according to their orbital character, demonstrating that
the three bands shown are dominantly derived from the three t2g orbitals, although
there is a small oxygen admixture. The electronic structure closely resembles that
of a kagome model, which has been used previously to describe the CoO2 layer
of NaxCoO2 [106]: the lowest band is flat, and the other two bands cross at the
Brillouin zone corner, K, and along the Γ−K line.
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Figure 6.28.: (a) The band structure of the CoO2 layer of delafossite oxides, coloured
according to its orbital character. (b) Orbitally resolved wave function weight of
the band crossing the Fermi level. In both of the plots the green colour corresponds
to the weight of the mz = 0 x0 orbital, while purple corresponds to the sum of the
two orbitals with |mz| = 1.

The orbital character of the band crossing the Fermi level changes from dominantly
x0 (green in Figure 6.28a) at the zone centre, to an equal combination of the x1 and
x2 states (purple in Figure 6.28a) at the zone edge. However, unlike in the case of
the p - orbitals on the triangular lattice, the hybridisation between those states is
not forbidden by symmetry. As evident in the plot of the wave function weights of
the band crossing the Fermi level (Figure 6.28b), in the majority of the zone all of
the t2g orbitals contribute, although of course not an equal amount. This implies
that a finite orbital angular momentum can be developed in a large part of the
zone. The contributions of the three t2g orbitals do not add up to 100% of the wave
function weight because they are hybridised with the O 2p orbitals.
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Parameter no ISB strong ISB weak ISB
Vdpσ -1.2 -1.2 -1.2
Vdpπ 0.52 0.52 0.52
Co 1000 1000 1000
Ct 0 0 0
Ez

1 -4.3 -3.2 -3.91
Ez

2 -4.3 -7 -4.77
ECo -0.57 -0.57 -0.57
λ 0.0 0.07 0.07

Table 6.4.: Parameters used to calculate the band structure within the minimal
tight binding model without ISB or spin-orbit coupling (Figure 6.30), in the strong
ISB limit relevant for delafossites (Figure 6.31), and in the weak ISB limit (Figure
6.32(b)). ECo referred to an overall on-site energy shift applied to the Co orbitals;
the other symbols are explained in the text.

To study the development of orbital angular momentum, a term breaking inversion
symmetry needs to be added to the Hamiltonian. One way to do that is to consider
how the asymmetric orbital deformation influences tight-binding parameters, as was
done for the p - orbital model above. For d orbitals this approach would result in
three different free parameters describing the inversion symmetry breaking [98]. The
crystal structure of the CoO2 layer suggests another, physically more relevant, way
to include inversion symmetry breaking. The effective hopping between Co sites
can proceed via two paths which are equivalent in the bulk: either through the
oxygen atoms in the layer above cobalt, or through those in the layer below (O1 and
O2 in Figure 6.26(a, b)). Crucially, the two paths are not equivalent in a surface
CoO2 layer, because only one of the oxygens, O2 , is bonded to platinum. This
insight motivates looking into explicit density functional theory calculations of the
partial density of states (PDOS) of the two oxygens, shown in Figure 6.29a for the
pz orbitals, which are the only ones included in the minimal tight binding model.

Close to the Fermi level the partial density of states of the surface oxygen pz

orbital is much larger than that of the subsurface oxygen. Except for this added
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Figure 6.29.: (a) The oxygen pz PDOS for layers above (O1, pink) and below (O2 ,
purple) the Co layer. (b) The same, but with the O1 PDOS shifted by −3.8 eV.

weight, the O1 PDOS approximates that of O2 if it is shifted by −3.8 eV (Figure
6.29b). The relative energies of the O1 and O2 states can be understood as a con-
sequence of bonding to Pt, which moves the predominantly oxygen-derived levels
to a higher binding energy in O2, as observed in the calculation. The first prin-
ciples calculation therefore confirms the intuition-based assumption that the two
oxygens are inequivalent, and enables us to quantify the difference between them.
It is therefore easy to make the minimal tight-binding Hamiltonian break inver-
sion symmetry in a physically meaningful way: the on-site energy of O1 has to be
3.8 eV higher than that of O2. This difference in oxygen on-site energy also affects
the states at the Fermi level, as the hopping through the oxygen layers is the only
hopping process included in the model. The effective hopping integral through an
oxygen in layer i (i = 1, 2) is given by t2dp/∆i , where tdp denotes the direct hopping
parameter between cobalt and oxygen, and ∆i the on-site energy difference between
them. The inversion symmetry breaking energy scale relevant for the surface states
is the difference of the hopping integrals for the two paths, t2dp (1/∆1 − 1/∆2). This
is the energy difference of the wave functions whose weight is dominantly above
and dominantly below the Co plane; an analysis of the Co-O hybridisation reveals
that the one whose weight is dominantly above the Co plane has a lower binding
energy (see Appendix F). As tdp, ∆1 and ∆2 can all be roughly estimated from
density functional theory calculations, the inversion symmetry breaking scale is not
an arbitrary parameter of the model. This enables a meaningful comparison of the
inversion symmetry breaking and spin-orbit coupling energy scales.

In Figure 6.30 I show the band structure calculated with the on-site energies of
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the two oxygen pz orbitals chosen to be −3.2 eV and −7 eV for O1 and O2 (Table
6.4, second column), respectively. The band structure is coloured according to the
in-plane chiral (Figure 6.30a, 〈L⊥〉) and the out of plane (Figure 6.30b, 〈Lz〉) orbital
angular momentum.
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Figure 6.30.: The band structure of the CoO2 layer of delafossite oxides calculated
without spin-orbit coupling, with different on-site energy for the two distinct oxy-
gens, coloured according to (a) the expected value of chiral in-plane orbital angular
momentum, and (b) out-of-plane orbital angular momentum.

As in the example of p - orbitals on a triangular lattice, the breaking of symmetry
allows hybridisation at places in the zone where bands cross in the inversion sym-
metric environment, along the Γ −K line and at the K - point here. The opening
of a gap at the K point is allowed because the CoO2 layer has no mirror symmetry
with respect to the zx plane, which protects the degeneracy of the mz = ±1 states
in a simple triangular lattice. Once the degeneracy of the mz = ±1 orbitals is
broken, the bands on either side of the gap develop orbital angular momentum in
the z direction. Chiral orbital angular momentum is developed on either side of the
hybridisation gap opened along the Γ−K line, much like in the triangular lattice,
but also in the part of the zone where there are no avoided crossings, along the
Γ −M line here. This is possible because the orbital character is mixed along this
line even in the inversion symmetric environment (Figure 6.28(a, b)).
The CoO2 layer is therefore an example of a system in which inversion symmetry

breaking allows for finite orbital angular momentum to be developed along specific
axes, determined by the orbital character of the bands and the momentum direction.
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6.6 CoO2 tight binding model

If spin-orbit coupling is added to such a system, the band structure becomes spin-
split, with the energy scale of the spin-splitting determined by the relative size of the
spin-orbit coupling and the inversion symmetry breaking. The latter determines the
size of the gap between the states of opposite orbital angular momentum, which is
110 meV the at the K point, and 140 meV at the anti-crossing point along the Γ−K
line; the values are extracted from Figure 6.30. Both of these energies are larger
than the spin-orbit coupling scale of 70 meV, placing the CoO2 layer in the limit of
strong inversion symmetry breaking. The orbital angular momentum is therefore of
the same sign on the two spin-split branches, as shown in Figure 6.31.
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Figure 6.31.: The band structure of the CoO2 layer calculated with spin-orbit coup-
ling, and with different on-site energy for the two oxygens, coloured according to
the expected value of (a) chiral in-plane and (b) the out-of-plane orbital angular
momentum, (c) chiral in-plane and (d) out-of-plane spin angular momentum.

This is true across the Brillouin zone, for the in-plane and out-of-plane orbital
angular momentum alike. The maximum size of the spin-splitting of the band cross-
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ing the Fermi level is 75 meV, on the order of the spin-orbit coupling constant, as
expected for a system in the strong spin-orbit coupling limit. This minimal model de-
scribing the spin-splitting in the transition metal oxide layer of delafossites therefore
suggests an exciting scenario for achieving a large spin-splitting. An asymmetry of
kinetic energy caused by the structure of the top layer causes an inversion symmetry
breaking large enough to place the system in the strong ISB limit. The characteristic
signatures of this limit are reproduced by the model: the orbital angular momentum
is of the same sign on the two spin-split branches, and the spin-splitting reaches the
full strength of the spin-orbit coupling.
To unambiguously show that the two limits identified in the p - orbital case are

also relevant for the model considered here, I vary the asymmetry parameter, defined
as γ = (EO1 − EO2) / (EO1 + EO2), and monitor the evolution of the spin-splitting
gap at the K point. As for the p - orbital case, the spin-splitting increases linearly
with the asymmetry in the weak ISB regime, until it saturates to a value limited by
the spin-orbit coupling in the strong ISB regime (Figure 6.32a, cf. Figure 6.22a).
In a band structure calculated in the weak inversion symmetry breaking regime the
orbital angular momentum points in the opposite direction on the two spin-split
bands, as shown for γ = 0.1 in Figure 6.32(b-e). This is in clear contrast to the
band structure calculated using parameters relevant for the CoO2 layer of delafossites
(γ = 0.4 , Figure 6.31).
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Figure 6.32.: (a) Spin-splitting at the K - point, as a function of the inversion
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6.7. New insights on the spin-splitting in delafossites
The simple model described in the previous section not only reproduces the large
spin-splitting observed in delafossites, but also points to the ingredients necessary
for that spin-splitting to develop. First of all, the splitting persists away from
the anti-crossing points because the structure supports orbital character mixing.
Furthermore, the system is in the strong inversion symmetry breaking limit. Most
importantly, the reason for this large inversion symmetry breaking energy scale
is the hopping through two oxygen layers, made different by the loss of bonding
at the surface. It is important to check that the features observed in the simple
model are also present in the real material, rather than being an artefact of the
simplifications made. In what follows I will look for their signatures directly in the
density functional theory calculations, as well as in further experiments inspired by
the understanding brought by the simple model.

6.7.1. Orbital character

In Figure 6.31 I plot the band structure of PtCoO2, coloured according to its orbital
character: green represents the 3d3r2−z2 orbital of the cobalt in the surface layer,
while purple corresponds to the sum of the weights of all the other 3d orbitals of
the same atom. As the output of the density functional theory calculation returns
the absolute values of overlaps of the wave function with the cubic orbitals, but
not their phase, it is not possible to directly extract the weight of the individual
trigonal orbitals. However, the 3d3r2−z2 orbital in the global coordinate system is
also the x0 orbital of the trigonal crystal field, while the energetic splitting between
the t2g and eg levels ensures that the orbitals of finite mz in the energy range shown
in Figure 6.31a are dominantly the x1 and x2 orbitals of the trigonal crystal field
(Figure 6.27). Therefore, the orbital character of the band crossing the Fermi level
extracted from the DFT calculation can be compared with the one obtained in the
simple tight binding model (Figure 6.28). Indeed, the DFT calculation retains the
orbital mixing between states of differentm throughout the zone, explaining how the
spin-splitting can persist in the whole band, and disappear only at the points where
symmetry demands spin degeneracy. The overall contribution from the surface Co
3d orbitals is somewhat smaller than in the tight-binding model, indicating that
there is a larger degree of hybridisation with oxygen in the real material, as well as
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some contribution from subsurface layers.
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Figure 6.33.: (a) The band structure of the CoO2 layer of delafossite oxides, coloured
according to its orbital character. (b) Orbitally resolved wave function weight of
the band crossing the Fermi level.

6.7.2. Strong ISB limit

As discussed in the context of the tight-binding models, the clearest sign that a spin-
split band structure is in the strong inversion symmetry breaking limit is the sign
of orbital angular momentum on the two spin-split branches; it is the same in the
strong inversion symmetry breaking limit, and opposite in the weak. This motivates
calculating the expected value of chiral orbital angular momentum for the density
functional theory wave functions, however the lack of information on the phase of
these wave functions prevents a direct computation. Instead, the electronic structure
was downfolded onto a basis of Wannier functions localised on atomic sites and obey-
ing the symmetry of atomic orbitals. An effective tight-binding Hamiltonian in this
basis was obtained, as described in Section 3.3, enabling the calculation of expected
values of orbital angular momentum. For computational simplicity the downfolding
was done for a band structure calculated without spin-orbit coupling, which was
later added at the tight-binding level. In Figure 6.34a I show the Fermi surface
calculated without spin-orbit coupling, demonstrating how a chiral orbital angular
momentum (arrows), as well as some out-of-plane orbital angular momentum (col-
ours) develop in the absence of spin-orbit coupling. This is similar to the findings of
the minimal tight-binding model with inversion symmetry breaking (Figure 6.30).
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Adding spin-orbit coupling splits the bands according to their spin, but does not
alter the sign of the preexisting orbital angular momentum (Figure 6.34(b, c)), again
consistent with the simple model (Figure 6.31).
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Figure 6.34.: Fermi surface of the surface states calculated (a) without spin-orbit
coupling (SOC) and (b, c) with spin-orbit coupling. In (a, b) the arrows indicate
the expected value of the in-plane orbital angular momentum in the direction normal
to the momentum, and the colouring the out-of-plane orbital angular momentum
(OAM), while in (c) the arrows indicate the expected value of the in-plane spin
angular momentum, and the colouring the out-of-plane spin angular momentum.

Although the overall agreement of the theory and the experiment leaves little
doubt that the material really is in the strong inversion symmetry breaking limit,
the final proof would be an experimental confirmation of the direction of orbital
angular momentum. While there is no experimental method that directly measures
the orbital angular momentum of a wave function in a solid, circular dichroism in
photoemission, i.e. the difference in intensity when measuring with the two circu-
lar light polarisations, has been shown to be sensitive to it in many specific cases
[107–109]. Motivated by this, in Figure 6.35(a, b) I show the circular dichroism in
a measured dispersion and a Fermi surface. Evidently there is a strong circular di-
chroism of the same sign on the two spin-split states, consistent with the same sign
of orbital angular momentum on the two spin-split bands. The result does not de-
pend on the photon energy used, as shown in Figure 6.35c, which also shows that the
Fermi momenta do not depend on the photon energy, as expected of two-dimensional
electronic states (Section 2.1).
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Figure 6.35.: Circular dichroism measurement of (a) dispersion (hν = 100 eV), and
(b) a Fermi surface map (hν = 110 eV). (c) Circular dichroism at the Fermi level
(EF ± 5 meV) as a function of photon energy.

The sign of orbital angular momentum shows that the inversion symmetry break-
ing is the dominant energy scale, but it does not reveal its magnitude. As discussed
in the context of the simple tight-binding models, the two mz = ±1 states have to
be degenerate at the K point in the absence of inversion symmetry breaking and
spin orbit coupling. Therefore, the splitting between them at the K point can be
used to estimate the inversion symmetry breaking energy scale. In Figure 6.36 I
plot the band structure over a larger energy range than previously, down to 1.2 eV
binding energy, coloured according to the out-of-plane spin (Figure 6.36a), and the
orbital character of the surface Co 3d orbitals (Figure 6.36b). In addition to the
bands crossing the Fermi level, another pair of spin-split states of the mz = ±1 char-
acter is clearly resolvable. Because the system is in the strong inversion symmetry
breaking limit, the energy scale of the splitting between those two pairs of states at
the K point corresponds to the inversion symmetry breaking energy scale, and is
found to be equal to ∼ 380 meV. This leads to the simplified energy scale diagram
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for the surface states at the K point show in Figure 6.36c; similar diagrams are valid
at other momentum points, with the appropriate quantisation axis governed by the
momentum direction. Another place in the band structure where it is possible to
estimate the inversion symmetry breaking energy scale is at the anti-crossing point
of the states of different orbital character along the Γ−K line. Although less well
defined than the one at the K point, the splitting is about ∼ 230 meV here, still
much larger than the spin-orbit coupling energy.

Figure 6.36.: The band structure of the CoO2 layer of delafossite oxides, coloured
according to (a) the out-of-plane spin projection, and (b) its orbital character. (c)
An energy level diagram directly relevant for the surface states of PtCoO2 at the
K - point.

6.7.3. Kinetic inversion symmetry breaking

The inversion symmetry breaking energy scale we were able to deduce is truly large,
more than four times the strength of the spin-orbit coupling of the Co 3d orbitals.
Understanding its origin is the key to understanding the large spin-splitting. In the
simple tight binding model the inversion symmetry breaking is essentially kinetic,
i.e. the effective hopping Hamiltonian becomes asymmetric. This originates from
the difference in the on-site energy of the two oxygens, which was also found in the
density functional theory calculations of the partial density of states of the oxygen
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pz orbitals (Figure 6.29). To show that this remains relevant even when all of the
orbitals are considered, I plot the layer-resolved total density of oxygen states for
the first nine layers in Figure 6.37a. The DOS of the oxygens below the first CoO2

layer (oxygen 3-9, grey in Figure 6.37a) are all very similar to each other, proving
that they are not significantly affected by the surface. The DOS of the subsurface
oxygen 2 (purple in Figure 6.37a) is somewhat, but not significantly, modified from
the bulk-like one of the deeper oxygens. In contrast, the majority of the density
of states of the surface oxygen (pink in Figure 6.37a) is shifted by ∼ 4 eV towards
the Fermi level. In the tight binding model this on-site energy difference caused
the band crossing the Fermi level to hybridise strongly with the surface oxygen,
and very weakly with the subsurface one. In Figure 6.37b I therefore plot the
DFT band coloured according to the wave function weight of the surface (pink) and
subsurface (purple) oxygen, proving that the hybridisation with the surface one is
much stronger, as it is in the tight binding picture. The parallels drawn between the
simple tight binding model and the density functional theory calculation reinforce
the interpretation of the kinetic inversion symmetry breaking in the surface CoO2

layer of delafossites.
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6.7.4. Confirmation: PdRhO2

One of the features of the strong inversion-symmetry breaking limit is that the spin-
splitting is limited by the spin-orbit coupling. In other words, if heavier atoms were
used to increase the spin-orbit coupling, and the system remained in the strong ISB
limit, the spin-splitting would grow proportionally to the spin-orbit coupling. We
were able to test this prediction by measurements on a new compound, PdRhO2.
The atomic spin-orbit coupling of the 4d orbitals of rhodium in the 4d6 configuration
is 175 meV [88], 2.5 times larger than that of Co, making it an ideal system in which
to test if the spin-splitting indeed scales with the spin-orbit coupling.
The surface states on the transition metal oxide terminated surface of PdRhO2

are qualitatively similar to those on PdCoO2, as seen in dispersions measured along
the Γ−M and the Γ−K directions, shown in Figure 6.38 (a, b).
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Figure 6.38.: Dispersion measured along (a) the Γ−M and (b) the Γ−K direction
in PdRhO2. The lines are the MDCs, averaged over EF ± 5 meV.

The Fermi momenta and velocities extracted from PdRhO2 (Table 6.5) reveal
that the quasiparticle masses are lower than in the cobaltates, reflecting the larger
bandwidth of the Rh 4d bands compared to the Co 3d bands6. In spite of this, the
momentum splitting at the Fermi level is higher, reaching ∆kF = (0.16± 0.01) Å−1

along the Γ−K direction. This is a result of a strongly enhanced energetic splitting,
which is as large as 150 meV at the K - point (Figure 6.39(c, d)). It is indeed on
the order of the full atomic spin-orbit coupling strength of Rh, and to the best of

6See section D.3 for a comparison of the numerical values extracted from all the compounds.
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my knowledge by far the largest spin splitting observed in an oxide to date. It is
2.5 times larger than the energetic splitting in PdCoO2 , reflecting the ratio of their
atomic spin-orbit coupling energies, and confirming that the transition metal oxide
surfaces of delafossites really are in the strong inversion symmetry breaking limit.
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Figure 6.39.: Spin-split surface states of (a) PdCoO2 and (c) PdRhO2 measured
along the Γ−K direction. The inset in a shows the first two Brillouin zones, with the
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the value of in-plane crystal momentum along this direction and kK the momentum
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inner outer

Γ
−
K

kF
(
Å−1

)
0.49± 0.02 0.65± 0.02

vF
(
eVÅ

)
0.64± 0.03 0.47± 0.03

m/me 6±1 11± 1

Γ
−
M

kF
(
Å−1

)
0.48± 0.02 0.61± 0.02

vF
(
eVÅ

)
0.70± 0.05 0.70± 0.05

m/me 5± 1 7± 1

Table 6.5.: The Fermi momenta, velocities and effective masses of the two surface
state bands in PdRhO2. The uncertainties reflect the measurement and fitting
precision.

6.8. Discussion

The above comparison of simple tight binding models, density functional theory
calculations and experiments lead to the understanding of the large spin-splitting
observed in delafossite oxides, but also to ideas that cast a new light on known
materials, as well as suggesting routes for material design.
Maximising the inversion symmetry breaking energy scale is as important for large

spin-splitting as is maximising the spin-orbit coupling. The critical new insight
brought here is that the inversion symmetry breaking energy scale need not be a
weak perturbation of a dominant symmetric kinetic Hamiltonian, such as is the often
considered electric dipole term [110, 111]. Rather, the kinetic Hamiltonian itself can
become asymmetric. The key for making this asymmetry a large fraction of the
bandwidth is a structure which forces the hopping to be dominantly out-of-plane.
Indeed, it is not directly the difference in on-site energies of the two oxygens that
governs the relevant inversion symmetry breaking, but the fact that the Co electrons
need to hop through them. To make this point completely transparent, in Figure 6.40
I compare the influence of surface on-site energy shifts on the edge-sharing transition
metal oxide layer found in delafossites with that on its corner-sharing counterpart
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found in 〈001〉 perovskites. In both cases the breaking of covalent bonds at the
surface can lead to an on-site energy shift of the surface oxygen (O1) with respect
to subsurface oxygens. However, the influence on the spin-splitting is very different.
I use the same tight binding parameters for the two structures (as quoted in column
II of Table 6.4), and in particular the same on-site energy shift, to calculate the band
structure for a single transition metal oxide layer. It is clear that, despite the same
on-site energy shift at the surface, there is negligible effect on the band structure
of the corner-sharing layer. This is because the dominant hopping path between
the transition metal ions is via the planar oxygens, and so the relevant electrons do
not feel the surface symmetry breaking strongly. In contrast, the hopping between
transition metal ions in delafossites is via either the surface or subsurface oxygen
layers, and so the effect of a pure on-site energy shift of the surface layer is already
sufficient to drive a large orbital angular momentum in the undistorted structure.

Figure 6.40.: A structural building block of (a) a delafossite and (d) a perovskite
layer. The tight-binding band structure of the delafossite layer (b, c) and the
perovskite layer (e, f), coloured according to the in-plane chiral (b, e) and the
out-of-plane (c, f) orbital angular momentum.
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6.8.1. Insights about known systems

Understanding the relevance of the two energy scales motivates revisiting the sys-
tems known to support spin-splitting, both to identify the limit they are in, and to
understand the relevant mechanism of symmetry breaking. In what follows I discuss
a few famous examples of spin-split systems. The list is by no means comprehensive,
but it illustrates how may different materials can be understood within the same
framework.

(001) surfaces and interfaces of perovskites

SrTiO3 and KTaO3 are both perovskite oxides whose bulk is insulating, but which
can support two-dimensional electron gases (2 DEGs) at their (001) surfaces. The
electronic structure of the 2 DEGs in the two materials is very similar, and consists
of multiple subbands derived from the d orbitals of the transition metal (Ti, Ta),
either of xy, or mixed yz and zx character [39, 112]. At the points where the bands
of different orbital character cross, small hybridisation gaps open, and spin-splitting
develops. In SrTiO3 the orbital angular momentum points in the same direction on
the two spin-split bands [39, 113], while in KTaO3 it points in different directions
[113], showing that SrTiO3 and KTaO3 are in the strong ISB and weak ISB limit,
respectively. This is also confirmed by the relative size of the spin-splitting and
the spin-orbit coupling in the two materials: in SrTiO3 both the maximum spin-
splitting and the spin-orbit coupling are calculated to be ∼ 20 meV, while in KTaO3

the calculated spin-splitting is ∼ 28 meV, even though the atomic spin-orbit coupling
of Ta is as large as 300 meV [113]. Very similar band structure is also found on the
LaAlO3/SrTiO3 interface, with a splitting of ∼ 18 meV indicating this system is also
in the strong inversion symmetry breaking limit, with the spin-splitting limited by
the Ti spin-orbit coupling [114].

Some Bi-based systems

Many of the systems which exhibit the largest spin-splitting known contain bismuth,
because the atomic spin-orbit coupling of Bi 6p orbitals is as large as 1500 meV. The
large spin-orbit coupling however means that those systems tend to be in the weak
inversion symmetry breaking limit, and the spin-splitting is typically much weaker
than the atomic-spin orbit coupling.
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For example, in the so-called giant Rashba semiconductor BiTeI the largest en-
ergetic spin-splitting found in calculations is 400 meV, while the splitting at the
Fermi level is ∼ 300 meV, significantly smaller than the atomic spin-orbit coupling
[90, 109, 115, 116]. The weak ISB limit is also confirmed by the direction of or-
bital angular momentum, which is locked opposite to spin [109, 117]. Although the
splitting is limited by the inversion symmetry breaking energy scale, it is still large
in absolute terms. In this case the symmetry breaking is not a surface effect, but
rather reflects the lack of inversion symmetry of the crystal structure; specifically,
Te and I layers are found on either side of a Bi layer. Therefore, microscopically
the inversion symmetry breaking term could again be thought of as arising due to
different hybridisation with layers above and below the one containing atoms with
relevant spin-orbit coupling.
Even larger spin-splitting is found in Bi-containing surface alloys, in particular the

Bi/Ag(111) surface alloy, where splitting as large as ∼ 1 eV was observed [91, 118].
Again, splitting is smaller than the atomic spin-orbit coupling, and the direction
of orbital angular momentum confirms the weak inversion symmetry breaking limit
[119], but the absolute value is very large, indicating a large inversion symmetry
breaking energy scale. This can be understood as a consequence of the structure
of the surface alloy, in which the Bi atoms are displaced from the Ag plane. The
inversion symmetry breaking is therefore again a consequence of asymmetric hopping
paths between the atoms with strong spin orbit coupling [120]; here the asymmetry
is made extreme, because to first order the hopping between bismuth atoms can
proceed only through silver atoms, all of which are below bismuth.

Noble metal surfaces

A particularly interesting example of Rashba splitting is seen at the (111) surfaces
of noble metals. The (111) surface of gold is a prototypical Rashba system [93],
which motivated construction of the Petersen-Hedegård model to describe the spin-
splitting [87]. Although this model was very insightful, first principles calculations
later showed that it is actually a small contribution of 5d orbitals to the dominantly
p-orbital state that is responsible for the splitting [121, 122]. The maximum energetic
splitting observed and calculated at the (111) surfaces of gold is ∼ 100 meV, while
the atomic spin-orbit coupling of the 5d orbitals of gold is 608 meV. Nonetheless,
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a circular dichroism measurement and a calculation of orbital angular momentum
confirm that the system is in the strong inversion symmetry breaking limit [121,
123]. The size of the splitting is therefore limited by the spin-orbit coupling of
the 5d orbitals, normalised by the 5d orbital content. This can be nicely seen by
comparing the spin-splitting of the (111) surface of gold and copper [89]; the d orbital
contribution to the surface states is similar in the two materials, so the ratio of the
splitting sizes reflects the ratio of the atomic spin-orbit coupling of the relevant d
orbitals. On the other hand, the d contribution to the surface state on the (111)
surface of silver is negligible, and consequently so is the spin-splitting [121, 122].

6.8.2. Outlook

The largest influence the insights brought by the analysis of spin-splitting on dela-
fossite oxides could have is to offer design principles for new materials. A promising
material for achieving large spin splitting is one in which the hopping paths go out
of plane, and are therefore significantly perturbed by creation of a surface. A spin-
splitting on the order of the spin-orbit coupling energy scale can then be expected;
if the absolute size of the atomic spin-orbit coupling is also large, so will be the
spin-splitting. More generally, the analysis presented here points to the importance
of energy scales associated with symmetry breaking. Although the breaking of sym-
metry is strictly speaking binary, i.e. a symmetry is either observed or it is not, the
influence it can have on any physical system strongly depends on the energy scale
associated with it. This is relevant in all cases where symmetry arguments are used
to infer information on the allowed states, and possible properties of materials.
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7. Conclusions and Outlook

In this thesis I show the results of our angle resolved photoemission measurements
on delafossite metals, and the conclusions were able to draw from these experiments.
We were initially motivated by the extraordinarily high conductivity of delafossites,
and wanted to study their bulk electronic structure. In both PtCoO2 and PdCoO2

we observed fast bands crossing the Fermi level and forming hexagonal Fermi sur-
faces. However, the two most relevant novel physical insights arose from unexpected
observations, as is often the case in science. We identified the Kondo-like coupling of
itinerant and Mott-insulating layers as a cause of the signal observed in the antifer-
romagnetic delafossite metal PdCrO2, and were able to show that this demonstrates
that ARPES can be sensitive to spin-spin correlations. Furthermore, I show how
the unusually large spin-splitting we observed on the transition-metal terminated
surfaces of delafossites arises as a consequence of the structure of the transition
metal oxide layers. These conclusions specific to the individual effects are discussed
in detail at the ends of relevant chapters. Here I would like to mention a few general
insights I have reached during the course of the research presented in the thesis.
Firstly, in every experiment it is important to understand how the measured

signal arises, as well as to be aware of the limits of that understanding. While this
may seem like a trivial statement, it is surprisingly easy to convince oneself that
an observed effect is explicable in terms of known phenomena, and therefore miss
something entirely new. This is especially true whenever we have an idea of what we
are looking for, as we usually do, and therefore do not pay enough attention to other
observed effects. Of course, I do not know how to avoid this in a general case. An
approach I have taken in the two examples discussed in the thesis is to try to model
the observed behaviour, starting from the assumed explanation, and simplifying
the model as much as possible. If this approach captures the essential physics, the
assumed explanation is probably correct. If it does not, the way in which it fails
can be very informative, and motivate more complex models and theories. This also
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emphasises the importance of discussion and collaboration between experimentalists
and theorists, which contributed greatly to our understanding of the investigated
effects.
Furthermore, understanding reached in the course of research of one specific phe-

nomenon arising in one material can be general, and applicable to other systems.
Every experimentally observed phenomenon is specific to the system under invest-
igation; its generality often cannot be appreciated before the physics underlying the
phenomenon is understood. Once it is, other systems in which the same physics
plays a role may be recognised. To mention the two examples from the thesis, we
wanted to understand why is the spin-splitting in delafossites so large and what
causes the reconstructed signal in PdCrO2. We now have the answers to both of
these specific questions, but we also know what ingredients are necessary to design
a system with a huge spin-splitting, and have an idea of how to probe magnetism
in atomically-thin samples. It is too early to say if these insights will result in new
independent experiments and material design, but it is possible that they will; if so,
I would be delighted!
For me personally the most exciting prospect is not benefiting from these effects we

were able to understand, but rather finding more such unexpected physics. Looking
back at the Table 1.2 of the Introduction, it is clear that many delafossites have
been synthesised to date. Some of them have been studied in detail due to their
magnetic or semiconducting properties, but many have not. What is more, the
surface states in the metallic delafossite oxides point to a rich variety of physical
phenomena that can be found at polar surfaces. It is likely that many of the other
delafossites host surface states, which to the best of my knowledge have not been
studied to date. Each of these materials can be thought of as hosting three different
electronic systems, leading to a staggering number of different electronic states that
can be obtained through cleaving the delafossites listed in Table 1.2, and indicating
a potentially fruitful field of future research.
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A. The out-of-plane spectrum

Although the out-of-plane momentum, kz, cannot be determined from the quantities
directly measured in a photoemission experiment, some conclusions about the out-
of-plane spectrum can be drawn from photon energy dependent measurements. To
determine the measured kz, however, an assumption has to be made about the final
state of the photoexcited electrons. A commonly used model of the final state is the
‘free electron model’, in which the final state is approximated by a free-electron like
parabola, with a material-dependent offset E0:

Ef = 1
2m

(
~k + ~G

)2
− |E0| , (A.1)

where |E0| = V0 − W . V0 is the so-called inner potential, which corresponds to
the energy of the bottom of the valence band referenced to the vacuum level. It
can be determined in comparison with calculations, but is usually estimated from
the periodicity of the band features in experiments. Let us consider photoemission
from an initial state of known in-plane momentum k‖ into the free-electron like final
state, as illustrated in Figure A.1 for two cases: if the binding energy of the initial
state does not depend on the out-of-plane momentum kz (blue line in Figure A.1a),
and if it does (green line in Figure A.1b). The energy difference between the initial
and the final state is equal to the photon energy used in the experiment, shown by
pink and purple arrows in Figures A.1(a, b). As evident in the figures, the value
of kz that is probed in the experiment depends on the choice of the photon energy,
and the kz dispersion of the initial state. Crucially, if the initial state does not
disperse along kz, all photon energies probe the same binding energy. In contrast,
if the initial state does disperse in the out-of-plane direction, the measured binding
energy depends on the photon energy used. This qualitative statement does not
depend on any assumptions about the final state, and can therefore be used to gain
minimal information on the dimensionality of the electronic structure. However, to
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Chapter A The out-of-plane spectrum

infer the value of kz from the measured quantities, and therefore the out-of-plane
quasiparticle dispersion, an assumption about the final state needs to be made. In
the free electron final state model employed here kz is given by [33] :

~kz =
√

2m (EK cos2 (ϕ) + V0). (A.2)

hν2

hν1

kz

Ef

EB

E
a

hν2

hν1

kz

E

Ef

EB

b

Figure A.1.: Schematic of determination of out-of-plane spectrum via photon energy
dependent measurements, if the initial state exhibits (a) no kz dispersion, and (b)
some kz dispersion.

As mentioned in the Section 2.1, ARPES is not an ideal probe of the out-of-plane
dispersions for a number of reasons: an assumption about the final state needs to be
made, the out-of-plane momentum is not conserved as the electron leaves the solid,
and each measurement probes a range of out-of-plane momenta ∆kz ∼ 1/lmfp. All
of these issues can be addressed by using high photon energies in the soft x-ray
range: the free-electron like final state is a better approximation, the probing depth
is larger (Figure 2.2), and so is the momentum, making the momentum loss at
the surface less relevant. However, the use of higher photon energies reduces the
in-plane momentum resolution, and the signal is typically weaker due to a smaller
cross-section for x-ray photoemission.
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B. Pd - terminated surface states

As discussed in the Introduction (Section 1.2.1), and shown in Section 2.6.5, both
the Pd - terminated surface and the CoO2 - terminated surface of PdCoO2support
surface states. The states arising on the CoO2 - terminated surface are the topic of
Chapter 6, while I briefly discuss the states on the Pd-terminated surface here.
The best-resolved Pd-surface states we observed are on patches of mixed ter-

mination, like the one shown in Figure 2.20e. In Figure B.1a I therefore show a
high-resolution spectrum measured on one such surface. The bulk states, CoO2-
surface states (S-CoO2) and the Pd-surface states (S-Pd) are all marked in Figure
B.1a; in the following I discuss only the latter. There are two electron-like pockets
around the Γ point. Additionally, a band dispersing parallel to the bulk band, and a
flat band in the vicinity of the K point are all observed. If the total charge contained
in these surface bands is calculated assuming spin - degeneracy, an unphysically high
surface carrier density is found. In contrast, if we treat them as spin-polarised a
surface charge density of 0.55 ± 0.03 electrons/unit cell is obtained, in good agree-
ment with the additional 0.5 electrons per unit cell that would be expected from
the polar surface charge. Our measurements therefore strongly suggest that the
surface bands are spin-polarised, as was already proposed by Kim at al. [9] based
on their DFT calculations. This interpretation is reinforced by the comparison of
the measurements with our DFT band structures coloured according to the spin: in
Figure B.1b the blue and red colour correspond to the spin majority and minority
character projected onto the surface layer. Two pairs of exchange-split bands are
seen in the calculation, labelled α and β , and γ and δ, for the two pairs. Both
pairs can be identified in the experiment: the α and β bands are the flat band in
the vicinity of the K - point and the band dispersing parallel to the bulk band,
respectively. The γ and δ bands are the two electron-like bands seen at the zone
centre in the measurements. The calculation also predicts a hole-like band crossing
the Fermi level at the M - point. Experimentally, this band is found to be fully
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Figure B.1.: (a) The measured electronic structure, showing contributions from both
surface terminations. (b) The calculated electronic structure of a Pd - terminated
surface, coloured according to the spin polarisation of the top Pd layer. (c) Schem-
atic showing how does the surface ferromagnetism arise. The calculations were done
by Helge Rosner. Figure panels courtesy of Federico Mazzola.

occupied (Figure 2c of Ref. [10], not shown here). While it is possible to relate
the bands predicted by the calculations to the experimental ones, it is interesting to
note that their relative positions and occupations are not correctly captured by the
calculation. This is often the case when the electronic structure of polar surfaces is
calculated, and will be discussed in more detail in the context of the CoO2- surface
states in Section 6.2.

The origin of the surface ferromagnetism can be deduced by inspecting the in-
fluence of the polar charge on the bulk band structure. The bulk band crossing
the Fermi level is steep at the Fermi level, but becomes flat above it, as shown
schematically in Figure B.1c, and also evident in the DFT band structure in Figure
1.9c. The effective electron-doping at the Pd-surface discussed in the Introduction
(Section 1.2.1) leads to a surface copy of the bulk band at a lower binding energy,
shown in green on the schematic in Figure B.1c. The flat band is pushed sufficiently
close to the Fermi level to trigger a Stoner transition, therefore exchange-splitting
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Pd - terminated surface states

into a pair of spin-polarised α and β bands, as observed in both our experiment and
the calculations. The γ and δ bands, as well as the hole-like bands at M , inherit a
similar exchange splitting.
Consistent with the findings of Sobota et al., we have also observed surface states

on PdCrO2. In a comparative analysis we have shown that they are quantitat-
ively, as well as qualitatively, similar to those in PdCoO2, allowing us to identify
the exchange-split pairs of bands in PdCrO2. This is particularly exciting, as it
means that the PdCrO2, which is antiferromagnetic in the bulk, can host surface
ferromagnetism.
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C. Fermi velocity determination

As discussed in Section 2.5 in the context of the simulated spectral functions, it is
important to carefully choose the fitting range when determining the Fermi velocity.
Here I show how this was done for the bulk states in PtCoO2 and PdCoO2 , as well
as for surface states on the CoO2 terminated surfaces of PtCoO2.

C.1. Bulk states
The first step needed to determine the Fermi velocity is to extract the momenta as
a function of binding energy by fitting Lorentzian peaks to momentum distribution
curves. In Figure C.1a I show the absolute value of the momenta extracted from the
data shown in Figure 4.5(a, b) for PtCoO2 and PdCoO2, respectively. The squares
and circles represent the data extracted from the k < 0 and k > 0 sides of the
dispersion, respectively. In an ideal measurement the absolute value of momentum
would be the same for both sides of the dispersion at all binding energies. Indeed, the
agreement is good in the data shown in Figure C.1a, but there are small observable
deviations, offering a natural way to estimate the size of the systematic errors in the
experiment.
In order to determine the Fermi velocity a linear fit needs to be performed in the

vicinity of the Fermi level. In Figure C.1b I show the Fermi velocity obtained from
such a fit for a variable fitting range; the fit is always performed between the Fermi
level and the binding energy indicated on the x - axis. A few features are prominent.
First of all, it is clear that the Fermi velocity in PtCoO2 is larger than that in
PdCoO2, and that this statement does not depend at all on the fitting range chosen.
However, the value of the extracted velocities does depend on the fitting range. If
the range is smaller than ∼ 100 meV, the extracted velocity depends strongly and
non-monotonically on the fitting range both for PtCoO2 and PdCoO2. The fits are
overly sensitive to the experimental noise, and therefore not reliable. Even when
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Chapter C Fermi velocity determination

the noise is not a limiting factor, the fits from the two sides of the dispersions do
not coincide, reflecting systematic measurement errors, possibly due to small sample
misalignment. A choice then needs to be made about the most appropriate fitting
range, and the error bars associated with the extracted Fermi velocity need to be
large enough to encompass the values that would be obtained by fitting to either
positive or negative momenta. Ideally the smallest range in which the fit is stable
should be chosen. In the cases shown here I averaged the Fermi velocity that would
be obtained by fitting ranges between −0.25 meV and −0.15 meV (indicated by the
length of horizontal lines in Figure C.1b), leading to Fermi velocity estimates of
5.6 ± 0.3 eVÅ and 4.2 ± 0.2 eVÅ, for PtCoO2 and PdCoO2 respectively. The mean
values and errors are marked by full and dashed lines in Figure C.1b, respectively.
In Figure C.1c I show the data between 250 meV and the Fermi level together with
linearised dispersions assuming the extracted Fermi velocities, showing that the fits
are indeed good.
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Figure C.1.: (a) Absolute value of momentum as a function of binding energy, extrac-
ted from the data shown in Figure 4.5(a, b) for PtCoO2 and PdCoO2, respectively.
(b) The fitted Fermi velocity as a function of the fitting range. The symbols have the
same meaning as in (a). The length of the horizontal lines indicates the range used
to determine the Fermi velocity. The full and dashed lines indicate the mean value
of the velocities, and the errors associated with them, respectively. (c) The absolute
value of momentum as a function of binding energy, together with the linearised
bands assuming the extracted Fermi velocities indicated in (b).
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C.2 Surface states

C.2. Surface states
Determining the Fermi velocity of the surface state bands, discussed in Chapter 6, is
additionally complicated by their slight curving away from the linear dispersion in
the immediate vicinity (∼ 10 meV) of the Fermi level. As discussed in Section 6.1.1,
this apparent change of slope is likely not intrinsic to the surface electronic structure,
but an artefact both of Coloumb interactions between the outgoing electrons, known
as the space charge effect [55], and the finite measurement resolution. This change of
slope is also visible in Figure C.2a, in which I show the absolute value of momentum
as a function of binding energy of both the inner and outer band, extracted from the
data shown in Figure 6.1b, for a measurement along the Γ−K direction in PtCoO2.
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Figure C.2.: (a) Absolute value of momentum as a function of binding energy, ex-
tracted from the data shown in Figure 6.1b, taken along the Γ − K direction in
PtCoO2. (b) The extracted Fermi velocity of the outer band for k < 0, fitted from
the data shown in (a), as a function of the last point of the fitting range, for a
range of first points of the fitting range. (c) The extracted Fermi velocity of the
four bands shown in (a), for fits performed between −16 meV and the fitting range
indicated on the x axis. The length of the horizontal lines indicates the range used
to determine the Fermi velocity. The full and dashed lines indicate the mean value
of the velocities, and the errors associated with them, respectively.

The extracted Fermi velocity therefore depends both on the first and the last
point in the fitting range. To see this explicitly, in Figure C.2b I plot the extracted
Fermi velocity as a function of the last point included in the fit, for various choices
of the first point. Clearly the fit depends quite strongly on the first point, if the first
point is closer to the Fermi level than ∼ 16 meV. Therefore, to determine the Fermi
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Chapter C Fermi velocity determination

velocity I performed the linear fits between −16 meV and a variable end point, for
the inner and outer band for both positive and negative momenta (Figure 6.1c). The
fits performed for both signs of momentum are in good agreement, and the difference
in velocity between the two directions is larger than any errors associated with the
fits. The Fermi velocities are found to be 0.38 ± 0.02 eVÅ and 0.30 ± 0.02 eVÅ for
the inner and outer band, respectively. The final values quoted in Table 6.1 are
obtained by averaging the results of such fits performed on multiple measurements
on three different samples, the data from which are shown in Figure D.2. Equivalent
fits were performed for the data extracted from measurements on PdCoO2 (Figure
D.3), leading to the extracted values listed in Table D.1.
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D. Additional data on the
Rashba-like surface states

In this Appendix I show the data from PdCoO2 from measurements similar to those
on PtCoO2 which are presented in Chapter 6. I did not put them in the main body
of the thesis to avoid repetition. The relevant values extracted from the PdCoO2

data are shown in Tables D.1 and D.2.

D.1. Dispersions in PdCoO2 and PtCoO2

In this section I show the results of the fits to the dispersions measured in PdCoO2,
similar to the ones shown in Figure 6.2 for PtCoO2 (Figure 6.2), as well as the para-
meter values extracted from them (Table D.1). The data from the two compounds
are qualitatively very similar, while small quantitative differences are summarised
in Section D.3. I also show dispersions from all the samples which were analysed
to obtain the averaged values of Fermi velocities and momenta for both compounds
(Figures D.2 and D.3).
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Chapter D Additional data on the Rashba-like surface states

inner outer

Γ
−
K

kF
(
Å−1

)
0.55± 0.02 0.67± 0.02

vF
(
eVÅ

)
0.46± 0.02 0.32± 0.02

m/me 9.0± 0.4 15.8± 0.7

Γ
−
M

kF
(
Å−1

)
0.54± 0.02 0.63± 0.02

vF
(
eVÅ

)
0.52± 0.03 0.48± 0.03

m/me 7.9± 0.5 10.1± 0.8

Table D.1.: The Fermi momenta, velocities and effective masses of the two surface
state bands in PdCoO2, averaged over three samples. The uncertainties reflect both
the measurement and fitting precision, as well as sample-to-sample variation.
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D.1 Dispersions in PdCoO2 and PtCoO2
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Figure D.1.: (a, d) Dispersion measured along the Γ−K and the Γ−M directions
in PdCoO2 (110 eV, p-polarised light), respectively. The dots in (a, b, d, e) are
the peak positions of Lorentzian fits to extracted MDCs. The lines in (b, e) are
linearised bands, defined by fitted band slopes and Fermi momenta of the relevant
dispersion. (c, f) The full width at half maximum of Lorentzian fits to the MDCs
as a function of binding energy.
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Figure D.2.: Dispersion measured along (a-c) the Γ−M and (d-f) the Γ−K direction
in PtCoO2 measured on three different samples, as indicated in the plot. The lines
are the MDCs, averaged over EF ± 5 meV.
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in PdCoO2 measured on three different samples, as indicated in the plot. The lines
are the MDCs, averaged over EF ± 5 meV.
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D.2. Fermi surface of PdCoO2

In this section I show the fits to the surface state Fermi surfaces of PdCoO2 , similar
to the ones shown for PtCoO2 in Figure 6.3. The Fermi surface was fitted to a
periodic function of the form:

kF (ϕ) = k0 + k6,0 cos (6ϕ) + k12,0 cos (12ϕ) . (D.1)

The fit parameters are listed in Table D.2.
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Figure D.4.: (a) Measured Fermi surface of PdCoO2, with dots representing the
Fermi momenta extracted by radially fitting MDCs. (b) Extracted momenta (dots)
as a function of angle ϕ around the Fermi surface, with a sinusoidal fit (lines)
describing the Fermi surface shape (Equation D.1). (c) The same fit as in b (lines),
superimposed on measured data to demonstrate good agreement.

inner outer
k0 0.5717± 0.0005 0.6777± 0.0005
k6,0 -0.004± 0.001 −0.024± 0.001
k12,0 0.000± 0.0008 0.0014± 0.0009

Table D.2.: Parameters of fits of a periodic function (Equation D.1) to the inner and
outer surface state Fermi surfaces of PdCoO2 . An example of such a fit is shown in
D.4(b, c).
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D.3 Compound comparison

D.3. Compound comparison

PtCoO2 PdCoO2 PdRhO2

m1/ me [Γ-M] 9.6 ± 0.5 7.9 ± 0.5 5 ± 1
m2/ me [Γ-M] 11.5 ± 0.8 10.1 ± 0.8 7 ± 1
m1/ me [Γ-K] 9.5 ± 0.5 9.0 ± 0.4 6 ± 1
m2/ me [Γ-K] 15 ± 1 15.7 ± 0.7 11 ± 1

∆kF/ Å−1 [Γ-M] 0.11 ± 0.01 0.09 ± 0.01 0.13 ± 0.01
∆kF/ Å−1 [Γ-K] 0.13 ± 0.01 0.12 ± 0.01 0.16 ± 0.01
∆E/ meV [K] 60 60 150

Table D.3.: Quasiparticle masses, mi, of the inner (i = 1) and outer (i = 2)
surface bands, and spin splitting at the Fermi level, ∆kF , along the high symmetry
directions. These are very similar for PtCoO2 and PdCoO2. Despite the lower
masses for PdRhO2, ∆kF is larger, a consequence of the larger energetic splitting
∆E.
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E. Basis transformations

In Chapter 6 I construct multiple tight-binding models using the Slater-Koster
method (Section 3.1), with both p and d orbitals as bases. While the kinetic part
of the Hamiltonian is the easiest to calculate in the cubic basis, the orbital angu-
lar momentum and spin-orbit coupling Hamiltonians are usually expressed in the
spherical basis. What is more, the crystal field Hamiltonian necessary to account for
the crystal field on the Co site in the delafossite structure is diagonal in the trigonal
basis. It is therefore necessary to transform the operators between different bases.
This is straightforward to do, if the transformation of the basis vectors is known: if
the transformation which transforms the basis vectors of the basis x into the basis
vectors of the basis y is labelled Bx→y, the coordinate transformation between the
two bases is given by Tx→y =

(
B−1
x→y

)T
. The representations of an operator O in the

two bases are related by Oy = Tx→yOxT
−1
x→y. In this Appendix I will explicitly list

the basis transformations I used in the tight binding models, labelling the spherical,
cubic and trigonal bases with letters s, c and t, respectively.

E.1. p - orbitals

The basis transformation between the cubic {py, pz, px} and the spherical {p−1, p0, p1}
basis of p orbitals with z as a quantisation axis is given by:

Bs→c =


ı√
2 0 ı√

2

0 1 0
1√
2 0 − 1√

2


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E.2. d - orbitals
The basis transformation between the cubic {dxy, dyz, d3z2−r2 , dxz, dx2−y2} and the
spherical {d−2, d−1, d0, d1, d2} basis of d orbitals with z as a quantisation axis is
given by:

Bs→c =



ı√
2 0 0 0 − ı√

2

0 ı√
2 0 ı√

2 0
0 0 1 0 0
0 1√

2 0 − 1√
2 0

1√
2 0 0 0 1√

2


. (E.1)

The basis transformation between the trigonal {u+, u−, x0, x1, x2} and the spherical
{d−2, d−1, d0, d1, d2} basis of d orbitals with z as a quantisation axis is given by:

Bs→t =



1√
3 0 0 −

√
2
3 0

0
√

2
3 0 0 1√

3

0 0 1 0 0
0 − 1√

3 0 0
√

2
3√

2
3 0 0 1√

3 0


. (E.2)
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F. Co-O hybridisation

The inversion symmetry breaking Hamiltonian by definition introduces an energy
difference between wave functions of different symmetry: the wavefunctions whose
weights are dominantly above or below a certain plane will have a different energy.
Which one of them has a lower energy depends on the type of inversion symmetry
breaking. In the specific case of inversion symmetry breaking caused by the differ-
ence in on-site energy of surface and sub-surface oxygen, relevant for delafossites,
this can be deduced by considering the hybridisation between Co and O orbitals,
which I show schematically in Figure F.1 for states at the K point, chosen for the
simplicity of the band structure at that momentum. In the symmetric environment
the two degenerate oxygen states, derived from the pz orbitals of the two oxygens,
hybridise with the three degenerate t2g orbitals of a Co ion. At the K point the
a1g state is not affected by this hybridisation, as evident from the fact it is not
dispersive and its energy is not changed from its initial on-site value of −0.57 eV
(green line at the K point in Figure 6.28a); in Figure F.1 I therefore show only the
eπg states. Once hybridisation is allowed, the energy of the dominantly oxygen states
is decreased, and that of dominantly Co states increased, by t2pd/∆ , where tpd is the
off-diagonal matrix element connecting the p and dorbitals, and ∆ their unperturbed
energy difference (Figure F.1a). The value of effective t2pd/∆ at this point can be
directly extracted as the difference in energy between the m = 0 state and the eπg
states in Figure 6.28a, and is found to be equal to 140 meV. The admixture of the
oxygen in the dominantly Co states, and vice versa, is given by (tpd/∆)2 ∼ 4%. A
similar scenario takes place when the on-site energies of the two oxygens are made
different, however now the d orbital wave function whose weight is above the Co
plane, labeled |up〉 hybridises with O1, and the one whose weight is below (|down〉)
hybridise with O2 (Figure F.1b). As the on-site energy difference between O1 and
Co (∆1) is smaller than that between O2 and Co (∆2), the hybridisation of the |up〉
state with O1 is stronger than that of the |down〉 state with O2; consequently its
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Chapter F Co-O hybridisation

energy is increased more from the unperturbed value than that of the dominantly
|down〉 state. The wave function weight of the higher energy state, corresponding to
the band crossing the Fermi level in this model, is therefore pushed towards the top
oxygen. It also has a higher oxygen content, 7% at the K point for the parameters
used here, to be compared with 1% for the |down〉 state.

Figure F.1.: A schematic representation of the hybridisation between the p orbitals
of two oxygens with the e2g

π orbitals of Co at the K point, if (a) the two oxygens
are equivalent and (b) the on-site energies of the two oxygens are different. The
energies of all the states correspond to the ones in the simple tight-binding model
(Table 6.4).
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