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ABSTRACT 17 

Modelling is important for impact assessments of anthropogenic pressures on wildlife. 18 

Models are particularly useful when dealing with complex dynamic systems (as pelagic 19 

ecosystems) where data are limited and if various ‘what if’ scenarios should be tested. The 20 

aim of this study was to produce and implement an integrated modelling approach, linking 21 

high resolution hydrodynamic models (HDM) of the marine environment with correlative 22 

species distribution models (SDM) and agent-based models (ABM), for describing the spatio-23 

temporal distribution and movements of Atlantic mackerel (Scomber scombrus) in the 24 

Norwegian Sea. The SDM was fitted with scientific mackerel trawl data as response variables 25 

(collected in July and August 2006-2014) and temperature (from the HDM), water depth and 26 

time period as predictors of spatial distributions. The SDM was able to produce dynamic 27 

predictions of a similar order of magnitude as observed catch per unit effort (CPUE) as well 28 

as realistic large-scale distribution patterns, when tested on independent data (not included in 29 

the modelling). The ABM was calibrated, with normalized SDM predictions (habitat 30 

suitability as a proxy for food availability) and hydrodynamics as input and simulated on a 31 

single year (2013) for the period May-October, when the migratory mackerel is present in the 32 

study area. A pattern-oriented modelling (POM) approach was used to verify if the model 33 

reproduced multiple observed real-world patterns. The ABM produced similar patterns as 34 

observed regarding migration timing, growth and large scale geographic distribution. Fine 35 

scaled information on mackerel movement and behaviour is limited, which is also reflected in 36 

the results. More data and knowledge are therefore required to improve the patterns emerging 37 

from fine scaled processes. The potential of the model for assessing an impact of a single 38 

seismic survey (mimicking a real survey) was finally evaluated. The exercise allowed 39 

estimating the number of affected fish (within 50 km from the sound source) and potential 40 

changes in local migrations, with the specific assumed minimum sound pressure thresholds 41 

(resulting in a fleeing reaction by the mackerel) set to 165 dB re 1 µPa. The model framework 42 

was shown to be useful by allowing simulations of impact scenarios in a realistic and dynamic 43 

environment. The model can be further updated when data on fine scale movements of 44 

mackerel and most importantly when improved data on response behaviour to impacts of 45 

sound become available.  46 

 47 



3 

 

Key words: Agent based model, species distribution model, Atlantic mackerel, migration, 48 

movement, underwater sound 49 

 50 

1. INTRODUCTION 51 

To manage the consequences of anthropogenic disturbance on changes in animal behaviour 52 

and ultimately on population dynamics, it is often essential to analyse and predict 53 

distributions and movements (or dispersal) of animals. Predictive modelling is often the only 54 

available approach for quantifying complex large-scale distribution and movement patterns to 55 

inform environmental impact and risk assessments and other types of conservation decisions 56 

(Grimm and Railsback, 2012; Guisan et al., 2013). Marine animals, particularly at higher 57 

levels of the trophic hierarchy, such as pelagic fish, seabirds and marine mammals, are good 58 

examples of highly mobile animals living in a dynamic environment. Scarce and potentially 59 

biased biological data are typical for these animals, as it can be difficult to collect extensive 60 

data sets offshore on their movements and distributions. These animals are also increasingly 61 

encountering anthropogenic disturbances like offshore constructions, shipping, pile driving, 62 

seismic surveys, fishing and bycatch (Bolt et al., 2014). Many of the anthropogenic pressures 63 

are mobile, similar to the pelagic animals, and a dynamic modelling framework making most 64 

out of the available data and knowledge is therefore needed to be able to assess potential 65 

impacts. Integrating different modelling techniques can be a useful way of analysing complex 66 

questions, combining patterns with processes (see e.g. Baveco et al., 2017; Johnston et al., 67 

2017). 68 

Ecological models used for predictions are usually either statistical correlative models or to a 69 

lesser degree numerical processed based models (Palacio et al., 2013). Correlative species 70 

distribution models (SDMs, also called habitat models) are widely used for quantifying 71 

relationships between species and the environment (Elith and Leathwick, 2009). However, 72 

SDMs are generally not able to describe movement patterns and migration, as individual 73 

behaviour cannot be readily incorporated into a “traditional” SDM framework. Therefore, 74 

when movement factors are included in SDMs it is usually in a non-dynamic fashion 75 

describing a species’ ability to access a suitable habitat (Miller and Holloway, 2015). A 76 

benefit of SDM is that it is a data driven approach, that does not require previous knowledge 77 

about the underlying processes. Conversely, this also limits the model to only describe 78 

relationships from the available data (Palacio et al., 2013). 79 
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Processed based modelling, as agent-based models (ABMs, also called individual based 80 

models, IBMs), on the other hand, requires good knowledge of the underlying processes as 81 

emergent behaviours of agents or individuals are modelled and simulated, based on describing 82 

essential processes by equations (Grimm, 1999; Grimm and Railsback, 2005). One essential 83 

difference to SDMs is that an ABM can better incorporate movements and any other potential 84 

important process such as for example bioenergetics, life histories, inter- and intra-specific 85 

interaction and interactions between the species and its environment. An ABM can therefore 86 

be considered as a bottom up modelling approach (DeAngelis and Grimm, 2014). 87 

Both modelling approaches (correlative and process based) have strengths and weaknesses, 88 

and benefits of combining the two approaches have been recognized and also successfully 89 

applied (Dorman et al., 2012; Latombe et al., 2014; Evans et al., 2016). However, there are 90 

still rather few published examples. An integrated modelling approach implies that strengths 91 

of both model types can be used in the same modelling framework. Statistical modelling can 92 

be helpful for utilization of available data without the requirement of a full understanding of 93 

the important processes. Statistical models can also speed up the tedious calibration process of 94 

an ABM and allow for cross-validation (Latome et al., 2014). An ABM can be used for 95 

introducing stochasticity, together with any kind of relevant known important and dynamic 96 

process (DeAngelis and Grimm, 2014). 97 

Integrated modelling was applied in this study with Atlantic mackerel (Scomber scombrus) in 98 

the Norwegian Sea as a case study species and underwater noise as a potential anthropogenic 99 

pressure. Atlantic mackerel is a highly mobile migratory species living in a dynamic 100 

environment (Nøttestad et al., 2016b). It is an abundant pelagic planktivorous species entering 101 

the Norwegian Sea and adjacent areas during summer for feeding on primarily Calanus spp.  102 

(Bachiller et al., 2015). The mackerel spawning stock has doubled since 2003 and was in 103 

2016 estimated to be around 4 million tonnes (ICES, 2017). Mackerel has expanded its 104 

feeding area during the last decade (Nøttestad et al., 2016a), and is now abundant in new areas 105 

such as along the northern Norwegian and southern Icelandic coasts. The reason for the 106 

expansion is not fully known, and more knowledge about the migration dynamics is needed to 107 

improve the understanding of trophic interactions as well as for integrated assessment (ICES, 108 

2017). Disturbance from impulsive sounds such as those from seismic explorations or pile 109 

driving can potentially have a negative impact on marine organisms (e.g. Carroll et al., 2017; 110 

Slabbekoorn et al., 2010; Gill et al., 2012), including the Atlantic mackerel. Although fish 111 
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species without a swim bladder (e.g. Atlantic Mackerel) are considered to be less sensitive to 112 

noise disturbance in comparison to fish species which possess a swim bladder (e.g. herring 113 

and cod) (Whalberg and Westerberg, 2005). Fish in close vicinity to the sound source may 114 

experience physical damage, such as tissue injury (McCauley et al., 2003) and permanent or 115 

temporary hearing loss (Popper et al., 2005). However, due to the short distance between the 116 

source and the fish required for this to occur, such effects are usually limited to only few 117 

individuals (Popper et al., 2005). At larger distances from the source, but within hearing 118 

range, behavioural changes may occur. Behavioural effects and masking are less acute and 119 

dramatic but apply to many more individual fish (Slabbekoorn et al., 2010; Hawkins et al., 120 

2014). The latter is not very well understood, although some case studies exist, indicating 121 

behavioural responses such as avoidance (Engås et al., 1996), changes in swimming speed 122 

(Thomsen et al., 2012), reduced feeding motivation (Løkkeborg et al., 2012) and changes in 123 

depth distribution (Pearson et al., 1992; Hawkins et al., 2014). 124 

An ABM describing mackerel migration patterns has previously been constructed by Utne 125 

and Huse (2012) and an ABM focusing on estimating consumption of zooplankton (Calanus 126 

finmarchicus) by Utne et al. (2012). The present study builds on the findings of these two 127 

modelling exercises with the aim to construct an integrated template for modelling and 128 

simulations of realistic distributions, movements and migration of Atlantic Mackerel. To 129 

achieve this, we combine hydrodynamic modelling, species distribution modelling and agent-130 

based modelling. We also assessed the potential of using the model template for an 131 

assessment of potential impacts of a “real” seismic surveys. The modelling framework 132 

outlined in this study can be useful for other species and pressures as well, making it possible 133 

to assess dynamic impacts on mobile species.  134 

 135 

2. METHODS 136 

2.1 Integrated modelling concept and time period 137 

Three types of models are integrated in this study, hydrodynamic modelling (HDM, 138 

describing the environment), species distribution modelling (SDM, producing horizontal 139 

CPUE predictions and after normalization a habitat suitability index, HSI, as a proxy for food 140 

resources) by relating scientific mackerel trawl data to environmental predictors and agent-141 

based modelling (ABM) introducing movement rules and bioenergetics with HSI and 142 
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hydrodynamics as forcings. Each modelling level is feeding into the next (Figure 1). The 143 

modelling period extends from beginning of May to end of October, the period when Atlantic 144 

mackerel is present in the Norwegian Sea. The SDM is fitted on data from surveys conducted 145 

each year in July and August between 2006 and 2014. However, the spatial patterns of the 146 

ABM are calibrated on data from 2013. An overview of each modelling step is described 147 

below. 148 

 149 

Figure 1. General overview of the integrated modelling approach. 150 

 151 

2.2 Hydrodynamic model (HDM) and environmental data 152 

The study area/model domain covers the Norwegian Sea and parts of the Barents Sea between 153 

59-82° N and 5° E-34° W (Figure 2). The model domain is extracted from a larger DHI 154 

MIKE 3 3D FM model (DHI, 2016) covering the North Sea, the Norwegian Sea and the 155 

Barents Sea during the period 2006-2014. The 3D numerical model is calibrated based on a 156 

range of input data, including bathymetry, initial water levels, current velocities, boundary 157 

conditions and other driving forces including wind speed, direction and tides (see full list and 158 

source in Appendix A, Table A1). The model is used for simulating the dynamic 159 

environmental variables (Table 1) within the study domain during the above-mentioned 160 

period at one-hour temporal resolution. The simulation results are used as input for the 161 

species distribution model and agent-based model. The spatial resolution varies between 500 162 

m and 8 km (approximate widths of flexible triangular grid elements, see DHI, 2016) with a 163 

maximum grid area of 100 km2, the coastal area having the finest resolution. The vertical 164 

discretization has 33 levels with a 1.5 m resolution at the surface, decreasing to 750 m at the 165 

bottom, and 13 levels within the upper 61 m. See Appendix A for further description and 166 

validation of the HDM. 167 

Post-processing of the 3D HDM data was required to be useful in species distribution 168 

modelling, for integration with the mackerel survey data. The 3D-model data were 169 

summarized into a horizontal 2D-grid (5x5 km) and the average of approximately the top 30 170 

m of the water column was calculated for the variables listed in Table 1. This is the general 171 

depth distribution of mackerel during summer in the Norwegian Sea (Nøttestad et al., 2016b). 172 

The variables are either direct output (e.g. temperature and salinity) of the HDM or post-173 
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processed variables (e.g. salinity gradient and current gradient), potentially describing features 174 

aggregating mackerel prey. The HDM data were further extracted to (intersected with) the 175 

mackerel survey data “instantaneously” (temporal interpolation between 1-hour time-steps) 176 

based on both position and time. Daily means around each trawl were also extracted as well 177 

as mean values for the entire annual survey period from 10 July to 10 August. 178 

 179 

Figure 2. Model domain. Black and red lines show agent release site, southern and western, 180 

respectively. Yellow polygon shows the area of sound disturbance simulation. 181 

 182 

2.3 Atlantic Mackerel data 183 

Data on mackerel distribution and abundance were obtained from scientific trawl catches 184 

conducted in July-August during the years 2006-2014 as part of the coordinated ecosystem 185 

surveys in the Norwegian Sea and adjacent areas (IESSNS). Standardized trawl hauls were 186 

taken at the surface at predetermined locations, with roughly 60 nmi between each trawl haul. 187 

The geographic coverage of the surveys varied (Figure 3). A detailed description of the gear, 188 

rigging and fishing operation is given in ICES (2013). The trawl has a vertical opening of 30-189 

35 m and a horizontal opening of 65-70 m. Catch per unit effort (CPUE) from mackerel trawl 190 

hauls (kg nmi-1) was used as input to the species distribution model. CPUE is calculated as 191 

total catch (kg) divided by the area covered by the trawl (nmi-2). See Nøttestad et al. (2016a) 192 

for a full description of CPUE calculations. All surveys included in the analyses are 193 

visualized in Figure 3. 194 

In addition to the scientific trawling data, data on commercial landings were made available 195 

for the study from the Norwegian directorate of fisheries (Figure A5, Appendix A). These 196 

data were provided with a daily resolution and a spatial resolution varying with geographic 197 

area. In coastal areas, the resolution is 0.5 degree latitude and 1 degree longitude. The spatial 198 

distribution of the fishery data was considered to be biased, particularly with distance to coast 199 

because the small vessels only operate close to the shore. Therefore, the fishery data were not 200 

included in the SDM. The fishery data were, however, assumed to be representative for 201 

describing the temporal advancement in terms of latitude and were therefore used in the 202 

temporal calibration of the ABM (section 2.5). 203 
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 204 

Figure 3. Mackerel trawl locations used in species distribution modelling. Scientific trawls 205 

were conducted in July-August 2006-2014 as part of the coordinated ecosystem surveys in the 206 

Norwegian Sea and adjacent areas (IESSNS). 207 

 208 

2.4 Species distribution modelling 209 

The mackerel data were related to the hydrodynamic variables using a generalized additive 210 

mixed model (GAMM). The analyses were conducted in R (R core team, 2016) and the mgcv 211 

package (Wood, 2006). The mixed model was used to account for potential non-independency 212 

within surveys (i.e. survey trawls closer to each other in time and space can be considered not 213 

to be independent of each other, potentially violating the assumption of independence of 214 

model residuals, see e.g. Zuur et al., 2009). The GAMM was fitted with mackerel CPUE as 215 

the response variables and the hydrodynamic variables (Table 1), water depth and time 216 

periods as predictor variables. We tested the influence of all the listed environmental variables 217 

in Table 1, but we did not include uninfluential variables in our final model. Model selection 218 

was guided by the approximate p-values and model AIC and also by inspecting the response 219 

curves (unrealistic responses, i.e. if the model was fitting “noise” the variable was not 220 

included, or the response was simplified). We used the Tweedie error distribution for model 221 

fitting and included a correlation structure (ARMA) within surveys to account for the non-222 

independency. The p-factor in the Tweedie error distribution as well as the p-factor in the 223 

ARMA correlation structure (Zuur et al., 2009) were selected by fitting a range of different 224 

models and selecting the best one based on AIC. In the model we included an interaction 225 

between temperature and a factor defining three periods (1 = 2006-2008, 2 = 2009-2011 and 3 226 

= 2012-2014) to account for a potential spatial expansion during the 9 years of modelling (as 227 

indicated by e.g. Nøttestad et al., 2016a). The reason for not including a factor variable 228 

defining each year is that by using a group of three years we achieve a more equal spatial 229 

distribution (in 2008 and 2009 surveys were only conducted in the north with a very low catch 230 

and if the model would be fitted with a yearly factor, the CPUE in the whole model domain 231 

would be under-predicted). We fitted models on all three temporal scales (hourly data, daily 232 

means and survey period mean) to assess potential differences. 233 
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The GAMM was checked for meeting model assumptions regarding autocorrelation by 234 

inspecting a variogram and an autocorrelation function plot (acf) of model residuals, and the 235 

assumption of residual homogeneity was visually assessed. The predictive accuracy of the 236 

model was validated by leaving out one year at a time, fitting the model on the remaining 237 

years and testing the model on the left-out year. The agreement between “observed” and 238 

predicted CPUE was assessed using Spearman’s correlation (Potts and Elith, 2006) and 239 

visually by plotting observed values on top of the predicted ones. 240 

The model was finally used for predicting CPUE on each hourly time-step during the whole 241 

model period May-October; which means extensive extrapolation in time with the assumption 242 

that the modelled relationships (between CPUE and environmental variable) are the same 243 

throughout the model period. The predicted CPUE was further converted into a Habitat 244 

Suitability Index (HSI) by normalizing the CPUE into a scale ranging between 0-1. Prior to 245 

normalization, extreme values (due to extrapolations) were re-scaled. For each time-step, the 246 

mean value in the study area and the standard deviation were calculated and the allowable 247 

minimum and maximum values were defined as the average ± 3 times the standard deviation. 248 

If a value was higher it was set to the minimum or maximum allowable value, respectively. 249 

The global maximum and minimum values used for normalization were defined as the 250 

calculated 99th and 1st percentile value across all time steps and model elements. Any habitat 251 

suitability value exceeding the 99th percentile or below the 1st percentile was set to the 99th 252 

and 1st percentile value, respectively. The normalization was calculated by using the formula:  253 

𝑦 =
𝑥 – min(𝑥)

max(𝑥) − min(𝑥)
 254 

Table 1. Environmental variables assessed for inclusion in SDM, all variables except water 255 

depth are either direct or post-processed HDM variables. 256 

Variable Unit Direct model output/post-processed 

Current speed m/s Direct 

Current direction radians Direct 

Current gradient m/s/m Post-processed 

Upwelling (vertical 

current velocity) 
m/s Direct 
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Vorticity (eddy 

activity) 
m/s/m Post-processed 

Salinity Psu Direct 

Salinity gradient 

(adjacent grid cells) 
∆ psu Post-processed 

Temperature ºC Post-processed 

Vertical density 

gradient (Brunt 

Vaisala frequency) 

N2 Post-processed 

Water depth (etopo 

downloaded from 

NOAA) 

M 
https://maps.ngdc.noaa.gov/viewers/wcs-

client/ 

 257 

2.5 Agent-based modelling 258 

A complete model description of the ABM, following the “Overview, Design concepts and 259 

Details” protocol (ODD, Grimm et al., 2010), is included in Appendix A. A condensed model 260 

description is given here. The model was built in MIKE Zero 2016 ABM Lab 261 

(https://www.mikepoweredbydhi.com/products/abm-lab). The purpose of the ABM is to 262 

construct a realistic physiology-based migration model for mackerel in the Norwegian Sea 263 

covering the time period of May-October 2013, with an equidistant time step of 5 minutes. 264 

The ABM model domain is resolved using a triangular flexible mesh, with a maximum model 265 

element area of 100 km2. Within the model simulation period, mackerel undertakes seasonal 266 

migration and during this period the mackerel agents will try to optimise their movement 267 

according to a kinesis walk description (Humston et al., 2000) linked to HSI (habitat 268 

suitability index), distance to land and ambient temperature. While moving, the bioenergetics 269 

of the agents (which is body weight relative to the energy balance), are dependent on HSI, 270 

temperature and swimming speed. The body weight gain rate further determines the direction 271 

and timing of mackerel migration. The bioenergetics module, adapted from Utne et al. (2012), 272 

is directly coupled to the dynamic predictions of sea surface temperature and HSI, with the 273 

model assumption that the consumption rate scales with predicted HSI. Respiration costs are 274 

furthermore dependent on the realized swimming velocity of simulated mackerel, which in 275 

turn depends on which movement decisions they make relative to environmental stimuli 276 
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(Figure 4). The predicted net gain in wet weight over the feeding season relative to the initial 277 

weight of simulated mackerel will determine when they will decide to turn back and migrate 278 

towards their wintering grounds outside of the model domain (SEASONAL MIGRATION, 279 

see below). If mackerel agents are located within the area of seismic survey, they react to 280 

sound disturbance if the sound crosses a pre-defined level. 281 

At each time step the simulated mackerel makes movement decisions in relation to distance 282 

and sound pressure level (SPL) of the sound source (SOUND DISTURBANCE), land (LAND 283 

AVOIDANCE), temperature (TEMPERATURE AVOIDANCE), season (SEASONAL 284 

MIGRATION related to bioenergetics and date) and habitat suitability (KINESIS 285 

MOVEMENT). The sound response module is introduced below (chapter 2.6). The response 286 

to land is implemented as a minimum distance of 10 km, if closer the mackerel agents move 287 

in the opposite direction for 6 hours (which has been calibrated). The response to temperature 288 

is defined based on a minimum temperature threshold of 7 degrees (Iversen, 2004), if in 289 

colder water the agent moves towards warmer water and if in warm waters the direction is 290 

dependent on the season (northwards during spring and southwards during autumn). The 291 

seasonal migration is implemented so that mackerel agents try to optimise body weight in 292 

spring; if in very good habitat (HSI index) the directional migration is turned off (defined 293 

based on a habitat index threshold value of 0.7). If the habitat index is below the threshold the 294 

mackerel migrates towards north in spring according to a migration probability which is 295 

defined based on time of year and HSI. In autumn, when they have reached an optimal weight 296 

gain (optWG) or based on time of year (sampled Julian day 213±7) the mackerel agents 297 

migrate in a southerly direction towards (a sampled direction including stochasticity) their 298 

place of origin. The kinesis movement is implemented as a combination of the Kinesis 299 

movement as described by Humston et al. (2000) and a correlated random walk where the 300 

HSI is the external stimulus determining the mackerel movements. 301 

After a movement decision has been made, all state variables are updated at the end of each 302 

time step. The state variables are saved for each time step which allows for post-assessments 303 

of for example body weight and location (or any other state variable) at any time during a 304 

model simulation. The state variables are: location (x, y coordinates), speed (relative to 305 

prevailing currents, land and sound), body length, initial body weight, total body weight, 306 

origin (migrating from Atlantic or North Sea), cumulative duration of exposure to 307 

temperatures below minimum temperature, duration of land avoidance, cumulative 308 
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instantaneous sound pressure, time of sound exposure, optimal weight gain and turn date of 309 

the seasonal migration. Values of dynamic Euler variables (temperature, currents, HSI) at the 310 

new agent location for evaluation and calculation are updated at the beginning of the next 311 

time step. Figure 4 shows a flow diagram describing the general movement decisions of fish. 312 

Model simulation is based on 40 000 agents, each agent consists of 175 000 individuals 313 

corresponding to 7 billion individuals observed in the whole study area (assuming that our 314 

model extent is 45% of the swept-area surveys and catchability index = 2 ICES, 2016, 2014; 315 

Nøttestad et al., 2016a). 316 

  317 

Figure 4. Flow diagram describing general decisions of mackerel. Boxes with white 318 

background depict model evaluations made by each agent and grey boxes depict resultant 319 

movement decisions.  320 

 321 

2.5.1 ABM calibration 322 

The ABM includes 61 model parameters of which 19 were subject to calibration, while the 323 

rest were retrieved from literature. The parameters are listed in Appendix A, Table A2, and it 324 

is indicated whether they needed to be calibrated or were retrieved from literature. The 325 

pattern-oriented modelling (POM, Grimm and Railsback, 2012) concept was used for 326 

calibrating the parameters, to identify the combination of parameters that was best in 327 

reproducing the observed patterns (Appendix B). POM is a widely used strategy for making 328 

ABMs structurally realistic, more general and accurate and accepted by the scientific 329 

community. This is done by simultaneously comparing multiple observed “real world” 330 

patterns to model outcomes and thereby achieving the most parsimonious model that captures 331 

the key mechanisms and behaviour of the real system (Grimm and Railsback, 2012). The 332 

POM strategy is based on the assumption that patterns are good descriptors or indicators of 333 

the underlying essential structures and processes in a system. (MacLane et al., 2011). We used 334 

the following patterns: 335 

1. Changes in fish total body mass during migration for 34 cm (see figure Figure 2 in 336 

Bachiller et al., 2018) and 36 cm fish (see Figure 2b in Olafsdottir et al., 2016). In 337 

order to compare modelled and observed values from literature we calculated the 338 
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correlation coefficient; index of agreement (IOA) (Wilmott, 1981); mean absolute 339 

error and root mean square error (Appendix B). 340 

2. Speed of migration derived from commercial mackerel landings for years 2012-14. 341 

We defined three check zones (60-62° N, 65-75° N and 70-72° N) and compared 342 

median day and distribution of number of fish passing through these zones during 343 

spring and autumn migration separately. 344 

3. Spatial distribution in July in comparison to data obtained during scientific trawls. 345 

 346 

2.5.2 Sensitivity testing of ABM  347 

We tested model sensitivity to seven parameters for which there were no available values 348 

measured in the field or reported in literature: average sustained swimming velocity, average 349 

spring migration direction, average autumn migration direction, average day number when 350 

autumn migration starts, minimum HSI required to stop active migration, minimum 351 

temperature for mackerel tolerance and a constant defining relationship between HSI and 352 

consumption rate – functional response (KL). We varied one parameter at a time with ±25% 353 

from the values used in the final simulations or within a range reported in literature 354 

(Appendix C, Table C1). We ran one simulation for each parameter combination (sensitivity 355 

analysis index) with 20 000 agents each (20 000 agents were used to save simulation time 356 

because there was no obvious difference between using 20 000 or 40 000 as in the final 357 

simulations). We used five patterns to compare changes in model performance in between 358 

sensitivity analysis indices in relation to results of the parameter settings for the final 359 

simulation: three POM patterns as described above, as well as the proportion of fish 360 

commencing autumn migration due to achievement of the desired body weight and mean 361 

mackerel body weight before starting autumn migration. In order to compare sensitivity 362 

analysis indices reproducing changes in mackerel mean body weight over model duration we 363 

calculated an index of agreement (Wilmott, 1981) and correlation coefficient between 364 

modelled and empirical values for each index (Appendix B). Speed of migration was 365 

compared by calculating median day of fish crossing three check lines: 60-62N, 65-67N and 366 

70-72N. Comparison between spatial distributions in July between models with various 367 

parameter settings (sensitivity analysis indices) was based on changes in 25, 50, 75 and 95% 368 

kernel utilisation distribution. Estimation of kernel home range was done in adehabitatHR R 369 

package (Calenge, 2006) with smoothing factor (h) = 1 and grid = 120.  370 
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 371 

2.6 Sound disturbance module 372 

A sound disturbance module was implemented as part of the ABM to enable an assessment of 373 

potential impact on fish due to sound. The sound source in the model is a moving source 374 

(survey vessel) with vessel sailing speed and sailing distance mimicking a real seismic survey 375 

(survey conducted in June - July 2013 (Figure 2, A6 in Appendix A). The exact positions 376 

along the track and timing of airgun blasts are not known and the positions of blasts were, 377 

therefore, created assuming that the vessel was moving with a speed of 4 knots and no 378 

blasting was conducted during the 4 hours when the vessel was turning. At each time step the 379 

direction, distance, sound pressure level (SPL in dB re 1 µPa, hence after referred to as dB) 380 

and sound exposure level (SEL, cumulative SEL in dB re 1 µPa2·s, hence after referred to as 381 

dB) to the active airgun are saved to each agent. Sound attenuation at the distance between 382 

source and fish, SPL, is calculated based on spherical and cylindrical spreading as suggested 383 

by Weston et al., (1971). SEL is calculated based on method suggested by Southall et al., 384 

(2007) taking into account changes in fish location every time step and the actual frequency, 385 

pressure and duration of pulses (see detailed description in the ODD, Appendix A).  386 

Forcing information regarding sound disturbance includes: geographic coordinates of airgun, 387 

source sound pressure level (230 dB) of airgun (if at a given time step there is no blast SPL = 388 

0) and water depth at the airgun (6 m) and is given every time step. Mackerel reacts to 389 

disturbance based on model-predicted SPL relative to vessel location (taking attenuation into 390 

account). If this SPL gets over any of four pre-defined thresholds (lowest threshold = 165 dB; 391 

based on experience gained by Sivle et al., 2016), a triggering mechanism is established, and 392 

fish change their speed and direction in relation to the sound source and do not forage while 393 

fleeing. The larger the threshold crossed, the more pronounced changes in speed and direction 394 

(increase in correlation of turning angle in correlated random walk). This threshold is based 395 

on levels obtained in a study where captive mackerel reacted to playback of sound with partly 396 

similar frequency range as seismic pulses from air guns, and does not necessarily represent 397 

the true reaction thresholds of free ranging mackerel to this type of sound exposure. Indeed, 398 

later experience indicates that reaction thresholds of mackerel will also depend on the 399 

suddenness of the signal (Sivle et al. 2017). In the current model settings, fish do not react 400 

based on cumulative SEL, but this parameter is saved and presented in the results as well. 401 
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  402 

3. RESULTS  403 

3.1 Species distribution modelling results 404 

According to the SDM, higher mackerel CPUE is described by increasing water temperature, 405 

increasing water depth and time period (Table 2, Figure 5). The temporal resolution (hourly, 406 

daily, and monthly) was assessed and there was no clear improvement of aggregating data 407 

into coarser temporal resolution, and therefore the hourly resolution was used. No spatial 408 

correlation was found in model residuals and residual patterns did not show any clear patterns 409 

of violation of the homogeneity assumption. The validation of the model on independent data 410 

indicated that the model is fit for purpose. The mean Spearman’s correlation for all years was 411 

0.42, ranging from 0.14 in 2006 and 0.62 in 2009, the validation results for 2013 were 412 

mapped as well (Table 3, Figure 6). The results indicate predictions of the right order of 413 

magnitude, i.e. smaller observed values are predicted as smaller and higher observed values 414 

predicted as higher. The general distribution patterns, based on visual inspection, were also 415 

similar (Figure 6), with peak CPUE in the central parts of the Norwegian Sea and lower 416 

values closer to the coast, in the north as well as farthest to the east. This corresponds also 417 

well with the described distribution patterns of their main prey species, Calanus finmarchicus 418 

(Broms et al., 2009; Head et al., 2013). The model was finally predicted on hourly time steps 419 

during the whole model period and converted into a habitat suitability index, normalized to 420 

range between 0 and 1 (Video 1). We also predicted the mean geographic distribution for the 421 

survey periods for three years, one from each period in 2007, 2010 and 2013 (Figure 7). 422 

 423 

Table 2. Fix-effect GAMM model results. The parametric coefficients (estimate), standard 424 

error, t value and approximate significance (p-value) are shown for the parametric terms and 425 

degree of freedom (edf), f-values and approximate p-value for the smooth terms. Period 1 = 426 

2006-2008, period 2 = 2009-2011 and period 3 = 2012-2014. 427 

  
Estimate/edf. Std. error 

t/f 

value p-value 

Parametric terms Intercept 3.8784 0.3365 11.526 <0.001 

 
Period 2 1.1691 0.3833 3.051 <0.01 
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Period 3 2.2017 0.3546 6.209 <0.001 

Smooth terms Temp: period 1 1.841 - 14.29 <0.001 

 
Temp: period 2 1.517 - 6.469 <0.01 

 
Temp: period 3 1 - 6.808 <0.01 

 
Water depth 1.87 - 17.503 <0.001 

n 743 

 428 

 429 

Figure 5. Response curves of the GAMM. The response is indicated on the Y-axis in the scale 430 

of the linear predictor (log), and the range of the predictors is indicated on the x-axis. The 431 

degree of smoothing of the continuous variables is displayed in the title of the Y-axis. The 432 

grey area and dotted lines indicate 95% confidence intervals. Period 1 = 2006-2008, period 2 433 

= 2009-2011, and period 3 = 2012-2014. 434 

 435 

Table 3. “Leave-one-year out” validation, the SDM was fitted on data excluding one whole 436 

year at a time for testing. The agreement between observed and predicted CPUE was assessed 437 

using Spearman’s correlation. 438 

Year 

Spearman's 

correlation 

2006 0.14 

2007 0.47 

2008 0.41 

2009 0.62 

2010 0.52 

2011 0.21 

2012 0.29 

2013 0.49 

2014 0.60 

Average 0.42 

 439 
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 440 

Figure 6. Observed CPUE in 2013 vs predicted CPUE for visual assessment. When only one 441 

colour appears in a circle the same class interval is both observed and predicted. The 2013 442 

data were not included in the model (for validation) and can therefore be regarded as 443 

independent data.  444 

 445 

 446 

Figure 7. Predicted CPUE by the SDM (GAMM) on one year from each period used as a 447 

factor in the model (period 1 = 2007, period 2 = 2010 and period 3 = 2013), illustrating the 448 

increase end expansion of the mackerel during the model period (all data included in fitting 449 

the final model). 450 

 451 

3.2 Agent based modelling results 452 

The ABM was simulated for the whole period May-October (Video 2). The model was 453 

calibrated to reproduce three POM-patterns (Figures 8-10). Median dates when modelled fish 454 

crossed latitudinal check points corresponded well with the observed values in the fisheries 455 

data. Modelled fish migrated 13 days faster and 14 days later through the mid check point 456 

(65-67° N) during spring and autumn migration, respectively, in comparison to observed 457 

speed of mackerel migration (Figure 8). The modelled fish growth reproduced the observed 458 

weight-at length pattern throughout the feeding period. The index of agreement between 459 

modelled and observed weights was 0.84 and 0.85 and the correlation coefficients were 0.78 – 460 

0.88 for 34- and 36 cm fish, respectively (Figure 9). The ABM underestimated density of 461 

mackerel along the Norwegian coast south of Lofoten islands (Figure 10) but reproduced 462 

densities well in the central part of the study area. 463 

 464 

 465 

Figure 8. Comparison of speed of spring (northwards) and autumn (southern) migration 466 

between modelled (sim) and observed (obs) North Atlantic mackerel at three ‘check points’: 467 
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60-62° N, 65-67° N and 70-72° N. Observed and modelled median dates when fish crossed 468 

60-62° N check point on their southwards migration are equal.  469 

 470 

 471 

Figure 9. Observed and modelled changes in mean body weights of 34 cm and 36 cm fish 472 

over model duration and their statistical comparison.  473 

 474 

Figure 10. Mean predicted density of agents (km2) for July 2013 in comparison to observed 475 

values represented by catch per unit effort (CPUE, [kg nmi-1]) for the same period. Model 476 

simulation is based on 40 000 agents, each representing 175 000 fish. The depicted densities 477 

are not corrected for number of fish represented by each agent. Note different and, therefore, 478 

not directly comparable units of CPUE and predicted density.  479 

 480 

3.2.1 Sensitivity analysis of ABM 481 

Mean mackerel body weight was most sensitive to average sustained swimming velocity, 482 

average spring migration direction and functional response between HSI and consumption 483 

rate (KL) out of the parameters chosen for the sensitivity analysis (Figures C1-C2, Appendix 484 

C). The parameters average day number when autumn migration begins, or minimum habitat 485 

suitability index required to stop the migration had little effect on average body weight and on 486 

model outputs in general (Figures C1-C7). Speed of migration showed little variation with 487 

changes of the sensitivity analysis parameters (Figure C3, Appendix C), although average 488 

sustained swimming velocity and average spring migration direction were most influential. 489 

The extent of spatial distribution in July was most sensitive to changes in KL (Figure C4). 490 

Changes in proportion of mackerel migrating due to increase in body weight and changes in 491 

mackerel mean body weight at the end of spring migration were most sensitive to KL, average 492 

sustained swimming velocity, and average spring migration direction (Figures C6-C7).  493 

 494 

3.3 Sound disturbance scenarios 495 
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There was no effect of the seismic survey on any of the POM patterns (Figures D1-3 in 496 

Appendix D) for the mackerel agents during the model simulation based on the assumed 497 

sound disturbance parameters (Table A2). During the survey, 376 agents, representing 65.8 498 

million mackerel, were “affected” by sound disturbance and therefore exposed to SPL level 499 

above the pre-defined threshold of 165 dB. The majority (75%) of the affected agents 500 

experience disturbance (>165 dB SPL), less than 30 times during the survey, considering that 501 

the airgun was fired every 10 seconds during the 10-day survey (excluding the four hours 502 

every time the ship was turning). On average, fish agents reacted to sound at a distance of 3.9 503 

± 1.4 km (mean ± sd) from the source location. Fish agents, which reacted to sound, 504 

experienced a cumulative SEL of maximum 197 dB, and the mean ± sd of maximum values 505 

for each agent was 175.5 ± 5.2 dB. Mean ± sd SPL for these fish was 168.1 ± 3.1 dB and 506 

duration of exposure over SPL threshold was 35.1 ± 21.2 min (Figure 11, Video 3). 507 

 508 

 509 

Figure 11. Distribution of SPL (grey bars) and cumulative SEL (red bars) (left panel) and time 510 

of exposure to sound [min] over reaction threshold (right panel) for fish reacting to sound 511 

disturbance in a model simulation. Vertical lines with corresponding colours depict mean 512 

values.  513 

There were no significant changes in mean total body weight over duration of seismic survey 514 

for disturbed and non-disturbed fish within the seismic area and the 50 km buffer zone around 515 

it (Figure D4, Appendix D; Welch Two Sample t-test: t = -1.0, df = 15.5, p = 0.3). Nor were 516 

there any significant changes in mean total body weight between fish exposed to disturbance 517 

and the same individuals from the simulation when sound disturbance module was off (Figure 518 

D4, Appendix D; Welch Two Sample t-test: t = -0.6, df = 13.7, p = 0.6). 519 

 520 

4. DISCUSSION 521 

Study of long-term and large-scale impacts of anthropogenic pressures on marine animals can 522 

best be evaluated by modelling. The modelling approach should be able to describe dynamic 523 

distributions and movement patterns of species and also be able to incorporate the dynamic 524 

pressure in the same modelling framework. In this paper we have successfully implemented 525 
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such an approach, where we calibrated and validated the model based on the best available 526 

knowledge and which can be improved further when better data become available. However, 527 

as with all modelling approaches it is important to assess the performance of the model and 528 

outline important assumptions and limitations. We discuss these aspects in more detail below. 529 

 530 

4.1 The model’s ability to reproduce observed patterns 531 

If a model is to be useful it should be able to reproduce the pattern observed in nature (Grimm 532 

and Railsback, 2012). There is, however, often a lack of data for calibration and validation on 533 

independent data (on completely new data). In this study we validated the SDM separately 534 

using a cross-validation approach leaving out a whole year at a time for testing, which can be 535 

regarded as independent data. The SDM was able to predict CPUE of similar order of 536 

magnitude as in the independent data set (Table 3). The model is rather simple, including only 537 

temperature (grouped by period) and water depth as spatial predictors, which can be 538 

considered as describing generic large-scale patterns. Mackerel is generally found in warmer 539 

water and the highest abundance of the main prey species Calanus finmarchicus has been 540 

described to be found in in the deeper Atlantic water mass in the Norwegian Sea (Broms et 541 

al., 2009), which corresponds well with our model results. The small-scaled variation in 542 

CPUE in the scientific trawls was not captured very well by the SDM; however, somewhat 543 

closer to the coast a high number of mackerel were caught but not predicted (Figure 6).  544 

The ability of the ABM to reproduce reality was tested using the POM approach. The ABM 545 

was calibrated with all available data (no independent validation set was available). However, 546 

the POM approach is designed to test for the predictive ability of the model (Grimm and 547 

Railsback, 2012) and therefore independent data are not a necessity. The model was 548 

successful in reproducing the timing of migration (Figure 8) and the observed bodyweight 549 

(Figure 9). This indicated that the bioenergetics model module works well and simulated large 550 

scale migration movements correspond with observations. The resulting distribution patterns 551 

were further assessed visually during calibration to match the patterns observed in the 552 

mackerel trawl data. However, the resulting patterns are quite similar to the SDM and not 553 

very patchy (Figure 10), which indicates that fine-scaled processes are potentially not fully 554 

reflected in the final model simulations. 555 
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The ABM includes a range of parameters for which there is no published information or 556 

existing knowledge. The sensitivity analyses showed that certain parameters may influence 557 

model performance considerably and therefore our model should be updated once data are 558 

available (Appendix C). However, it is worth noting that we varied sensitivity parameters 559 

quite substantially (25%) and therefore a relatively high proportional effect on the output 560 

should be expected. 561 

In summary, the integrated modelling approach is able to predict realistic large-scaled 562 

distribution and movement patterns. However, fine-scale processes are not well described in 563 

the model. If the model is applied, it is therefore important to recognize the limitations and 564 

consider how it could influence the results.  565 

 566 

4.2 Model assumptions and limitation 567 

With the purpose of identifying what type of information is most needed for improving the 568 

models (i.e. defining knowledge gaps), and for applying the models, we discuss here the main 569 

limitations and assumptions of the models. One of the most important limitations of the SDM 570 

is that it is fitted on data from July and early August only and it is assumed that the 571 

relationships and processes driving the patterns are the same throughout the study period. 572 

However, the consequences of the extensive extrapolation are impossible to assess accurately. 573 

Data from other periods during the study would therefore improve the model. However, the 574 

available data are from the middle of the model period and as the model produces realistic 575 

patterns for this period it can be regarded as an indication that the predictions during other 576 

periods also are reasonable. Or, at least, it would be more problematic if data would only be 577 

available from the beginning or end of the study period. 578 

Another important model limitation is that the distribution of zooplankton was not included in 579 

the model and the food availability is assumed to be reflected by the habitat suitability index. 580 

The reason for not including actual food as a predictor is that the distribution of zooplankton 581 

would also need to be modelled, and as high quality spatial information on food is also scarce, 582 

it would introduce another source of uncertainty but not necessarily improve the predictions. 583 

There might also be a miss-match between high prey abundance and predator abundance. If 584 

high quality information on food resources during different times of the study period would 585 
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be available, it could nevertheless potentially improve the habitat suitability index predicted 586 

by the SDM or used directly in the ABM as a forcing. 587 

Other important limitations of the ABM are that potentially important fine-scaled behavioural 588 

processes are omitted from the model due to lack of knowledge. Predator interactions as well 589 

as other types of inter-specific and intra-specific interaction are not included in the model. 590 

There is no schooling behaviour included in the model, since each agent is effectively 591 

representing 175 000 mackerel. Currently it is not computationally feasible to attempt to 592 

model 7 billion mackerel 1:1 at a large spatiotemporal scale. However, it might be possible to 593 

use outputs from the regional ABM model to force the boundary conditions of a localized 594 

model around a survey area where the scale allows for modelling mackerel 1:1 with more 595 

advanced fine-scale behaviours in the future. Inclusion of these processes would make the 596 

model more realistic in terms of fine-scaled patterns. Another key element in the ABM model 597 

setup is the temporal introduction of mackerel along the western and southern boundaries. 598 

The current magnitude and timing of the introduction rate of each mackerel sub-population 599 

into the model domain were found through a reiterative calibration process relative to 600 

replicating POM-patterns. Monitoring data that would allow us to more accurately estimate 601 

the boundary conditions of the ABM would be of high value for further model development. 602 

Similar to the SDM model, the ABM model would also greatly benefit from detailed 603 

distribution data for other months than just July, in order to better understand the model’s 604 

ability to replicate spatiotemporal distribution patterns. One of the main underlying 605 

assumptions in the ABM model is that we assume unlimited food resources, and that HSI is 606 

directly proportional to food availability (leading to higher mackerel consumption rate). 607 

While the established model was able to predict observed weight-at-length gains to a very 608 

satisfactory degree, an event like food depletion due to very high densities of mackerel might 609 

be a driver for local movements as well.  610 

 611 

4.3 Model utilization for impact assessment of noise 612 

In this study we have shown an example of how a sound disturbance module could function in 613 

terms of assessing the number of impacted fish and their potential behavioural and 614 

physiological reaction. Actual consequences of the exposure in our defined scenario are 615 

highly uncertain, as very little information about the responses of mackerel to sound 616 
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disturbance is available. The presented module is therefore an example and eventually when 617 

more information becomes available it may be possible to assess the consequences of sound 618 

disturbance on the bioenergetics and consequently on local and regional dynamics of 619 

mackerel. Due to lack of data for the studied species the modelled fish agents react only to 620 

experienced SPL; however, a range of other possible triggering mechanisms is possible, for 621 

example SEL (e.g. Slabbekoorn et al., 2010; Hawkins et al., 2014; Sivle et al., 2016; 2017), 622 

although no data on SEL is available for mackerel at the moment (field experiments are 623 

however currently being conducted). We therefore included several options in the model for 624 

mackerel to respond: 1) mackerel reacts to pre-calculated and user-defined distance thresholds 625 

to vessel location; 2) mackerel reacts to the model-predicted SEL relative to vessel location; 626 

3) mackerel reacts to calculated SEL from user-defined distances and corresponding SPL at 627 

those distances. Further, each of these options can be extended by habituation and changes in 628 

mackerel behaviour dependant on ambient background noise (see details in Appendix A). 629 

Additionally, in our model scenario we included exposure to only one seismic survey, of 630 

which affected agents experienced a disturbance with a duration of 35 minutes on average, 631 

resulting in no effect on fish condition. However, in a real-life scenario, several seismic 632 

surveys may take place along the migration path in the Norwegian Sea, as well as 633 

simultaneously within a larger area such as the Barents Sea. Hence, an agent may experience 634 

a higher degree of disturbance than accounted for here, and such accumulated effects could be 635 

included in future versions of model simulations. Our model may, therefore, have 636 

a widespread application in the future. 637 

 638 

CONCLUSION 639 

The pelagic marine system is dynamic and complex and empirical data are sparse. In recent 640 

years the anthropogenic activity offshore has increased and consequently also the risk of 641 

conflicts with wildlife. The integrated modelling approach is aiming at utilizing different 642 

modelling approaches for making the most out of our data and knowledge. The approach is 643 

capable of reproducing observed natural distribution and movement patterns at larger scales 644 

and it is further possible to improve the predictive ability of fine-scaled patterns when such 645 

information becomes available. Currently very little fine-scaled information on mackerel 646 

behaviour is available. The integrated sound disturbance module allows assessing potential 647 

impacts of a mobile disturbance source on mobile fish species in a dynamic environment. To 648 
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our knowledge this has not been done before for a fish species. The natural system is highly 649 

complex, and the model results should, due to their limitations discussed above, be used with 650 

care. However, the only way of assessing impacts at population level is by using different 651 

modelling techniques. This study and the modelling approach contribute with another 652 

building block in the quest for improving our ability to assess anthropogenic disturbance on 653 

pelagic fish species or marine species in general.  654 
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