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Abstract

The ability of the human immune system to detect and remove cancer cells is ex-

ploited in the development of immunotherapy techniques. However, further under-

standing of these mechanisms is required and can be achieved through the use of

mathematical models. In this thesis, we develop a simple individual-based model of

cell movement and illustrate the ability of our model to qualitatively reproduce the

migration patterns of immune cells that have been observed in single cell tracking

experiments. We then extend the model to describe the spatio-temporal interactions

between dendritic cells, cytotoxic T cells and a solid tumour. Through further exten-

sion of the model, we explicitly consider the immune recognition of evolving tumour

antigens. Computational simulations of our models further clarify the conditions for

the onset of a successful immune action against cancer cells and may suggest pos-

sible targets to improve the efficacy of immunotherapy. Mathematically, individual-

based models can be limited in their amenability to different analysis techniques

which are better suited to continuum models. To overcome this, we aim to derive

the continuum version of our described individual-based models. However, due to

the complexity of the biological mechanisms included, we first consider a simpler

biological situation. We develop an individual-based model describing the spatial

dynamics of multicellular systems whereby cells undergo pressure-driven movement

and pressure-dependent proliferation. From this, we formally derive nonlinear par-

tial differential equations that are commonly used to model the spatial dynamics

of growing cell populations. Through systematic comparison of both models, we

demonstrate that the results of computational simulations of the individual-based

model faithfully mirror the qualitative and quantitative properties of the solutions

to the corresponding partial differential equations. This method could be adapted

to more complex individual-based models, such as those we describe in this work.
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Chapter 1

Introduction

Cancer is defined as ‘a disease caused by uncontrolled division of abnormal cells in

a part of the body ’ (Oxford University Press, 2019). With over two hundred types

of cancer, each with their own causes, symptoms and treatment options, research

into this group of diseases is continually expanding and becoming more diverse.

The prevalence of these diseases is vast, in particular, in the UK around 50% of

the population will be diagnosed with some form of cancer in their life (Cancer

Research UK, 2018). Furthermore, over 18 million new cases of cancer and over 9

million deaths due to cancer were reported globally in 2018 (Bray et al., 2018; Ferlay

et al., 2018), see Figure 1.1. Consequently, most, if not all, of the UK (and global)

population will be, directly or indirectly, affected by cancer over their lifetime.

Traditionally, chemotherapy treatments, radiotherapy treatments and surgery

have been administered to manage and treat a wide range of cancers. However, side

effects of these treatment approaches can be severe. For example, they can include:

sustained damage to healthy cells, nausea, fertility issues, hair loss and psychological

issues (Carelle et al., 2002; Coates et al., 1983). More recently, the focus of cancer

therapy research has turned to developing targeted and more personalised treatment
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Figure 1.1: Global cancer incidence rates and mortality rates (2018). The
left pie chart shows the number of new cases worldwide of different types of cancer
in 2018 for both sexes and all ages. The right pie chart shows the number of cancer
deaths worldwide for different types of cancer in 2018 for both sexes and all ages.

Figure adapted from the Global Cancer Observatory website (Ferlay et al., 2019) taking data

from (Bray et al., 2018; Ferlay et al., 2018). c© International Agency for Research on Cancer 2019

against cancers. The development of these new treatment approaches relies on the

understanding of the key mechanisms, or hallmarks (Hanahan and Weinberg, 2011),

which underpin this group of diseases. One key hallmark is the ability of cancer cells

to evade the immune response, which naturally suggests that the immune system

can also control cancer to a limited extent.

The immune system is a complex collection of cells, structures and processes

which allow for the destruction of harmful foreign substances that invade the hu-

man body. Additionally, the immune system can retain memory of these substances

to allow for a prompt response in the event of re-exposure. A notable aspect of the

immune system is the ability to target only the harmful substances and not healthy

cells within the body. This makes the immune system a potentially useful mechan-

ism for controlling and treating cancers. Consequently, immunotherapy techniques

have been, and continue to be, developed to utilise these properties and offer a more
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personalised form of cancer treatment (Coulie et al., 2014; Fesnak et al., 2016; Got-

wals et al., 2017). However, the development and testing of new therapy techniques

can be an expensive and time-consuming process.

Mathematical modelling has been used previously to describe complex biolo-

gical interactions including tumour-immune competition. These models allow for

a greater understanding of these interactions and can be used to distinguish the

key underlying mechanisms. Furthermore, mathematical models allow for the time-

efficient and inexpensive testing of potential treatment ideas that, upon success,

can be further investigated by experimentalists and clinicians. In this work, we aim

to use mathematical modelling techniques to investigate the dynamical interactions

occurring between the cells of the immune system and a solid tumour, including

biologically relevant parameters where possible.

In Chapter 2, we begin with an overview of the key biological and immuno-

logical mechanisms involved in the recognition and removal of solid tumours and

provide a short review of current immunotherapy techniques. We specifically fo-

cus on the role of dendritic cells and cytotoxic T lymphocytes which can recognise,

and respond to, antigens expressed by tumour cells. Following this, a summary of

the previously used and currently used mathematical modelling techniques within

the field of mathematical oncology is given in Chapter 3. In particular, we high-

light models and techniques used to describe the biophysical properties of cells and

tumour-immune interactions. Following these background chapters, we provide the

main body of this work.

To capture the experimentally observed migration patterns of immune cells we

develop an individual-based random walk model for cell motion in Chapter 4. In

particular, we consider a homogeneous cell population (i.e. all cells exhibit the same

phenotype) and allow the cell population to perform one of two random walks: a

3



Lévy walk or Brownian motion. Through observations of the resulting cell traject-

ories, we compare both stochastic models. We illustrate the ability of our model

to reproduce qualitatively the spatial trajectories of immune cells in the tumour

microenvironment observed in experimental data of single cell tracking. In corres-

pondence with experimental findings, a Lévy walk appears to capture the movement

of inactive immune cells, whereas Brownian motion can describe the movement of

antigen-activated immune cells. Utilising these properties of immune cell motion we

develop the model further to consider the immune response to a solid tumour.

In Chapter 5, we extend the individual-based model to describe the interactions

between dendritic cells, cytotoxic T lymphocytes and tumour cells. We exploit the

random walk methods described in Chapter 4 to capture the movement of inactive

and active immune cells, i.e. the movement of both inactive and active dendritic cells

and cytotoxic T lymphocytes, in the tumour microenvironment. Furthermore, we

consider the activation process of immune cells, the proliferation of cancer cells, and

the destruction of cancer cells by the immune cells. The resulting computational

simulations of our model further clarify the conditions for the onset of successful

immune action against cancer cells and may suggest possible targets to improve

the efficacy of cancer immunotherapy. For the sake of simplicity, in the model we

consider a homogeneous tumour whereby all cancer cells exhibit the same phenotype.

However, solid tumours can be heterogeneous where each cancer cell can have a

unique antigen profile. In the following chapter we address this by extending the

individual-based model further to explicitly include tumour antigen expression and

further investigate the role of antigens within the immune response to cancer.

We describe, in Chapter 6, the expanded individual-based model where each

cancer cell is characterised by an antigen profile which can vary over time due to

either epimutations or mutations. Once again, the immune response against the

4



cancer cells is initiated by dendritic cells that recognise the tumour antigens and

present them to cytotoxic T cells. Consequently, T cells become activated against a

particular tumour antigen and can only remove cancer cells which express a sufficient

level of the corresponding antigen. Computational simulations of the model highlight

the required conditions for the emergence of tumour clearance, dormancy or escape.

Furthermore, the model allows us to assess the impact of antigenic heterogeneity of

cancer cells on the efficacy of immune action. The results suggest that epimutations,

which alter the antigen profile of tumour cells, ultimately dictate the outcome of

tumour-immune competition. The results further indicate which other processes can

control the outcome of tumour-immune competition, and therefore suggest which

mechanisms may be exploited in the development of new immunotherapy techniques.

One potential limitation, in terms of mathematical interest, of individual-based

models is their lack of amenability to mathematical analysis. To overcome this we

aim to derive the continuum counterparts of the individual-based models introduced

in this work. However, due to the inclusion of a Lévy walk and other complex mech-

anisms, we begin by considering a simpler cell population model in Chapter 7. We

present a simple stochastic individual-based model describing the spatial dynam-

ics of multicellular systems whereby cells undergo pressure-driven movement and

pressure-dependent proliferation. We show that nonlinear partial differential equa-

tions commonly used to model the spatial dynamics of growing cell populations can

be formally derived from the branching random walk that underlies our discrete

model. Moreover, we carry out a systematic comparison between the individual-

based model and its continuum counterparts, both in the case of one single cell

population and in the case of multiple cell populations with different biophysical

properties. The outcomes of our comparative study demonstrate that the results of

computational simulations of the individual-based model faithfully mirror the qual-
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itative and quantitative properties of the solutions to the corresponding nonlinear

partial differential equations. Although the model is not applied to a specific biolo-

gical case, the methodology and results obtained could be used to describe tumour

growth and invasion into healthy tissue.

Chapter 8 concludes this thesis with an overview of the mathematical models

we have developed and the main findings of our work. We finish by considering

the future directions and potential applications of the modelling techniques we have

developed.
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Chapter 2

Biological overview of the immune

response to cancer

2.1 Overview

In this chapter we introduce the key biological mechanisms involved in the immune

response to cancer. We begin by considering the human immune system and, spe-

cifically, how its separate components can work together. In this thesis, we will

focus on two immune cell types: dendritic cells (DCs) and cytotoxic T lymphocytes

(CTLs) and how they interact with each other to remove harmful cells and material

from the body. Additionally, we will describe some of the key aspects of tumour

growth and development, such as the expression of tumour antigens, and the ways in

which the immune system can control these processes. We will conclude the chapter

by considering some of the properties of cancer which allow for the evasion of the

immune response and the immunotherapy techniques which have been developed to

target these aspects.
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Figure 2.1: Cellular components of the human immune response. The
figure displays the key cell types involved in the innate and adaptive branches of
the human immune response. In this work, we focus on dendritic cells and how
they activate the adaptive immune response, namely CD8+ T cells ( i.e. cytotoxic T
lymphocytes), to launch an attack against cancer cells.

Reprinted with permission from Macmillan Publishers Ltd: [Nat Rev Cancer] (Dranoff, G. (2004).

Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer, 4(1), 11-22.), copyright

(2004) (Dranoff, 2004)

2.2 Immunology

The human immune system is a complex collection of cells, structures and processes

that work in conjunction to eliminate foreign and harmful material from within the

body. The immune system consists of two branches: the innate immune response

and the adaptive immune response, which both incorporate multiple cell types, as

shown in Figure 2.1.

The role of the innate immune response is to identify and attempt to remove

foreign material from the body. Cells which are involved in the innate response can

exhibit a range of phenotypes and perform a range of functions and they include:
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natural killer (NK) cells, macrophages and dendritic cells (DCs). Specifically, NK

cells can induce the death of target cells without requiring activation by other cells

via cell lysis (i.e. disintegration) which results in cell debris within the microenvir-

onment (Messerschmidt et al., 2016). Macrophages and DCs, on the other hand, are

phagocytic, which means that they can engulf and remove harmful particles or cells

that have been marked for removal by antibodies (Chaplin, 2010). The destruction

and removal of target cells by NK cells, DCs and macrophages can be limited, how-

ever their recognition of, and interactions with, foreign cells can initiate the adaptive

immune response (Messerschmidt et al., 2016).

Almost all cells within the human body express protein antigens on their cell

surface through major histocompatibility complex (MHC) molecules allowing them

to be recognised by the immune system (Brown et al., 2014). DCs and macrophages

can act as antigen presenting cells (APCs) where they can collect and present these

antigens to the adaptive immune cells (Weinberg, 2007a). The APCs can collect

antigens through the recognition of signals from phagocytosed cells, or living target

cells, where they then produce recognition receptors to allow for antigen collection.

Inflammatory or anti-inflammatory cytokines may also be released by the immune

cells to aid in the collection of antigens (Harshyne et al., 2001).

Once collected, the APCs can process the antigen and load them on to MHC

molecules on their cell surface (Chaplin, 2010). In particular, dendritic cells can

recognise and present multiple type of antigen (Coico and Sunshine, 2015). Once

the APCs have processed the antigen they move to the lymph nodes to present the

antigen to adaptive immune cells, specifically T cells (Laoui et al., 2016; Parlato

et al., 2017). It is interesting to note that T cells cannot bind to unprocessed

antigens which are not attached to MHC molecules.

Naive T lymphocytes within the lymph node can be activated via the antigen
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presenting cells. APCs present the antigen through an antigen-MHC complex on

their cell surface which can bind to the T cell receptor (TCR) on the surface of the

lymphocytes (Chaplin, 2010; Rohrs et al., 2019). The activation process relies on

co-stimulatory (e.g CD28) and co-inhibitory (e.g CTLA-4, PD-1) molecules (Keir

et al., 2008; Chen and Flies, 2013). Subsequently, the T cells can mature into dif-

ferent subtypes including cytotoxic T lymphocytes, T helper (Th) cells and memory

T cells (Weinberg, 2007a) depending on the antigen-MHC complex and other com-

plementary molecules. If a dendritic cell, carrying an antigen, meets an inactive T

cell the binding affinity of the T cell to the antigen-MHC complex plays a critical

role in the activation of the T cells ( Luksza et al., 2017). If the binding affinity of

the T cell is too low they cannot interact with the APC. On the other hand, if the

binding affinity is too high then the immune cells may be able to bind to nonharm-

ful cells causing autoimmune reactions (Engelhardt et al., 2012; Tan et al., 2015).

CD8 glycoproteins on the surface of naive T cells strengthen the interaction with

the APC and results in the maturation to CD8+ T cells, also known as cytotoxic T

lymphocytes (CTLs) (Chaplin, 2010). Through this interaction with APCs, CTLs

become activated and subsequently can recognise and destroy any cells or particles

that express the target antigen (Weinberg, 2007a). However, T cells only produce

one type of antigen receptor and therefore can only target cells expressing that par-

ticular antigen (Brenner et al., 2008; Coico and Sunshine, 2015). Not all target

cells will express the same target antigens and therefore, it has been suggested that,

a repertoire of T cells activated against a range of antigens will result in a more

successful immune response (Chaplin, 2010). The activated T cells will then travel

to the site of infection, or the site of the target cells (Halle et al., 2016), where

they can then recognise these cells through the interaction of their TCR with an

antigen-MHC complex on the surface of the target cell (Messerschmidt et al., 2016).
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Once the T cell has recognised the target cell, there are two mechanisms which

can be used to cause apoptosis (programmed cell death). These are the perforin-

granzyme mechanism or the Fas-FasL mechanism, which may be used independently

or together to remove harmful cells. The former mechanism is where perforin is

injected directly into the target cell, through a synapse, creating small holes in the

cell membrane. Subsequently, granzyme B can enter the target cell through these

small holes and activate the apoptotic cascade within the target cell (Basu et al.,

2016; Lawrence, 2016; Messerschmidt et al., 2016). The second mechanism that the

CTL can use to cause apoptosis utilises necrosis factors like the Fas ligand (FasL).

Generally, FasL is present on the cell surface of the CTL which allows direct contact

between the CTL and cells that produce the Fas receptor. Most cells will produce

Fas receptors on their cell surface. Once FasL or sFasL binds to the Fas receptor,

they aggregate to form an adaptor protein known as FADD (Fas associated death

domain) which can trigger apoptosis, resulting in target cell death (Hersey and

Zhang, 2001).

After all target cells are removed, CTLs must be deactivated or removed to pre-

vent any damage being done to normal cells. This response has three stages: an

inactivation phase, a self-apoptosis stage, and the formation of a subset of memory

cells (Klebanoff et al., 2006). The deactivation process prevents the risk of autoim-

mune diseases occurring and the formation of a memory population allows for a

faster response if the same antigen is recognised in future.

In this thesis, we focus on DCs and CTLs in particular and how they interact

together through the antigen presentation process. We utilise the properties of

these cell types in the individual-based models described in Chapter 4, Chapter 5

and Chapter 6.
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Figure 2.2: The ten hallmarks of cancer and their potential treatment
options. The figure describes the ten key characteristics of a tumour and highlights
therapies which target each characteristic. In this work we specifically focus on the
ability of the immune system to control the tumour and subsequently, the ability of
tumours to evade immune destruction.

Reprinted from Cell, 144 (5), D Hanahan, RA Weinberg, Hallmarks of Cancer: The Next Gener-

ation, 646-674, Copyright (2011), with permission from Elsevier (Hanahan and Weinberg, 2011)

2.3 Tumour development

Hanahan and Weinberg (2011) (re)defined the ten hallmarks, or key characteristics,

of cancer, which are displayed in Figure 2.2. These include the ability of cancer cells

to sustain/enhance replication and growth (cell proliferation), avoid growth sup-

pressors, avoid the immune response, be able to divide/replicate indefinitely, recruit

immune cells to cause inflammation, invade another area of the body (formation

of metastasis), create new blood vessels (angiogenesis), mutate, resist cell death

(apoptosis) and alter their metabolic processes to avoid the need for oxygen.

12



Mutations, or epimutations, within healthy cells, which alter the antigen ex-

pressed by the cell, can lead to the emergence of cancer cells. Through cell division,

the altered cells cluster together to form a growing tumour. In the early stages of

tumourigenesis, cancer cells stay close to the original site of the tumour (Hanahan

and Weinberg, 2011). However, once the tumour has developed and is large enough

it can begin to create a blood supply through angiogenesis. This allows single cells

to leave the tumour mass and travel to other sites of the body, through the blood

stream, and form metastasis (Weinberg, 2007b). Furthermore, the process that

leads human cells to induce their own cell death depends on the shortening of the

telomeres at the end of chromosomes through each cell division. Therefore, once

the telomeres shorten significantly the cell can no longer replicate and will initiate

apoptosis leading to cell death. However, most cancer cells express high levels of

telomerase, an enzyme that prevents the shortening of the telomeres allowing for

a longer or infinite survival of cells (Shay et al., 2001). In our work we focus on

tumours in the early stages of development (i.e. small pre-angiogenic tumours).

Cancer cells within the tumour can exhibit a distinct set of phenotypes and

antigens making the tumour heterogeneous. These tumour antigens dictate which

genes and proteins that the tumour cell expresses. There are three main types of tu-

mour antigen: (i) tumour associated antigens (TAAs), (ii) tumour specific antigens

(TSAs) or (iii) cancer-testis antigens (CTAs). Tumour associated antigens are over

expressed in cancer cells but can also be found in normal healthy cells, whereas tu-

mour specific antigens are only expressed by cancer cells. Furthermore, cancer-testis

antigens are expressed in cancer cells but also in the normal reproductive tissues at

low levels (Yarchoan et al., 2017). One potential drawback to the development of

new cancer therapies is the ability to identify these tumour antigens. Recently, with

this aim extensive cell-based studies have been carried out and used to successfully
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identify tumour antigens (Brown et al., 2014; Joglekar et al., 2019).

Furthermore, through epimutations or mutations the antigen profile of cancer

cells may evolve over time. Epimutations are spontaneous ‘heritable changes in

gene expression that leave the sequence of bases in the DNA unaltered ’ (Oey and

Whitelaw, 2014), whereas mutations take place during cell division and may cause

the antigen profile of one progeny cell to be different from that of the parent cell.

One of the first epimutations to be identified, in cancer cells, was the loss of DNA

methylation at the CpG dinucleotides. DNA methylation is an important mechan-

ism in gene regulation where the addition of methyl groups to DNA can repress gene

expression (Coulie et al., 2014). In normal cells 70-80% of all CpG dinucleotides are

methylated. However, hypomethylation in cancer cells can lead to gene activation,

mismatch repair, chromosomal instability and mechanisms of viral effects in can-

cer (Feinberg and Tycko, 2004). Generally, epimutations are reversible and occur

much more frequently than mutations, which are generally not reversible (Feinberg,

2004; Peltomäki, 2012).

Notably, one tumour antigen gene family of interest are the melanoma asso-

ciated genes (MAGE) which are cancer-testis antigens. MAGE-A genes are fre-

quently expressed in cancers of different types and originating from different tissues

and are linked to poor prognosis. In regards to DNA methylation, MAGE genes

are methylated in normal cells but in cancer cells are not, allowing for their ac-

tivation and expression (Boon et al., 2006; Chalitchagorn et al., 2004; Chinnasamy

et al., 2011; Müller-Richter et al., 2009; Zajac et al., 2017). Demethylation becomes

more prominent as the cancer develops, suggesting that these epigenetic events

are important in tumour progression (Coulie et al., 2014). Furthermore, MAGE-

A proteins are involved in processes which reduce apoptosis of tumour cells and

enhance tumour proliferation, therefore benefiting tumour progression if they are
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expressed (Van Tongelen et al., 2017). Common cancers that they are expressed in

are melanomas (Boon et al., 2006; Connerotte et al., 2008; Coulie et al., 2014; Uro-

sevic et al., 2005), oesophageal cancers (Zajac et al., 2017), lung, breast, prostate and

colorectal carcinomas (Coulie et al., 2014) and head and neck cancers (Hartmann

et al., 2016; Müller-Richter et al., 2009). Moreover, there can be high variabil-

ity of specific antigen expression between patients with the same cancer and even

within samples from the same patient (Hartmann et al., 2016; Müller-Richter et al.,

2009; Urosevic et al., 2005). In this thesis, we focus on these MAGE-A antigens in

particular and how their expression varies over time through epimutations. These

mechanisms are utilised in the individual-based model described in Chapter 6.

2.4 Tumour immunology

Early experimental studies highlighted that immunodeficient mice were more likely

to develop cancers than those with a healthy immune system (Hanahan and Wein-

berg, 2011). Furthermore, the presence of T lymphocytes within the tumour mi-

croenvironment can be used as a marker to predict the success of cancer treat-

ments (Spranger and Gajewski, 2018). These findings indicate that the immune

system is capable of controlling and preventing tumour development. The mechan-

isms of the immune response against cancer have been studied in depth to provide

an understanding of the key mechanisms involved. In general, tumour cells are

poor antigen presenting cells (Dhodapkar et al., 2008) and therefore innate immune

cells are required to act as antigen presenting cells (APCs) to initiate a success-

ful response against tumours. Specifically, dendritic cells (DCs) can collect tumour

antigens to become activated APCs (Bianca et al., 2012; Dhodapkar et al., 2008;

Harshyne et al., 2003). The activated DCs can then subsequently activate cytotoxic
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T lymphocytes (CTLs) to initiate a response against the tumour. Since tumour

cells express MHC (Algarra et al., 2000), they can be recognised by the activated

T cells, which may result in tumour cell death (Boissonnas et al., 2007; Christophe

et al., 2015; Engelhardt et al., 2012; Phan and Rosenberg, 2013; Spranger, 2016).

Notably, cancer cells normally produce Fas receptors at higher levels than noncan-

cer cells, making them more susceptible to removal by CTLs through the Fas-FasL

mechanism (Modiano and Bellgrau, 2016).

In recent years, cell imaging techniques have improved greatly permitting single

cell tracking of immune cells and tumour cells in real time in both in vitro and in

vivo situations. This allows for a greater understanding of cell movement, velocity

and spatial distributions within the tumour microenvironment. These imaging tech-

niques generally involve the labelling of cells with fluorescent proteins, or genetically

engineering cells to produce specific reporter proteins (Liu and Li, 2014). For ex-

ample, Boissonnas et al. (2007) used individual cell tracking to study the movement

of CTLs, in vivo, in the presence and absence of a tumour antigen, and verified a

change in their patterns of migration between these situations. In the case where no

antigen was present, the cells moved actively in a search-like pattern. On the other

hand, when the tumour antigen was present, the cells switched to a more restricted

form of movement. Engelhardt et al. (2012) discovered similar results when studying

the movement of DCs in response to a solid tumour, where the change in movement

was linked to the presence or absence of tumour antigen.

Overall, many experimental studies have concluded that the immune system is

able to remove early stage tumours and cancer cells, however through antigenic

changes and other evolutionary mechanisms the disease can adapt to evade the

immune response through a process known as immunoediting (Aguirre-Ghiso, 2007).
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2.5 Immunoediting

2.5.1 Tumour dormancy

At the initial stages of immunoediting the tumour can undergo a period of dormancy

where there is no change in size of the tumour. There are three types of dormancy:

(i) tumour mass dormancy, (ii) cellular dormancy or (iii) immunological dormancy.

In more detail, tumour mass dormancy is where the tumour does not grow due to the

environmental conditions, such as lack of blood flow or nutrients. On the other hand,

cellular dormancy is where the tumour cells do not undergo growth phases (Aguirre-

Ghiso, 2007; Wang and Lin, 2013). Furthermore, immunological dormancy is where

the tumour is maintained at a reduced size by the immune system (Manjili, 2018;

Yeh and Ramaswamy, 2015). During tumour dormancy, mutations and epimutations

can allow the tumour cells to become less susceptible to the immune response (Teng

et al., 2008). This accumulation of favourable changes within the tumour cells

may result in relapse and a more aggressive disease. Additionally, single cells may

migrate away from the dormant tumour and form a secondary tumour (i.e. meta-

stasis) (Gomis and Gawrzak, 2017). We describe the biological settings required for

the onset of tumour dormancy in the individual-based model described in Chapter 6.

2.5.2 Immune evasion

It is clear that some tumour cells must evade the immune response to develop a solid

tumour and eventually cause damage within the body. There are several mechan-

isms that tumour cells can use to do this. Generally, if tumour-infiltrating CTLs

are present along with chemokines, such as interferons, the tumour cells generally

use immune suppression pathways to inhibit and attack the immune response. If
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tumour-infiltrating CTLs are not present, then cancer cells are more likely to use

evasion mechanisms that allow them to avoid physical interaction with the immune

cells (Gajewski et al., 2013). In the remainder of this sub-section we highlight some

of these key evasion mechanisms used by the tumour to avoid immune destruction.

It has been shown that both genetic and epigenetic mutations within tumour

cells can aid in immune resistance and immune evasion (Sadikovic et al., 2008).

These mutations may alter the antigens expressed by the tumour cells, potentially

preventing CTLs from recognising them as they no longer express the targeted an-

tigen. Even if tumour cells produce the target antigen, they are generally expressed

in low numbers with around 50 copies per cell (Tan et al., 2015), which can prevent

immune recognition. Similarly, if the antigen profiles of the cancer cells are still sim-

ilar enough to healthy cells, the cancer cells may not be recognised by the immune

system (Messerschmidt et al., 2016).

Tumour cells can evade cell-cell recognition by immune cells through manipulat-

ing the binding process. The binding between the MHC molecule and the tumour

antigen is the first step in antigen recognition. However tumour cells can cause ge-

netic or epigenetic downregulation of MHC molecules within themselves preventing

presentaion of the antigen (Agrawal and Kishore, 2000; Boon et al., 2006; Garrido

et al., 2010; Igney and Krammer, 2002; Leone et al., 2013). This may limit the

ability of the immune cells to recognise the tumour cells and allows the tumour cells

to survive. Furthermore, tumour antigen and T cell receptor binding is generally

weak and even a slight reduction in affinity, through tumour mutation or T cell ex-

haustion, can lead to the immune cells not being activated by the APCs (Mckeithan,

1995; Messerschmidt et al., 2016; Tan et al., 2015).

After the CTLs are activated, the tumour cells can use direct contact mechanisms

to prevent apoptosis and downregulate the immune response. For example, increased
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expression of PD-L1 (programmed death ligand 1) allows the tumour cell to bind to

the PD-1 (programmed death 1) receptor on the immune cells causing immune cell

death or inhibition (Gajewski et al., 2013; Restifo et al., 2016). Similarly, the Fas

ligand and receptor response can be inhibited by either tumour cells downregulating

the level of Fas receptors on their cell surface, or by producing FasL and sFasL

themselves. The FasL produced can then bind to Fas receptors on the immune cells

causing the immune cells to undergo apoptosis (Stewart and Abrams, 2008; Modiano

and Bellgrau, 2016).

With the aim of targetting the immune resistant mechanisms of cancer, immun-

otherapy techniques have been developed as a method of treatment to allow for a

stronger immune response.

2.6 Cancer treatment and therapies

Traditional treatments for cancer include chemotherapy and radiotherapy, which

have proven to be beneficial in many cases and are used widely to treat most types

of cancer. However these methods can have potentially severe side effects. For

example, the damage caused to healthy cells as well as the cancer cells can result in

further illness or even fatalities (Carelle et al., 2002; Coates et al., 1983). Targeted

therapies, like immunotherapy, may be able to reduce the damage to normal cells.

Generally, immunotherapies aim to boost the natural immune system in the body

and specifically within the microenvironment of the tumour. There are three main

types of immunotherapy: cancer vaccines; antibody therapies; and adoptive cell

therapies.
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2.6.1 Cancer vaccines

The successful HPV preventive cancer vaccine (Einstein et al., 2009), led to research

into the development of other vaccines to be used a preventative measures, as well as

treatment choices for cancer. There are currently a small number of FDA (American

Food and Drug Association) approved cancer vaccines for public use. In particular,

the Sipuleucel-T protocol exposes immune cells of prostate cancer patients to the

protein PAP (prostatic acid phosphotase), which induces the maturation of dendritic

cells and, upon reinjection, a more successful immune response (American Cancer

Soceity, 2018). Furthermore, the Bacille Calmette-Guerin (BCG) vaccine has been

approved for use in early stage bladder cancers or melanomas. The BCG bacterium

can infect human tissue and induce an immune response without causing tissue

damage. It is generally used post-surgery and has been shown to reduce tumour

recurrence in 50-70% of patients (Bunimovich-Mendrazitsky et al., 2015). Recently,

clinical trials where nanoparticles carrying tumour RNA are injected into the patient

have proven to enhance CD8+ T cell activity in both mouse and human experiments,

although the treatment is not yet approved (Bialkowski et al., 2016; Kranz et al.,

2016).

2.6.2 Antibody therapies

Antibody-based therapies involve the administration of drugs to target specific pro-

teins within the cancer cells. Multiple types of tumour antigen have been identified

through experimental research which allows these to become targets for immuno-

therapy. However, when targeting TAAs care must be taken as healthy cells may

be recognised as foreign and destroyed along with the cancer cells. The drugs ad-

ministered for treatment may be attached to radioactive particles or used in con-
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junction with chemotherapy drugs. Approved treatments include drugs that: target

growth factors in head and neck cancers (American Cancer Soceity, 2018); inhibit

the anti-apoptosis mechanism in leukaemia (Delbridge et al., 2016; Hua et al., 2016;

Leverson, 2016); inhibit programmed death receptor 1 (PD-1) in melanoma and

lymphoma (Huang et al., 2017; Littman, 2015; Moreno et al., 2015) and combine

PD-1 inhibition with other antibody treatments (Keir et al., 2008; Larkin et al.,

2015; Postow et al., 2015).

A particular therapy approach utilizing monoclonal antibodies is to increase the

expression of particular tumour antigens. For example, Yarchoan et al. (2017) found

experimentally that a higher expression of tumour antigens led to the tumour being

increasingly recognised by the immune system. It has also been shown experiment-

ally that epigenetic alterations can be both beneficial and detrimental to tumour

development, small levels of alteration can increase the tumour’s evolutionary fitness.

However, too much alteration leads to increased immune recognition (Chen and Mell-

man, 2017). These properties have been exploited through treatment approaches,

in particular it was shown that 5-aza-2’-deoxyctidine and histone deacetylase inhib-

itors could increase the expression of MAGE genes through decreased methylation

of their promoters, allowing for the recognition of tumour cells (Chinnasamy et al.,

2011; Wischnewski et al., 2006).

Although using monoclonal antibodies is a promising method of treating a variety

of cancers there is a potential for resistance and tumour recurrence to occur (Restifo

et al., 2016). Furthermore, some of these drugs can have severe side effects such as

risk of autoimmune diseases and can even enhance cancer progression (Champiat

et al., 2016; Kato et al., 2017). The main cause of this resistance or relapse is

thought to be evolution of the antigenic profiles of the cancer cells. For example,

in a PD-1 therapy trial 10% of patients showed resistance due to loss of tumour
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antigens through mutation (Anagnostou et al., 2017). T cell therapies can lead to

inflammation of the tissue, promoting the mutation of cancer cells, like melanoma

cells, to become more resistant to T cell induced death (Baar et al., 2016).

2.6.3 Adoptive cell therapy

Adoptive T cell therapy: Adoptive T cell therapies rely on T cells from the pa-

tient, or from donor patients, to be modified and then (re)injected into the patient’s

blood stream (Fesnak et al., 2016). The use of the patient’s own T cells, allows

this therapy to become more adaptable for each patient, i.e. personalised. These

therapies were shown to be of potential use through mouse models, demonstrating

that immunity could be acquired adoptively (Billingham et al., 1954). The standard

method is that cells are removed from the body, modified and undergo incubation

with cytokines to allow for expansion ex vivo (outwith the body). For example,

the cells may be activated against a certain antigen. They are then transferred

back into the patient and are able to initiate a specific immune response against

the cancer (Gross and Eshhar, 2016; Weinberg, 2007a). Traditionally, adoptive T

cell therapies have been used to treat B-cell malignancies and have proved beneficial

with high response rates (Brentjens et al., 2013; Davila et al., 2014; Grupp et al.,

2013; Maude et al., 2014). However, there is a large amount of work on the develop-

ment of therapies against solid tumours (Andersen et al., 2016; Frigault and Maus,

2016; Gross and Eshhar, 2016; Ikeda, 2016; Johnson et al., 2015; Perez et al., 2015).

Adoptive cell therapies which target solid tumours have, generally, been nonspe-

cific in the past, targeting common antigens such as EGFR (epidermal growth factor

receptor) and its variants (Feng et al., 2016; Johnson et al., 2015; Morgan et al.,

2012; O’Rourke et al., 2016) and NY-ESO-1 (New York oesophageal squamous cell

carcinoma 1) (Rapoport et al., 2015; Robbins et al., 2011, 2015). However, not all
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patients respond well to treatment, or at all, and those who do respond can experi-

ence a limited effect (Dudley et al., 2001; Feng et al., 2016; Mackensen et al., 2006).

Additionally, by targeting common antigens there is a risk of attacking healthy cells.

However, germline cells do not contain MHC and therefore cannot produce anti-

gens that T cells could then recognise. Hence, there is little risk of T cells recognising

normal cells when targeting cancer-testis antigens, (e.g. the MAGE antigens) (Boon

et al., 2006; Connerotte et al., 2008). This makes cancer-testis antigens a useful

target in immunotherapy. Clinical trials of treatments which target MAGE-A anti-

gens have proven somewhat successful, for example, targetting MAGE-A3 has been

found to be successful in mouse model tests (Chinnasamy et al., 2011) and in treat-

ing human melanoma cases (Connerotte et al., 2008; Lu et al., 2015; Zhang et al.,

2003). Additionally, MAGE-A4 has also been a successful target in oesophageal can-

cers (Kageyama et al., 2015; Zhang et al., 2002). However, these can lead to partial

responses and when similar methods have been applied to a wider range of cancers,

severe side effects, such as cardiogenic shock and neural toxicity, lead to fatalities.

It is thought that these deaths were caused by the high affinity of the receptors for

normal human antigens (Linette et al., 2013; Morgan et al., 2013). Further studies

have enhanced T cells that target MAGE genes in vitro (Gerdemann et al., 2011;

Graff-Dubois et al., 2002).

An effective modification to T cells, in the adoptive therapy setting, is the attach-

ment of chimeric antigen receptors (CARs) which allow T cells to better recognise

and destroy cancer cells. A CAR is a recombinant protein combined with a specific

tumour associated antigen that can activate other T cells (Sadelain et al., 2013).

These CARs can be used universally, regardless of the patient’s MHC profile, as the

CAR-T cells do not require activation through antigen presentation. Furthermore,

CAR-T cells have been shown to be functional up to four years after a single treat-
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ment, and even over ten years in some cases (Porter et al., 2015; Scholler et al.,

2012). There have been extensive experiments and clinical trials based on CAR-T

cell therapies with successful initial results, however very few have been approved as

viable options for cancer treatment. In particular, Phase I trials using CAR-T cells

to treat non-Hodgkins lymphoma (NHL), chronic lymphocytic lymphoma (CLL) and

acute lymphoblastic leukaemia (ALL) proved successful, with overall response rates

of over 60% (Gross and Eshhar, 2016). Similar trials targeting ALL also had high

remission rates of around 90% (Bonini and Mondino, 2015; Walker and Enderling,

2016). Furthermore, when used to treat leukaemia, clinical trial results highlighted

that one CAR-T cell can kill up to 1000 leukaemia cells, with the CAR-T cell levels

expanding over 1000 times in vivo (i.e. within the body). These highly effective

CAR-T cells also survived in the body for at least 6 months after insertion, allowing

for prolonged defense against cancer and also allowed for stronger binding to tumour

associated antigens (Kalos et al., 2011; Tan et al., 2015).

However, there have been safety concerns and a potential risk of CAR-T cells

attacking non-tumour cells that express the target antigen has been suggested. This

could explain situations where CAR-T cell treatments became fatal (Morgan et al.,

2010). To combat this, mechanisms have to be put in place to prevent the CAR-T

cells from attacking normal cells. ‘Suicide switches’ allow the modified T cells to be

deactivated or destroyed when exposed to certain molecules or drugs (Ikeda, 2016).

Contrastingly, modifying the receptors so that they are only active in the presence

of certain drugs has also been investigated (Rodgers et al., 2016; Wu et al., 2015).

The standard protocol of adoptive cell therapy is to inject the enhanced cells into

the blood, where they then travel through the blood stream to the lungs and later

the liver and spleen. However, some issues with extravasation from the blood vessels

and intravasation into tumours have been found (Frigault and Maus, 2016; Kershaw
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et al., 2006). Solid cancers can be difficult to infiltrate, as cells must overcome

abnormal vasculature that can restrict their movement. This could potentially be

overcome by combining adoptive cell therapy with other techniques such as: those

that target growth factors (Gotwals et al., 2017; Yong et al., 2017) or using viruses to

reduce the cancer mass (VanSeggelen et al., 2015; Walker et al., 2016). By injecting

the adoptive cells directly into the tumour, if possible, the restriction on these cells

moving to the site of tumour would also be reduced (Gross and Eshhar, 2016).

Another potential limitation to using T cell and CAR-T cell therapies is that

these modified cells can also be immunosuppressed by the tumour, through the

mechanisms described in the previous section (Beatty and Moon, 2014). In par-

ticular, CAR-T cells can be suppressed by tumour cells via the PD-1 and PD-L1

mechanism, and by using a PD-1 monocloncal antibody a more successful immune

response can be initiated (John et al., 2013). Additionally, to combat this there is

an aim to develop CAR-T cells that would be resistant to PD-L1 suppression (Ren

et al., 2017). Notably, the expression of PD-L1 by tumour infiltrating cells can be

a strong predictor of clinical response to immunotherapies (Hui et al., 2017; Perez

et al., 2015).

A further limitation to T cell therapies may be that only one antigen is focused

on. However, clinical trials using multiple TCRs in adoptive T cell therapy, to

target multiple tumour antigens, have proved successful (Verdegaal et al., 2016).

Furthermore, it has been shown that targeting only specific antigens within a tumour

could lead to untargeted antigens becoming prevalent ( Luksza et al., 2017) and

therefore it would be beneficial for a T cell population to be able to target more

than one tumour antigen.
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Dendritic cell therapy: Using a similar approach to adoptive T cell therapy,

dendritic cells can be removed from the body and expanded or activated using

tumour antigens ex vivo. This may subsequently induce an enhanced response by

T lymphocytes, once the DCs are reinjected into the patient. For example, several

clinical trials where extracted DCs of melanoma patients were pulsed with tumour

antigens proved successful in inducing an enhanced CTL response (Carreno et al.,

2015; Schreibelt et al., 2016; Tel et al., 2013; Wilgenhof et al., 2011, 2016). In

particular, Gerdemann et al. (2011) produced high affinity CTL populations through

dendritic vaccines that were capable of targeting multiple tumour antigens. The

enhanced cells showed improved responses in vitro when using heterogeneous human

lymphoma samples.

2.6.4 The role of interdisciplinary research

Immunotherapy techniques can take an extensive amount of time to develop and

test. Once an initial hypothesis is set, it can be several attempts before a successful

and viable result is obtained. Computational and mathematical oncology modelling

can be useful in removing some of the ‘testing time’ and providing more accurate

predictions of the model. If we can predict whether a certain treatment will have

a beneficial effect on a certain type of cancer, this can then be developed further,

thereby hopefully reducing the time to develop immunotherapies. We briefly re-

view a selection of the mathematical and computational methods used previously to

model tumour growth and the immune response to cancer in the following chapter.
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Chapter 3

Review of modelling strategies

3.1 Overview

In this chapter, we provide a short review of the mathematical modelling approaches

which have previously been used to describe cell motion, tumour growth and tumour-

immune competition. We begin with a discussion on the multiple scales considered in

modelling and some of the general approaches to mathematical modelling biological

phenomena.

3.2 Methods of mathematical modelling

Biological processes exhibit multiscale properties where interactions occur across

various spatial and temporal scales. Generally, there are three spatial scales poten-

tially considered in modelling: the molecular scale, the microscopic scale and the

macroscopic scale. Intracellular processes, such as mutations and cell signalling,

may occur at the molecular scale, i.e. nm-µm. Whereas, extracellular interactions,

e.g. interactions between cells, may occur at the microscopic scale, i.e. µm-mm.

Furthermore, tissue level processes may occur at the macroscopic scale, i.e. mm-
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cm (Deisboeck et al., 2011). All of these processes and mechanisms may also occur

across various temporal scales, e.g. ns, µs, s, mins, hrs, days, years. The scale that

is considered within mathematical descriptions of these processes depends on the

level of detail required. Often, the dynamics from each scale can feed into the de-

scription and cause variation in the mechanisms of other scales. In these situations

it is important to consider multiscale models, where these multiscale properties of

the biological system are described.

Furthermore, mathematical models can have discrete or continuous approaches

and can relate to discrete and continuous biological mechanisms. Although, discrete

models can be stochastic and capture small scale dynamics, they are less tractable

towards mathematical analysis. Continuous models are, generally, less computa-

tionally expensive than discrete models and allow for the investigation of large cell

densities. By using hybrid models with both discrete and continuous parts a bet-

ter understanding of the situation as a whole can be obtained, but these can also

be computationally expensive due to complexity (Lowengrub et al., 2009). Various

mathematical methods are used to model biological phenomena including differential

equations, stochastic models and combinations of these. In these models there can

be a correlation between the complexity of the model and the biological relevance,

although often, due to limitations of mathematical methods, a balance between these

must be found.

3.2.1 Differential equations

Differential equations are used to describe the change of continuous variables over

time and/or space. Ordinary differential equation (ODE) models consider the change

over either time or space, and can vary in complexity from a simple one variable

model to multi-variable systems. However, ODEs cannot incorporate both spatial
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and temporal dynamics, which can both be important in biological processes. On

the other hand, partial differential equations (PDEs) can be used to describe the

change in variables which depend on both space and time and therefore can be used

to describe the spatio-temporal dynamics of biological systems (Eftimie et al., 2011).

3.2.2 Discrete models

Computational models can be used to describe discrete properties of biological sys-

tems in multiple dimensions. These models can be grid (lattice) based or be de-

scribed on an non-uniform grid (mesh) (Macklin and Edgerton, 2010; Van Liedekerke

et al., 2015). Generally, a set of rules that describe the potential mechanisms or in-

teractions that each individual can undergo are defined. These rules depend on the

probability of events occurring and allow for the observation of any patterns in the

dynamics of the biological system (An et al., 2009). Individual-based (IB) models,

or agent-based models (ABM), track each individual over time and allow them to

move or interact with other individuals independently (Grimm and Railsback, 2005).

Although we will focus on these individuals being cells in our work, particles, an-

imals and social interactions can also be modelled in this way. Specifically, cellular

automata (CA) models are a type of grid based IB model where, often, only one

cell can occupy each grid position through volume exclusion. The cell’s movement

and interactions with other cells within the system then depends on the rules of

the model and the number of cells occupying the neighbouring grid positions of the

cell (Wolfram, 1983). Lattice gas CA (LGCA) models are similar, however, multiple

cells may occupy one grid position. Contrastingly, cellular potts models use multiple

grid positions to describe the location of one cell (Lowengrub et al., 2009). Other

methods can include more physical representations of cells via masses and springs

models (Murray et al., 2009). The development of multiple modelling approaches
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has led to the development of many computational tools and packages that can be

used to implement these models, and a review of several of these tools can be found

in Metzcar et al. (2019). Although using previously developed software can be bene-

ficial, in this work we develop our own computational techniques to allow for deeper

understanding and control over the model.

3.2.3 Multiscale and hybrid models

In recent years, it has become more common to combine discrete and continuous

models to provide a more in-depth description and analysis of the biological sys-

tems. By combining computational models with differential equations a greater

understanding of the biological relevance can be obtained through both the dynam-

ics of the system emerging. Additionally, through this hybrid approach a wider

range of tools can be used to analyse the model.

In this thesis, we will develop individual-based (IB) modelling techniques to

describe tumour-immune competition in Chapter 4, Chapter 5 and Chapter 6, and

consider the derivation of a PDE model from an IB model of cell populations in

Chapter 7.

3.3 Modelling random walks

In both differential equation and computational models the movement of organisms

or cells can be described through random walk methods. The theory of random

walks was studied and developed independently in the areas of biology (Brown,

1828), probability theory (Bernoulli, 1713), finance (Bachelier, 1900) and phys-

ics (Pearson, 1905; Rayleigh, 1880). In particular, the rigorous connection between

the microscopic dynamics of particles and the macroscopic processes of diffusion was
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described in the seminal work of Einstein (1905).

One of the first types of walks to be described is Brownian motion, where cells

have equal probability of moving in any direction at any time. The Brownian discrete

random walk can be used to formally derive the standard, continuous, diffusion equa-

tion (Nava-Sedeno et al., 2017). However, issues arise with the diffusion equation due

to the implied infinite, and unrealistic, propagation speed of cells (Zaburdaev et al.,

2015). In an attempt to overcome these issues several methods were introduced, such

as, the use of ballistic cones defining the maximal velocity of particles (Taylor, 1922),

persistent Brownian motion with finite velocity (Furth, 1920) and the development

of the telegraph equation which included an additional second order time derivat-

ive (Bakunin, 2003; Davydov, 1934). The continuous time random walk (CTRW)

was introduced by Montroll and Weiss (1965) to include waiting times of cells which

allowed for the derivation of anomalous diffusion, where the spreading of cells was

slower than standard (i.e. Fickian) diffusion, also known as subdiffusion. Further-

more, situations where particles can spread faster then Brownian motion, also known

as superdiffusion, were observed in turbulent flows (Richardson, 1926).

To allow for the inclusion of superdiffusive behaviour, random walk methods were

developed to allow particles and cells to travel for longer periods of time in a given

direction. To achieve this, Lévy stable distributions (Gnedenko and Kolmogorov,

1954; Lévy, 1937) were considered and Lévy flights were introduced (Mandelbrot,

1982). These consist of instant jumps characterised by infinite mean squared flight

lengths which allow particles to travel a longer distance, faster (Dybiec and Gudowska-

Nowak, 2017). However, infinite propagation speeds are still possible and this form

of motion (Shlesinger et al., 1986) is generally not biologically realistic. Lévy walks,

on the other hand, impose finite propagation speeds on cells (Shlesinger et al., 1982)

and have two general approaches. Firstly, cells still exhibit waiting times. However,
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once the waiting time has elapsed the cells move with a constant speed in the re-

quired direction towards their destination (Klafter and Zumofen, 1994; Zaburdaev

and Chukbar, 2002). The second method is more commonly used, and eliminates the

waiting time of cells allowing them to move continuously (Humphries et al., 2013;

Klafter and Zumofen, 1994; Shlesinger et al., 1986; Zumofen and Klafter, 1993).

More formally, a Lévy walk is a scale invariant motion characterised by a power-law

run length distribution function:

L(s) ∼ s−(α+1),

where 0 < α < 2 is a scaling factor and s is the length of a step that they will

take in the chosen direction. Therefore, the frequency of steps of length s will be

proportional to s−(α+1) (Matthäus et al., 2011).

Since their introduction, Lévy walks have been used to successfully describe and

capture the migration patterns of a wide range of organisms, such as; soil amoebae

(Levandowsky et al., 1997), eukaryotic cells (Li et al., 2008), bacteria (Zaburdaev

et al., 2014) and even humans (Rhee et al., 2011; Raichlen et al., 2014). For example,

Matthäus et al. (2011) considered a model of the chemotaxis signalling pathway of

E. coli and demonstrated that stochastic fluctuations and the specific design of the

signalling pathway together enable the generation of Lévy walks. The E. coli ex-

hibited a chemotactic run and tumble motion, where the flagella of the bacteria

rotated counter clockwise, formed a bundle and propelled the cell in a straight

line. If the flagella rotated clockwise the bundle opened and the bacteria randomly

changed their angle without forward propagation. Furthermore, recent literature,

based on experimental data, suggests that T cells may move in a superdiffusive or

Lévy like motion (Agliari et al., 2014; Fricke et al., 2016; Harris et al., 2012; Krum-
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mel et al., 2016; Weninger et al., 2014). We note that, although Lévy processes have

been investigated through more generalised one dimensional continuous mathemat-

ical models (Fedotov, 2016; Fedotov and Korabel, 2017; Gan et al., 2015; Golovin

et al., 2008; Hanert, 2012; Stage et al., 2016), it has been suggested that stochastic

individual-based models may be more appropriate methods of capturing these com-

plex migration patterns (Nava-Sedeno et al., 2017). In Chapter 4 of this thesis,

we will develop an individual-based model of Brownian and Lévy walk methods to

describe immune cell motion.

3.3.1 Mathematical models of cell population migration and

growth

As mentioned above, random walks can be used to model cell migration and from

these methods continuous descriptions of the cell population can be obtained. One

particular area of interest, is the use of nonlinear partial differential equation models

to describe the movement and growth of populations of cells. For example, models

that describe the evolution of cellular densities in response to pressure gradients

generated by population growth have been particularly popular (Ambrosi and Mol-

lica, 2002; Ambrosi and Preziosi, 2002; Araujo and McElwain, 2004; Bresch et al.,

2010; Byrne, 2010; Byrne and Chaplain, 1995, 1996, 1997; Byrne and Drasdo, 2009;

Byrne et al., 2003; Byrne and Preziosi, 2003; Chaplain et al., 2006; Chen et al.,

2001; Ciarletta et al., 2011; Greenspan, 1976; Lowengrub et al., 2009; Perthame,

2014; Preziosi, 2003; Ranft et al., 2010; Roose et al., 2007; Sherratt and Chaplain,

2001; Ward and King, 1999, 1997). Models of this form have been widely used to

complement empirical research in developmental biology and cancer research.

Further to the biological and clinical insights into the underpinnings of tissue
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development and tumour growth they can provide, these continuum models exhibit

a range of interesting qualitative behaviours. For example, travelling-wave solu-

tions with composite shapes and discontinuities (Tang et al., 2014). Moreover, in

analogy with reaction-diffusion systems arising in the mathematical modelling of

other biological and ecological problems (Dancer et al., 1999; Mimura et al., 2000),

these models can give rise to sharp interfaces, which bring about spatial segregation

between cell populations with different biophysical properties (Lorenzi et al., 2017).

A key advantage of continuum models for the spatial dynamics of growing cell

populations over their individual-based counterparts, i.e. discrete models that track

the dynamics of individual cells (Drasdo, 2005; Van Liedekerke et al., 2015) is that

they are amenable to mathematical analysis and they are computationally inexpens-

ive. Mathematical analysis enables a complete exploration of the model parameter

space, which ultimately allows more in-depth conclusions to be drawn. Further-

more, compared to individual-based models, continuum models offer the possibility

to carry out numerical simulations at the level of larger portions of tissues or even

of whole organs, while keeping computational costs within acceptable bounds.

However, continuum models are defined at the scale of whole cell populations

and, as such, they are usually formulated on the basis of phenomenological consider-

ations, which can hinder a precise mathematical description of crucial biological and

physical aspects. On the contrary, stochastic individual-based models that describe

the dynamics of single cells in terms of algorithmic rules can be more easily tailored

to capture fine details of cellular dynamics, thus making it possible to achieve a

more accurate mathematical representation of multicellular systems. Furthermore,

individual-based models are able to reproduce the emergence of population-level

phenomena that are induced by stochastic fluctuations in single-cell biophysical

properties, which are relevant in the regime of low cellular densities and cannot

34



easily be captured by continuum models. Therefore, it is desirable to derive con-

tinuum models for the spatial dynamics of cell populations as the appropriate limit

of individual-based models for spatial cell movement and proliferation, in order to

have a clearer picture of the modelling assumptions that are made and guarantee

that they correctly reflect the essentials of the underlying application problem.

For this reason, the derivation of continuum models formulated in terms of par-

tial differential equations or partial integrodifferential equations from underlying

individual-based models has attracted the attention of a considerable number of

mathematicians and physicists. This is generally done by considering the limit of

the discrete models as the dependent variables go to a certain value, usually 0 or∞.

Examples in this active field of research include the derivation of continuum models

of chemotaxis from velocity-jump process (Hillen and Painter, 2009; Othmer et al.,

1988; Hillen and Othmer, 2000; Painter and Sherratt, 2003) or from self-attracting

reinforced random walks (Stevens, 2000; Stevens and Othmer, 1997); the derivation

of diffusion and nonlinear diffusion equations from underlying random walks (Oth-

mer and Hillen, 2002; Penington et al., 2011, 2014), from systems of discrete equa-

tions of motion (Fozard et al., 2010; Murray et al., 2009, 2012), from discrete lattice-

based exclusion processes (Binder and Landman, 2009; Dyson et al., 2012; Fernando

et al., 2010; Johnston et al., 2017, 2012; Landman and Fernando, 2011; Lushnikov

et al., 2008; Simpson et al., 2010) or from cellular automata (Deroulers et al., 2009;

Drasdo, 2005; Simpson et al., 2007); and, most recently, the derivation of nonlocal

models of cell-cell adhesion from position-jump processes (Buttenschoen et al., 2018).

In Chapter 7 of this thesis, we develop a simple individual-based model of growing

cell populations and formally derive the corresponding continuous PDE model.
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3.4 Mathematical oncology

Mathematical oncology is an ever increasing field and many models have been de-

veloped and used to describe the growth, development and treatment of cancer.

Within these mathematical models specific areas of tumour development, or spe-

cific hallmarks of cancer, can be investigated. These include models of tumour and

immune interactions. In this section we will discuss some of the key models, from

the literature, that have been developed previously to describe tumour development

and the immune response to cancer.

3.4.1 Mathematical modelling of cancer growth and devel-

opment

In particular, partial differential equations have been used in various cases to under-

stand the spatial aspects of the mechanisms of cancer. In this regard, reaction-

diffusion equations have been used in cancer models to describe: cancer inva-

sion (Chaplain and Lolas, 2006; Gatenby and Gawlinski, 1996; Peng et al., 2017;

Ramis-Conde et al., 2008); spherical tumour growth in the presence of nutrients,

growth factors and inhibitors (Byrne and Chaplain, 1995; Chaplain, 1995; Chap-

lain et al., 2001; Ferreira et al., 2002); angiogenesis (Ambrosi et al., 2004; Anderson

and Chaplain, 1998; Bauer et al., 2007); cell adhesion (Ambrosi et al., 2009; Am-

brosi and Preziosi, 2009; Armstrong et al., 2006); or combinations of these mech-

anisms (de Pillis et al., 2006b). Generally, individual-based (IB) models have been

used to describe mechanisms such as: tumour growth and development (Enderling

et al., 2009; Poleszczuk et al., 2016; Wang et al., 2015); cell adhesion and variance

in tumour cell movement (Frascoli et al., 2016).

Furthermore, many mathematical models have consider tumour heterogeneity
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and the role of tumour antigens (Balachandran et al., 2017; Cho and Levy, 2017;

Lorz et al., 2015). In particular, tumour antigen expression and the effects of epi-

genetic and genetic events have been modelled through differential equation mod-

els (Cho and Levy, 2017; Lorenzi et al., 2016; Lorz et al., 2015; Johnston et al., 2007,

2017; Tomasetti and Levy, 2010), stochastic computational models (Bouchnita et al.,

2017; Ghaffarizadeh et al., 2018; Manem et al., 2014) or hybrid approaches (Ander-

son et al., 2006). For example, Asatryan and Komarova (2016) developed ordinary

differential equation (ODE) models to investigate the effects of genetic instability

on the competition between sub-populations within a heterogenous tumour. Their

model highlighted several patterns of genetic instability which corresponded to dif-

ferent stages of tumour development.

3.4.2 Modelling of tumour-immune dynamics

The use of mathematical modelling to capture the specific interactions between the

immune system and cancer has been widely examined over the past few decades.

The majority of the models use ordinary differential equations or integro-differential

equations (IDEs) to describe cellular level dynamics, with many of them focusing on

tumour cells interacting with cytotoxic T lymphocytes (Bunimovich-Mendrazitsky

et al., 2008; Cattani et al., 2010; Delitala and Lorenzi, 2013; Frascoli et al., 2014;

Kolev, 2003; Kuznetsov and Knott, 2001; Lin Erickson et al., 2009; Lorenzi et al.,

2015). These nonspatial models can vary in complexity and include specific aspects

of the immune system such as: the specific chemicals involved in the apoptosis cas-

cade (Calzone et al., 2010; Eissing et al., 2004; Fussenegger et al., 2000; Galante

et al., 2012; Legewie et al., 2006; Lejeune et al., 2008); the tumour antigen re-

cognition process (Cattani and Ciancio, 2012; De Boer et al., 1985); cooperation

between immune cell types (de Pillis and Radunskaya, 2003; de Pillis et al., 2005;
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Fishman and Perelson, 1993); and the immune cells’ ability to attack the cancer

cells (Bellomo and Delitala, 2008; Takayanagi and Ohuchi, 2001; Wilkie and Hahn-

feldt, 2013). From nonspatial models, the effect of immune evasion by the cancer

cells has been well described, with the parameter values of the models being derived

either from experimental data or estimated logically. Many models which focus

on tumour immune competition are based on the pivotal work of Kuznetsov et al.

(1994), where the authors developed a system of ODEs to describe the interactions

between cytotoxic T lymphocytes and a growing B-lymphoma. The model predicted

the experimentally observed oscillations in tumour growth and the parameter values

used were validated using experimental data.

Key dynamics can be confirmed or expanded in a wider range of biologically

relevant situations by extending these ODE and IDE models into partial differential

equation models through the inclusion of spatial phenomena, e.g. random motil-

ity or chemotaxis, of the cells (Al-Tameemi et al., 2012; d’Onofrio and Ciancio,

2011; Kolev, 2003). In particular, following the work of Kuznetsov et al. (1994),

Matzavinos et al. (2004) developed a system of four partial differential equations

(PDEs) to describe the interactions between tumour-infiltrating CTLs, tumour cells,

CTL-tumour complexes and chemokines. Through stability analysis techniques and

numerical simulations, their model revealed the key parameter spaces required for

the onset of tumour dormancy. Furthermore, the authors proved the existence of

travelling wave solutions which can replicate tumour invasion patterns (Matzavinos

and Chaplain, 2004).

By using computational models such as cellular automata (CA) and IB models a

wider spectrum of biological phenomena can be translated into mathematical terms

and described. These models can be posed on a spatial domain (e.g. a grid), and

a set of rules can be given to each cell with certain probabilities to achieve a more
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detailed description of cancer-immune competition (Chowdhury et al., 1991; Hu

et al., 2012; Kather et al., 2017; Pappalardo et al., 2008). For example, Christophe

et al. (2015) used an individual-based approach to study the interactions between

cytotoxic T lymphocytes (CTLs) and a genetically evolving melanoma. Their results

indicated that the initial time of interaction between the CTLs and melanoma cells

determines the outcome of their competition, as highly mutated tumour cells became

less susceptible to immune action.

Hybrid or combination models have been used to a great extent to study the

immune response to cancer. Tumour-immune dynamics have been considered in

this way using: PDE-CA combination models (Alemani et al., 2012; Mallet and

de Pillis, 2006); ODE-IB combination models (Wu et al., 2018); DDE-ABM com-

bination models (Kim and Lee, 2012) and PDE-IB combination models (Anderson

and Chaplain, 1998; Bauer et al., 2007). In particular, de Pillis et al. (2006b) used

a hybrid PDE-CA approach to describe tumour-immune competition. They used

PDEs to describe the evolution of pro-tumour nutrients within the tumour microen-

vironement and described tumour cell, CTL and natural killer (NK) cell movement

and interactions through the CA approach. Using this framework they explored

the role of nutrients, cell-cell adhesion and immune cell capabilities on the growing

tumour.

Mathematical approaches have additionally been used to describe the role of

tumour antigen expression within tumour-immune interactions. Traditionally, tu-

mour antigen expression and recognition by the immune system have been implicitly

modelled by tuning the rates of T cell recruitment, T cell proliferation or tumour

cell removal (Arciero et al., 2004; Balea et al., 2014; Besse et al., 2018; De Boer

et al., 1985; de Pillis et al., 2009; Köse et al., 2017; Mallet and de Pillis, 2006).

More recently, these processes have been explicitly captured by mathematical mod-
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els formulated in terms of either ordinary differential equations (Balachandran et al.,

2017; d’Onofrio and Ciancio, 2011;  Luksza et al., 2017) or integro-differential equa-

tions (Delitala et al., 2013; Delitala and Lorenzi, 2013; Kolev et al., 2013; Lorenzi

et al., 2015). In Chapters 5 and 6 of this thesis, we develop individual-based models

to describe the interactions between solid tumour and the immune system and in

Chapter 6, we explicitly consider tumour evolution through epimutations.

3.4.3 Mathematical modelling of immunotherapies

Prediction of the success of cancer treatment protocols, especially immunotherapies,

can be achieved through the use of mathematical models. Models of immunotherapy

have been used to investigate the conditions of therapies which lead to tumour

dormancy or tumour removal without an overactive immune response (d’Onofrio,

2005; Frascoli et al., 2014). In particular, ODE models have been used to predict

the effects of immunotherapy techniques by allowing the user to vary the dose,

administration and timing of a variety of treatments to find the hypothetical optimal

situation, which can then be further investigated through experiments and clinical

trials (Walker and Enderling, 2016). Furthermore, predator-prey like models have

been used to describe dynamics of the immune and tumour cells, where the number

or properties of competing immune cells change due to therapy (Arciero et al., 2004;

Babbs, 2012; Bunimovich-Mendrazitsky et al., 2015; Burden et al., 2004; Cappuccio

et al., 2006; Radunskaya et al., 2013; d’Onofrio and Ciancio, 2011; Frascoli et al.,

2014; Hu et al., 2012; Konstorum et al., 2017; Köse et al., 2017; Kuznetsov and

Knott, 2001; Nani and Freedman, 2000; Sotolongo-Costa et al., 2003). Additionally,

key markers for therapies to target, such as tumour antigens, can also be discovered

through ODE models (Balachandran et al., 2017;  Luksza et al., 2017). Moreover, a

combination of PDE and IB models has been used, for example, to describe tumour
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growth in the presence of cytotoxic and cytostatic drugs, highlighting that the local

tumour cell environment plays a key role (Lorenzi et al., 2015; Lorz et al., 2015; Cho

and Levy, 2017). Contrastingly, computational models have also been utilized to

predict the success of immunotherapy techniques (Chowdhury et al., 1991; Mallet

and de Pillis, 2006), such as PD-L1 inhibition therapies (Gong et al., 2017).

Mathematical approaches may focus on immunotherapy alone, or the combina-

tion of immunotherapy with other forms of therapy, e.g. chemotherapy or cytokine

therapy (de Pillis et al., 2006a; Kirschner and Panetta, 1998) which generally lead

to a more successful response and can block immunosuppression (Dritschel et al.,

2018). For example, Joshi et al. (2009) describe adoptive cell therapy and cancer

vaccine therapy against a solid tumour using an ODE model. They found that

adoptive cell therapy could actually enhance tumour growth, which has been ob-

served experimentally. However, cancer vaccines that targeted antigen presenting

cells were able to reduce tumour growth and prevent tumour relapse once dormancy

was established.

Model validity and interdisciplinary research

Due to the difficulty in estimating parameter values, many models consider simple

systems of equations and instead identify potential parameter spaces of interest (Besse

et al., 2018). More in-depth communication between experimentalists, clinicians,

statisticians and mathematicians means that more in-depth models can be de-

veloped. A key trait of a mathematical model of biological phenomena is that it is

biologically relevant. Several models attempt the validation of results with clinical

data (Cappuccio et al., 2006; Gatenby and Gawlinski, 1996). However, many models

have only estimated parameters or use nonhuman data. Therefore there is a great

need for the collaboration of biologists, clinicians and mathematicians to ensure
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that models are more in-depth. Interdisciplinary groups can increase the success of

research into the development of new cancer therapies (Masoudi-Nejad and Wang,

2015; McGuire et al., 2013). Interdisciplinary work has become more common in

cancer research where biological experiments can feed into the model, which can

then predict the next step for the experiments, that can then be tested (Christophe

et al., 2015; Hua et al., 2016; Walker and Enderling, 2016).
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Chapter 4

A simple individual-based model

describing immune cell motion

4.1 Overview

In this chapter we introduce the modelling approaches used to capture active and

inactive immune cell migration in the tumour microenvironment. Here, the terms

inactive and active refer to the interactions of the immune cells with tumour anti-

gens. Therefore, an active dendritic cell has recognised and collected the antigen,

whereas an active cytotoxic T lymphocyte has been presented the antigen by the

dendritic cell. The work we describe in this short chapter will provide a foundation

for the development of the more detailed individual-based (IB) models described in

subsequent chapters.
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4.2 Background

Boissonnas et al. (2007) used individual cell tracking to study the movement of

cytotoxic T lymphocytes (CTLs) in the presence and absence of tumour antigen,

and verified a change in the mechanisms of movement between these two situations.

In the instance where tumour antigen was absent the cells migrated in a search-

like pattern. On the other hand, when the tumour antigen was present the cells

exhibited a restricted form of motion whereby they could only travel short distances

in any direction. Therefore, these results can be used to describe the migration of

CTLs which are in an inactive state or the migration of CTLs which are activated

by tumour antigen. Engelhardt et al. (2012) observed that dendritic cells (DCs)

alter their migration pattern in a similar manner to CTLs when exposed to tumour

antigen.

In this chapter, we aim to capture these two forms of cell motion using mathem-

atical modelling techniques. As mentioned in Section 3.3, stochastic models, such as

individual-based (IB) models, are appropriate for describing complex spatial migra-

tion patterns. Therefore, we develop an IB model of cell motion based on random

walk methods to describe the experimental results of Boissonnas et al. (2007). The

code was developed and the simulations were run in Matlab. The model described

in this chapter and some of the results shown have been published in Macfarlane

et al. (2018).
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4.3 Determining the appropriate form of random

walk

To determine which form of random walk is appropriate to capture the migration

patterns of immune cells in the absence and presence of tumour antigen we extract

the key properties of the migration patterns observed in the experimental works

mentioned previously. Immune cells, when tumour antigen is absent, appear to per-

sist in one direction for a period of time before changing direction and repeating the

process. These search-like patterns have been observed in other areas of cell bio-

logy and have been mathematically described as Lévy processes (Ariel et al., 2015;

Detcheverry, 2017; Miller et al., 2002; Wolf et al., 2003). We refer the reader to Sec-

tion 3.3 for further information on Lévy processes and how they have previously been

modelled. Following these methods, we hypothesise that a Lévy walk implemented

into an individual-based model may be suitable to represent the migration patterns

of inactive immune cells in the tumour microenvironment. Interestingly, recent lit-

erature, based on experimental data and fitting the data to mathematical models,

suggests that T cells may move in a superdiffusive or Lévy like motion (Agliari et al.,

2014; Fricke et al., 2016; Harris et al., 2012; Krummel et al., 2016; Weninger et al.,

2014). Therefore, we hypothesise that a Lévy walk will capture the migration of

inactivate immune cells in the tumour microenvironment.

In contrast to the immune cells when no antigen is present, from the experi-

mental observations of Boissonnas et al. (2007), immune cells in the presence of

tumour antigen appear to have a limited migration pattern. That is, the cells do

not move in one direction for significant periods of time, suggesting that they change

direction very frequently. Brownian motion is a standard form of diffusion and is

used regularly in modelling cell motion, including that of T cells (Casal et al., 2005;
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Celli et al., 2012; de Pillis et al., 2006b; Matzavinos et al., 2004). Each cell that

undergoes Brownian motion moves randomly where each step is unrelated to the

previous one. This generally leads to cells staying within a smaller area over time

and therefore we choose this to represent the active immune cells that were shown

to have restricted movement in Boissonnas et al. (2007). Therefore, we hypothesise

that Brownian motion will capture the migration of activated immune cells in the

tumour microenvironment.

4.4 The individual-based model

The individual-based model is designed on a 2D spatial domain, which we separate

into a grid with sites of length ∆x in the x direction, and ∆y in the y direction. Each

time-step of the simulations of the model will have length ∆t. We will consider a

number of cells, N , on the grid and allow them to move using either a Lévy walk or

Brownian motion, as described above. To consider a biologically realistic situation,

we additionally impose a volume exclusion limit whereby only one cell can occupy

any grid-position at any one time. We set up the two forms of random walk utilising

the probabilities of moving to one of the eight neighbouring grid positions, as shown

in Figure 4.1a.

4.4.1 The Lévy walk mechanism

If a cell is following a Lévy walk process, the direction of movement is initially

chosen randomly, with equal probability, from one of the eight possible directions.

The probability of choosing a step-length s is determined by the Lévy distribution,

L(s) ∼ s−(α+1), (4.1)
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Figure 4.1: Cell neighbourhood and example immune cell trajectories
using the random walk mechanisms. a At each time-step, immune cells can
move to one of the eight neighbouring grid-sites provided it is unoccupied. b Immune
cells which move via a Lévy walk have probabilities of moving in a given direction
for s time-steps which is taken from the Lévy distribution given by equation (4.1).
c Immune cells which move via Brownian motion have an equal probability of moving
to neighbouring grid-sites at each time-step.

where s is the number of time-steps the cell will move in a given direction and α is the

walk exponent (see Harris et al. (2012) for full details). If the number of steps is one,

i.e. s = 1, then the process repeats at the next time-step, otherwise the cell will keep

moving in the initially chosen direction until all steps have been taken. Once the

step-number is completed the process begins again. The Lévy distribution for step-

length results in a high probability that cells will choose a short step-length, however

longer step-lengths can still be chosen. These properties ensure that cells whose

motion is governed by a Lévy walk have a larger probability of moving in a given

direction for longer, compared to a Brownian motion, as shown by Figure 4.1b. We

make the assumption that cells cannot move to a grid-site outside the boundary of

the domain, that is, we impose reflective boundary conditions. Although boundary

conditions are imposed, the time-step we consider throughout simulations is small

enough that cells will remain well within the boundary. Therefore, the boundary
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conditions will not alter the movement trajectories of the cells.

4.4.2 The Brownian motion mechanism

When undergoing a random walk which follows Brownian motion, at each time-step

each cell will have the capacity to change direction and move to any of the eight

neighbouring grid positions, as shown in Figure 4.1c. That is, cells have an equal

probability of moving to any neighbouring grid position at any one time, independent

of previous movements, and the process repeats at the next time-step. As in the

case of the Lévy walk, we impose reflective boundary conditions to ensure all cells

remain within the domain, however the time-step is small enough that these do not

effect cell movement. Cells can then move within the grid using either a Brownian

motion or Lévy walk mechanism, which we describe below.

4.5 Model set up and results

4.5.1 Set up of simulations

We set up the 2D grid by assigning the step-lengths ∆x and ∆y as well as the time-

step-length ∆t. To be consistent with the average cell size of immune cells (Goya

et al., 2008; Rozenberg, 2011), we choose our spatial step-lengths to be ∆x = ∆y =

10 µm. Note that, since we consider the diagonal neighbourhoods of cells the grid-

spacing can increase if moving diagonally to
√

2 ∆x/y, with these values still within

the biological ranges of immune cell diameter. Furthermore, to satisfy the immune

cell speed and set up given in Boissonnas et al. (2007), we consider: a time-step

of ∆t = 1 min, define a 200 × 200 µm2 grid and consider N = 50 cells within the

system.
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The Lévy walk mechanism: For cells moving via the Lévy walk mechanism,

the probability of changing direction depends on the number of steps that the cell

had taken in the current direction s. The probability of moving in any direction, Di

of the eight possible directions, i = 1, . . . , 8, at any one time can be calculated as,

P(Di) =



1
8
, if s = 0,

1, if s > 0 and i is the previous direction taken,

0, if s > 0 and i is not previous direction taken,


for i = 1, . . . , 8.

For the Lévy walk we also need to consider the exponent α of the step-length distri-

bution given in equation (4.1). Following work by Harris et al. (2012) we consider

an exponent of,

α = 1.15.

Using this exponent and allowing only integer step-lengths we define a Lévy distri-

bution. From this distribution we calculate the probability of choosing a step-length

of at least length s. As we consider only integer step-lengths we obtain the probab-

ilities of choosing a certain step-length, represented in Figure 4.2, where cells choose

a step-length of s ∈ {1, . . . , 11}.

The Brownian motion mechanism: For cells which undergo the Brownian mo-

tion random walk, each movement is independent of the previous movement choices.

The probability of moving in any direction, Di of the eight possible directions,

i = 1, . . . , 8, at any one time can be calculated as,

P(Di) =
1

8
for i = 1, . . . , 8.
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Figure 4.2: Probability of choosing step-lengths for cells undergoing a
Lévy walk. The bars represent the probability of choosing a step-length of length
s for each cell undergoing a Lévy walk. These values are calculated using the Lévy
distribution given in equation (4.1) and using the exponent α = 1.15.
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4.5.2 Comparison of the models with experimental data of

single CTL tracking

To test that using Lévy walk and Brownian motion mechanisms are appropriate for

modelling immune cell motion in the absence and presence of tumour antigen, we

attempt to qualitatively replicate the experimental observations of Boissonnas et al.

(2007). In this experimental work they considered cytotoxic T lymphocyte (CTL)

motion over time in the presence or absence of a tumour antigen. The experimental

results indicated that if tumour antigen is present the CTLs cover a more restricted

area moving at a speed of around 5µm min−1, whereas in the absence of antigen

CTLs move in a search type pattern exploring a wider portion of space over the

same time interval, moving at a faster speed of around 10µm min−1. To reproduce,

in silico, the experimental setting used in Boissonnas et al. (2007), we considered 50

cells with their starting positions aligned and tracked each individual cell’s trajectory

over time in the case where cell movement was modelled by the two afore mentioned

random walks. Initially, we consider the case where there is no tumour antigen

present and wish to compare our model to the experimental observations, displayed

in Figure 4.3a. As mentioned previously, we hypothesised that a Lévy walk would be

an appropriate method of describing the search-like pattern of the CTLs. Therefore,

we ran simulations, for a time consistent with the time-frame of the experimental

data, allowing 50 cells to undergo a Lévy walk. Furthermore, to align with the

experimental data we allowed each cell to move at a speed of 10µm min−1. Each cell

was tracked over time and the resulting movements are displayed in Figure 4.3c. A

good qualitative match is observed between Figure 4.3a and Figure 4.3c, where cells

can move a significant distance from the origin and appear to be able to persist in one

direction for a period of time before changing direction. We then turn our attention
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to the case where tumour antigen is present and again wish to compare our model

to the experimental observations, displayed in Figure 4.3b. In this situation, we

hypothesised that Brownian motion would be an appropriate method of describing

the restricted motion of the CTLs. To investigate this we ran simulations, for

a time consistent with the time-frame of the experimental data, allowing 50 cells

to move via Brownian motion. Again, to align with the experimental data we

allowed each cell to move at a speed of 5µm min−1. Each cell was tracked over

time and the resulting movements are displayed in Figure 4.3d. When comparing

Figure 4.3b and Figure 4.3d we can conclude that Brownian motion is an appropriate

modelling method here, as we capture the restricted motion of the cells where they

change direction frequently. To confirm that these qualitative matches between the

experimental data and computational results are not dependent on the speed at

which cells travel, we also consider a faster version of Brownian motion and a slower

version of the Lévy walk. We consider cells moving via Brownian motion at a cell

speed of 10µm min−1, displaying the results in Figure 4.3e and compare these to

the results in Figure 4.3a. Here, we observe that the faster Brownian motion does

not capture the persistance of the cells when there is no tumour antigen present.

Similarly, we consider cells moving via a Lévy walk at a cell speed of 5µm min−1,

displaying the results in Figure 4.3f and compare these to the results in Figure 4.3b.

Here, we demonstrate that the slower Lévy walk does not capture the restricted

motion of cells when tumour antigen is present.
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Figure 4.3: Comparison of the models with experimental data of single
CTL tracking. Each figure displays the overlay of 50 cell tracks with aligned start-
ing positions. a Experimental observations from Boissonnas et al. (2007) of CTLs
when there is no tumour antigen. b Experimental observations from Boissonnas
et al. (2007) of CTLs in the presence of tumour antigen. c Cells undergoing a Lévy
walk with a speed of 10µm min−1. d Cells moving via Brownian motion with a a speed
of 5µm min−1. e Cells moving via Brownian motion with a speed of 10µm min−1.
f Cells undergoing a Lévy walk with a speed of 5µm min−1.

Figure 2B: Image 1, Image 3, used with permission, from (Boissonnas et al., 2007)

c© 2007 A Boissonnas et al. Journal of Experimental Medicine. 204(2):345-356. doi:

10.1084/jem.20061890
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4.5.3 Comparison of the key properties of Brownian motion

and Lévy walk mechanisms

To allow for further understanding of the differences between using Brownian motion

and Lévy walk mechanisms we investigate and compare some of the key properties

of each random walk.

The cover time of a random walk is defined to be the time taken for a random

walker to cover all points in the grid. Mathematical analysis and comparison of the

cover time of random walks has been described previously (Chupeau et al., 2015;

Koren et al., 2007; Yokoi et al., 1990), highlighting the dependence of the cover time

on the first passage time (Condamin et al., 2007; Tejedor et al., 2009). Through

these works, it can be suggested that a Lévy walk should be more efficient, i.e. have

a faster cover time, than Brownian motion. We verify this by considering the cover

time of both mechanisms within our individual-based model. We placed one cell

on the grid defined previously and allowed it to perform either a Lévy or Brownian

random walk. The cell continued until all grid positions have been covered. We

did this for both the Lévy and Brownian mechanisms with two cell speeds, i.e.

5µm min−1 and 10µm min−1, and a range of values for the Lévy exponent α. The

resulting cover times are shown in Figure 4.4. We ran each simulation ten times and

average the results to obtain a deeper understanding of the cover time of each walk

process. We first compare the case where α=1.15 in the Lévy walk mechanisms and

Brownian motion, i.e. the red and black results in Figure 4.4. Our results suggest

that independent of cell speed, the Lévy walk mechanism is generally more efficient

than the process of Brownian motion. By considering the standard deviations of

these results, we find that in general the Lévy walk mechanism appears to have

more consistent cover times. The Brownian motion mechanism, on the other hand,
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has a larger standard deviation suggesting that there is greater variability in the

cover time of this method. These results indicate that the Lévy walk response is

more consistent in terms of reproducibility. We can also compare the cover time of

the Lévy walk with increasing values of α. From the results displayed in Figure 4.4

we observe a general increase in cover time with the increase of α for both cell

speeds investigated. When comparing the two cell speeds we observe an decrease

in the cover time for all cases when we increase the cell speed from 5µm min−1 to

10µm min−1. However, the decrease in cover time appears to be more prominent

in the Brownian motion case compared to the Lévy walk cases. Furthermore, for

several cases the standard deviation between runs is smaller for the larger cell speed

indicating that the a faster cell speed leads to more consistent results.

The outcomes of our model suggest that following a Lévy walk allows cells to

spread further in the domain. To investigate this further, we consider the maximum

distance that any cell travels from its starting position. We allowed cells to move

via the two distinct random walk processes and then calculated their distance from

the origin, i.e. their starting position, at each time-step. We tested both the Lévy

walk with exponent α=1.15 and the Brownian motion for the two cell speeds. Each

parameter setting was tested ten times with the average results being displayed in

Figure 4.5. The simulation results suggest that the Lévy walk allows cells to move

further from the origin than Brownian motion. Generally, the result indicate that

the distance travelled is also more varied when using the Lévy walk, as can be seen

from the standard deviation lines in Figure 4.5.
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Figure 4.4: Comparison of the cover time of each walk mechanism. The
cover time is calculated as the time taken to visit all 1681 positions of the grid.
The squares represent the average cover time for each chosen cell motion and the
lines represent the standard deviation over ten runs of the simulations. The top
panel displays the results for the case where cells move at the speed 5µm min−1

and the lower panel displays the results for the case where cells move at the speed
10µm min−1. Results are displayed for Brownian motion (black) and a Lévy walk
with increasing values of the exponent α (blue) with the results for α=1.15 highlighted
in red.
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Figure 4.5: Comparison of the maximum distance from the origin of cells
using each walk mechanism. Bars represent the maximum distance travelled of
the Lévy walk (blue) and Brownian motion (red) for two different cell speeds. The
error bars represent the standard deviation between ten runs of the simulations.

4.6 Concluding remarks and discussion

In this chapter we have developed a discrete individual-based model of immune cell

motion which takes into account the difference of motion in regard to the presence of

tumour antigen. Our simulation results demonstrate that the strategies we adopted

to modelling cell motion make it possible to qualitatively reproduce trajectories of

cytotoxic T lymphocytes (CTLs) observed in experimental data (Boissonnas et al.,

2007). In particular, the Lévy walk provides a good representation of CTLs’ motion

when the antigen is not present, whilst Brownian motion captures the movement of

CTLs in the presence of a tumour antigen. Due to the similar cell motions observed

in dendritic cells by Engelhardt et al. (2012), we assume that dendritic cells will

respond to tumour antigen in the same way.

Furthermore, systematic comparisons can be made between the two random walk

methodologies. We consider the cover time of both processes and demonstrate that,

generally, the Lévy walk process is more efficient than the Brownian motion process.
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This is supported by previous mathematical analysis of both walk mechanisms (Chu-

peau et al., 2015; Koren et al., 2007; Yokoi et al., 1990). Additionally, our results

suggest that the smaller the walk exponent α the faster the cover time. Furthermore,

exploration into the maximum distance that cells can travel from their original pos-

ition allows us to confirm that the Lévy walk allows cells to spread further into the

domain compared to Brownian motion.

Overall, our results suggest that it would be appropriate to model the movement

of inactive immune cells using a Lévy walk, whereas the movement of active immune

cells can be modelled using Brownian motion. Through comparing the results of the

two different cell speeds, we can observe that the resulting dynamics of cells will

be similar when using faster or slower cell speeds. Therefore, for simplicity, we can

allow both inactive and active immune cells to have the same speed. In the following

chapter, we develop an individual-based model of tumour-immune competition and

utilise the random walk methods described in this chapter to describe immune cell

motion. We do this by introducing a solid tumour into the system and, in turn,

considering the interactions between the immune cells and the cancer cells.
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Chapter 5

An individual-based modelling

approach to describe

tumour-immune interactions

5.1 Overview

In this chapter, we will develop an individual-based (IB) model to describe tumour-

immune competition. We do this by utilising the IB approach described in Chapter 4

to model the movement of the immune cells. Furthermore, we include a solid tumour,

made up of tightly packed cancer cells, and consider the interactions between the

tumour cells and the immune cells in the surrounding microenvironment. Once the

model is set up, we tune certain parameters to investigate their role in the removal

of solid tumours by the immune system. The computational simulation results

of the model highlight which mechanisms control the outcome of tumour-immune

competition indicating that they may be potential targets in the development of new

immunotherapies. The model described in this chapter and several of the results
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shown have been published in Macfarlane et al. (2018).

5.2 Model development

We consider the interactions, in an in vitro situation, between three cell types:

cancer cells, dendritic cells (DCs) and cytotoxic T lymphocytes (CTLs) through

individual-based modelling techniques. The total numbers of these cells will be

denoted by NT , ND and NC , respectively.

As in Chapter 4, the IB model is posed on a 2D spatial grid of spacing ∆x in the

x direction and ∆y in the y direction. To incorporate the biophysical constraints

upon the cells, we make the assumption that only one cell of any type is allowed on

each grid position at any time-step of duration ∆t.

5.2.1 Tumour cell population growth and migration

Tumour cell division: Initially, we consider a tumour consisting of tightly packed

cancer cells with a circular geometry. The solid tumour can expand over time

through cell division. Specifically, each cancer cell can divide at the rate λ, forming

two progeny cells. One progeny cell will occupy the parent cell’s grid position and

the other shall be placed at an unoccupied neighbouring position - see Figure 5.1a.

This method ensures that only cancer cells which have free grid positions in their

neighbourhood can divide (i.e. cancer cells in the centre of the solid tumour will

not divide).

Tumour cell death: It can be assumed that the rate of natural tumour cell death

will be much lower compared to the rate of tumour cell division, therefore we omit

tumour cell death from the model.
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Figure 5.1: A schematic overview of the biological and immunological
mechanisms that are considered in the individual-based model. Three
cell types: cancer cells, dendritic cells (DCs) and cytotoxic T lymphocytes (CTLs)
and the inactive/active states of both immune cells are included in the model (key
subpanel). a Division of each tumour cell can occur at the rate λ, provided a neigh-
bouring grid position is unoccupied. b Through contact with tumour cells, DCs can
become activated at the rate DAct. c At the rate CAct, CTLs can become activ-
ated through interactions with activated DCs. d Once activated, CTLs can remove
tumour cells at the rate µ, through cell-cell interactions.
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Tumour cell migration: We do not consider migration of the tumour cells as

we assume that the tumour is in the early stages of development and, therefore, has

not yet initiated the invasion and metastasis processes (for more detail we direct the

reader to Section 2.3). This means that spreading of the tumour throughout the

domain is controlled by cell division only.

5.2.2 Immune cell migration and activation

Movement of inactive immune cells: At the start of the simulations, we as-

sume that only inactive immune cells are present and we assume that they are

randomly distributed throughout the domain. Both the inactive DCs and inactive

CTLs will migrate within the domain following a Lévy random walk mechanism that

was developed in Chapter 4.

Activation of dendritic cells: While moving within the domain, each inactive

DC can interact with a tumour cell if they are positioned on neighbouring grid-

sites. At the rate DAct, we allow the DC to become activated by the tumour cell -

see Figure 5.1b. For most simulations, we assume that once each DC has become

activated it will remain activated over the time-frame considered. However, we will

also consider an exhaustion limit in some simulations, where each DC can only

activate a certain number of CTLs. Once it has reached the exhaustion limit it will

become an exhausted DC, i.e. it will move around like an active DC but will be

unable to interact with CTLs.

Activation of cytotoxic T lymphocytes: Inactive CTLs can become activated

via cell-cell interactions with activated DCs. If an active DC and an inactive CTL

are situated on neighbouring grid positions then they can interact and the CTLs
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can become activated at the rate CAct - see Figure 5.1c. We assume, in the model,

that each DC can then go on to activate an infinite number of CTLs, although an

exhaustion process is considered later in the chapter. As with the DCs, for most

simulations we assume that once each CTL has become activated it will remain

activated over the time-frame considered. However, we will also consider an exhaus-

tion limit in some simulations, where each CTL can only interact with a certain

number of tumour cells. Once it has reached the exhaustion limit it will become an

exhausted CTL, i.e. it will move around like an active CTL but will be unable to

interact with tumour cells.

Movement of activated immune cells: Upon activation, the immune cells will

alter their form of cell migration from a Lévy walk to the Brownian motion mech-

anism developed in Chapter 4.

Immune cell number and proliferation: We use reflective boundary conditions

to ensure that all cells remain within the domain, to replicate an in vitro situation,

i.e. there will be no additional cells entering the domain and no cells leaving the

domain. We additionally omit the effects of cell division and cell death on both

immune cell populations for simplicity. Therefore, their respective cell numbers

will remain constant over the time-frame considered. Furthermore, as mentioned in

Chapter 2, there can be mechanisms where the tumour cells can damage and remove

immune cells directly, however we will not consider these mechanisms in this work.

5.2.3 Tumour cell removal by CTLs

Once activated, each CTL has the capability to interact with and remove tumour

cells. If an active CTL and a tumour cell occupy neighbouring grid positions, the
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Table 5.1: The average diameters of human cell types considered in the IB model

Cell Type Average Diameter Reference

Cytotoxic T lymphocyte 9-16 µm (Rozenberg, 2011)
Dendritic cell ∼ 7µm (Goya et al., 2008)
Melanoma cell ∼ 12.5 µm (Christophe et al., 2015)

CTL can instantly remove the tumour cell from the system at the rate µ - see

Figure 5.1d. We then allow each CTL to continue to interact with an infinite number

of other tumour cells in the system, that is, no exhaustion or deactivation process

occurs. Note that we will briefly discuss the effect of an exhaustion process later in

this chapter.

5.3 Individual-based model set up and results

5.3.1 Model parameterisation and numerical set up

Using biologically relevant values, from published data where possible, we paramet-

rise the IB model developed in Section 5.2.

Set up of the 2D grid: To determine an appropriate domain for the model, we

consider the average size of our three cell types where we choose the cancer cells to

be melanoma cells - see Table 5.1. To allow for simplicity, we take an average and

set the length of each grid position to be 10 µm in both the x and y directions. This

translates to setting,

∆x = 10 µm and ∆y = 10 µm. (5.1)
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As in the previous chapter, since we consider the diagonal neighbourhoods of cells

the grid-spacing can increase if moving diagonally to
√

2 ∆x/y, with these values

still within the biological ranges of immune cell diameter. Additionally, we define

our domain in such a way that we obtain a two-dimensional 100×100 position grid,

representing a 1 mm2 in vitro sample of tissue.

Setting the time-step of simulations: Each time-step is of length ∆t, the value

of which we can assign by considering the speed of moving immune cells. Referring

to the biological data used to model immune cell motion in Chapter 4, the average

speed of CTLs has been found to be approximately 10 ± 5µm min−1 (Boissonnas

et al., 2007). For simplicity, we assume an average cell speed of 10µm min−1 for

both inactive and active immune cells and choose a time-step of length,

∆t = 1 min, (5.2)

i.e. we allow each cell to move one grid-step per time-step.

Division of tumour cells: Christophe et al. (2015) calculated the average doub-

ling time of a melanoma cell to be 1000 mins which translates to a cell division rate

of,

λ = 0.001 min−1, (5.3)

which we choose in our numerical simulations of our IB model.

Movement of inactive immune cells: Harris et al. (2012) studied the migration

of CTLs in the brains of infected mice in response to the pathogen Toxoplasma gondii

and found that they followed a Lévy walk with exponent of 1.15. Therefore, as in
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Chapter 4, we choose the Lévy exponent

α = 1.15. (5.4)

Activation of dendritic cells: We choose the activation rate of dendritic cells

to be the same as that found by Bianca et al. (2012), that is

DAct = 0.07 cells min−1. (5.5)

Activation of cytotoxic T lymphocytes: From the experimental work of En-

gelhardt et al. (2012), it can be calculated that it takes on average around 562 secs

for a single DC to activate a CTL through antigen presentation. This corresponds

to an activation rate of

CAct ≈ 0.12 cells min−1, (5.6)

which we choose in our numerical simulations of our IB model.

Tumour cell removal by CTLs: In addition to the cell division rate, the rate

at which active CTLs can remove melanoma cells was described in the experimental

work of Christophe et al. (2015) and was found to be

µ = 0.038 cells min−1. (5.7)

The full list of parameter values is displayed in Table 5.2, and unless stated

otherwise these are the values used in numerical simulations of the IB model. The

code was developed and the simulations were run in Matlab. Furthermore, all

simulation results were averaged over three separate runs with the same parameter

settings to ensure reliability of results. Examples of the spatial distributions of
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Table 5.2: Model parameters and related values used in computational simulations.

Symbol Description Value/ Units References

∆t time-step of simulations 1 min (Boissonnas et al., 2007)
∆x(y) grid spacing in the x (y) direction 10 µm Calculated
NT total number of tumour cells initial values: 400 or 1200 cells (Christophe et al., 2015)
NC total number of CTLs 400 cells (Christophe et al., 2015)
ND total number of DCs 400 cells Estimated
µ rate at which a CTL kills a tumour cell 0.03 cells min−1 (Christophe et al., 2015)
λ tumour cell division rate 0.001 min−1 (Christophe et al., 2015)
DAct DC activation rate 0.07 cells min−1 (Bianca et al., 2012)
CAct CTL activation rate ≈ 0.12 cells min−1 (Engelhardt et al., 2012)
α Lévy walk exponent 1.15 (Harris et al., 2012)

the cells over the simulation time are provided in Appendix A, Figure A.1 and

Figure A.2.

5.3.2 Increasing the number of DCs can cause overcrowding

and lead to longer tumour removal times

As mentioned in Section 2.6, a potential aim of adoptive cell therapies is to increase

the number of activated DCs or CTLs within the tumour microenvironment. To

investigate this further, using our IB model, we can consider the effect that increasing

either the number of DCs and/or CTLs has on the immune response to a solid

tumour. We ran each simulation over a 72 hr time-frame, in line with the work

of Christophe et al. (2015), or until all tumour cells were removed from the system.

Each simulation was carried out with the parameter values displayed in Table 5.2

and we considered a range of 40 values for the total number of DCs, ND, and/or the

total number of CTLs, NC , within the system. We consider a range of cell numbers,

from 60 cells to 2400 cells, of each cell type and we consider three situations: either

only the number of CTLs is varied, only the number of DCs is varied or both immune

cell numbers are varied. The resulting dynamics are described in Figure 5.2. The

left panels display heat maps showing the evolution of the tumour cell number over
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time for each given value of NC and/or ND and the right panels display the resulting

tumour cell number over time for four chosen values of NC and/or ND (i.e. values

of 60, 420, 1200 and 2400 cells). When we increase the number of CTLs, NC , in

the system the results shown in Figure 5.2a,b suggest a corresponding decrease in

the time it takes to remove the tumour from the system. However, upon further

inspection the tumour removal time does not decrease as strongly for increasing NC

when the value is sufficiently large, e.g. the results when NC = 1200 and NC = 2400

are similar. Varying the number of DCs within the system, through the parameter

ND, does not appear to be correlated to the time it takes for the immune system to

remove a tumour, as seen in the results displayed in Figure 5.2c,d. Particularly, we

note that in some cases a larger value of ND can result in a longer tumour removal

time, e.g. the time taken to remove the tumour when ND = 1200 is longer than the

tumour removal time when ND = 420, as displayed in Figure 5.2d. Interestingly,

when we increase both NC and ND, the results displayed in Figure 5.2e,f, suggest a

correlation between increasing cell number and a decreasing tumour removal time,

as was observed in the case where only NC was varied. To ensure that the results

obtained were not unique to the case of a relatively small tumour we also consider

a larger tumour, where initially NT = 1200, and observe similar resulting dynamics,

as shown in Appendix A, Figure A.3. One key observation of the results displayed

in Figure 5.2 is the emergence of situations where a larger number of CTLs, DCs or

both cell types can lead to a longer tumour removal time. These observed dynamics

could be explained by an overcrowding effect whereby a larger number of cells within

the system leads to limited immune access to the tumour site. We consider this in

more detail by calculating the average distance of CTLs from the centre of the

tumour for the three situations investigated previously: i.e. varying NC only, ND

only or both NC and ND. We compare the average distance of CTLs from the centre
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of the tumour for two larger values of NC and/or ND where the resulting tumour cell

number over time for each value is displayed in Figure 5.3. When considering the

number of CTLs only, the results shown in Figure 5.3a suggest that when NC = 2400

the CTLs cannot travel as close to the centre of the tumour compared to when

NC = 1200. Similarly, when we vary both NC and ND the activated CTLs appear

to be limited in their capacity to migrate closer to the tumour centre as shown by

the results in Figure 5.3c. Interestingly, if only ND is varied the larger number of

DCs present, again, prevents the activated CTLs from travelling towards the centre

of the tumour, as the results shown by Figure 5.3b suggest. In particular, when

ND = 2400 it appears that the CTLs are not only prevented from travelling towards

the centre of the tumour but appear to be pushed even further from the tumour

centre over time.

5.3.3 The ratio between the removal rate of tumour cells

by CTLs and the tumour cell division rate is a crucial

parameter in tumour removal

The rate at which a CTL can successfully remove tumour cells has previously been

highlighted as a key parameter which controls the outcome of tumour-immune com-

petition (Matzavinos et al., 2004). To investigate this further we examine the effect

of varying the parameter µ. Additionally, we consider the effects of varying the

tumour cell division rate λ. As in the previous subsection, each simulation was run

over a 72 hr period or until all of the tumour cells were removed from the system.

Each simulation was carried out with the parameter values shown in Table 5.2 and

we considered a range of 40 values of µ and/or λ. The values of these parameters

were scaled ranging from a half to twenty times the original values, which are given

69



Figure 5.2: Increasing the number of DCs can lead to longer tumour
removal times. The heat maps show the evolution of the tumour cell number over
time for each given value of NC and/or ND (left panels). We select four simulation
results for cell numbers, of 60, 420, 1200 and 2400 cells, and compare the tumour
cell number over time for each parameter setting (right panels). In each case, we
begin the simulations with 400 tumour cells and test for varying values of: a,b NC

only, c,d ND only and e,f NC and ND. All values displayed are an average over
three simulation runs.
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Figure 5.3: Increasing the number of DCs can cause overcrowding. Plots
displaying the average distance of the CTLs from the centre of the domain ( i.e. the
initial centre of the tumour). We test for varying values of: a NC only, b ND only
and c NC and ND. In each case we compare the results of simulations for two values
of the varied parameter(s), choosing values of 1200 cells (red line) or 2400 cells (blue
line). All values displayed are an average over three simulation runs.
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in Table 5.2. The resulting dynamics are described in Figure 5.4. The left panels

display heat maps to show the evolution of the tumour cell number over time for

each given value of µ and/or λ. In the right panels of Figure 5.4, we display the

results of using values of a half, one, ten and twenty times the original parameter

values and compare the tumour cell number over time for each parameter setting.

Through increasing µ only a decrease in tumour removal time is observed in the

results shown in Figure 5.4a,b. However, when multiplying our original value of µ

by ten or twenty there is no significant difference in the resulting tumour removal

time. As expected when we only increase λ, as the results shown in Figure 5.4c,d,

we observe an increase in tumour removal time and eventually we encounter situ-

ations where the tumour grows too large and cannot be removed in the time-frame

considered. However, by increasing both λ and µ we observe a general decrease

in tumour removal time, although slightly slower than the cases where only µ is

altered, as shown in Figure 5.4e,f. Once again, to ensure that the results obtained

were not specific the case of a relatively small tumour we also consider a larger tu-

mour, where initially NT = 1200, and observe similar resulting dynamics, as shown

in Appendix A, Figure A.4..

5.3.4 Increasing the activation rates of DCs and CTLs has

little effect on tumour removal

Through the biological experiments of immune cells within the tumour microenvir-

onment, the role of immune cell activation through antigen presentation has been

highlighted (Boissonnas et al., 2007). Therefore, we consider the effect of altering

the activation rate of both CTLs and DCs, CAct and DAct, respectively. As in the

previous subsections, each simulation was run over a 72 hr period or until all of the
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Figure 5.4: The ratio between the removal rate of tumour cells by CTLs
and the tumour cell division rate is a crucial parameter in tumour re-
moval. The heat maps show the evolution of the tumour cell number over time for
each given value of µ and/or λ (left panels). We select four values of µ and/or
λ and compare the tumour cell number over time for each parameter setting (right
panels). In each case, we begin the simulations with 400 tumour cells and test for
varying values of: a,b µ only, c,d λ only and e,f µ and λ. All values displayed are
an average over three simulation runs.
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tumour cells were removed from the system. Each simulation was carried out with

the parameter values shown in Table 5.2 and we considered a range of 40 values

of CAct and/or DAct. To compare results we considered two initial tumour sizes: a

smaller tumour made up of 400 cells at the beginning of simulations (results shown

in Figure 5.5) and a larger tumour made up of 1200 tumour cells at the beginning

of simulations (results shown in Figure 5.6). The values of DAct and/or CAct were

scaled ranging from a half to twenty times the original parameter values and the

resulting dynamics are described in Figure 5.5 and Figure 5.6. The left panels dis-

play heat maps to show the evolution of the tumour cell number over time for each

given value of CAct and/or DAct. In the right panels of Figure 5.5 and Figure 5.6, we

select results of simulations that used a half, one, ten and twenty times the original

values of DAct and/or CAct, and compare the tumour cell number over time for each

parameter setting. In both the initially larger and initially smaller tumour situations

there appears to be no clear correlation between altering either CAct and/or DAct

and tumour removal time, which can be inferred by the fluctuating results displayed

by the heat maps. Interestingly, when we considered the initially larger tumour we

can obtain results whereby higher activations rates lead to a slower tumour removal

time, e.g. the results shown in the right panels of Figure 5.6. This was not observed

in the case of a initially smaller tumour, e.g. the results shown in the right panels

of Figure 5.5.

74



Figure 5.5: Increasing the activation rates of DCs and CTLs has little
effect on the removal of an initially smaller tumour. The heat maps show the
evolution of the tumour cell number over time for each given value of CAct and/or
DAct (left panels). We select four values of CAct and/or DAct and compare the
tumour cell number over time for each parameter setting (right panels). In each
case, we begin the simulations with 400 tumour cells and test for varying values of:
a,b DAct only, c,d CAct only and e,f DAct and CAct. All values displayed are an
average over three simulation runs.
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Figure 5.6: Increasing the activation rates of DCs and CTLs has little
effect on the removal of an initially larger tumour. The heat maps show the
evolution of the tumour cell number over time for each given value of CAct and/or
DAct (left panels). We select four values of CAct and/or DAct and compare the
tumour cell number over time for each parameter setting (right panels). In each
case, we begin the simulations with 1200 tumour cells and test for varying values of:
a,b DAct only, c,d CAct only and e,f DAct and CAct. All values displayed are an
average over three simulation runs.
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5.3.5 For large exhaustion limits, immune cell exhaustion

does not impact the outcomes of tumour immune com-

petition

It has been suggested that immune cells can be limited in their activity through

exhaustion, whereby they can only interact with a certain number of cells (Chris-

tophe et al., 2015). Hence, we investigated the role of immune cell exhaustion on

the outcomes of tumour-immune competition by limiting the number of CTLs that

a single DC can activate and limiting the number of tumour cells that a single CTL

can remove from the system. As in the previous subsections, each simulation was

run over a 72 hr period or until all of the tumour cells were removed from the system.

Furthermore, each simulation was carried out with the parameter values shown in

Table 5.2 for a range of values for the limiting cell number that causes exhaustion.

Values of this limit were chosen to range from 1 cell to an infinite number of cells,

with suitable intermediate values investigated. The resulting evolutions of the tu-

mour cell number over time are shown in Figure 5.7 where each line represents the

tumour cell density over time for the tested parameter setting. In the case where

each immune cell can only interact with one cell, we observe that the tumour cell

number steadily increases over time. For limits of either two or three cells we observe

a slight decrease in tumour mass, before the tumour cell number increases again.

For a limit of four cells we observe a steady decrease in the tumour cell number with

very few cells remaining at the end of simulations. For all higher exhaustion limit

values we observe that the tumour can be removed and for larger values (i.e. over

twenty cells) the tumour removal times are very similar.
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Figure 5.7: For large exhaustion limits, immune cell exhaustion does not
impact the outcomes of tumour immune competition. Line plots showing
the evolution of the number of tumour cells over time for eleven different limits of
immune cell exhaustion. The limit shown in the legend indicates how many cells
both single DCs and single CTLs can interact with over the time-frame considered.
All values displayed are the average over three simulation runs.

5.3.6 Using a switch in immune cell motion decreases tu-

mour elimination time

In the model, immune cells switch their form of motion from a Lévy walk to Brownian

motion upon activation. However, another modelling approach is to simply use

Brownian motion for both inactive and active immune cells. To investigate the

impact of the inclusion of the switch in cell motion we run simulations whereby both

inactive and active immune cells undergo Brownian motion and compare the results

to those from previous sections here immune cells switched from Lévy to Brownian

motion. As in the previous subsections, each simulation was run over a 72 hr period

or until all of the tumour cells were removed from the system. Furthermore, each

simulation was carried out with the parameter values shown in Table 5.2. We

compare the tumour elimination time and numbers of active/inactive immune cells

with the case where the cells switched motion in Figure 5.8. The bars display the
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Figure 5.8: Using a switch in immune cell motion decreases tumour elim-
ination time. We compare the case where both inactive and active immune cells
undergo Brownian motion (blue) and the case where the immune cells switch from
a Lévy walk to Brownian motion upon activation (pink). We compare the number
of tumour cells at the end of simulation, the time taken to remove the tumour and
the numbers of inactive/active immune cells within the system. The bars display the
mean value of ten runs of the simulation and the error lines represent the standard
deviation between these ten runs.
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mean value of ten runs of the simulation and the error lines represent the standard

deviation between these ten runs. We observe that the tumour elimination time for

the case with no switch (Brownian only) is larger than that when the cells switch

from a Lévy walk to Brownian motion upon activation. In the case of Brownian

motion the number of active and inactive immune cells at the end of simulations is

similar to the results of the case where cell switch from a Lévy walk to Brownian

motion upon activation.

5.4 Concluding remarks and discussion

In this chapter we have developed a stochastic individual-based (IB) spatial model of

tumour-immune competition focussing on cell-cell interactions between cancer cells,

dendritic cells and cytotoxic T lymphocytes.

The results of numerical simulations of this IB model recapitulate the findings

of experimental work which highlighted that a (limited) beneficial effect on the

immune response to cancer can be induced through enhancing the number of CTLs

in the tumour microenvironment (Spranger, 2016). Furthermore, in agreement with

the experimental results presented in Li et al. (2010) and Ye et al. (2011) – where

the authors showed that cellular overcrowding can hamper immune action – our

computational results indicate that higher numbers of DCs can lead to overcrowding

and prevent activated CTLs from reaching the tumour resulting in reduced success

of tumour removal. This may be useful in explaining instances of unsuccessful

dendritic cell therapy (Ahmed et al., 2014; Butterfield, 2013; Garg et al., 2017; Lim

et al., 2007) and suggests that increasing CTL numbers may be a better objective

for immunotherapy rather than increasing DC numbers.

As expected, when we increase the division rate of the tumour cells we observe
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that tumour growth could no longer be controlled by the immune system and could

eventually lead to situations of exponential tumour growth. However, if the capab-

ility of CTLs to remove tumour cells is also enhanced, in agreement with previous

theoretical works (d’Onofrio and Ciancio, 2011; Frascoli et al., 2014; Matzavinos

et al., 2004), our model predicts that tumour eradication can be re-established.

Such results illustrate how the ratio between the tumour proliferation rate and the

immune cell’s tumour kill rate (i.e. the ratio between λ and µ) is a crucial determ-

inant of the outcome of anti-tumour immune action.

The outcomes of this initial model demonstrate that, in general, increasing the

activation rates of CTLs and DCs has very little effect on removal of the tumour, in

the parameter settings we have considered . Taken together, our results testify to

the idea that choosing the activation rates of CTLs and DCs as designated targets

in adoptive cell therapy, or other forms of immunotherapy, may not enhance the

efficacy of the immune response against solid tumours.

Through investigation of the immune cell exhaustion process, our model indicates

that the exhaustion limit of immune cells does not greatly impact the tumour-

immune competition, unless the immune cells are limited to interacting with less

than five cells. Experimentally, it has been shown that T cells can have an exhaustion

limit of around 5 cells (Christophe et al., 2015) and there is evidence that this

limit is closer to 10 cells (Halle et al., 2016), both of which our model suggests

would still result in the same dynamics as the case where there was no exhaustion

limit. Therefore, this mechanism can be easily omitted from our model to allow for

simplicity and to focus on more influential processes and parameter settings.

We compare the case where all immune cells undergo Brownian motion, to our

model where immune cells switch from a Lévy walk mechanism to Brownian motion

upon activation by tumour antigen. Our results suggest that including this switch
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in cell motion does not alter the resulting dynamics of the system, but does result

in a faster tumour removal time, for the parameter setting considered. This further

supports the results of Chapter 4 where the Lèvy walk mechanism was found to be

more efficient than the Brownian motion walk mechanism.

In the individual-based model described in this chapter we have considered a

homogeneous tumour, where all tumour cells are of the same phenotype. However,

a tumour can be heterogeneous in relation to the antigens which each tumour cell

expresses. This individual-based model will be further developed in Chapter 6 to

incorporate such tumour antigens and their effect on the immune response.
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Chapter 6

An individual-based model to

describe the role of tumour

heterogeneity in tumour-immune

competition

6.1 Overview

In the previous chapter, we developed an individual-based (IB) model of tumour-

immune competition to describe the interactions between dendritic cells (DCs),

cytotoxic T lymphocytes (CTLs) and tumour cells. In the model, we considered

a homogeneous tumour, i.e. all tumour cells exhibited the same antigenic profile.

However, the antigenic composition of solid tumours can be heterogeneous. There-

fore, each cell within the tumour mass may have an antigen profile characterised by

different expression levels of tumour antigens which may vary over time through epi-

mutations or mutations. In light of these considerations, in this chapter we extend
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the IB model described in Chapter 5 further to explicitly capture tumour antigen

expression and recognition by the immune system. In this extended model, each

cancer cell is characterised by an antigen profile which can change over time due to

either epimutations or mutations. The immune response towards the cancer cells is

initiated by the DCs that recognise the tumour antigens and present them to the

CTLs. Consequently, CTLs become activated against the tumour cells which ex-

press such antigens and can subsequently remove them from the system. The model

described in this chapter and several of the results shown have been submitted for

publication (Macfarlane et al., 2019).

6.2 The mathematical model

The model developed in this chapter is based upon the individual-based model de-

scribed in Chapter 5. Therefore, we again consider three cell types: tumour cells,

dendritic cells (DCs) and cytotoxic T lymphocytes (CTLs) and use an individual-

based approach to describe the interactions between these three cell types. Fur-

thermore, the model is again posed on a 2D spatial grid of spacing ∆x in the x

direction and ∆y in the y direction, with the constraint that only one cell of any

type is allowed at each grid-site at any time-step of duration ∆t.

As in the previous chapter, initially, inactive immune cells are randomly dis-

tributed on the spatial grid, while the cancer cells are tightly packed in a circular

configuration positioned at the centre of the grid, to reproduce the geometry of a

solid tumour. We again assume that, at the start of simulations, there are no ac-

tivated immune cells. Throughout the simulations, we allow the tumour to grow

through cell division. In agreement with the previous model, a cancer cell divides

at the rate λ into two progeny cells of which one occupies the position of the parent
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cell while the other is positioned at an unoccupied neighbouring grid-site. This en-

sures that only cancer cells with free grid-sites in their neighbourhood can divide,

that is, cells with no free neighbouring grid sites will not proliferate. In line with

the previous models we have described, inactive immune cells update their position

according to a Lévy walk and can become activated via interactions with other cells

which initiates a change in motion, i.e. activated immune cells follow a Brownian

walk. Furthermore, DCs are activated at the rate DAct upon contact with tumour

cells, and CTLs become activated at the rate CAct upon contact with active DCs.

Once again, we let active CTLs remove tumour cells, upon contact, at the rate µ.

For simplicity, we again omit the effects of natural death of tumour cells and the

proliferation of both DCs and CTLs, i.e. the total numbers of DCs and CTLs are

constant over time. Chapter 5 contains a detailed description of these modelling

strategies.

In this chapter, we develop each of these modelling strategies further to include:

the antigen profiles of cancer cells and their possible variation, the immune recogni-

tion of tumour antigens by DCs, and the targeted activation of CTLs against specific

tumour antigens. We incorporate antigen expression into our model by letting each

tumour cell express eleven different antigens, to represent the eleven MAGE-A an-

tigens that, as mentioned in Section 2.3, have a key role in tumour development

(Coulie et al., 2014). The eleven antigens are reported in Table 6.2 and we label

them by an index i = 1, . . . , 11. In the model, we assume there is no correlation

between the expression of the eleven MAGE-A antigens (Roch et al., 2010), there-

fore each antigen is expressed independently of the others. The modelling strategies

used to take into account such additional layers of biological complexity are de-

scribed in detail in the following subsections, and are also schematically illustrated

in Figure 6.1 and Figure 6.2.
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Figure 6.1: Schematic representation of the mechanisms and processes
included in the individual-based model. Key We consider three cell types in
the model: tumour cells, DCs and CTLs, along with their corresponding antigen and
receptor profiles. a Initially the tumour is composed of tumour cells characterised
by different antigenic profiles. The standard deviation of the initial tumour antigen
profiles from the experimental profile is determined by the parameter VT . b Tumour
cells divide at the rate λ. c Tumour cells may undergo epimutations with probability
θE. The standard deviation of the epimutation altered tumour antigen profiles from
the original profile is determined by the parameter VE. d DCs become activated upon
contact with tumour cells at the rate DAct. The standard deviation of the antigen
profiles recognised by DCs from the tumour antigen profiles is determined by the
parameter VD. e Upon contact, active DCs present the antigen profile they have
recognised to inactive CTLs. This leads to the targeted activation of CTLs against
specific tumour antigens at the rate CAct. f Activated CTLs remove tumour cells,
upon contact, at the rate µ, on the condition that the tumour cells express a sufficient
amount of the antigens corresponding to the CTL receptors. The binding affinity of
the CTLs is measured by the parameter β.
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6.2.1 Mathematical modelling of antigen expression

We denote by NT (t) the number of tumour cells in the system at time t = h∆t,

with h ∈ N0, and we label each cell by an index n = 1, . . . , NT (t). There can be high

variability in MAGE-A antigen expression between patients with the same type of

cancer (Hartmann et al., 2016; Müller-Richter et al., 2009; Urosevic et al., 2005)

and even within cancer cell samples from the same patient (Hartmann et al., 2016;

Müller-Richter et al., 2009; Urosevic et al., 2005). Therefore, at each time instant

t, we characterise the antigen profile of the nth tumour cell by means of a vector

ATn(t) = (A
(1)
Tn(t), . . . , A

(11)
Tn (t)),

with A
(i)
Tn(t) representing the expression level of antigen i. As schematically illus-

trated in Figure 6.1, for each tumour cell n we define the initial expression of the

ith antigen as

A
(i)
Tn(0) = (Mi + VT Ri)+, i = 1, . . . , 11. (6.1)

In equation (6.1), the parameter Mi denotes a mean expression level of antigen

i taken from published experimental data, the values of which are reported in

Table 6.2. The value of Ri is sampled from a standard normal distribution centred

at zero. We take the positive part of equation (6.1) to ensure nonnegativity of the

antigen expression level. As Ri is taken from a standard normal distribution, the

parameter VT can be described as the standard deviation of the initial antigen pro-

file from the experimental value Mi (Kenney and Keeping, 1962). Therefore the

parameter VT determines how close the value of A
(i)
Tn(0) will be to the value of Mi -

see the scheme in Figure 6.1a.
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6.2.2 Modelling variations in antigen expression

At each time-step, we let the tumour cells divide at the rate λ, as shown in the

schemes in Figure 6.1b, and allow their antigen profile to vary either through epi-

mutations or through mutations. We assume that epimutations can occur at any

time during the lifespan of a cell - see the schemes in Figure 6.1c and Figure 6.2a.

On the other hand, mutations take place during cell division and may cause the

antigen profile of one progeny cell to be different from that of the parent cell - see

the scheme in Figure 6.2b. We allow epimutations and mutations to occur with

probabilities θE and θM , respectively.

Epimutations: A variation in the level of expression of the ith antigen of the nth

tumour cell at the time instant t due to an epimutation is modelled according to

the following equation

A
(i)
Tn(t+ ∆t) = (A

(i)
Tn(t) + VE Ri)+, i = 1, . . . , 11. (6.2)

In equation (6.2), the value of Ri is sampled from a normal distribution centred

at zero. We take the positive part of equation (6.2) to ensure nonnegativity of the

antigen expression level. Following on from the definition of the parameter VT , since

Ri is taken from a standard normal distribution, the parameter VE can be described

as the standard deviation of the updated antigen profile from the previous expression

profile (Kenney and Keeping, 1962). Therefore, VE determines how close the value

of A
(i)
Tn(t+ ∆t) will be to the value of A

(i)
Tn(t).

Mutations: Upon division at the time instant t, the nth tumour cell is replaced

by two cells, one labelled by the index n and the other one labelled by the index
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NT (t) + 1. If mutations do not occur, the progeny cells inherit the antigen profile

of the parent cell, i.e. A
(i)
Tn(t + ∆t) = A

(i)
Tn(t) and A

(i)
T NT (t)+1(t + ∆t) = A

(i)
Tn(t).

Conversely, if a mutation occurs, the antigen profile of the progeny cells will be

given by the following equations

A
(i)
Tn(t+ ∆t) = A

(i)
Tn(t), i = 1, . . . , 11 (6.3)

and

A
(i)
T NT (t)+1(t+ ∆t) = (A

(i)
Tn(t) + VM Ri)+, i = 1, . . . , 11. (6.4)

Equations (6.3) and (6.4) rely on notation analogous to that of equation (6.2) and

therefore VM can be described as the standard deviation of the progeny antigen

profiles from the parent antigen profiles (Kenney and Keeping, 1962). Therefore,

the value of VM determines how close the value of A
(i)
T NT (t)+1(t+ ∆t) will be to the

value of A
(i)
Tn(t).

Clearly, in the absence of changes in antigen expression, i.e. if θE = 0 and

θM = 0, the antigen profiles of the tumour cells will remain constant over time, that

is, ATn(t) = ATn(0) for all t > 0 and n = 1, . . . , NT .

6.2.3 Activation of immune cells

Activation of DCs: We denote by ND the number of DCs, which we assume to

be constant, and we label each DC by an index k = 1, . . . , ND. Activation of each

DCs occurs, at the rate DAct, through contact with a tumour cell. There is biological

evidence supporting heterogeneity within the antigen presentation process where a

less prevalent antigen may be recognised presented by DCs (Boes et al., 2002; Fehres

et al., 2014; Ljunggren et al., 1990). Additionally, it is known that the MAGE-A
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Figure 6.2: Schematic comparison of the modelling strategies used to
describe changes in antigen expression induced by epimutations and
mutations within tumour cells. a Antigenic variations due to epimutations
can occur, with probability θE, at any time during the life of a tumour cell. The
standard deviation of the new antigen profile from the original one is determined by
the parameter VE. b Mutations can take place, with probability θM , only during cell
division, which occurs at the rate λ. Due to mutations, one progeny cell may exhibit
an antigen profile different from that of the parent cell. The standard deviation
between the parent and progeny cell antigen profiles is determined by the parameter
VM .
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genes have similar homology (Roch et al., 2010; Zajac et al., 2017) and therefore there

is a potential that they could be mis-recognised as each other (Graff-Dubois et al.,

2002; Linette et al., 2013; Raman et al., 2016; Schueler-Furman et al., 1998; Tong

et al., 2004). Therefore, we incorporate variability into the DC activation process

whereby the DCs may recognise different expression levels of the tumour antigen

from this actually present. At any time instant t, the kth DC is characterised by a

recognised antigen profile

ADk(t) = (A
(1)
Dk(t), . . . , A

(11)
Dk (t)).

We let all DCs be initially inactive and thus assume

A
(i)
Dk(0) = 0, i = 1, . . . , 11,

for all k = 1, . . . , ND. As schematically described by Figure 6.1d, we consider the

case where there may be potential variation in the antigen recognition process. To

capture this idea, upon activation through contact with the nth tumour cell at the

time instant t, we assign the recognised antigen profile of the kth DC using the

following equation

A
(i)
Dk(t+ ∆t) = (A

(i)
Tn(t) + VD Ri)+, i = 1, . . . , 11. (6.5)

In equation (6.5), the value of Ri is sampled from a normal distribution centred

at zero. We take the positive part of equation (6.5) to ensure nonnegativity of the

antigen expression level. We can describe VD as the standard deviation of the antigen

profile recognised by each DC from the actual tumour antigen profile (Kenney and

Keeping, 1962). Therefore, VD determines how close the value of A
(i)
Dk(t + ∆t) will
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be to the value of A
(i)
Tn(t). We note that biologically, VD captures the potential of

the immune system to target an antigen which is not the highest expressed by the

tumour cell. Therefore, introducing VD allows the dendritic cells to have variation

in which antigens they present to the CTLs and thus determines the diversity of

the T cell receptor expression within the CTL population. The results we have

discussed previously in Chapter 5, indicate that realistic exhaustion limits of cells

would not change the outcome of tumour immune competition, compared to no limit

of exhaustion. Therefore, once activated, the DCs remain activated against their

recognised tumour antigen profile.

Activation of CTLs: We denote by NC the number of CTLs, which we assume

to be constant, and we label each CTL by an index m = 1, . . . , NC . As schematically

described by Figure 6.1e, activation of CTLs occurs, at the rate CAct, through contact

with activated DCs. At any time instant t, each CTL m has a receptor profile

ACm(t) = (A
(1)
Cm(t), . . . , A

(11)
Cm (t)).

We let all CTLs be initially inactive and thus assume

A
(i)
Cm(0) = 0, i = 1, . . . , 11,

for all m = 1, . . . , NC . While DCs can recognise multiple types of antigens, CTLs

can produce copies of one antigen receptor only (Brenner et al., 2008; Coico and

Sunshine, 2015). This means that each CTL can only be activated against one of

the eleven MAGE-A antigens. To capture this fact, upon activation through contact

with the kth DC at the time instant t, we let the mth CTL become activated against

the most prevalent antigen within the tumour antigen profile recognised by the kth
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DC, i.e. we assign the receptor profile of the mth CTL using the following equation

A
(i)
Cm(t) =


1 for i = î,

0 for i 6= î,

with î = arg max
j
A

(j)
Dk(t), (6.6)

where the index î specifies the target antigen of the activated CTL. Note that, if

| arg maxj A
(j)
Dk(t)| > 1, then we arbitrarily choose î = min arg maxj A

(j)
Dk(t). Again,

the results we have discussed previously in Chapter 5, indicate that realistic exhaus-

tion limits of cells would not change the outcome of tumour immune competition,

compared to no limit of exhaustion. Therefore, once activated, a CTL remains

activated against the same tumour antigen.

6.2.4 Removal of tumour cells by activated CTLs

Upon contact, each activated CTL can induce death of the tumour cells which

express a sufficiently high level of the CTL’s target antigen (Coulie et al., 2014;

Stone et al., 2009), which we assume to be given by the mean antigen expression

levels reported in Table 6.2. In particular, as schematically described by Figure 6.1f,

when the mth CTL interacts with the nth tumour cell at time t, we compare the

receptor profile ACm(t) with the antigen profile ATn(t) and let the tumour cell be

removed from the system at the rate µ provided that

A
(i)
Tn(t) ≥ (Mi − β) for i such that A

(i)
Cm(t) = 1. (6.7)

In equation (6.7), the parameter β describes the binding affinity of the CTLs, which

determines the range of tumour cells that each CTL can interact with. If β is

larger, then the CTL can recognise tumour cells with a lower level of expression of
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Table 6.1: Model parameters and related values used in computational simulations.
Note, standard deviation has been abbreviated to StD.

Symbol Description Value(s) Reference

∆t time-step 1 min (Boissonnas et al., 2007)
∆x,y grid spacing in the x or y direction 10 µm (Macfarlane et al., 2018)
NT (0) initial number of tumour cells 400 cells (Christophe et al., 2015)
NC total number of CTLs 400 cells (Christophe et al., 2015)
ND total number of DCs 400 cells (Macfarlane et al., 2018)
n Index identifier of each tumour cell n = 1, . . . , NT -
k Index identifier of each DC k = 1, . . . , ND -
m Index identifier of each CTL m = 1, . . . , NC -
M Antigen profile from experimental data see Table 6.2 (Hartmann et al., 2016)
ATn(t) Antigen profile of tumour cell n at time t values ≥ 0 -
ADk(t) Recognised antigen profile of DC k at time values ≥ 0 -
ACm(t) Antigen receptor profile of CTL m at time values of 0 or 1 -
λ tumour cell division rate 0.001 min−1 (Christophe et al., 2015)
θ∗E Average probability of epimutations 0.23 (De Smet et al., 1996)
µ removal rate of tumour cells by CTLs 0.03 cells min−1 (Christophe et al., 2015)
DAct DC activation rate 0.07 cells min−1 (Bianca et al., 2012)
CAct CTL activation rate ≈ 0.12 cells min−1 (Engelhardt et al., 2012)
α Lévy walk exponent 1.15 (Harris et al., 2012)
β T cell binding affinity 0 → 0.2 (Schmid et al., 2010)
VT StD of the initial tumour antigen profiles from experimental profile M 0 → 1 -
VD StD of the antigen profiles recognised by DCs from the tumour antigen profiles 0 → 1 -
VE/M StD of the tumour antigen profiles after epimutations/mutations same as VT -

the antigen that they target. Independent of the outcome of the interaction, the

CTL can interact with further tumour cells following the same process.

6.3 Computational simulations and results

6.3.1 Model parametrisation and simulation set up

In line with the IB model developed in Chapter 5, we use 100 grid points both

in the x and in the y direction, which correspond to a 2D spatial domain of size

1 mm2. The code was developed and the simulations were run in Matlab, for an

appropriate number of time-steps, with one time-step chosen to be ∆t = 1 min, to

allow for the resulting dynamics of the system to be investigated. Chapter 5 contains

a detailed description of the parametrisation of the original model, and we describe

here the way in which the additional components of the model are calibrated using

the parameter values reported in Table 6.1.
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Initial tumour antigen expression levels: Hartmann et al. (2016) investigated

the levels of expression of the eleven MAGE-A antigens in oral squamous cell cancers

of 38 patients. The mean antigen expression levels were taken to be values between 0-

12 arbitrary units as an immune-reactivity score, which are normalised and reported

in Table 6.2. In our model the initial expression level of each antigen for each tumour

cell is defined by using equation (6.1) along with the values of Mi from Table 6.2.

To determine the value of (VT Ri) in equation (6.1) we consider the properties of

Ri, which is a random value taken from a standard normal distribution. A standard

normal distribution with mean 0 and standard deviation 1, has a 95% confidence

interval of ±1.96 (Kenney and Keeping, 1962). Therefore, for 95% of values, we

expect -1.96 ≤ Ri ≤1.96 with the majority of the values being close to the mean

value, zero. We then use the parameter VT to control the minimum and maximum

value of (VT Ri), i.e when VT=1 then (VT Ri) ∈ {−1.96, 1.96}, for most values.

However, if VT is lower, e.g. VT=0.1, then the values of (VT Ri) will also be lower,

e.g. (VT Ri) ∈ {−0.196, 0.196}. To consider a wide range of biological situations,

in regards to the initial heterogeneity between tumour antigen profiles, we use a

range of values, between 0 and 1, for the parameter VT . As the experimental data

in Table 6.2 is unitless, we also consider VT to be unitless.

Probabilities of epimutations and mutations: De Smet et al. (1996) found

that cancer cell lines expressing the MAGE-A1 antigen were 23% more likely to

undergo demethylation events than tumour cell lines that did not express this an-

tigen. Such values are supported by other studies that consider the likelihood of

DNA demethylation in various cancers (Chalitchagorn et al., 2004; Ehrlich, 2002).

We make the assumption that this holds true for the other ten MAGE-A antigens,
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Table 6.2: Average levels of expression of the MAGE-A antigens in human oral
squamous cell cancer cell lines. The experimental values were taken from (Hartmann
et al., 2016) and then normalised by dividing by 12.

Antigen (i) Mean Expression, Mi

MAGE-A1 (1) 0.10
MAGE-A2 (2) 0.25
MAGE-A3 (3) 0.41
MAGE-A4 (4) 0.24
MAGE-A5 (5) 0.36
MAGE-A6 (6) 0.35
MAGE-A8 (7) 0.17
MAGE-A9 (8) 0.16
MAGE-A10 (9) 0.38
MAGE-A11 (10) 0.06
MAGE-A12 (11) 0.32

and let the average probability of epimutations in our model be

θ∗E = 0.23.

In the model we consider the effect of increase or decreasing the probability of

epimutations or mutations by setting θE and θM , respectively, as multiples of θ∗E.

The parameters VE and VM control how much the antigen expression of a tumour cell

can change through epimutations or how much the antigen expression of a daughter

tumour cell can change through mutations - see equations (6.2) and (6.3). The

values of VM and VE are chosen to match the values of VT , that is we assume that

the antigenic profiles of cells will only be able to evolve according to the levels of

heterogeneity in the antigen expression levels between initial antigen profiles. As

the experimental data in Table 6.2 is unitless, we also consider VE and VM to be

unitless.
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Antigen recognition process: In line with the choice of values for the para-

meter VT , to consider a wide range of biological situations, in regards to the antigen

recognition process, we use a range of values, between 0 and 1, for the parameter

VD - see equation (6.5). As the experimental data in Table 6.2 is unitless, we also

consider VD to be unitless.

T cell binding affinity: The binding affinity of a T cell is related to the associ-

ation rate, that is the inverse of the dissociation rate KD. In general this value is

between 0.005 µM−1 and 1 µM−1 for all natural T cells (Davis et al., 1998; Slansky

and Jordan, 2010). Furthermore, the MAGE-A T cell receptors association rates

have been found to be even larger than this range, e.g. for MAGE-A3 the values are

between 0.018 µM−1 and 5.917 µM−1 (Tan et al., 2015). However, Schmid et al.

(2010) have shown that an association rate of 0.2 µM−1 or higher did not improve

the binding affinity and therefore higher binding affinities may have a limited ef-

fect. We take Mi to be the minimal binding and allow the likelihood of binding to

increase depending on β. In line with the experimental evidence, we investigate a

range of unitless values between 0 and 0.2 for the parameter, β, that models the T

cell receptor binding affinity - see equation (6.7).

6.3.2 Variability between the initial tumour antigen profiles

determines the effectiveness of the immune response

To investigate how the immune response is affected by variability in the initial

tumour antigen profiles, we test for three increasing values of the parameter VT , i.e.

VT = 0.001, VT = 0.01 and VT = 0.1. We choose β = 0.01 and we let the tumour

cell antigen profiles remain constant over time, i.e. we choose θE = θM = 0. For

each value of VT considered, we also explore the effect of increasing the value of
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Figure 6.3: Variability between the initial tumour antigen profiles de-
termines the effectiveness of the immune response. Plots displaying the
number of tumour cells remaining after 1000 time-steps for increasing values of the
parameter VT : a VT = 0.001, b VT = 0.01 and c VT = 0.1. For each value of VT
a range of values of the parameter VD are tested. The tumour cell numbers presen-
ted have been obtained as the average over 5 simulations and the error bars display
the related standard deviation. Here, β = 0.01, θE = θM = 0, and all the other
parameter values are reported in Table 6.1.
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the parameter VD. In all cases, we carried out simulations for 1000 time-steps. As

shown by Figure 6.3a, when there is a small difference between the initial tumour cell

antigen profiles, very few tumour cells remain in the system after 1000 time-steps

for all considered values of VD. Conversely, the results presented in Figure 6.3c show

that if we allow VT to be relatively large, there is a significant number of remaining

tumour cells after 1000 time-steps for all values of VD. Moreover, as shown by

Figure 6.3b, for an intermediate level of initial antigen variability, there appears to

be a correlation between the number of tumour cells remaining after 1000 time-steps

and the parameter VD. In particular, larger values of the parameter VD correspond

to smaller numbers of the remaining tumour cells after 1000 time-steps. These

results suggest that for tumours characterised by intermediate levels of VT , higher

levels of variability between the antigen profile recognised by DCs and the actual

antigen profile of tumour cells may result in a more effective immune response. This

is further illustrated by the computational results presented in the next subsection.

6.3.3 Increasing variability between the antigen profile re-

cognised by DCs and the actual antigen profile of tu-

mour cells results in immune escape, chronic dormancy

or immune clearance of the tumour

The results discussed in the previous subsection illustrate how different cell dynamics

can be observed for increasing values of the parameter VD. We test this further by

using the parameter setting of Figure 6.3b, i.e. VT = 0.01, θE = 0 and β = 0.01, and

comparing the dynamics obtained for three different values of VD, i.e. VD = 0.001,

VD = 0.05 and VD = 0.1. In Figure 6.4, we compare the average antigen profile of

the tumour cells at the end of simulations with the average antigen profile recognised
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Figure 6.4: Increasing VD can result in immune escape or chronic
dormancy or immune clearance of the tumour. Plots in panels a-c display
the average antigen profile of tumour cells (blue) and the average antigen profile
recognised by the DCs (green) at the end of simulations. The black lines describe the
standard deviation between 5 runs of the simulation. Plots in panels d-f display the
time evolution of the tumour cell number with an example of the observed cell spatial
distributions at the final time-step shown in the insets. Values are taken to be the
average over five simulation runs. Tumour cells are blue, DCs are green, CTLs are
red and inactive immune cells are darker green and red, respectively. Three values
for the parameter VD are tested: a,d VD = 0.001, b,e VD = 0.05 and c,f VD = 0.1.
Here, VT = 0.01, β = 0.01, θE = θM = 0, and all the other parameter values are
reported in Table 6.1.
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by the DCs, and we show the corresponding time evolution of the number of tumour

cells. The insets also display the spatial cell distributions observed at the end of

simulations to allow for a clearer understanding of the resulting dynamics. We

observe that VD is a bifurcation parameter whereby three distinct situations result

from choosing increasing values of VD. In particular, Figures 6.4a,d refer to the case

where the value of VD is relatively low, i.e. VD = 0.001, and show that there is

a small difference between the average antigen profile of the tumour cells and the

average recognised antigen profile at the end of simulations. Moreover, after an

initial decrease, the tumour cell number increases steadily over time resulting in a

relatively large final number of tumour cells. Furthermore, Figures 6.4b,e refer to

the case where an intermediate value of VD is considered, i.e. VD = 0.05, and show

that there is a larger difference between the average antigen profile of the tumour

cells and the average recognised antigen profile at the end of simulations. Moreover,

after a steep decrease, the tumour cell number remains at a low, almost constant,

level for the remainder of the simulation time interval. Finally, Figures 6.4c,f refer

to the case where the value of VD is relatively large, i.e. VD = 0.1, and show

that the difference between the average antigen profile of the tumour cells and the

average recognised antigen profile at the end of simulations is even larger than in

the previous cases. Moreover, the number of tumour cells decreases steadily over

time and eventually the tumour is completely removed.

6.3.4 Increasing the T cell receptor binding affinity can be-

nefit the immune system response to cancer

To explore the effect of altering the T cell receptor binding affinity, we test for three

increasing values of the parameter β, i.e. β = 0, β = 0.0001 and β = 0.001. We
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Figure 6.5: Increasing the T cell receptor binding affinity can benefit the
immune system response to cancer. Plots displaying the number of tumour
cells remaining after 1000 time-steps for increasing values of the parameter β: a
β = 0, b β = 0.0001 and c β = 0.001. For each value of β a range of values of
the parameter VD are tested. The tumour cell numbers presented have been obtained
as the average over 5 simulations and the error bars display the related standard
deviation. Here, VT = 0.0001, θE = θM = 0, and all the other parameter values are
reported in Table 6.1.
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Figure 6.6: Increasing the T cell receptor binding affinity can benefit the
immune system response to cancer. Plots in panels a-c display the average
antigen profile of tumour cells (blue) and the average antigen profile recognised by
the DCs (green) at the end of simulations. The black lines describe the standard
deviation between 5 runs of the simulation. Plots in panels d-f display the time
evolution of the tumour cell number with an example of the observed cell spatial
distributions at the final time-step shown in the insets. Values are taken to be the
average over five simulation runs. Tumour cells are blue, DCs are green, CTLs are
red and inactive immune cells are darker green and red, respectively. Three values
for the parameter VD are tested: a,d VD = 0.001, b,e VD = 0.05 and c,f VD = 0.1.
Here, VT = 0.0001, β = 0.0001, θE = θM = 0, and all the other parameter values
are reported in Table 6.1.
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choose VT = 0.0001 and we let the tumour cell antigen profiles remain constant over

time, i.e. we choose θE = θM = 0. For each value of β considered, we also explore

the effect of increasing the value of the parameter VD. In all cases, we carried out

simulations for 1000 time-steps. As shown by Figure 6.5a, for β = 0, a considerable

number of tumour cells remain inside the system at the end of simulations for all

values of VD. Conversely, the results presented in Figure 6.5c show that when β is

sufficiently high, very few tumour cells remain in the system after 1000 time-steps

for all values of VD. Moreover, as shown by Figure 6.5b, for intermediate values of

β, there appears to be a correlation between the number of tumour cells remaining

after 1000 time-steps and the parameter VD. In particular, larger values of the

parameter VD correspond to smaller numbers of the remaining tumour cells after

1000 time-steps. These results suggest that the T cell receptor binding affinity plays

a key role in the immune response to tumour cells. In the same way as Figure 6.4,

Figure 6.6 shows that, under the parameter choice of the computational simulations

related to Figure 6.5b, increasing the value of the parameter VD leads to immune

escape or chronic dormancy or immune clearance of the tumour.

6.3.5 Increasing the probability of epimutations can lead to

variations in the immune response to tumour cells

So far we have considered only the situation where the antigen profile of each tu-

mour cell remains constant over time, i.e. the probability at which epimutations

and mutations, leading to antigenic variations, occur are θE = 0 and θM = 0. To

investigate the effect of epimutations on the success of the immune response against

tumour cells, we consider the parameter setting that we have used in the compu-

tational simulations shown either in Figures 6.4a,d or in Figures 6.6c,f but now we
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Figure 6.7: Increasing the probability of epimutations can lead to vari-
ations in the immune response to tumour cells. Panels a and b display
the time evolution of the tumour cell number for increasing values of θE (cf. the
legend below the panels). For the numerical results reported in panel a we use the
parameter setting of the simulations whose results are displayed in Figures 6.4a,d
and VE = 0.01, while for the numerical results reported in panel b we use the para-
meter setting of the simulations whose results are displayed in Figures 6.6c,f and
VE = 0.0001. Values are taken to be the average over five simulation runs.
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allow the antigen profiles of tumour cells to change through epimutations, i.e. we

choose θE > 0. We consider eight specific values of θE defined as fractions or mul-

tiples of the average probability of epimutations θ∗E, given in Table 6.1. In all cases,

we carried out simulations for 8640 time-steps and we report on tumour cell numbers

obtained as the average over 5 simulations. Figure 6.7a displays the time evolution

of the tumour cell number for the parameter setting of Figures 6.4a,d. These results

show that increasing values of θE correspond to decreasing numbers of tumour cells

inside the system at the end of simulations. In summary, by increasing the prob-

ability of epimutations the dynamics of tumour cells change from immune escape,

through to chronic dormancy to immune clearance. On the other hand, Figure 6.7b

displays the time evolution of the tumour cell number for the parameter setting of

Figures 6.6c,f. These results show that for sufficiently small values of θE there are

no tumour cells left inside the system at the end of simulations, whereas for larger

values of θE a small number of tumour cells persist at the final time-step. Generally,

by increasing the probability of epimutations the dynamics of tumour cells change

from immune clearance to chronic dormancy. The range we consider, 0 ≤ θE ≤ 0.92,

is above the range of De Smet et al. (1996), where the largest value was 0.45 and

lowest 0.12. However values up to 2θ∗E are within the biological range and as from

our results we expect larger θE to exhibit the same dynamics as 2θ∗E. Therefore, the

results we observe would be viable in a biological setting.

6.3.6 Mutations have a weaker impact on the immune re-

sponse to tumour cells compared to epimutations

We now compare the impact of mutations and epimutations on the immune response

to tumour cells. Following what we have done in the subsection above, we consider
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the parameter setting used in the computational simulations shown either in Fig-

ures 6.4a,d or in Figures 6.6c,f but now we allow the antigen profiles of tumour cells

to change through mutations, i.e. we choose θM > 0. We consider eight specific val-

ues of θM defined as fractions or multiples of the average probability of epimutations

θ∗E, given in Table 6.1. In all cases, we carried out simulations for 8640 time-steps

and we report on tumour cell numbers obtained as the average over 5 simulations.

Figure 6.8a displays the time evolution of the tumour cell number for the parameter

setting of Figures 6.4a,d and shows that immune escape occurs for all values of θM

considered. On the other hand, Figure 6.8b displays the time evolution of the tu-

mour cell number for the parameter setting of Figures 6.6c,f and shows that immune

clearance occurs for all values of θM considered. Comparing these results with those

displayed in Figure 6.7a and Figure 6.7b, respectively, we reach the conclusion that

mutations have a weaker impact on the immune response to tumour cells compared

to epimutations.

6.4 Concluding remarks and discussion

Spatial interactions between cancer and immune cells, as well as the recognition

of tumour antigens by cells of the immune system, play a key role in the immune

response against solid tumours. The existing mathematical models generally focus

only on one of these key aspects. We have presented, in this chapter, a spatially

explicit stochastic individual-based model that incorporates the adaptive processes

driving tumour antigen recognition. Our model takes explicitly into account the

dynamical heterogeneity of tumour antigen expression, and effectively captures the

way in which this affects the immune response against the tumour.

Our computational simulation results show that the standard deviation of the
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Figure 6.8: Mutations have a weaker impact on the immune response
to tumour cells compared to epimutations. panels a and b display the time
evolution of the tumour cell number for increasing values of θM (cf. the legend below
the panels). For the numerical results reported in panel a we use the parameter
setting of the simulations whose results are displayed in Figures 6.4a,d and VM =
0.01, while for the numerical results reported in Panel b we use the parameter setting
of the simulations whose results are displayed in Figures 6.6c,f and VM = 0.0001.
Values are taken to be the average over five simulation runs.
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initial antigen expression profiles of cancer cells within the tumour, i.e. the para-

meter VT , has a crucial impact upon the outcome of the immune response. In the

situation of an almost homogeneous tumour, i.e. where all tumour cells have a

similar antigen profile, immune clearance occurs. Conversely, when the antigenic

composition between cancer cells is highly heterogeneous the tumour may be able

to escape the immune system response and continue growing. Interestingly, for mod-

erate levels of initial antigenic heterogeneity our results demonstrate that the fate

of the tumour is determined by the specificity of the cellular immune response.

The computational outcomes of our model indicate that the parameter con-

trolling the specificity of the antigen recognition process of the dendritic cells, i.e.

the parameter VD, ultimately dictates which receptors are produced by the cyto-

toxic T lymphocytes. A larger value of this parameter brings about a more diverse

receptor repertoire of the CTLs, and in turn results in a better immune response.

This suggests that it is advantageous for the T cell population to be multi-specific,

whereby several different antigen receptors are simultaneously expressed by the CTL

population. In this respect, the outcomes of our model recapitulate the conclusions

of experimental papers showing the success of a more diverse T cell repertoire in

response to cancer (Carreno et al., 2015; Gerdemann et al., 2011; Ott et al., 2017;

Sahin et al., 2017; Schumacher and Hacohen, 2016; Sharma and Allison, 2015).

Moreover, our computational results support the idea that varying the specificity

of the immune response can result in three distinct scenarios, from immune escape,

through to chronic dormancy to immune clearance of the tumour. The importance of

tumour dormancy controlled by the immune system, i.e. immunological dormancy,

has been highlighted by previous experimental and theoretical work (Kuznetsov

et al., 1994; Lorenzi et al., 2015; Matzavinos et al., 2004; Wu et al., 2018). In par-

ticular, immunological dormancy can explain situations where there is an extended
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period of time before the occurrence of tumour relapse (Aguirre-Ghiso, 2007; Gomis

and Gawrzak, 2017; Manjili, 2018; Teng et al., 2008; Wang and Lin, 2013; Yeh and

Ramaswamy, 2015). In this regard, our model suggests the existence of a possible

relationship between the specificity of the immune response and the emergence of

prolonged immunological dormancy. Furthermore, in recent years, new experimental

techniques have been developed which allow for the specificty of T cell receptors to

be altered (Smith et al., 2014). One particular approach is to use gene editing, in

vitro, to modify which antigen the T cell receptors will respond to (Albers et al.,

2019). These approaches would allow for greater control over which tumour antigens

the T cells target.

We have also explored the way in which altering the binding affinity of the

CTLs, i.e. the parameter β, to their corresponding tumour antigen may change

the immune response to the tumour. Our results indicate that a stronger binding

affinity leads to a more effective immune response, as the CTLs have a wider range

of tumour cells that they can interact with. Previously, Gerdemann et al. (2011)

found experimentally that a strong T cell binding affinity to tumour antigens played

a key role in the overall immune response to the disease. Integrating the outcomes

of our model and such experimental findings suggests that enhancing the binding

affinity of T cells, e.g. through the modification of the receptors that the T cells of

a patient can produce, could be a potential target of adoptive T cell therapy.

Furthermore, the results from our computational simulations suggest that changes

in the antigenic expression of tumour cells due to epimutations can be either bene-

ficial or detrimental to the immune response to a solid tumour. In more detail, we

have found that in some cases increasing the frequency of epimutations could trans-

form situations of immune escape into tumour dormancy and eventually tumour

removal. These findings are interesting in light of cancer therapy as they suggest
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that the efficacy of the immune response against solid tumours could be enhanced

by increasing the frequency of epimutations. In regards to this, the loss of DNA

methylation was the first epimutation to be identified in cancer cells (Feinberg and

Tycko, 2004) and several experimental and clinical works found that the expres-

sion of MAGE antigens could be increased through demethylation (Chinnasamy

et al., 2011; Gerdemann et al., 2011; Graff-Dubois et al., 2002; Wischnewski et al.,

2006). Taken together, the outcomes of our model suggest that by combining a

T cell therapy targeting multiple MAGE genes – e.g. using approaches similar to

those of Gerdemann et al. (2011) – and increasing the probability of epimutations

through demethylating agents, e.g. using methods similar to those of Chinnasamy

et al. (2011) and Wischnewski et al. (2006), a stronger immune response could be

induced. However, in other cases, we have observed that increasing the frequency of

epimutations can turn instances of tumour removal into scenarios whereby a small

number of tumour cells persisted over time. These contrasting results were also

suggested previously through experimental research, where epimutations could be

either beneficial or detrimental to tumour development (Chen and Mellman, 2017;

Yarchoan et al., 2017).

We have additionally studied the effect of changes in the antigenic expression

of tumour cells caused by mutations. In all parameter settings we have considered,

increasing the frequency of mutations did not change the resulting dynamics of

the tumour-immune response. This suggests that mutations have a weaker effect

on tumour-immune competition than antigenic variations caused by epimutations.

This finding is coherent with experimental observations indicating that epimuta-

tions generally occur more frequently than mutations in tumour development (Fein-

berg, 2004; Peltomäki, 2012). Hence our results demonstrate the importance of

understanding the underlying causes of antigenic variations in tumour cells when
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considering tumour-immune competition.

In a variety of contexts the benefit of relating stochastic individual-based models

to deterministic continuum models has been highlighted (Champagnat et al., 2006;

Chisholm et al., 2016, 2015; Deroulers et al., 2009; Painter and Hillen, 2015; Pen-

ington et al., 2011; Stevens, 2000). Combining such modelling approaches makes

it possible to integrate computational simulations with analytical results, thus en-

abling a more extensive exploration of the model parameter space. However, our

individual-based model described in this chapter (and those described in Chapter 4

and Chapter 5) includes various complex mechanisms. These mechanisms, such as

the Lévy walk mechanisms and antigenic expression modelling, will be challenging

to capture using continuum methods. With the aim of achieving a continuum form

of the discrete individual-based models presented, we initially consider a simpler

biological scenario. In the following chapter we present a stochastic individual-

based model describing motion and proliferation of cell populations and derive the

continuum version of this model to allow for mathematical analysis.
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Chapter 7

Deriving continuum models from

individual-based models

7.1 Overview

In general, individual-based (IB) models are useful for observing emergent dynam-

ics from these interactions they can be computationally time consuming and do not

allow for analysis to be completed on the model. Considering the continuum coun-

terpart of our stochastic discrete IB models would allow for mathematical analysis.

In the previous chapters we have developed IB models to describe tumour immune

competition including the antigen recognition process and evolution of the tumour

through changes in antigenic expression. In these models we also describe the change

in cell motion of cytotoxic T cells (CTLs) and dendritic cells (DCs) due to the pres-

ence of tumour antigen. Due to the complexity approaches used in the previous

chapters to model the antigen recognition process and the movement of immune

cells, the derivation of a continuum version of these models would be potentially

challenging. The derivation of a continuum description of Lévy walk mechanisms
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has been studied (Fedotov, 2016; Fedotov and Korabel, 2017; Gan et al., 2015; Go-

lovin et al., 2008; Hanert, 2012; Stage et al., 2016), however the methods used are

complex and may not be applicable to interacting populations. Therefore, to gain an

understanding of the process of deriving a continuum limit from individual-based

models, in this chapter, we consider a simpler biological situation to investigate

whether deriving continuum models from the IB schemes can still result in the same

numerical results and provide opportunities for the study of interesting mathemat-

ical properties. The work described in this chapter has been published in Chaplain

et al. (2019).

7.2 Motivation

For a population of cells whose growth rate depends on the local pressure (Brú et al.,

2003; Byrne and Preziosi, 2003; Drasdo and Hoehme, 2012; Ranft et al., 2010), a

prototypical example of such models was proposed by Byrne and Drasdo (2009),

that is,

∂tρ− µ div (ρ∇p) = G(p)ρ. (7.1)

This is a conservation equation for the cell density function ρ(t, x) ≥ 0 at position

x ∈ Rd, with d = 1, 2, 3 in the biologically relevant cases, and time t ∈ R+. In

this case, the function p stands for the cell pressure and the term G is the net

growth rate of the cell density. In analogy with the classical Darcy law for fluids,

the parameter µ > 0 is the cell mobility coefficient, which is defined as the quotient

between the permeability of the porous medium in which the cells are embedded

(e.g. the extracellular matrix) and the cellular viscosity.

The pressure-driven movement, which is modelled by the second term on the

left-hand side of equation (7.1), dictates that cells tend to move towards regions of
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lower local pressure where they feel less compressed. That is, we assume cells exert

pressure on each other through physical interactions, and therefore when there are

a large number of cells then the pressure will be greater through compression of

space. The definition of this term builds on the seminal paper of Greenspan (1976)

and subsequent work of Byrne and Chaplain (1997).

Pressure-limited growth, i.e. cell division and cell death, of the cell population

is determined by the term on the right-hand side of equation (7.1). From a math-

ematical perspective, the effect of this pressure-limited growth can be captured by

assuming that G(p) is a smooth function which satisfies,

∂G

∂p
< 0, G(P ) = 0. (7.2)

In the assumptions given by equation (7.2), the parameter P > 0 stands for the

pressure at which cell death exactly compensates cell division. The term homeostatic

pressure has been coined to indicate such a critical pressure (Basan et al., 2009).

In order to close equation (7.1) the pressure p must be defined. Several works

consider a barotropic relation p ≡ Π(ρ). Typically, the function Π(ρ) is identically

zero for ρ ≤ ρ∗ and is monotonically increasing for ρ > ρ∗, with 0 < ρ∗ < Π−1(P )

being the density below which cells do not exert any force upon one another (Tang

et al., 2014). For instance, it is common to assume Π is a smooth function of ρ that

satisfies the following assumptions

Π(0) = 0,
∂Π

∂ρ
> 0 for ρ > 0. (7.3)

In the attempt to reduce the biological problem to its essentials while ensuring

analytical tractability of the mathematical model, Perthame et al. (2014b) have
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proposed the following definition of Π(ρ), which satisfies the assumptions given by

equation (7.3):

Π(ρ) = Kγ ρ
γ with γ > 1 and Kγ > 0. (7.4)

In the definition given by equation (7.4), the parameter γ provides a measure of the

stiffness of the barotropic relation and Kγ is a scale factor. Interestingly, the limit

γ → ∞ corresponds to the case where cells behave like an incompressible fluid. In

this asymptotic regime, it has been proven that models of the form of equation (7.1)

converge to free-boundary problems of Hele-Shaw type (Kim and Požár, 2018; Kim

et al., 2016; Mellet et al., 2017; Perthame et al., 2014a).

The model given by equation (7.1) can be generalised to the case of multiple

cell populations with different biophysical properties, i.e. different mobilities and

growth rates, as follows

∂tρh − µh div (ρh∇p) = Gh(p)ρh, h = 1, . . . ,M. (7.5)

The system of coupled equations (7.5) contains notation, and relies on assumptions,

analogous to those underlying equation (7.1). In particular, the coefficient µh > 0

measures the mobility of cells in the hth population and the pressure p is given by a

barotropic relation p ≡ Π(ρ), where ρ stands for the total cell density, i.e.

ρ(t, x) =
M∑
h=1

ρh(t, x). (7.6)

The function Π satisfies the conditions given by equation (7.3) and the net growth

rate Gh(p) can be assumed to be a smooth function of the cell pressure that satisfies

the assumptions given by equation (7.2) for all h = 1, . . . ,M .

For example, building on the computational results presented by Drasdo and
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Hoehme (2012), Lorenzi et al. (2017) considered the following system of equations,

 ∂tρ1 − µ1 div (ρ1∇p) = G(p)ρ1,

∂tρ2 − µ2 div (ρ2∇p) = 0,
(7.7)

complemented with the barotropic relation given by equation (7.4). The system

of equations (7.7) describes the interaction dynamics between a population of pro-

liferating cells, i.e. population 1, and a population of nonproliferating cells, i.e.

population 2, with different mobilities.

As detailed in Section 3.3.1, the derivation of continuum models from stochastic

IB models can allow for a more robust description of biological phenomena. However,

with the exception of the qualitative comparisons of growth dynamics carried out

by Byrne and Drasdo (2009) and Fozard et al. (2010), and the study of long-time

behaviour by Motsch and Peurichard (2018) for the case of one single cell population,

little prior work has investigated the relation between single-cell-based models and

continuum models in the form of equation (7.1) and the system of equations (7.7).

In this chapter, we develop a simple stochastic individual-based model for the

dynamics of growing cell populations. Our model is based on a branching ran-

dom walk that takes into account the effects of pressure-driven cell movement and

pressure-dependent cell proliferation. We show that equation (7.1) and the system

of equations (7.5) can be formally derived from the branching random walk that

underlies our discrete model. Furthermore, we carry out a systematic quantitative

comparison between the individual-based model and its continuum counterparts,

both in the case of one single cell population and in the case of multiple cell popula-

tions with different biophysical properties. Specifically, we construct travelling-wave

solutions both for equation (7.1) and for the system of equations (7.7). Finally, we
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present numerical solutions that illustrate the results of the travelling-wave analysis,

and compare such numerical solutions with the results of computational simulations

of the individual-based model. Comparison of the models indicates that simple IB

models can lead to the emergence of complex spatial patterns of population growth

observed in continuum models.

7.3 An individual-based model for growing cell

populations

To allow for multiple biological situations to be considered we examine a multicel-

lular system made up of M cell populations, where we index each population with

h = 1, . . . ,M . Each cell within the system is modelled as an agent which occu-

pies a lattice position on the real line R. Although in this chapter we will focus

on a one dimensional situation, there is little additional difficulty extending these

ideas to higher dimensions. Each cell can undergo pressure-driven movement and

pressure-limited growth according to a set of simple rules that result in a discrete-

time branching random walk.

To set up our individual-based (IB) model we begin by discretising the time

variable t ∈ R+ as tk = kτ with k ∈ N0. We additionally discretise the space

variable x ∈ R as xi = iχ with i ∈ Z where 0 < τ, χ� 1. From these discretisations

we obtain a time-step of length τ and grid spaces of length χ .

At any chosen time-step k, we denote the number of cells in population h =

1, . . . ,M at the lattice position i to be denoted as nkhi ∈ N0, and from this can
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calculate the total cell density as,

ρh(tk, xi) = ρkhi = nkhi χ
−1 and ρ(tk, xi) = ρki =

M∑
h=1

ρh(tk, xi). (7.8)

Additionally, at each lattice site i and time-step k we calculate the cell pressure

p(tk, xi) = pki , which is defined through a barotropic relation pki ≡ Π(ρki ). We assume

that Π is a function of the total cell density that satisfies the conditions given by

equation (7.3). At each time-step, we allow every cell to undergo pressure-limited

growth and pressure-driven movement according to a set of algorithmic rules, which

are shown schematically in Figure 7.1. Note that, unlike the individual-based models

we have developed in the previous chapters, we allow multiple cells to inhabit each

grid position where the total number is limited by the pressure.

Pressure-limited population growth: At each time-step each cell may divide,

die or remain quiescent with probabilities which depend on the local pressure. If a

cell divides, two daughter cells are formed and replace the parent cell on the original

lattice position of the parent cell. Furthermore, any cells that undergo cell death are

removed from the system. In particular, we incorporate pressure-limited cell growth

into our model by assuming that at the kth time-step a focal cell of population h on

the lattice site i can divide with probability

τ Gh(p
k
i )+ where Gh(p

k
i )+ = max{0, Gh(p

k
i )} (7.9)

or die with probability

τ Gh(p
k
i )− where Gh(p

k
i )− = −min{0, Gh(p

k
i )} (7.10)
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or remain quiescent with probability

1−
(
τ Gh(p

k
i )+ + τ Gh(p

k
i )−
)

= 1− τ |Gh(p
k
i )|. (7.11)

Here, we let the rate Gh be a function of the local pressure that satisfies the as-

sumptions given by equation (7.2) for all values of h. Moreover, the length of each

time-step τ is chosen to be sufficiently small to ensure that the quantities given by

equations (7.9)-(7.11) are all between 0 and 1. The assumptions that we consider

on the growth function Gh, given by equation (7.2), are such that if pki > P then

each cell within the population h at the position i can only die or remain quiescent

at the kth time-step. This can be summarised by the conditions,

pki ≤ p for all (k, i) ∈ N0 × Z, with p = max
{

max
i∈Z

p0i , P
}
. (7.12)

Pressure-driven cell movement: We model pressure-driven cell movement, i.e.

the tendency of cells to move down pressure gradients, as a biased random walk. We

consider that the probabilities of movement depend on the difference between the

pressure at the site occupied by a cell and the pressure at the neighbouring sites. In

particular, for a cell of population h on the lattice site i at the time-step k, we define

the probability of moving to the lattice site i−1, i.e. the probability of moving left,

as

JLh (pki − pki−1) = νh
(pki − pki−1)+

2 p
, (7.13)

where (pki − pki−1)+ = max{0, (pki − pki−1)}. Similarly, we model the probability of

moving to the lattice site i+ 1, i.e. the probability of moving right, as

JRh (pki − pki+1) = νh
(pki − pki+1)+

2 p
, (7.14)
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Figure 7.1: Schematic representation of the simple algorithmic rules gov-
erning cell dynamics in our stochastic individual-based model. Pressure-
limited cell growth is modelled by letting the probabilities of a cell dividing, dying
and remaining quiescent be dependent on the local pressure (left panel). Pressure-
driven cell movement is modelled by letting the movement probabilities depend on
the difference between the pressure at the site occupied by a cell and the pressure at
the neighbouring sites (right panel).

where (pki −pki+1)+ = max{0, (pki −pki+1)}. Therefore we can calculate the probability

of remaining stationary on the lattice site i as

1− JLh (pki − pki−1)− JRh (pki − pki+1). (7.15)

In the above equations, the coefficient 0 < νh ≤ 1 is directly proportional to the

mobility of cells in population h and the parameter p is defined in equation (7.12).

We note that, the definitions given by equations (7.13)-(7.15) are such that the

cells will move down pressure gradients, i.e. they will favour positions with lower

pressure values. Moreover, the assumptions given by equation (7.12) guarantee that

the quantities given by equations (7.13)-(7.15) are all between 0 and 1.
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7.4 Formal derivation of continuum models

In this section, we show how continuum models of growing cell populations of the

form of equation (7.1) and of the system of equations (7.5) and (7.7) can be derived

as formal limits of the branching random walk that underlies our individual-based

model.

For a multicellular system whose dynamics are governed by the algorithmic rules

for cell movement and cell proliferation, that are presented in Section 7.3, the prin-

ciple of mass balance gives

ρk+1
hi = νh

(pki−1 − pki )+
2 p

[
2τGh(p

k
i−1)+ +

(
1− τ |Gh(p

k
i−1)|

)]
ρkh i−1

+νh
(pki+1 − pki )+

2 p

[
2τGh(p

k
i+1)+ +

(
1− τ |Gh(p

k
i+1)|

)]
ρkh i+1

+

[
1− νh

(pki − pki−1)+
2 p

− νh
(pki − pki+1)+

2 p

]
×
[
2τGh(p

k
i )+ +

(
1− τ |Gh(p

k
i )|
) ]
ρkhi,

and after a little algebra we find

ρk+1
hi = νh

(pki−1 − pki )+
2 p

(
τGh(p

k
i−1) + 1

)
ρkh i−1

+νh
(pki+1 − pki )+

2 p

(
τGh(p

k
i+1) + 1

)
ρkh i+1

+

[
1− νh

(pki − pki−1)+
2 p

− νh
(pki − pki+1)+

2 p

] (
τGh(p

k
i ) + 1

)
ρkhi.
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The above equation simplifies to

ρk+1
hi − ρ

k
hi = τGh(p

k
i )ρ

k
hi

+
νh
2 p

[
ρkh i−1(p

k
i−1 − pki )+ + ρkh i+1(p

k
i+1 − pki )+

]
− νh

2 p

[
ρkhi(p

k
i − pki−1)+ + ρkhi(p

k
i − pki+1)+

]
+
νhτ

2 p

[
ρkh i−1Gh(p

k
i−1)(p

k
i−1 − pki )+ + ρkh i+1Gh(p

k
i+1)(p

k
i+1 − pki )+

]
−νhτ

2 p

[
ρkhiGh(p

k
i )(p

k
i − pki−1)+ + ρkhiGh(p

k
i )(p

k
i − pki+1)+

]
. (7.16)

Using the fact that the following relations hold for τ and χ sufficiently small

tk ≈ t, tk+1 ≈ t+ τ, xi ≈ x, xi±1 ≈ x± χ,

ρkhi ≈ ρh(t, x), ρk+1
hi ≈ ρh(t+ τ, x), ρkh i±1 ≈ ρh(t, x± χ),

pki ≈ p(t, x), pki±1 ≈ p(t, x± χ),
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we rewrite equation (7.16) in the following approximate form:

ρh(t+ τ, x)− ρh(t, x) ≈ τGh(p)ρh(t, x)

+
νh
2 p

[ρh(t, x− χ)(p(t, x− χ)− p(t, x))+]

+
νh
2 p

[ρh(t, x+ χ)(p(t, x+ χ)− p(t, x))+]

− νh
2 p

[ρh(t, x)(p(t, x)− p(t, x− χ))+]

− νh
2 p

[ρh(t, x)(p(t, x)− p(t, x+ χ))+]

+
νhτ

2 p
[ρh(t, x− χ)Gh(p(t, x− χ))(p(t, x− χ)− p(t, x))+]

+
νhτ

2 p
[ρh(t, x+ χ)Gh(p(t, x+ χ))(p(t, x+ χ)− p(t, x))+]

−νhτ
2 p

[ρh(t, x)Gh(p(t, x))(p(t, x)− p(t, x− χ))+]

−νhτ
2 p

[ρh(t, x)Gh(p(t, x))(p(t, x)− p(t, x+ χ))+] . (7.17)

Throughout the remainder of this section we will assume

ρh ∈ C2(R+ × R), h = 1, . . . ,M. (7.18)

Since the function ρh(t, x) is twice continuously differentiable for all values of h, we

can approximate the terms ρh(t+τ, x), ρh(t, x−χ) and ρh(t, x+χ) in equation (7.17)

by their second order Taylor expansions about the point (t, x). Under the assump-

tion given by equation (7.18), since p ≡ Π(ρ) with Π being a smooth function of ρ,

the pressure p(t, x) is twice continuously differentiable w.r.t the variable x as well.

Therefore, we can also approximate the terms p(t, x − χ) and p(t, x + χ) in equa-

tion (7.17) by their second order Taylor expansions about the point (t, x). After a
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little algebra, we find that

τ ∂tρh(t, x) +
τ 2

2
∂2ttρh(t, x) ≈ τGh(p(t, x))ρh(t, x) +

νhχ
2

2 p
ρh(t, x)∂2xxp(t, x)

+
νhχ

2

2 p

[
(∂xp(t, x))+ − (−∂xp(t, x))+

]
∂xρh(t, x)

+
νhτ

2 p
ρh(t, x)Gh(p(t, x− χ)) (−χ∂xp(t, x))+

+
νhτ

2 p
ρh(t, x)Gh(p(t, x+ χ)) (χ∂xp(t, x))+

−νhτ
2 p

ρh(t, x)Gh(p(t, x)) (χ∂xp(t, x))+

−νhτ
2 p

ρh(t, x)Gh(p(t, x)) (−χ∂xp(t, x))+ ,

which implies

τ ∂tρh(t, x) +
τ 2

2
∂2ttρh(t, x) ≈ τGh(p(t, x))ρh(t, x)

+
νhχ

2

2 p

(
ρh(t, x)∂2xxp(t, x) + ∂xρh(t, x)∂xp(t, x)

)
+
νhτχ

2 p
F (t, x), (7.19)

with

F (t, x) =
[
Gh(p(t, x− χ)) (−∂xp(t, x))+ +Gh(p(t, x+ χ)) (∂xp(t, x))+

]
ρh(t, x)

−
[
(∂xp(t, x))+ + (−∂xp(t, x))+

]
Gh(p(t, x))ρh(t, x).

Dividing both sides of the resulting equation by τ we obtain

∂tρh(t, x) +
τ

2
∂2ttρh(t, x) ≈ Gh(p(t, x))ρh(t, x)

+
νhχ

2

2 pτ

(
ρh(t, x)∂2xxp(t, x) + ∂xρh(t, x)∂xp(t, x)

)
+
νhχ

2 p
F (t, x). (7.20)
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Letting both τ → 0 and χ→ 0 in equation (7.20) in such a way that

νhχ
2

2 p τ
→ µh as τ → 0 and χ→ 0, for h = 1, . . . ,M (7.21)

we formally obtain the following system of coupled conservation equations

∂tρh = Gh(p)ρh + µ
(
ρh ∂

2
xxph + ∂xρh ∂xph

)
, h = 1, . . . ,M,

which can be rewritten as the system of equations (7.5), that is,

∂tρh − µh ∂x (ρh ∂xp) = Gh(p)ρh, h = 1, . . . ,M. (7.22)

Remark 1. We note that condition (7.21) is a natural counterpart of the usual

parabolic scaling of Brownian motion. Hence, our formal derivation does not im-

pose any additional assumptions than those commonly employed for the asymptotic

investigation of random walks.

In the case of one single cell population, letting M = 1 and dropping the index

h we formally obtain equation (7.1). Moreover, we formally obtain the system of

equations (7.7) by choosing M = 2, labelling the two populations by h = 1 and

h = 2, and setting G1 ≡ G and G2 ≡ 0.

7.5 Comparison between individual-based and con-

tinuum models

In this section, we aim to quantitatively compare the outcomes of the IB model and

the derived continuum models, for both a single population case and the case where
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we have two cell populations. Firstly, we look for travelling wave solutions of the

continuum models given by equation (7.1) and the system of equations (7.7) - see

Section 7.5.1. Following this, we construct numerical solutions of the model equa-

tions, which support our findings from the travelling-wave analysis, and compare

these results to numerical simulations of our IB model - see Section 7.5.2.

7.5.1 Travelling-wave analysis of the continuum models

We first consider the continuum model given by equation (7.1) and we look for

one-dimensional travelling-wave solutions of the form

ρ(t, x) = ρ(z) with z = x− ct and c > 0,

that satisfy the following asymptotic conditions

ρ(z) −−−−→
z→−∞

Π−1(P ) and ρ(z) −−−→
z→∞

0. (7.23)

Therefore, we study the existence of pairs (ρ, c) that satisfy the problem defined by

the differential equation

−c ρ′ − µ (ρ p′)
′
= G(p) ρ, (7.24)

complemented with the asymptotic conditions given by equation (7.23). Our main

results are summarised by the following theorem.

Theorem 1. Under the assumptions given by equations (7.2) and (7.3), there exists

c > 0 such that the travelling-wave problem defined by equation (7.24) complemented

with the asymptotic conditions given by equation (7.23) admits a nonnegative and

nonincreasing solution ρ.
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Proof. We divide the proof of Theorem 1 into two steps. First we prove that for

c > 0 fixed equation (7.24) complemented with the asymptotic conditions given by

equation (7.23) admits a nonnegative and nonincreasing solution ρ (Step 1). Then

we show that there exists a unique value of the wave speed c that satisfies the

travelling-wave problem (Step 2).

Step 1. Multiplying both sides of equation (7.24) by
∂p

∂ρ
we obtain the following

boundary-value problem for p:

−p′ (c+ µ p′)− µ p′′ ρ ∂p
∂ρ

= G (p) ρ
∂p

∂ρ
, (7.25)

p(z) −−−−→
z→−∞

P and p(z) −−−→
z→∞

0. (7.26)

Let z∗ be a critical point of p in R. Using the differential equation (7.25) we see

that

p′′(z∗) = − 1

µ
G (p(z∗))

and, under assumptions (7.2) and conditions (7.26), using the strong maximum

principle we conclude that p < P in R and that p cannot have a local minimum in

R, i.e.

p′(z) < 0 for all z ∈ R. (7.27)

Hence the solution p of the differential equation (7.25) subject to conditions (7.26)

is a nonnegative and nonincreasing function that satisfies

0 < p(z) < P for all z ∈ R. (7.28)

Since p ≡ Π(ρ) and Π is a smooth monotonically increasing function of ρ, we can

then conclude that the cell density ρ is a nonnegative and nonincreasing function as
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well.

Step 2. We prove that p is a monotonically decreasing function of the parameter

c. This guarantees that given the cell density ρ the wave speed c can be uniquely

identified through a monotonicity argument. Differentiating equation (7.24) w.r.t.

z yields

−c (ρ′)
′ − µ

[
(p′)

′′
ρ+ p′′ ρ′ + (p′)′ρ′ + p′(ρ′)′

]
=
∂G

∂p
p′ ρ+G (p) ρ′, (7.29)

while differentiating equation (7.24) w.r.t. c gives

−c
(
∂ρ

∂c

)′
− µ

[(
∂p

∂c

)′′
ρ+ p′′

∂ρ

∂c
+

(
∂p

∂c

)′
ρ′ + p′

(
∂ρ

∂c

)′]
=
∂G

∂p

∂p

∂c
ρ+G (p)

∂ρ

∂c
+ ρ′.

(7.30)

Using the fact that p′ =
∂p

∂ρ
ρ′, we rewrite equations (7.50) and (7.51), respectively,

as

−c (ρ′)
′ − µ

[
(p′)

′′
ρ+ p′′ρ′ + (p′)′ρ′ +

∂p

∂ρ
ρ′ (ρ′)′

]
=
∂G

∂p
p′ ρ+G (p) ρ′ (7.31)

and

−c
(
∂ρ

∂c

)′
− µ

[(
∂p

∂c

)′′
ρ+ p′′

∂ρ

∂c
+

(
∂p

∂c

)′
ρ′ +

∂p

∂ρ
ρ′
(
∂ρ

∂c

)′]
=
∂G

∂p

∂p

∂c
ρ+G (p)

∂ρ

∂c
+ ρ′.

(7.32)

Since
∂p

∂ρ
> 0, we have

ρ′ = p′
(
∂p

∂ρ

)−1
and

∂ρ

∂c
=
∂p

∂c

(
∂p

∂ρ

)−1
.
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Hence, introducing the following definitions

k0 =

(
∂p

∂ρ

)−1
, k1 = ρ, k2 = p′′

(
∂p

∂ρ

)−1
, k3 = ρ′,

k4 = ρ′
∂p

∂ρ
, k5 =

∂G

∂p
ρ+G (p)

(
∂p

∂ρ

)−1
,

along with the notations f = p′ and g =
∂p

∂c
, we rewrite equations (7.52) and (7.53),

respectively, as

−c (k0 f)′ − µ
[
k1 f

′′ + k2 f + k3 f
′ + k4 (k0 f)′

]
= k5 f, (7.33)

and

−c (k0 g)′ − µ
[
k1 g

′′ + k2 g + k3 g
′ + k4 (k0 g)′

]
= k5 g + ρ′. (7.34)

Since

ρ′(z) −−−−→
z→−∞

0, p(z) −−−−→
z→−∞

P, G(p(z)) −−−−→
z→−∞

0,

Equation (7.24) gives

p′′(z) −−−−→
z→−∞

0.

Therefore, we impose the following asymptotic conditions

f(z) −−−−→
z→−∞

0, f ′(z) −−−−→
z→−∞

0. (7.35)

Moreover, we have that

g(z) −−−−→
z→−∞

0, g′(z) −−−−→
z→−∞

0. (7.36)

Noting that ρ′ < 0, we conclude that if g solves the problem defined by equa-
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tion (7.56) complemented with the asymptotic conditions given by equation (7.57)

and f solves the problem defined by equation (7.54) complemented with the asymp-

totic conditions given by equation (7.55), then g < f . This result together with the

fact that f = p′ < 0 demonstrates that g =
∂p

∂c
< 0, which concludes the proof of

Theorem 1.

We now turn to the travelling-wave analysis of the system of equations (7.7). We

consider one-dimensional travelling-wave solutions of the form

ρ1(t, x) = ρ1(z) and ρ2(t, x) = ρ2(z), with z = x− ct and c > 0,

that satisfy the following conditions

ρ1(z)

 > 0, for z < 0,

= 0, for z ≥ 0,
ρ2(z)


= 0, for z < 0,

> 0, for z ∈ [0, `),

= 0, for z ≥ `,

(7.37)

for some ` > 0, along with the asymptotic condition

ρ1(z) −−−−→
z→−∞

Π−1(P ). (7.38)

Hence, we study the existence of triples (ρ1, ρ2, c) along with ` > 0 that satisfy the

problem defined by the following system of differential equations

 −c ρ
′
1 − µ1 (ρ1 p

′)′ = G(p)ρ1,

−c ρ′2 − µ2 (ρ2 p
′)′ = 0,

(7.39)

complemented with the conditions given by equations (7.37) and (7.38). Notice that
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the principle of mass conservation gives

∫ `

0

ρ2(z) dz = N2, (7.40)

for some N2 > 0 that represents the number of cells in population 2. Our main

results are summarised by the following theorem.

Theorem 2. Under the assumptions given by equations (7.2) and (7.3), for any

N2 > 0 given, there exists c > 0 and ` > 0 such that the system of equations (7.39)

complemented with the conditions given by equations (7.37) and (7.38) admits a

component-wise nonnegative solution (ρ1, ρ2) with ρ1 nonincreasing, and ρ2 nonin-

creasing and satisfying the condition given by equation (7.40). Moreover, the pres-

sure p has a “kink” at z = 0 with

sgn(p′(0+)− p′(0−)) = sgn(µ2 − µ1). (7.41)

Proof. Building upon the method of proof presented by Lorenzi et al. (2017) for

the case of the barotropic relation given by equation (7.4), we prove Theorem 2 in

five steps. We fix the parameter c > 0 and first prove that, for N2 > 0 given, the

problem under study admits a component-wise nonnegative solution (ρ1, ρ2) with ρ2

nonincreasing and with the value of ` being determined by the condition given by

equation (7.40) (Step 1), and with ρ1 nonincreasing (Step 2). Then we prove that

the pressure p is continuous on (−∞, `) (Step 3) and the jump condition given by

equation (7.41) holds (Step 4). Finally, we show that there exists a unique value of

the wave speed c that satisfies the travelling-wave problem (Step 5).

Step 1. Integrating the second equation in equation (7.39) between a generic point

z ∈ [0, `] and ∞, and using the fact that both p′(z)→ 0 and ρ2(z)→ 0 as z →∞,
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we find

p′(z) = − c

µ2

< 0 for all z ∈ [0, `]. (7.42)

Integrating equation (7.42) between a generic point z ∈ [0, `) and `, and using the

fact that p(`) = 0, gives

p(z) =
c

µ2

(`− z) for z ∈ [0, `], (7.43)

which implies that

p(0) =
c `

µ2

. (7.44)

Since ρ1 ≡ 0 on [0, `], under the assumptions given by equation (7.3), we have

that p is a monotonically decreasing function of ρ2 in [0, `]. Hence, the results

given by equations (7.42) and (7.43) allow us to conclude that ρ2 is decreasing in

(0, `). Moreover, for N2 > 0 given, since the value of ρ2(z) is uniquely determined

for all z ∈ [0, `], the value of ` is uniquely fixed by the integral identity given by

equation (7.40).

Step 2. Since ρ2 ≡ 0 on (−∞, 0) and, therefore, ρ1 ≡ ρ on (−∞, 0), multiplying both

sides of the differential equation (7.39)1 by
dp

dρ
we obtain the following boundary-

value problem for p

−p′ (c+ µ1 p
′)− µ1 p

′′ ρ
dp

dρ
= G (p) ρ

dp

dρ
, (7.45)

p(z) −−−−→
z→−∞

P and p(0) =
c `

µ2

. (7.46)

Hence, using a method similar to that used in Step 1 of the proof of Theorem 1 one

can prove that ρ1 is decreasing in (−∞, 0).

Step 3. The results proved in Step 1 and Step 2 guarantee that p is nonincreasing
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and continuous in (−∞, 0) and in (0, `). To show that p is continuous in z = 0, we

add the two equations in equations (7.39) to obtain

−c (ρ1 + ρ2)
′ − [(µ1ρ1 + µ2ρ2) p

′]
′
= G(p)ρ1. (7.47)

Multiplying both sides of the above equation by p and using the fact that

p [(µ1ρ1 + µ2ρ2) p
′]
′
= [p (µ1ρ1 + µ2ρ2) p

′]
′ − (µ1ρ1 + µ2ρ2) (p′)2,

we achieve

(µ1ρ1 + µ2ρ2) (p′)2 = G(p)ρ1 + c p (ρ1 + ρ2)
′ + [p (µ1ρ1 + µ2ρ2) p

′]
′
.

Integrating both sides of the latter equation between a generic point z∗ < 0 and

`, and estimating the right-hand side from above by using the fact that −∞ <

(ρ1 + ρ2)
′ (z) ≤ 0 for all z ∈ [z∗, `), p(`) = 0 and ρ2(z

∗) = 0, yields

∫ `

z∗
(µ1ρ1 + µ2ρ2) (p′)2 dz ≤

∫ `

z∗
G(p)ρ1 dz − µ1 ρ1(z

∗) p(z∗) p′(z∗) <∞.

Using the above integral inequality we find that p′ ∈ L2
loc(R). This result together

with the fact that p ∈ L∞(R) allow us to conclude that p is continuous in z = 0.

Since p ≡ Π(ρ) and Π is a smooth monotonically increasing function of ρ, we have

that the total cell density ρ is continuous in z = 0 as well.

Step 4. Integrating equation (7.47) between a generic point z < ` and ` and using

the fact that ρ1(`) = ρ2(`) = 0 yields

c (ρ1(z) + ρ2(z)) + (µ1ρ1(z) + µ2ρ2(z)) p′(z) =

∫ `

z

G(p)ρ1 dz′.
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Letting z → 0− and using the fact that ρ1(0
−) = ρ(0−) and ρ1 ≡ 0 on [0, `] we find

that

c ρ(0−) + µ1 ρ(0−) p′(0−) = 0. (7.48)

Similarly, letting z → 0+ and using the fact that ρ2(0
+) = ρ(0+) and ρ1 ≡ 0 on [0, `]

gives

c ρ(0+) + µ2 ρ(0+) p′(0+) = 0. (7.49)

Since ρ(z) is continuous in z = 0, combining equations (7.48) and (7.49) we obtain

µ1 p
′(0−) = µ2 p

′(0+) =⇒ p′(0−) =
µ2

µ1

p′(0+).

This result along with the expression (7.42) for p′(0+) gives

p′(0−) = − c

µ1

and p′(0+)− p′(0−) =
c

µ1 µ2

(µ2 − µ1) .

From the above equation, noting that p′(0+) < 0, we deduce the condition given by

equation (7.41).

Step 5. We prove that p is a monotonically decreasing function of the parameter

c on (−∞, 0). This ensures that given the cell density ρ1 the wave speed c can

be uniquely identified through a monotonicity argument. Recalling that ρ2 ≡ 0 on

(−∞, 0) and, therefore, ρ1 ≡ ρ on (−∞, 0), differentiating equation (7.39)1 with

respect to z we find

−c (ρ′)
′ − µ1

[
(p′)

′′
ρ+ p′′ ρ′ + (p′)′ρ′ + p′(ρ′)′

]
=

dG

dp
p′ ρ+G (p) ρ′ (7.50)

with

p′(z) −−−−→
z→−∞

0 and p′(0) = − c

µ1

.
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On the other hand, differentiating equation (7.39)1 with respect to c gives

−c
(
∂ρ

∂c

)′
− µ1

[(
∂p

∂c

)′′
ρ+ p′′

∂ρ

∂c
+

(
∂p

∂c

)′
ρ′ + p′

(
∂ρ

∂c

)′]
=

dG

dp

∂p

∂c
ρ+G (p)

∂ρ

∂c
+ ρ′

(7.51)

with

∂p

∂c
(z) −−−−→

z→−∞
0 and

(
∂p

∂c

)′
(0) = − 1

µ1

.

Using the fact that p′ =
dp

dρ
ρ′, we rewrite the differential equations (7.50) and (7.51),

respectively, as

−c (ρ′)
′ − µ

[
(p′)

′′
ρ+ p′′ρ′ + (p′)′ρ′ +

dp

dρ
ρ′ (ρ′)′

]
=

dG

dp
p′ ρ+G (p) ρ′ (7.52)

and

−c
(
∂ρ

∂c

)′
− µ

[(
∂p

∂c

)′′
ρ+ p′′

∂ρ

∂c
+

(
∂p

∂c

)′
ρ′ +

∂p

∂ρ
ρ′
(
∂ρ

∂c

)′]
=

dG

dp

∂p

∂c
ρ+G (p)

∂ρ

∂c
+ ρ′.

(7.53)

Since
dp

dρ
> 0, we have

ρ′ = p′
(

dp

dρ

)−1
and

∂ρ

∂c
=
∂p

∂c

(
dp

dρ

)−1
.

Hence, introducing the notation f = p′, g =
∂p

∂c
and

k0 =

(
dp

dρ

)−1
, k1 = ρ, k2 = p′′

(
dp

dρ

)−1
, k3 = ρ′,

k4 = ρ′
dp

dρ
, k5 =

dG

dp
ρ+G (p)

(
dp

dρ

)−1
,

136



we rewrite the differential equations (7.52) and (7.53), respectively, as

−c (k0 f)′ − µ
[
k1 f

′′ + k2 f + k3 f
′ + k4 (k0 f)′

]
= k5 f (7.54)

with

f(z) −−−−→
z→−∞

0, f(0) = − c

µ1

(7.55)

and

−c (k0 g)′ − µ
[
k1 g

′′ + k2 g + k3 g
′ + k4 (k0 g)′

]
= k5 g + ρ′ (7.56)

with

g(z) −−−−→
z→−∞

0, g′(0) = − 1

µ1

. (7.57)

Since f(z) < 0 for all z ∈ (−∞, 0) and f ′(0) < 0, noting that both f(z) → 0 and

g(z) → 0 as z → −∞ and the right-hand side of the differential equation (7.56)

contains the additional term ρ′ < 0 compared to the right-hand side of the differ-

ential equation (7.54), we deduce that g =
∂p

∂c
< 0, which concludes the proof of

Theorem 2.

Remark 2. Based on the jump condition (7.41), we expect the travelling-wave solu-

tion of Theorem 2 to be unstable if µ1 > µ2. In fact, a small perturbation of ρ1(z)

that is greater than zero on [0, `) will propagate with approximate speed −µ1 p
′(0+).

Noting that when µ1 > µ2 the jump condition (7.41) gives −µ1 p
′(0+) > −µ1 p

′(0−),

we deduce that such a perturbation will separate from the rest of the travelling wave

ρ1(z).
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7.5.2 Quantitative comparison between individual-based and

continuum models

One cell population

We consider the computational simulation results of our individual-based model in

the case of one cell population and compare them to numerical solutions of equa-

tion (7.1). To ensure consistency, we let M = 1 and drop the index h from the

functions and from the parameters of the individual-based model. A complete de-

scription of the parameter choices and setup of numerical simulations is given in

Appendix B.1.1 and Appendix B.2.1. In particular, we define the growth rate G as,

G(p) =
1

2π
arctan(β (P − p)) with β > 0, (7.58)

so that the assumptions given by equation (7.2) are satisfied.

Travelling fronts: Figure 7.2 demonstrates that there is an excellent quantit-

ative match between the numerical solutions of equation (7.1) (dashed lines) and

the computational simulation results of our individual-based model (solid lines). In

agreement with the results established by Theorem 1, the cell density is nonincreas-

ing and connects the homogeneous steady state ρ ≡ Π−1(P ) to the homogeneous

steady state ρ ≡ 0. Accordingly, the cell pressure is nonincreasing and connects the

homogeneous steady state p ≡ P to the homogeneous steady state p ≡ 0.

Higher values of β lead to higher speed of invasion: Figure 7.3 indicates

that, as one would expect, increasing the value of the parameter β in the definition of

the rate G(p) given by equation (7.58) accelerates the growth of the cell population,

thus leading to a faster speed of invasion.
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Figure 7.2: Travelling fronts. Comparison between the computational simula-
tion results of our individual-based model in the case of one population (solid lines)
and the numerical solutions of the continuum model given by equation (7.1) (dashed
lines). The left and right panel display, respectively, the pressure and the cell density
at three successive time instants, i.e. t = 10 (left curves), t = 15 (middle curves)
and t = 20 (right curves). Values of the pressure and the cell density are in units of
104 and were taken as an average from three runs of the simulations. Simulations
were carried out using a definition for the pressure that satisfies the assumptions
given by equation (7.3). The definition of G(p) is given by equation (7.58), with
the homeostatic pressure P = 120 × 104 and the coefficient β = 4 × 10−6. A com-
plete description of the numerical simulation setup is given in Appendix B.1.1 and
Appendix B.2.1.
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Figure 7.3: Higher values of β lead to higher speed of invasion Com-
parison between the computational simulation results of our individual-based model
in the case of one cell population (solid lines) and the numerical solutions of the
continuum model given by equation (7.1) (dashed lines). The left and right panel
display, respectively, the pressure and the cell density at the time instant t = 15 for
increasing values of the parameter β in the definition of the rate G(p) given by equa-
tion (7.58), i.e. β = 1.5× 10−6 (light grey and yellow lines), β = 4× 10−6 (middle
grey and red lines) and β = 4 × 10−5 (dark grey and brown lines). Values of the
pressure and the cell density are in units of 104 and were taken as an average from
three runs of the simulations. Simulations were carried out with pressure defined in
a way that satisfies the assumptions given by equation (7.3) with the homeostatic
pressure P = 120 × 104. A complete description of the numerical simulation setup
is given in Appendix B.1.1 and Appendix B.2.1.
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Differences between the outcomes of individual-based and continuum

models in the presence of sharp transitions from high to low cell dens-

ities: The results presented so far indicate that there is an excellent agreement

between the computational simulation results of our individual-based model and

the solutions of the corresponding continuum models. However, due to extinction

phenomena related to stochasticity effects that occur in the individual-based model

for low cell densities, we expect differences between the outcomes of the two mod-

elling approaches to emerge in the presence of sharp transitions from high to low

total cell densities. In order to verify this hypothesis, exploiting the asymptotic

results of Perthame et al. (2014b), who have shown that under the barotropic rela-

tion given by equation (7.4) higher values of the parameter γ lead equation (7.1) to

develop sharper invasion fronts, we compare the computational simulation results

of our individual-based model in the case of one cell population with the numerical

solutions of equation (7.1) under the barotropic relation given by equation (7.4) for

increasing values of γ. A complete description of the setup of numerical simulations

is given in Appendix B.1.1 and Appendix B.2.1. The results obtained are summar-

ised by Figure 7.4 which shows that larger values of the parameter γ can bring about

sharper invasion fronts, which come along with more abrupt variations in the cell

density, thus leading to more evident differences between the computational simu-

lation results of the stochastic individual-based model and the numerical solutions

of equation (7.1) at the front of invasion. Ultimately, this causes the invasion front

of the individual-based model to travel at the same speed but behind the front of

the corresponding continuum model. This is further clarified in Figure B.1 in Ap-

pendix B, where we compare the PDE and IB models at four consecutive time-steps

for the simulations with γ = 2 whose results are shown in Figure 7.4.
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Figure 7.4: Differences in the outcomes of individual-based and con-
tinuum models in the presence of sharp transitions from high to low
cell densities. Comparison between the computational simulation results of our
individual-based model in the case of one cell population (solid lines) and the nu-
merical solutions of the continuum model given by equation (7.1) (dashed lines). The
left and right panel display, respectively, the pressure and the cell density at the time
instant t = 15 for increasing values of the parameter γ in the barotropic relation
given by equation (7.4), i.e. γ = 1.2 (light grey and yellow lines), γ = 1.5 (middle
grey and red lines) and γ = 2 (dark grey and brown lines). Values of the pressure
and the cell density are in units of 105. Magnifications of the curves near the inva-
sion fronts are shown in the insets. Simulations were carried out using the definition
of G(p) given by equation (7.58), with the homeostatic pressure P = 120× 105 and
the coefficient β = 4 × 10−5. A complete description of the numerical simulation
setup is given in Appendix B.1.1 and Appendix B.2.1.
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Two cell populations

We now turn to the case of two cell populations and we compare computational

simulation results of our individual-based model with numerical solutions of the

system of equations (7.7). For consistency, we choose M = 2, and we set G1 ≡ G

and G2 ≡ 0 in the individual-based model. Full details of the setup of numerical

simulations can be found in Appendix B.1.2 and Appendix B.2.2 (for the results

reported in Figures 7.5 and 7.6), and Appendix B.1.3 and Appendix B.2.3 (for the

results reported in Figures 7.7 and 7.8). In particular, we use the definition of the

rate G(p) given by equation (7.58) with the homeostatic pressure P = 10× 104 and

we let the population of nonproliferating cells, i.e. population 2, be ahead of the

population of proliferating cells, i.e. population 1, at the initial time t = 0.

Figures 7.5 and 7.6 demonstrate that there is an excellent quantitative match

between the numerical solutions of the system of equations (7.7) (dashed lines) and

the computational simulation results of our individual-based model (solid lines),

both in the case where µ1 ≤ µ2 and when µ1 > µ2. In both cases, the number of

nonproliferating cells, i.e. the integral of the cell density ρ2, is conserved. Over

time, the pressure p converges to the homeostatic pressure P while the cell density

ρ1 converges to the corresponding value Π−1(P ).

Travelling fronts and spatial segregation between the two cell populations:

If µ1 ≤ µ2, i.e. if ν1 ≤ ν2, in agreement with the results established by Theorem 2,

spatial segregation occurs and the two cell populations remain separated by a sharp

interface - see Figure 7.5. The population of nonproliferating cells stays ahead of the

population of proliferating cells and, over the regions where they are greater than

zero, the cell densities are nonincreasing. The pressure itself is continuous across the

interface between the two cell populations, whereas its first derivative jumps from a
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Figure 7.5: Travelling fronts and spatial segregation between the two
cell populations. Comparison between the computational simulation results of our
individual-based model in the case of two cell populations (solid lines) and the numer-
ical solutions of the continuum model given by the system of equations (7.7) (dashed
lines), for µ1 ≤ µ2, i.e. ν1 ≤ ν2. The left and right panel display, respectively,
the pressure and the cell densities of population 1 (red lines) and population 2 (blue
lines) at three successive time instants, i.e. t = 300 (left curves), t = 450 (middle
curves) and t = 600 (right curves). Values of the pressure and the cell densities
are in units of 104. Simulations were carried out using a barotropic relation that
satisfies the assumptions given by equation (7.3) and the definition of G(p) given
by equation (7.58), with the homeostatic pressure P = 10 × 104 and the coefficient
β = 4× 10−5. A complete description of the numerical simulation setup is given in
Appendix B.1.2 and Appendix B.2.2.

lower negative value to a larger negative value, i.e. the sign of the jump coincides

with sgn(µ2 − µ1) - see the jump condition given by equation (7.41).

Mixing between the two cell populations: If µ1 > µ2, i.e. if ν1 > ν2, the cell

population 2 is left behind by the cell population 1, which ultimately propagates

alone - see Figure 7.6. This is consistent with the heuristic argument provided

in Remark 2, which suggests that the travelling-wave solutions of Theorem 2 are

unstable in the case where µ1 > µ2.
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Figure 7.6: Mixing between the two cell populations. Comparison between
the computational simulation results of our individual-based model in the case of two
cell populations (solid lines) and the numerical solutions of the continuum model
given by the system of equations (7.7) (dashed lines), for µ1 > µ2, i.e. ν1 > ν2. The
left and right panel display, respectively, the pressure and the cell densities of pop-
ulation 1 (red lines) and population 2 (blue lines) at three successive time instants,
i.e. t = 100 (left curves), t = 150 (middle curves) and t = 190 (right curves).
Values of the pressure and the cell densities are in units of 104. Simulations were
carried out using a barotropic relation that satisfies the assumptions given by equa-
tion (7.3) and the definition of G(p) given by equation (7.58), with the homeostatic
pressure P = 10 × 104 and the coefficient β = 4 × 10−5. A complete description of
the numerical simulation setup is given in Appendix B.1.2 and Appendix B.2.2.
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Numerical simulations for more realistic barotropic relations for the defin-

ition of the pressure: In this chapter, so far we have focused on barotropic

relations defining the local pressure, which satisfy the assumptions given by equa-

tion (7.3). However, as mentioned earlier in Section 7.1, more realistic barotropic

relations satisfy the following conditions

Π(ρ) = 0 for ρ ∈ [0, ρ∗) and
∂Π

∂ρ
> 0 for ρ > ρ∗, (7.59)

with 0 < ρ∗ < Π−1(P ). Figures 7.7 and 7.8 display the computational simulation

results of our stochastic individual-based model and the numerical solutions of the

system of equations (7.7) obtained under a barotropic relation that satisfies the

more general assumptions given by equation (7.59) - see Appendix B.1.3 and Ap-

pendix B.2.3 for a complete description of the numerical simulation setup. These

computational results and numerical solutions clearly share the same properties as

those of Figures 7.5 and 7.6. This supports the conclusion that the essentials of

the results obtained using barotropic relations of the form given by equation (7.3)

remain intact even under the more realistic assumptions given by equation (7.59).

7.6 Concluding remarks and discussion

In this chapter, we have developed a simple, yet effective, stochastic individual-based

(IB) model for the spatial dynamics of multicellular systems whereby cells undergo

pressure-driven movement and pressure-limited population growth. From the con-

struction of our simple IB model, nonlinear partial differential equations (PDEs)

commonly used to model the spatial dynamics of growing cell populations can be

formally derived. Through comparison of both models we find that the results of
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Figure 7.7: Numerical simulations for more realistic barotropic relations.
Comparison between the computational simulation results of our individual-based
model in the case of two cell populations (solid lines) and the numerical solutions
of the continuum model given by the system of equations (7.7) (dashed lines), for
µ1 ≤ µ2, i.e. ν1 ≤ ν2. The left and right panel display, respectively, the pressure and
the cell densities of population 1 (red lines) and population 2 (blue lines) at three suc-
cessive time instants, i.e. t = 300 (left curves), t = 450 (middle curves) and t = 600
(right curves). Values of the pressure and the cell densities are in units of 104. Sim-
ulations were carried out using a barotropic relation that satisfies the assumptions
given by equation (7.59) and the definition of G(p) given by equation (7.58) with
the homeostatic pressure P = 10 × 104 and the coefficient β = 4 × 10−5. A com-
plete description of the numerical simulation setup is given in Appendix B.1.3 and
Appendix B.2.3.
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Figure 7.8: Numerical simulations for more realistic barotropic relations.
Comparison between the computational simulation results of our individual-based
model in the case of two cell populations (solid lines) and the numerical solutions
of the continuum model given by the system of equations (7.7) (dashed lines), for
µ1 > µ2, i.e. ν1 > ν2. The left and right panel display, respectively, the pressure and
the cell densities of population 1 (red lines) and population 2 (blue lines) at three suc-
cessive time instants, i.e. t = 100 (left curves), t = 150 (middle curves) and t = 200
(right curves). Values of the pressure and the cell densities are in units of 104. Sim-
ulations were carried out using a barotropic relation that satisfies the assumptions
given by equation (7.59) and the definition of G(p) given by equation (7.58) with
the homeostatic pressure P = 10 × 104 and the coefficient β = 4 × 10−5. A com-
plete description of the numerical simulation setup is given in Appendix B.1.3 and
Appendix B.2.3.
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computational simulations of the individual-based model faithfully mirror the qual-

itative and quantitative properties of the solutions to the corresponding nonlinear

PDEs. This highlights the fact that simple IB models can lead to the emergence

of complex spatial patterns of population growth observed in continuum models,

e.g. travelling waves with composite shapes and sharp interfaces corresponding to

spatial segregation between cell populations with different biophysical properties.

Although the models described in this chapter have been general in nature, they

could be adapted to biologically represent situations of tumour cell growth and in-

vasion into healthy tissue. This could be done by considering the cancer cells as

the proliferating cell population and normal healthy tissue to be the nonproliferat-

ing cell population. Other possible scenarios such as wound healing and embryonic

development are also envisaged.
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Chapter 8

Conclusions and potential future

directions

In the past decade, the advancement in cell imaging techniques has allowed for in-

sight into the mechanisms that underpin the immune response to solid tumours.

Understanding these mechanisms of tumour removal by immune cells, and how tu-

mours can evade this response, has promoted the development of immunotherapy

techniques. However, the development of new cancer treatments can be time con-

suming and expensive. Through the use of mathematical models potential therapy

techniques may be tested in a timely and inexpensive manner. In this thesis, we have

developed mathematical models to describe tumour-immune competition with the

aim to investigate the biological settings which allow for successful immune action.

We began this thesis by describing the key biological processes and mechanisms

which have been discovered by experimentalists, historically and in recent years. In

particular, we focused on the role of two immune cell types: dendritic cells (DCs)

and cytotoxic T lymphocytes (CTLs), where DCs can collect protein antigens from

cancer cells and present them to naive CTLs to allow for CTL activation. The CTLs
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can then actively target and destroy tumour cells which express the targeted protein

antigen. Along with a description of this immune response to cancer, we considered

ways in which tumours can evade the immune response and current immunotherapy

techniques used to try and restore these processes.

Mathematical modelling techniques have been used extensively in the past to

describe cell motion, tumour development and tumour-immune competition. We

provided a short review of these techniques and their applications, with a focus on

discrete individual-based (IB) models and continuous partial differential equation

(PDE) models.

Recent advances in cell imaging technology have allowed for the single cell track-

ing of immune cells in the tumour microenvironment. In particular, experimental

works have highlighted that CTLs, and DCs alter their migration patterns upon ex-

posure to tumour antigens. To describe these movement patterns, mathematically,

we have developed a simple individual-based model of immune cell motion using

two random walk methods based on a 2D lattice. We chose a Lévy walk to replicate

the movement of inactive immune cells, where they can travel in one direction for

an extended period of time before choosing a new one. Additionally, for the active

immune cells we considered Brownian motion, where at each time instant the cell

could move to any neighbouring grid position with equal probability. Results from

our computational simulations were able to reproduce qualitatively the spatial tra-

jectories of immune cells observed in the experimental data of single cell tracking.

Looking to the future, the T cell experiments completed in Boissonnas et al. (2007)

consider cell movement in the z direction as well as x and y directions and there-

fore it may be appropriate to consider the model in three dimensions. The effects

of changing the spatial domain from 2D to 3D on the two forms of random walks,

Brownian motion and Lévy walks, would need to be considered. It is probable that
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the change of dimension would alter the time it takes for cells moving via either

walk to reach their target cells. However the general properties of each walk and

their benefits in comparison to each other should be maintained (Bartumeus et al.,

2014; Detcheverry, 2017; Wosniack et al., 2017).

Using the modelling strategies to describe immune cell motion, we then developed

a spatially stochastic individual-based model describing the spatio-temporal inter-

actions between DCs, CTLs and tumour cells. We included the effects of tumour

recognition, immune activation, tumour growth and tumour destruction by the im-

mune system. Simulations of the model were run for the 2D case and parameter

settings of potential interest were investigated. The model results suggested that a

high density of CTLs within the tumour microenvironment would be beneficial to

tumour removal. However increased numbers of DCs could lead to an overcrowding

effect. Furthermore, the results of our model highlighted that situations of enhance

tumour growth could be control if CTLs had a strong capability of removing tumour

cells. However, the model also suggested that altering the activation rate of both

immune cells types or the exhaustion rate of the immune cells would not signific-

antly alter the outcome of tumour-immune competition, and therefore are not viable

targets for immunotherapy techniques. Immune cell exhaustion was also considered

where the immune cells were limited in the number of cells that they could interact

with. The results of the model suggested that as long as this limit was not small, e.g.

an exhaustion limit ≥ 10 cells, then the outcomes of tumour-immune competition

would be similar to those where there was no exhaustion limit. The effect of using

the switch in cell motion suggested in Chapter 4 was also investigated and it was

found that using this switch led to a faster tumour removal time than if Brownian

motion was used to describe the motion of all cell types. In this individual-based

model, for simplicity, it was assumed that the tumour was homogeneous, i.e. all
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tumour cells expressed the same tumour antigens. However, tumours can be het-

erogeneous, where each cell may have a unique antigen profile.

To investigate this further, we extended the individual-based model to include the

effects of heterogeneity within and between tumour cells. Each tumour cell was char-

acterised by an antigen profile, which described the expression levels of the eleven

MAGE antigens expressed by the cell. Initially, the antigen profiles of tumour cells

were dependent on the total level of heterogeneity within the tumour. The antigen

profile of each cell was additionally allowed to vary over time due to the occurrence

of epimutations. The antigen expression of each tumour cell subsequently shaped

the cellular immune response, and ultimately determined the receptors produced by

the CTLs. Successful destruction of tumour cells by the CTLs then depended on

the level of antigen expressed by the tumour cell corresponding to the CTL’s T cell

receptor. Once again, simulations of the model were run for the 2D case and para-

meter settings of potential interest were investigated. Computational simulations of

this model clarified the conditions for the emergence of tumour clearance, dormancy

or escape, and allowed us to assess the impact of antigenic heterogeneity of cancer

cells on the efficacy of immune action. The model results also suggested that a

diverse T cell population, where multiple antigen receptors are produced, would be

advantageous in removal of the tumour. Furthermore, the model results indicated

that increasing the frequency of epimutations may be a beneficial approach to treat

cancer.

Ultimately, the results from both tumour-immune individual-based models high-

lighted the complex interplay between spatial interactions and adaptive mechanisms

that underpin the immune response against solid tumours, and suggests how this

may be exploited to further develop cancer immunotherapies. Looking to the fu-

ture, these individual-based models could be extended further by considering the
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effects of division and decay of the immune cells types or through describing pro-

cesses where tumour cells directly attack the lymphocytes. Normally Fas ligand

from the lymphocyte binds to the Fas receptor on the tumour cell surface, they

aggregate to form a Fas associated death domain which activates a caspase cascade

resulting in apoptosis of the tumour cell (Hersey and Zhang, 2001). However, tu-

mour cells can also produce FasL and activate apoptosis of the CTLs through their

Fas receptors (Stewart and Abrams, 2008). Furthermore, we have only described

tumour-immune competition in 2D, and therefore extending the model into 3D could

bring further understanding of the biological mechanisms underpinning the immune

response to solid tumours and the phenomena observed in the 2D model, such as

overcrowding.

As mentioned previously, individual-based models can be limited by their lack

of amenability to mathematical analysis techniques. To overcome this we aim to

derive the continuum counterparts of the individual-based models described previ-

ously. However, due to the inclusion of a Lévy walk and other complex mechanisms,

we considered a simpler biological situation. We developed an individual-based

model describing a cell population, where cells were able to undergo pressure-driven

movement and pressure-dependent proliferation. From the discrete random branch-

ing walk that underlies the individual-based model we formally derived nonlinear

partial differential equations which have been commonly used to model the spatial

dynamics of growing cell populations. We subsequently carried out a systematic

comparison between the individual-based model and its continuum counterparts,

both in the case of one single cell population and in the case of multiple cell popula-

tions with different biophysical properties. The outcomes of our comparative study

demonstrated that the results of computational simulations of the individual-based

model we able to faithfully mirror the qualitative and quantitative properties of the
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solutions to the corresponding nonlinear partial differential equations. This is of po-

tential use when working on biologically motivated models, as the individual-based

approach may be easier to describe to biologists and other nonmathematicians, how-

ever through the continuum model a level of mathematical analysis can be retained.

Ultimately, these results illustrated how the simple rules governing the dynamics

of single cells in our individual-based model can lead to the emergence of complex

spatial patterns of population growth observed in continuum models. Similar meth-

ods could be used in the future to derive the corresponding continuum models of

more complex individual-based models, such as those we have developed to describe

tumour-immune competition. In this regard, many previous continuous models have

been used to describe Lévy flights. However, in the case of Lévy walks there is a gap

in the literature and this form of random walk is not well described in the context

of systems of equations.

Our cell population migration and growth model could be extended into higher

dimensions or used to describe biological situations such as cancer invasion. In

this regard, it would be interesting to use our stochastic individual-based model to

further investigate the formation of finger-like patterns of invasion observed for the

two population system of PDEs posed on a two dimensional spatial domain (Lorenzi

et al., 2017). Such spatial patterns resemble infiltrating patterns of cancer-cell in-

vasion commonly observed in breast tumours (Wang et al., 2012). An additional

development of our study would be to compare the results presented here with

those obtained from equivalent models defined on irregular (non-uniform) lattices,

as well as to investigate how our modelling approach could be related to off-lattice

models of growing cell populations (Drasdo, 2005; Motsch and Peurichard, 2018;

Van Liedekerke et al., 2015). Cell population models have also be used to con-

sider other modes of cell migration, for example chemotaxis, whereby cells follow
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a chemical signal. The continuum limit of stochastic chemotactic models has been

considered (Erban and Othmer, 2004; Stevens, 2000) and in a similar way our model

could be adapted to consider chemotaxis, whereby cells move up the chemoattract-

ant gradient, rather than down the pressure gradient.
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Appendix A

Appendix for Chapter 5
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Figure A.1: Example of spatial distributions of cells over time for a case of
tumour elimination. Initially, the simulations begin with 400 tumour cells (blue)
situated in the centre of the domain surrounded by inactive cytotoxic T lymphocytes,
CTLS, (pink) and inactive dendritic cells, DCs, (grey). Throughout the simulations
the DCs and CTLs can become activated (black and red, respectively) and interact
with tumour cells. In the parameter setting used here the tumour cell number reduces
until all cells are removed from the system at time t = 2505. For this simulation we
use the parameter values given in Table 5.2 with an exhaustion limit of 5 cells.
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Figure A.2: Example of spatial distributions of cells over time for a case of
tumour persistence. Initially, the simulations begin with 400 tumour cells (blue)
situated in the centre of the domain surrounded by inactive cytotoxic T lymphocytes,
CTLS, (pink) and inactive dendritic cells, DCs, (grey). Throughout the simulations
the DCs and CTLs can become activated (black and red, respectively) and inter-
act with tumour cells. In the parameter setting used here the tumour cell number
increases over the simulation time and the tumour increases in size. For this simu-
lation we use the parameter values given in Table 5.2 with an exhaustion limit of 1
cell.
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Figure A.3: Increasing the number of DCs can lead to longer tumour
removal times. The heat maps show the evolution of the tumour cell number over
time for each given value of NC and/or ND (left panels). We select four simulation
results for cell numbers, of 60, 420, 1200 and 2400 cells, and compare the tumour cell
number over time for each parameter setting (right panels). In each case, we begin
the simulations with 1200 tumour cells and test for varying values of: a,b NC only,
c,d ND only and e,f NC and ND. All values were averaged over three simulation
runs.
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Figure A.4: The ratio between the removal rate of tumour cells by CTLs
and the tumour cell division rate is a crucial parameter in tumour re-
moval. The heat maps show the evolution of the tumour cell number over time for
each given value of µ and/or λ (left panels). We select four values of µ and/or
λ and compare the tumour cell number over time for each parameter setting (right
panels). In each case, we begin the simulations with 1200 tumour cells and test for
varying values of: a,b µ only, c,d λ only and e,f µ and λ. All values were averaged
over three simulation runs
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Appendix B

Appendix for Chapter 7

B.1 Details of numerical simulations of the individual-

based model

We use a uniform discretisation of the interval [0, 100] that consists of 1001 points

as the spatial domain, i.e. the grid-step is χ = 0.1, and we choose the time-step

τ = 2 × 10−3. We implement zero-flux boundary conditions to prevent cells from

moving out of the spatial domain. For all simulations, we use the definition of

the rate G given by equation (7.44) and we perform numerical computations in

Matlab. Further details for each specific situation considered are provided in the

next subsections.

B.1.1 Setup of numerical simulations for the case of one cell

population

For consistency with equation (7.1), we set M = 1 and we drop the index h = 1

both from the functions and from the parameters of the individual-based model.
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We define the rate G in equations (7.9)-(7.11) according to equation (7.44). We

set the homeostatic pressure P = 120 × 104 for the simulation results reported

in Figure 7.2 and Figure 7.3, while we choose P = 120 × 105 for the simulation

results of Figure 7.4. Moreover, we choose β = 4 × 10−6 for the simulation results

reported in Figure 7.2, β = 4 × 10−5 for the simulation results of Figure 7.4, and

β ∈ {1.5× 10−6, 4× 10−6, 4× 10−5} for the simulation results of Figure 7.3. We set

ν = 0.02 in equations (7.13)-(7.15) and we define the pressure pki according to the

following barotropic relation

Π(ρki ) = Kγ (ρki )
γ with Kγ =

γ + 1

γ
and γ > 1,

which satisfies the conditions given by equation (7.2). We let γ ∈ {1.2, 1.5, 2} for the

simulation results of Figure 7.4, while we choose γ = 1.2 for the simulation results

reported in Figure 7.2 and Figure 7.3. We impose compact support by using the

initial cell density

ρ0i =


A exp (−b x2i ) for xi ≤ 50

0 for xi > 50

with A = 2× 104 and b = 4× 10−3.

The results presented in Figure 7.2 and Figure 7.3 correspond to the average over

three simulations of our individual-based model, while the results in Figure 7.4

correspond to one single simulation when γ = 1.5 or γ = 2 and the average over two

simulations when γ = 1.2.
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B.1.2 Setup of numerical simulations for the case of two cell

populations

For consistency with the system of equations (7.7), we choose M = 2, and we

set G1 ≡ G and G2 ≡ 0 in equations (7.9)-(7.11), where G is defined according

to equation (7.44) with the homeostatic pressure P = 10 × 104 and the factor

β = 4 × 10−5. We set ν1 = 0.01 and ν2 = 0.5 in equations (7.13)-(7.15) for the

simulation results reported in Figure 7.5, while we consider ν1 = 0.5 and ν2 = 0.01

for the simulation results of Figure 7.6. We define the pressure pki according to the

following simplified barotropic relation

Π(ρki ) = K ρki with K = 2,

which satisfies the conditions given by equation (7.2). Here, we choose γ = 1 as the

results displayed in Section 7.5.2 and Figure 7.4 highlight that for large γ there can

be disagreement between the discrete and continuum models. We make use of the

initial cell densities

ρ01i = A1 exp
(
−b1 x2i

)
and ρ02i =



0, for xi ≤ 13,

A2 exp (−b2(xi − 14)2), for xi ∈ (13, 29),

0, for xi ≥ 29,

(B.1)

where

A1 = 1.25× 104, b1 = 0.06, A2 = 2.5× 104 and b2 = 6× 10−3.
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The results presented in Figure 7.5 and Figure 7.6 correspond to one single simula-

tion of our individual-based model.

B.1.3 Setup of numerical simulations for the case of two

populations with a redefined pressure function

For consistency with the system of equations (7.7), we choose M = 2, and we

set G1 ≡ G and G2 ≡ 0 in equations (7.9)-(7.11), where G is defined according

to equation (7.44) with the homeostatic pressure P = 10 × 104 and the factor

β = 4 × 10−5. We set ν1 = 0.01 and ν2 = 0.5 in equations (7.13)-(7.15) for the

simulation results reported in Figure 7.7, while we consider ν1 = 0.5 and ν2 = 0.01

for the simulation results of Figure 7.8. We define the pressure pki according to the

following barotropic relation

Π(ρki ) = q (ρki − ρ∗)+ where q = 10 and ρ∗ = r P with r = 10−3,

which satisfies the conditions given by equation (7.45). We choose this definition of

the pressure function as we now only depend on a linear function of the cell density

which may be a more biologically realistic description of cellular pressure. We make

use of the initial cell densities given by equation (B.1) with

A1 = 12.5× 104, b1 = 0.06, A2 = 25× 104 and b2 = 6× 10−3.

The results presented in Figure 7.8 and Figure 7.7 correspond to one single simula-

tion of our individual-based model.
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B.2 Details of numerical simulations of the con-

tinuum models

We let x ∈ [0, 100] and we construct numerical solutions for equation (7.1) and

for the system of equations (7.7) complemented with zero Neumann boundary con-

ditions. We use a finite volume method based on a time-splitting between the

conservative and nonconservative parts. For the conservative parts, transport terms

are approximated through an upwind scheme whereby the cell edge states are cal-

culated by means of a high-order extrapolation procedure (LeVeque, 2002), while

the forward Euler method is used to approximate the nonconservative parts. We

consider a uniform discretisation of the interval [0, 100] that consists of 1001 points

and we perform numerical computations in Matlab. For all simulations, we use the

definition of the rate G given by equation (7.44). Further details for each specific

situation considered are provided in the next subsections.

B.2.1 Setup of numerical simulations for the case of one cell

population

The rate G is defined according to equation (7.44) with the homeostatic pressure

P = 120×104 for the numerical solutions reported in Figure 7.2 and Figure 7.3, while

we choose P = 120 × 105 for the numerical solutions of Figure 7.4. Moreover, we

choose β = 4×10−6 for the numerical solutions reported in Figure 7.2, β = 4×10−5

for the numerical solutions of Figure 7.4, and β ∈ {1.5× 10−6, 4× 10−6, 4× 10−5}

for the numerical solutions reported in Figure 7.3. We define the pressure p according
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to the following barotropic relation

Π(ρ) = Kγ ρ
γ with Kγ =

γ + 1

γ
and γ > 1,

which satisfies the conditions given by equation (7.2). We let γ ∈ {1.2, 1.5, 2} for

the numerical solutions of Figure 7.4, while we choose γ = 1.2 for the numerical

solutions reported in Figure 7.2 and Figure 7.3. Given the parameter values used

for the individual-based model in the case of one single cell population, we choose

the mobility µ = 4.166×10−7 for the numerical solutions reported in Figure 7.2 and

Figure 7.3, while we set µ = 4.166× 10−8 for the numerical solutions of Figure 7.4.

In this way, both values of µ satisfy the condition given by equation (7.21) for h = 1.

We impose the initial condition

ρ(0, x) =


A exp (−b x2) for x ≥ 50

0 for x < 50

with A = 2× 104 and b = 4× 10−3.

B.2.2 Setup of numerical simulations for the case of two

populations

The rate G is defined according to equation (7.44) with the homeostatic pressure

P = 10×104 and β = 4×10−5. Given the parameter values used for the individual-

based model in the case of two cell populations, we choose the mobilities µ1 =

2.5× 10−7 and µ2 = 1.25× 10−5 for the numerical solutions reported in Figure 7.5,

and the mobilities µ1 = 1.25× 10−5 and µ2 = 2.5× 10−7 for the numerical solutions

of Figure 7.6. This guarantees that the conditions given by equation (7.21) for

h = 1, 2 are satisfied. We define the pressure p according to the following simplified
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barotropic relation

Π(ρ) = K ρ with K = 2,

which satisfies the conditions given by equation (7.2). Again, we choose γ = 1 as

the results displayed in Section 7.5.2 and Figure 7.4 highlight that for large γ there

can be disagreement between the discrete and continuum models. We impose the

initial conditions

ρ01(0, x) = A1 exp
(
−b1 x2

)
and ρ02 =



0, for x ≤ 13,

A2 exp (−b2(x− 14)2), for x ∈ (13, 29),

0, for x ≥ 29,

(B.2)

where

A1 = 1.25× 104, b1 = 0.06, A2 = 2.5× 104 and b2 = 6× 10−3.

B.2.3 Setup of numerical simulations for the case of two

populations with a redefined pressure function

The rate G is defined according to equation (7.58) with the homeostatic pressure

P = 10×104 and β = 4×10−5. Given the parameter values used for the individual-

based model in the case of two cell populations, we choose the mobilities µ1 =

2.5× 10−7 and µ2 = 1.25× 10−5 for the numerical solutions reported in Figure 7.7,

and the mobilities µ1 = 1.25×10−5 and µ2 = 2.5×10−7 for the numerical solutions of

Figure 7.8. This guarantees that the conditions given by equation (7.21) for h = 1, 2
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Figure B.1: The invasion front of the individual-based model travels at
the same speed but behind the front of the corresponding continuum
model. The left and right panel display, respectively, the pressure and the cell
density at the time instants t = 10, t = 50, t = 150 and t = 250. Values of
the pressure and the cell density are in units of 104. Simulations were carried out
using the same parameter values as the results for γ = 2 displayed in Figure 7.4. A
complete description of the numerical simulation setup is given in Appendix B.1.1
and Appendix B.2.1.

are satisfied. We define the pressure p according to the following barotropic relation

Π(ρ) = q (ρ− ρ∗)+ where q = 10 and ρ∗ = r P with r = 10−3,

which satisfies the conditions given by equation (7.45). We impose the initial con-

ditions given by equation (B.2) with

A1 = 12.5× 104, b1 = 0.06, A2 = 25× 104 and b2 = 6× 10−3.
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Phys Rev E, 95(1):030107.

Fehres, C. M., Unger, W. W. J., Garcia-Vallejo, J. J., and van Kooyk, Y. (2014). Understanding the

biology of antigen cross-presentation for the design of vaccines against cancer. Front Immunol,

5:149.

Feinberg, A. P. (2004). The epigenetics of cancer etiology. In Seminars in Cancer Biology,

volume 14, pages 427–432. Elsevier.

Feinberg, A. P. and Tycko, B. (2004). The history of cancer epigenetics. N Rev Cancer, 4(2):143.

Feng, K., Guo, Y., Dai, H., Wang, Y., Li, X., Jia, H., and Han, W. (2016). Chimeric antigen

receptor-modified T cells for the immunotherapy of patients with EGFR-expressing advanced

relapsed/refractory non-small cell lung cancer. Sci China Life Sci, 59(5):468–479.

Ferlay, J., Colombet, M., Soerjomataram, I., Mathers, C., Parkin, D., Piñeros, M., Znaor, A., and
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T., and Charo, J. (2015). Permissive expansion and homing of adoptively transferred T cells in

tumor-bearing hosts. Int J Cancer, 137(2):359–371.

Perthame, B. (2014). Some mathematical aspects of tumor growth and therapy. In ICM 2014-

International Congress of Mathematicians.

Perthame, B., Quirós, F., Tang, M., and Vauchelet, N. (2014a). Derivation of a Hele–Shaw type

system from a cell model with active motion. Interface Free Bound, 16(4):489–508.

Perthame, B., Quirós, F., and Vázquez, J. L. (2014b). The Hele–Shaw asymptotics for mechanical

models of tumor growth. Arch Ration Mech Anal, 212(1):93–127.

Phan, G. Q. and Rosenberg, S. A. (2013). Adoptive cell transfer for patients with metastatic

melanoma: The potential and promise of cancer immunotherapy. Cancer Control, 20(4):289–

297.

199



Poleszczuk, J., Macklin, P., and Enderling, H. (2016). Agent-based modeling of cancer stem cell

driven solid tumor growth. Meth Mol Biol, 1516:335–346.

Porter, D. L., Hwang, W., Frey, N. V., Lacey, S. F., Shaw, P. A., Loren, A. W., Bagg, A.,

Marcucci, K. T., Shen, A., Gonzalez, V., et al. (2015). Chimeric antigen receptor T cells persist

and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl

Med, 7(303):303ra139.

Postow, M. A., Chesney, J., Pavlick, A. C., Robert, C., Grossmann, K., McDermott, D., Linette,

G. P., Meyer, N., Giguere, J. K., Agarwala, S. S., et al. (2015). Nivolumab and ipilimumab

versus ipilimumab in untreated melanoma. N Engl J Med, 372(21):2006–2017.

Preziosi, L. (2003). Cancer modelling and simulation. CRC Press.

Radunskaya, A., de Pillis, L. G., and Gallegos, A. (2013). A model of dendritic cell therapy for

melanoma. Front Oncol, 3:56.

Raichlen, D. A., Wood, B. M., Gordon, A. D., Mabulla, A. Z. P., Marlowe, F. W., and Pontzer,
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